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METRIQUES HYPERKAHLERIENNES PLIEES

PAR OLIVIER BIQUARD

RisUME. — N. Hitchin a récemment introduit la notion de métrique hyperkéahlérienne
pliée, liée aux fibrés de Higgs pour le groupe SL(oco, R).

Nous construisons de telles métriques et montrons ’existence locale de la compo-
sante de Hitchin pour SL(oo, R).

ABSTRACT (Folded hyperkdhler metrics). — N. Hitchin recently introduced the notion
of folded hyperKéhler metrics, in relation with SL(oco, R) Higgs bundles.

We provide a construction of such metrics, and prove the local existence of the
Hitchin component for SL(co,R).

Introduction

Soit M* une variété orientée de dimension 4. Une métrique hyperkihlérienne
sur M peut étre vue comme la donnée de trois formes symplectiques, w,, telles
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304 0. BIQUARD

que
(1) Wq A wp = Ogp,

ou v est une forme volume sur M. Il existe alors une métrique g et trois struc-
tures complexes J, sur M par rapport auxquelles g est kdhlérienne, avec formes
de Kahler w,.

N. Hitchin [12] a introduit la notion de métrique hyperkihlérienne pliée
(folded) : la 4-forme v n’est plus une forme volume, mais peut s’annuler trans-
versalement sur une sous-variété X2 C M*; sur M\ X on obtient alors une mé-
trique hyperkéhlérienne, positive ou négative suivant les composantes connexes.
L’exemple standard est le fibré en 2-spheres d’une surface hyperbolique %,

M=T*YUY,

avec X le fibré unitaire en cercles de 7*X; la métrique est ’analogue non
compact de la métrique de Eguchi-Hanson sur T7*P'. Dans ce cas, les formes
ws et wg se restreignent en un couple générique de 2-formes fermées sur X, alors
que wi s’annule. Il y a une involution ¢ qui échange les deux c6tés en fixant X,
et

* * * *
(2) g =—g, ‘w1 =-wi, fws=wsy, Twz=uws.

Il y a deux constructions de métriques hyperkéhlériennes pliées [12] :

e une construction locale, qui & partir d'un couple générique (w9, ws) de
2-formes fermées analytiques réelles sur X, produit une métrique hy-
perkédhlérienne pliée dans un voisinage ; cette métrique possede une in-
volution ¢ comme ci-dessus (une autre approche pour ce résultat est
proposée dans la section 1, voir théoreéme 1.1; cette approche aboutit
aussi a un énoncé d’unicité qui implique ’existence locale de I’involution
L)

e une construction globale a partir de solutions des équations d’auto-
dualité de Hitchin [11] pour des SL (oo, R)-fibrés de Higgs sur X ; si on ne
sait pas produire en général de telle solution, une famille de dimension
finie vient du plongement SL(2,R) C SL(c0,R); cette famille contient
le modele standard, induit par le fibré de Higgs correspondant a la
représentation fuchsienne de 71 (X) dans SL(2,R).

La construction & partir de SL(oco, R)-fibrés de Higgs suggere que les mé-
triques hyperkédhlériennes pliées doivent venir dans des familles de dimension
infinie. Le but de cet article est de confirmer cette intuition et de décrire 1’es-
pace des déformations. Il est aussi de montrer I'existence de la composante de
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METRIQUES HYPERKAHLERIENNES PLIEES 305

Hitchin pour SL(o0o,R), qui correspond aux métriques hyperkihlériennes pliées
munies d’une projection holomorphe sur la surface X.

Le premier résultat de cet article est formulé dans le cadre ou M est réunion
de deux domaines fermés, délimités par X :

M= MyUM,, MynM =X,

échangés par I'involution ¢. Si la forme symplectique holomorphe w® = ws + w3
d’une métrique hyperkéahlérienne pliée le long de X n’est plus symplectique le
long de X, en revanche, sur le quotient par l'involution ¢,

My =M/,

elle définit une forme symplectique holomorphe jusqu’au bord. La structure
différentielle de M, au bord X differe de celle de My : si x est une équation
lisse de X dans My, alors z2 est une équation lisse du bord dans M, (d’ou le

pli).
THEOREME 0.1. — Soit une métrique hyperkdhlérienne g pliée sur M. Alors :

i. toutes les déformations infinitésimales de métriques hyperkdhlériennes
pliées s’intégrent en des métriques hyperkdhlériennes pliées ;

ii. toute déformation infinitésimale de la variété holomorphe symplectique
a bord My donne lieuw a une déformation infinitésimale de métrique
hyperkdhlérienne pliée, quitte a modifier Mg par un difféomorphisme
infinitésimal ne préservant pas nécessairement le bord X.

Comme il y a beaucoup de déformations infinitésimales holomorphes sym-
plectiques, le théoreme fournit bien la construction de métriques hyperkéhlé-
riennes pliées.

Il peut sembler curieux de faire agir les difféomorphismes ne préservant pas
le bord, mais cela a un sens pour les difféfomorphismes infinitésimaux : le champ
de vecteurs n’est pas nécessairement tangent au bord. Cette description sug-
gere que les déformations de métriques hyperkéhlériennes pliées sont liées aux
déformations holomorphes symplectiques & frontiere libre.

Précisons la question sous-jacente : épaississons un peu My, c¢’est-a-dire sup-
posons que

M, C N,

ot N est une variété holomorphe symplectique sans bord (dans le cas modele,
un voisinage ouvert du fibré en disques dans T*Y), et fixons ¢; € H?(N, X) la
« classe de Kéhler pliée ». Considérons une déformation holomorphe symplec-
tique N’ de N. Pour chaque déformation X’ C N’ du bord X, appelons D’
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306 0. BIQUARD

le domaine de N’ délimité par X', et fixons une forme de Kéhler w; sur D’,
pliée sur X’, et dans la classe ;. Notons w® = ws + iws la forme holomorphe
symplectique de N’.

QUESTION (Probleme de Monge-Ampére a frontiere libre). — Trouver (X', f)
tel que (w1 + i00f)? = %wc Aw®, ot f est une fonction sur D', et f = O(y)
prés de X' (ot y est une équation de X dans N').

Une telle solution du probleme de Monge-Ampere donnerait une métrique
hyperkahlérienne pliée sur le domaine de N’ délimité par X’. Le point impor-
tant ici est qu’il est nécessaire de pouvoir déplacer X’ pour résoudre I’équation.
La question présente des analogies avec les questions de S. Donaldson & fron-
tiere libre [8]. Voir la fin de la section 5 pour une interprétation en termes de
la complexification du groupe des symplectomorphismes induisant un contac-
tomorphisme au bord.

La composante de Hitchin pour le groupe SL(oo, R) s’interpréte [12] comme
un espace de métriques hyperkahlériennes pliées avec projection holomorphe sur
la surface X, ¢’est-a-dire ’ensemble des domaines de T*3 portant une métrique
hyperkahlérienne pliée. Cela correspond a résoudre la question ci-avant pour
des domaines de T*¥.. Nous démontrons ’existence locale de cette composante :

THEOREME 0.2. — Au voisinage de la métrique hyperkdhlérienne pliée stan-
dard sur le fibré en disques de T*%, la composante de Hitchin pour le groupe
SL(co,R) est une variété paramétrée par ®,>oHO (L, K™).

Voir le théoreéme 8.2 pour I’énoncé technique précis : 'espace de différentielles
holomorphes @,>2H?(X, K™) est interprété comme un espace de fonctions CR
holomorphes sur le bord du fibré en disques, et une certaine régularité dans
les espaces de Folland-Stein est nécessaire. Le lien entre ces fonctions et les
déformations du domaine correspondant a la composante de Hitchin est le
suivant : ces déformations correspondent infinitésimalement au déplacement
du bord du fibré en disques par un champ de vecteurs fwd,, ou f est une
fonction CR holomorphe sur le bord et wd,, est le vecteur de dilatation dans
3.

Le théoreme confirme lintuition que la composante de Hitchin pour
SL(co,R) devrait étre une sorte de limite des composantes de Hitchin pour
les groupes SL(k,R), lesquelles sont paramétrées par des sommes finies d’es-
paces de différentielles holomorphes. En outre, la paramétrisation dans le théo-
réme 0.2 peut étre choisie pour étre une section d’un analogue de la fibration
de Hitchin, voir remarque 8.3.
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METRIQUES HYPERKAHLERIENNES PLIEES 307

Les sections 1 et 2 sont consacrées a la description de la géométrie au bord
et & la mise en forme comme un probléme non linéaire sur les différentielles
de trois 1-formes; I'analyse des déformations hyperkahlériennes de cette ma-
niére n’est pas nouvelle, ce qui compte ici est de déterminer les conditions au
bord correspondant & la géométrie (un travail en cours de J. Fine, J. Lotay et
M. Singer analyse le cas d’un bord standard). Les espaces fonctionnels adéquats,
repris de [4], sont introduits dans la section 3, la linéarisation du probléme est
analysée section 4, et section 5 les déformations infinitésimales sont comprises
en termes de la géométrie holomorphe symplectique. Dans la section 6, on
détermine les déformations infinitésimales correspondant aux SL(oo, R)-fibrés
de Higgs sur la surface de Riemann ¥ : elles sont paramétrées par les diffé-
rentielles holomorphes de tous degrés (au moins quadratiques). Un probléme
technique se pose alors pour parvenir au théoreme 0.2 : la paramétrisation du
déplacement du bord du domaine holomorphe symplectique par une fonction
(donnant le déplacement radial) se fait a priori avec perte de dérivées. Cette
question est contournée par la section 7 qui propose une paramétrisation de
tous les domaines du cotangent en termes de fibrations (non holomorphes) par
des disques holomorphes, suivant des idées remontant a Burns, Epstein, Lem-
pert et Bland dans les années 90, notre approche ici étant basée sur [3]. Cela
permet de déduire le théoreme 0.2 section 8. Finalement, I’asymptotique au
bord des métriques nécessite le développement d’une analyse, reportée jusqu’a
la section 9.

Mes remerciements vont a N. Hitchin, pour les nombreux échanges qui ont
permis I'existence de cet article. Je remercie aussi C. Guillarmou pour d’utiles
discussions sur le laplacien plié au début de ce travail.

