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SOME REMARKS ON THE OPTIMALITY OF THE
BRUNO-RUSSMANN CONDITION

BY ABED BOUNEMOURA

ABSTRACT. — We prove that the Bruno-Riissmann condition is optimal for the ana-
lytic preservation of a quasi-periodic invariant curve for an analytic twist map. The
proof is based on Yoccoz’s corresponding result for analytic circle diffeomorphisms and
the uniqueness of invariant curves with a given irrational rotation number. We also
prove a similar result for analytic Tonelli Hamiltonian flow with n = 2 degrees of free-
dom; for n > 3 we only obtain a weaker result which recovers and slightly improves a
theorem of Bessi.

RESUME (Quelques remarques sur loptimalité de la condition de Bruno-Riissmann).
— Nous montrons que la condition de Bruno-Riissmann est optimale pour la per-
sistance de courbe invariante quasi-périodique analytique par une application twist
analytique. La preuve repose sur le résultat analogue de Yoccoz pour un difféomor-
phisme analytique du cercle et sur 'unicité des courbes invariantes de nombre de
rotation irrationnel. Nous montrons également un résultat similaire pour les Hamilto-
niens Tonelli & n = 2 degrés de liberté; pour n > 3, nous obtenons un résultat plus
faible qui généralise légérement un théoréme de Bessi.
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342 A. BOUNEMOURA

1. Introduction

Given n > 2, a vector w € R"™ satisfies the Bruno-Riissmann condition, and
we will write w € BR, if

—+oo
(BR) / wdQ < 400

1 Q
where

U,(Q) =max {|k-w|™" |k€Z", 0< |kl <Q}.
The expression in (BR) is just one of the many equivalent ways of defining
this Bruno-Riissmann condition. Bruno [2, 3, 4] and Riissmann [20, 21, 22, 23]
have proved that w € BR is a sufficient condition for several analytic small
divisors problems: among others, for the linearization of a holomorphic germ
at a non-resonant fixed point, for the linearization of a torus diffeomorphism
isotopic to the identity (respectively a torus vector field) close to a non-resonant
translation (respectively close to a non-resonant constant vector field), and
for the preservation of a non-resonant quasi-periodic invariant torus in a non-
degenerate Hamiltonian system close to being integrable.
For n = 2, w = (1,«) € BR if and only if « satisfies the following Bruno

condition, that we shall write a € B:

log q,,
®) DL
neN in

where ¢, is the denominator of the n*"-convergent of a. A major finding of
Yoccoz ([27], [28]) is that if a ¢ B, then the quadratic polynomial

Py(2) = Az + 2%, A=

is not analytically linearizable. Other examples of non-Bruno non-linearizable
germs were later given by Geyer [10]. Using this, Yoccoz was able to prove
that if « ¢ B, there exists, arbitrarily close to the rotation «, analytic circle
diffeomorphisms which are topologically but not analytically conjugate to «
and thus in the continuous case, if w ¢ BR, there exist, arbitrarily close to
the constant vector field w, analytic vector fields on T? that are topologically
but not analytically conjugate to w (see Theorems 2.2 and 3.2 below for more
precise statements). The condition a@ € B (or equivalently w € BR) is also
known to be optimal in other problems in C2, for vector fields close to a non-
resonant singular point [18] and for the complex area-preserving map known
as the semi-standard map [14].

Unfortunately, to the best of our knowledge, the Bruno-Riissmann condition
is not known to be optimal for low-dimensional Hamiltonian problems such as
the analytic preservation of invariant curves for twist maps. Here it is important
to point out that unlike the other problems we mentioned which deal only with
the existence of an analytic conjugacy to the linear model, in the Hamiltonian
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ON THE BRUNO-RUSSMANN CONDITION 343

case the conclusions of KAM-like theorems are two-fold: it gives the existence of
an analytic invariant curve together with the existence of an analytic conjugacy
of the restricted dynamics on the curve to the linear model. The best known
result for twist maps is due to Forni [8]!. To describe his result, let us first
remark that a € B obviously implies that o € R in the sense that
(R) lim 1089t _

