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CONGRUENCES OF MODULAR FORMS
AND THE IWASAWA )\-INVARIANTS

BY YUICHI HIRANO

ABsTRACT. — In this paper, we show how congruences between cusp forms and
Eisenstein series of weight k > 2 give rise to corresponding congruences between the
algebraic parts of the critical values of the associated L-functions. This is a gener-
alization of results of Mazur, Stevens, and Vatsal in the case where kK = 2. As an
application, by proving congruences between the p-adic L-function of a certain cusp
form and the product of two Kubota-Leopoldt p-adic L-functions, we prove the Iwa-
sawa main conjecture (up to p-power) for cusp forms at ordinary primes p when the
associated residual Galois representations are reducible. This is a generalization of
Greenberg and Vatsal in the case where k = 2.

REsuME (Congruences de formes modulaires et A-invariants d’lwasawa). — Dans
cet article, nous montrons comment les congruences entre formes paraboliques et séries
d’Eisenstein de poids k > 2 donnent lieu & des congruences entre les parties algébriques
des valeurs critiques des fonctions L associées. C’est une généralisation des travaux de
Mazur, Stevens et Vatsal dans le cas ou k = 2. Comme application, en prouvant des
congruences entre la fonction p-adique L d’une certaine forme parabolique et le produit
de deux fonctions de Kubota-Leopoldt p-adiques L, nous prouvons la conjecture prin-
cipale d’Iwasawa (& puissance p prés) pour les formes paraboliques & nombres premiers
ordinaires p lorsque les représentations de Galois résiduelles associées sont réductibles.
C’est une généralisation des travaux de Greenberg et Vatsal dans le cas ot k = 2.
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2 Y. HIRANO

0. Introduction

0.1. Introduction. — The purpose of this paper is to show how congruences
between the Fourier coefficients of Hecke eigenforms give rise to correspond-
ing congruences between the special values of the associated L-functions. The
study of this topic was initiated by Mazur [25] using the arithmetic of the modu-
lar curve Xy (1), where [ is a prime number, in order to investigate a weak analog
of the Birch and Swinnerton-Dyer conjecture. Mazur’s congruence formula was
generalized to other congruence subgroups by Stevens [33]. Furthermore, by
the theory of higher weight modular symbols, Ash and Stevens [2] have ex-
amined congruences between special values of the L-functions of cusp forms of
higher weight over SLy(Z) and those of the L-functions of cusp forms of weight 2
over I'g(1). Moreover, Vatsal [39] has proved congruences between special val-
ues of the L-functions of two cusp forms of higher weight over I'g(N), where
N is a more general positive integer. Also, he obtained congruences between
special values of the L-functions of cusp forms of weight 2 and those of the
L-functions of Eisenstein series of weight 2. Moreover, Greenberg and Vatsal
[16] used Vatsal’s congruences [39] to study the Iwasawa invariants of elliptic
curves in towers of cyclotomic fields. In particular, they provided evidence for
the Iwasawa main conjecture for elliptic curves. Their work was motivated by
Kato’s results on the Iwasawa main conjecture for modular forms [21].

In this paper, we present a way to obtain congruences of the special values of
the L-functions from congruences between cusp forms and Eisenstein series of
weight k£ > 2. This is a generalization of the works explained above by Mazur
[25], Stevens [33], and Vatsal [39].

Let O be the ring of integers of a finite extension over Q, and @w € O a
uniformizer.

THEOREM 0.1 (= Theorem 2.10). — Let p be an odd prime number, r a positive
integer, and k an integer with 2 < k <p—1. Let f = > " a(n, f) e(nz) €
Sk(To(N),e,0) be a p-ordinary normalized Hecke eigenform. Assume that the
residual Galois representation py associated to f is reducible and of the form

~ &1 *

pPf~ (0 €2) )
and either &1 or &5 is unramified at p. Assume also that there exists an Eisen-
stein series G = Er(¢1,v%2) € Myp(To(N),e,0) (for the definition, see The-
orem 8.18) such that G satisfies the assumptions of Theorem 1.9 and f =
G (mod @") (for the definition, see before Theorem 2.10). Then there exist a
parity a € {x1} (explicitly given by (A.27)), a complex number Q¢ € C*, and
a p-adic unit u € O™ such that, for every primitive Dirichlet character x whose
conductor m,, is prime to N, the following congruence holds:

TOME 146 — 2018 — N° 1



CONGRUENCES OF MODULAR FORMS AND THE IWASAWA X-INVARIANTS 3

(1) if (my,p) =1, then, for each j with 0 < j <k —2 and a = x(—1)(-1)7,

o L(fix14+5) _ _ L(G,x,1+7)
7(X) (2W\/j1)1+jﬂ? = ur(X) (27rx/j)1+j

(2) if plmy, we assume that m, € w"O, x is non-exceptional (see Defini-
tion 2.11), and o = x(—1). Then

(QWH)Q? 2my/—1

The organization of this paper is as follows.

In §1, we generalize Stevens’s results [33, 34]. We construct a desired 1-
cocycle m, associated to a modular form g of weight k¥ > 2 (Definition 1.2)
and prove that m, is integral, that is, 7, takes values in Ly_5(O) under some
assumption (Theorem 1.9). In terms of Schoenberg’s cocycle, Stevens gave a
generalization of the Mazur’s congruence formula [25] to general congruence
subgroups [33]. Also, he expected that these methods would be generalized
to higher weight modular forms and to Hilbert modular forms [33]. The con-
struction of such cocycles 7, associated to modular forms g of weight & has
been accomplished so far only in the case of weight k& = 2 mainly because of
certain combinatorial problem arising in the higher weight case k > 2. Indeed,
a discrete subgroup I' acts on Li_5(O) trivially only in the case k = 2.

