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MÉTRIQUES HYPERKÄHLÉRIENNES PLIÉES

par Olivier Biquard

Résumé. — N. Hitchin a récemment introduit la notion de métrique hyperkählérienne
pliée, liée aux fibrés de Higgs pour le groupe SL(∞,R).

Nous construisons de telles métriques et montrons l’existence locale de la compo-
sante de Hitchin pour SL(∞,R).

Abstract (Folded hyperkähler metrics). — N. Hitchin recently introduced the notion
of folded hyperKähler metrics, in relation with SL(∞,R) Higgs bundles.

We provide a construction of such metrics, and prove the local existence of the
Hitchin component for SL(∞,R).

Introduction

SoitM4 une variété orientée de dimension 4. Une métrique hyperkählérienne
sur M peut être vue comme la donnée de trois formes symplectiques, ωa, telles
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304 O. BIQUARD

que

(1) ωa ∧ ωb = δabv,

où v est une forme volume sur M . Il existe alors une métrique g et trois struc-
tures complexes Ja surM par rapport auxquelles g est kählérienne, avec formes
de Kähler ωa.

N. Hitchin [12] a introduit la notion de métrique hyperkählérienne pliée
(folded) : la 4-forme v n’est plus une forme volume, mais peut s’annuler trans-
versalement sur une sous-variété X3 ⊂M4 ; surM \X on obtient alors une mé-
trique hyperkählérienne, positive ou négative suivant les composantes connexes.
L’exemple standard est le fibré en 2-sphères d’une surface hyperbolique Σ,

M = T ∗Σ ∪ Σ,

avec X le fibré unitaire en cercles de T ∗Σ ; la métrique est l’analogue non
compact de la métrique de Eguchi-Hanson sur T ∗P 1. Dans ce cas, les formes
ω2 et ω3 se restreignent en un couple générique de 2-formes fermées sur X, alors
que ω1 s’annule. Il y a une involution ι qui échange les deux côtés en fixant X,
et

(2) ι∗g = −g, ι∗ω1 = −ω1, ι∗ω2 = ω2, ι∗ω3 = ω3.

Il y a deux constructions de métriques hyperkählériennes pliées [12] :
• une construction locale, qui à partir d’un couple générique (ω2, ω3) de
2-formes fermées analytiques réelles sur X, produit une métrique hy-
perkählérienne pliée dans un voisinage ; cette métrique possède une in-
volution ι comme ci-dessus (une autre approche pour ce résultat est
proposée dans la section 1, voir théorème 1.1 ; cette approche aboutit
aussi à un énoncé d’unicité qui implique l’existence locale de l’involution
ι) ;

• une construction globale à partir de solutions des équations d’auto-
dualité de Hitchin [11] pour des SL(∞,R)-fibrés de Higgs sur Σ ; si on ne
sait pas produire en général de telle solution, une famille de dimension
finie vient du plongement SL(2,R) ⊂ SL(∞,R) ; cette famille contient
le modèle standard, induit par le fibré de Higgs correspondant à la
représentation fuchsienne de π1(Σ) dans SL(2,R).

La construction à partir de SL(∞,R)-fibrés de Higgs suggère que les mé-
triques hyperkählériennes pliées doivent venir dans des familles de dimension
infinie. Le but de cet article est de confirmer cette intuition et de décrire l’es-
pace des déformations. Il est aussi de montrer l’existence de la composante de
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Hitchin pour SL(∞,R), qui correspond aux métriques hyperkählériennes pliées
munies d’une projection holomorphe sur la surface Σ.

Le premier résultat de cet article est formulé dans le cadre oùM est réunion
de deux domaines fermés, délimités par X :

M = M0 ∪M1, M0 ∩M1 = X,

échangés par l’involution ι. Si la forme symplectique holomorphe ωc = ω2 + iω3
d’une métrique hyperkählérienne pliée le long de X n’est plus symplectique le
long de X, en revanche, sur le quotient par l’involution ι,

Ms := M/ι,

elle définit une forme symplectique holomorphe jusqu’au bord. La structure
différentielle de Ms au bord X diffère de celle de M0 : si x est une équation
lisse de X dans M0, alors x2 est une équation lisse du bord dans Ms (d’où le
pli).

Théorème 0.1. — Soit une métrique hyperkählérienne g pliée sur M . Alors :
i. toutes les déformations infinitésimales de métriques hyperkählériennes

pliées s’intègrent en des métriques hyperkählériennes pliées ;
ii. toute déformation infinitésimale de la variété holomorphe symplectique

à bord Ms donne lieu à une déformation infinitésimale de métrique
hyperkählérienne pliée, quitte à modifier Ms par un difféomorphisme
infinitésimal ne préservant pas nécessairement le bord X.

Comme il y a beaucoup de déformations infinitésimales holomorphes sym-
plectiques, le théorème fournit bien la construction de métriques hyperkählé-
riennes pliées.

Il peut sembler curieux de faire agir les difféomorphismes ne préservant pas
le bord, mais cela a un sens pour les difféomorphismes infinitésimaux : le champ
de vecteurs n’est pas nécessairement tangent au bord. Cette description sug-
gère que les déformations de métriques hyperkählériennes pliées sont liées aux
déformations holomorphes symplectiques à frontière libre.

Précisons la question sous-jacente : épaississons un peuMs, c’est-à-dire sup-
posons que

Ms ⊂ N,

où N est une variété holomorphe symplectique sans bord (dans le cas modèle,
un voisinage ouvert du fibré en disques dans T ∗Σ), et fixons ζ1 ∈ H2(N,X) la
« classe de Kähler pliée ». Considérons une déformation holomorphe symplec-
tique N ′ de N . Pour chaque déformation X ′ ⊂ N ′ du bord X, appelons D′
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le domaine de N ′ délimité par X ′, et fixons une forme de Kähler ω1 sur D′,
pliée sur X ′, et dans la classe ζ1. Notons ωc = ω2 + iω3 la forme holomorphe
symplectique de N ′.

Question (Problème de Monge-Ampère à frontière libre). — Trouver (X ′, f)
tel que (ω1 + i∂∂̄f)2 = 1

2ω
c ∧ ωc, où f est une fonction sur D′, et f = O(y)

près de X ′ (où y est une équation de X dans N ′).

Une telle solution du problème de Monge-Ampère donnerait une métrique
hyperkählérienne pliée sur le domaine de N ′ délimité par X ′. Le point impor-
tant ici est qu’il est nécessaire de pouvoir déplacer X ′ pour résoudre l’équation.
La question présente des analogies avec les questions de S. Donaldson à fron-
tière libre [8]. Voir la fin de la section 5 pour une interprétation en termes de
la complexification du groupe des symplectomorphismes induisant un contac-
tomorphisme au bord.

La composante de Hitchin pour le groupe SL(∞,R) s’interprète [12] comme
un espace de métriques hyperkählériennes pliées avec projection holomorphe sur
la surface Σ, c’est-à-dire l’ensemble des domaines de T ∗Σ portant une métrique
hyperkählérienne pliée. Cela correspond à résoudre la question ci-avant pour
des domaines de T ∗Σ. Nous démontrons l’existence locale de cette composante :

Théorème 0.2. — Au voisinage de la métrique hyperkählérienne pliée stan-
dard sur le fibré en disques de T ∗Σ, la composante de Hitchin pour le groupe
SL(∞,R) est une variété paramétrée par ⊕n>2H

0(Σ,Kn).

Voir le théorème 8.2 pour l’énoncé technique précis : l’espace de différentielles
holomorphes ⊕n>2H

0(Σ,Kn) est interprété comme un espace de fonctions CR
holomorphes sur le bord du fibré en disques, et une certaine régularité dans
les espaces de Folland-Stein est nécessaire. Le lien entre ces fonctions et les
déformations du domaine correspondant à la composante de Hitchin est le
suivant : ces déformations correspondent infinitésimalement au déplacement
du bord du fibré en disques par un champ de vecteurs fw∂w, où f est une
fonction CR holomorphe sur le bord et w∂w est le vecteur de dilatation dans
T ∗Σ.

Le théorème confirme l’intuition que la composante de Hitchin pour
SL(∞,R) devrait être une sorte de limite des composantes de Hitchin pour
les groupes SL(k,R), lesquelles sont paramétrées par des sommes finies d’es-
paces de différentielles holomorphes. En outre, la paramétrisation dans le théo-
rème 0.2 peut être choisie pour être une section d’un analogue de la fibration
de Hitchin, voir remarque 8.3.
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Les sections 1 et 2 sont consacrées à la description de la géométrie au bord
et à la mise en forme comme un problème non linéaire sur les différentielles
de trois 1-formes ; l’analyse des déformations hyperkählériennes de cette ma-
nière n’est pas nouvelle, ce qui compte ici est de déterminer les conditions au
bord correspondant à la géométrie (un travail en cours de J. Fine, J. Lotay et
M. Singer analyse le cas d’un bord standard). Les espaces fonctionnels adéquats,
repris de [4], sont introduits dans la section 3, la linéarisation du problème est
analysée section 4, et section 5 les déformations infinitésimales sont comprises
en termes de la géométrie holomorphe symplectique. Dans la section 6, on
détermine les déformations infinitésimales correspondant aux SL(∞,R)-fibrés
de Higgs sur la surface de Riemann Σ : elles sont paramétrées par les diffé-
rentielles holomorphes de tous degrés (au moins quadratiques). Un problème
technique se pose alors pour parvenir au théorème 0.2 : la paramétrisation du
déplacement du bord du domaine holomorphe symplectique par une fonction
(donnant le déplacement radial) se fait a priori avec perte de dérivées. Cette
question est contournée par la section 7 qui propose une paramétrisation de
tous les domaines du cotangent en termes de fibrations (non holomorphes) par
des disques holomorphes, suivant des idées remontant à Burns, Epstein, Lem-
pert et Bland dans les années 90, notre approche ici étant basée sur [3]. Cela
permet de déduire le théorème 0.2 section 8. Finalement, l’asymptotique au
bord des métriques nécessite le développement d’une analyse, reportée jusqu’à
la section 9.

Mes remerciements vont à N. Hitchin, pour les nombreux échanges qui ont
permis l’existence de cet article. Je remercie aussi C. Guillarmou pour d’utiles
discussions sur le laplacien plié au début de ce travail.

1. La géométrie au bord et son modèle

On commence par préciser le comportement au bord d’une métrique hyper-
kählérienne pliée [12]. Nous avons un triplet (ω1, ω2, ω3) de 2-formes sur une
variété M , qui en dehors d’une hypersurface X (le « pli ») donne une mé-
trique hyperkählérienne (définie positive ou définie négative). Soit i : X ↪→ M

l’injection. On a

(3) i∗ω1 = 0,

alors que les formes ω2 et ω3, restreintes à X, ont chacune un noyau de dimen-
sion 1, dont la somme est une distribution de contact :

(4) H = ker i∗ω2 ⊕ ker i∗ω3.
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Dans cette situation, R. Bryant [7] a montré l’existence d’une unique base
(θ1, θ2, θ3) de 1-formes sur X, telle que

i∗ω2 = −θ1 ∧ θ3, i∗ω3 = θ1 ∧ θ2,(5)

dθ1 = θ2 ∧ θ3.(6)

Bien sûr, la forme θ1 est une forme de contact, et les formes θ2 et θ3 sont
horizontales, c’est-à-dire qu’elles s’annulent sur le champ de Reeb X1 (c’est
donc le premier vecteur de la base duale (X1, X2, X3)).

