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/- courbes elliptiques et
courbes modulaires

1. CLASSIFICATION DES COURBES ELLIPTIQUES

1.1, DEFINITIONS ET NOTATIONS.

Soient K un corps de caractéristique p (positive ou nulle), K
une cl6ture algébrique de K , et KS la cl6éture séparable de K conte-

nue dans K .

On appelle courbe elliptique sur K toute variété abélienne définie

sur K de dimension 1

Cette définition équivaut a la suivante :

Une courbe elliptique sur K est une courbe algébrique E projec-

tive non-singuliére de genre 1 définie sur K et munie d'un point O ra-

tionnel sur X .

En effet, nous allons voir ci-dessous comment on peut définir une

structure de groupe sur une telle courbe E

1.1.1. PROPOSITION

(i) La courbe E est isomorphe 3 une cubique plane d'égquation

affine :
(1) 2 + a
Y 1

ou les ai sont dans K ;

3 2
= +
Xy + a3y X~ + azx + a4x a6 ,

(ii) On a alors K(E) = K(x,y) = K[X,Y] /(F(X,Y)) avec

2 3 2
- + - - - -
FX,Y) Y + aIXY 33Y X aZX a4X ag .



w (i) Appligquons le théoréme de Riemann-Roch au diviseur nO ,
ol n est un entier strictement positif. La dimension 2(nO) de l'espace
L(nO) des diviseurs de fonctions supérieurs ou égaux & (-nO) est donnée
par : £2(nO) = deg(nO) - g +1 = deg(nO) = n . En particulier, L(O) =K ,
L(20) a une base de la forme {1,x,y} , ol x (resp.y) a un pdle d'ordre
2 (resp. 3) en O . Et L(60) est de dimension 6 ; or il contient les 7
éléments {l,x,y,xz,xy,yz,x3} , donc il y a une relation K-linéaire entre
ces éléments. Si le coefficient de yz (resp. de x3) était nul, la courbe
E serait de genre nul; ainsi, on peut écrire 1'équation de E sous la for-

me (1)

(ii) L'ordre en O des fonctions 1 , x , v , x2 , XY , y2 , x3 ,
étant respectivement : 0, -2 , -3 , -4 , -5 , -6 , -6 , il ne peut pas
y avoir entre eux de relation de degré strictement plus petit que 2 en vy ,
ouque 3 en x . Donc F{X,Y) est irréductible dans K[X,Y] , et l'on
a bien : K(E) = K[X,Y] /(FX,Y)) = K(x,y) . =

Remarque : le point O est l'unique point & 1'infini sur la courbe

d'équation (1)

Remarquons aussi que la fonction ¢x +my +n (2,m,n€K) a un

p6le triple en O et pas d'autre pdle : elle a donc 3 zéros P1 . P2 . P3

On définit une loi de groupe sur E en posant : P1+ P2 +P3 =0 (cif.[11],5,6) ;

on utilise ici la non-singularité de E . Sur la cubique d'équation affine (1) ,
cela signifie que le point a 1'infini est l'origine pour la loi de groupe, et que
la somme de 3 points est nulle si et seulement si ces 3 points sont ali-
gnés (cf [5],7). Soient E et E' deux courbes elliptiques sur K , et L

une extension de K contenue dans K . Nous appellerons L-homomorphisme

de E dans E' toute application rationnelle définie sur L de E dans E'
qui soit un homomorphisme de groupes. En fait, toute application rationnelle
de E dans E' définie sur L et transformant l'origine de E en l'origine

de E' est un L-homomorphisme (cf [5]).



1.1.2. Réciproquement, une équation du type (1) définit une courbe E
qui est elliptique si et seulement si elle n'a pas de points singuliers, ce
qui équivaut & A # 0 , o0 A est le discriminant défini par les formules

ci-dessous, (cf [47)) :

2 2
= + = =
(2) b2 a; 432 , b4 a1a3+2a4 , b6 a, +4a6 ,
bzbs‘bi
bg = Dy3g ~ 2333, +aya; —ay =
= b% - 24p = -b2436b.b. - 216b
4 T 7 4 ' S T TPTU0% 6
c —cz
_ 4 6 _ 2 _ 3 _ 2
A = 3 = b2b8 8b4 27b6 + 9b2b4b6
12
. . 3 . P
Posons aussi : j = c4/A ; J est appelé l'invariant de E

1.1.3. Lorsque p # 2 , 3 , l'équation de E peut s'écrire sous la forme :

2 3
(3) y = 4x g,X 95 -

dite "forme de Weierstrass" (cf.[5] ,7). Dans ce cas, A est le discrimi-

nant du polynéme cubique du second membre multiplié par 16

La forme de Weierstrass d'une courbe elliptique n'est pas unique,

4
mais 9, (resp. gB’A) sont définis & un coefficient prés dans K’ (resp.

K*G,K*lz) , comme nous le voyons ci-dessous (1.2.1).

1.2. CILASSIFICATION A K ISOMORPHISME PRES.

1.2.1. PROPOSITION . 1L'application qui fait correspondre & toute courbe

elliptiqgue E son invariant j définit une bijection entre l'ensemble des

classes de K- isomorphisme de courbes elliptiques sur K , et l'espace

affine Al(K) de dimension 1 sur K .

@ Soient E , E' , 2 courbes elliptiques sur K , et f un K-
isomorphisme de E sur E' , donc f' envoie O sur l'origine O' de

E' . Ecrivons les équations de E et E' sous la forme (1) , les coor-



données étant notées (x,y) pour E , et (x',y') pour E' , et considérons
x,y (resp. x',y') comme fonctions rationnelles sur E (resp. E') ; alors
x'of (resp. y'of) est une fonction rationnelle sur E avec un péle d'ordre
2 (resp. 3) en O , autrement dit c'est un élément de L(20) (resp. L(30)) ,
c'est-a-dire une combinaison K linéaire de {1,x} (resp. {1,x,y}) . Mais
les coefficients de y2 et x3 dans (1) sont égaux & 1 , donc on a plus

précisément :

(4) x'of=u2x+r , yof=u3y+uzsx+t ,
ot u,r,s,t € K, u#0 . Les calculs donnent :

C4=UC4,C6=UC6,

(cf. [18] , Appendix 1, §1)

D'autre part, si E et E' sont 2 courbes elliptiques sur X , de
méme invariant, on peut déterminer u,r,s,t € K , u# 0 , de telle sorte
que les formules (4) définissent un K - isomorphisme f de E sur E'

(cf. [18], Appendix 1, §2)

Enfin, pour tout j de K , il existe une courbe elliptique E sur K

dont j soit l'invariant ; si j# 0, 123 , on peut prendre la courbe d'égqua-

1
tion : y2+xy = x3— 36 X =" = ;81 j=0 et p#2,3 , la courbe
. 3 , 3
j-12 j-12
' . , 2 3 C6 .
d'équation : y = x - 864 pour n'importe quelle valeur non nulle de c6 ;
. 3 ' s . 2 3 C4
si j = 12 et p# 2,3, la courbe d'équation : y =x - Zé_x pour
n'importe quelle valeur non nulle de Cy i si p=2 (resp. p=3) et
j=0= 123 , on peut prendre la courbe d'équation : y2 +y = x3 (resp.
2 3
y =x-xX). =

1.2.2. Application : détermination de Aut(E)

Notons Aut(E) le groupe des K- automorphismes de E , et My le

) émes L
groupe des racines n de l'unité.



PROPOSITION ~. 8i j#0 , 127 , alors Aut(E) = {+1} =p, i si

j= et p# 2,3 , alors Aut(E) = Mg

I
1l
—
[ae]
0]
—
o)
“H.
N
w
[o}]
—
o]
=
42}

Aut(E) = |p4

® Considérons un automorphisme de E défini i l'aide des formules
, 2 3

(4) . Comme c;l =, et Cp = C, , nous avons u = 1 si j#0,127 ;

si =0 et p#2,3 , nous avons seulement u6 =1 car c4 = czl =0 ;

. 3

si j = 12 et p# 2,3 , nous avons seulement u4 =1 car 06 =cé =0 .

Or, le changement de variable défini par les formules (4) doit définir la

méme courbe E : cela implique r =s =t =0 . =

1.2.3. Remarque : Si p=2 (resp. p=3) et j=0= 123 , alors
) (cf. [47] ,2).

Aut E = SL_(F,) (resp. Aut E =~ ¢

273 3

1.3. CLASSIFICATION A K-ISOMORPHISME PRES. (cf.[5], théoréme 9.1).

1.3.1. PROPOSITION , Soit j un élément de K . L'ensemble des classes

de K-isomorphisme de courbes elliptiques sur K d'invariant j , est en bi-

jection avec le groupe de cohomologie Hl(GK,Aut(E)) , ol GK est le grou-

pe de Galois de KS/K et Aut(E) le groupe des K-automorphismes de n'im-

porte guelle courbe elliptigue sur K d'invariant j

Rappelons que les éléments de Hl(GK,Aut(E)) sont les classes des
l-cocycles continus, et qu'un l-cocycle )\O (oEGK) est dit continu s'il
existe une extension galoisienne finie L/K telle que >\0 = )\'r dés que
o et T ont la méme action sur L . Et remarquons que Aut(E) n'est pas

toujours abélien (cf. 1.2.3).

@ Définissons d'abord une application de l'ensemble des courbes

1(GK,Z-\ut(E)) , de sorte

que deux courbes elliptiques K-isomorphes aient méme image.

elliptiques sur K d'invariant j dans le groupe H

Soient E et El deux courbes elliptiques sur K d'invariant j



D'aprés la proposition (1.2.1), il existe un K-isomorphisme ¢ de E sur

E1 . Ecrivons 1'équation de E sous la forme (1), et considérons un élé-
s}

ment o de GK . Notons E~ la courbe obtenue en remplagant les coef-

ficients ai par leur image af ;s ici ai ¢ K donc a(ij = ai et E° = E

Notons o(y) le K-isomorphisme de E® sur EC17 obtenu en appliquant o

aux coefficients de 1§ . Ainsi, pour chaque o € G nous déduisons de

K 1
y un K-isomorphisme o(y) de E sur E, . Définissons & : Gy - Aut(E) par
@O = Ll}—loO(Llj) pour tout g € Gk . Alors & est un l-cocycle de GK dans

. _ -1
Aut(E) car @p p(@o) )

oo(Pop(y~ Do paly) = q;_lopo(\y) = on pour tous
p:0 € GK . De plus & est continu : en effet @O = @T dés que g et T
ont la mé&me action sur l'extension galoisienne de K engendrée par les

coefficients de la transformation birationnelle . D'autre part, si 2 cour-

bes elliptiques E, et E sur K d'invariant j sont K-isomorphes, soient

¢i un _f—isomorphilsme—ilze E sur Ei (i=1,2) , » un K-isomorphisme de
E o sw E, , et pu=y, ohoy, € Aut(E) . Alors

L h e, 8, = ¥ ooy = 1ty oo ol e ol ,)e o)

éu l \ = }1_1°®2,0°O(p)

E V2 Ez pour tout o ¢ GK , donc les cocycles ) et 3

sont cohomologues. Ceci s'applique en particulier

au cas E1 = Ez vy # ¥y

En résumé, soit E une courbe elliptique sur K d'invariant j ,
et soit une K-classe de courbes elliptiques sur K d'invariant j . Consi-
dérons une courbe E' quelconque dans cette classe, un E-isomorphisme
quelconque § de E sur E' , et la classe de cohomologie du l-cocycle

continu de Gy & valeurs dans Aut E défini par : 8 = w_loo(w) pour

tout g ¢ GK ; nous venons de montrer que ceci définit une application de
l'ensemble des K-classes de courbes elliptiques sur K d'invariant j ,

dans Hl(GK,Aut(E)). Nous allons voir que cette application est bijective.
C'est une injection : si ¥ o E - Ei (i=1,2) donnent des cocycles homo-
logues, c'est-a-dire s'il existe € Aut E tel que pour tout o € GK ,

-1 _ -1 -1 . . _ -1

¥y oO’(llJl) =H ey, Oo‘(lljz)o(j(u) , alors l'isomorphisme ) = ¥po Ko ¥ de ]E‘.1

sur E2 est invariant par ¢ , donc défini sur K



C'est une surjection : soit & un l-cocycle continu.de GK a

valeurs dans Aut(E) , et L une extension galoisienne finie de K telle

que & se factorise par le groupe de Galois G de L/K . Soit K(E).