In §2, we generalize Vatsal’s results [39].

If a Hecke eigenform f = Y >, a(n, f)e(nz) of weight k > 2 and an Eisen-
stein series G = Y~ a(n, G)e(nz) of weight k > 2 are related by a congruence
of the Fourier coefficients a(n, f) = a(n, G)(mod w") for all n > 0, we derive
congruences between the special values of the associated L-functions (Theo-
rem 2.10). One of the key ingredients in Vatsal’s proof [39] is to describe the
special values of the L-functions attached to the modular form G as a linear
combination of 1-cocycles g due to the work of Stevens [33], which allows
us to prove congruences between the special values by using cohomological
arguments.

In Appendix A, we give a relation between p-adic modular forms and p-adic
parabolic cohomologies of Hecke modules in the case the residual Galois rep-
resentations pr(= py(mod w)) associated to a cusp forms f is reducible by
using integral p-adic Hodge theory. Our problem on the special values of the
L-functions is closely related to a multiplicity-one theorem, which is intro-
duced by Mazur. In the case py is irreducible, k < p, and a level N is prime
to p, a multiplicity-one theorem is known to be valid by p-adic Hodge theory for
open varieties with non-constant coefficients [10]. In particular, Theorem A.12,
which may be regarded as p-adic Eichler-Shimura isomorphism, is crucial to de-
fine the canonical periods Q‘Ji‘ associated to f and prove congruences between
7¢/Q% and 7& modulo w".

(mod w").

(mod w").

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



4 Y. HIRANO

In §3, we generalize Greenberg-Vatsal’s results [16]. Using Vatsal’s congru-
ences, it is devoted to an application to the Iwasawa main conjecture for elliptic
curves under certain assumptions. In the same manner, Theorem 0.1 is used
to establish a congruence between a p-adic L-function attached to f and the
product of two Kubota-Leopoldt p-adic L-functions (Theorem 3.19). Then,
following the work of Kato [21], we will prove the following theorem, which has
not been treated by Skinner and Urban [32]:

THEOREM 0.2. — Let p be an odd prime number and k an integer such that
2<k<p-—1. Letf e Sp(To(N)e O) be a p-ordinary normalized Hecke
eigenform. We assume that the residual Galois representation py : Gg —
GL2(O/w) associated to f is reducible and of the form

o~ ()

(Assumption) v is unramified at p and odd, and

and that

@ 1s ramified at p and even.

Then )\;lg = )\;‘cnal. In particular, the Iwasawa main conjecture for such f is
true up to w-power.

The work of §1, §2, and §3 is based on the author’s master thesis at the
University of Tokyo in 2010. After I had finished writing this paper, I found
a result obtained by Heumann and Vatsal [17]|, which is almost the same one
as Theorem 0.1 (1) (in the case (m,,p) = 1) in this paper. We also treat the
case p|m, (Theorem 0.1 (2)) and apply Theorem 0.1 (2) to the Iwasawa main
conjecture.

0.2. Notation. — In this paper, p and [ always denote distinct prime numbers.

We denote by N the set of natural numbers (that is, positive integers), denote
by Z (resp. Z,) the ring of rational integers (resp. p-adic integers), and also
denote by Q (resp. Q,) the rational number field (resp. the p-adic number field).
We fix algebraic closures Q of Q and @p of Qp, and fix embeddings

Q—-Q,=C,
where C denotes the complex number field.

We assume that every ring is commutative with unity. For a ring R and
n € N, we use the following notation:

M, (R) = {(n x n)-matrices with entries in R},
GL,(R) = {M € M,,(R)|M is an invertible matrix},
SL,(R) = {M € GL,(R)|det(M) = 1}.

TOME 146 — 2018 — N° 1



CONGRUENCES OF MODULAR FORMS AND THE IWASAWA X-INVARIANTS 5

Moreover, if R is a subring of R, we put
GL} (R) = {M € GL,(R)|det(M) > 0}.
Let $ = {z € C|Im(z) > 0} be the upper half plane and H* = HUQU {cc}

the extended upper half plane obtained by adding the cusps. Then GLJ (Q)
acts on ) by

_az+b
Ccz+d
ab + 0-1
for a = cd €GL; (Q) and z € . Let 0 = 10 € SL2(Z).

The principal congruence subgroups are the subgroup I'(N) of SLy(Z) de-

fined by
_ (10
a= <01> modN},

where N is a positive integer. A congruence subgroup is a subgroup I' C SLy(Z)
containing a principal congruence group. The smallest integer N > 0 for which

I'(N)cT

T(N) = {a € SLy(2)

is called the level of T'.
We will be mostly interested in the following special congruence subgroups:

To(N) = {a = (‘é Z) € SLy(Z)

Iy (N) = {a = (‘c‘ Z) € To(N)

e . b
Let k be a positive integer > 2. For any function f on $) and v = (a ) €

CEOmOdN},

aEdElmOdN}.

cd
GLJ (R), we define the function f|zy on $ by

Fley(2) = det(n)* " f(v2) (ez + d)~*.