Alors il existe une équation x de X ⊂M , dont la différentielle le long de X
est bien déterminée, et telle que

ω1|X = dx ∧ θ1 + xθ2 ∧ θ3,

ω2|X = xdx ∧ θ2 − θ1 ∧ θ3,

ω3|X = xdx ∧ θ3 + θ1 ∧ θ2.

(7)

Ce comportement sera extrait du résultat suivant, qui donne l’existence locale
et l’unicité de la métrique hyperkählérienne pliée :

Théorème 1.1. — Étant donné (X3, β2, β3) analytique réel, où β2 et β3 sont
des 2-formes fermées sur X dont les noyaux engendrent une distribution de
contact, il existe sur un petit voisinage (−ε, ε)×X une unique métrique hyper-
kählérienne pliée telle que i∗ω2 = β2 et i∗ω3 = β3. Cette métrique satisfait la
parité (2).

L’existence est démontrée par une construction twistorielle [12, §7]. La dé-
monstration que nous donnons ici simplifie cette preuve et aboutit directement
au résultat d’unicité.

Démonstration. — On utilise le formalisme d’Ashtekar [1] : une solution du
système des équations de Nahm pour des champs de vecteurs V1, V2, V3 sur X,
dépendant de x, et préservant une forme volume fixe υ sur X,

dV1

dx
+ [V2, V3] = 0,

dV2

dx
+ [V3, V1] = 0,

dV3

dx
+ [V1, V2] = 0,

(8)

produit, en posant V0 = ∂
∂x , une métrique hyperkählérienne définie par

(9) g(Vi, Vj) = υ(V1, V2, V3)δij .
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Réciproquement, si g est une métrique hyperkählérienne et x une fonction
harmonique, alors, en posant dx∧υ = |dx|2g volg et Va = Ja

∂
∂x pour a = 1 . . . 3,

on récupère une solution du système (8).
Appliquons cela dans notre situation : partant de (X,β2, β3), on prend la

base de 1-formes (θ1, θ2, θ3) satisfaisant dθ1 = θ2∧θ3, β2 = −θ1∧θ3 et β3 = θ1∧
θ2, et (X1, X2, X3) la base associée de champs de vecteurs. Alors les conditions
dβ2 = dβ3 = 0 se traduisent par le fait que X2 et X3 préservent la forme volume
υ = θ1 ∧ θ2 ∧ θ3. On résout alors le système (8) avec les conditions initiales

(10) V1(0) = 0, V2(0) = X2, V3(0) = X3.

Pour des données analytiques réelles, le théorème de Cauchy-Kowalevski pro-
duit une unique solution définie pour x petit.

On observera que (−V1(−x), V2(−x), V3(−x)) est encore solution avec les
mêmes conditions initiales, donc V1 est paire, et V2, V3 impaires, ce qui implique
l’invariance (2) sous l’involution ι(x) = −x pour la solution. En outre, puisque
X1 = −[X2, X3], on a

(11) V1(x) = xX1 +O(x3).

On déduit le comportement de la métrique (impaire, positive pour x > 0,
négative pour x < 0) :

(12) g = x(dx2 + (θ2)2 + (θ3)2) + x−1(θ1)2 +O(x3)G
(
dx, x−1θ1, θ2, θ3) ,

et celui des trois formes de Kähler donné dans (7). Ici G((ei)) =
∑
Gije

iej est
un 2-tenseur symétrique dont les coefficients Gij sont lisses.

Réciproquement, étant donnée une métrique hyperkählérienne, analytique
réelle, avec le comportement (12), on calcule son laplacien

(13) ∆ = −x−1(∂2
x + x2X2

1 +X2
2 +X2

3 ) + · · ·

Il en résulte immédiatement qu’on peut résoudre ∆y = 0 dans un voisinage
de X avec y = x + O(x2) ; cette solution, unique, permet de reconstruire les
champs Va. L’unicité s’en déduit. �

Il est intéressant de noter qu’existe un cas où les formules (7) sont exactes
globalement et pas seulement sur X : si X est le groupe de Heisenberg, muni
de sa base invariante de 1-formes telle que

(14) dθ1 = θ2 ∧ θ3, dθ2 = dθ3 = 0,

alors (V1, V2, V3)(x) = (xX1, X2, X3) est une solution exacte de (8), donc les
formules (7) définissent des 2-formes fermées satisfaisant le système (1) sur
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M = R×X, et la métrique hyperkählérienne pliée g est explicitée par

(15) g0 = x
(
dx2 + (θ2)2 + (θ3)2)+ x−1(θ1)2.

(On peut le voir aussi par application de l’ansatz de Gibbons-Hawking).
Le cas du groupe de Heisenberg est le modèle « plat » de la géométrie que

nous étudions, au sens suivant. Prenons des coordonnées (x1, x2, x3), de sorte
que

θ1 = dx1 + x2dx3, θ2 = dx2, θ3 = dx3.

Dans le cas d’une métrique hyperkählérienne pliée générale g, soit un point
p ∈ X, choisissons grâce au lemme de Darboux des coordonnées locales (xi)
sur X en p de sorte que

θ1 = dx1 + x2dx3, θ2(p) = dx2, θ3(p) = dx3.

Considérons les dilatations inhomogènes

ht(x, x1, x2, x3) = (tx, t2x1, tx2, tx3).

Alors la métrique modèle (15) satisfait h∗t g0 = t3g0, et plus généralement, à
partir de (7), quand t→ 0, on voit que les t−3h∗tωa convergent vers les 2-formes
du modèle, et en particulier

(16) lim
t→0

t−3h∗t g = g0.

Il y a une analogie claire avec la géométrie hyperbolique complexe et les mé-
triques asymptotiquement hyperboliques complexes [2], mais qui n’est qu’une
analogie : en effet, la métrique x−3g0, invariante par les dilatations ht, n’est
pas hyperbolique complexe. Elle est néanmoins quasi-isométrique à la métrique
hyperbolique complexe.

2. L’espace des métriques hyperkählériennes pliées

Nous considérons à présent les déformations d’une métrique hyperkählé-
rienne pliée g0 sur (M,X). Puisque deux structures de contact proches sont
difféomorphes, on peut supposer que la distribution de contact H induite sur
X par (4) reste fixe. Les formes i∗ω2 et i∗ω3 sont alors nécessairement des
2-formes verticales sur X (et i∗ω1 = 0). Enfin nous considérerons les déforma-
tions en fixant les classes de cohomologie des formes ωa : notons ζ1 la classe de
ω1 dans H2(M0, X), et ζ2, ζ3 les classes de ω2 et ω3 dans H2(M0).
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Cela nous amène à considérer l’espaceQ des triplets (ωa) de 2-formes fermées
sur M0, de classes de cohomologie (ζa) dans H2(M0, X) ou H2(M0) respecti-
vement, tels que

(17) i∗ω1 = 0, i∗ω2, i
∗ω3 verticales.

L’espace des métriques hyperkählériennes pliées sur M0 est alors

(18) M =
{

(ωa) ∈ Q, ωa ∧ ωb = δabω
2
1
}
.

Par le théorème 1.1, de telles métriques satisfont nécessairement la parité (2)
près du bord X (pour une certain choix de x), ce qui implique qu’on peut
les prolonger par doublement en des métriques hyperkählériennes pliées sur M
entier. (Le théorème 1.1 n’est valable que pour des données analytiques réelles,
mais si celles-ci sont seulement C∞, il donne néanmoins le même résultat sur
les germes en X, ce qui suffit pour le prolongement par doublement).

Aussi raisonnerons-nous uniquement sur la variété à bord M0.
Le but de cet article est de comprendre l’espace M. On peut ainsi décrire

Q à partir de

(19) T =
{

(αa) ∈ Ω1(M0), i∗α1 = 0, i∗dα2, i
∗dα3 verticales

}
.

Les conditions sur les 1-formes sont écrites de sorte que (αa) ∈ T implique
(ωa + dαa) ∈ Q, et tout élément de Q s’écrit de cette manière. L’espaceM se
décrit comme l’image par d de P−1(0), pour

(20) P ((αa)) = ((ωa + dαa) ∧ (ωb + dαb))0 ,

où l’indice 0 dénote la partie sans trace ; on a donc défini un opérateur

(21) P : T −→ Sym2
0(R3)⊗ Ω4.

Cet opérateur, et sa linéarisation, interviennent classiquement dans les pro-
blèmes d’autodualité, voir par exemple [4] dans un contexte proche.

Observons qu’il y a une contrainte sur l’image de P : en effet, les nombres
ζ1 ∪ ζ2, ζ1 ∪ ζ3 ∈ H4(M0, X) = R sont représentés par

(22) ζ1 ∪ ζb =
∫
M0

(ω1 + dα1) ∧ (ωb + dαb), b = 2, 3.

L’analyse de l’opérateur P requiert d’introduire les espaces fonctionnels adé-
quats, ce que nous faisons maintenant.
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3. Espaces fonctionnels

Les espaces fonctionnels sur le bord, adaptés à la géométrie de contact, sont
les espaces de Folland-Stein FSk [10] : une fonction f sur X est dans l’espace
FSk si elle a k dérivées horizontales dans L2, c’est-à-dire

Xj2
2 X

j3
3 f ∈ L2(X) dès que j2 + j3 6 k.

Une version fractionnaire est définie en considérant l’opérateur hypoelliptique
� = −(X2

2 +X2
3 ), dont la décomposition spectrale permet de définir la norme

‖f‖FSk = ‖(1 +� k
2 )f‖L2 .

Une caractéristique, presque une définition des métriques pliées, est que la
forme volume s’annule simplement sur X : près de X, on a

volg0 ∼ xdx ∧ θ1 ∧ θ2 ∧ θ3.

Nous considérons l’espace L2 par rapport à cette forme volume, et un espace
de fonctions L2 à poids par

L2
δ = xδ+1L2.

La définition est faite pour que xδ′ ∈ L2
δ dès que δ′ > δ.

Rappelons que sur X nous disposons d’un repère (X1, X2, X3) dual
à (θ1, θ2, θ3), et nous pouvons identifier un voisinage de X dansM0 à [0, ε)×X,
avec première coordonnée x, ce qui nous permet d’ajouter le champ de vecteurs
∂x. On considère alors, pour s ∈ N, l’espace de Sobolev à poids défini par la
norme

‖f‖2Hs
δ

=
∑

|j|:=j0+···+j36s

‖∂j0x (xX1)j1Xj2
2 X

j3
3 f‖2L2

δ−|j|
.

La norme est indépendante de l’ordre dans lequel on écrit les champs de vec-
teurs, car

[∂x, xX1] = X1 = −[X2, X3].

Par commodité d’écriture, on notera D toute dérivation parmi ∂x, xX1, X2 et
X3 et Dj toute composition d’ordre j de ces dérivations. La norme de Sobolev
précédente s’écrit ainsi

‖f‖2Hs
δ

=
∑
j6s

‖Djf‖2L2
δ−j

.

Une autre interprétation des espaces de Sobolev à poids s’obtient en consi-
dérant la métrique g0

x3 , quasi-isométrique à une métrique asymptotiquement
hyperbolique complexe, donc on dispose d’espaces de Sobolev Hs

g0
x3

obtenus en
sommant les carrés des normes Hs ordinaires sur un recouvrement localement
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fini par des boules. Le lien avec les espaces de Sobolev définis précédemment
est

(23) Hs
δ = xδ−2Hs

g0
x3
.