L/X
5 le corps des fonctions rationnelles de E ,
G, ———» Aut(E) B
K /1 et L(E) = K(E) R L . Le groupe GL/K
\ 7 agit sur L ; comme L et K(E) sont 2 ex-
GL/I( tensions linéairement disjointes sur K , on

peut prolonger l'action de GL/K a L(E) de telle sorte que l'action sur
K(E) soit triviale. Notons o(f) l'image de f € L(E) par o ¢ GL/‘K .
D'autre part, notons ol{f) = a(f)o§;1 ; cela définit une autre action de GL/K
sur L(E) , car § est un l-cocycle :

550 = pol)el 8 ople )] = F50

si o,p € GL/K , T€L(E) . Le corps des invargmts de L(E) pour l'action
"ordinaire" de GL/K est K(E) . Notons L(E) L/K le corps desdinvariants
pour l'action "tordue" de GL/K ; son corps des constantes est(:jL LK _ K et
son degré de transcendance sur K est égal 3 1 . Donc L(E) L/K est de la
forme K(E') pour une courbe algébrique E' sur K telle que K(E').L = L(E)
donc E' est de genre 1 , c'est une courbe elliptique sur K , Et il existe
un L-isomorphisme § de E sur E' puisque L(E) = L(E') ; d'ol un L-
isomorphisme de K(E') sur K(E) , défini par : f —> foy et tel que :
olf)ey = olfoy) c'est-a-dire (of)e §y = offo \b)oé;;l = o(f)oo(w)ogc;l pour tout

N -1
’ d' . = o ( .
feL(E) , et tout o€ GL/K ol & = o(y) pour tout o€ GK .

2. COURBES ELLIPTIQUES SUR (

2.1. FONCTIONS DE WEIERSTRASS.

2.1.1., THEOREME . Toute surface de Riemann compacte de genre 1 sur C

est analytiquement isomorphe & une courbe elliptique sur C .

@ Toute surface de Riemann compacte de genre 1 sur € est un
tore de la forme €/L pour un réseau L de € . Notons § = {1€C/

Im(tr) > 0} le demi-plan de Poincaré, et soit L = Zw,®Zw, un réseau



de € tel que 71 = wl/wz € 3 . Définissons la fonction de Weierstrass de

L par P(u;L)=1—+ 2 1

1
- —) pour tout ue € ; ici 2,' signifie
2 2 2
u el (u-)) A

qu'on somme sur tous éléments non nuls de L . On montre (cf. [18],1,3)
que cette série converge sur tout compact de € ne rencontrant pas L .
De plus, © a un pdle double en O et est paire. Sa dérivée '(u;L) est

impaire et L-périodique, i.e. #'(u+y;L) = ¢'(u;L) pour tout A €L . On

en déduit que ¢ et ' sont deux fonctions L-elliptiques, c'est-a-dire méro-

morphes sur € et L-périodiques.

Montrons que ¢ et ' sont liés par une relation algébrique :

soit k un entier = 2 , et GZk(L) la série d'Eisenstein de poids 2k

associée a L , définie par :

v 1 ' 1
G, L) = 2 —5 = 2
2k 2k 2k

rel (m,n)eZ2 (mw1+nw2)
(le second 72.' signifie qu'on somme sur Zz—{(0,0}) . La série GZk(L)
est convergente, car la série ' —171 converge pour tout nombre réel

rel ||

a>2 (cf. [18],1,2). Alors, nous avons :

1 2

Pwl) = =+ 3 @k+u’fe (1)
2 2k+2
u k=1
et
Pl = 2+ T ko le @,
2k +2
u k=1
N 2 3
d'od ' = 4p° - 60G4P - 140G6
Posons g, = 60 G et g. = 140 G. . La courbe E d'équation
2 3 4 4 6 6 9

y = 4x - 9% ~ 9 est une cubique du plan affine A" (C) . Les racines

3

du trinbme 4x° - 94% = 9 sont les valeurs P(vi;L) (i=1,2,3) ou les

nombres v, sont les zéros de ¢'(u,L) (mod. L).

Comme la fonction ' est a la fois impaire et L-périodique, on a
P (-w,/2) = -¢'W,/2) = ¢, /2) ,

donc w1/2 est un zéro de ' ; de méme w2/2 et (w1+w2)/2 sont des

zéros de ' , donc les nombres Vi Vs v3 sont congrus modulo L a



wl/z , wz/Z , (wl-lwz)/z (cf. [3]). La fonction @ est paire, et
v, =V (mod L) , donc ¢ prend la valeur P(vi) avec une multiplicité
paire (=2 2) . Or © a un seul péle d'ordre 2 modulo L , et nous avons

le lemme suivant :

2.1.2. LEMME . Soient f une fonction L-elliptique de points "singuliers"
(zéros ou pobles) {ai} dans C/L , et m, l'ordre de f en a, . Alors
2 m =0
|
i
@ Soit R un domaine fondamental pour C€/L , défini par :
= =a+t, W, + v

°‘+“’1+“’2 R {z€C/z=a t @, tzwz,OSti<1} , ol o est un complexe
od-wl ,,/’7 choisi de telle sorte que la frontiére dR de R ne

/I contienne aucun point singulier de f . Le théoréme des

L résidus appliqué a la fonction L-elliptique f'/f et

a 2 au contour 3R donne Zmi =0. =

i

Terminons la démonstration du théoréme : la fonction L-elliptique
P - P(vi) , ayant un seul pdle double modulo L ne peut avoir d'autre zéro
que le zéro double v, ; en particulier P(vj) # P(vi) dés que i#j . Ainsi
les 3 racines du trin6éme 4x —g4x—g6 sont distinctes, le discriminant est

non nul, et E est une courbe elliptique (cf. 1.1.3).

L'isomorphisme de C€/L sur E (considérée comme courbe projective)

3

est donné par : u }—>» (u3P(u),u3P‘ (u),u”) . =

2.1.3. Loi de groupe. €©/L et E sont des groupes abéliens (la structure

de /L étant induite par celle de €), et l'isomorphisme défini dans le

théoréme (2.1.1) est un isomorphisme de groupes. Autrement dit, si

Pi = (P(ui),P' (ui)) est le point de E correspondant & u, €eC/L (i=1,2) ,

i + 3 + i.e. +P. = +u.), ' (u, +u,)
alors le point P1 P2 correspond a u tu, , i.e P1 P2 (P(u1 UZ) P (u1 uz)
(cf. [18]) ,1,3). La loi d'addition sur E étant définie par des propriétés
d'alignement (cf.1.1.1), un raisonnement de géométrie affine élémentaire nous

donne les formules

P(u1+uz) = —P(ul) - (u



P(2u) = -2p(u) + i(' ) (cf.[18],1,3).

2.1.4. Corps de fonctions. D'aprés (1.1.1), le corps C(E) est égal a

C(P,9') . De fagon analogue, C(P,P') est le corps des fonctions méromor-
phes sur C€/L , c'est-a-dire le corps des fonctions L-elliptiques (une autre
démonstration est donnée dans [18] ,1,2). Ainsi, les fonctions algébriques

sur E s'identifient aux fonctions analytiques sur C/L .

2.1.5. Homomorphismes. Lorsqu'on identifie C€/L avec E (resp. C/L'

avec E') au moyen de l'isomorphisme précédent, les homomorphismes de

E dans E' correspondent aux homomorphismes analytiques de &/L dans

C/L' . C'est ce que nous entendrons désormais par "homomorphisme de C/L
dans C/L'".
PROPOSITION . Tout homomorphisme ¢ de C/L dans /L' est

induit par la multiplication, dans €, par un nombre complexe o tel que

al <« L' ; et ¢ est un isomorphisme si et seulement si ol = L'
n
s Au voisinage de 0 , nous avons (z) = Z az ., a e,
nz0
mais aussi y(z+z') = y(z) + y(2') , car la congruence modulo L' devient

égalité. Ce n'est possible que si an =0 pour n#l et a, =g € C

1
Soit z un complexe quelconque:pour un entier n assez grand, z/n est
assez proche de 0 pour que (z/n) = a‘rz'l' . Or y(z/n) = %w(z) (mod L")
d'odt y(z) = gz (mod 1') . Et bien str oL < L' , avec égalité si et seule-

ment si § est un isomorphisme. =

Remarque : Réciproquement, si o € € est tel que oL < L' , la

multiplication par ¢ induit un homomorphisme de C€/L dans C/L'

b
,@ = (y=C )/abcdez ,

ad ~-bc =1} et T = PSLZ(Z) = SLZ(Z)/{:tl} . Le groupe T agit sur ¥
aTt+b
cT+d

dans T . Nous pouvons donc parler de l'action de T sur ¥ et du quo-

2.1.6. Le groupe modulaire. Soit T = SL

par vy(T1) = , et cette expression ne dépend que de la classe de vy

tient T\H . Le groupe T est appelé le groupe modulaire. Il est engendré




- 11 -

0 -1 11
1o et T=1(

(38].7.1,2), la détermination d'un domaine fondamental pour T\# .

par S = ( ) , (cf.[38],7,1,2). On trouve dans

Plongeons (@ dans la sphére de Riemann, par adjonction d}m point &
~
I'infini (noté «), (cf.[3]). L'ensemble T\¥ U {«] , noté T\¥ ., a une

structure de surface de Riemann compacte de genre 0

. 2
Le revétement ¥ = HU{w} de T\H

est non ramifié en dehors de o , i ,

]

| p . L'indice de ramification est égal &

' 2eni, 83 enp , et il est infini
- ™~

en » ., En effet, l'indice de ramification
z
de la classe d'un point 1 de T\¥

est égal & l'ordre du stabilisateur de 7

dans T .

_—

t
=
P

(=]

S

S

2.1.7. PROPOSITION '. L'application : ¢ +—» C/ZT¢Z induit une bijection

entre T\¥ et l'ensemble des classes de € -isomorphisme des courbes

elliptiques de la forme @/L .

s Soit L = ZwIEB%mZ un réseaude € , et r = wl/uv2 € H ;
Alors L = wz(%TEBZ) , et d'aprés la proposition (2,1,5), C/L et C/ZTeZ
sont isomorphes. Il suffit donc de regarder les courbes de la forme C/ZTeZ .
La méme proposition (2.1.5) montre que deux telles courbes (correspondant &
T et 7') sont C-isomorphes si et seulement si il existe un complexe ¢ tel
que o(ZT'eZ) = ZT®Z , c'est-a-dire tel que {qT',a} et {7,1} forment

deux bases du méme réseau ZT®Z . Or nous avons le lemme suivant :

2.1.8. LEMME . Soient {ml,wz} et {w'l,u)'z} deux couples de complexes

tels que T = wl/m2 et 7' = m'l/w'z soient dans ¥ . Les deux réseaux
w w

Zy ©Zw, et Zu' dZw! sont identiques si et seulement si ( 1) = y( )

1 2 - 1 2 Woy wo

pour une matrice y de T
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w W'
@ En effet, nous devons avoir (wl) = y(w,l) pour une matrice vy
2 2
de GLZ(Z) = {y= (2 g)/a,b,c,d € Z , ad-bc = £1}. Et comme
_ Im(7) _ £
Im(yt) = ———— .det y , nous avons det y = +1 . La réciproque est
2
Jored|
immédiate. =
Revenons a la démonstration de la proposition : C/ZT®Z et
C/Z7'e@Z sont isomorphes si et seulement si (OLT) = y(T) pour une matrice

1
y de T , ce qui équivaut & r' = y(7) . =

2.1.9. Invariant. Calculons l'invariant de C€/L = E . Pour tout T € ¥ ,

et tout entier k 22 , la série ci-dessous converge (cf. 2,1,1)

' 1 2k
G, (1) = 2. — = w, G,, (L)
2k (m,n)ezz (mT+n)2k 2 T2k
Posons :
k 4k n
= + (- _—
Esin =1+0610" 2% 2 o, o,
k nzl
N 2mit _ k N
ol q = e , ok(n) = 2 d , et ol les Bk sont les nombres de
d|n
Bernoulli, liés a la fonction zeta de Riemann par
22k—1 ok
c(2k) = 20 Bkn (k entier > 0) (cf.[38),7.4,1)

Par exemple, B1 =1/6 , B2 =1/50 , B3 =1/42 ,...

Les calculs (cf. [38),7,4,2) montrent que :

2k
- (2mi) n _
G, (1) = 2¢(2k) + 2 TR }2:1 Opq(Ma = 2¢(2k)E,, ()
Ceci prouve que la série EZk(T) est convergente sur H , pour tout entier
k =22 . Ainsi, on a :
_ 48 _ &)
Q) = 5 9,0 = () By
o) =84 g 1) = &’k (q)
6 4 6 wz 6
2 3 2
c,m%c W, 1y E 0 -E ()
a(L) = = ()
3 W 3
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3 2 n,3 n
' _ E4(T) -EG(T) ) (14240 n§1 03(n)q )" - (1-540 nz; os(n)q )
Soit  A(T) 3 =
12 123

2

’

Le numérateur est congru a 122(5 oo.gi+7 T o (n)g") modulo 123
n>1 3 nx1 9

et la parenthése est nulle modulo 12 car 7 = -5 (mod 12) et d3 = d5

(mod 12) pour tout entier d . Ainsi, dans le développement A(r) = ¥ r(n)g" |,
n21
I'application 1t est & valeurs entiéres, et 1(1) = 1 (l'application T est

appelée la fonction de Ramanujan, et n'a bien sOr rien & voir avec la varia-
3

c (L

4( )

ble t€H) . Enfin, j(7) = jL) = 0

+ 744 + 7, c(n)qrl ol les
n>1

Q|-

coefficients c(n) sont entiers.