1. La géométrie au bord et son modele

On commence par préciser le comportement au bord d’'une métrique hyper-
kéhlérienne pliée [12]. Nous avons un triplet (wq,ws,ws) de 2-formes sur une
variété M, qui en dehors d’une hypersurface X (le « pli ») donne une mé-
trique hyperkéhlérienne (définie positive ou définie négative). Soit i : X — M
I'injection. On a

(3) i*W1 = 0,

alors que les formes ws et ws, restreintes a X, ont chacune un noyau de dimen-
sion 1, dont la somme est une distribution de contact :

(4) H = keri*ws @ ker i*ws.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



308 0. BIQUARD

Dans cette situation, R. Bryant [7] a montré l'existence d’une unique base
(6%,6%,60%) de 1-formes sur X, telle que

(5) i*wo = —0 AN O3, ifws = 0L A 62,
(6) N N

Bien siir, la forme §' est une forme de contact, et les formes 62 et #3 sont
horizontales, c’est-a-dire qu’elles s’annulent sur le champ de Reeb X; (c’est
donc le premier vecteur de la base duale (X7, X2, X3)).

Alors il existe une équation x de X C M, dont la différentielle le long de X
est bien déterminée, et telle que

wilx = dx A0 4 26% A 63,
(1) wolx = zdx A O* — 01 N6,
ws|x = xdx A 6%+ 01 A 62

Ce comportement sera extrait du résultat suivant, qui donne l’existence locale
et I'unicité de la métrique hyperkéhlérienne pliée :

THEOREME 1.1. — FEtant donné (X?, Ba, B3) analytique réel, ot Bo et B3 sont
des 2-formes fermées sur X dont les noyaur engendrent une distribution de
contact, il existe sur un petit voisinage (—¢, €) X X une unique métrique hyper-
kahlérienne pliée telle que i*we = [o et i*ws = PB3. Cette métrique satisfait la
parité (2).

L’existence est démontrée par une construction twistorielle [12, §7]. La dé-
monstration que nous donnons ici simplifie cette preuve et aboutit directement
au résultat d’unicité.

Démonstration. — On utilise le formalisme d’Ashtekar [1] : une solution du
systeme des équations de Nahm pour des champs de vecteurs Vi, Vs, V3 sur X,
dépendant de x, et préservant une forme volume fixe v sur X,

dV
d(E + [‘/Qav3] - Oa
dVa
8 — =
(8) g +[V3, V1] =0,
dVs
Il I ¥ -
. + V1, V2] = 0,

produit, en posant Vy = a%, une métrique hyperkahlérienne définie par
9) g(Vi, V) = v(V1, Va, V3)0;5.
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METRIQUES HYPERKAHLERIENNES PLIEES 309

Réciproquement, si g est une métrique hyperkédhlérienne et x une fonction
harmonique, alors, en posant dr Av = \dx|§ vol? et V, = aa% poura=1...3,
on récupére une solution du systéeme (8).

Appliquons cela dans notre situation : partant de (X, 33, 3), on prend la
base de 1-formes (61,62, 03) satisfaisant d0* = 02A03, By = —0TAO3 et B3 = 0L A
02, et (X1, Xo, X3) la base associée de champs de vecteurs. Alors les conditions
dBs = dB3 = 0 se traduisent par le fait que Xo et X3 préservent la forme volume
v=0"A0%A 03 On résout alors le systéeme (8) avec les conditions initiales

(10) Vi(0) =0, V2(0) = Xa, V3(0) = X.

Pour des données analytiques réelles, le théoreme de Cauchy-Kowalevski pro-
duit une unique solution définie pour z petit.

On observera que (—Vi(—x), Va(—x), V3(—x)) est encore solution avec les
mémes conditions initiales, donc V; est paire, et V5, V3 impaires, ce qui implique

Pinvariance (2) sous l'involution ¢(x) = —z pour la solution. En outre, puisque
Xl = —[XQ,Xg], on a
(11) Vi(z) = 2X1 + O(z?).

On déduit le comportement de la métrique (impaire, positive pour = > 0,
négative pour z < 0) :
(12) g =x(dz® +(6°)° + (6°)%) +271(0")* + O(a®)G (dw,2™ 10", 6%,6°),

et celui des trois formes de Kihler donné dans (7). Ici G((e")) = >_ Gije’e’ est
un 2-tenseur symétrique dont les coefficients G;; sont lisses.

Réciproquement, étant donnée une métrique hyperkahlérienne, analytique
réelle, avec le comportement (12), on calcule son laplacien

(13) A= 2P +a® X2+ X3+ X2)+---

Il en résulte immédiatement qu’on peut résoudre Ay = 0 dans un voisinage
de X avec y = x + O(2?); cette solution, unique, permet de reconstruire les
champs V. L'unicité s’en déduit. O

Il est intéressant de noter qu’existe un cas ou les formules (7) sont exactes
globalement et pas seulement sur X : si X est le groupe de Heisenberg, muni
de sa base invariante de 1-formes telle que

(14) ot = 0% A 63, do* =dp® =0,

alors (V1,Va, Va)(x) = (xX4, X3, X3) est une solution exacte de (8), donc les
formules (7) définissent des 2-formes fermées satisfaisant le systéme (1) sur
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310 0. BIQUARD

M =R x X, et la métrique hyperkahlérienne pliée g est explicitée par
(15) go == (dac2 + (%) + (93)2) + 71 (0Y)2

(On peut le voir aussi par application de 'ansatz de Gibbons-Hawking).
Le cas du groupe de Heisenberg est le modele « plat » de la géométrie que
nous étudions, au sens suivant. Prenons des coordonnées (z', 2%, 23), de sorte

que
0! = dat + 2%da3, 6% =d2?, 03 = dad.

Dans le cas d’une métrique hyperkahlérienne pliée générale g, soit un point
p € X, choisissons grace au lemme de Darboux des coordonnées locales (z%)
sur X en p de sorte que

0! = dz' + 2%dx®, 0%(p) = da?, 6°(p) = da’.
Considérons les dilatations inhomogeénes
he(z,zt, 22, 2%) = (to, 22t ta?, t?).

Alors la métrique modele (15) satisfait h}go = t3go, et plus généralement, a
partir de (7), quand ¢ — 0, on voit que les t~3h}w, convergent vers les 2-formes
du modele, et en particulier

(16) lim =hzg = go.

Il y a une analogie claire avec la géométrie hyperbolique complexe et les mé-
triques asymptotiquement hyperboliques complexes [2], mais qui n’est qu'une
analogie : en effet, la métrique 3o, invariante par les dilatations h;, n’est
pas hyperbolique complexe. Elle est néanmoins quasi-isométrique a la métrique
hyperbolique complexe.

2. L’espace des métriques hyperkihlériennes pliées

Nous considérons a présent les déformations d’une métrique hyperkahlé-
rienne pliée gy sur (M, X). Puisque deux structures de contact proches sont
difféomorphes, on peut supposer que la distribution de contact H induite sur
X par (4) reste fixe. Les formes i*wy et i*ws sont alors nécessairement des
2-formes verticales sur X (et i*w; = 0). Enfin nous considérerons les déforma-
tions en fixant les classes de cohomologie des formes w, : notons (i la classe de
wy dans H2(My, X), et (o, (3 les classes de wo et w3 dans H2(My).
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METRIQUES HYPERKAHLERIENNES PLIEES 311

Cela nous ameéne a considérer I'espace Q des triplets (w,) de 2-formes fermées
sur My, de classes de cohomologie ((,) dans H?(My, X) ou H?(My) respecti-
vement, tels que

(17) ¥w1 =0, 1%ws, 1 ws verticales.
L’espace des métriques hyperkahlériennes pliées sur My est alors
(18) M= {(wa) € Q,wa Awp = 5abw%}.

Par le théoréme 1.1, de telles métriques satisfont nécessairement la parité (2)
prés du bord X (pour une certain choix de ), ce qui implique qu’on peut
les prolonger par doublement en des métriques hyperkédhlériennes pliées sur M
entier. (Le théoréme 1.1 n’est valable que pour des données analytiques réelles,
mais si celles-ci sont seulement C'*°, il donne néanmoins le méme résultat sur
les germes en X, ce qui suffit pour le prolongement par doublement).

Aussi raisonnerons-nous uniquement sur la variété a bord M.

Le but de cet article est de comprendre ’espace M. On peut ainsi décrire
Q a partir de

(19) T = {() € Q' (Mo), i* oy = 0,7*dag, i*dovs verticales} .

Les conditions sur les 1-formes sont écrites de sorte que (a,) € T implique
(we + dag) € Q, et tout élément de Q s’écrit de cette maniére. L’espace M se
décrit comme I'image par d de P~1(0), pour

(20) P ((aa)) = (wa + dag) A (wp + da)), ,
ou l'indice 0 dénote la partie sans trace; on a donc défini un opérateur
(21) P:T — Symj(R?) ® Q.

Cet opérateur, et sa linéarisation, interviennent classiquement dans les pro-
blémes d’autodualité, voir par exemple [4] dans un contexte proche.

Observons qu’il y a une contrainte sur I'image de P : en effet, les nombres
(1 U, UG € HY My, X) = R sont représentés par

(22) QUG = /M (w1 +daq) A (wp +day), b=2,3.

L’analyse de l'opérateur P requiert d’introduire les espaces fonctionnels adé-
quats, ce que nous faisons maintenant.
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3. Espaces fonctionnels

Les espaces fonctionnels sur le bord, adaptés a la géométrie de contact, sont
les espaces de Folland-Stein FS* [10] : une fonction f sur X est dans l’espace
FS¥ si elle a k dérivées horizontales dans L2, c’est-a-dire

XPXPf e LX(X) dés que ja + js < k.

Une version fractionnaire est définie en considérant 'opérateur hypoelliptique
0= —(X2 + X2), dont la décomposition spectrale permet de définir la norme
1 £llpse = (1 +0%) £l 2.

Une caractéristique, presque une définition des métriques pliées, est que la
forme volume s’annule simplement sur X : pres de X, on a

vol9° ~ zdz A O A B2 A B3,

Nous considérons l’espace L? par rapport & cette forme volume, et un espace
de fonctions L? & poids par

L3 =2t 2

La définition est faite pour que 2% € L2 dés que &' > 4.