Cette relation permet en particulier d’étendre la définition de Hs
δ à des s frac-

tionnaires.
Enfin, on utilisera aussi une variante où ` dérivées (où ` ∈ N) le long de X

sont mieux contrôlées : si s > `, on note Hs,`
δ l’espace des fonctions f ∈ Hs

δ ,
telles que pour |j| := j2 + j3 6 ` on ait

Xj2
2 X

j3
3 f ∈ H

s−|j|
δ .

Ce type d’espace est utilisé dans [4], d’où nous extrayons le lemme d’extension
suivant :

Lemme 3.1. — 1. Soit δ ∈ (0, 1). Si une fonction f satisfait Df ∈ L2
−1+δ,

alors f admet une valeur au bord f |X ∈ FSδ, et f − (f |X) ∈ L2
δ.

Réciproquement, il existe un opérateur d’extension, E0, qui à f0 ∈ FS`+δ(X)
associe une extension f = E0(f0) sur M0 telle que Df ∈ H∞;`

−1+δ.
2. Plus généralement, il existe des opérateurs d’extension Ek, associant à un

développement f0 + xf1 + · · ·+ xkfk, où fj ∈ FSk−j+`+δ(X), une extension f
sur M0, telle que

i. pour j 6 k on a Dj(f −
∑j

0 x
ifi) ∈ L2

k−j+δ ;
ii. Dk+1f ∈ H∞;`

−1+δ.

Démonstration. — Ce sont les lemmes 2.5 et 2.7 dans [4], qui s’appliquent
car on a vu que la métrique g0

x3 est quasi-isométrique aux métriques asympto-
tiquement hyperboliques complexes, utilisées dans [4]. Ils n’y sont énoncés que
pour une seule fonction f0, mais en l’appliquant à chaque fj on déduit l’énoncé
écrit ici. �

On peut étendre légèrement le lemme 3.1 de la manière suivante : si on a
seulement f ∈ H

1
2
δ alors les restrictions aux tranches f |{x}×X , bien définies

dans L2, sont contrôlées par la norme H 1
2 de manière uniforme dans les boules

de la métrique g0
x3 , et il en résulte que x−δf |{x}×X → 0 dans L2(θ1θ2θ3) quand

x tend vers 0. Donc, pour s > 1
2 , l’espace

Hsδ = FSδ(X)⊕Hs
δ (M0),

constitué des fonctions f qui se décomposent près du bord en

(24) f = E0(f0) + f1, f0 ∈ FSδ(X), f1 ∈ Hs
δ (M0),
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a un sens (la projection sur FSδ(X) étant la valeur au bord). Si s > 1, c’est
exactement l’espace des fonctions f sur M0 telles que Df ∈ Hs−1

−1+δ(M0).
De manière analogue est défini, pour s > `+ 1

2 , l’espace

Hs,`δ := FS`+δ(X)⊕Hs,`
δ (M0),

constitué des fonctions f avec une décomposition (24) avec f0 ∈ FS`+δ(X) et
f1 ∈ Hs,`

δ (M0). Si s > ` + 1, c’est l’espace des fonctions f sur M0 telles que
Df ∈ Hs−1,`

−1+δ(M0).
Enfin, au lieu d’un seul terme au bord, on peut définir des espaces où les

fonctions disposent d’un développement d’ordre k en x et d’un reste d’ordre
k + δ : pour s > `+ 1

2 ,

Hs,`k,δ := ⊕k0 FS`+k−j+δ(X)⊕Hs,`
k+δ(M0).

Si s est assez grand, Hs,`k,δ est constitué des f telles que Dk+1f ∈ Hs−k−1,`
−1+δ (M0).

Disons tout de suite qu’on choisira dorénavant des valeurs

`� 0, δ = 1
2 , s > `+ 1

2 .

Le choix du poids δ = 1
2 rend transparent le rapport aux espaces L2 ordinaires,

mais nous continuerons d’utiliser δ car tous les énoncés sont valables dès que
δ ∈ (0, 1), voir remarque 9.4. Enfin, dans la section 7 on utilisera s = ` + 1

2
donc la seule vraie liberté est sur `.

Finalement, ces choix permettent de plonger continûment

Hs,`k,δ ⊂ C
k,

et Hs,`k,δ est une algèbre. Dans l’intérieur de M0, les choix permettent d’obtenir
Hs,`k,δ ⊂ C

j
loc pour tout j grand préalablement fixé, mais en revanche les normes

à poids ne contrôlent pas les dérivées radiales ∂jxf au bord.
Nous pouvons maintenant définir une version Sobolev des espaces T , Q et

M de la manière suivante. Nous considérons la base de 1-formes (ei) définie
par

e0 = dx, e1 = x−1θ1, e2 = θ2, e3 = θ3.

La base (x 1
2 ei) est orthonormale le long de X. Nous définissons alors Qs,`δ

comme l’espace des triplets de 2-formes (ωa) :
i. à coefficients xHs,`δ dans la base (ei ∧ ej),
ii. satisfaisant (17) ; comme e2 ∧ e3 = θ2 ∧ θ3, la verticalité de i∗ω2 et

i∗ω3 est impliquée par la première condition, et (17) se réduit donc à
i∗ω1 = 0.
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La première condition implique que les 2-formes se prolongent continûment au-
dessus de X. Puisque volg0 = xdx ∧ θ1 ∧ θ2 ∧ θ3 = x2e1 ∧ e2 ∧ e3 ∧ e4, un tel
triplet (ωa) satisfait

(25) ωa ∧ ωb ∈ Hs,`δ volg0 .

On définit aussi l’espace T s,`δ des triplets de 1-formes (αa) :
i. à coefficients Hs,`2,δ dans la base (ei),
ii. dont la coordonnée sur e1 s’annule sur X (donc il s’agit de formes

s’étendant jusqu’au bord X en des formes de classe C1),
iii. et tels que i∗α1 = 0 et (dαa) ∈ Qs−1,`

δ .
Précisons la dernière condition : si les coefficients des αa sont dans l’espaceHs,`2,δ,
ceux des dαa sont dans Hs−1,`

1,δ ; pour qu’ils soient en outre dans xHs−1,`
δ , il faut

et il suffit que leur restriction à X s’annule. Ces considérations aboutissent à
expliciter les condition sur (αa) par :

Lemme 3.2. — Soit (αa) un triplet de 1-formes, à coefficients Hs,`2,δ dans la
base (ei), dont le coefficient sur e1 s’annule sur le bord X, et tel que i∗α1 = 0.
Notons αa = αa,ie

i. Alors (αa) ∈ T s,`δ si les coefficients

∂xαa,2 −X2αa,0, ∂xαa,3 −X3αa,0, X2αa,3 −X3αa,2 + ∂xαa,1

s’annulent le long de X.

Démonstration. — Il suffit de prendre la différentielle extérieure de αa =
αa,0dx+αa,1x

−1θ1 +αa,2θ
2 +αa,3θ

3, en tenant compte de αa,1|X = 0, sachant
que dθ1 = θ2 ∧ θ3 et que dθ2 et dθ3 sont verticales. (La troisième annulation
est automatique pour α1 puisque i∗α1 = 0). �

On considère alors P comme un opérateur

(26) P : T s+1,`
δ −→ Hs,`δ;ζ(Sym2

0 R3) volg0 ,

où l’indice ζ signifie, conformément à (22), que v = (vab) ∈ Sym2
0 R3 ⊗ volg0

satisfait

(27)
∫
M0

v12 = ζ1 ∪ ζ2,
∫
M0

v13 = ζ1 ∪ ζ3.

Les métriques hyperkählériennes dans Qs,`δ sont donc obtenues comme l’es-
pace

(28) Ms,`
δ = d(P−1(0)) ⊂ Qs,`δ .

Par la construction twistorielle, toutes les métriques de Ms,`
δ sont nécessai-

rement lisses à l’intérieur de M0, donc, à donnée du bord fixée, les différents
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Ms,`
δ ne diffèrent que par l’action de difféomorphismes non C∞ (aucune jauge

pour l’action des difféomorphismes n’est imposée dans notre construction). Par
ailleurs, varier ` permet d’avoir des données au bord non régulières, mais ce
n’est pas notre intérêt principal ici.

Théorème 3.3. — L’opérateur P est une submersion en g0. Par conséquent,
Ms,`

δ est une sous-variété hilbertienne de Qs,`δ , dont l’espace tangent en g0 est
d(ker dg0P ).

La seconde partie du théorème 0.1 en découle.
Le théorème 3.3 est une conséquence de la proposition 4.1, démontrée dans

la section suivante.

4. Construction d’un inverse à droite

Soit Ω+ le fibré des 2-formes autoduales, donc la base (ωa) donne une trivia-
lisation Ω+ = R3. Alors l’opérateur linéarisé dg0P s’identifie à la composition
de d+ avec la projection Ω+ ⊗ Ω+ → Sym2

0 Ω+,

(29) ∂ : T s+1,`
δ −→ Hs,`δ;0(Sym2

0 Ω+),

où l’indice 0 marque maintenant la condition (27) linéarisée, à savoir, pour
v = (vabωa ⊗ ωb) symétrique,

(30)
∫
M0

v12 volg0 =
∫
M0

v13 volg0 = 0.

On montre la surjectivité de ∂ en considérant plutôt le laplacien

(31) ∂∂∗ = d+d
∗
+ : Sym2

0 Ω+ −→ Sym2
0 Ω+.

Puisque Ω+ = R3 est plat, l’opérateur ∂∂∗ s’identifie au laplacien scalaire ∆
agissant sur chaque coefficient de la matrice symétrique. Un calcul direct donne

(32) ∆ = −x−1 (∂2
x + x2X2

1 +X2
2 +X2

3
)

+ xF (∂x, xX1, X2, X3),

où F est un opérateur différentiel, impair, à coefficients C∞ jusqu’au bord. Le
coefficient x provient de la parité de la métrique g, et, dans le cas plat, on a
F = 0.

Dans la section 9, on montrera que le laplacien ∆ sur M0, considéré sur nos
espaces fonctionnels, se comporte de manière similaire à un laplacien ordinaire
sur une variété à bord. A priori, on considère l’opérateur

∆ : x3Hs+2,`
δ −→ Hs,`δ .

Évidemment, cet opérateur n’est pas surjectif, car on ne peut pas espérer ré-
soudre le problème de Dirichlet, par exemple, avec une donnée de Neumann

tome 147 – 2019 – no 2



MÉTRIQUES HYPERKÄHLÉRIENNES PLIÉES 317

nulle aussi. On s’attend plutôt à ce qu’une solution de ∆f = g avec g ∈ Hs,`δ
soit dans l’espace Hs+2,`

3,δ , donc avec un développement près de X de la forme

f ∼ f0 + xf1 + x2f2 + x3f3 + · · · ,

dans lequel f0 et f1 sont indéterminés, mais f2 et f3 sont déterminés formelle-
ment par f0 et f1 et g = ∆f = O(1), donc en particulier

(33) f2 = −1
2(X2

2 +X2
3 )f0.

(On a l’équation similaire sur f3, avec un terme additionnel g|X).
On démontrera dans la section 9 (proposition 9.6) que, pour g ∈ Hs,`δ , l’équa-

tion ∆f = g admet une unique solution f ∈ Hs+2,`
3,δ dans les deux cas suivants :

• f satisfait la condition de Dirichlet (donc f0 = 0 et f2 = 0 par (33), on
notera f = Dg ;

•
∫
M0

g volg0 = 0,
∫
M0

f volg0 = 0 et f satisfait la condition de Neumann
(f1 = 0), on notera f = N g.