n—+oo qn
but clearly the converse is not true. The condition that o« € R is in fact the
necessary and sufficient condition for the linearized problem (the so-called co-
homological equation) to have a solution in the analytic topology [19]. Using
results of Mather [15, 16] and Herman [12], Forni proved that if an integrable
twist map has an invariant curve with rotation number « ¢ R, then there exists
an arbitrarily small analytic perturbation for which there are no (necessarily
Lipschitz) invariant curves with rotation number «. In the case of a not neces-
sarily integrable twist map, the conclusion remains true but under the stronger
assumption that

lim loglog gn+1

n—-+oo qn

Observe that this strongly violates the conclusion of the KAM theorem, as
the latter would give an analytic invariant curve on which the dynamic is
analytically linearizable. For Tonelli Hamiltonian flows close to integrable with
n > 2 degrees of freedom, a result analogous to Forni’s has been obtained by
Bessi [1]. To state it, observe that a generalization of the condition o € R is
(keeping the same notation) w € R where

®) L ()

Q—+o0 Q
and that again this is the necessary and sufficient condition to solve the co-
homological equation in the analytic topology. Bessi proved that if w ¢ R,
then there exists an arbitrarily small perturbation of the integrable Hamilton-
ian Ho(I) = 3(If 4+ --- + I2) in the analytic topology for which there is no
invariant C' Lagrangian graph on which the dynamic is C'' conjugated to the
linear flow of frequency w.

The purpose of this note is to prove that the condition o € B is optimal for
the analytic KAM theorem for twist maps, in the sense that if o ¢ B, then there
exists arbitrarily small perturbations of an arbitrary twist map for which there
are no analytic invariant curves on which the dynamic is analytically conjugated

=0.

=0

1. Unfortunately, at several places in the literature (for instance [9] and other references
therein by the same author) it is stated that o € B is optimal for the existence of an analytic
invariant circle for the standard map in the perturbative regime which depends analytically
on the small parameter; we would like to point out that this statement is incorrectly deduced
from results of Marmi [14] and Davie [5], and thus the optimality of a € B for the standard
map is still an open question (see [17] where this observation is also made).
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344 A. BOUNEMOURA

to a. We refer to Theorem A for a more precise statement. One has to observe
that this result does not improve Forni’s result, as in our example, the perturbed
map will have an analytic invariant curve on which the dynamic is topologically
conjugated to a, yet there will be no analytic conjugacy and this is sufficient
to guarantee that the conclusions of the KAM theorem do not hold. One can
considered Forni’s result as a “destruction” of an invariant circle with rotation
number « ¢ R, while our result can be considered as a “destruction” of the
dynamic on the invariant circle with rotation number o ¢ B. For perturbations
of Tonelli Hamiltonians, we will obtain in Theorem B a similar result showing
the optimality of w € BR for n = 2 while for n > 3, we will only obtain in
Theorem C a result similar to Bessi showing that w € R is necessary: for n > 3,
it is unlikely that w € R is sufficient and one should not expect w € BR to be
necessary either?. Even though we will use the action-minimizing properties
of invariant quasi-periodic curves and tori in an indirect way, our method of
proof is very different from those of Forni and Bessi. For Theorem A, we will
use Yoccoz’s result showing the necessity of @ € B for the analytic linearization
of circle diffeomorphims, and the well-known fact that an invariant curve for a
twist map with a given irrational rotation number is unique. Under some more
assumptions, this uniqueness property has been shown to be true for Tonelli
Hamiltonians in any number of degrees of freedom by Fathi, Giualiani and
Sorrentino [6]. Using this and a continuous version of Yoccoz’s result, we will
obtain Theorem B for the case n = 2 and for n > 3, we will make use of a
result of Fayad [7] on reparametrized linear flows to obtain Theorem C.

2. The case of a twist map

It will be more convenient for us to represent an exact area-preserving map
of the annulus T x R, where T = R/Z, by a “Hamiltonian” generating function
defined on the universal cover R? of T x R (unlike [8] where a “Lagrangian”
generating function is used). Given a smooth function h : R? — R such that
h(60+1,7) = h(0,T), the map

f=f:R->R
defined by

B B =1- 39h(9az)v
f0,1) = (6,1) < {@ =0+ 97h(0,T)

projects to an exact area-preserving map

f:TxR—-TxR.