We simply write f|gy for f|y if there is no risk of confusion. Let T' be a
congruence subgroup of SLy(Z) and N a positive integer such that T'(N) C T
Any holomorphic function on $ satisfying f 1,7 = f for all v € T'(N) has the
Fourier expansion of the form:

Nt nz

Za(n,f)e (W) )

n=0
where e(z) = exp(2mv/—12).

We define the space My(I',C) of modular forms of weight k with respect

to I' to be the space of holomorphic functions f on $ satisfying the following
conditions:

(a) flgy=fforallyel.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 Y. HIRANO

(b) a(n, flga) =01if n < 0 for each a € SLy(Z).

Here we note that the function f|a is invariant under the action of o~ 'T'a and
hence f|ra has the Fourier expansion. We define the space Si(I',C) of cusp
forms to be the subspace of M (T, C) consisting of f € My(T', C) satisfying the
following condition:

(¢) a(0, flxe) = 0 for any o € SL2(Z).
Let e: (Z/NZ)* — C* be a Dirichlet character modulo N. We put

My (To(N),,C) = {F € My(T1(N),C) \ Flov = (@) f

for any v = (Z Z) e To(N)},
Sk(FO(N)aea(C) = Mk(FO(N)75a(C) n Sk(FI(N)7C)

We remark that My, (To(N),¢,C) is trivial if e(—1) # (—1)*.

For a ring R and a non-negative integer n, we denote by L, (R) the degree
n part Symp(RX @ RY) of the polynomial algebra R[X,Y]. Thus, L,(R)
consists of the homogeneous polynomials of degree n in two-variables X and
Y, with coefficients in R. The semigroup ¥ = GL2(Q) N My (Z) acts on L, (R)
by

v P(X,Y) = P((X,Y)det(y)y ™).
If R is a Q-algebra, we also define the action of ¥ on L, (R) by
’Y*P(X’ Y) = P((va)tfy_l)'

In the similarly way, GL} (Q) acts on L, (R) for Q-algebra R and it is denoted
by x. We simply denote det(a)a~! by o for any o € GLJ (Q). We remark
that these three actions coincide if they are restricted to SLy(Z).

Moreover, for « € GLj (Q) and a function G on §, we have the pull-back
formula

a*(G(2)(X — 2Y)*2dz2) = (Gla)(z)ax (X — 2Y)*2dz.
Furthermore, for a, 3 € GLJ (Q),
(0.1) a*(G(2)B* (X — 2Y)F2dz) = B % (o (G(2)(X — 2Y)*2dz)
= (Gla)(2)(Ba) * (X — zY)*2dz.
0.3. Acknowledgement. — I would like to express my gratitude to Professor
Takeshi Tsuji for providing helpful comments and suggestions, and pointing out
mathematical mistakes during the course of my study. In particular, the work

in Appendix A would have been impossible without his insight and guidance.
I heartily thank the referee for providing helpful comments for improvement.
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1. Integrality of 1-cocycles

1.1. Preliminary. — Let I' = I'o(NV) or I'1(N). Then G € M (T',C) has the
Fourier expansion of the form

z) = Za(n,G)e(nz).
n=0

Thus, we may regard My(I'1(N),C) = @ M (Ty(N),e,C) as a sub-
:(Z/NZ)X —C
space of C[[e(z)]]. For a subring A of C, we put
M(T1(N), A) = M (I'1(N), C) N Affe(2)]],
Sk(T1(N), A) = Sie(T1(N), C) N Alle(2)]],
M;(To(N), &, A) = Mg(To(N), e, C) N Alle(2)]],
Sk(To(N), e, A) = Sk(T'o(N), &, C) N Affe(2)]].

Let x be a Dirichlet character whose conductor m,, is prime to N. We put

[ee)
(G®x)(2) =Y an,G)x(n)e(nz).
n=0
We note that, if G € My(To(N),e,C), then G® x € M(Lo(M),ex?, C) where
M = lem{N,m?,mym.}. The Dirichlet series

S a(n, G)x(m)n~"
n=1

converges absolutely for Re(s) > k and extends to a meromorphic function on
the complex plane with a possible simple pole at s = k. For each G € M (T, C),
let L(G, x, s) denote this analytic continuation. If x is the trivial character, we
simply write L(G, s). We define D(G, x, s) as

(1.1)
V—Tloo _____ L
D(G,x,s) = /0 (G x)(2)(X — 2Y)F2Im(2)° 'dz

k—2 E—9 - 1 s+7
_ ( j )F—f D(s + ) () L(Gyx,s + ) X2 (<Y Y,
0

° 2m

=
where G(z) = G(2) — a(0, @) (see, for example, [33, Proposition 2.1.2] and the
proof of [28, Theorem 4.3.5]). We call D(G, x, s) the Mellin transform of G
twisted by x. The integral D(G, x, s) converges absolutely for Re(s) > k and

extends to a meromorphic function on the complex plane with simple poles
at s = —(k—2),...,—1,0 and 2,3,...,k (see Proposition 1.1 (2)). We are

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



8 Y. HIRANO

interested in the special values of L(G,x,s) at s =1,...,k — 1, that is, in the
special value of D(G, x, s) at s = 1.

PrOPOSITION 1.1. — Let G € My(T',C), and x a Dirichlet character whose
conductor m,, is prime to N.
1) Ifa= (g Z) € GL$ (Q), then we have

gk-1
a(0,Gla) = 5 a(0,G),
Gl = Gl

(2) The integral D(G,x,s) converges absolutely for Re(s) > k and extends to
a meromorphic function on the complex plane with simple poles at s =
—(k—=2),...,—1,0 and 2,3,.. ., k.