Construisons alors un premier inverse à droite, R1, pour l’opérateur (29) :
partant d’une matrice symétrique à trace nulle v = (vabωa ⊗ ωb), satisfaisant
(30), définissons

(34) R1v = d∗+w, où w =

Dv11 N v12 N v13
N v21 Dv22 Dv23
N v31 Dv32 Dv33

 .

Dans cette écriture, la matrice est écrite dans la base des ωa et représente
donc un élément de Sym2

0 Ω+.
Les conditions (30) légitiment l’emploi de la solution du problème de Neu-

mann sur les coefficients v12 et v13. Il est possible de comprendre le choix du
problème de Dirichlet ou de Neumann par la parité (2) attendue pour la solu-
tion.

L’opérateur R1 n’est qu’une première approximation à l’inverse à construire.
En effet, α = R1v /∈ T s+1,`

δ en général : posons α = (αa) = d∗+w, où w est
défini dans (34), et αa = αa,je

j , alors on calcule (voir (39))

(35) α1,1|X = ∂xw11 +X3w12 −X2w13 =: ϕ.

Ce terme va être corrigé en utilisant une liberté de choix sur α, provenant de
l’action infinitésimale des difféomorphismes : si ξ est un champ de vecteurs sur
M0, alors (ıξωa) correspond à modifier les ωa par l’action infinitésimale de ξ,
donc (ıξωa) ∈ ker dg0P .

Par construction, ϕ ∈ FS`+2+δ. Appliquons l’opérateur de prolongement E2
pour obtenir un prolongement ϕ̃ = E2ϕ ∈ Hs+2,`

2,δ de ϕ à l’intérieur de M0,
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dans un voisinage de X, et définissons le champ de vecteurs

(36) ξ = ϕ̃x−1∂x + (X2ϕ̃)X2 + (X3ϕ̃)X3.

Le premier coefficient du champ ξ est calculé de sorte que ıξω1 = ϕx−1θ1 sur
X. La présence de coefficients de X2 et X3 permet de préserver la structure de
contact sur X, voir section 5. Alors l’inverse à droite voulu est donné par :

Proposition 4.1. — L’opérateur

(37) Rv = R1v − (ıξωa)

est un inverse à droite de dg0P : T s+1,`
δ → Hs,`δ;0(Sym2

0 Ω+).

Le reste de cette section est consacré à la démonstration de la proposition.
On sait que R est un inverse à droite, le problème ici est de vérifier qu’il s’agit
d’un opérateur entre les espaces spécifiés.

Nous commençons par calculer η = d∗w. Nous avons ηb =
∑3

1 Iadwab. Pour
obtenir le comportement près de X, observons que le comportement asympto-
tique (7) implique que (e0, e1, e2, e3) est une base quaternionienne standard le
long de X, donc

(38)
{
Jae

0 = ea +O(x2), a = 1, 2, 3,
Jae

b = εabce
c +O(x2), (abc) permutation de (123).

Ici O(x2) vise les coefficients dans la base (ei) ; cette décroissance provient de
la propriété de parité (2) de la métrique.

Les coefficients de ηb dans la base (ei) sont automatiquement dans l’espace
Hs+1,`

2,δ . Explicitons les deux premiers termes : la restriction à X et la dérivée
normale. Un calcul direct donne, modulo x2Hs+1,`

δ ,

ηb = (−xX1w1b −X2w2b −X3w3b)dx+ (∂xw1b +X3w2b −X2w3b)x−1θ1

+ (−X3w1b + ∂xw2b + xX1w3b)θ2 + (X2w1b − xX1w2b + ∂xw3b)θ3.

(39)

Analysons maintenant les

αb = ηb − ιξωb

pour vérifier les conditions du lemme 3.2. Récrivons, toujours modulo x2Hs+1,`
δ ,

α1 = (−X2w21 −X3w31)dx

+ (∂xw11 +X3w21 −X2w31 − ϕ̃)x−1θ1

+ (−X3w11 + ∂xw21 + xX1w31 + xX3ϕ̃)θ2

+ (X2w11 − xX1w21 + ∂xw31 − xX2ϕ̃)θ3.

(40)
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Observons que la restriction à X du coefficient de η1 sur e1 = x−1θ1 est exac-
tement la fonction ϕ définie par (35), donc le coefficient de α1 sur e1 = x−1θ1

est nul, et en outre

(∂xα1,1)|X = ∂2
xw11 + ∂xX3w21 − ∂xX2w31 = 0

car w21 et w31 satisfont la condition de Neumann, et la condition de Dirichlet
pour w11 donne avec (33) l’annulation ∂2

xw11|X = 0. Les conditions au bord
impliquent aussi que α1,2|X = α1,3|X = 0, donc finalement i∗α1 = 0.

Vérifions en outre pour α1 les annulations requises par le lemme 3.2 : en
remplaçant ϕ par sa valeur,
(41)

(∂xα1,2 −X2α1,0) |X =
(
∂2
x +X2

2 +X2
3
)
w21 + (X1 +X2X3 −X3X2)w31

qui est nulle, à cause de X1 = −[X2, X3] et de la contrainte (33) sur w21 ; la
seconde annulation est similaire, et la dernière est une conséquence de i∗α1 = 0
que nous avons déjà vue.

Passons à α2 (le cas de α3 est similaire) : partons de la formule, modulo des
termes dans x2Hs+1,`

δ ,

α2 = (−xX1w12 −X2w22 −X3w32 + xX2ϕ̃) dx

+ (∂xw12 +X3w22 −X2w32 − xX3ϕ̃)x−1θ1

+ (−X3w12 + ∂xw22 + xX1w32 − ϕ̃) θ2

+ (X2w12 − xX1w22 + ∂xw32) θ3.

(42)

Les conditions au bord donnent bien l’annulation sur X du coefficient de
e1 = x−1θ1. Les deux premières annulations requises par le lemme 3.2 sont
évidentes, et la dernière résulte d’un calcul direct. Cela conclut la preuve de la
proposition 4.1. �

5. Les déformations infinitésimales

Il résulte du théorème 3.3 que l’espace tangent àMs est constitué des dif-
férentielles extérieures des triplets de 1-formes (ηa), à coefficients Hs+1,`

2,δ dans
la base (ei), tels que i∗η1 = 0, dηa ∈ xHs,`δ , et satisfaisant les équations

ωc ∧ dηc = 0,(43)
ω1 ∧ dηc + dη1 ∧ ωc = 0,(44)

ω1 ∧ dη1 + 1
2 Re (ωc ∧ dηc) = 0.(45)

Ici on a noté ηc = η2 + iη3.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



320 O. BIQUARD

La première équation, (43), dit juste que dηc est une déformation infinitési-
male de la structure symplectique holomorphe ωc. La condition au bord (i∗dηc
verticale) dit que la structure complexe continue à préserver la distribution de
contact H ⊂ TX.

La deuxième équation, (44), est une condition de compatibilité de la forme
de Kähler ω1 à la structure complexe. Elle se récrit en termes de la partie de
type (0,1) pour J1 :

(46) ∂̄(η0,1
1 ∧ ωc) = −ω1 ∧ dηc.

Lemme 5.1. — Étant donné ηc, l’équation (46) a toujours des solutions η1.

Ce lemme s’interprète en disant que, au moins au niveau infinitésimal, la
classe ζ1 ∈ H2(M0, X) demeure de Kähler pour la déformation infinitésimale
donnée par ηc. Cela est plausible car la forme ωc, de type (2,0), non nulle au
bord, ne contribue pas à la cohomologie relative H2(M0, X).

Démonstration. — Plutôt que de résoudre (46), on se ramène à un laplacien
en considérant l’équation

(47) ∂̄∂̄∗(f volg0) = 1
2ω1 ∧ dηc,

dont une solution f produit une solution de (46) en posant

(48) η0,1 = J2∂f.

Récrivons l’équation (47) comme

(49) ∆f = −2Λdηc.

Or
∫
M0

ω1 ∧ dηc = 0, donc on peut prendre pour f la solution du problème de
Neumann. Comme les coefficients de dηc dans la base (ei∧ej) sont dans xHs,`δ ,
on a Λdηc ∈ Hs,`δ , et donc f ∈ Hs+2,`

3,δ . Modulo des termes dans x2Hs+1,`
δ , on

obtient

(50) J2∂f = {(∂x − ixX1) f}
(
θ2 − iθ3)− {(X2 − iX3)f}

(
dx− ix−1θ1) .

Nous devons maintenant vérifier que J2∂f satisfait les conditions au bord vou-
lues. Grâce à la condition de Neumann, le premier coefficient (∂x − ixX1)f ∈
xHs+1,`

δ . A priori, le second coefficient n’a pas de raison de s’annuler : ici on
utilise le fait que l’équation à résoudre est (46), donc on peut modifier J2∂f

par un terme ∂̄g. On pose alors

η0,1 = J2∂f + ∂̄(2xh), h = E2 ((X2 − iX3)f |X) ∈ Hs+1,`
2,δ .
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Nous obtenons alors η0,1 = a(dx− ix−1θ1) + b(θ2− iθ3) modulo x2Hs+1,`
δ , avec

a = −(X2 − iX3)f + h+ x(∂x + ixX1)h
b = (∂x − ixX1)f + x(X2 + iX3)f.

(51)

Écrivons η = Re(a)dx+ Im(a)x−1θ1 + Re(b)θ2 + Im(b)θ3 ; la condition au bord
i∗η = 0 s’écrit

(52) Im(a) = ∂x Im(a) = 0, b = 0,

tandis que les conditions du lemme 3.2 sont

(53) ∂x Re(b)−X2 Re(a) = 0, ∂x Im(b)−X3 Re(a) = 0.

À partir de (51), les conditions (52) sont immédiates, et on a même au bord
a = 0. La condition (53) se réduit donc à ∂xb|X = 0, et on calcule

∂xb = ∂2
xf − iX1f + (X2 + iX3) (X2 − iX3) f

=
(
∂2
x +X2

2 +X2
3
)
f − i (X1 +X2X3 −X3X2) f.

Comme ∆f ∈ Hs,`δ , il faut que (∂2
x + X2

2 + X2
3 )f s’annule sur X ; le second

terme s’annule aussi puisque X1 = −[X2, X3]. �

Supposons donnée maintenant une solution (η1, η
c) de (43) et (44). Considé-

rons fixée la variation de structure symplectique holomorphe, représentée par
ηc, et tentons de modifier η1 de sorte de résoudre aussi la dernière équation (45),
tout en préservant (44) : on a donc la flexibilité de modifier η0,1

1 par un terme
∂̄g. Discutons la condition au bord sur g : il faut i∗η1 = 0 et donc ∂̄Hg = 0 sur
X, c’est-à-dire que g|X est une fonction holomorphe au sens CR sur X.

Dans un premier temps, nous allons discuter uniquement les déformations
telles que g|X = 0, et nous étudierons les déformations résiduelles dans la
section suivante.

Si g est réelle, alors η1 est modifiée par dg ce qui ne modifie pas ω1 ; en
revanche, si g = if est imaginaire pure, alors η1 est modifiée par dCf , et
l’équation (45) devient

(54) ΛddCf = −1
2 Re(ωc ∧ dηc)− Λdη1.

Ce n’est rien d’autre que la linéarisation de l’équation de Monge-Ampère à
résoudre pour obtenir une métrique kählérienne Ricci plate.