Such a map is an exact area-preserving twist map, or for short a twist map in
the sequel, if it satisfies the following two conditions:

2. Yoccoz, private communication.
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ON THE BRUNO-RUSSMANN CONDITION 345

(al) for all (6,1) € R?, 9;0(0,1) > 0;

(a2) for all # € R, |©| — 400 as |I| — +oo uniformly in 6.
Given such a twist map f, an invariant curve T for f will be an essential
topological circle such that f(T') = T'; necessarily, T is a Lipschitz Lagrangian
graph. Let us denote by T the lift of such an invariant curve to the universal
cover R2; the restriction JF|T (which is the lift of the orientation-preserving circle
diffeomorphism fjr) has a well-defined rotation number in R. The following
uniqueness result is well-known (see [11] for instance).

PROPOSITION 2.1. — Let Ty and Ty be two invariant curves for a twist map
f such that flfo and flfl have the same irrational rotation number. Then
Ty =1Ti.

Now let us explain the local setting in which the KAM theorem applies.
Consider a smooth function hg : R X (—1,1) — R and its associated exact
area-preserving map fo for which the following conditions are satisfied:

(b1) fo satisfies (al) on R x (—1,1);

(b2) Ogho(6,0) = 0 and dzho(0,0) = .
If follows from (b2) that the map fy leaves the curve Ty = T x {0} invariant,
and the restriction of fy to Tp is the rotation by a. To state the KAM theorem
of Bruno and Riissmann, we need to define norms for real-analytic functions.
Let h : R x (=1,1) — R be a real-analytic function and suppose it admits a
holomorphic and bounded extension (still denoted by h) to the domain

T, x D ={z=(21,22) €C* | [Im 21| < s, |22 <1}
for some s > 0. In such a case, we simply define

lhls = sup _|h(z)].
z€Ts XD

Assume that hg satisfies condition (b1l) and (b2) with « € B, then the KAM
theorem states that for any s > 0, there exists ¢ > 0 such that for any hy
satisfying |hy — hols < €, the exact area-preserving map f; generated by h; has
an analytic invariant curve T; such that f1|T1 is analytically conjugated (by the
lift of an orientation preserving circle diffeomorphism) to the rotation « (and
moreover, T analytically converges to T as € goes to zero).

The following result shows that the condition that a € B cannot be weak-
ened.

THEOREM A. — Assume that hg satisfies conditions (b1) and (b2) with o ¢ B.
Then for all € > 0 sufficiently small and all s > 0, there exists hy such that
|h1 — hols < € and the exact area-preserving map fi generated by hy has no
analytic invariant curve Ty such that 'fT1|T1 is analytically conjugated (by the lift
of an orientation preserving circle diffeomorphism) to the rotation c.
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346 A. BOUNEMOURA

Observe that any analytic twist map having a quasi-periodic invariant curve
satisfies, up to a change of coordinates, conditions (bl) and (b2), and thus
Theorem A applies to any such twist maps; the statement is actually more
general, since both the analyticity and the twist condition are required to hold
locally and not globally (as in the statement of the KAM theorem).

The restriction on € only comes from the condition (al) and is thus inde-
pendent of the choice of s. The proof of Theorem A will follow easily from the
following theorem of Yoccoz.

THEOREM 2.2 (Yoccoz). — Assume « ¢ B. Then for all e > 0 and all s > 0,
there exists an orientation-preserving analytic circle diffeomorphism with a lift
of the form

ul@)=0+a+vd), |vs<e
which is topologically but not analytically conjugate to the rotation «.