Rappelons que sur X mnous disposons d’un repere (Xi,Xa, X3) dual
a (01,62%,62), et nous pouvons identifier un voisinage de X dans My a [0,¢€) x X,
avec premiere coordonnée z, ce qui nous permet d’ajouter le champ de vecteurs
Jz. On considere alors, pour s € N, I'espace de Sobolev a poids défini par la
norme

2 _ j j J2 yvJs £|12
Il = X I0R@X) XEXP AR,
[7l:=Jo+-+j3<s
La norme est indépendante de I'ordre dans lequel on écrit les champs de vec-
teurs, car

[635,IX1} = X1 = —[XQ,Xg].

Par commodité d’écriture, on notera D toute dérivation parmi 9., X1, X5 et
X3 et D7 toute composition d’ordre j de ces dérivations. La norme de Sobolev
précédente s’écrit ainsi
2 7 r2
11 = S I 7, -
—J
J<s

Une autre interprétation des espaces de Sobolev a poids s’obtient en consi-
dérant la métrique 24, quasi-isométrique a une métrique asymptotiquement

hyperbolique complexe, donc on dispose d’espaces de Sobolev H si% obtenus en

xT
sommant les carrés des normes H?® ordinaires sur un recouvrement localement
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fini par des boules. Le lien avec les espaces de Sobolev définis précédemment
est
(23) Hf = 2°72H5, .
3

Cette relation permet en particulier d’étendre la définition de Hj a des s frac-
tionnaires.

Enfin, on utilisera aussi une variante ou £ dérivées (ot ¢ € N) le long de X
sont mieux contrdlées : si s > £, on note Hg’z I’espace des fonctions f € Hj,
telles que pour |j] := ja + j35 < £ on ait

xpxfen;

Ce type d’espace est utilisé dans [4], d’ott nous extrayons le lemme d’extension
suivant :

LEMME 3.1. — 1. Soit § € (0,1). Si une fonction f satisfait Df € L,
alors f admet une valeur au bord f|x € FS®, et f — (f|x) € L3.

Réciproquement, il existe un opérateur d’extension, Ey, qui d fo € FSite (X)
associe une extension f = Eo(fo) sur My telle que Df € Hﬁﬁ&'

2. Plus généralement, il existe des opérateurs d’extension Ey, associant a un
développement fo 4+ xfi + -+ 2F i, ot fi € FSk_jMM(X), une extension f
sur My, telle que

i. pour j <k ona DI(f — Zé:ﬂfz) € L%ﬂ#é ;

- k+1 oo;l
ii. D" f e H7 ;.

Démonstration. — Ce sont les lemmes 2.5 et 2.7 dans [4], qui s’appliquent
car on a vu que la métrique 23 est quasi-isométrique aux métriques asympto-
tiquement hyperboliques complexes, utilisées dans [4]. Ils n’y sont énoncés que
pour une seule fonction fp, mais en I'appliquant a chaque f; on déduit I’énoncé
écrit ici. ]

On peut étendre légerement le lemme 3.1 de la maniere suivante : si on a
seulement f € H 6% alors les restrictions aux tranches f|¢;)xx, bien définies
dans L?, sont contrdlées par la norme H 3 de maniére uniforme dans les boules
de la métrique 25, et il en résulte que sc*‘sf\{x}xx — 0 dans L?(010%6%) quand
x tend vers 0. Donc, pour s > %, I’espace

H; = FS°(X) @ H3 (M),
constitué des fonctions f qui se décomposent pres du bord en
(24) f=Eo(fo)+ fi, fo € FS°(X), f1 € H§(Mo),
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a un sens (la projection sur FS°(X) étant la valeur au bord). Si s > 1, c’est
exactement ’espace des fonctions f sur M telles que Df € H ii s(Mo).
De maniére analogue est défini, pour s > ¢ + %, I’espace

Hy' = FS'T(X) @ Hy (Mo),

constitué des fonctions f avec une décomposition (24) avec fo € FS“T(X) et
fi € H(?’Z(Mo). Sis > €+ 1, c’est 'espace des fonctions f sur My telles que
—1,
Df € H*V4(My).
Enfin, au lieu d’un seul terme au bord, on peut définir des espaces ou les
fonctions disposent d’un développement d’ordre k en z et d’un reste d’ordre

k+6: pours>€+%,
My = of FSTFIT(X) @ Hyly(My).

Si s est assez grand, ’HZ’f; est constitué des f telles que D*T1f ¢ Hf;igl’[(Mo).
Disons tout de suite qu’on choisira dorénavant des valeurs

>0, 5:%, 826—&-%.
Le choix du poids 6 = % rend transparent le rapport aux espaces L? ordinaires,
mais nous continuerons d’utiliser § car tous les énoncés sont valables des que
0 € (0,1), voir remarque 9.4. Enfin, dans la section 7 on utilisera s = £ + %
donc la seule vraie liberté est sur /.

Finalement, ces choix permettent de plonger contintiment
EN k
Hy s € CF,

et HZ’:}; est une algebre. Dans 'intérieur de M, les choix permettent d’obtenir

Hzg C Cﬂ)c pour tout j grand préalablement fixé, mais en revanche les normes
A poids ne controlent pas les dérivées radiales 97 f au bord.

Nous pouvons maintenant définir une version Sobolev des espaces T, Q et
M de la maniére suivante. Nous considérons la base de 1-formes (e?) définie

par

e =dr, el =z710', 2 =0% ¢3=0°

7 )

La base (a:%ei) est orthonormale le long de X. Nous définissons alors Q;,e
comme 'espace des triplets de 2-formes (w,) :
i. & coefficients Hj" dans la base (e’ A e/),
ii. satisfaisant (17); comme e? A e = 62 A 62, la verticalité de i*wq et
1*ws est impliquée par la premieére condition, et (17) se réduit donc a
i*wl =0.
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La premiere condition implique que les 2-formes se prolongent continiiment au-
dessus de X. Puisque vol? = xdx A ' AN 02 A 03 = 22e! Ae? Aed Aet, un tel
triplet (w,) satisfait

(25) wWa A wy € ’H;’e vol9° .
On définit aussi 'espace 7}‘“ des triplets de 1-formes (o) :

i. & coefficients #5% dans la base (ef),

ii. dont la coordonnée sur e!

s’annule sur X (donc il s’agit de formes
s’étendant jusqu’au bord X en des formes de classe C'1),
iii. et tels que i*a; = 0 et (dag) € Q5 M.
Précisons la derniére condition : si les coefficients des a, sont dans I’espace H;:g,
ceux des da, sont dans Hi}u ; pour qu’ils soient en outre dans x?{;fl’f, il faut
et il suffit que leur restriction a X s’annule. Ces considérations aboutissent a

expliciter les condition sur () par :

LEMME 3.2. — Soit (o) un triplet de 1-formes, d coefficients ’H;’f; dans la

1

base (e'), dont le coefficient sur e s’annule sur le bord X, et tel que i*a; = 0.

Notons ag = ag €' Alors (o) € 7?58’5 si les coefficients
axaa,Z - X2aa,07 azaa,li - X3aa,07 X2aa,3 - X3aa,2 + aatOla,l
s’annulent le long de X .

Démonstration. — 1l suffit de prendre la différentielle extérieure de a, =
0 0dx + aaylelt‘)l + aa7202 + aa,393, en tenant compte de a4 1|x = 0, sachant
que dft = 62 A 63 et que df? et dO* sont verticales. (La troisitme annulation

est automatique pour ay puisque i*a; = 0). O
On considére alors P comme un opérateur
(26) P: 7}8"'1’6 — ’H;Zé(Sym% R?) vol®,

ou l'indice ( signifie, conformément a (22), que v = (vqp) € Symg R3 ® vol°
satisfait

(27) /M o1 = G UG, /M o1 = (UG

Les métriques hyperkéhlériennes dans Q;,z sont donc obtenues comme I’es-
pace

(28) M3 = a(P~1(0)) c O

. o L Y] . .
Par la construction twistorielle, toutes les métriques de M3" sont nécessai-
rement lisses a l'intérieur de My, donc, a donnée du bord fixée, les différents
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M?e ne different que par l'action de difféomorphismes non C'* (aucune jauge
pour l'action des difféomorphismes n’est imposée dans notre construction). Par
ailleurs, varier ¢ permet d’avoir des données au bord non réguliéres, mais ce
n’est pas notre intérét principal ici.

THEOREME 3.3. — L’opérateur P est une submersion en gg. Par conséquent,
./\/lf;’e est une sous-variété hilbertienne de Qf;’e, dont l’espace tangent en go est
d(kerdg, P).

La seconde partie du théoreme 0.1 en découle.
Le théoréme 3.3 est une conséquence de la proposition 4.1, démontrée dans
la section suivante.

4. Construction d’un inverse a droite
Soit 2 le fibré des 2-formes autoduales, donc la base (w,) donne une trivia-
lisation 24 = R3. Alors 'opérateur linéarisé d,, P s’identifie a la composition
de d, avec la projection Q; ® Q; — Sym3 Q.
(29) 9 T — 3 (Symd Q).
ou l'indice 0 marque maintenant la condition (27) linéarisée, & savoir, pour
v = (Vapwa ® wp) symétrique,

(30) / V12 vol?® = / V13 vol?° = 0.
MO ]VIO

On montre la surjectivité de 0 en considérant plutot le laplacien
(31) 00" = d,d’ : Symg Qp — Symg Q.
Puisque 0, = R? est plat, I'opérateur 99* s’identifie au laplacien scalaire A
agissant sur chaque coefficient de la matrice symétrique. Un calcul direct donne
(32) A=—27 (92 +2°X] + X5 + X3) + 2F(0,,2X1, X2, X3),

ou F' est un opérateur différentiel, impair, & coefficients C'*° jusqu’au bord. Le
coefficient = provient de la parité de la métrique g, et, dans le cas plat, on a
F=0.

Dans la section 9, on montrera que le laplacien A sur My, considéré sur nos
espaces fonctionnels, se comporte de maniére similaire a un laplacien ordinaire
sur une variété a bord. A priori, on considere 'opérateur

A x3?-l§+2’e — 7-[;’5.

Evidemment, cet opérateur n’est pas surjectif, car on ne peut pas espérer ré-
soudre le probleme de Dirichlet, par exemple, avec une donnée de Neumann
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. s N N . o ENA
nulle aussi. On s’attend plutét a ce qu'une solution de Af = g avec g € Hj

soit dans ’espace 'H;EZ’Z, donc avec un développement pres de X de la forme

fr~fotafi+afo+a®fs+--,

dans lequel fy et fi sont indéterminés, mais fo et f3 sont déterminés formelle-
ment par fo et f1 et g = Af = O(1), donc en particulier

() fa = 5 (X3 + XD fo.