On peut résoudre (54) avec la condition de Dirichlet f |X = 0. Cette solu-
tion satisfait f ∈ xHs+2,`

2,δ et à nouveau, modulo des termes dans x2Hs+1,`
δ , la

modification de η1 est, près de X,

(55) dCf = −xX1fdx+ (∂xf)x−1θ1 −X3fθ
2 +X2fθ

3.
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Tous les coefficients s’annulent sur X, sauf le terme singulier :

(56) (∂xf)x−1θ1.

Comme on a vu, on peut encore modifier η1 par un terme dg, mais cela ne
permet pas de compenser ce terme singulier. Il y a donc une obstruction à
résoudre le problème : il n’existe pas pour tout ηc de solution η1 = dCf (f |X =
0) du problème (44)–(45).

Néanmoins, on peut éliminer le terme (56) par un difféomorphisme infinité-
simal agissant sur le triplet (ωa) : posant ψ = E2(∂xf |X) ∈ Hs+2,`

2,δ , on définit
le champ de vecteurs

(57) ξ = ψx−1∂x + (X2ψ)X2 + (X3ψ)X3.

Lemme 5.2. — Les 1-formes (ηc − ıξω
c, η1 + dCf − ıξω1) sont solutions du

système (43)–(45) et satisfont les conditions au bord.

Démonstration. — Il reste juste à vérifier les conditions au bord. Modulo des
termes O(x2), on a

dCf − ιξω1 =− xX1fdx+ (∂xf − ψ)x−1θ1

−X3(f − xψ)θ2 +X2(f − xψ)θ3,

ıξω
c =− x(X2 + iX3)ψ(dx+ ix−1θ1) + ψ(θ2 + iθ3),

et les conditions du lemme 3.2 se vérifient facilement. �

Bien entendu, l’annulation qui vient d’être montrée est la raison de la pré-
sence des termes (Xbψ)Xb dans la formule (57), comme dans (36).

Synthétisons ce que nous venons de démontrer. Étant donnée une déforma-
tion holomorphe symplectique infinitésimale dηc, nous pouvons compléter ηc
en une solution du système (43)–(45), à la condition d’autoriser l’action de dif-
féomorphismes infinitésimaux comme dans (57). Or, le changement de variable
y = x2/2 (x > 0) fait disparaitre la singularité de la structure holomorphe
symplectique sur X, et x−1∂x = ∂y, donc nous voyons que cela correspond à
déplacer infinitésimalement le bord de Ms ; en outre, la fonction ψ dans (57)
étant parfaitement déterminée, le déplacement infinitésimal est uniquement dé-
terminé. Cela achève la démonstration de la première partie du théorème 0.1, et
justifie la question posée dans l’introduction, qui est une question de résolution
du problème de Monge-Ampère dans cette situation, avec frontière libre.

Concluons en remarquant que cette question se comprend très bien dans le
formalisme de Donaldson, consistant à chercher une métrique Kähler-Einstein
dans l’orbite complexifiée du groupe des symplectomorphismes. Dans notre si-
tuation, il faut penser au groupe des symplectomorphismes comme induisant au
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bord un contactomorphisme. Or la complexification d’un contactomorphisme
infinitésimal déplace nécessairement le bord : en fait, le champ ξ dans (57) n’est
autre que le complexifié du contactomorphisme infinitésimal

−ψX1 + (X3ψ)X2 − (X2ψ)X3.

Comme on l’a vu, les contactomorphismes complexifiés continuent à induire la
structure de contact fixée H sur X. Voyant ainsi X ⊂ N comme hypersur-
face dans une variété holomorphe symplectique (sans singularité), il est naturel
d’identifier la complexification du groupe des contactomorphismes aux plonge-
ments φ : X → N tels que la structure CR induite par φ sur X demeure définie
sur la structure de contact H. Les champs de vecteurs (57) en sont exactement
la version infinitésimale.

6. Les déformations infinitésimales de Hitchin

Examinons à présent les solutions additionnelles du système (43)–(45) pro-
venant d’un potentiel non nul sur le bord X. Comme on a vu, la modification
de η0,1 par ∂̄g ne modifie pas les équations (43) et (44), et la condition au bord
i∗η1 = 0 exige ∂̄H(g|X) = 0.

Nous restreignons la discussion au cas modèle, sur le fibré en disques de T ∗Σ.
Si ωΣ est la forme de Kähler à courbure −1 sur Σ, alors il résulte des formules
dans [5] qu’on peut écrire la métrique hyperkählérienne pliée par la formule

(58) ω1 =
√

1− r2p∗ωΣ + 1√
1− r2

rdr ∧ η,

où p : T ∗Σ → Σ est la projection, r est la distance dans la fibre de T ∗Σ, et
η est la 1-forme de connexion sur le fibré en cercles, donc dη = −ωΣ. (On a
η = −θ1, où θ1 est la forme définie section 1).

Soit g ∈ FS`+3+δ une fonction CR-holomorphe sur X, alors on peut résoudre
le problème de Dirichlet

(59) ∆g̃ = 0, g̃|X = g,

avec g̃ ∈ Hs+2,`
3,δ . Posant η1 = Re(∂̄g̃), on obtient

ω1 ∧ dη1 = Re(ω1 ∧ ∂∂̄g̃) = 0,

donc on obtient une solution infinitésimale (ηc = 0, η1 = Re(∂̄g̃)) du système
linéarisé (43)–(45). Ces solutions ne modifient pas la structure holomorphe
symplectique, au moins infinitésimalement.

De manière explicite, les fonctions CR-holomorphes sur X ont une décom-
position en séries de Fourier, g =

∑
n60 gn et gn ∈ H0(Σ,K−n). Pour n = 0, la
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fonction g0 est constante, donc son extension g̃0 aussi, donc η1 = 0. Supposons
donc n < 0. Sans rentrer dans le détail des calculs, on voit que ∆ préserve les
fonctions du type a(r)gn, donc l’extension g̃n de gn est du même type. Il en
résulte aussi que ∂̄g̃n est encore du même type :

(60) ∂̄g̃n = ϕn(r)gn
(
dr

r
− iη

)
.

À partir de là, il est facile d’expliciter g̃ mais nous n’avons pas besoin de la
formule précise. L’équation Λ∂∂̄g̃n = 0 mène rapidement à ϕn(r) = Φn r−n√

1−r2

pour une certaine constante Φn. Finalement, on obtient

(61) ∂̄g̃ = −ιξω1

avec

(62) ξ =
∑
n60

ξn, ξn = 2iΦngn
r−n

w̄

∂

∂w
,

où w∂w est le champ de vecteurs (holomorphe) d’homothétie dans les fibres.
La fonction r−ngn/w̄ coïncide, à une constante près, avec w̄−n−1 sur chaque
disque.

Pour vérifier nos conditions au bord, transformons la solution précédente par
l’action infinitésimale de ξ pour obtenir plutôt la solution (ηc = ιξω

c, η1 = 0).
Remarquant que pour n = −1, le champ ξ1 préserve ωc, on obtient :

Proposition 6.1. — Pour toute fonction g ∈ FS`+3+δ CR-holomorphe sur
X, définissons ξ par (61), où g̃ est l’extension harmonique de g, alors (ηc =
ιξω

c, η1 = 0) définit un vecteur tangent à Ms,`
δ , c’est-à-dire est une solution

infinitésimale des équations et satisfait les conditions au bord. La variation est
non triviale pour les fréquences différentes de 0 et −1, donc on obtient des
déformations infinitésimales paramétrées par

(63) ⊕n6−2 H
0(Σ,K−n).

�

Ces déformations infinitésimales ont été trouvées par Hitchin [12, §9]. Notre
approche dans cette section montre qu’on obtient ainsi toutes les déformations
infinitésimales qui restent sur la variété holomorphe symplectique T ∗Σ. Grâce à
la proposition ci-dessus, elles donnent des vecteurs tangents dansMs,`

δ , et donc
sont tangentes à des déformations par de vraies métriques hyperkählériennes
pliées. Les sections suivantes ont pour objet de montrer que ces métriques
hyperkählériennes peuvent être prises de sorte que leur structure holomorphe
symplectique soit bien celle d’un domaine de T ∗Σ.
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Remarque 6.2. — On peut vérifier que les polynômes invariants définis par
Hitchin [12, §8.2], à savoir

(64) pn =
(∫

M0/Σ
wnω1

)
dzn ∈ H0(Σ,Kn),

évalués sur ces déformations infinitésimales, redonnent bien le paramètre g ∈
⊕n>2H

0(Σ,Kn). En effet, faisons le calcul en considérant que g paramètre la
déformation infinitésimale (ηc = 0, η1 = −ıξω1), que nous choisissons ainsi
puisque la structure de cotangent de T ∗Σ est préservée. Dans le calcul de la
variation infinitésimale de pm, il faut faire attention à prendre en compte la va-
riation du domaine dans T ∗Σ, qui se traduit par une contribution

∫
X/Σ w

nıξω1
dans l’intégrale. Ainsi, la variation infinitésimale de pm est

ṗn =
(∫

M0/Σ
wndη1 −

∫
X/Σ

wnη1

)
dzn

=
(∫

M0/Σ
−wn dw

w
∧ η1

)
dzn

=
(∫

M0/Σ
−wn dw

w
∧ ∂̄g̃

)
dzn

=
(∫

X/Σ
wng

dw

w

)
dzn

= gn.

7. Paramétrisation des domaines dans le cotangent

Nous proposons ici une paramétrisation des déformations du domaine Ms ⊂
T ∗Σ. Le résultat essentiel est le théorème 7.3 qui permet une paramétrisation
sans perte de dérivées. Pour l’étude générale de toutes les déformations d’un
tel domaine pseudoconcave, on pourra consulter [9].

Une approche plus simple consisterait à paramétrer ces déformations par les
plongements ϕ : X → N qui induisent la même structure de contact sur X. Si
l’image est restreinte à X, on paramètre ainsi les contactomorphismes par une
fonction réelle (voir [6], ou [3, §5] pour le cas S1 invariant) : cette paramétri-
sation peut se faire sans perte de dérivées, et est basée sur les propriétés du
complexe de Rumin. Comme expliqué à la fin de la section 5, le cas général cor-
respond à la complexification du groupe des contactomorphismes, le complexe
de Rumin est à remplacer par le complexe du ∂̄H sur la variété CR X, mais les

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



326 O. BIQUARD

mauvaises propriétés analytiques de ∂̄H semblent empêcher une construction
similaire. Nous adoptons donc dans cette section une approche complètement
différente.

Une déformation J de la structure complexe J0 de Ms est paramétrée par
un tenseur φ ∈ Ω0,1 ⊗ T 1,0 (les bi-degrés sont pour J0) tel que l’espace des
vecteurs de type (0, 1) pour J soit le graphe de φ : T 0,1 → T 1,0,

T 0,1
J =

{
ξ + φξ, ξ ∈ T 0,1

J0

}
.

A priori, un tel φ ne définit qu’une structure presque complexe J ; elle est
intégrable si

(65) ∂̄φ+ 1
2[φ, φ] = 0,

où [φ, φ] fait intervenir le produit extérieur des formes et le crochet des champs
de vecteurs.