Proof. — (1) By definition, (G|a)(z) = “’ZI G(az). Then we have a(0, Gla) =
ak—l

7—a(0,G). Moreover, by definition,
(Gla)(z) = (Gla)(z) — a(0,Gla)

ak—1

= —; (G(az) = a(0,G))
k=1 _

== G(az)

= (Gla)(2).

V—loo
DGxs) = [T EENEX -2V ()

V=lco
= / (G ®x)(2)(X — 2Y)F2Im(z)* " 'dz
V=T

N
+ /0 (G ®x)(2)(X — 2Y)*2Im(z)*dz.

Now we calculate the second term. We put y = Im(z). Then we get

VT
/0 (G® x)(2)(X — 2¥)*Tm(2)*dz
\/j
= / (G ®x)(2)(X — 2¥)F2yo~1ds

V=T
—/0 a(0,G)x(0)(X — 2Y)*=2y5~ 14z

TOME 146 — 2018 — N° 1
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0'_1\/?1
= / (G®x)(02)(X —02Y)F 2y =%do2
a(0, G)x(0)(X — 2Y)"2y*"'dz
(Gex)o)(2)o - (X —2Y)*2y'~*dz

a(0,G)x(0)(X — 2Y)"2y*"ldz

]
|

(G@x)o)(2)o - (X —2Y)*2y'~*dz
V—1co
- / a(0, (G ® x)|o)o - (X — 2Y)F 2yl =%dz

a(0,G)x(0)(X — 2Y)"2y*"1dz

)
2

(G@x)lo)(2)o - (X = 2Y)* %y *dz

k=2 0 T |
_a(o’(G®X)|J)ﬁ;( j )(\/TIX)JYk 2 JHT_S

k—2
—a(0,G)x(0)v—-1 k-2 Xk=273 (/1Y) L .
X ;( J > s+

Here the third equality follows from (0.1). By setting s = 1, the second term
is equal to

J=T
a(0, (G® x)|o) / o (X —2Y)F2dz.
0
This proves (2). O

1.2. Construction of 1-cocycles. — In order to define a desired cocycle with

good arithmetic and p-adic properties, we need to choose some special cobound-
ary element as in [33].

DEFINITION 1.2. — For a congruence subgroup I', let G € My (T, C). For o, 3 €
GLJ (Q) and 2 € $), we define the map

7a,p(20): GL3 (Q) — Li_»(C)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 Y. HIRANO

by

reso)@= [ (@REE (X ¥z

Z0

V=loo ___
+ [T @lBayE)san (x - ¥) s

Z0

—a(0,G|B) /0 Bax (X —2Y)F2dz

N
- [T @Es e x - 2y

+ a(0, G|B) /0 B* (X — 2Y)F2dz.

We remark that the second and fourth integrals converge absolutely by using
Proposition 1.1 (2). If 8 = (}9), we simply write m¢ instead of 7¢,3. Then
we have

(1.2) 7a.8(20)(@) = Bx7g8(20) ().

REMARK 1.3. — If G is a cusp form, then, for any a € GL3 (Q), by using
(0.1),
ay/—1oo

ma(20)(a) = /\/—T G(2)(X — 2Y)*2dz

is the usual Eichler-Shimura cocycle.

PROPOSITION 1.4. — For each o € GLJ (Q), the value 7 g(20) () is indepen-
dent of zp € H.

Proof. — Tor any z,z) € $ and a € GLJ (Q), we have

m6,(20)(@) ~ ma ()@ = [ (GBS (X - 2¥)F 2z

Z0

|

v
(G1Ba)(2)60 = (X — 2 )2
Ve
[ @B (X - )
v

[T @ x - e

TOME 146 — 2018 — N° 1
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vV—Tloo ___
[T @ (x - 2y

—a(0,G|Ba) /ZO Bax (X —2Y)F2dz
0

+a(0,G|Ba) / Bax (X — 2Y)F2dz
0

+ a(0,G|B) OZO B* (X —2Y)F2dz

— a(0,G|5) /0 Bx (X — 2Y)F2de.

By using the pullback formula (0.1), we get

azo

76,6(20) () — ma,p(20) (a) = /M6 (GIB8)(2)B % (X = 2Y)*2dz
- :6(G|ﬁ)(2)ﬂ " (X = 2Y)F 2
+ / :6(5%)(@;3@ (X — 2Y)F2dz
-/ :6(5|73)(z)ﬂ X (X = 2Y )2
— a(0,G|fa) / Bax (X —2Y)k2dz
+a(0,G|B) / Bx (X —2Y)F2dz
_ / :O(Gwa)(z)ﬁa (X = 2Y)2dz
-/ Z°<é%><z>ﬂa 5 (X = 2Y)F2
—a(0,G|B) / Bax (X —2Y)F2dz

—a(0,G|p) /zo B* (X —2Y)F2dz

+ /ZO(GW)(z)ﬂ* (X — 2Y)F 242

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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12 Y. HIRANO

’

- [ @8 (x - )

0

=0. ]

By Proposition 1.4, we simply write ng g instead of mg g(z0). This map
7e is important for a cohomological treatment of D(G, x, s), which we state
in the next section. As a preparation for it, the rest of this section is devoted
to the proof of some properties of mg. The proof is based on the method of
Stevens [33]. We put

V=Too __
D, (G,s) = /0 (G’a)(z)a* (X — 2Y)*2Im(2)*"1dz

for any o € GL3 (Q). Ifa = (§9), we simply write D(G, s) instead of D, (G, s).