2.2. FORMES MODULAIRES.

2.2.1., Soit G un sous-groupe d'indice fini de T ,et soit C_; = G/Gn{+1} ;
G agit sur H . L'image, par un élément de T ,de o est o ouun
point rationnel. L'action de G décompose I' . » en G-orbites, dites
pointes de G/\;; en particulier, « est la pointe unique de T\¥ . La
réunion de G\§ et de ses pointes est notée S_;/\\\H ;: c'est une surface de

Riemann compacte, formant un revétement de T\H de degré égal & 1'indice

[T:G] .

D'autre part, soient f une fonction définie sur H , v = (2 2)
+
un élément de GLZ(R) = {(: g)‘ad -bc >0, a,b,c,d € R} , et k un
entier. Posons, par définition :
| _ k/2 -k _ a1+b
(flky)('r) = (ad-bc) (cT+d) f(c7+d)

pour tout t dans ¥ . Alors (yv.,f) —> flkY définit une action de

GL;(R) sur l'ensemble des fonctions définies sur Y & valeurs dans C .

+
Cette action de GLZ(R) a les propriétés suivantes :

Fl 1 =f, flyy' = @E| Y|y . flay=f
|k \kvv |kY kY |k lkY

+

2(R) et A €R"

pour tous vy , y' € GL
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2.2.2. Nous pouvons maintenant définir une forme modulaire de poids k

our G : c'est une fonction f , holomorphe dans 3 , telle que

f| y =f pour tout y de G , et holomorphe aux pointes de G\¥ . Cette
k

derniére condition a la signification suivante : soit no le plus petit entier

n
tel que nOT =(, 9 eG;or (| nOT)(T) = f(T+no) : donc f est(par abus
"k

0 1
1/ng
de langage) fonction de g , holomorphe dans {qeC/ 0 < |q‘ <1} ; f

est dite holomorphe & la pointe « si f se prolonge en une fonction holo-
morphe en =0 ; et f est dite holomorphe & la pointe P = Yo(w) (ou

y €T) si f| vy_ est holomorphe & 1'infini.
O k O

Lorsque, de plus, f{ s'annule aux pointes, f est dite forme parabo-

lique de poids k pour G . Si on remplace l'hypothése "f holomorphe"

ou l'hypothése plus faible "f méromorphe", f est dite fonction modulaire.

2.2.3. Formes modulaires pour T (cf. [38),7,3). Notons M2k (resp.
Mgk) le C-espace vectoriel des formes modulaires (resp. paraboliques) de
. O .
poids 2k pour I . Par exemple, E2k € MZk , A E 1\/112 . J € Mo .
PROPOSITION . La _dimension de MZk est égale a :
0 si k<0
[k/6] si k=1 (mod 6) et k=0
[k/6]) +1 si k #£1 (mod 6) et k=0 .

i i . i O = i —
De plus, si dim M2k # 0 , ona: dim MZk dim MZk 1

m Pour k=0 , on montre d'abord la proposition pour k <6 , en

] — O —
prouvant : Mo =C, M2 =0, MZk = (DGZk si k =3,4,5 , et MZk 0.
Puis on montre que la multiplication par a définit un isomorphisme de
Mk—6 sur ME . La démonstration se trouve dans ([38] ,7,3,2) ; elle s'ap-
puie sur le lemme suivant (2.2.4). ® En particulier, Mcfz = C.A .
2.2.4. LEMME . Soit f une fonction modulaire de poids 2k pour T ,

non identiguement nulle. Alors on a :

1 1 '
vw(f) +—=v (f) +=-v (f) + Y v_ ) =
2 i 3 pET\y P

o |~
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Dans cet énoncé, VP(f) est l'ordre de la fonction méromorphe f
en P , et le signe Z' indique que l'on somme sur les points de T\M

distincts de i et p .

@ Pour démontrer ce lemme, on peut intégrer la fonction ili— 'df’i
m
sur le bord d'un domaine fondamental pour T (cf. [38),7,3,1) , ou cal-
culer le degré de la forme différentielle f(T)(dT)k et utiliser la formule de

Riemann-Roch. o

2.2.5. THEOREME . Toute courbe elliptigue E sur € est de la forme

C/L pour un réseau L de C.

C'est la réciproque du théoréme (2.1.1).

@ Soit E une courbe elliptique sur € , d'équation

2 3 %4 S o G4 ~ © S
Yy =X - 7T-x-—- |, de discriminant A = — 3~ non nul et d'invariant
3 48 864 12
c
4
j = — (cf. 1.1.3
b =7 ( )
Nous allons montrer que j est l'invariant d'une courbe elliptique
cq(m3
de la forme /L : en effet, la fonction j(r) = A7) définie en (2.1.9)

induit une bijection de T\# sur C; pour le voir, il suffit d'appliquer le
lemme (2.2.4) & la forme modulaire f)\(T) = c4('r)3 - AA pour tout complexe
1 f)\ est de poids 12 ; donc k/6 =1 , et on a une égalité de la forme
l1=n+n/2 +n"/3 , avec n , n" , n" € N , ce qui n'est possible que
pour (n,n',n") =(1,0,0) ou (0,2,0) ou (0,0,3) , et prouve que f)\
s'annule en un point T ei un seul de T\ . (cf.[38],7.3,3) . Ainsi

les courbes elliptiques E et C/ZT$®Z ont méme invariant et sont C-

isomorphes. En fait, E est l'image par l'isomorphisme du théoréme (2.1.1)

de €/L ou L = u(ZTt®Z) , u étant l'un des nombres complexes définis
par : g4('r) = u4.c4/48 , g6('r) = u6.06/864 . Dans le cas général, cela
détermine u® (Aut(E) ~ uz) ; osiic, =0 (i.e. =0, 1=p et

Aut(E) =~ p6) cela détermine u® : et si Cp = 0 (i.e. j= 123 , T=1 et

Aut(E) = p4) cela détermine u? . Dans tous les cas, L est bien déter-

miné. =
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Remarque : L'application 71 +——» j(7) est une représentation

conforme du domaine fondamental pour T\§ sur C :

L
e S
’ ™ \' » .
R N
- \\‘J' i =400)
(() /—: = :\J ‘
> 0-4{(
Ug, l ;
1 b v : :

2.2.6. COROLLAIRE . L'ensemble des classes de C-isomorphisme de cour-

bes elliptiques sur E est en bijection avec T\¥ .

e C'est la proposition (2.1.7) associée au théoréme (2.2.5)

_ n 24

2.3. 1A FORMULE 4al@) = q | | (1-q (cf. [45], [18]).
n=1

2.3.1. La formule sommatoire de Poisson. Soit ¢ wune fonction de R

dans € , indéfiniment dérivable, qui tende "rapidement" vers 0 & l'infini

ainsi que toutes ses dérivées, au sens suivant : pour tous n , m € IN ,

(n)

(x) est bornée. Sa transformée de Fourier est

~ +eo -21i
la fonction de R dans € définie par : oly) = J’ olx)e XY ; elle

la fonction X+r—>» lx\mcp

igeel

vérifie les mémes propriétés que o
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THEOREME . Si ¢ est une telle fonction, alors, pour tout réel t |,
- 2mint ) -
nous avons : 2, oft+n) = 2 oln)e ™A et en particulier 2 oln) = 2 o)
nez neZ neZ nez
8 Soit §(t) = 5 oft+n) ; alors @ est périodique de période 1 , et
_ neZ
$'(t) = 2. ¢'(t+n) est continue ; donc § est égale & sa série de Fourier :
nex
2mint . AL 1 -2pi -
3(t) = ¥ a e mn , ol a =J‘ e TTmu@(u)du = 7, j‘ e 2mnucp(u+m)du=cp(r1)
n n
nez 0 meZ 0
2.3.2. Exemple : la fonction théta. Posons 8(r) = T emn 7 , (ten
neZ
PROPOSITION . Nous avons 6 |,8 = et et o |, % = gt g
0 -1 11
S—(1 0) et T—(Ol)

Rappelons que le groupe PSLZ(Z) = SLZ(%)/{i—l} est engendré par S

et T (cf.2.1.6). Si z e C¥*, choisissons son argument de sorte que

-n < Arg(z) < +1 , et posons Lz = ;\/‘Z‘ e1/2 Arg(z)

s Nous allons montrer que 6(r) J/7/i = 8(-1/1) et o(7+2) = 8(7)
La seconde égalité est évidente ; pour la premiére, appliquons la formule

it
sommatoire de Poisson & cpT(t) =™ T
. ~ .~ +o -2minu niuz'r
o(1) = 2 cPr(n) = 2z CpT(n) ol cpT(n) =[ e e du -
nez ncZ o

Lorsque 1 est sur le demi-axe imaginaire positif ; c'est-a-dire Tt = iy ,

vy ¢ R, y>0 , cela donne :

+ 2 +o + in 2 2
I R A N L Y
Qpiy - ﬁ in
-0+ —
: JY
ol v = J? .u +:/L._3 . Or le théoréme de Cauchy, appliqué au rectangle ci-
contre lorsque L tend vers l'infini, montre que A
. in/.)y
+co+:1';}= B Vz +o _ VZ ~
J' Y™™ gy = J" e " dv = 1
in —o >
—m+ﬁ ~-L 0 . +L
1 - nz/
d'ou : cpiy(n) = :/—-',)7 e /Y oy e(iy)¢1y7i= 6(-1/iy) ; par prolongement
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analytique, on obtient 1'égalité cherchée. =
. 4
Cette proposition montre que 6 est 7

AN
"presque” une forme modulaire de poids 2 0 g Y \
2 ’ // . \ .
pour le sous-groupe I‘e = (8, T de T . 4 N

13 : . L) + )
I‘e est d'indice 2 dans T ; voici ci-contre \

un domaine fondamental de I‘e dans ¥ ,

formé de la réunion de 2 domaines fondamen- _ \\
taux de T (cf. 2.1.6) . On voit que

1“8\]1 est une surface de Riemann compacte R Y,

de genre 1 avec une seule pointe, a 1'infini. '\/""\/ -

L'indice de ramification de la pointe o
== =~

dans le revétement re\ﬁ—> T\}§ est

égal a 2

2.3.3. La fonction n de Dedekind. Posons mn(7) 262m‘r/24 | I(l—ezmT)

nxz1
pour tout T de ¥ . Pour tout réseau L de € et tout complexe s
tel que Re(s) >1 , posons @L(s) = (vol.L)S Z' 125 Si
NI

L = ZwleeZmz , avec wl/wz =7t =x+iy € ¥ , posons L1 = Zr0%Z ; le
volume de 1 , c'est-a-dire 1'aire du parallélogramme de sommets O , w,

. N 2 _ 2
Wy m1+u)2 dans le plan complexe,sest égal a \wz\ X vol.L1 = |w2| Y
donc §.(s) = &, (s) = 5 - A— (en fait, pour tout s tel que

L Ll 2s

m,n€Z |nt+m
Re(s) > 1 , la fonction L +—>» @L(s) est une fonction de réseau de poids 0 ,

c'est-3-dire une fonction telle que & . (s) = @L(s) pour tout ye€ T ,

YL
(cf. [39 7,2) . Etudions le comportement de QL(S) lorsque s tend vers 1

PROPOSITION ., Premiére formule limite de Kronecker : soit y la

constante d'Euler ; alors @L(s) = 51_1—1 +2n[y—log2—logW|n(T)|2)] + O(s-1)
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@ En effet,
' s s 1 1
g = T —L—0 =2y T ——+2y° & 3T 55
n, meZ |n'r+m| m=1 m nz1meZ ((nx+m) +n"y")
1
Or ¢(2s) = 7 —= , et la formule sommatoire de Poisson, appliquée a
mzl m
1 -
oplt) = 2 2 78 donne : 2 olnx+m) = 3 eznimnxcp(m) , ol
(t"+n"y") meZ meX%
-2nimu -2nimnyv
- 4o 1-2 4o
p(m) = 9—2——2—5 sdu = (ny) " I & 7 s dv (pour v = u/ny)
-o (u +n“y") - (v~ +1)

Remarquons que c}(-—m) = cB(m) , et posons QL = Ql + @2 + q>3 ol

8,(s) = 2y°¢(2s)
1- +o
8,(s) = 2y ®c(2s-1) J —%V——S
-0 (V +1)
2mimnx 2mi|m|nyv
+eo
Be) =2y T Do [ S v
nzl meZ (ny) - (VT +1)
m# 0

Etudions chacune de ces 3 fonctions lorsque s tend vers 1 :

a) ¢, est continue en s=1, et g (1) =2ycQ2) = 'zﬂ(zgr 224”) )

+y + O(s-1) ,

b) ¢@s-1) = 7

y'7 =1 - (s-1)log y + O((s-1)?) ,

+oo cziu = ( +o zdu )(1-(s-1) log 4 + O((s—l)z) .
-o {u +1)s ~o u +1

De ces 3 développements limités, le ler est connu, le 2e est évident et
le 3e expliqué ci-dessous :

2
it 4o
Soit f(s) = J'+ _czi_u__; ; nous voulons calculer f'(1) = - log(u 1) 4y
® (U +1) - (u +1)
+o 1o (u2x2+1
Utilisons la méthode de Lang [18] . Soit g(x) = J‘ du : alors