La structure complexe J induit sur le bord X = ∂Ms une structure CR.
Quitte à agir par un difféomorphisme, on peut supposer que la structure CR
garde la même distribution de contact sous-jacente H. En outre, comme Ms

est un fibré holomorphe en disques, nous avons une décomposition globale,
S1-invariante,

TM = H ⊕ V,

où V = ker p∗ et H est l’horizontal fourni par la structure de contact.
Par [3, Théorème 4.1], toute petite déformation de J pour laquelle Σ ⊂

Ms demeure une sous-variété holomorphe, après action d’un difféomorphisme
unique modulo S1, s’écrit dans cette décomposition sous la forme

(66) φ =
(
ψ 0
0 0

)
,

où ψ ∈ Ω0,1H⊗H1,0 = p∗(Ω0,1
Σ ⊗T

1,0
Σ ) est holomorphe le long de chaque disque

de la fibration p (cela a un sens puisque le fibré Ω0,1
Σ ⊗T

1,0
Σ est trivial le long de

chaque disque) : donc, décomposant en séries de Fourier pour l’action de S1,

(67) ψ =
∑
n>0

ψn, où ψn|p−1(x) = Fn(x)wn,

où w est un choix de coordonnée holomorphe sur le disque p−1(x). Plus intrin-
sèquement, on peut voir w comme un point de l’espace total du fibré K, et Fn
comme une section sur Σ de K−n ⊗ Ω0,1

Σ ⊗ T 1,0
Σ = K−n−1 ⊗ Ω0,1

Σ .
Réciproquement, la donnée d’un tel ψ, holomorphe le long des disques de

la fibration, induit une déformation complexe φ donnée par (66), satisfaisant
[φ, φ] = 0 et donc l’équation d’intégrabilité (65).
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Parmi ces déformations holomorphes, cherchons celles qui demeurent un
domaine dans un cotangent holomorphe T ∗Σ. Nous demandons ainsi l’existence
d’une projection π : Ms → Σ et d’une 2-forme complexe Ω, telles que

Ω ∈ Ω2,0
J ;

dΩ = 0;

∂̄Jπ = 0.
(68)

On obtient alors immédiatement que Ω = dΘ avec Θ une 1-forme s’annulant
sur les fibres de π et sur Σ : la forme Θ identifie alors Ms avec T ∗Σ, dont elle
apparaît comme la forme de Liouville.

Analysons tout d’abord les conditions sur Ω. La première condition permet
d’écrire, pour une (1,0)-forme horizontale α,

Ω = (α− ψyα) ∧ η1,0,(69)

d’où

dΩ = d(α− ψyα) ∧ η1,0.(70)

La deuxième condition, équivalente à ∂̄JΩ = 0, se traduit par
ıw̄∂w̄dΩ = 0,

ıξ+ψξdΩ = 0 pour ξ ∈ H1,0.
(71)

La première équation dans (71) mène à

(72) ∂w̄(α− ψyα) = 0,

c’est-à-dire α et ψyα sont holomorphes le long des disques de la fibration, ce
qui, puisque ψ est déjà holomorphe le long des disques, est équivalent à α

holomorphe le long des disques ; on a

(73) ıξ+ψξdΩ =
(
ıξ+ψξd(α− ψyα)

)
∧ η1,0;

comme ıξ+ψξdΩ ∈ Ω2,0
J , son annulation est équivalente à celle de sa projection

sur Ω2,0
J0

, donc, notant dH , ∂̄H et ∂H les restrictions à H de d, ∂̄ et ∂, la seconde
équation de (71) est équivalente à

(74) ∂̄Hα− ∂H(ψyα) = 0.

Nous pouvons résumer ces observations dans le lemme suivant.

Lemme 7.1. — Les 2-formes sur Ms satisfaisant les deux premières équations
de (68) sont en correspondance avec les (1,0)-formes horizontales α sur X,
telles que
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i. α n’a des coefficients non nuls que pour des fréquences strictement po-
sitives ;

ii. α satisfait l’équation (74) sur X, qui n’est autre que l’équation ∂̄H,J(α−
ψyα) = 0.

Démonstration. — Puisque α est holomorphe le long des disques, elle n’a de
coefficients de Fourier non nuls qu’en fréquences positives. Sachant que η1,0

s’identifie à dw
2iw sur chaque disque, pour que Ω s’étende à la section nulle, il

faut que les coefficients invariants par rotation s’annulent aussi, donc α n’a
de coefficients non nuls qu’en fréquences strictement positives. Dans ces condi-
tions, puisque ψ aussi est holomorphe le long des disques, le système (74) est
satisfait sur Ms si et seulement s’il est satisfait sur le bord X. �

Revenons maintenant à l’équation sur π, un peu plus subtile à analyser.
Commençons par regarder les applications π : Ms → Σ, déformations de p, et
holomorphes le long des disques. Étant donné un point σ ∈ Σ, on peut choisir
une coordonnée locale z autour de σ, et, au dessus d’un voisinage de σ, les
projections π, holomorphes verticalement, s’identifient aux fonctions z ◦ π à
valeurs dans C, holomorphes le long de chaque disque. Il apparaît ainsi que
l’espace des applications π : M → Σ, holomorphes verticalement, de régularité
FSm sur X, est une variété banachique bien définie que nous noterons Pm, et
dont l’espace tangent en p s’identifie aux sections sur X de p∗TΣ, de régularité
FSm, dont les coefficients non nuls sont en fréquences positives—nous noterons
cet espace FSm>0(p∗TΣ) = FSm>0(H1,0).

Les solutions de la troisième équation de (68) s’identifient à présent aux
applications π ∈ Pm, telles que sur le bord X on ait pour tout ξ ∈ H0,1,

(75) π∗(ξ + ψξ) = 0,

ce qui, à nouveau, n’est autre que l’équation ∂̄H,Jπ = 0 sur X. En effet, en choi-
sissant localement une coordonnée holomorphe z sur Σ, on voit qu’un élément
de Pm satisfait l’équation (75) si et seulement s’il la satisfait sur X.

Il y a des solutions évidentes au système (68), provenant de la déformation de
l’hypersurfaceX dans T ∗Σ. Bien entendu, une telle déformation doit être suivie
d’un difféomorphisme qui ramène le domaine délimité à la jauge particulière
satisfaisant (66).

Explicitons ces solutions. Un contactomorphisme infinitésimal sur X est de
la forme ξ = gR− ]dHg, où g est une fonction réelle sur X, et ] : Ω1H → H est
défini par ı]αdη = α. Il agit sur l’espace des structures complexes infinitésimales
sur X par

(76) ψ̇ = ∂̄H]∂̄Hg.
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Cette action se complexifie en décidant que la fonction g peut être à valeurs
complexes : l’action infinitésimale est alors celle de la partie réelle du vecteur
de type (1, 0) donné par

(77) ξ1,0 = 2(gR1,0 − ]∂̄Hg) = 2(igw∂w − ]∂̄Hg),

et l’action sur les structures CR reste donnée par la formule (76).
On a déjà vu que ces champs de vecteurs le long de X sont la version in-

finitésimale des plongements ϕ : X → T ∗Σ telles que la structure CR induite
par ϕ sur X garde H comme structure de contact sous-jacente, qui sont un
analogue de la complexification du groupe des contactomorphismes ; l’action
(76) est exactement la complexification de l’action infinitésimale des contacto-
morphismes.

Comme il se doit, l’action des contactomorphismes ne préserve pas la jauge
(les coefficients de Fourier positifs). En revanche, l’action complexifiée infinité-
simale des fonctions g à fréquences positives préserve cette jauge, et la proposi-
tion suivante montre qu’on obtient ainsi toutes les déformations. Notant FSm>0
(resp. FSm>0) les espaces de sections dont les coefficients non nuls se trouvent
uniquement en fréquences positives (resp. strictement positives) :

Proposition 7.2. — Soit m� 0. L’espace des

(ψ, α, π) ∈ FSm>0×FSm>0×Pm+1

satisfaisant (74) et (75) est une variété d’espace tangent paramétré par l’action
infinitésimale des vecteurs donnés par la formule (77), où g ∈ FSm+2

>0 . Les
formules sont

ψ̇ = ∂̄H]∂̄Hg, α̇ = iR · (gΘ0)− ∂HΛΣ(∂̄Hg ∧Θ0), π̇ = −]∂̄Hg.

Ici Θ0 désigne la forme de Liouville initiale de T ∗Σ. On remarquera aussi que
la fonction constante g ∈ R correspond à multiplier Θ0 par une constante ima-
ginaire pure, ce qui ne change pas le domaine holomorphe symplectique. Cela
correspond à l’ambiguïté de jauge dûe à l’action de S1, donc on peut imposer
Re
∫
X
g = 0 quand on paramètre les déformations holomorphes symplectiques

de Ms.

Démonstration. — Nous considérons donc l’opérateur

(78) Q : FSm>0(Ω0,1H ⊗ Ω1,0H)× FSm>0(Ω1,0H)× Pm+1

−→ FSm−1
>0 (Ω0,1H ⊗ Ω1,0H)× FSm>0(Ω0,1 ⊗H1,0),

défini par

(79) Q(ψ, α, π) = (∂̄H,J(α− ψyα), ∂̄H,Jπ),
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de linéarisation

L(ψ̇, α̇, π̇) = (∂̄H α̇− ∂H(ψ̇yΘ0), ∂̄H π̇ + ψ̇).

La démonstration consiste maintenant à montrer que L est surjective et à
identifier kerL.

L’opérateur ∂̄H sur X a une image fermée, mais de codimension infinie.
Tout est explicite dans la décomposition en séries de Fourier : sur un fibré
holomorphe L provenant de Σ, le conoyau en fréquence n est H1(K−n ⊗ L) =
H0(Kn+1⊗L∗)∗. Pour l’opérateur ∂H , de manière similaire, l’image est fermée
mais le conoyau en fréquence n est H0(K−n−1 ⊗ L)∗.

En particulier, passant à la conjugaison, nous voyons que le conoyau de
∂H : Ω0,1H → Ω1,1H est H0(K−n)∗, et en particulier s’annule en fréquences
n > 0, ce qui donne la surjectivité sur le premier facteur. En revanche, le noyau
de ∂H en fréquence n s’identifie à H0(Kn+1)∗.

Pour le second facteur, observons que le conoyau de π̇ 7→ ∂̄H π̇ s’identifie à
H0(Kn+1)∗ en fréquence n, exactement compensé, comme on vient de le voir,
par le noyau de ψ̇ 7→ ∂H(ψ̇yΘ0).

Par conséquent, L est surjective, et l’espace des solutions du système (74)
est une sous-variété, d’espace tangent égal à kerL, que nous déterminons à
présent. Soit donc (ψ̇, α̇, π̇) ∈ kerL, il faut donc que ψ̇ = −∂̄H π̇, puis

(80) ∂̄H α̇ = −∂H ∂̄Hf, f = π̇yΘ0.

Utilisant la formule ∂H ∂̄Hf + ∂̄H∂Hf = d2
Hf = R · fωΣ pour toute fonction f ,

on obtient

(81) ∂̄H(α− ∂Hf) = −R · fωΣ.

Rappelons à nouveau que l’image de ∂̄H est fermée, donc on peut décomposer
en somme orthogonale FSm+1(Ω1,1H) = Im ∂̄H ⊕ ker ∂̄∗H . Comme la dérivation
par R commute avec ∂̄H et ∂̄∗H , elle envoie cette décomposition de FSm+1

sur la même décomposition de FSm−1. Par conséquent, l’égalité (81) impose
fωΣ ∈ Im ∂̄H , donc il existe g ∈ FSm+2

>0 , unique à constante additive près, telle
que fωΣ = −∂̄H(gΘ0), ce qui s’écrit encore, si Θ0 ∈ H1,0 est dual à Θ0,

fΘ0 = −]∂̄Hg.