(On a I’équation similaire sur f3, avec un terme additionnel g|x).
On démontrera dans la section 9 (proposition 9.6) que, pour g € ’H;’e, I’équa-

tion Af = g admet une unique solution f € ’H;EQ’Z dans les deux cas suivants :

e f satisfait la condition de Dirichlet (donc fo = 0 et fo = 0 par (33), on
notera f = Dg;
. fMo g vol?® =0, fMo f vol9 = 0 et f satisfait la condition de Neumann
(f1 =0), on notera f = Nyg.
Construisons alors un premier inverse & droite, Ry, pour 'opérateur (29) :

partant d’une matrice symétrique a trace nulle v = (v4pw, @ wy), satisfaisant
(30), définissons

D1y Nvu NUlS
(34) R1U = diw, ou w = N’Ugl D’U22 D’U23
NU31 D’Ugg D’U33

Dans cette écriture, la matrice est écrite dans la base des w, et représente
donc un élément de Sym €2, .

Les conditions (30) légitiment ’emploi de la solution du probléme de Neu-
mann sur les coefficients vio et v13. Il est possible de comprendre le choix du
probléme de Dirichlet ou de Neumann par la parité (2) attendue pour la solu-
tion.

L’opérateur Ry n’est qu'une premiere approximation a ’inverse a construire.
En effet, « = Rjv ¢ 7:;8“’@ en général : posons o = (a,) = diw, ol w est

défini dans (34), et o, = €7, alors on calcule (voir (39))
(35) a11]|x = O,wi + Xzwip — Xowiz =: .

Ce terme va étre corrigé en utilisant une liberté de choix sur «, provenant de
I’action infinitésimale des difféomorphismes : si £ est un champ de vecteurs sur
My, alors (2¢w,) correspond a modifier les w, par 'action infinitésimale de &,
donc (2¢wq) € kerdy, P.

Par construction, ¢ € FS‘*2%9. Appliquons l'opérateur de prolongement E

pour obtenir un prolongement ¢ = FEsp € ’H‘;EQ’Z de ¢ a lintérieur de My,
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dans un voisinage de X, et définissons le champ de vecteurs
(36) §=@r7 10, + (X29) Xo + (X30) X3

Le premier coefficient du champ & est calculé de sorte que 2cwy = px 10! sur
X. La présence de coefficients de X5 et X3 permet de préserver la structure de
contact sur X, voir section 5. Alors l'inverse a droite voulu est donné par :

ProOPOSITION 4.1. — L’opérateur
(37) Rv = Riv — (1ew,)
est un inverse & droite de dg, P TS — H;;g(Symg Q).

Le reste de cette section est consacré a la démonstration de la proposition.
On sait que R est un inverse a droite, le probléeme ici est de vérifier qu’il s’agit
d’un opérateur entre les espaces spécifiés.

3
Nous commencons par calculer n = d*w. Nous avons 7, = 21 I,dwgp. Pour

obtenir le comportement pres de X, observons que le comportement asympto-

tique (7) implique que (e, el e?, e3) est une base quaternionienne standard le

long de X, donc
(38) Joe =e*+0(2%),  a=1,23,
Jae? = eqpee® + O(2?), (abc) permutation de (123).

Ici O(x?) vise les coefficients dans la base (ef); cette décroissance provient de
la propriété de parité (2) de la métrique.
Les coefficients de 7, dans la base (e?) sont automatiquement dans ’espace

s+1,¢ .. : . . N R
Hy £, Explicitons les deux premiers termes : la restriction & X et la dérivée

normale. Un calcul direct donne, modulo x27-[§+1’e7

(39)
n = (—xX w1, — Xoway — Xzwsp)dz + (Opwiy + Xzwap — Xowsp)z ™ 160"
+ (= Xzw1p + Opwap + 2 X1w3p)0° + (Xowry, — 2X1wap + Opwsp)0°.
Analysons maintenant les
Qp = Tp — LeWp
pour vérifier les conditions du lemme 3.2. Récrivons, toujours modulo x27-[§+1’£7
a1 = (—Xowey — X3ws)dx
+ (Opw11 + Xsway — Xowzy — @)z '0"
+ (= X3wi1 + Opwoy + 2 X w31 + 2 X35)60°
+ (Xowyy — X wo1 + Opwzy — 2 Xo()0.

(40)
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L= 2716, est exac-

Observons que la restriction a X du coefficient de n; sur e
tement la fonction ¢ définie par (35), donc le coefficient de oy sur e! = 27191

est nul, et en outre
(D1 1)|x = 02w11 + 0p X3way — Oy Xowszy =0

car ws, et wsy satisfont la condition de Neumann, et la condition de Dirichlet
pour wy; donne avec (33) 'annulation 9?wi;1|x = 0. Les conditions au bord
impliquent aussi que a1 2|x = a1,3|x = 0, donc finalement i*a; = 0.

Vérifions en outre pour «; les annulations requises par le lemme 3.2 : en
remplacant ¢ par sa valeur,
(41)

(c%gal,g — XQOéL()) |X = (333 + X22 + Xg) W21 + (Xl + X2X3 — X3X2) ws1

qui est nulle, & cause de X; = —[X5, X3] et de la contrainte (33) sur wo; ; la
seconde annulation est similaire, et la derniere est une conséquence de i*a; =0
que nous avons déja vue.

Passons & as (le cas de a3 est similaire) : partons de la formule, modulo des

termes dans :EQ'H(S;H’IZ,

ag = (—xXiwi2 — Xowaes — Xswsa + 2X2Q) dz

(42> + (8xw12 + Xswos — Xowss — I'nga) z 191
+ (*X3w12 + 8gcw22 + ZL'Xlng — (,5) 92

+ (Xowia — X waeg + O,w32) 6°.

Les conditions au bord donnent bien l'annulation sur X du coefficient de
el = 710!, Les deux premieres annulations requises par le lemme 3.2 sont
évidentes, et la derniere résulte d’un calcul direct. Cela conclut la preuve de la

proposition 4.1. O

5. Les déformations infinitésimales

Il résulte du théoreme 3.3 que l'espace tangent a M? est constitué des dif-

férentielles extérieures des triplets de 1-formes (7)), & coefficients ’H;jgl’z dans

la base (e?), tels que i*n; = 0, dn, € 337-{?57 et satisfaisant les équations

(43) wé Adn® =0,

(44) w1 A dT]c + d’l]l Aw’ = 0,
1 _

(45) wi Adn + 3 Re (w® A dn®) = 0.

Ici on a noté n¢ = 19 + ins.
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La premiere équation, (43), dit juste que dn® est une déformation infinitési-
male de la structure symplectique holomorphe w€. La condition au bord (i*dn°
verticale) dit que la structure complexe continue & préserver la distribution de
contact H C TX.

La deuxiéme équation, (44), est une condition de compatibilité de la forme
de Kéhler w; a la structure complexe. Elle se récrit en termes de la partie de
type (0,1) pour Jj :

(46) APt Awe) = —wy Adnf.
LEMME 5.1. — Etant donné n°, Uéquation (46) a toujours des solutions 1.

Ce lemme s’interpreéte en disant que, au moins au niveau infinitésimal, la
classe ¢; € H?(Mjy, X) demeure de Kihler pour la déformation infinitésimale
donnée par n°. Cela est plausible car la forme w€, de type (2,0), non nulle au
bord, ne contribue pas & la cohomologie relative H?(M,, X).

Démonstration. — Plutot que de résoudre (46), on se ramene & un laplacien
en considérant ’équation

(47) 90" (f vol®°) = %wl A dnf,

dont une solution f produit une solution de (46) en posant
(48) n"t = JL0f.

Récrivons I'équation (47) comme

(49) Af = —2Adn°.

Or fMO wy A dn® =0, donc on peut prendre pour f la solution du probleme de
Neumann. Comme les coefficients de dn¢ dans la base (e’ Ae?) sont dans x?—[(‘;’e,
on a Adn° € Hj*, et donc f € ngﬁv‘f. Modulo des termes dans z2H;""", on
obtient

(50)  Jo0f = {(0 —ixX1) f} (6% —i6°) — {(X2 —iX3)f} (dz — iz~ '0").

Nous devons maintenant vérifier que Jo0f satisfait les conditions au bord vou-
lues. Gréace a la condition de Neumann, le premier coefficient (0, — iz X;)f €
x?—lf;“’e. A priori, le second coefficient n’a pas de raison de s’annuler : ici on
utilise le fait que 1’équation & résoudre est (46), donc on peut modifier Jo0f
par un terme dg. On pose alors

Nt = Lof +9(2xh), h=E((X2—iXs)f|x) € Hy5""
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Nous obtenons alors 710" = a(dz —iz='0") + b(6? — i6®) modulo >H5 """, avec
a=—(Xy —iX3)f +h+ (0, +ixX1)h

b= (0y —ixX1)f + (X2 +iX3)f.

Ecrivons 7 = Re(a)dz 4 Im(a)z~ 0" + Re(b)0? + Im(b)6? ; la condition au bord
i*n = 0 s’écrit

(52) Im(a) = 9, Im(a) =0, b=0,

(51)

tandis que les conditions du lemme 3.2 sont
(53) 0, Re(b) — XaRe(a) =0, 0, Im(b) — X3Re(a) = 0.

A partir de (51), les conditions (52) sont immédiates, et on a méme au bord
a = 0. La condition (53) se réduit donc & 9,b|x = 0, et on calcule

Opb=02f —iX1f + (Xo+iX3) (Xo —iX3) f
= (02 + X35+ X3) f —i (X1 + XoX5 — X3X5) f.

Comme Af € ’H;’l, il faut que (92 + X2 + X3)f s’annule sur X ; le second
terme s’annule aussi puisque X; = —[X3, X3]. O

Supposons donnée maintenant une solution (7;,7°¢) de (43) et (44). Considé-
rons fixée la variation de structure symplectique holomorphe, représentée par
7°, et tentons de modifier 1, de sorte de résoudre aussi la derniére équation (45),
tout en préservant (44) : on a donc la flexibilité de modifier 7" par un terme
dg. Discutons la condition au bord sur g : il faut i*n; = 0 et donc O g = 0 sur
X, c’est-a-dire que g|x est une fonction holomorphe au sens CR sur X.

