Un isomorphisme de Suslin
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 633-647

Dans cette note on constate qu’on peut enlever l’hypothèse de la résolution des singularités de l’isomorphisme construit par Suslin entre la cohomologie étale à supports compacts et les groupes de Chow supérieurs de Bloch. On démontre de plus que l’on peut obtenir cet isomorphisme à partir de la réalisation étale d’Ivorra.

In this note we observe that we can remove the resolution of singularities hypothesis from the isomorphism constructed by Suslin between étale cohomology with compact supports and Bloch’s higher Chow groups. Moreover, we show that this isomorphism can be obtained from Ivorra’s étale realisation functor.

DOI : 10.24033/bsmf.2768
Classification : 14F20, 19E15, 14C15
Mots-clés : Cohomologie étale, cycles algébriques, cohomologie motivique, groups de Chow supérieurs
Keywords: Étale cohomology, algebraic cycles, motivic cohomology, higher Chow groups

Kelly, Shane 1

1 Tokyo Institute of Technology Department of Mathematics 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
@article{BSMF_2018__146_4_633_0,
     author = {Kelly, Shane},
     title = {Un isomorphisme de {Suslin}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {633--647},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {4},
     doi = {10.24033/bsmf.2768},
     mrnumber = {3936537},
     zbl = {1420.14043},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2768/}
}
TY  - JOUR
AU  - Kelly, Shane
TI  - Un isomorphisme de Suslin
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 633
EP  - 647
VL  - 146
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2768/
DO  - 10.24033/bsmf.2768
LA  - fr
ID  - BSMF_2018__146_4_633_0
ER  - 
%0 Journal Article
%A Kelly, Shane
%T Un isomorphisme de Suslin
%J Bulletin de la Société Mathématique de France
%D 2018
%P 633-647
%V 146
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2768/
%R 10.24033/bsmf.2768
%G fr
%F BSMF_2018__146_4_633_0
Kelly, Shane. Un isomorphisme de Suslin. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 633-647. doi: 10.24033/bsmf.2768

[1] S. Bloch – “Algebraic cycles and higher K-theory”, Adv. in Math. 61 (1986), 3, p. 267–304. | MR | Zbl

[2] D. Cisinski & F. Déglise – “Triangulated categories of mixed motives, preprint”, Arxiv preprint arXiv:0912.2110v3 (2012). | MR

[3] A. DoldLectures on algebraic topology, Springer, 1972. | MR | Zbl

[4] E. M. Friedlander & V. Voevodsky – “Bivariant cycle cohomology”, in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, 2000, p. 138–187. | MR | Zbl

[5] T. Geisser – “Applications of de Jong’s theorem on alterations”, in Resolution of singularities (Obergurgl, 1997), Progr. Math., vol. 181, Birkhäuser, 2000, p. 299–314. | MR | Zbl

[6] F. Ivorra – “Réalisation -adique des motifs mixtes”, Thèse, Université Paris 6, 2005, http://www.math.uiuc.edu/K-theory/0762.

[7] F. Ivorra – “Réalisation -adique des motifs triangulés géométriques. I”, Doc. Math. 12 (2007), p. 607–671. | MR | Zbl

[8] S. Kelly – “Triangulated categories of motives in positive characteristic”, Thèse, Université Paris 13, Australian National University, 2012.

[9] S. Kelly – “Voevodsky motives and ldh-descent”, Astérisque (2017), no. 391, p. iv+125. | MR

[10] S. Kelly & S. Saito – “Weight homology of motives”, International Mathematics Research Notices (2016), p. rnw111. | MR

[11] M. Levine – “Techniques of localization in the theory of algebraic cycles”, Journal of Algebraic Geometry 10 (2001), 4, p. 299–364. | MR | Zbl

[12] C. Mazza, V. Voevodsky & C. WeibelLecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, 2006. | MR | Zbl

[13] M. Nagata – “Imbedding of an abstract variety in a complete variety”, J. Math. Kyoto Univ. 2 (1962), p. 1–10. | MR | Zbl

[14] A. Suslin & V. Voevodsky – “Singular homology of abstract algebraic varieties”, Invent. Math. 123 (1996), 1, p. 61–94. | MR | Zbl

[15] A. Suslin & V. Voevodsky – “Bloch-Kato conjecture and motivic cohomology with finite coefficients”, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., 2000, p. 117–189. | MR | Zbl

[16] A. Suslin & V. Voevodsky – “Relative cycles and Chow sheaves”, in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, 2000, p. 10–86. | MR | Zbl

[17] A. A. Suslin – “Higher Chow groups and etale cohomology”, in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, 2000, p. 239–254. | MR | Zbl

[18] Théorie des topos et cohomologie étale des schémas. Tome 3 – Lecture Notes in Mathematics, Vol. 305, Springer, Berlin, 1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. | Zbl

[19] V. Voevodsky – “Triangulated categories of motives over a field”, in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, 2000, p. 188–238. | MR | Zbl

Cité par Sources :