Torsion and symplectic volume in Seifert manifolds
[Torsion et volume symplectique des variétés de Seifert]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 287-308

For any oriented Seifert manifold X and compact connected Lie group G with finite center, we relate the Reidemeister density of the moduli space of representations of the fundamental group of X into G to the Liouville measure of some moduli spaces of representations of surface groups into G.

Pour toute variété de Seifert orientée X et tout groupe de Lie compact connexe G de centre fini, nous calculons la densité de Reidemeister de l’espace des modules des représentations du groupe fondamental de X dans G en fonction de la mesure de Liouville de certains espaces de modules de représentations de groupes de surfaces.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2758
Classification : 53D30, 14D21, 57Q10
Keywords: Seifert manifolds, Moduli spaces of representations, Reidemeister Torsion, Atiyah-Bott symplectic structure
Mots-clés : Variété de Seifert, Espace de modules de représentations, Torsion de Reidemeister, structure symplectique d’Atiyah-Bott

Charles, Laurent 1 ; Jeffrey, Lisa 2

1 Institut de Math. de Jussieu-Paris Rive Gauche, Sorbonne Universités, UPMC Univ. Paris 06, 75005, Paris, France
2 Mathematics Departement, University of Toronto, Toronto, ON, Canada M5S 2E4
@article{BSMF_2018__146_2_287_0,
     author = {Charles, Laurent and Jeffrey, Lisa},
     title = {Torsion and symplectic volume in {Seifert} manifolds},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {287--308},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {2},
     doi = {10.24033/bsmf.2758},
     mrnumber = {3933877},
     zbl = {1407.30023},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2758/}
}
TY  - JOUR
AU  - Charles, Laurent
AU  - Jeffrey, Lisa
TI  - Torsion and symplectic volume in Seifert manifolds
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 287
EP  - 308
VL  - 146
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2758/
DO  - 10.24033/bsmf.2758
LA  - en
ID  - BSMF_2018__146_2_287_0
ER  - 
%0 Journal Article
%A Charles, Laurent
%A Jeffrey, Lisa
%T Torsion and symplectic volume in Seifert manifolds
%J Bulletin de la Société Mathématique de France
%D 2018
%P 287-308
%V 146
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2758/
%R 10.24033/bsmf.2758
%G en
%F BSMF_2018__146_2_287_0
Charles, Laurent; Jeffrey, Lisa. Torsion and symplectic volume in Seifert manifolds. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 287-308. doi: 10.24033/bsmf.2758

Atiyah, M. F.; Bott, R. The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 | MR | Zbl | DOI

Beasley, Chris; Witten, Edward Non-abelian localization for Chern-Simons theory, J. Differential Geom., Volume 70 (2005), pp. 183-323 http://projecteuclid.org/euclid.jdg/1143642932 | MR | Zbl

Charles, L. On the Witten asymptotic conjecture for Seifert manifold (preprint arXiv:1605.04124 )

Goldman, William M. The symplectic nature of fundamental groups of surfaces, Adv. in Math., Volume 54 (1984), pp. 200-225 | MR | Zbl | DOI

Jankins, Mark; Neumann, Walter D. Lectures on Seifert manifolds, Brandeis Lecture Notes, 2, Brandeis University, 1983, 84+27 pages | MR

Kwun, Kyung Whan; Szczarba, R. H. Product and sum theorems for Whitehead torsion, Ann. of Math., Volume 82 (1965), pp. 183-190 | MR | Zbl | DOI

Lubotzky, Alexander; Magid, Andy R. Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985), p. 117 | MR | Zbl | DOI

McLellan, Brendan Abelian Analytic Torsion and Symplectic Volume, Archivum Mathematicum. Volume 51. pg. 163-175 (2015) | MR | Zbl | DOI

Milnor, J. Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | MR | Zbl | DOI

Nicolaescu, Liviu I. The Reidemeister torsion of 3-manifolds, De Gruyter Studies in Mathematics, 30, Walter de Gruyter & Co., 2003, 249 pages | MR | Zbl | DOI

Neumann, Walter D.; Raymond, Frank Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) (Lecture Notes in Math.), Volume 664, Springer, 1978, pp. 163-196 | MR | Zbl

Park, Jinsung Half-density volumes of representation spaces of some 3-manifolds and their application, Duke Math. J., Volume 86 (1997), pp. 493-515 | MR | Zbl | DOI

Rozansky, L. A large k asymptotics of Witten’s invariant of Seifert manifolds, Comm. Math. Phys., Volume 171 (1995), pp. 279-322 http://projecteuclid.org/... | MR | Zbl | DOI

Rumin, Michel; Seshadri, Neil Analytic torsions on contact manifolds, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 727-782 | MR | Zbl | Numdam | DOI

Turaev, Vladimir Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser, 2001, 123 pages | MR | Zbl | DOI

Witten, Edward Quantum field theory and the Jones polynomial, Comm. Math. Phys., Volume 121 (1989), pp. 351-399 http://projecteuclid.org/... | MR | Zbl | DOI

Witten, Edward On quantum gauge theories in two dimensions, Comm. Math. Phys., Volume 141 (1991), pp. 153-209 http://projecteuclid.org/euclid.cmp/1104248198 | MR | Zbl | DOI

Cité par Sources :