Proof of Theorem A. — Let us fix s > 0 and € > 0, and consider the function
v : R — R given by Theorem 2.2 which extends to T, and satisfies |v|, < e.
We set

h1(9,I) = ho(H,I) + U(@)I
so that obviously
|h1 - h0|s < |v|s <e.
Let fy and f; be the maps generated by respectively hg and hy. By (bl), the
condition (al) is satisfied by fo but only for all (6, I) € Rx(—1,1) and assuming
¢ is sufficiently small, the same remains true for f;. Now using a bump function,
the map f1, initially defined on T x (—1,1), can be extended to a smooth twist

map from T x R to itself in such a way that both (al) and (a2) holds true.
Now for all (6,I) € R x (—1,1), the lift f; is defined by

f1(0.1) = (0,1)

where

O {I: I — 0ph1(0,T) = I — dpho(0,T) — v (0)T,

0=0+ 6]h1(9,1) =0+ 61}10(9,1) + v(9)

It follows from (b2) that Tp = T x {0} is invariant by f; and the restriction
fl\Tg is nothing but the dynamic induced by u given by Theorem 2.2, hence
it is topologically but not analytically conjugated (by the lift of an orientation
preserving circle diffeomorphism) to the rotation a.

To conclude, we argue by contradiction and assume the existence of an an-
alytic invariant curve T such that f1|T1 is analytically conjugated (by the lift
of an orientation preserving circle diffeomorphism) to the rotation «. Since
both Ty and 77 are invariant by the twist map f; and fl‘T-O and f1|T1 have the
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ON THE BRUNO-RUSSMANN CONDITION 347

same irrational rotation number «, it follows from Proposition 2.1 that Ty = T
but then fl‘T-O = f1|T1 is analytically conjugated (by the lift of an orientation
preserving circle diffeomorphism) to the rotation «, which is absurd. (]

3. The case of a Hamiltonian flow

By a suspension argument (see for instance [13] or [26] for the analytic
case), Theorem A gives a result for Hamiltonian systems with n = 1,5 degrees
of freedom with a convex (non-degenerate) integrable part, and thus also for
Hamiltonian systems with n = 2 degrees of freedom with a quasi-convex (iso-
energetically non-degenerate) integrable part.

For Hamiltonian systems with n > 2 degrees of freedom and a convex inte-
grable part, to use the argument in the proof of Theorem A one first needs to
have an analog of Proposition 2.1, and fortunately, such a result was proved
in [6]. The setting is the one of Tonelli Hamiltonians, which is a natural gen-
eralization of exact area-preserving twist maps. For more details on Tonelli
Hamiltonians and what we will describe next, we refer to [25].

Let H : T" x R™ — R be a smooth Hamiltonian, then it is said to be Tonelli
if it satisfies the following two conditions

(A1) for all (0,1) € T" x R™, V2H(0,I) is a (uniformly) positive definite
quadratic form;
(A2) for all § € T", one has

lim H@®,1)
=400 ||

= 4o00.

In this context, the role of invariant curves is played by Lipschitz Lagrangian
graphs, so let T be such a graph, and assume it is invariant and to be the flow
of a Tonelli Hamiltonian H. Given a measure supported on 7" and invariant
by the Hamiltonian flow, one can define a rotation vector (or a Schwartzman
asymptotic cycle) as an element of H;(T”,R) ~ R™ and by considering all
invariant measures, one can define a rotation set for the Hamiltonian flow
restricted to T'. We will say that T"is Schwartzman strictly ergodic with rotation
vector w € R™ if its rotation set reduces to w and there exists at least one
measure with full support in 7. Simple examples (the one we will actually
use later) are when the restricted flow on T is either topologically conjugate
to the linear flow of frequency w or obtained form the latter by a smooth
reparametrization. The main result of [6] gives the following statement.

THEOREM 3.1 (Fathi-Giuliani-Sorrentino). — Let Ty and Ty be two Lipschitz
Lagrangian graphs invariant by the flow of a Tonelli Hamiltonian and which

are Schwartzman strictly ergodic with the same rotation vector w € R™. Then
Ty =1T;.
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348 A. BOUNEMOURA

As before, we now come back to a local setting in which the KAM theorem
applies. Consider a smooth Hamiltonian function Hy : T™ x B — R, where
B = (—1,1)" C R™ is a unit ball and assume it satisfies the following conditions:

(B1) for all (6,1) € T x R™, V2Hy(0,1) is a (uniformly) positive definite
quadratic form;
(BQ) VQH()(Q,O) =0 and V[Ho(e,()) = W.
Let us observe that for the KAM theorem, condition (B1) is not needed as

the weaker assumption that V2Hy(I) is a non-degenerate quadratic form is
sufficient, where

