[Torsion et volume symplectique des variétés de Seifert]
For any oriented Seifert manifold and compact connected Lie group with finite center, we relate the Reidemeister density of the moduli space of representations of the fundamental group of into to the Liouville measure of some moduli spaces of representations of surface groups into .
Pour toute variété de Seifert orientée et tout groupe de Lie compact connexe de centre fini, nous calculons la densité de Reidemeister de l’espace des modules des représentations du groupe fondamental de dans en fonction de la mesure de Liouville de certains espaces de modules de représentations de groupes de surfaces.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2758
Keywords: Seifert manifolds, Moduli spaces of representations, Reidemeister Torsion, Atiyah-Bott symplectic structure
Mots-clés : Variété de Seifert, Espace de modules de représentations, Torsion de Reidemeister, structure symplectique d’Atiyah-Bott
Charles, Laurent 1 ; Jeffrey, Lisa 2
@article{BSMF_2018__146_2_287_0,
author = {Charles, Laurent and Jeffrey, Lisa},
title = {Torsion and symplectic volume in {Seifert} manifolds},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {287--308},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {2},
doi = {10.24033/bsmf.2758},
mrnumber = {3933877},
zbl = {1407.30023},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2758/}
}
TY - JOUR AU - Charles, Laurent AU - Jeffrey, Lisa TI - Torsion and symplectic volume in Seifert manifolds JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 287 EP - 308 VL - 146 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2758/ DO - 10.24033/bsmf.2758 LA - en ID - BSMF_2018__146_2_287_0 ER -
%0 Journal Article %A Charles, Laurent %A Jeffrey, Lisa %T Torsion and symplectic volume in Seifert manifolds %J Bulletin de la Société Mathématique de France %D 2018 %P 287-308 %V 146 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2758/ %R 10.24033/bsmf.2758 %G en %F BSMF_2018__146_2_287_0
Charles, Laurent; Jeffrey, Lisa. Torsion and symplectic volume in Seifert manifolds. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 287-308. doi: 10.24033/bsmf.2758
The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 | MR | Zbl | DOI
Non-abelian localization for Chern-Simons theory, J. Differential Geom., Volume 70 (2005), pp. 183-323 http://projecteuclid.org/euclid.jdg/1143642932 | MR | Zbl
On the Witten asymptotic conjecture for Seifert manifold (preprint arXiv:1605.04124 )
The symplectic nature of fundamental groups of surfaces, Adv. in Math., Volume 54 (1984), pp. 200-225 | MR | Zbl | DOI
Lectures on Seifert manifolds, Brandeis Lecture Notes, 2, Brandeis University, 1983, 84+27 pages | MR
Product and sum theorems for Whitehead torsion, Ann. of Math., Volume 82 (1965), pp. 183-190 | MR | Zbl | DOI
Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985), p. 117 | MR | Zbl | DOI
Abelian Analytic Torsion and Symplectic Volume, Archivum Mathematicum. Volume 51. pg. 163-175 (2015) | MR | Zbl | DOI
Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | MR | Zbl | DOI
The Reidemeister torsion of 3-manifolds, De Gruyter Studies in Mathematics, 30, Walter de Gruyter & Co., 2003, 249 pages | MR | Zbl | DOI
Seifert manifolds, plumbing, -invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) (Lecture Notes in Math.), Volume 664, Springer, 1978, pp. 163-196 | MR | Zbl
Half-density volumes of representation spaces of some -manifolds and their application, Duke Math. J., Volume 86 (1997), pp. 493-515 | MR | Zbl | DOI
A large asymptotics of Witten’s invariant of Seifert manifolds, Comm. Math. Phys., Volume 171 (1995), pp. 279-322 http://projecteuclid.org/... | MR | Zbl | DOI
Analytic torsions on contact manifolds, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 727-782 | MR | Zbl | Numdam | DOI
Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser, 2001, 123 pages | MR | Zbl | DOI
Quantum field theory and the Jones polynomial, Comm. Math. Phys., Volume 121 (1989), pp. 351-399 http://projecteuclid.org/... | MR | Zbl | DOI
On quantum gauge theories in two dimensions, Comm. Math. Phys., Volume 141 (1991), pp. 153-209 http://projecteuclid.org/euclid.cmp/1104248198 | MR | Zbl | DOI
Cité par Sources :