Dans un premier temps, nous allons discuter uniquement les déformations
telles que g|x = 0, et nous étudierons les déformations résiduelles dans la
section suivante.

Si g est réelle, alors n; est modifiée par dg ce qui ne modifie pas wi ; en
revanche, si ¢ = if est imaginaire pure, alors 7; est modifiée par d°f, et
léquation (45) devient

1 _
(54) AddC f = — Re(w" A dip®) — Adny.

Ce n’est rien d’autre que la linéarisation de 1’équation de Monge-Ampere a
résoudre pour obtenir une métrique kéhlérienne Ricci plate.

On peut résoudre (54) avec la condition de Dirichlet f|x = 0. Cette solu-
tion satisfait f € :c'}-l;jf’[ et & nouveau, modulo des termes dans xz’H;H’Z, la

modification de 7; est, pres de X,
(55) d°f = —a X, fdx + (0.f)x 10" — X510 + X, f63.
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Tous les coefficients s’annulent sur X, sauf le terme singulier :
(56) (0 f)z™ 10"

Comme on a vu, on peut encore modifier 1; par un terme dg, mais cela ne
permet pas de compenser ce terme singulier. Il y a donc une obstruction a
résoudre le probléme : il n’existe pas pour tout n¢ de solution 7, = d° f (f|x =
0) du probleme (44)—(45).

Néanmoins, on peut éliminer le terme (56) par un difféomorphisme infinité-
simal agissant sur le triplet (w,) : posant ¥ = F2(0, f|x) € ’H;if’é, on définit
le champ de vecteurs

(57) & =110, + (Xo¥h) Xo + (X39) X.

LEMME 5.2. — Les I-formes (n° — 1cw®,m + d°f — 1¢w1) sont solutions du
systéme (43)—(45) et satisfont les conditions au bord.

Démonstration. — 1l reste juste a vérifier les conditions au bord. Modulo des
termes O(z?), on a

d°f — 1wy = — Xy fdx + (0. f — )z 10"
= Xs(f — 20)0% + Xao(f — 29)0°,
1ew° = — x(Xo +iX3)P(dx + iz 10) + (6% + i6°),
et les conditions du lemme 3.2 se vérifient facilement. ]

Bien entendu, 'annulation qui vient d’étre montrée est la raison de la pré-
sence des termes (Xp1) X, dans la formule (57), comme dans (36).

Synthétisons ce que nous venons de démontrer. Etant donnée une déforma-
tion holomorphe symplectique infinitésimale dn®, nous pouvons compléter n°
en une solution du systéme (43)—(45), a la condition d’autoriser I’action de dif-
féomorphismes infinitésimaux comme dans (57). Or, le changement de variable
y = 22/2 (z > 0) fait disparaitre la singularité de la structure holomorphe
symplectique sur X, et 2719, = 9,, donc nous voyons que cela correspond a
déplacer infinitésimalement le bord de My ; en outre, la fonction ¢ dans (57)
étant parfaitement déterminée, le déplacement infinitésimal est uniquement dé-
terminé. Cela achéve la démonstration de la premiere partie du théoreme 0.1, et
justifie la question posée dans I'introduction, qui est une question de résolution
du probleme de Monge-Ampere dans cette situation, avec frontiere libre.

Concluons en remarquant que cette question se comprend tres bien dans le
formalisme de Donaldson, consistant a chercher une métrique Kéahler-Einstein
dans l'orbite complexifiée du groupe des symplectomorphismes. Dans notre si-
tuation, il faut penser au groupe des symplectomorphismes comme induisant au
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bord un contactomorphisme. Or la complexification d’un contactomorphisme
infinitésimal déplace nécessairement le bord : en fait, le champ £ dans (57) n’est
autre que le complexifié du contactomorphisme infinitésimal

X1 + (X39) Xo — (X20) X3.

Comme on ’a vu, les contactomorphismes complexifiés continuent & induire la
structure de contact fixée H sur X. Voyant ainsi X C N comme hypersur-
face dans une variété holomorphe symplectique (sans singularité), il est naturel
d’identifier la complexification du groupe des contactomorphismes aux plonge-
ments ¢ : X — N tels que la structure CR induite par ¢ sur X demeure définie
sur la structure de contact H. Les champs de vecteurs (57) en sont exactement
la version infinitésimale.

6. Les déformations infinitésimales de Hitchin

Examinons & présent les solutions additionnelles du systéme (43)—(45) pro-
venant d’un potentiel non nul sur le bord X. Comme on a vu, la modification
de 7% par g ne modifie pas les équations (43) et (44), et la condition au bord
i*m = 0 exige dg(g|x) = 0.

Nous restreignons la discussion au cas modele, sur le fibré en disques de T*X.
Si wy, est la forme de Kéhler & courbure —1 sur X, alors il résulte des formules
dans [5] qu’on peut écrire la métrique hyperkéhlérienne pliée par la formule

1
— ./ 2%
(58) w1 =VI1—-—rpwus + Wrdr/\%

ou p: T*Y — ¥ est la projection, r est la distance dans la fibre de T*3, et
7 est la 1-forme de connexion sur le fibré en cercles, donc dn = —ws. (On a
n = —01, ot ! est la forme définie section 1).

Soit g € FS*+3+° une fonction CR-holomorphe sur X, alors on peut résoudre
le probléme de Dirichlet

(59) Ag=0, glx =g,
avec § € ’H;EQ’Z. Posant 77; = Re(dg), on obtient

w1 Adn = Re(wy A 097) = 0,
donc on obtient une solution infinitésimale (n° = 0,7, = Re(dg)) du systeme
linéarisé (43)—(45). Ces solutions ne modifient pas la structure holomorphe
symplectique, au moins infinitésimalement.

De maniere explicite, les fonctions CR-holomorphes sur X ont une décom-
position en séries de Fourier, g = 7, < gn et g, € H*(X, K~"). Pour n = 0, la

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



324 0. BIQUARD

fonction gg est constante, donc son extension gy aussi, donc 77 = 0. Supposons
donc n < 0. Sans rentrer dans le détail des calculs, on voit que A préserve les
fonctions du type a(r)g,, donc l'extension g, de g, est du méme type. Il en
résulte aussi que 9§, est encore du méme type :

(60) 9Gn = n(r)gn (Cir — in> :

A partir de 13, il est facile d’expliciter g mais nous n’avons pas besoin de la

—n

r

formule précise. L’équation A9dj, = 0 meéne rapidement & @, (r) = @,

V1—r2
pour une certaine constante ®,. Finalement, on obtient
(61) DG = —tewn
avec
, r~" 0
(62) §= nz<:0£m §n = 21®n9n?%7

ol wd,, est le champ de vecteurs (holomorphe) d’homothétie dans les fibres.
La fonction r~"g, /@ coincide, & une constante pres, avec w~""! sur chaque
disque.

Pour vérifier nos conditions au bord, transformons la solution précédente par
laction infinitésimale de £ pour obtenir plutét la solution (n° = tew®, m = 0).

Remarquant que pour n = —1, le champ &; préserve w®, on obtient :

PROPOSITION 6.1. — Pour toute fonction g € FS“3+° CR-holomorphe sur
X, définissons & par (61), ot § est lextension harmonique de g, alors (n° =
tew®,m = 0) définit un vecteur tangent d Mg’z, c’est-a-dire est une solution
infinitésimale des équations et satisfait les conditions au bord. La variation est
non triviale pour les fréquences différentes de 0 et —1, donc on obtient des

déformations infinitésimales paramétrées par
(63) One_o HO(Z, K7™).
O

Ces déformations infinitésimales ont été trouvées par Hitchin [12, §9]. Notre
approche dans cette section montre qu’on obtient ainsi toutes les déformations
infinitésimales qui restent sur la variété holomorphe symplectique 7*X. Grace a
la proposition ci-dessus, elles donnent des vecteurs tangents dans ./\/lf;’é, et donc
sont tangentes a des déformations par de vraies métriques hyperkdhlériennes
pliées. Les sections suivantes ont pour objet de montrer que ces métriques
hyperkéahlériennes peuvent étre prises de sorte que leur structure holomorphe
symplectique soit bien celle d’un domaine de T*X.
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REMARQUE 6.2. — On peut vérifier que les polyndémes invariants définis par
Hitchin [12, §8.2], & savoir

(64) Pn = (/ w”w1> dz" € H(S, K™,
My/%

évalués sur ces déformations infinitésimales, redonnent bien le parametre g €
®n>2HO(X, K™). En effet, faisons le calcul en considérant que g paramétre la
déformation infinitésimale (n° = 0,71 = —tcw1), que nous choisissons ainsi
puisque la structure de cotangent de T*X est préservée. Dans le calcul de la
variation infinitésimale de p,,, il faut faire attention a prendre en compte la va-
riation du domaine dans T*X, qui se traduit par une contribution | X/% w"ewy
dans l'intégrale. Ainsi, la variation infinitésimale de p,, est

DPn = (/ w"dmn —/ w"m) dz"
Mo/ X/5

7. Paramétrisation des domaines dans le cotangent

Nous proposons ici une paramétrisation des déformations du domaine Mg C
T*X. Le résultat essentiel est le théoreme 7.3 qui permet une paramétrisation
sans perte de dérivées. Pour ’étude générale de toutes les déformations d’un
tel domaine pseudoconcave, on pourra consulter [9].

Une approche plus simple consisterait a paramétrer ces déformations par les
plongements ¢ : X — N qui induisent la méme structure de contact sur X. Si
I’image est restreinte a X, on parametre ainsi les contactomorphismes par une
fonction réelle (voir [6], ou [3, §5] pour le cas S! invariant) : cette paramétri-
sation peut se faire sans perte de dérivées, et est basée sur les propriétés du
complexe de Rumin. Comme expliqué a la fin de la section 5, le cas général cor-
respond a la complexification du groupe des contactomorphismes, le complexe
de Rumin est & remplacer par le complexe du 9y sur la variété CR X, mais les
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mauvaises propriétés analytiques de dy semblent empécher une construction
similaire. Nous adoptons donc dans cette section une approche complétement
différente.