We remark that D, (G,s) = a x D(G|a, s) and hence this integral converges
absolutely for Re(s) > k by using Proposition 1.1 (2).

PROPOSITION 1.5. — (1) For any 3 € GL (Q), we have

Ds(G,1) = —mg,p(0),
0-1
where o = (1 0 )

(2) If r= <g 2) € GL$ (Q), then we have

7G,a(0) = TG ar(0).

Proof. — (1) It follows from the proof of Proposition 1.1 (2).
(2) We have

V-loo
D, (G,s) :/0 (Glar)(2)ar * (X — 2Y)*2Im(2)*~'dz
V—=lco __
=/ (Glex
0

V—=Too __
= /0 (Gla)(z)a* (X — 2Y)*2Im(7712)*"dz  (by (0.1))

7)(2)at * (X — 2Y)*"2Im(2)*"*dz (by Prop. 1.1 (1))

= (g>371 /0\/?100(6'|a)(z)a* (X — 2Y)*2Im(2)* 'dz

vys—1
=(- D, (G,s).
() PaG)
This proves (2) by setting s = 1. O
PROPOSITION 1.6. — The map wg has the following properties:
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(1) (cocycle condition) For any a;,as € G‘rL§r (Q),
ma(onag) = 7G a0, (a2) + Ta(an).
More generally, for any 3 € GL;L (Q),

7G,p(a102) = TG ga, (@2) + 76 g(a1).

(2) For any o = (i Z) € GL} (Q) with ¢ > 0,

a

(2(0,0) /0 N(X - 2Y) 2y

+a(0,Gla) /O

ax (X =2V %dz 47 o\ (o) if ¢>0,
Ta(a) = —¢ G’(6 )

0c

|o

d
a(O,G)/ (X — 2Y)F 24z if ¢=0,
\ 0

where 0 = <(1) _01> and ¢ = det(a).
) 7a((3 1) = a(0.6) [ (X =2¥)*2az,

Proof. — (1) For any o,y € GLI (Q),

TG0, (02) + Tg (1)
= / (Glon)(2)oq * (X — 2Y)F2dz + / G(2)(X — z2Y)*2dz

20 Z0

V-leo
+/ (Glonasz)(2)arag x (X — 2Y)*2dz

0 0

N NS
- / (Glon)(2)oq * (X — 2Y)*2dz + / (Glon)(2)ag * (X — 2Y)F2dz

13

Z0 \/jloo
—a(0,Glaiaz) / arag * (X — 2Y)"2dz — / G(2)(X — 2Y)*2dz
0 20

20 20
+a(0, G|a1)/ a1+ (X — 2Y)*2dz — a(0, G|a) / a1+ (X — 2Y)*2dz
0 0

+a(O,G)/ (X — 2Y)* 24z
0
= 7rg(a1a2).
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(2) Let B = {(3 *> € GL+(Q)}. We use the Bruhat decomposition

GL$ (Q) = BoBUB.

First suppose that ¢ = 0. By definition,

7 (20)(a / Gl(z 2Y )24z +/ a(0,G)(X — 2Y)*2dz

= k—2 % k—2
+/z0 (Gla)(z)ax (X —2Y) dz—a(O,G|a)/o a*x (X —2Y)"?dz

V=Too _ 20
- / G(2)(X — 2Y)*2dz + a(0, G)/ (X — 2Y)* 24z
zZ0 0

When zg tends to v/ —100, so does azy. Then, the first, third and fifth
terms converge to 0. Thus we obtain

mg(a) = lim ( — 2Y)*"2dz — a(0, G|a)/ a*x (X — zY)k_2dz)
zo—v—1o0 0
= lim ( 0 G)/ — 2Y)*"2dz — a(0, G)/ (X - zY)k_2dz)
zo—v—100 a0

= a(O,G)/O (X — 2Y)*2dz.

Next we consider the case ¢ > 0. By Proposition 1.6 (1) and the decompo-

sition
¢t da cd
“Z\Vo ect)\oe)%N01)

where § = det(a), we get

me(a) = 7TG((O c)) +7TG7(8 Z)”((S Cll>) +7TG7(8 ‘) (o).

-1
Here we note that # , -1 ,\ = mg and 7rg(<co 001>) = 0 by the

’ 0 C—l

above case. We have already obtained formulas about the first and second
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terms by the case ((); :) considered above. Indeed, we have

"o (52} (61

:a<O,G‘< )/Od (g i)a*(X—zY)k_2dz
(0, Gla(5°) (< —Clld)) /Od o (52) (%0 ) * (X = 2Y )2z

(0,G|a)/ a* (X —2Y)F2dz.
_a

@

Here the final equality follows from that, for § = <; :) € GLy(Q)" and
a € GLy(Q)*, by Proposition 1.1 and (0.1),
a(0,(Gla)|B) aB * (X — 2Y)* " 2dz = B (a(0,Gla) a* (X — 2Y)*2dz),

and hence
d B(d)
a (0, (Glo)|B) / afx (X —2Y)F2dz = a (0, G|a)/ ax (X —2Y)F 24z,
0 B(0)
Thus, we obtain the formula as claimed.
(3) It follows immediately from (2). O

REMARK 1.7. — (1) If I' = I'y(NN), then, for any § € I, we have ngg =
Bxmgp =B ma by (1.2).

(2) The restriction of mg to I'1(N) is a l-cocycle on I'1(N), that is, mg €
ZY(T1(N), Ly_2(C)) (for the definition, see §2.1).