0 u +1

g(0) = 0, g(1) = -3£(1) , et g'(x) = T4 - Dlou:

1
f'(1) = —Zj' -1-:_—‘;- dx = -mlog 4
0



+= du

Or =1

- U2+1

Ainsi, en multipliant les développements

8,(s) =

c) Calculons

des résidus, appliquée -au contour

contre, qui est contenu dans un domaine

de
2

(W +1)° =

2niau

$ 2

C (u"+1
compact du demi-plan
2miau

(u2+1)s

cercle de rayon R

Sdu=0.
)

grale de

et 1'intégrale sur le contour C'

Ia(s) est holomorphe
particulier,

les parties verticales

2miau
+wo e n
du
2 )
u +1

J

-

puisque le résidu en

C ou 1l'on peut définir

2
oS log(u™+1)

Si

tend uniformément vers 0 lorsque

Ia(l) = lim Ia(s)
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’

% + {2y -log 4y) + O(s-1)

2miau
du

(a>0) par la méthode

I-im

-

d'abord Ia(s) 5
(u”+1)

C «ci-

Nous obtenons

s est dans un

Re(s) > 0 , l'inté-

A\

sur les 2 quarts de

R tend vers l'infini,

est uniformément bornée, donc

sur tout compact de {Re(s)> 0} et en |
Mais alors les intégrales sur |
s-1 )
de C' s'annulent, et il reste : <
2miau <
e -271a
33 5 du = f.e
C" u +1
i wvaut e_ZHa/Zi . D'ou c" ‘
§,(1) = lim §,(s) \D
3 s.1 3
2114 _
ci YT 'r'l{e mimnx 2n|m|ny
nz1 meZ
m#0
1 , 2mimnr_-2mimnT T (oe2ime) (o Zrme
P ) L (e mmn'r_'_e mmn"r) - 21 log( (1-e mmT)(l-e mim ) .
m=1 n>1 mz1
d) Regroupons ces résultats : @1(1) + §3(1) = -27 logln('r)l2 , d'ol
@L(s)

I

-+ 2n(y -log 2-log(/y|n(r)|?) + O(s-1)
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2.3.4. COROLLAIRE 1 . n(-1/7) = J7/i n(T) pour tout T dans ¥ .

8 Soient y = (: 2) €T ; L unréseau de base {wl,wz} ; yL
4 + ocw 4+ . =
le réseau de base {au)1 bwz ;oW dwz} ;T wl/w2 et
aw , +bw
_ 1 2 _at+tb _ ImrT PP
v(r) = o tdn. = ord Alors Im y(7) = —y et la propriété :
17772 Jcr+d|
3. (s) = § _(s) se traduit, grdce & la proposition (2.3.3), par :

L vL

n(yT)

JTer+Hd] n()

La fonction 1 —> n(y1)/Jocr+dn(r) est analytique dans ¥ , de module 1

JIm 7 ()2 = Vim 3@ |nG(M|% . c'est-a-dire

Elle est donc constante ; soit e(y) sa valeur. Notons que ef(-y) = e(y)
et que e est multiplicatif, c'est-a-dire e(yy') = e(y)e(y') . Calculons
e(T) et e(S) : nlr+l) = ezni/24n(7) , donc ¢(T) = eZni/24 Moy

doit avoir n(-1/i) = e(S8) V/in(i) ., mais -1/i =i , et n{i) est non nul,
donc ¢(8) = 1/,/i . Cela prouve que n(-1/7) =./t/in(r) , et d'autre part,
puisque S et T engendrent PSLZ(Z) . que ely) € My, Pour tout y de
SL, ()

; on

2.3.5. COROLLAIRE 2 .. lq) = q | | (1_qn)24

nz1

2
s La fonction n 4 est une forme modulaire de poids 12 pour T ,
d'aprés ce qui précéde. Comme elle est nulle 3 l'infini, elle doit &tre pro-

portionnelle & A d'aprés (2.2.3) . Le coefficient de g étant le méme, on a
24
n

o = .

2.3.6. Par analogie avec la définition des séries BZk(T) et GZk(T)

(pour k=2) (cf. 2.1.9), on appelle Ez(-r) et GZ(T) les séries diver-
gentes ci-dessous :

1+ (0524 T o (" ;
nz1
1

Ez('r)

Z

G, (1)
2 (m,n)EZ2 (mT+n)

On a alors les résultats suivants :
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aT+b -2 12 c
. + = —_— i
COROLLATRE 3 . E, (=) . (cT+d) E (1) + o~ orrq St
=CDer
vy = (g €
24 d(log n(1)) ng' n
s Nous avons: , =1-24 % = 1-24 7, o(n)g =E (1)
2mi dr n 1 2
n=1 1-g nx1

et de méme Ez(y‘r) = 5%41‘ .d(logT (7)) .(c'l'+d)2 . Mais nous venons de voir

que nlym) = elyl/er+d .n(r) , d'od

ddog n(yr) _ _c  , dllog n(r)) .
dr 2(cT+d) dr )
Ainsi, E "ressemble" & une forme modulaire de poids 2 , et en

2
-2
particulier : Ez(—l/"r).'r = Ez('r) + 12/2nir

COROLLAIRE 4 . 1/3(4E

2(27‘)—Ez('r/2)) est une série convergente, de

somme 84(7)

a Soient H = 94 , G(7) = 1/3(4E2(27)—E2(T/2)) , et f=H-G .

Montrons que la série G(T) est convergente sur ¥ : par défini-

tion, Ez('r) est proportionnel & 2 1/>\2 = N 1/(m'+m)2
NEZTOZ (n, m)ez2
(cf. 2.1.9) ; donc G(r) est proportionnel &
2 2 2 . 2 n,m 2
(t/2) T (37/2) (n,m')eZ (4n 7/2 +m)
ou
N _ 4 1 _ 1 - 1 _
nem (1+__1&__) (1+_2_7L2__) (1_|____3_712___)
4n1/2+ m 4nt/2+ m 4nT/2+ m
‘ N 2 ' ~ 12
ainsi, lan,m‘ est équivalent & (40 7/2 % ] lorsqule |4n 7/2 + m|
tend vers 1l'infini. Or, nous savons que la série 2 l/l)\\OL conver-
NEZ2THE,
ge pour tout réel o > 2 (cf.[18],1,2) ; donc 2 2 1/|2n‘r+m|3
(n,m)eZ

converge ,et G(T) est convergente sur H .

La fonction { s'annule & l'infini, car les développements :

2 49 4
H(@) = (£ ¢ 7% (2.3.2)
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et
Gla) = L (@-1-4.24 3 o (g™ + 24 ¥ o d? (2.1.6)
nx=1 - nzl
commencent tous les deux par 1 ; flzs = -f et f |2 T2 =f car on a

vu les formules analogues pour H (2.3.2) et pour G (appliquer le corol-

laire 3 ci-dessus en remplagant Tt par %puis par 2t) . Donc fz
est une forme parabolique de poids 4 sur I_‘e\ﬁ (ou 1‘9 est le sous-groupe

de T° engendré par S et T2 , cft. 2.3.2

~—

avec un zéro d'ordre au moins
,,/'\

égal a 2 a l'infini,et f6/A est une fonction sur re“\gd . Si elle n'est pas

nulle, le degré de son diviseur des zéros doit &tre égal au degré de son
diviseur des poles ; f et Ao étant holomorphes, cela signifie :

N
3 x deg(fz) deg (pA) . Considéré comme forme modulaire sur T\ , A a un

~

seul zéro, a l'infini, et c'est un zéro simple. Comme 1l'infini est ramifié

de?p\s le revétement Fe\u > f/\li , 1l'infini est le seul zéro de 5 dans

fg\ﬁ , et /c'/eft un zéro double (cf. 2.3.2). Ainsi, le degré du diviseur de
4 dans 1‘9\}1 est égal a 2

)

En particulier, il n'est pas divisible par 3 ; donc f est identique-

ment nulle., =

APPLICATION : Le nombre de maniéres d'écrire un entier positif n

comme somme de au plus 4 carrés d'entiers de signe quelconque est égal a

8 2 d.

din
4xyd

2
. 2T2T
@ Par définition, 8(1) = 2, qn /2 si g =e n (2.3.2)
4 n/2 neZ
donc 8°(=) = 2. ag si a est le nombre de maniéres d'écrire n
n=0 n
comme somme de 4 carrés d'éléments de % . Or
n
E.(r) =1 - 24 7, o,(n)q
2 1
nx=1
donc
n/2
G(r) =1-8 2 (4ol(n/4)—ol(n))q / ,

n>1
en posant ol(x) =0 si xgIN . D'aprés le corollaire 4 , nous avons

G=94 donc a =8 (5.(n) -40.(n/4)) . Or o,(n) = 2 d; et A4
n 1 1 1 dln
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divise n/4 si et seulement si d' est de la forme d/4 ou d divise
n et 4 divise d , donc ol(n/4) = 1/4 d\ll d ; et enfin
n
4|d
o,(n) - 401(n/4) = ? d . =
din

1
4yd

2.4, THEOREME D'ABEL JACOBI (cf.[18] par exemple).

2.4.1. Condition d'Abel.

THEOREME . Soit L unréseaude €, et D= 2 nP.(P) un
PeC/L
diviseur donné sur C€/L . Il existe une fonction L-elliptique de diviseur

D si et seulement si deg(D) = 0 et ZnPP € L , et alors cette fonction

est unique & une constante multiplicative non nulle prés.

®# La condition est nécessaire : appliquons le théoréme des résidus
f'(z) f'(z \ .
f(z) et z £(z) sur le bord 3R d'un domaine

fondamental R pour L (cf. 2.1.2) choisi de sorte que dR ne passe par

aux fonctions méromorphes

aucun point singulier de ces deux fonctions. Puisque le diviseur de f{ est

D= 2, n,.(P) , les points singuliers de
a+w1+w2 PeC/L
f sont les représentants de ces points P

ot w contenus dans R , avec l'ordre np . D'ou :
1
I ifi(;Z_)) dz = ZniZnP
R 3R P
et
f'(z)
otw = 21 2, ng.P
2 I z i p
o D'autre part, f((zz)) est L-elliptique, donc
J' ff((zz)) dz = 0 (c'est le lemme 2.1.2) , et
dR
+w atw
f'l2) o _ “r 1) 2 £(1)
[ = o) dz = wzj’ ) dt + wlj ) dt
aR Q a
= i +
Zm(klm1 kzwz) avec kl,kz c % .



- 25 -

Réciproquement, pour tout 7T € ¥ , définissons une fonction théta

méromorphe sur € par :

— -1
o) = @lz) =T | (1-q"2) T | (1-a"z ) .
n=0 nz1
2mir e21'riu

ou q=-¢e , 2 = Le produit infini est convergent car lq‘ <1

lorsque 71 € )3 . Cette fonction vérifie les propriétés suivantes, dont la
-2miu
8(u) ,

. . 2ni -1
c'est-a-dire @fe m z) = @(z) et @lgz) = -z "@(z) ; 5 est holomorphe sur

vérification est immédiate : o(u+l) = 6(u) et 6(u+T) = -e

C , ses zéros sont simples et leur ensemble est le réseau L = ZT9% .

Soient R un parallélogramme fondamental pour L , et D = T nP(P) un
np PeR
diviseur sur €/L . Posons eD(u) = | | (8(u-P)) c'est-a-dire
PeR

n 2
o (z) = T ] (8lz/a.)) ot a. =e ™ 143 fonction ) vérifie les pro-
D PeR P P D

priétés suivantes : elle est méromorphe sur € , BD(u+1) = eD(u) et

deg(D)'ezm(%2 np.P)

o_(u+t) = (-z_l) OD(u) , comme on le vérifie aisément .

D
Si, de plus, deg(D) =0 et 72, nP.P = gt+4r (r,s € Z) , nous obtenons
s PeR -2misu
eD(u+7) = q eD(u) . Ainsi, la fonction : pr—>p e n eD(u) est L - ellip-

tique de diviseur D .

Enfin, deux fonctions méromorphes sur € de méme diviseur sont

proportionnelles, d'aprés le théoréme de Liouville appliqué a leur quotient. =

2.4.2. COROLLAIRE . Soit ps(E) (resp. ﬁO(B), resp. 'DE(E)) le groupe des

diviseurs (resp. des diviseurs de degré 0, resp. des diviseurs de fonctions)

sur E = ©/L . L'application qui fait correspondre au diviseur 2 nP(P)e HE)
PeC/L
le point 7. nPP ¢ E induit un isomorphisme de groupes de "Bo(E)/‘Be(E) sur E

@ Le théoréme montre que ‘BQ(E) est un sous-groupe ,BO(E) et est
le noyau de l'application de pH(E) dans E définie ci-dessus ; d'autre part,
cette application est un homomorphisme de groupes ; et enfin, tout point P

de @ est l'image du diviseur (P) - (0) € _BO(E) . n
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2.5. EQUATION DE TATE.