Une déformation J de la structure complexe Jy de M, est paramétrée par
un tenseur ¢ € Q%' @ THO (les bi-degrés sont pour Jy) tel que I'espace des
vecteurs de type (0,1) pour J soit le graphe de ¢ : T — T0,

79" = {e+ g €T

A priori, un tel ¢ ne définit qu’une structure presque complexe J; elle est
intégrable si

(65) 09 + 510,61 =0,

ol [¢, ¢] fait intervenir le produit extérieur des formes et le crochet des champs
de vecteurs.

La structure complexe J induit sur le bord X = 0M, une structure CR.
Quitte a agir par un difféomorphisme, on peut supposer que la structure CR
garde la méme distribution de contact sous-jacente H. En outre, comme M
est un fibré holomorphe en disques, nous avons une décomposition globale,
Sl invariante,

TM=Ha&YV,

ou V = ker p, et H est I'horizontal fourni par la structure de contact.

Par [3, Théoréme 4.1], toute petite déformation de J pour laquelle ¥ C
M, demeure une sous-variété holomorphe, apreés action d’un difféomorphisme
unique modulo S, s’écrit dans cette décomposition sous la forme

(66) o=(10):

ouy € WHRH = p*(Q%l ®Té’0) est holomorphe le long de chaque disque
de la fibration p (cela a un sens puisque le fibré Q%l ®Té’0 est trivial le long de
chaque disque) : donc, décomposant en séries de Fourier pour I'action de S,
(67) = thn, Ot Uplpo1(m) = Fu(x)w",
n=0

olt w est un choix de coordonnée holomorphe sur le disque p~!(z). Plus intrin-
sequement, on peut voir w comme un point de ’espace total du fibré K, et F,
comme une section sur ¥ de K" ®@ Q%' @ Th0 = K1 @ Q%'

Réciproquement, la donnée d’un tel v, holomorphe le long des disques de

la fibration, induit une déformation complexe ¢ donnée par (66), satisfaisant
[¢, #] = 0 et donc équation d’intégrabilité (65).
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Parmi ces déformations holomorphes, cherchons celles qui demeurent un
domaine dans un cotangent holomorphe T%*3.. Nous demandons ainsi I’existence
d’une projection 7 : My — X et d’une 2-forme complexe €, telles que

Qe 0%
(68) dQl = 0;
5]71’ =0.

On obtient alors immédiatement que 2 = d© avec © une 1-forme s’annulant
sur les fibres de 7 et sur X : la forme © identifie alors M, avec T*3, dont elle
apparait comme la forme de Liouville.

Analysons tout d’abord les conditions sur ). La premiére condition permet
d’écrire, pour une (1,0)-forme horizontale «,

(69) Q= (a— o) Ant?,
d’ott
(70) dQ = d(a — paa) AntP.

La deuxiéme condition, équivalente & 9;Q = 0, se traduit par
1dg dQ) = O,

(71) 10

16442 =0 pour £ € H 7.

La premiére équation dans (71) méne &
(72) Op(a — Poa) =0,
c’est-a-dire « et ia sont holomorphes le long des disques de la fibration, ce

qui, puisque ¥ est déja holomorphe le long des disques, est équivalent a «
holomorphe le long des disques; on a

(73) te40pe QY = (1e49 d(o — hoa)) AP,

comme ¢4, dS2 € Q?,’O, son annulation est équivalente a celle de sa projection
sur Q?,’OO, donc, notant dg, O et O les restrictions & H de d, d et 9, la seconde
équation de (71) est équivalente a

(74) oo — Oy (Yaa) = 0.
Nous pouvons résumer ces observations dans le lemme suivant.

LEMME 7.1. — Les 2-formes sur My satisfaisant les deux premiéres équations
de (68) sont en correspondance avec les (1,0)-formes horizontales o sur X,
telles que
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i. a na des coefficients non nuls que pour des fréquences strictement po-

sitives ;
ii. « satisfait 'équation (74) sur X, qui n’est autre que ’équation O, j(cv—
Yoa) = 0.
Démonstration. — Puisque « est holomorphe le long des disques, elle n’a de

coefficients de Fourier non nuls qu’en fréquences positives. Sachant que n'°
s’'identifie & 2(12% sur chaque disque, pour que 2 s’étende a la section nulle, il
faut que les coefficients invariants par rotation s’annulent aussi, donc a n’a
de coefficients non nuls qu’en fréquences strictement positives. Dans ces condi-
tions, puisque 1 aussi est holomorphe le long des disques, le systeme (74) est

satisfait sur M si et seulement s’il est satisfait sur le bord X. O

Revenons maintenant a 1’équation sur m, un peu plus subtile & analyser.
Commengons par regarder les applications 7 : My — X, déformations de p, et
holomorphes le long des disques. Etant donné un point o € ¥, on peut choisir
une coordonnée locale z autour de o, et, au dessus d’'un voisinage de o, les
projections 7, holomorphes verticalement, s’identifient aux fonctions z o 7 a
valeurs dans C, holomorphes le long de chaque disque. Il apparait ainsi que
I’espace des applications 7 : M — 3, holomorphes verticalement, de régularité
FS™ sur X, est une variété banachique bien définie que nous noterons P™, et
dont I'espace tangent en p s’identifie aux sections sur X de p*T'%, de régularité
FS™, dont les coefficients non nuls sont en fréquences positives—nous noterons
cet espace FSZ,(p*TY) = FSZ,(H"?).

Les solutions de la troisiéme équation de (68) s’identifient & présent aux
applications m € P™, telles que sur le bord X on ait pour tout ¢ € HO!,

(75) T (§ +1be) =0,

ce qui, & nouveau, n’est autre que I’équation §H7J7T = 0 sur X. En effet, en choi-
sissant localement une coordonnée holomorphe z sur ¥, on voit qu’un élément
de P™ satisfait I’équation (75) si et seulement s’il la satisfait sur X.

Il'y a des solutions évidentes au systéme (68), provenant de la déformation de
I’hypersurface X dans T*3. Bien entendu, une telle déformation doit étre suivie
d’un difféomorphisme qui rameéne le domaine délimité & la jauge particuliere
satisfaisant (66).

Explicitons ces solutions. Un contactomorphisme infinitésimal sur X est de
la forme £ = gR —tidy g, ol g est une fonction réelle sur X, et f : Q' H — H est
défini par 4 dn = «. Il agit sur I'espace des structures complexes infinitésimales
sur X par

(76) Y = Optdng.
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Cette action se complexifie en décidant que la fonction g peut étre a valeurs
complexes : I'action infinitésimale est alors celle de la partie réelle du vecteur
de type (1,0) donné par

(77) ¢4 = 2(9R"" — t0ng) = 2(igwdy, — tImg),

et 'action sur les structures CR reste donnée par la formule (76).

On a déja vu que ces champs de vecteurs le long de X sont la version in-
finitésimale des plongements ¢ : X — T*X telles que la structure CR induite
par ¢ sur X garde H comme structure de contact sous-jacente, qui sont un
analogue de la complexification du groupe des contactomorphismes; ’action
(76) est exactement la complexification de l’action infinitésimale des contacto-
morphismes.

Comme il se doit, ’action des contactomorphismes ne préserve pas la jauge
(les coefficients de Fourier positifs). En revanche, 'action complexifiée infinité-
simale des fonctions g a fréquences positives préserve cette jauge, et la proposi-
tion suivante montre qu’on obtient ainsi toutes les déformations. Notant FSZ,
(resp. FST) les espaces de sections dont les coefficients non nuls se trouvent
uniquement en fréquences positives (resp. strictement positives) :

PROPOSITION 7.2. — Soit m > 0. L’espace des
(¢, a, ) € FSZy x FST) x Pt

satisfaisant (74) et (75) est une variété d’espace tangent paramétré par laction
infinitésimale des vecteurs donnés par la formule (77), ot g € FS’;&H. Les
formules sont

¢ = 5Hjj5Hg, a=1iR- (g@o) — 8HA2(5Hg A @O), T = —ﬁéHg.

Ici ©° désigne la forme de Liouville initiale de 7*¥. On remarquera aussi que
la fonction constante g € R correspond & multiplier ©° par une constante ima-
ginaire pure, ce qui ne change pas le domaine holomorphe symplectique. Cela
correspond & I’ambiguité de jauge diie & 'action de S*, donc on peut imposer

Re f « 9 = 0 quand on parametre les déformations holomorphes symplectiques
de M,.

Démonstration. — Nous considérons donc 'opérateur
(78) Q:FSZy(Q"'H @ Q" H) x FST Q" H) x P+t
— FSZ5H Q" H @ QVOH) x FSZ (0% @ H'?),
défini par
(79) Q(, a,m) = (Om.s(a — Yoa), 0 y7),
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de linéarisation

L($, 6, 7) = (e — 0 (¥20°), Ot + 9).
La démonstration consiste maintenant a montrer que L est surjective et a
identifier ker L.

L’opérateur Oy sur X a une image fermée, mais de codimension infinie.
Tout est explicite dans la décomposition en séries de Fourier : sur un fibré
holomorphe L provenant de X, le conoyau en fréquence n est H* (K" ® L) =
HO(K"+1 @ L*)*. Pour I'opérateur g, de maniére similaire, 'image est fermée
mais le conoyau en fréquence n est HO(K "1 @ L)*.

En particulier, passant a la conjugaison, nous voyons que le conoyau de
Oy : QVI1H — QYL H est HO(K~™)*, et en particulier s’annule en fréquences
n > 0, ce qui donne la surjectivité sur le premier facteur. En revanche, le noyau
de Oy en fréquence n s’identifie & HO(K"H1)*.

Pour le second facteur, observons que le conoyau de 7 — Oy s’identifie &
HO(K"t1)* en fréquence n, exactement compensé, comme on vient de le voir,
par le noyau de ¥ — 9p (¢_0°).

Par conséquent, L est surjective, et ’espace des solutions du systéme (74)
est une sous-variété, d’espace tangent égal a ker L, que nous déterminons a
présent. Soit donc (w, &, 7) € ker L, il faut donc que Y = —Oy 7, puis

(80) Opé = —0uoyf, f=r.0°.

Utilisant la formule 50 f + 0pdn f = d%f = R- fws, pour toute fonction f,
on obtient

(81) Or(a—0uf) =—R- fus.