1.3. Integrality. — The value of D(G, ¥, s) at s = 1 is described in terms of 7¢
as follows.

LEMMA 1.8. — Let G € My(I'1(N),C) and x a Dirichlet character whose con-
ductor my is prime to N. Fiz bi,...,by(m,) € Z such that {by,... 7Bsa(mx)} =
(Z/m,Z)*, where b; is the image of b; under the natural map Z — Z/m,Z and
p 1s the Euler function. Then,

p(my) )
"ODG D == Y X (g ;ﬂx)mg (s )@

i=1 "\ 0 my
where T(x) = Zw(mX) X(bi)e(= b; ) is the Gauss sum of X.
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Proof. — We put m = m,.. We have

p(m)
"DE@VE) = Y XBIGE+ ).
Thus,
T(X)D(G, x, s)
®(m) V=Too /\/b
=Y R0) [ Gt X - (= Tn(e)
i=1 0
p(m) 1 —Tco  ~ 3. .
= 3w (3 7) */OF Gz + %) ((1) ) * (X = 2Y) 2y e
=1
o(m) oo
_ Z: ¥(b) (0 }) */Oﬁ (G‘ ((1) i’f))(z) (3 7) (X = 2Y)F2y5 1.

We remark that

D<1 ﬁ)(GaS) = /Omoo <GN

m
01

By Proposition 1.5 (1), we have

(1.3) D/ o (G, 1) ==/ v\ (0).
(0 T) G’(o T)
Therefore, we obtain
) w(m) ) _—
(DG 1) == X xb) (377 ) * 7y (0).
i=1 ’(0 T)
In addition, by using Proposition 1.5 (2), we have
) p(m) ) _
r(OD(G 1) = = X2 xXb) (577 ) 7wy 10y (0)
= 616
3 ()
== x0) (o ) *7 114, (0).
i=1 G’<0 m)
We have proved the lemma. O

We fix a rational odd prime number p such that (p, N) = 1. Let S be a set
of rational prime numbers satisfying the following properties:

(1) both (m,pN) =1 and (p(m),p) =1 hold for all m € S,
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(2) S has non-empty intersection with every arithmetic progression of the form
{d + cpNele € Z} for all pair (c,d) € Z? such that ¢ > 0, (p,cd) = 1,
d # 1 (mod p), and (d,cN) =1
(for example, S = {m|m is a prime number such that (m,pN) =1 and
m # 1 (mod p)}).
We remark that p ¢ S. For such a set S, let Xg denote the set of Dirich-
let characters x whose conductor m, belongs to S. For m € §, we fix
bi,..., b%’(m) € Z such that {bl, . 7b4p(m)} = (Z/mZ)X

THEOREM 1.9 (Integrality). — Let O be the ring of integers of a finite ex-
tension over Q,. Suppose that G € Mi(I'o(N),e,O) and that the following
conditions hold:

1) k<p+1;

(2) a(0,Gla) € O for each o € SLa(Z);

(3) D/, vy (G,1) € L—2(0) for each m € S and i;
0T

(4) ma(o) € Li—2(0).

Then g is integral, that is, T1g(To(N)) C Li_2(0).

Proof. — Weput I' =T'g(V) and

a b
7_<cNd>€F'

In the case where ¢ = 0, we have g (y) € Lr—2(O) by Proposition 1.6 (2) and
the assumptions (1) and (2). In the case where ¢ # 0, we may assume that
¢ > 0. Indeed, we have mg(—v) = mg(7) by using Proposition 1.6 (1), (2), and
(1.2). Then, by Proposition 1.6 (2), we have

mc(v) = a(0,G) /OTN(X —2Y)k24z

+a(0,Gly) /Od v (X = 2Y)* " 2dz + 7TG7(1 a )(a).

cN

We prove that mg(y) is integral in two cases.

Case 1. — Assume that (p,c) = 1.
It is enough to prove that 7o (7) is integral in the case where (p,d) =1 and
d # 1(mod p). Indeed, if p|d or d =1 (mod p), then we put

;. {1V _[a ab +b
7'_’Y<01 “ \cN cNV +d er.

Since (p,c¢N) = 1, note that ¢cNb' +d # 0,1 (mod p) for some b’ € Z. Then, by
applying the cocycle condition (Proposition 1.6 (1)) for ¢ to the element +/,
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we get
m6(v) = m(y) +e(d)y - ma((§4)).
Now the integrality of m(y) follows from the integrality of g (7).

We remark that (cN)~! € O by assumption. Then, for the proof of the
integrality of (), by the formula above and the assumptions (1) and (2), it is
enough to show that T (1 a >(cr) € Li_2(0). Therefore, for the proof in this

\0 cN

case, it suffices to show that wg (') is integral by choosing ¥’,d’ € Z such that

/
vy = “ b, € I'. Indeed, we have ng(y) =7/, o\ (o) (mod Li_2(0)).
¥ o(3.5)
Since (p,cd) =1, d # 1 (mod p), and (d,cN) = 1, there exists e € Z such that

d+ cpNe € S. We put m = d + cpNe and

, (lep\ [a ¥V
7_7<01 “\¢cNm er,

where V' = aep + b. By applying the cocycle condition (Proposition 1.6 (1))
for g to the element

;o fa b\ [(0-1\ (b —a
T7=\eNm)\10) 7 \m—enN)’

ma(v'o) =mc(y') +e(m)y - wa(o).
Since 7' -7 (o) is integral by the assumption (4), for the proof of the integrality
of mq ('), it suffices to show that g (7'0) is integral. Using Proposition 1.6 (2),
we have

we get

I

me(y'o) = a(0,G) /om (X — 2Y)* 242

0
+ a(0, G|’y’o)/ Yo (X =2Y)2dz 47 /1 00 (0).
eN G ( )

m ’\0 m

Therefore, by the assumptions (1) and (2), it is enough to show that the final
term is integral. It follows from (1.3) and the assumption (3).