Ho(I) == [ Hy(6,)do.
T'ﬂ,

If Hy satisfies (B2), its vector field X 70 leaves the torus Ty = T" x {0} invariant
and its restriction X ‘I;g is given by the constant vector field w.
Let H : T™ x B — R be a real-analytic function and suppose it admits a

holomorphic and bounded extension to the domain
T? x D
_ _ n n n . .
= {z = (21,...,20,) € C"/Z" x C" | Jnax Im z| < s, 11réliagxn|zn+z| < 1}

for some s > 0, so that we can define

|H|s = sup [H(z)|.
z€TrxD
Here, we give a formulation of the KAM theorem for Tonelli Hamiltonians.
Assume Hyj satisfies condition (B1) and (B2) with w € BR, then for any s > 0,
there exists € > 0 such that for any H; with |[H; — Hy|s < €, the Hamiltonian
flow of H; has an analytic Lagrangian invariant torus 77 which is a graph and
such that the restriction X g,i is analytically conjugate to the vector field w
(and moreover, T analytically converges to Ty as € goes to zero).
For n = 2, we can prove the condition that w € BR cannot be weakened.

THEOREM B. — Let n = 2, and assume that Hy satisfies condition (B1) and
(B2) with o ¢ BR. Then for all ¢ > 0 sufficiently small and all s > 0, there
exists Hy such that |Hy — Hpls < € and the Hamiltonian flow of Hy has no
analytic Lagrangian invariant graph T such that Xg,i is analytically conjugate
to the vector field w.

To prove Theorem B, we will need the following continuous version of The-
orem 2.2.
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ON THE BRUNO-RUSSMANN CONDITION 349

THEOREM 3.2 (Yoccoz). — Assume w ¢ BR. Then for alle > 0 and all s > 0,
there exists an analytic vector field on T? of the form

Ul) =w+V(0), [V<e
which is topologically but not analytically conjugate to vector field w.

Proof of Theorem B. — The proof is just a continuous version of the proof of
Theorem A. Fixing s > 0 and ¢ > 0, we define

Hy(0,1)=Hy(0, 1)+ V()T
where V is given by Theorem 3.2 (for the value £/v/2 instead of ). Clearly
|Hy — Hols < V2|V|, <e.

Observe that the condition (B1) and a smallness assumption on & again allow
extending H; to a smooth function defined on T? x R? which satisfies both (A1)
and (A2).

From (B2) and the Hamiltonian’s equations associated with Hy, it is clear
that Ty = T? x {0} is invariant by the flow of Hi, and the restriction X gg is
nothing but the vector field U given by Theorem 3.2, hence it is topologically
but not analytically conjugate to the vector field w.

To conclude, we argue again by contradiction and assume the existence
of an analytic Lagrangian invariant graph 77 such that X gi is analytically
conjugate to the vector field w. As Ty and T are invariant by the Hamiltonian
flow of H; which is Tonelli and are both Schwartzman strictly ergodic with the
same rotation vector w, it follows from Theorem 3.1 that T, = 77. But then
X gg =X é,{i is analytically conjugate to the vector field w, which is absurd. O

Theorem 3.2 is not known (and unlikely to be true) for n > 3, yet the
following result was proved by Fayad in [7].

THEOREM 3.3 (Fayad). — Let n > 2 and assume w ¢ R. Then for all s > 0
sufficiently small and all € > 0, there exists an analytic vector field on T™ of
the form

UB) =w+ p(0)w, |ols <. / 2(0)d6 =0,
which is not topologically conjugate to vector field w.
The restriction on s is as follows: if w ¢ R, then there exists so > 0 such
that
In(P,,
lim sup M > So
Q—+o0 Q

and one has to choose s < sg. We have to point out that Fayad’s result is in
fact much more general than the one we stated (it is not perturbative, valid for
a G° dense set of functions ¢ and the resulting vector field U is in fact weakly
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350 A. BOUNEMOURA

mixing) but we will only use the above statement. Observe that since the flow
of U is a reparametrization (with a function of unit average) of the linear flow
of frequency w, it is Schwartzman strictly ergodic with rotation vector w.

Replacing Theorem 3.2 by Theorem 3.3 in the proof of Theorem B, one
immediately arrives at the following statement.