À partir de là, on récupère π̇ = −]∂̄Hg, puis ψ̇ = ∂̄H]∂̄Hg, enfin, à partir de
(81), on calcule

α̇ = iR · (gΘ0)− ∂HΛΣ(∂̄Hg ∧Θ0);

on peut vérifier que (α̇− ψ̇yΘ0)∧ η1,0 n’est autre que l’action infinitésimale de
ξ sur la forme symplectique initiale Ω0 = dΘ0 de T ∗Σ. �
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Nous synthétisons les résultats de cette section de la manière suivante. No-
tons Qs,`δ,C l’espace des 2-formes complexes ωc = ω2 + iω3 telles que (ω1 =
0, ω2, ω3) ∈ Qs,`δ , etMs,`

δ,C ⊂ Q
s,`
δ,C l’espace des 2-formes ωc telles que (ωc)2 = 0.

Enfin, notons FSm>0(X)0 l’espace des fonctions f ∈ FSm>0 telles que Re
∫
X
g = 0.

Théorème 7.3. — On pose δ = 1
2 et s = `+ 1

2 . Il existe une sous-variété C
s,`
δ ⊂

Ms,`
δ,C définie près du modèle Ms, qui contient toutes les petites déformations

de Ms provenant d’une variation de X dans T ∗Σ, et est transverse à l’action
des difféomorphismes.

En outre, il existe une paramétrisation f : FS`+2+δ
>0 (X)0 → Cs,`δ,C, définie sur

un voisinage de 0, telle que df(g) est la déformation infinitésimale de la forme
initiale Ω0 par l’action du champ de vecteurs

ξ = 2 Re(igw∂w − ]∂̄Hg),

prolongé holomorphiquement disque à disque le long des fibres de la projection
p : Ms → Σ.

Démonstration. — À partir de la proposition 7.2, nous obtenons des déforma-
tions de ωc paramétrées par une fonction g ∈ FS`+2+δ

>0 (X)0. Malheureusement
l’extension holomorphe disque à disque donne une régularité à l’intérieur qui
est la même que celle au bord, donc ωc ∈ C`+δ,`δ,C seulement. �

Remarque 7.4. — Le théorème est démontré pour la valeur spécifique de s
écrite, mais en réalité, on peut régulariser les solutions obtenues par un dif-
féomorphisme pour obtenir une paramétrisation dansMs,`

δ,C pour s� `. (Cela
correspond à l’idée qu’une forme holomorphe symplectique détermine des coor-
données holomorphes dans lesquelles elle s’exprime avec des coefficients C∞).
Cette régularisation se fait en résolvant un problème de jauge sur le difféo-
morphisme, ce qui est possible en étendant l’analyse de la section 9 du cas des
fonctions au cas des champs de vecteurs ; pour éviter d’allonger inutilement l’ar-
ticle, on a donc préféré se limiter à cet énoncé. Précisons à nouveau qu’à la fin,
on sait bien par la construction twistorielle que la métrique hyperkählérienne
est C∞ dans l’intérieur de M0.

Remarque 7.5. — On s’attendrait à ce que la régularité des bords des do-
maines construits soit FS`+1+δ, c’est-à-dire la régularité de ξ. Mais la forme
de Liouville du cotangent, Θ, est récupérée en intégrant la forme holomorphe
symplectique Ω le long des fibres de la projection π, ce qui ne permet pas de
gain de régularité, et il en résulte qu’a priori la régularité des bords est seule-
ment FS`+δ. Cela illustre le problème de perte de dérivées que notre méthode
a permis de contourner.
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8. La composante de Hitchin pour SL(∞,R)

Dans cette section, on se limite à nouveau à δ = 1
2 et s = `+ 1

2 . La notation
générale est laissée car les énoncés sont valables en réalité pour s plus grand,
voir remarque 7.4, mais nous avons limité la démonstration à ce cas particulier.

Le théorème 8.2 montre l’existence d’une paramétrisation

f : FS`+2+δ → Cs,`δ ⊂M
s,`
δ,C,

telle que

(82) df(g) = LξΩ0, ξ = 2
(
igw∂w − ]∂̄Hg

)
,

où g a été étendue holomorphiquement disque à disque. En particulier, écrivant
g = g1 + ig2, la modification infinitésimale du domaine Ms ⊂ T ∗Σ est donnée
par le déplacement infinitésimal de X ⊂ T ∗Σ par le vecteur Re ξ le long de X :

(83) Re ξ|X = ξ1 + ξ2,

{
ξ1 = −g1X1 + (X3g1)X2 − (X2g1)X3,

ξ2 = g2x
−1∂x + (X2g2)X2 + (X3g2)X3.

Définition 8.1. — La composante de Hitchin pour SL(∞,R) est constituée
des couples (ωc, ω1) ∈ Ms,`

δ tels que ωc ∈ Cs,`δ , c’est-à-dire des domaines de
T ∗Σ qui portent des métriques hyperkählériennes pliées.

On remarquera que restreindre ωc à Cs,`δ tue ipso facto l’ambiguïté de jauge
dûe à l’action des difféomorphismes.

D’autre part, la régularité finie n’est présente dans cette définition que pour
des raisons techniques, on ne s’intéresse en réalité qu’à des objets lisses. Mais
les solutions ne sont pas forcément lisses jusqu’au bord, d’où la nécessité d’en
fixer la régularité.

Rappelons que la décomposition en séries de Fourier des fonctions CR ho-
lomorphes sur X est ⊕n>0H

0(Σ,Kn) (une section de Kn correspond à une
fonction de fréquence −n).

Théorème 8.2. — Près de la structure standard, la composante de Hitchin
pour SL(∞,R) est une sous-variété de Cs,`δ dont l’espace tangent s’identifie à

FS`+2+δ(X) ∩ ⊕n>2H
0(Σ,Kn),

c’est-à-dire aux fonctions CR holomorphes sur X de régularité FS`+2+δ, modulo
C⊕H0(Σ,K).

En particulier, près de la structure standard, les éléments de la composante
de Hitchin sont déterminés par leurs polynômes invariants définis par (64).
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Remarque 8.3. — Au vu de la remarque 6.2, quitte à appliquer un difféomor-
phisme, on peut supposer que la paramétrisation de la composante de Hitchin,

FS`+2+δ(X) ∩ ⊕n>2H
0(Σ,Kn) −→Ms,`

δ ,

est une section de l’application de Hitchin qui à une solution associe ses poly-
nômes invariants.

Démonstration. — Il s’agit de montrer que la restriction à Cs,`δ de l’opérateur
P considéré dans les sections 2 et 3, à savoir

Q :
{

(ω1, ω
c) ∈ Qs,`δ tel que ωc ∈ Cs,`δ

}
−→ Hs,`δ;ζ(R

3)

défini par

Q(ω1, ω
c) =

(
ω1 ∧ ωc, ω2

1 −
1
2ω

c ∧ ωc
)
,

est une submersion. Ici l’indice ζ signifie que l’image est restreinte au sous-
espace ∫

M0

ω1 ∧ ωc = ζ1 ∪ (ζ2 + iζ3).

L’opérateur Q est clairement la restriction de l’opérateur P défini dans la sec-
tion 2.

L’analyse est déjà faite dans la section 5, où l’on a vu qu’en la métrique
standard, on peut toujours résoudre le système dQ(dη1, dη

c) = (v1, v
c) par une

solution du type

(84) (η1 = η1;0 + dCf − ıξ2ω1, η
c = −ıξ2ωc),

avec ξ2 un champ de vecteurs du type (57), à savoir

(85) ξ2 = ψx−1∂x + (X2ψ)X2 + (X3ψ)X3.

Le problème dans (84) est que ıξ2ωc n’a pas de raison d’être un vecteur tangent
à Cs,`δ .

Or dans (84) le seul fait important est la valeur de ψ au bord (dans FS`+2+δ),
peu importe son extension à l’intérieur (en effet, la valeur au bord est là pour
compenser la singularité de dCf). Donc le résultat reste valable avec le choix
suivant d’extension : on choisit ξ2 dans (83) avec g2|X = ψ, et on complète
avec une fonction g1 telle que g = g1 + ig2 soit à fréquences positives sur X, et
Re
∫
X
g1 = 0. Étendant g comme une fonction holomorphe disque à disque, les

champs de vecteurs ξ1 et ξ2 sont ainsi étendus surM0, et l’action infinitésimale
de ξ1 + ξ2 est tangente à Cs,`δ .
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La forme ηc = −ıξ2ωc n’est pas encore tangente à C
s,`
δ , mais, puisque ξ1|X est

un champ de vecteurs de contact, nous pouvons appliquer l’action infinitésimale
de ξ1 sans sortir des espaces fonctionnels, donc utiliser à la place de (84) la
solution

(86)
(
η1;0 + dCf − ıξ2+ξ1ω1,−ıξ2+ξ1ω

c
)
.

Maintenant ıξ1+ξ2ω
c est un vecteur tangent à Cs,`δ , ce qui prouve la surjectivité

de dQ.
La composante de Hitchin est donc une sous-variété de Cs,`δ dont l’espace

tangent est donné par les déformations infinitésimales du système, analysées
sections 5 et 6. Le théorème découle alors de la proposition 6.1 (les déformations
construites dans cette proposition ne sont pas dans la jauge fournie par Cs,`δ ,
mais bien entendu les constructions de la section 7 montrent qu’on peut les y
ramener).

Enfin, l’assertion sur les polynômes invariants découle immédiatement du
calcul fait dans la remarque 6.2. �

9. Analyse

Nous démontrons dans cette section les propriétés de base du laplacien sca-
laire pour la géométrie induite par une métrique hyperkählérienne pliée g0.
Notons ∆0 = x∆ et rappelons (32) :

(87) ∆0 = −∂2
x −X2

2 −X2
3 − x2X2

1 + x2F (∂x, xX1, X2, X3),

où F est un opérateur à coefficients lisses jusqu’au bord.
Les propriétés hypoelliptiques [10] du laplacien � = −X2

2 −X2
3 permettent

de décomposer une fonction f sur X suivant les valeurs propres λ2 de � :

(88) f =
∑
λ

fλ.

L’espace de Folland-Stein FSs est alors défini par la norme
∑

(1 + λs)‖fλ‖2.

9.1. Le laplacien modèle dans les espaces de Sobolev ordinaires. — Plaçons-
nous dans le cas modèle oùX est un quotient compact du groupe de Heisenberg,
avec la structure décrite dans la section 1. Ainsi, la formule (87) devient exacte
(F = 0). Considérons la variété à bord (M0, g0) définie par

M0 = [0, 1]×X, g0 = x(dx2 + (θ2)2 + (θ3)2) + x−1(θ1)2.

Le laplacien ∆0 ressemble beaucoup à un laplacien ordinaire sur une variété
à bord, à la différence près que le laplacien sur le bord est remplacé par le
laplacien hypoelliptique �. Néanmoins, il se comporte de manière analogue au
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laplacien standard dans les espaces de Sobolev ordinaires associés, comme nous
allons le voir maintenant.

Nous notons

v = x−1 volg0 = dx ∧ θ1 ∧ θ2 ∧ θ3,

et utiliserons l’espace L2(v), ainsi que les espaces de Sobolev naturellement
associés,

Hk = {f,Djf ∈ L2(v) pour tout j 6 k}.

Lemme 9.1. — L’opérateur ∆0 : Hk+2(M0) → Hk(M0) est un isomorphisme
pour les deux choix suivants de condition au bord :

i. condition de Dirichlet sur les deux bords x = 0 et x = 1 ;
ii. condition de Dirichlet sur le bord x = 1 et Neumann sur le bord x = 0.