Rappelons & nouveau que I'image de Oy est fermée, donc on peut décomposer
en somme orthogonale FS" " (QV1 H) = Im 0y @ ker 9%;. Comme la dérivation
par R commute avec Oy et 5;1, elle envoie cette décomposition de FS™T!
sur la méme décomposition de FS™ . Par conséquent, I’égalité (81) impose
fws € Im 9y, donc il existe g € FS’;B”, unique a constante additive pres, telle
que fws = —90r(90°), ce qui s’écrit encore, si Og € H'C est dual a 6,

f€0 = —#0ug.

A partir de 1, on récupére © = —#9x g, puis ) = Oy#dug, enfin, & partir de
(81), on calcule

a=1iR-(g0%) — OyAs(0mng A O);

on peut vérifier que (& — ¢J®0) AntY n'est autre que I'action infinitésimale de
¢ sur la forme symplectique initiale 2° = dO° de T*3. |
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Nous synthétisons les résultats de cette section de la maniére suivante. No-
tons Q?é Pespace des 2-formes complexes w® = wq + iws telles que (w3 =
0,ws,w3) € Qg’é, et ./\/l‘;:é - Q;’é I'espace des 2-formes w® telles que (w®)? = 0.
Enfin, notons FST,(X)o 'espace des fonctions f € FSY telles que Re Jxg=0.

THEOREME 7.3. — On pose § = % et s = (+3. Il existe une sous-variété C;’e C
M;:é définie prés du modéle My, qui contient toutes les petites déformations
de My provenant d’une variation de X dans T*X, et est transverse a l'action
des difféomorphismes.

En outre, il existe une paramétrisation O : FS?BH‘;(X)O — C;’é, définie sur
un voisinage de 0, telle que dU(g) est la déformation infinitésimale de la forme
initiale Q0 par Uaction du champ de vecteurs

& =2Re(igwdy, — ﬁéHg),

prolongé holomorphiquement disque a disque le long des fibres de la projection
p: Mg — 3.

Démonstration. — A partir de la proposition 7.2, nous obtenons des déforma-
tions de w® paramétrées par une fonction g € FS§62+6 (X)o. Malheureusement
I’extension holomorphe disque a disque donne une régularité a l'intérieur qui

est la méme que celle au bord, donc w® € Cﬁ?’e seulement. O
REMARQUE 7.4. — Le théoreme est démontré pour la valeur spécifique de s

écrite, mais en réalité, on peut régulariser les solutions obtenues par un dif-
féomorphisme pour obtenir une paramétrisation dans M(S;:é pour s > £. (Cela
correspond a 'idée qu'une forme holomorphe symplectique détermine des coor-
données holomorphes dans lesquelles elle s’exprime avec des coefficients C'°).
Cette régularisation se fait en résolvant un probléme de jauge sur le difféo-
morphisme, ce qui est possible en étendant I’analyse de la section 9 du cas des
fonctions au cas des champs de vecteurs ; pour éviter d’allonger inutilement 1’ar-
ticle, on a donc préféré se limiter a cet énoncé. Précisons & nouveau qu’a la fin,
on sait bien par la construction twistorielle que la métrique hyperkéhlérienne
est C'*° dans l'intérieur de Mj.

REMARQUE 7.5. — On s’attendrait a ce que la régularité des bords des do-

maines construits soit FS‘H+9

, C’est-a-dire la régularité de £. Mais la forme
de Liouville du cotangent, O, est récupérée en intégrant la forme holomorphe
symplectique 2 le long des fibres de la projection 7, ce qui ne permet pas de
gain de régularité, et il en résulte qu’a priori la régularité des bords est seule-
ment FS“™. Cela illustre le probléme de perte de dérivées que notre méthode

a permis de contourner.
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8. La composante de Hitchin pour S L(oco, R)

Dans cette section, on se limite a nouveau a § = % et s =0+ % La notation
générale est laissée car les énoncés sont valables en réalité pour s plus grand,
voir remarque 7.4, mais nous avons limité la démonstration a ce cas particulier.

Le théoréme 8.2 montre I'existence d’une paramétrisation

sl sl
telle que
(82) dU(g) = L9, € =2 (igwdy, — 10ug),

ou g a été étendue holomorphiquement disque a disque. En particulier, écrivant
g = g1 + ig2, la modification infinitésimale du domaine My C T*X est donnée
par le déplacement infinitésimal de X C T par le vecteur Re€ le long de X :

& =~ X1+ (X391) X2 — (X201) X3,

83 R = &1+ &2
(83) Pl =ht s {52=gzx‘18x+(X292)X2+(X392)X3'

DEFINITION 8.1. — La composante de Hitchin pour SL(oco,R) est constituée
des couples (w¢ wy) € MZ’Z tels que w® € Cg’e, c’est-a-dire des domaines de

T*3Y qui portent des métriques hyperkédhlériennes pliées.

On remarquera que restreindre w® a C;,e tue ipso facto 'ambiguité de jauge
diie a I'action des difféomorphismes.

D’autre part, la régularité finie n’est présente dans cette définition que pour
des raisons techniques, on ne s’intéresse en réalité qu’a des objets lisses. Mais
les solutions ne sont pas forcément lisses jusqu’au bord, d’ou la nécessité d’en
fixer la régularité.

Rappelons que la décomposition en séries de Fourier des fonctions CR ho-
lomorphes sur X est @©,>0H%(X, K™) (une section de K™ correspond & une
fonction de fréquence —n).

THEOREME 8.2. — Prés de la structure standard, la composante de Hitchin
pour SL(co,R) est une sous-variété de C§’Z dont lespace tangent s’identifie a

FS“2H(X) N @52 HO (D, K™,

c’est-a-dire auzx fonctions CR holomorphes sur X de régularité Fgi+2+e

Co H (S, K).
En particulier, prés de la structure standard, les éléments de la composante
de Hitchin sont déterminés par leurs polynomes invariants définis par (64).

, modulo
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REMARQUE 8.3. — Au vu de la remarque 6.2, quitte a appliquer un difféomor-
phisme, on peut supposer que la paramétrisation de la composante de Hitchin,

FS“T2H(X) N @52 HO(E, K™) — MY,
est une section de I'application de Hitchin qui a une solution associe ses poly-

nomes invariants.

Démonstration. — 11 s’agit de montrer que la restriction a Ct‘;’é de l'opérateur
P considéré dans les sections 2 et 3, a savoir

Q: {(wl,wc) € Q?Z tel que w® € C;’Z} — 'H;g(R‘S)

défini par
c c 2 1 c el
Qw,w) = w1 Aw Wi = 5w Awe ),

est une submersion. Ici I'indice ( signifie que I'image est restreinte au sous-
espace

/ w1 Aw’ = U (¢ +iC3).
My

L’opérateur @ est clairement la restriction de 'opérateur P défini dans la sec-
tion 2.

L’analyse est déja faite dans la section 5, ou l'on a vu qu’en la métrique
standard, on peut toujours résoudre le systéme dQ(dn;,dn®) = (v1, v®) par une
solution du type

(84) (m =m0 +d°f — 1g,01,7° = —1,0°),
avec & un champ de vecteurs du type (57), & savoir
(85) Lo = Yo' 0p + (Xo2¥) Xo + (X31) X3.
Le probleme dans (84) est que 2¢,w® n’a pas de raison d’étre un vecteur tangent
acy’.

Or dans (84) le seul fait important est la valeur de ¢ au bord (dans F
peu importe son extension a l'intérieur (en effet, la valeur au bord est la pour

compenser la singularité de d° f). Donc le résultat reste valable avec le choix
suivant d’extension : on choisit & dans (83) avec ga|x = 1, et on complete

S€+2+6)7

avec une fonction g; telle que g = g1 + igo soit a fréquences positives sur X, et
Re f x 91 =0. Etendant g comme une fonction holomorphe disque & disque, les
champs de vecteurs & et £ sont ainsi étendus sur My, et 'action infinitésimale
de & + & est tangente A C§’Z.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



334 0. BIQUARD

La forme 1° = —1¢,w® n’est pas encore tangente a C§’Z, mais, puisque &1|x est
un champ de vecteurs de contact, nous pouvons appliquer ’action infinitésimale
de & sans sortir des espaces fonctionnels, donc utiliser & la place de (84) la
solution

(86) (M0 +d°f — 1ey4e,w1, —tey46,00°) -

Maintenant u¢, 1¢,w* est un vecteur tangent a C§,£7 ce qui prouve la surjectivité
de dQ.

La composante de Hitchin est donc une sous-variété de C§’Z dont l'espace
tangent est donné par les déformations infinitésimales du systéme, analysées
sections 5 et 6. Le théoréme découle alors de la proposition 6.1 (les déformations
construites dans cette proposition ne sont pas dans la jauge fournie par C§,£7
mais bien entendu les constructions de la section 7 montrent qu’on peut les y

ramener).
Enfin, I’assertion sur les polynémes invariants découle immédiatement du
calcul fait dans la remarque 6.2. ]
9. Analyse

Nous démontrons dans cette section les propriétés de base du laplacien sca-
laire pour la géométrie induite par une métrique hyperkédhlérienne pliée gq.
Notons Ag = zA et rappelons (32) :

(87) Ag=—0? - X3 - X3 —2*X} + 2*F(0,,2X1, X2, X3),
ou F' est un opérateur a coefficients lisses jusqu’au bord.

Les propriétés hypoelliptiques [10] du laplacien 0 = — X2 — X2 permettent
de décomposer une fonction f sur X suivant les valeurs propres A\? de O :

(88) F=>f
A
L’espace de Folland-Stein FS® est alors défini par la norme Y (1 + A%)|| £y 2.

9.1. Le laplacien modéle dans les espaces de Sobolev ordinaires. — Placons-
nous dans le cas modele ou X est un quotient compact du groupe de Heisenberg,
avec la structure décrite dans la section 1. Ainsi, la formule (87) devient exacte
(F = 0). Considérons la variété a bord (My, go) définie par

Mo =[0,1] x X, go =ax(da® + (6*)* + (6°)%) + 2" (6")*.

Le laplacien Ag ressemble beaucoup & un laplacien ordinaire sur une variété
a bord, a la différence prés que le laplacien sur le bord est remplacé par le
laplacien hypoelliptique [J. Néanmoins, il se comporte de maniere analogue au
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laplacien standard dans les espaces de Sobolev ordinaires associés, comme nous
allons le voir maintenant.
Nous notons

v=a"1vol? =dz A0 NO* NG,

et utiliserons I'espace L2(v), ainsi que les espaces de Sobolev naturellement
associés,

H* = {f, D7 f € L*(v) pour tout j < k}.