Case 2. — Assume that plc.
We put

= (50 = (&) (A0 = (L N er

Then, by applying the cocycle condition (Proposition 1.6 (1)) for g to the
element +/, we get

ma(y) =mc(v) +e(d)y-me((§ 1))
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Since (p,c+d) =1 and (p, N) = 1, we see that both 7 (v’) and 7¢(( 5 9)) are
integral by Case 1, and therefore so is mg (). Now this completes the proof of
the theorem. ]

REMARK 1.10. — Theorem 1.9 is a partial generalization of [34, Theorem 1.3].

2. Congruences for L-functions

2.1. Group cohomology. — To state our theorem, we need to recall some prop-
erties about group cohomology. We define an action of GL2(Q) on the upper
half complex plane $ as follows. For a € GL2(Q) with det(a) > 0, o act on $
10
0-1
by 7z = —Zz. If det(a) < 0, then we define a(z) = (a7)(7(z)). This action is
associative and so is well-defined. Let I be a congruence subgroup of SLy(Z).

by the usual linear fractional transformation. For 7 = , T act on $)

DEFINITION 2.1 (The standard R[[']-free resolution of R). — Let R be a com-
mutative ring and M a left R[[']-module. We define F, = (R[T])®*V) and re-
gard it as an R[I'|-module via the multiplication of R[I'| on the first factor. Then
F, is a free R[I'-module with a basis {[v1,...,7] =171 ® --- Qy|v; €T}
We define the R[I']-linear boundary map 0,: F, — Fy_1 by é1[y] =~y —1 and

84[717"'a7q] = 71[725"'7711]

-1

+ (_1)J[/717 s YV - 77(1] + (_1)(1[717 e 77q—1]

1

for ¢ > 1. It is well known that (Fy,0.) is a R[[']-free resolution of R. Let
C* = CY(T', M) be the space of functions on I'* with values in M for i > 1,
and M for i = 0. Note that Hompgr(F,, M) = C?. Then the differential map
d: C* — C**! induced by 9, on F, is given by d%u(y) = (y — 1)u for u € M
ifi =0, and if i > 0,

Q

<.
Il

diu(’}qv oo 7’Yi+1) = ’Ylu(’YQa <o 7’7i+1)
7
+ Z(_l)ju(f)/h sy ViVi41s e 7’Yi+1) + (_1)Z+1u(’717 .. a’Y’L)
j=1

The associated i-th cohomology group of I" with coefficients in M is given by
H'(T',M) = z'(T',M)/B'(T', M),
where

ZHT',M) = ker(d": C* — C**') and BYT,M)=im(d"': C*' — C%).
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We fix a base point zgp € §. For G € My(I'1(N),C) and v € T'1(N), we
define wg(2z9) € CH(T'1(N), Lr—2(C)) by

wolz)m = [ X - ¥

Then we have wg(z0) € Z}(T'1(N), Ly—2(C)).
Also we have mg € Z'(T'1(N), Ly—2(C)) by Proposition 1.6 (1) and (1.2).
Let € : (Z/NZ)* — R* be a character and

A= {a: (ﬁ z> € My(Z) ‘ det(a) # 0, ¢ = 0 (mod N, (a, N) = 1}.

We define an R[A]-module Lj_»(e, R) as follows: let Liy_2(e, R) be the R-mod-
ule Ly_2(R) with left R[Al-action by

ye P(X,Y)=¢e(d)y - P(X,Y)

wolz)) = [ @K - ¥)F s

Then we have wg(20) € Z1(To(N), Ly—2(¢, C)).
Also we have mg € Z'(T'o(N), L_2(e, C)) by Proposition 1.6 (1) and (1.2).
For each cusp s € P}(Q) = QU {0}, let T'y denote the stabilizer of s in T,
and let 7, be a generator of I'y:

I's ={aeTl|as=s} ={£n* €T|m € Z}.

Let Z(T') be a representative set for I'-equivalence classes of cusps, which is a
finite set. Then we note that for each cusp s € P}(Q), we can find v € " and
so € Z(I') such that ys = sg. We consider the set of all conjugates of 75 in I"
for all s € Z(T"), which is denoted by P. The parabolic cohomology group of T’
with coefficients in M is given by

H! (T,M)= 2! (T,M)/B T, M),

par par

where

ZL (0, M) = {u € ZY (T, M)|u(r) € (x — 1)M for all = € P}.

par

If f € Sp(T'i(N),C) (resp. f € Sp(To(N),e,C)), we have wys(zp), 7y €
7z} (T1(N), Li—2(C)) (resp. wys(zo), 7y € Zéar(Fo(N),Lk_g(a,(C))).