Démonstration. — L’avantage du modèle plat est que le champ de vecteurs
X1 engendre une action de cercle, qui commute au laplacien horizontal � ; aussi
l’opérateur ∆0 se diagonalise-t-il complètement en décomposant en outre par
rapport aux coefficients de Fourier de l’action de cercle :

(89) ∆0 = −∂2
x + λ2 + n2x2.

Par ailleurs, l’identité X1 = −[X2, X3] impose |n| 6 λ2.
Analyser le comportement d’un tel opérateur est élémentaire. Pour chaque

(λ, n), l’existence d’une solution unique à l’équation ∆0f = g avec les conditions
au bord prescrites est immédiate, et il faut donc montrer une estimation Hs+2

sur f . L’outil essentiel est l’intégration par parties∫ 1

0
|∂xf |2 + (λ2 + n2x2)|f |2 =

∫ 1

0
fg

6
1
2

∫ 1

0
(λ2 + n2x2)|f |2 + |g|2

λ2 + n2x2

d’où résulte

(90)
∫ 1

0
|∂xf |2 + 1

2(λ2 + n2x2)|f |2 6 1
2

∫ 1

0

|g|2

λ2 + n2x2 .

En particulier,

(91)
∫ 1

0
λ2s|∂xf |2 + λ2s+4|f |2 6 λ2s

∫ 1

0
|g|2

donne déjà le contrôle voulu des dérivées de f et ∂xf suivant X2 et X3.
On a l’équation

(92) ∆0(xf) = xg − 2∂xf.
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Appliquant (90) à xf , on obtient∫ 1

0
|∂x(xf)|2 + n2x4|f |2 6

∫ 1

0

|xg|2 + 4|∂xf |2

λ2 + n2x2 6
∫ 1

0
(n−2 + 2λ−4)|g|2,

où, dans la seconde inégalité, on a réutilisé (90) pour f . Puisque n2 6 λ4, on
obtient ainsi∫ 1

0

1
2n

2x2|∂xf |2 + n4x4|f |2 6
∫

3|g|2 + n2|f |2 6 4
∫
|g|2;

l’équation ∆0f = g permet alors d’estimer aussi ∂2
xf , et on a obtenu ainsi une

estimation sur toutes les dérivées secondes de f , donc

(93) ‖f‖H2 6 c‖g‖L2 .

L’estimation plus générale ‖f‖Hk+2 6 ck‖g‖Hk est alors établie par récur-
rence sur s : d’une part, les dérivées suivant X2 et X3 ont déjà été bornées, les
dérivées suivant X1 sont successivement bornées en utilisant comme ci-dessus

∆0(xjf) = xjg − 2jxj−1∂xf − j(j − 1)xj−2f,

et les dérivées ∂jxf en dérivant l’équation. Les détails sont laissés au lecteur,
car le cas k > 0 n’est de toute façon pas utilisé dans la suite. �

9.2. Le laplacien dans les espaces de Sobolev ordinaires. — Les résultats de la
section précédente se généralisent à une variété hyperkählérienne pliée générale,
(M0, g0), à bord X. Les espaces de Sobolev ordinaires Hk restent définis en
prenant les normes L2 par rapport à une forme volume v = x−1 volg0 près du
bord.

Proposition 9.2. — Le laplacien ∆ = x−1∆0 est un isomorphisme :
i. Hk+2(M0)→ x−1Hk(M0), avec condition de Dirichlet à la source ;
ii. Hk+2

0 (M0)→ (x−1Hk(M0))0, avec condition de Neumann à la source,
et où l’indice 0 signifie qu’on se limite aux fonctions d’intégrale nulle :∫
M0

f volg0 = 0.

Démonstration. — Le problème est de passer du lemme 9.1 dans le cas mo-
dèle à l’énoncé du théorème. C’est une méthode classique sur laquelle nous
ne donnerons pas beaucoup de détails. L’énoncé résulte immédiatement de la
construction d’un parametrix pour ∆, dans chacun des deux cas. La méthode
consiste à voir qu’en tout point du bord X, la géométrie de g est bien ap-
prochée par celle du modèle, grâce à (16). On peut donc fabriquer un inverse
approximatif de ∆ en recouvrant X par un nombre assez grand de petits ou-
verts où la structure hyperkählérienne pliée est très proche de celle du modèle.
L’inverse construit pour le modèle peut alors être greffé sur M0 pour donner
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un inverse approximatif sur un voisinage de X dans M0 ; complété par un pa-
rametrix sur l’intérieur, il fournit le parametrix attendu. C’est exactement la
méthode utilisée dans [2, chapitre I] pour l’analyse des métriques asymptoti-
quement hyperboliques complexes, qui offrent comme on l’a vu une géométrie
très similaire. �

Remarque 9.3. — De la même manière, on peut se placer sur un petit voi-
sinage Nε = (0, ε) × X de X dans M0, avec, comme dans la section 9.1 une
condition de Dirichlet sur le bord x = ε, et on obtient alors, tant avec la condi-
tion de Dirichlet qu’avec la condition de Neumann en x = 0, un isomorphisme

(94) ∆ : Hk+2(Nε) −→ x−1Hk(Nε).

9.3. Le laplacien dans les espaces de Sobolev à poids. — Les espaces de Sobo-
lev ordinaires ne sont malheureusement pas suffisants pour contrôler la non-
linéarité de l’équation P (α) = 0 : à cause du volume volg0 ∼ x−2dx∧e1∧e2∧e3,
le terme quadratique (dαa ∧ dαb) donne lieu à des termes x−2Dαa,iDαb,j qui
sont trop singuliers. C’est la raison de l’utilisation d’espaces à poids.

Il existe des liens entre les espaces de Sobolev ordinaires et à poids demi-
entiers : il est clair que

(95) L2
− 1

2
= L2(v),

et en outre, on a l’égalité des deux espaces,

(96) H2
1, 12

= H2,

car ils sont tous deux caractérisés par la condition D2f ∈ L2(v). La proposi-
tion 9.2 dit donc déjà qu’on obtient des isomorphismes

xH2
1
2
−→ x−1L2

− 1
2

= H0
− 3

2
,(97)

qui inclut implicitement la condition de Dirichlet sur X, et

H2
1, 12 ;0 −→ H0

− 3
2 ;0(98)

avec condition de Neumann à la source (et l’indice 0 signifie qu’on se limite aux
fonctions d’intégrale nulle). Notons D et N les inverses respectifs de ∆ dans
les deux cas.

Remarque 9.4. — On peut modifier la preuve du lemme 9.1 pour obtenir des
estimations pour un poids δ ∈ (0, 1) au lieu de 1

2 dans (97) et (98), mais le
poids δ = 1

2 suffit pour les résultats de cet article.

Commençons par voir que ces isomorphismes s’étendent quand les dérivées
sont contrôlées avec des poids :
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Lemme 9.5. — Pour tout s > 0 on a sur M0 des isomorphismes

xHs+2
1
2
−→ Hs

− 3
2
,(99)

Hs+2
1, 12 ;0 −→ Hs

− 3
2 ;0.(100)

Démonstration. — En utilisant le lemme d’extension 3.1, on est ramené à
montrer que si f ∈ L2

3
2
et ∆f ∈ Hs

− 3
2
, alors f ∈ Hs+2

3
2

, ce qui est un énoncé de
régularité elliptique dans les espaces de Sobolev à poids. Cette régularité est
une conséquence de l’homogénéïté (16) : soit x0 > 0, alors g′ = x−3

0 h∗x0
g est

proche de la métrique modèle G construite à partir du groupe de Heisenberg, et
en particulier une boule de rayon ρx

3
2
0 est ainsi envoyée sur une boule de rayon

ρ pour g′ ≈ G. On en déduit qu’on dispose d’estimations elliptiques dans la
boule Bρ(g′) de rayon ρ pour g′, avec constante indépendante du point choisi :

‖f‖2Hs+2(Bρ(g′)) 6 c
(
‖f‖2L2(Bρ(g′)) + ‖∆g′f‖2Hs(Bρ(g′))

)
.

Appliquons le changement d’échelle qui ramène à g : on obtient

s+2∑
0
‖x

3j
2

0 Djf‖2
L2
(
B
ρx

3/2
0

(g)
)

6 c

‖f‖2
L2
(
B
ρx

3/2
0

(g)
) +

s∑
0
‖x3+ 3j

2
0 ∆gf‖2

L2
(
B
ρx

3/2
0

(g)
) .

Comme x et x0 sont comparables dans la boule B
ρx

3/2
0

(g) si ρ a été fixé assez
petit, c’est l’estimation à poids voulue, après multiplication par x−5

0 pour avoir
les bons poids. Il suffit ensuite de sommer sur un recouvrement localement fini
par des boules de rayon ρx3/2. �

Analysons les inverses D et N de (99) et (100) sur l’espace Hs1
2
:

Proposition 9.6. — Supposons s > ` + 1
2 et g ∈ Hs,`1

2
(resp. g ∈ Hs,`1

2 ;0).
Alors Dg (resp. N g) est dans l’espace Hs+2,`

3, 12
, et D : Hs,`1

2
→ xHs+2,`

2, 12
(resp.

N : Hs,`1
2 ;0 → H

s+2,`
3, 12 ;0 ) est un opérateur continu.

Démonstration. — On utilise la commutation de � et X1 avec ∆. Dans le cas
modèle, on a exactement [X1,∆] = 0 et [�,∆] = 0. En général, observons que
θ1([X1, X2]) = −dθ1(X1, X2) = 0, donc [X1, X2] est horizontal, et de même
[X1, X3]. Il en résulte [X1,�] = ∂2, où par ∂2 nous entendons n’importe quel
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opérateur sur X, d’ordre 2 en les dérivations horizontales, et finalement

[X1,∆] = x−1O2,(101)
[�,∆] = O3,(102)

où Oj est un opérateur d’ordre j en les dérivations ei.
Commençons par le problème de Dirichlet. Supposons g ∈ xHs1

2
et posons

f = Dg ∈ xHs+2
1
2

. À partir de �g ∈ Hs−2
− 1

2
et [�,∆]f ∈ Hs−1

− 3
2

par (102),
le lemme 9.5, appliqué à un voisinage Nε de X dans M0 comme dans la re-
marque 9.3, donne (avec estimation)

(103) �f ∈ xHs1
2
.

De même, X1g ∈ Hs−1
− 1

2
et [X1,∆]f ∈ Hs

− 3
2
, donc X1f ∈ xHs+1

1
2

, d’où on déduit

(104) x2X2
1f ∈ xHs12 .

De (103), (104) et de l’équation ∆f = g on déduit enfin ∂2
xf ∈ xHs1

2
, donc on

a pour toutes les dérivées secondes (avec estimation en fonction de ‖g‖xHs1
2
)

(105) D2f ∈ xHs1
2
.

Il s’ensuit que f ∈ Hs+2
2, 12

, et même, puisque f satisfait la condition de Dirichlet,
f ∈ xHs+2

1, 12
.

Le problème de Neumann est similaire : si g ∈ xHs1
2
et f = N g, alors le

même raisonnement fournit un contrôle D2f ∈ Hs−2
1, 12

, qui implique f ∈ Hs+2
2, 12

.
Finalement, le cas où ` 6= 0 s’en déduit par récurrence sur `, en appliquant

les estimations précédentes à � `
2 f , dont les images par ∆ sont contrôlées grâce

à la commutation évidente [� 1
2 ,∆] = x−1O2 (en fait, on peut même montrer

que ce commutateur est O2). �
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