2.5.1. Le calcul des coefficients de Fourier des fonctions L-elliptiques ¢

et ' donne le résultat suivant (cf [18] ,4,2 et 15,1) ol q = ezmT ,
, = eZmu/wz :
. 2 n n
2 1 ng
Plu;L) = (—(;ﬂ—l) (5 * Z _gzn_z -2 7 1q)
2 ncZ (1-qg z) n=1 1-q

3 n n
) = ¢y 5 LElias)
2 nez  (1-q z2)

Posons X(u) = (wz/zni)ZP(u;L)- 1/12 et Y() = 1/2] (m2/2ni)3P'(u;L)+X(u)J

c'est-a-dire :

n n
Xw=3% —+E— -2 3¢ =L,
ncZ (1-q"z) n=1 1-q~
et
' n n
5 9z  _ 3 ng

¥(u) n 3 n
neZ (1-q z) n=1 1-q

(la formule (1y) de [18] ,15,1 contient une erreur).

Alors l'équation de Weierstrass qui liait § et ' se transforme en

2 . 2 3 R 3 i
1'éqguation de Tate : ¥ -XY =X -hZX—h3,ou h2=52 n et
nx1 1-q
3 5 n
h =3 5n +7n a .
3 n>1 12 l_qn
3 5n3+7n5
Les coefficients 5n et 1 sont entiers (cf. 2.1.9) et
lal < 1 ., donc les séries définissant h2 et h3 convergent. De plus, les

coefficients sont définis en toute caractéristique, et nous utiliserons au

paragraphe 3 cette équation pour définir les courbes de Tate sur des corps

locaux.

2.5.2. Soient T ¢ H , L =2ni(tZ3Z%) , et q = ezﬂiT . Alors l'applica-
tion u +—> qu de € dans @%* induit un isomorphisme de C€/L sur
(]J*/QZ , dans lequel les fonctions L-elliptiques sont transformée en les
fonctions méromorphes sur € /qZ , i.e. méromorphes sur C¥ de période

multiplicative q : f(qz) = f(z) pour tout z dans @¥
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Z
En résumé, le groupe C¥/q peut étre muni d'une structure de
courbe elliptique E sur @ , de corps de fonctions C€(E) égal au corps

., &
des fonctions méromorphes sur €¥*/q . Et toute courbe elliptique sur C
Zﬂiwl/u)z)

~

est C-isomorphe & une courbe de cette forme (pour q = e

2.5.3. Nous avons vu (cf.1.2.1) que l'invariant j définit une bijection
entre les classes de (@-isomorphisme de courbes elliptiques sur € et
l'espace affine Al((D) . Nous pouvons plonger Al((D) dans ]Pl((D) et
étudier ce qui se passe lorsque j tend vers l'infini gr8ce & ce qui précéde :

dans chaque classe de (C-isomorphisme, choisissons pour représentant une
courbe ([I*/qZ , d'équation YZ—XY = X3 - hZX - h3 . Lorsque ¢q tend vers 0 ,
2 3

h2 et h3 tendent vers 0 , et 1'équation devient : Y -XY = X~ ., C'est

1’équation d'une cubique dégénérée a l'origine , avec deux tangentes distinctes,

de pentes 0 et 1
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3. COURBES ELLIPTIQUES SUR UN CORPS LOCAL (cf.[32])

3.1. DEFINITIONS.

3.1.1. Fonctions holomorphes et méromorphes. Soit K un corps muni

)

d'une valuation discréte v ; la valeur absolue définie par |x1 = e—v(x
est une valeur absolue non archimédienne sur K . Si K est complet pour
cette valeurs absolue, nous appellerons K un corps local. La valeur absolue

de K se prolonge de maniére unique & K , mais en général K n'est pas complet.

Par analogie avec le cas complexe, posons les définitions suivantes

Une fonction K-holomorphe sur K¥* est une fonction f de K*

dans K définie par f(z) = 3 gn;n , ol la série de Laurent 72 aan

n>>-w n>>-w
est & coefficients dans K et converge en tout point z de K* . L'ensem-

ble des fonctions K-holomorphes sur X¥ forme un anneau intégre. Les

éléments du corps des fractions sont les fonctions K-méromorphes sur K¥

Nous appellerons désormais ces fonctions des fonctions holomorphes ou méro-

morphes (sans référence a K ).

3.1.2. Diviseurs. Nous appelons diviseur (défini sur K) tout ensemble

d'entiers de la forme {na , aeK¥*} , vérifiant les deux conditions suivantes

(i) Si r et r' sont deux réels tels que 0 <r <r' , le nombre
d'éléments a de K* , tels que r =< |a| <r' et n, # 0 , est
fini ;

(ii) Si a et b sont conjugués sur K , alors n_=ng

D'autre part, si f est une fonction holomorphe, non nulle, et si a est
un élément de K* de polynéme minimal cpa(X) sur K , nous avons le lemme

suivant :

LEMME . La fonction f s'écrit de maniére unigque sous la forme

fX) = rpa(X)mg(X) , ol mEZ et ol g est une fonction holomorphe, non

nulle en a
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@ La démonstration de ce lemme repose sur le lemme de Hensel. =

L'entier m est appelé l'ordre de f en a et noté wa(f) . L'ap-
plication wa ainsi définie se prolonge de fagon unique en une valuation

sur le corps des fonctions méromorphes.

L'ensemble {wa(f) , a € K*} , pour toute fonction méromorphe f
non nulle, est un diviseur. Nous l'appelons le diviseur de f et le notons

(£)

3.1.3. Fonctions de méme diviseur.

LEMME . Deux fonctions méromorphes f et g ont méme diviseur si

et seulement si il existe un entier d et un élément o de K¥* tels que

g = ox%x)

@ Dire que f et g ont le méme diviseur équivaut 3 dire que leur
quotient n'a ni zéro ni péle dans K* . Or les fonctions méromorphes véri-
fiant cette condition sont les fonction définies par une série de la forme
aXd , car la valeur absolue de K est non-archimédienne (c'est faux sur

aX2 +8X+y

@ : par exemple la fonction définie par e a un diviseur nul) :

cette propriété est démontrée dans [13] . =

3.1.4. Diviseurs g-périodiques. Soit g€K , 0< |q| <1 ; un diviseur

{na,a € K*¥} est dit g-périodique si n, = ny dés que a et b sont

congrus modulo g

Soit f wune fonction méromorphe ; supposons que le diviseur D
de f est g-périodique. Alors la fonction f(q_IX) a le méme diviseur,
et d'aprés le lemme (3.1.3), il existe un entier d et un élément ¢ de
K* tels que f(q-lx) = a—l(-X)df(X) . En fait, l'entier d et la classe de
o modulo qZ ne dépendent que du diviseur D de f ; on appelle d le
degré de D , on le note deg(D) ; on note (D) la classe de o dans
l(*/qz et on l'appelle l'image de Jacobi de D .
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3.1.5. Fonctions g-périodiques. Une fonction méromorphe f telle que

f(q—IX) = f(X) est dite g-périodique. Son diviseur (f) est alors g-pério-

dique.

PROPOSITION . Si un diviseur g-périodigue D est un diviseur de

fonction, alors c'est le diviseur d'une fonction g-périodigue si et seule-

~

ment si deg(D) = 0 et &(D) =1 . Cette fonction est unigue & un fac-

teur dans K¥* rés.

a ! (-X)d f(X) d'aprés

(3.1.4). Si f est g-périodique, o =1 et d =0, d'ou : deg(D) =0

s Par hypothése, D = (f) , et f(q—IX)

et (D) = 1 . Réciproquement si deg(D) = 0 et (D) =1 , cela signifie
d=0 et q = qS pour un entier s . Mais alors la fonction g définie

par gX) = Xsf(X) est g-périodique de diviseur D

Enfin, si f et g sont 2 fonctions g-périodiques de diviseur D ,
dl
d'aprés le lemme (3.1.3) on a g(X) = o'X f(X) , et la g-périodicité

impose d' =0 . =

3.2. THEOREME D'ABEL-TACOBI.

3.2.1. THEOREME . Un diviseur g-périodigque est le diviseur d'une fonction

qg-périodique si et seulement si son degré est nul et son image de Jacobi

~

égale a 1 . Dans ce cas, la fonction correspondante est unique & un fac-

teur dans K¥ prés.

®m Vu la proposition (3.1.5), il suffit de montrer que tout diviseur
g-périodique est un diviseur de fonction. Pour cela, nous allons considérer
la fonction théta, définie formellement en (2.4.1), comme une fonction de

= - -1

K* & valeurs dans K : @(z) = | (1-q"z) T | (1-¢"2z"") . Le produit
n=0 n=1

infini converge car |q| <1 , @ est holomorphe sur K* , ses zéros sont

Z -1
simples, leur ensemble est q , et enfin @lg z) = -z @(z) . Soit

D = {na p aek—*} , un diviseur g-périodique, et posons
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(z) = -1 naea
op(2) = ] (e(a "2z))
|q|<|a‘sl

ol e, est le degré d'inséparabilité de K(a)/K . Alors la fonction @D

est méromorphe et de diviseur D , d'ou le théoréme. =

3.2.2. Expression du degré et de l'image de Jacobi.

PROPOSITION . Si D est un diviseur q-périodique, D = {na , a€R*}

t ny
Ny (@) /K(a)

alors : deg(D) = z [K(a):K] .n_ et 3(D) = TT
‘q|<|a|sl |q|<\a|sl

L'accent indique que a parcourt un systéme de représentants de
classes de K-conjugaison. En remarquant que deux éléments K-conjugués

ont méme valeur absolue, on voit que ces formules s'écrivent aussi ;
a

ean

deg(D) = Z en et $(D) = TT a (mod.qz)
|aj<]alst lal<]alsl

8 Pour les démontrer, utilisons & nouveau la fonction @D définie

en (3.2.1) : ®p @ pour diviseur D , donc @D(q_lz) = a_l (—z)d@D(z‘)
avec d = deg(D) et g = &(D) (mod.qz) . Mais d'autre part, la formule
-1 _ . )
olg z) = -z@(z) implique : 5 -
@l = TT a @oolakkiEl *% g
la|<|a|=t

d'ol la proposition. s

3.2.3. Notons ,B(K*/qz) (resp. ,BO(K*/qZ) , ﬁ‘z(K*/qz)) le groupe des
diviseurs g-périodiques définis sur K (resp. le sous-groupe des diviseurs
de degré 0 , des diviseurs de fonctions). Nous avons alors 1l'analogue du

corollaire (2.4.2) :

COROLLAIRE . lL'application gqui fait correspondre au diviseur g-périodique

_ n
{n_ . ac K*¥} le point T a © induit un isomorphisme de groupes de
|q|<]a|sl

b &* /a1 /5,K*/q%) sur K%/



3.3. COURBES DE TATE.

3.3.1. THEOREME . Soit q € K* tel que |q| < 1 ., Il existe une courbe

elliptique E(q) sur K d'équation Y2 -XY = X3 —th-h3 , ol
n 3 5 n
+
h, =5 7, n3 a et h, = an +7n_ . g L'invariant de E(q)
2 n 3 12
n=1 1-g nz1 1-g

1
est jlg) = g7 744 + Y c(n)q™ ol cln) € Z . Réciproquement, si j € K¥

est tel que |J‘ >1 , il existe une courbe E(q) d'invariant j , unique

3 K-isomorphisme prés ; E(q) est isomorphe 3 K*/q% et a pour dis-
_— 24
criminant A(g) = Y. t(n)q® = ¢ | | (1-q") , ol la fonction T est la
nx1 nx1

fonction de Ramanujan définie en (2.1.9).

La derniére assertion signifie que les groupes E(g) et K*/qZ sont
isomorphes, et que le corps des fonctions de E(g) sur K est isomorphe

au corps des fonctions K-méromorphes g-périodiques.