THEOREM C. — Let n > 2, and assume that Hy satisfies conditions (B1) and
(B2) with w ¢ R. Then for all e > 0 sufficiently small and all s > 0 sufficiently
small, there exists Hy such that |Hy — Hyls < € and the Hamiltonian flow of Hy
has no Lipschitz Lagrangian invariant graph T1 such that ngi is topologically
conjugate to the vector field w.

As we already explained, this statement is similar to the main result of [1].
Yet Bessi’s result depends on the choice of Ho(I) = 3(If + -+ + I2) while we
can deal with an arbitrary Tonelli Hamiltonian Hy having an invariant torus
with frequency w. Also as stated, the main result of [1] claims the non-existence
of a C' Lagrangian invariant graph 7; such that X II% is Cl-conjugate to the
vector field w and thus our conclusion is slightly stronger; yet it seems to us
that what is really proved in [1] is the non-existence of a Lipschitz Lagrangian
invariant graph 77 such that X I’;{i has all orbits with the same rotation vector w,
in which case our conclusion could be slightly weaker.

4. Some questions

We conclude by posing some questions. It is clear from Forni’s result, Bessi’s
result or Theorem C that when w ¢ R, invariant tori with a frequency w are
destroyed in a rather strong sense. But in Theorem A and Theorem B this is
not the case if w ¢ BR as an invariant analytic torus still exists on which the
dynamic is topologically linearizable. So one may ask the following question.

QUESTION 1. — Assume that w € R\ BR, is it possible to have the existence
of a “reqular” invariant Lagrangian torus on which the conjugacy to the linear
model is “less reqular”?

We have used quotation marks since we have no idea of what can be expected,
the question is basically whether is it possible to prove anything non-trivial
under the sole assumption that w € R, which as we already explained, is the
condition that guarantees that the cohomological equation can be solved with
an arbitrarily small loss of analyticity. Of course, it may well be the case
that when w ¢ BR, the conclusions of Theorem A and Theorem B can be
strengthened to reach conclusions similar to Forni and Bessi’s results.

A second question concerns the assumptions (al) and (Al). Clearly, (al) is
not a restriction as it is the natural non-degeneracy assumption under which
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ON THE BRUNO-RUSSMANN CONDITION 351

an invariant curve with a prescribed frequency persists. But this is not the
case for (Al) as we already pointed out, so we may ask the following question.

QUESTION 2. — s it possible to prove Theorem B and Theorem C' replacing
the condition (A1) by the weaker condition that V3Hy is non-degenerate in a
neighborhood of 07

We expect the answer to be yes, at the expense of restricting the conclusion
of non-existence to a neighborhood of the unperturbed torus. The role of
the condition (A1) is to be able to obtain global uniqueness of an invariant
torus with a prescribed frequency; without (A1) no such global uniqueness
has to be expected, yet in view of the statement of the KAM theorem, only
local uniqueness would be required. This local uniqueness is known to hold
true within the context of KAM theory (see [24] for instance) but this is not
directly applicable to our context, yet we believe that with extra work this can
be reached even though we did not pursue this further.
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the ANR project Beyond KAM.

BIBLIOGRAPHY

[1] U. BESSI — “An analytic counterexample to the KAM theorem”, Ergodic
Theory Dynam. Systems 20 (2000), no. 2, p. 317-333.

[2] A. BRUNO — “Analytical form of differential equations I”, Trans. Moscow
Math. Soc. 25 (1971), p. 131-288.

3] , “Analytical form of differential equations II”, Trans. Moscow
Math. Soc. 26 (1972), p. 199-239.

[4] , Local methods in nonlinear differential equations, Springer, 1989.

[5] A. M. DAVIE — “The critical function for the semistandard map”, Non-
linearity 7 (1994), no. 1, p. 219-229.

[6] A. FaTHI, A. GIULIANI & A. SORRENTINO — “Uniqueness of invariant
Lagrangian graphs in a homology class or a cohomology class”, Ann. Sc.
Norm. Super. Pisa Cl. Sci. (2009), no. 4, p. 659-680.

[7] B. R. FAYAD — “Weak mixing for reparameterized linear flows on the
torus”, Ergodic Theory Dynam. Systems 22 (2002), no. 1, p. 187-201.