LEMME 9.1. — L’opérateur Ag : H*2(My) — H*(My) est un isomorphisme
pour les deux choix suivants de condition au bord :

i. condition de Dirichlet sur les deux bords x =0 et x =1

ii. condition de Dirichlet sur le bord x = 1 et Neumann sur le bord x = 0.

Démonstration. — IL’avantage du modele plat est que le champ de vecteurs
X, engendre une action de cercle, qui commute au laplacien horizontal [J; aussi
Popérateur Ay se diagonalise-t-il complétement en décomposant en outre par
rapport aux coefficients de Fourier de ’action de cercle :

(89) Ag = =02 + X + n?z?

Par ailleurs, I'identité X; = —[X5, X3] impose |n| < A2
Analyser le comportement d’un tel opérateur est élémentaire. Pour chaque
(A, n), Pexistence d’une solution unique & I’équation Ay f = g avec les conditions
au bord prescrites est immédiate, et il faut donc montrer une estimation H5t2
sur f. L’outil essentiel est I'intégration par parties
1

1
[ 10rP 02 e = [ g
0 0
1! |g|?
<t 2 2,2\ £]2

d’ou résulte

1 1 1 1 |g|2
(90) [ 10ur? 4 500 vt < 5 [
0 2 2 0

A2 + n2x2 :

En particulier,

1 1
(91) / N2\, 2 4 AZH 2 < A2 / 9I?
0 0

donne déja le controle voulu des dérivées de f et 0, f suivant Xs et X3.
On a I’équation

(92) Aog(zf) =29 — 20, f.
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Appliquant (90) & zf, on obtient
1 1 2 2 1
4]0, _ _
[ 10uenp +watisp < [ ORI o [ sonan,
0 0 0

N2 + n2z2
otl, dans la seconde inégalité, on a réutilisé (90) pour f. Puisque n? < \*, on
obtient ainsi

1
1
/ §n21?2\3mf|2 +ntat|f? < /3\9|2 +n?|f|? < 4/|9\2;
0

I'équation Agf = g permet alors d’estimer aussi 92 f, et on a obtenu ainsi une
estimation sur toutes les dérivées secondes de f, donc

(93) [1fla> < cllglze-

L’estimation plus générale || f||gr+2 < ckllg||g= est alors établie par récur-
rence sur s : d’une part, les dérivées suivant Xs et X3 ont déja été bornées, les
dérivées suivant X7 sont successivement bornées en utilisant comme ci-dessus

No(2? f) = 27g — 22?10, f — §(j — 1)a? 2 f,

et les dérivées 07 f en dérivant 1’équation. Les détails sont laissés au lecteur,
car le cas k > 0 n’est de toute fagon pas utilisé dans la suite. 0

9.2. Le laplacien dans les espaces de Sobolev ordinaires. — Les résultats de la
section précédente se généralisent a une variété hyperkéhlérienne pliée générale,
(Mo, go), & bord X. Les espaces de Sobolev ordinaires H* restent définis en
prenant les normes L? par rapport & une forme volume v = 2~ ! vol? prés du
bord.

PROPOSITION 9.2. — Le laplacien A = 7 Ay est un isomorphisme :
i. H*2(My) — o~ H*(M,), avec condition de Dirichlet d la source ;
ii. HYP2(My) — (x~ H*(My))o, avec condition de Neumann d la source,
et ot l'indice 0 signifie qu’on se limite aux fonctions d’intégrale nulle :
Jag, fyol? = 0.

Démonstration. — Le probléeme est de passer du lemme 9.1 dans le cas mo-
dele a I’énoncé du théoreme. C’est une méthode classique sur laquelle nous
ne donnerons pas beaucoup de détails. L’énoncé résulte immédiatement de la
construction d’'un parametrix pour A, dans chacun des deux cas. La méthode
consiste & voir qu’en tout point du bord X, la géométrie de g est bien ap-
prochée par celle du modele, grace & (16). On peut donc fabriquer un inverse
approximatif de A en recouvrant X par un nombre assez grand de petits ou-
verts ou la structure hyperkahlérienne pliée est tres proche de celle du modele.
L’inverse construit pour le modele peut alors étre greffé sur My pour donner
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un inverse approximatif sur un voisinage de X dans My ; complété par un pa-
rametrix sur Uintérieur, il fournit le parametrix attendu. C’est exactement la
méthode utilisée dans [2, chapitre I] pour 'analyse des métriques asymptoti-
quement hyperboliques complexes, qui offrent comme on ’a vu une géométrie
tres similaire. O

REMARQUE 9.3. — De la méme maniere, on peut se placer sur un petit voi-
sinage N, = (0,¢) x X de X dans M, avec, comme dans la section 9.1 une
condition de Dirichlet sur le bord x = €, et on obtient alors, tant avec la condi-
tion de Dirichlet qu’avec la condition de Neumann en x = 0, un isomorphisme

(94) A H¥2(N) — 27 TH*(N).

9.3. Le laplacien dans les espaces de Sobolev a poids. — Les espaces de Sobo-
lev ordinaires ne sont malheureusement pas suffisants pour controler la non-
linéarité de I’équation P(a) = 0 : & cause du volume vol?° ~ x=2dzAel Ae? Ae3,
le terme quadratique (dag A dag) donne lieu & des termes xszaayiDabJ- qui
sont trop singuliers. C’est la raison de 1'utilisation d’espaces a poids.

Il existe des liens entre les espaces de Sobolev ordinaires et a poids demi-
entiers : il est clair que

(95) L2, = L*(v),
et en outre, on a 1’égalité des deux espaces,
(96) My = H?,

car ils sont tous deux caractérisés par la condition D?f € L?(v). La proposi-
tion 9.2 dit donc déja qu’on obtient des isomorphismes

(97) tH? — 27 'L, =H",,
2 2 2
qui inclut implicitement la condition de Dirichlet sur X, et

2 0

(98) Hl,%;o — H—%;O

avec condition de Neumann a la source (et I'indice 0 signifie qu’on se limite aux
fonctions d’intégrale nulle). Notons D et A les inverses respectifs de A dans

les deux cas.

REMARQUE 9.4. — On peut modifier la preuve du lemme 9.1 pour obtenir des
estimations pour un poids § € (0,1) au lieu de 1 dans (97) et (98), mais le
poids § = % suffit pour les résultats de cet article.

Commencgons par voir que ces isomorphismes s’étendent quand les dérivées
sont contrdlées avec des poids :
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LEMME 9.5. — Pour tout s = 0 on a sur My des isomorphismes

(99) »TH?Q — Hig,

(100) 7—[1“0 — H .

Démonstration. — En utilisant le lemme d’extension 3.1, on est ramené a

montrer que si f € L3 et Af € H® ,, alors f € H3™2, ce qui est un énoncé de
régularité elliptique cfans les espacez de Sobolev 2‘12 poids. Cette régularité est
une conséquence de '’homogénéité (16) : soit zg > 0, alors ¢’ = x Bh;O g est
proche de la métrique modele G construite a partir du groupe de Heisenberg, et
en particulier une boule de rayon px§ est ainsi envoyée sur une boule de rayon
p pour ¢’ = G. On en déduit qu’on dispose d’estimations elliptiques dans la
boule B,(g’) de rayon p pour ¢’, avec constante indépendante du point choisi :

1 Weraa, ) < € (1 132(a, ) + 187 Flea, 0 ) -

Appliquons le changement d’échelle qui raméne a g : on obtient

s+2

ZHSL’ .Djf||2 ( : 3/2(g)>

S 3]
<c 2 + 222 A9 |2
LA RO Mt

2\ B 3/2(9))
pwg

ng/Q(g

Comme x et z¢ sont comparables dans la boule Bpma/z (g) si p a été fixé assez
0

petit, c’est ’estimation a poids voulue, aprés multiplication par x, ® pour avoir
les bons poids. II suffit ensuite de sommer sur un recouvrement localement fini
par des boules de rayon pz>/2. O

Analysons les inverses D et N de (99) et (100) sur 'espace H3 :
2

PROPOSITION 9.6. — Supposons s > { + 5 et g € Hsl’e (resp. g € ’Hi’,eo).
3
Alors Dg (resp. N'g) est dans l’espace ’H;gz’z, et D : 7-[316 — 7-[3+2[ (resp.

N 7—[ 0~ ”H;ffoe) est un opérateur continu.
155

Démonstration. — On utilise la commutation de O et X; avec A. Dans le cas

modele, on a exactement [X;,A] =0 et [0, A] = 0. En général, observons que

01 ([X1, Xa]) = —df' (X1, X3) = 0, donc [X7, X3] est horizontal, et de méme

[X1, X3]. Il en résulte [X;,0] = 92, ot par 8% nous entendons n’importe quel
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opérateur sur X, d’ordre 2 en les dérivations horizontales, et finalement
(101) [(X1,A] = 27'0;,
(102) [d,A] = Os,
ou Oj est un opérateur d’ordre j en les dérivations e;.
Commencgons par le probleme de Dirichlet. Supposons g € *H5 et posons
2
f = Dg € xH™ A partir de Og € H* % et [O,A]f € H*,' par (102),
2 2 2
le lemme 9.5, appliqué a un voisinage N, de X dans My, comme dans la re-
marque 9.3, donne (avec estimation)

(103) Of € a:?-t‘;

De méme, X1g € H* ' et [X1,A]f € H® ;, donc X, f € H5™, d’ott on déduit
2 2 2

(104) 2 X1f € aH -

De (103), (104) et de I’équation Af = g on déduit enfin 92f € xH5, donc on

2
a pour toutes les dérivées secondes (avec estimation en fonction de ||g|z#:= )
2
(105) D*f € xH3.
2

Il s’ensuit que f € H:H2, et méme, puisque f satisfait la condition de Dirichlet,

2,27

s+2

fe le,% )
Le probléme de Neumann est similaire : si g € zH5 et f = Ng, alors le

2
méme raisonnement fournit un contréle D?f € 7-[‘1912, qui implique f € H;Jrf
'3 .

Finalement, le cas ou £ # 0 s’en déduit par récurrence sur ¢, en appliquant
les estimations précédentes a 0% f, dont les images par A sont controlées grace
4 la commutation évidente [02,A] = 2710, (en fait, on peut méme montrer

que ce commutateur est Os). g
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