Ce théoréme est analogue aux théorémes (2.1.1 et 2.2.6) sur C ;

ne pouvant pas définir la notion de réseau de K , on utilise_la remarque
(2.5.2) : ©/L =~ C[I*/qZ si L = wz(ZTEBZ) et q = ezﬂiFr . La principale
différence entre ces 2 cas est qu'on obtient toutes les classes de courbes
elliptiques sur @ , alors que sur K on n'obtient que les classes de

courbes telles que |j| > 1
5n3+7r15

Remarquons que les coefficients 5n et 17 qui interviennent

dans la définition de h2 et h3 sont entiers (2.5.1), donc définis en ca-

ractéristique quelconque et de valeur absolue < 1 ; ainsi les séries définis-
sant h2 et h3 convergent dans K pour |q| <1

8 Pour montrer que l'équation de Tate définit une courbe elliptique

sur K , il suffit de vérifier que la cubique d'équation YZ—XY = X3 -hZX—h3
a un discriminant non nul. Or les formules (2) de (1.1.2) donnent ici
Aaq) = h3 + ‘nz2 + 72h2h3 - 432h§ + 64h3 , et nous retrouvons ainsi
3
n (1+48 hy) 1 n
= t i = = — 4+ 44 + ¥
A(q) Zrn)a et jla) WZ— g7 2. cln)g , ot r1(n)

n=1 n=1
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et c(n) sont entiers, T(1) =1 (cf.2.1.9) . La formule
— 24
Z ot =q ] (1-q")
n=1 n=1
démontrée sur € en (2.3) ne fait intervenir que des coefficients entiers,
elle est donc valable formellement (i.e. en remplagant q par un indéter-

minée X) en caractéristique quelconque. En particulier sur K , si |q|< 1

les deux membres convergent et on a encore Alq) = q.T [ (l—qn)24 . Ainsi,
|A| = |q| <1,donc A # 0 et E(g) est bien une 001?;)13 elliptique sur K ;
. 1
et |j(a)] “ T > 1
Réciproquement, soit j e K* , lil > 1 . La série formelle
jl= d 7 =q—744q2f|'...
1+ 744+ % cln)q

n=1
est a coefficients entiers. lLa série formelle réciproque est donc aussi a
coefficients entiers (cf.[3] prop.7.1 et formule 7.5). Donc elle est conver-

1
gente dans le domaine |J—| < 1 et les fonctions : g —>» , et

j(a)
g —>» j(q) , admettent des fonctions réciproques dans le domaine M > 1
2

Enfin, l'application de K* dans P (K) définie par :

w —> W3X(w),w3¥(w) . w3) o

n n
X = % M—E -2 » M
neZ (l-qnw) nz1 1—qn
(q"w) ng"
Y) = 2 —38 _ _ 5 qn (cf.(2.5.1) et [18],15.1)

ncZ (l—qnu))3 nzl 1-gq

induit un isomorphisme de K*/qZ sur E(q) . =

3.3.2. COROLLAIRE . l'ensemble des classes de K-isomorphisme de courbes

elliptiques sur K d'invariant j tel que |J‘ > 1 est en bijection avec

l'ensemble des éléments q de K* tels que Jg| <1

g C'est le théoréme (3.3.1) joint au théoréme (1.2.1). =

3.3.3. Réduction de la courbe de Tate. L'équation de E(g) étant a

coefficients entiers sur K , on peut considérer 1'équation obtenue en ré-
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duisant les coefficients modulo 1'idéal maximal @ = {zeK/|z|<1} de K .
Comme q € ¢ , cela revient a remplacer g par 0 . Ainsi, quelle que soit
la caractéristique de K , la courbe obtenue est la cubique dégénérée d'équa-
tion YZ-XY = X° (cf. 2.5.3).

Les calculs de (2.5.3) sont valables et montrent que la cubique
a un point double en (0,0) & tangentes distinctes rationnelles sur K .

On dit que E(g) est a réduction multiplicative (mod.#) (cf.III,1).

4. POINTS D'ORDRE FINI ET ISOGENIES

4.1. POINTS D'ORDRE FINI.

Soient K un corps de caractéristiqgue p , E une courbe ellip-

tique sur K , N un entier strictement positif, EN = {PGE('IZ)/N.P=0}

le groupe des points de E définis sur K dont l'ordre divise N

4.1, PROPOSITION, Si p =0 ou si p ne divise pas N , alors
2

EN o (Z/NZ)2 . 8i p|N , il existe une injection de BN dans (Z/NZ)".

Nous démontrons cette proposition lorsque p=0 , Pour p>0 ,
nous donnons une idée de la démonstration en (4.3.2), et renvoyons le

lecteur & ([31) ,3,4 ou [5].7).

& Si K/Q est fini, on peut plonger K et K dans C , et

alors E est un sous-groupe de E_(C) (on note E_(C) le groupe des

N N N
points de E , définis sur € , dont l'ordre divise N) . Comme E(C) = C/L
-1
pour un réseau L , EN((II) = N "L/L est isomorphe a (Z/N%)2 . Or EN((D)

est stable par tout K-automorphisme de € ; ainsi, un point quelconque

de EN(CD) n'a qu'un nombre fini de conjugués sur K ., donc ce point est

algébrique sur K . En conclusion, tout point de EN(CD) est dans E() ,
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donc Ey = EN((B) = (Z/NZ)2

Si K/Q@ n'est pas fini, on ne peut pas toujours plonger K dans
, 2
C . Soient : y2+ alxy + a3y = x3 + a2x + a4x +y l'équation de E ; P

EN ; (xp,yp) les coordonnées de P . Notons K' le corps

CI)(al,az,az,a4 a6,xp,yp) : c'est une extension finie de @ et P € E(K')

un point de

Ainsi, d'aprés ce qui précédde, P est dans E. (C) . L3 encore,

9 N
EN == EN(G}) = (Z/NZ)”" . =

4 .1.2. Sous-groupes cycliques d'ordre fini. Soit C un sous-groupe fini

cyclique d'ordre N de E . Nous dirons que C est défini sur K s'il

est globalement invariant par tout automorphisme de E/K .

4,1.3. Problémes. Etant donné K , pour quelles valeurs de N existe-
t-il une courbe elliptique E sur K contenant un point P (resp. un sous-
gfoupe cyclique C) d'ordre N défini sur K ? Nous étudierons surtout le
second de ces problémes. Deux couples (E,C) et (E',C') définis sur K
sont dits K-isomorphes s'il existe un K isomorphisme ¢ de E sur E'

tel que {(C) = C' . L'ensemble des classes de K-isomorphisme de couples

(E,C) définis sur K est noté YO(N)(K)

4.2. EXEMPLE K = C .

Alors E s'identifie 8 C€/L , et il est possible de choisir une
base {wl,wz} de L telle que C = %.sz/L . De méme, E' = C/L'

1
~ | I ) ] ] _ - ] ]
ou L' = ZwIGBZwZ et C NZuaz/L

]

) b
4.2.1, PROPOSITION . Soit T (N) = {(Z d) €T /c= 0 (mod N)} . Alors

o
Y_(N)(@) ~ T M)\ .

# Les courbes E et E' sont € isomorphes si et seulement si il
existe un complexe g tel que ol = L' . Mais alors {awl,awz} et

{w'l,w'z} sont deux bases de L' , donc (cf. lemme 2.1.8) il existe une

S IR gy

matrice y = e b) € T telle que ( . Ceci étant réalisé,
cd : a Wy w,
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l'image de C est égale a C' , si et seulement si les sous-groupes de E'
W cw', +dw! w,
, 2 1 2 2 .2 .
engendrés par QF = —r et ‘ﬁ' sont les mémes. Ceci équivaut a :
c = 0 (mod N) a

_ P
4.2.2. Posons XO(N)(CD) = fO(N)\:H, ; autrement dit (cf. 2.2.1) XO(N)((D)

est la réunion de YO(N)(GI) et des pointes ; c'est une surface de Riemann
N

compacte, et le revétement XO(N)((D) — T\} est de degré [f:fo(N)]

La formule de Riemann-Hurwitz permet de calculer le genre gO(N) de
P
XO(N)((IJ) , sachant que le genre de T\¥ est nul.

PROPOSITION , Le genre de XO(N)((D) est égal a :

g (N) =1 +p/12 = p,/4 - /3 -0 /2

TT 0+3) si 4N
pIN

ol p=NTT(1+%),p2= ;
p\N 0 sinon
TT (+GE) si 9N
w, = | PIN ;o = T ol )
0 sinon d|N

Dans cet énoncé, p désigne un nombre premier, ¢ la fonction
indicatrice d'Euler, et ('5) le symbole de Legendre ; on trouve dans [33],
par exemple, la définition et le calcul de ces expressions. En particulier,

on a : (:p—) =0 si p=2, (_—;‘)=1 si p= 1 (mod 4), ('_51‘)=—1 si p=3(mod 4) ;
et () =0 si p=3, (;p;’»_) =1 si p=1l(mod 3), (%) = -1 si p=2(mod 3)

a lLa proposition se démontre en 2 temps :

D'abord, si G est un sous-groupe de I d'indice fini, notons y

l'indice de G dans T , Hy (resp. pg) le nombre de points au-dessus de i
=~ ="~
(resp. de p) dans le revétement G\¥ —>» I"'\H3 , et o, le nombre des

/\
pointes de G\¥ . La formule de Riemann-Hurwitz donne alors le genre g
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s
de G\¥ par : g =1+u/12 - /4 - p3/3 - 00/2

Ensuite, on calcule p , My + Mg + Ol o lorsque G = I‘O(N)

Pour une démonstration détaillée, voir ([43], propositions 1.40 et 1.43). =

4,2.3. Lorsque N est premier, la formule donnant go(N) est particulié-

rement simple.

COROLLAIRE, 8i N est premier, le genre de XO(N)(CD) est égal & :

N+1

[ T5 si 12fN-1
go(N) =

N+1 _ N-1 , _

[ ] 1=",-1 si 12|N-1

s En effet, = N+1 et oo=2 . d'ol

_ N+l M2 M3
gO(N)_ 12 _4 _4 ’

on vérifie que go(Z) = go(3) = 0 , puis on suppose N # 2 , 3 ; alors My

et Mg ne peuvent prendre que les valewrs 0 ou 2 , ce qui donne pour
N+l N+1 1 N+1 1 N+1

gO(N) les valeurs : 12" 12 "3 ' 12 "2 " 12~ - Or gO(N) Ne_'-slt
entier, et les 3 premiéres valeurs, lorsqu'elles sont entiéres, valent [1—2
Enfin la quatriéme valeur correspond & My = Ha = 2 c'est-a-dire
N+l. _ N-1 N+l 7 _ N-1_
N-1 = 0 (mod 3 et 4) , et alors [—-'1 ] = 12 alors que 276 12 1.
4.3. ISOGENIES.
Soient E et E' deux courbes elliptiques sur K , A un homomor-

phisme de E dans E'

4.3.1. PROPOSITION, Les trois propriétés suivantes sont équivalentes :

(1) AN # 0
(I1) Ker ) est fini :
(III) ) est surjectif.
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Un homomorphisme A vérifiant ces trois propriétés est appelé une

isogénie de E dans E'

s La proposition vient du fait que toute courbe elliptique est une

variété abélienne de dimension 1. wm

Soient un homomorphisme de E dans E' , K(E) (resp. K(E"))
les corps de fonctions de E (resp. E') . Alors f induit un homomorphisme
f¥ de K(E') dans K(E) . Appelons degré de f le degré de l'extension
K(E)/f*(K(E')) , et disons que f est séparable (resp. inséparable) si cette
extension est séparable (resp. inséparable). Définissons de méme les degrés
de séparabilité et d'inséparabilité de f , notés respectivement (deg f)i et
(deg f)s et égaux respectivement au degré de séparabilité et d'inséparabilité
de K(E)/f*K(E')) . Alors, l'image réciproque par f de chaque point de E'
contient (deg f)S points, chacun étant affecté d'une multiplicité égale a

(deg 1) (la structure de groupe de E' empéche qu'il y ait des points de

i
ramification). En particulier, l'ordre de Ker f est égal & (deg f)s

4.3.2. Exemples : Multiplication par N . Notons N I'endomorphisme

"multiplication par N" sur E

PROPOSITION. La multiplication par N est une isogénie de E de

degré N2

@ Si E est définie sur un corps K de caractéristique nulle, nous
avons vu en (4.1.1) que EN (c'est-a-dire le noyau de N) est isomorphe
a (Z/NZ)2 ;: donc N est de degré N2

Si E est définie sur un corps K de caractéristique p non nulle,
il faut écrire explicitement les formules de multiplication par N en carac-

téristique nulle, voir qu'elles se réduisent bien (modulo p) et calculer le

degré de l'extension K(E)/N*(K(E)) (cf.[31] 3.4 et [4]). =

COROLLAIRE. (On retrouve la proposition (4.1.1)). Si p*N , le groupe

EN est isomorphe & (Z/N%)2 ; si p|N , c'est un sous-groupe de (Z/NZ)2
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8 En effet, EN = Ker(N) , et l'ordre de EN est égal & (deg N)S . a

4.3.3. Isogénies et sous-groupes.

PROPOSITION., Soient E , E' , deux courbes elliptiqués sur K . Il y

a une bijection entre les isogénies A de E dans E' définies sur K sépa-

rables de degré m , et les sous-groupes F de E , rationnels sur K

d'ordre m , cette bijection étant définie par : F = Ker A

8 Soit X : E - E' une isogénie définie sur K (cela signifie que
E , E' et \ , sont définis sur K) . Supposons )\ séparable. Alors Ker )
ést un sous-groupe de E d'ordre deg A . Le groupe de Galois de E/K
agit sur A(E) par : (x(p))c =12%0% . Mats 2\° = A puisque )\ est
défini sur K , donc (Ker A)? = Ker A est un sous-groupe de E rationnel

sur K .