[8] G. FORNI — “Analytic destruction of invariant circles”, Ergodic Theory
Dynam. Systems 14 (1994), no. 2, p. 267-298.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



352

[9]

[20]

21]

[22]

[23]

A. BOUNEMOURA

G. GENTILE — “Invariant curves for exact symplectic twist maps of the
cylinder with Bryuno rotation numbers”, Nonlinearity 28 (2015), no. 7,
p. 2555-2585.

L. GEYER — “Siegel discs, Herman rings and the Arnold family”, Trans.
Amer. Math. Soc. 353 (2001), no. 9, p. 3661-3683.

C. GOLE — Symplectic twist maps, Advanced Series in Nonlinear Dynam-
ics, vol. 18, World Scientific Publishing Co., Inc., 2001, Global variational
techniques.

M.-R. HERMAN — “Sur les courbes invariantes par les difféomorphismes
de anneau, Volume 17, Asterisque 103—104 (1983).

S. KUKSIN & J. POSCHEL — “On the inclusion of analytic symplectic maps
in analytic Hamiltonian flows and its applications”, Seminar on dynamical
systems (1994), p. 96-116, Birkh&user.

S. MARMI — “Critical functions for complex analytic maps”, J. Phys. A
23 (1990), no. 15, p. 3447-3474.

J. MATHER — “A criterion for the non existence of invariant circles”, Publ.
Math. IHES 63 (1986), no. 153-204.

, “Destruction of invariant circles”, Erg. Th. Dyn. Sys. 8 (1988),
no. 199-214.

P. Moussa & S. MARMI — “Diophantine conditions and real or com-
plex Brjuno functions”, in Noise, oscillators and algebraic randomness
(Chapelle des Bois, 1999), Lecture Notes in Phys., vol. 550, Springer,
2000, p. 324-342.

R. PEREZ-MARCO — “Fixed points and circle maps”, Acta Math. 179
(1997), no. 2, p. 243-294.

H. RUSSMANN — “On optimal estimates for the solutions of linear partial
differential equations of first order with constant coefficients on the torus”,
in Dynamical systems, theory and applications (Rencontres, Battelle Res.
Inst., Seattle, Wash., 1974 ), Springer, Berlin, 1975, p. 598-624. Lecture
Notes in Phys., Vol. 38.

, “On the one-dimensional Schrodinger equation with a quasi-
periodic potential”, Ann. NY Acad. Sci. 357 (1980), p. 91-107.

, “Non-degeneracy in the perturbation theory of integrable dynam-
ical systems”, Number theory and dynamical systems, Lond. Math. Soc.
Lect. Note Ser. 134, 5-18, 1989.

, “On the frequencies of quasi periodic solutions of analytic nearly
integrable Hamiltonian systems”, in Seminar on Dynamical Systems
(S. Kuksin, V. Lazutkin & J. Poschel, éds.), Progress in Nonlinear Dif-
ferential Equations and Their Applications, vol. 12, Birkh&user, 1994,
p. 160-183.

, “Invariant tori in non-degenerate nearly integrable Hamiltonian
systems”, Regul. Chaotic Dyn. 6 (2001), no. 2, p. 119-204.

TOME 147 — 2019 — N°© 2



24]

[25]

[26]

[27]

(28]

ON THE BRUNO-RUSSMANN CONDITION 353

D. SALAMON — “The Kolmogorov-Arnold-Moser theorem”, Mathematical
Physics Electronic Journal 10 (2004), p. 1-37.

A. SORRENTINO — Action-minimizing methods in Hamiltonian dynamics,
Mathematical Notes, vol. 50, Princeton University Press, Princeton, NJ,
2015, An introduction to Aubry-Mather theory.

D. TRESCHEV & O. ZUBELEVICH — Introduction to the perturbation theory
of Hamiltonian systems, Springer Monographs in Mathematics, Springer,
2010.

J.-C. Yoccoz — “Linéarisation des germes de difféomorphismes holomor-
phes de (C,0)”, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1,
p. 55-58.

, Small divisors in dimension one (Petits diviseurs en dimension
1), Astérisque. 231. Société Math. de France, 242 p., 1995.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