Réciproquement, soit F un sous-groupe de E rationnel sur K .
Montrons qu'alors E' = E/F est une courbe elliptique sur K , et que la
projection canonique X : E —» E' est une isogénie définie sur X de

noyau F . Le sous-groupe F de E agit sur E(E) par translation :

si acF , feK(E) , posons af(x) = f(x-a) pour tout x € E . Définissons
les fonctions X et Y de E(E) par : X(M) = 2 x(M-a) , Y(M) = T y(M-a) ,
aer acFr

pour tout M€ E . En fait, X et Y sont dans f(—(E)F , et X (resp. Y) a
un péle d'ordre 2 (resp.3) en tout point de F , donc deg(X) = 2d et
deg(Y) = 3d , si d = #F ; on en déduit : [K(E) : —K_(X)] = 2d ,

1 =er=4d,

[KE) : K(Y)] =3d , [KE) : KX,¥)] =d . Or [KE) : K(E
d'od KEF = R,V

On peut montrer que I?(E)F est un corps de fonctions algébriques
sur K de genre 1 , et que l'équation liant X et Y est celle d'une courbe

elliptique (cf.[49] et [50]). =

COROLLAIRE . L'ensemble YO(N) (K) peut étre considéré comme l'ensemble

des classes de K-isomorphisme de triplets (E,E',r»:E-E') d'isogénies défi-

nies sur K A noyau cyclique d'ordre N .
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4.4, ACCOUPLEMENT DE WEIL.

Soit K un corps égal & € ou a un corps local. Supposons N

premier & la caractéristique de K .

4.1, EME . ist foncti e, : — érifi
4 THEOREME . 1l existe une fonction N ENXEN > My vérifiant

les propriétés suivantes :

(i) ey est bilinéaire ;
e P ] N ' — —1 .
(ii) en est alternée, c'est-a-dire eN(s,t) = eN(t,s) :
(iii) en établit une dualité, c'est-3a-dire eN(s,t) = 1 pour tout s
si et seulement si t = 0 ;
(iv) eN(s,t)O = eN(sO,tG) pour tout ¢ ¢ Gal(XK/K)
(cf. [43] , proposition 4.2).
@ Définissons e__ : soient t € E et t' € E tel qﬁe Nt' = t
N N N2
(la multiplication par N est surjective), et soient les diviseurs
D = N{t) -N(Q) et D'= 2 (t'+u) - 2, (u) . D'aprés le critére d'Abel
uEEN uéEN
(2.4 et 3.2) il existe deux fonctions ft et 9, dans K(E) de diviseurs
(ft) =D et (gt) = D' . La fonction ftON définie par ftoN(x) = ft(Nx)

a pour zéros les points x tels que Nx =1t et pour pbles les points x
tels que Nx = 0 , ces zéros et pbdles étant d'ordre N , donc son diviseur

est (ftoN) =N 2, (t'"+uy-N 2, u = ND' = (gil:\]) . Quitte & multiplier 9,

u€kE u€klb
N N N
par une constante, nous obtenons : ft(Nx) = gt(x) pour tout x de E
Soit s € EN ; alors gt(x+s)N = ft(N(x+s)) = ft(Nx) = gt(x)N , donc il
. te) = .
existe eN(s,t) € My tel que gt(x s) eN(s,t)gt(x) quel que soit x € E
Montrons que eN vérifie les propriétés du théoréme :
i +s. + = + = + =
(i) gt(x 5 SZ) eN(s1 8, t)gt(x) eN(sz,t)gt(x Sl) N(s2 t)e (s t) gt(x
pour tout x , donc eN est linéaire par rapport a la lé&re variable.
= -+ -
(f ) N(t1 tz)

tth

(N(t,)-N(0) + (N()-N(0)) + N{(t;+t,)=(t)-(t,)+(0))

= (f ) +(f ) + N(h)

ER
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N

d'aprés le critére d'Abel, donc, quitte & multiplier h par une constante,

nous avons f = ft .t .hN , d'od g (x)N =g (x)N.g (X)N.h(NX)N .
1 72 1 2 1 2 1 2

t,+t t t,+ t t
Appliquant ceci & x+s , comme h(N(x+s)) = h(Nx) , nous voyons que

e. (s,t.+,.) = (s,t.) + eN(s,t

N 1 ey . ) . Ainsi e est bilinéaire.

2 N

(ii) Comme e est bilinéaire, il suffit de montrer que e_(t,t) = 1

N N

‘utili : +,84) =
pour tout t € EN et d'utiliser : eN(s t,5+t) eN(s,s).eN(t,t).eN(s,t).eN(t,s)

pour montrer (ii) . Considérons la fonction :
Y —> ft(y).ft(y-t) oo £ ly-(N-1)1)

Elle a pour diviseur N({t)-(0) + (2t) - (t) +...+ (Nt) - ((N-1)t)) = 0 , donc

elle est constante. Posons t = Nt' , v = Nx , et considérons la racine
N°™€ 4de 1a fonction, en utilisant : gt(x)N = ft(Y) : la fonction continue

X —> gt(x).gt(x—t'). . .gt(x—(N—l)t') est constante. En particulier, elle a la
méme valeur en x et en x-t' , ce qui méne & : gt(x) =gt(x—Nt') = gt(x-t)

c'est-3-dire t,t) =1

°N

(iii) si eN(s,t) = 1 pour tout s , c'est-a-dire gt(x+s) = gt(x)

E
cela signifie que g, € K(E) N _ K(E/EN) = K(NE) (cf. 4.3.3). Autrement
dit, il existe h € K(E) tel que gt(x) = h(Nx) , d'ou ft(Nx) = h(Nx)N , et
le diviseur de h est donné par : (h) = %I(ft) = (t) - (0) , ce qui n'est
possible que si t = 0 (critére d'Abel).

(iv) provient de la définition de eN et de la propriété :
o _ )

(gt(X)) = gtc(x ) ™

4.4.2. COROLLAIRE., Le corps K(p.N) est contenu dans K(EN) , et le

diagramme suivant est commutatif :

Gal(K(EN)/K) restriction >Gal(K(pN)/‘K)

f A

Aut(E..) déterminant > (Z/NE)*

N
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s L'application eN est surjective, d'aprés (iii) ; or eN(s,t)o=eN
si o€ Gal(K/ZK(EN)) ; ainsi juy < K(EN) . En fait, en définit un isomor-
phisme de A EN SUr My donc eN correspond au déterminant. =

4.4.3. Application.

PROPOSITION. le groupe des points de torsion définis sur @ une

courbe elliptique sur @ est ou bien cyclique, ou bien égal au produit de

Z/2Z par un groupe cycligue.

8 En effet, le groupe de torsion de E(K) est égal a :

= | [ }EI(K)p ou p parcourt l'ensemble des nombres premiers ; et

d'autre parlz E(CJ))p c E(C—D)p =~ (Z/p%)2 . Supposons que E((D)p =~ E(C_D)p
D'aprés le corollaire (4.4.2), Q(pp) c CD(E ) ; or Ep = E((],))p par défini-
tion, donc notre hypothése implique : CD(p c QEW@) ) c'est-a-dire
CD(.pp) c @ : ce n'est possible que si p= 2 . Ainsi E(CD)p est t;ivial ou
isomorphe & Z/pZ si p# 2 , et peut étre isomorphe & (Z/2Z) si
pP=2 . ®

5. COURBES MODULAIRES

w
=
2
£
=
z

o 2=

5.1.1. Rappelons que YO(N)(K) est l'ensemble des classes de K-isomor-
phisme de couples (E,C) od E est une courbe elliptique sur K et C
un sous-groupe cyclique d'ordre N de E défini sur K .

b) €T / c=0 (mod N)} nous avons vu que

YO(N)(GJ) ~ I‘O(N)\ﬁ , et qu'en ajoutant les pointes nous obtenons une sur-

—T
face de Riemann compacte ro(N)\z;[ notée XO(N)((D)

(s,t)
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5.1.2. Fixons une racine N°"C de 1'unité N dans K(pN) . Définissons
Y(N)(K) comme l'ensemble des triplets (E,P,Q) ol E est une courbe
elliptique sur K , P et Q deux points de E tels que Q € E(K) ,

Pec E(K(pN)) et eN(P,Q) = ¢

N
, _,Aab a b, _ < _ (/10
Soit T(N) = {(C d) € I‘/(C d) = 1 (mod N)} (ou 1 = (0 1) est
1'identité dans T) . Il est facile de vérifier (comme en (4.2.2)) que

— I —
Y(N)(C) ~ T(N)\y , et de méme T(N)\¥ est une surface de Riemann compacte,

notée X(N){(CT)

5.2. FONCTIONS DE WEBER (cf. [43] ,4.5).

5.2.1. DEFINITION . Soient K un corps de caractéristique p différente
de 2 ou3 . N un entier > 2 et premier @ p , E une courbe elliptique
sur K donnée par son équation de Weierstrass

2 3 <4 6

Y =X - ¥ - g (cf. 1é1.3)
=%
Rappelons que le discriminant de E est A = ——3—‘ # 0 et que l'invariant
C 12
de E est j = fl‘ . Enfin, la proposition (1.2.2) détermine Aut(E) : nous
avons Aut(E) ~p, od i=1 si j#0,12° ,1=2 sij-= 123,
i=3 si j=0 . Posons, pour tout P de E :
2 2
(P)c,c x(P)"c
(1) %% (2) 4
f R , £4(p) =
(P) X (P) A
3
x(P) ¢
f(3)(P) - - 6

La fonction f(l) appartient & K(E) . On l'appelle la i°™ fonction de Weber
(i)

E Elle est paire car x est paire

de E , et on la note parfois f

5.2.2. Propriétés.

(i) Lorsgue Aut(E) = My, » Qna f7°(P) = £7°(P') si et seulement

si P = gP' pour un a € Aut(E)
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s Notons x,y,x',y' les coordonnées x(P) , y(P) , x(P') , y(P") ,

de P et P' , qui sont liées par :
2 _ .3 _ fg_x %6
Y 48 864
2 _ 3 4 . S
Y 48 864
(i) —_ (i) 1 : 1 i — lj. 3 »
Alors f7(P) = £77(P') si et seulement si x = x't , ce qui donne :
X=X X = X'z X3 = X'3
2 2 si i=1, 4 4 si 1i=2 , 2 2 si i=4 |
Yy — Y Yy 7Y Yy —Y
(ii) Soient E et E' deux courbes elliptiques sur K , et )\ un

K-isomorphisme de E sur E' . Alors f](al,)o)\ = f(g) pour i=1,2,3

c c
s Soit yz = x3 ~ 28 % " 8ea 1'équation de E' . D'aprés (1.2.1)
l'isomorphisme ) est de la forme : A(x) = uzx . ay) = u3y , pour un u

dans K* (les nombres r , s , t de la formule (4) sont nuls puisque les

4
2 courbes sont définies par leur équation de Weierstrass). Alors czl =u c4 '
12
c'6 =u Ce A" = u pA , et la propriété (ii) se déduit de la définition
des 1) | o

5.3. INTERPRETATION GEOMETRIQUE.

5.3.1. DEFINITION. Jusqu'ad la fin de ce paragraphe, N est un entier = 2 ,
K estégala € e¢ E & C/L , ou L = Zw ©Zw, et T =w1/w2 €H ;

ainsi L = {aw1+bw (a,b)eZ} , NL = {aw1+bw2|(a,b)ENZ2} , et

2

Ey ~ L/NL = (Z/NZ)?
Pour tout (a,b) € {0,1,... ,N—l}2 -{(0,0)} , posons
+bw
(1) 0 Mt B NP .
f(a,b)(T) - f ( N ) (1 - 112 /3) I
f&) b) est bien fonction de 1t , grlce aux propriétés d'homogénéité des f(l)

Elle vérifie les propriétés suivantes :
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(1) f&)lb)\y = fE:a),b)Y pour tout y €T si (a,b)y désigne le produit
o

matriciel de (ab) par y
(i) (1)

_ 2
(@a,b) - ‘(a',b") )

(ii) £ si (a,b) = +(a',b") (mod NZ
(i)

(a,b)
zéro pour le groupe T(N) , et son développement de Fourier est a coefficients

dans @(¢,.)

5.3.2. PROPOSITIO.N. La_fonction f est une fonction modulaire de poids

N

m C'est une fonction holomorphe dans H d'aprés sa définition
(rappelons que A# 0 dans ¥) . Si ye€T(N) , i.e. yeT et y =zx1

(1) _ )
(mod N) (cf. 5 1.2), ona f_,, |OY " @)y
(i)

_ )

et (a,b)y = +(a,b)

(mod N%z) , donc f . Enfin, le développement de Fourier

(alb) IOY (alb) (.)
de x=p (cf.2.5.1) donne celui de f(; b) Par exemple pour i=1 :
E (1).E_(1)
(1) _ artb | 4 6
f(a,b)(T) = ey i Zrex) A(T)
1 b -nb - 1
L9 m g™ N PPN ) g (g))
12 2 N N q
(1-q) n,m>1
N (1) 1/N .
ol R(q) € Z[q] et a<N . Donc f(a b)('r) € CD(gN)((q )) . Or la variable
_/\ 1/m N e 3 e .
locale en « pour T(N)\# est q ol m est l'indice de ramification

= ="~
de T(N)\H sur T\ en o , c'est-ad-dire le plus petit entier tel que

((1) rln) €T(N) : donc m=N et féela),b)

. e o (1)
gaison, et d'aprés la formule (i) f(a,b)
T(N)\H . Un raisonnement analogue permet de conclure pour i=2 et 3 . =

f 1) T
Remarque : le développement de Fourier de a(b) est dans
"""" jlr

est méromorphe & l'infini ; par conju-

est méromorphe aux autres pointes de

5.3.3. DEFINITION. Cherchons des fonctions analogues pour I‘O(N) : (a,b)
et (a',b') étant dits équivalents si les sous-groupes

aw1+bw2 s et a w1+b w2>
Y (T

(1)
RN
regroupées selon les classes d'équivalence de (a,b).

d'ordre N de E sont égaux, notons les fonctions symétriques élé-

(i)

mentaires des f(a,b)



- 46 -

L'indice k parcourt un certain ensemble ¥ lorsque (a,b) parcourt un

systéme de représentation de ZZ/NZ2

(i)

i
5.3.4. PROPOSITION. Lla fonction 9y est une fonction modulaire de poids zéro

pour le groupe I‘O(N) , et son développement de Fourier est & coefficients dans @

. " i
m C'est une conséquence de la proposition analogue pour les f()

(cf. 5.3.3) et de la définition des 9 B

5.3.5. Nous pouvons maintenant définir deux applications : & de T(N)\¥
W, ieq1,2,3)
2 (a,b) "~ M'+1

(a,b) € {0,1,... ,N-117-{(0,0)} ;et ¢ de FO(N)\n dans € telle que
(i)
k

+
dans (]JNI L telle que &(7) = (j(7).f

§(r) = G(n),g,. (1)) , i€{1,2,3} , kekx (Met M étant 2 entiers convena-

bles). f(i) o) g(i)(
p,Hab) Wm = (1,—£

Au ointes, sons = P , et ;
X p posons &(7) = ( () i(7)

remplagant les fonctions par leurs développements de Fourier). Cela permet
I~

= ____/\..
de prolonger & (resp. y) en une fonction de T(N)\¥ (resp. I‘O(N)\Ji) dans

)

) (en

]PM (resp. ]PM) (espaces projectifs sur )

5.3.6. PROPOSITION, § (resp. y) est un plongement biholomorphe de la sur-

face de Riemann T(N)\H (resp. TO(N)\}L) dans l'espace projectif P

(resp. ]PM )

m D'aprés ce qui précéde, & et § sont holomorphes, y compris

aux pointes.

Injectivité de & : soient 7 et 7' dans H tels que leurs classes

modulo I‘O(N) aient la méme image par § ; cela signifie : j(1) = j(r") ,
(1) _ ) : . . , M
et f(a,b)(T) = f(a,b)(T ) pour tous 1i,a,b . Supposons d'abord que j(1) € C
c'est-3-dire que T et r' ne sont pas des pointes. D'aprés (2.1.8) , il
(i) (1)
ist atri tell = 45" , dou f 'Y = £
existe une matrice y eT telle que yr1 =1 ol (a,b)(T) (a,b)Y(T)

(i) @rth,y ) @1

(cf. 5.2.1). Ainsi f si (a',b') = (a,b)y; d'aprés

N N
(5.1.2(i)) , il existe un automorphisme al g de E = C/ZT®Z tel que
(ab) = (abya (écriture matricielle). Montrons que ¢ est en fait

a,b a,b
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indépendant de (a,b) . Soient les couples (a,b) , (a',b') et

(a",b") = (a,b) + (@',b') . Nous devons avoir les égalités de matrices suivantes

(a"b") = aa",b"(a"b")Y = [aa,b(ab) +aa.,b.(a'b')]y

c'est-a-dire : aa",b"(a b") = aalb(ab)
(OLa",b"~OLa,b)(a b") = (aa',b'_aa,b
la différence entre 2 automorphismes de E ne peut prendre que les valeurs

, ou bien (a"b") = +(a'b')

+ (a'b" ou encore
%t ,b' )

)(@'b') . Lorsque AutEﬁlp2 (r#i,0) .

+2 ou 0 . Donc, ou bien aa,b = Cge p = aa",b"
et le nombre des couples (a,b) est égal & 2 . Or le nombre des couples
(a,b) est égal au cardinal de (Z/NZ)Z—{(O,O)} , c'est-3j-dire & Nz—l et
ce nombre est =3 dés que N =2 ., Donc aa,b = o est indépendant de
(a,b) . Lorsque AutE =~ My OU Mg - la démonstration est plus lourde mais
le résultat est encore vrai. Alors, l'égalité (a b) = (a b)ya , valable pour
tout (ab) , donne vyg =1 ; ainsi vy est dans Aut E , qui est isomorphe

L
ou groupe d'isotropie de 1 dans T\¥ : donc ' = vyT =171,

Supposons maintenant que j(r) est infini, c'est-a-dire que 1T et

v sont des pointes. Le développement de Fourier donne

<;b

1

ot ——— si a=0
e () /NP , -2 )
{ab) ©_ L N 2/N, 2 /N

i(7) T 12 * (1_qa/N€b)2 + Olq ) = (mod. g )
N
11—2 si a#0

Ainsi, les différentes valeurs de (a,b) telles que a =0 correspondent

(1)
fga )(7)

a des valeurs distinctes de 5(7) . Par conjugaison, il en est de méme
pour toutes les valeurs de (a,b) . Ainsi ¢ est injectif ; la démonstration

est analogue pour

Enfin, on vérifie que & et §y sont biholomorphes. =

Remarque : Cette proposition généralise ce qu'on a vu en (2.2)

il existe une représentation conforme de T\¥ sur € , définie par 1 = j(1) ,
I
qui est prolongée par : « + » en une bijection biholomorphe de T\3 sur P .

S
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5.4. COURBES MODULAIRES.

5.4.1. THEOREME. (N=21) Sur T(N)\# (resp. FO(N)\u) existe une structure

de courbe algébrique non singuliére définie sur Q@(¢..) (resp. sur Q@) et

gN
"compatible" avec la notion de triplet (resp. de paire).

Cette courbe algébrique X(N)(C) (resp. XO(N)((D)) est appelée une

courbe modulaire.

La 2e assertion signifie : si K est un sous-corps de @ , alors
la classe de K- isomorphisme de (E,C) (resp. de (E,P,Q)) contient un
couple (resp. un triplet) défini sur K si et seulement si son image par

(resp. par &) est dans KM

Démontrons d'abord un lemme :

5.4.2. Soit Q un corps algébriquement clos, contenant K , de degré

de transcendance infini sur K (par exemple, 0 = C si K =@ ou CD(gN))

~

LEMME . Soient fl,fz,. . "fr des séries formelles & coefficients dans K ,

et I 1'idéal des polynémes F de Q[Xl,Xz,...,Xr] tels que P(fl’fZ""'fr) =0 .

Alors I a un systéme générateur dans K[X1 ’XZ”"’Xr]
s Soit {ci}i une base de (O sur K ; alors F = ZciFi ou
’ i
Fi ¢ K[ Xl'XZ"" ’Xr] et Fi(fl’fz""'fr) = 0 pour tout i . Il suffit
donc de considérer les composantes d'un systéme générateur de I dans
Q[XI’XZ" - ’Xr] pour obtenir un systéme générateur de I dans
K[XI'XZ""'XI‘] .

5.4.3. Démonstration du théoréme : 8 Comme j et f(l) (resp. j et

(1) , - " .
gk) sont développables en série entiére de ¢ a coefficients dans
(D(QN) (resp. dans @) , le plongement dans un espace projectif, joint au

lemme (5.4.2) ci-dessus, montre la lére assertion.
Si (E,C) (resp. (E,P,Q)) est défini sur K , alors ((E,C))

S
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(resp. &(E,P,Q)) est dans x™ . Montrons la réciproque pour y (la dé-
monstration pour § est analogue). Supposons que {((E,C)) ¢ KM , et soit
o un K- automorphisme de € . Alors \p((E,C))O = §((E,C)) ; or ¢ est
g](:), donc y((E,C)° = q;((E,C)O) . L'injec-
tivité de § prouve alors que (E,C) et (E,C)CJ sont isomorphes sur C .

défini sur K , comme j et les

Notons ¢, ce C-isomorphisme de E sur E° tel que cpo(c) = o(C). Mon-

trons que l'on peut supposer E , puis C , définis sur K .

Pour E : par hypothése, j(E) € K . Donc il existe une courbe E'
définie sur K telle que j(E) = j(E') ; soit ¥y le C-isomorphisme qui
existe alors de E sur E' , et C' = q;l(C) . Ainsi, quitte a remplacer
E,C) et (E%,0(C)) par (E',C') et (E',0(C") , on peut supposer E

défini sur K et Py € Aut(E)

Pour C , c'est une conséquence du lemme (5.4.4) ci-dessous. Enfin,
X(N) (resp. XO(N)) étant muni d'une structure de groupe, si un point était

singulier, tous les points le seraient, ce qui est impossible. =

5.4.4. LEMME, (Serre) Soit K un corps de caractéristigue guelcongue. Tout

élément de X(N)(K) (resp. de XO(N)(K)) poss@de un représentant (E,P,Q)
(resp. (E,C)) défini sur K

Montrons le lemme pour XO(N)

s Si j#£0, 123 , Aut(E) =~ p, , donc §O=i1 , et o(C)=+C=C .

2

Si j=0 (resp. 123) , Aut(E) = My, r OO 1 =3 (resp. i=2)
Montrons que ¢ : g + cpo définit, par passage au quotient, un l-cocycle
de Gal(®/K) a coefficients dans Aut(E)/Aut((E,C)) : en effet,

-1
cppo(C) = pO(C) = (pcpo)(pC) = (pcpo)(cpp(C)) donc cppc(pcpc’)cpp € Aut((E,C)) . Or

Aut(E) =~ My, - et Aut((E,C)) contient My - Donc ou bien Aut((E,C)) = Aut(E)
et C est invariant par tout ¢ de Aut(E) , ou bien Aut((E,C)) = Hy
et alors ¢ se remonte en un l-cocycle de Gal(K/K) & coefficients dans

Aut(E) grace & la surjection : Hl(G,MZi) - Hl(G'“Zi/'UZ) - 0 qui est en

21 i . . N
réalité la surjection canonique : K*/K¥“" o K*/K¥l - 1 . Mais d'aprés (1.3),
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HI(G,Aut(E)) classifie les courbes elliptiques sur K , K-isomorphes & E ,
a K-isomorphisme prés. Donc il existe une courbe elliptique E' sur K ,

et un K-isomorphisme de E sur E' tel que cpo = o(f)_lf . Alors le couple
(E',f(C)) est K-isomorphe & (E,C) et défini sur K , puisque

o{f(C)) = olf)(6(C)) = o(f)ch(C) =f(C) . =

5.4.5. La courbe modulaire X.(N) . Notons T.(N) = {(a b) € 1“]
1 1 cd
(a b 1 %

) = (L 7) (mod. N)} . La surface de Riemann fl(N)\gi . notée Y, (N) ,
classifie les classes de C-isomorphisme de couples (E,+P) , ot E est

c d 01

une courbe elliptique sur € , et P un point d'ordre N de E . La
_/\.

compactifiée Xl(N) = I‘l(N)\;ﬁ de Yl(N) peut étre munie d'une structure

de courbe algébrique non singuliére définie sur @ , et "compatible" avec

la notion de couple (E,P)

Ces propriétés se démontrent de maniére analogue aux cas de X(N)
et de XO(N) . Correspondant aux inclusions : T(N) < I‘l(N) c I‘O(N) cT ,

nous avons les revétements :

e

i XON) —> X, (N) —> X_(N) —> T\i = P/ (©)

1

5.4.6. Interprétation des pointes. Nous avons vu en (2.5.3) que les

courbes de Tate E(q) = (J‘J*/qZ (pour |q| < 1) permettent d'étudier la pointe
=
o de T\M , en faisant tendre g wvers 0 .

De méme, les courbes de Tate permettent d'étudier les pointes de
_:/\ ;/\
XO(N) = I‘O(N)\:d et de Xl(N) = I‘l(N)\:d, . Nous supposons maintenant N

premier pour simplifier cette étude.

, , L éme - .
Fixons dans € une racine primitive N de 1l'unité, notée ( ,

éme 1/N

et une racine N de g , notée ¢ . Les N2 points d'ordre N
% /B - Z , a b/N
de E(q) = C*/q sont alors les images (mod. g ) des points ¢ g ,

pour (a,b) € (Z/NZ)2 ; et les (N+1) sous-groupes cycliques d'ordre N

de E(q) sont les groupes My = (¢ et ((;aql/N>/qZ , pour a¢€ Z/NZ .

Lorsque gq tend vers 0 , la courbe de Tate E(q) "tend vers" la

cubique dégénérée d'équation Y2 - XY = X3 - hZX -h (cf.2.6.3) ;

3
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cette cubique a seulement N points d'ordre N , correspondant aux "limites"
a
des points ¢ (a€Z/NZ) , et un sous-groupe d'ordre N , correspondant &

la "limite" de : ceci permet d'étudier la pointe « de XO(N) , et les

My

pointes de Xl(N) dont l'image dans le revétement XO(N) —> Xl(N) est

la pointe o

En faisant agir l'involution W_  , qui sera définie en (II.3.2), et

N
qui transforme o en 0 sur XO(N) , on est amené & étudier : la courbe
de Tate E(qN) , le sous-groupe d'ordre N : (q>/qNZ , et les N points

d'ordre N de la forme : qa (mod qNZ)