par
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2.2. The Hecke eigenvalues. — We recall the definitions of the Hecke operators
on group cohomology and the space of modular forms. Let I', TV < SLo(Z) be
congruence subgroups. For any a € GLy(Q), we have a decomposition T'al” =
[[,To; as a disjoint union. We denote det(a)a~! simply by a* for any o €
GL2(Q). Let (I',TV, a*) be the semi-group in GL2(Q) generated by a* for « €
GL3(Q) and two congruences subgroups I' and I". For any (I',I”, a*)-module
M, we define the Hecke operator [['al”] as follows. For each v € IV, we can
write a;y = 7;a; for a unique j with 7, € I'. For each cocycle u : I' —
M € Z(T', M), we define v = u|[Tal”] by v(y) = 3, atu(v;). The operator
[Cal’] is a well-defined linear operator from H'(T, M) into H'(I',M). Also
[Cal’] sends H}, (T, M) into H} (I, M).

par par

We consider the case T' =TV =Tg(N) or I'1(N). If a = <(1) (l)
number [, we abbreviate [['al'] to T(I). We have the following lemma ([28,
Lemma 4.5.6 (1)]):

for a prime

LEMMA 2.2. — An explicit left coset decomposition is given by
( = r\.
11 To(N) (" )i GLN) =1,
0<f<e,

0<r<i’ with (r, I¥, 1°7)=1

IT rov) <é ;) if 1|N,

0<r<le

Lo(N) ((1) loe> Lo(N) =

as a disjoint union.

Let O be the ring of integers of a finite extension over Q,. We define the
Hecke operator T'(I) on My(I'o(N),e,O) for a prime number [. We put the

1 O>. Then we define

disjoint decompositions I'al’ = [ [, T'a;, where o = (0 !

AT = e(a) flos,

(3

where &( (Z Z)) = ¢(a). Here we note that it is independent of the choice of {«; };

and f|T(l) € Mi(To(N),e,O). Moreover, we define the Hecke operator T'(1¢)
for a prime number [ and an integer e > 1 inductively by

er1y [ TOT®) —e(@)*rT7Y) if (I, N) =1,
T = {T(l)e+1 if 1[N,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



22 Y. HIRANO

where we define T'(1) to be the identity map. More generally, we can define
the Hecke operator T'(m) by

TMT)=TW)TQ),
T(m) =[] T0)
l

for different primes ! and I’ and each positive integer m =[], * for primes [.

Using Lemma 2.2, for A = O or C, the Hecke operators on H*(To(N), Lr_»(c, A))
and My (To(N), e, A) can be described explicitly. We prove that the map from
M (To(N),e,C) to HY(T'o(N), Lr—2(e, C)) sending G to the class of ¢ is Hecke
equivariant (see (2.2) below). In order to do it, we make the following calcu-
lations. We abbreviate I'o(N) to I'. We fix G € My (I'¢(N),e,C). For a prime
number I, we put a = <(1) (l)), and G’ = G|[l'al'] € Mg(T,e,C). By the pull-
back formula (0.1), for any v € T,

woro)) = [ G EX -2

Yzo

=Y cla) [ (Gla ()X — 2¥)F s

For any v € I, by the definition of 7¢,
YZo
21)  me()=[  GE)X -2+ (7—1) 0 Ig(X,Y),
z0
where
V—Too _ 20
Io(X,Y) = / G(2)(X — 2Y)*2dz — a(0, G)/ (X — 2Y)F 24z

zZ0 0

We simply write the above equation for
Ta(y) = wa(z0)(7) + (v — 1) o Ia(X,Y).

Further, for any w € $), we define F(zp)(w)
I¢(X,Y). For any v € T', we put u(zo)(w)(7)

f;g G(2)(X — 2Y)F—2dz —
F(z0)(yw) — v @ F(z0)(w).
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Then, for any v € T,

u(z0)(w)(7)

= G(2)(X — 2Y)*2dz — I5(X,Y)

—70/ G(z 2Y) " 2dz + vy e I(X,Y)
= G( )X — 2Y)F™ 2dz—/ G(2)(X —2Y)*2dz + (v — 1) ¢ I(X,Y)

= G(2)(X —2Y)*2dz + (y — 1) @ Io(X,Y)

Zo
=wa(z0)(7) + (v — 1) e Ig(X,Y)

= ma(20)(7)-

This value is independent of the choice of w € $ and hence we simply write

u(20)(7) instead of u(zg)(w)(y). By the definition of F(z)(w) and the above
calculations, for any v € T, we get

e (20)(7) = 3 a ¢ (Fz) 720) = Flzo)(az)
—Za © (F(20) (i0j%0) — F(20)(0i20))

= Z o @ (u(20)(7:) +vi @ F(20)(e20)) — Z a; @ F(z0)(ctiz0)

= u(z0)|[TaT)(7) + (v~ 1) » <Z ol e F<z0><aizo>> .

Then, by the above calculations, for any v € I", we obtain
(2.2) e (7) = war(20)(7) + (v — 1) o Ie/ (X, Y)

=ng|Lal)(y) +(y—1)e (IG’(X7 Y)+ Z aj e F(ZO)(aiZO)> :

We now prove the following proposition.

PROPOSITION 2.3. — (1) Suppose G’ = G|[I'al'l = A(l,G)G for A(I,G) € C.
Then we have g = A(l, G)mg.

(2) Ie/(X,Y) + 3, aj @ F(z0)(aizo) = 3_; o @ ma (o).

(3) Let G € Mg(To(N),e,0) be a Hecke eigenform, A\(m,G) the eigenvalue
of T(m), w € O a uniformizer, and r a non-negative integer. Assume that
k <p, a(0,G) =0 (mod w"O), and g is integral, that is, mg(To(N)) C
Li_2(g,0). Then [ﬂg]‘T(m) = A(m, G)[rg] in HY(Do(N), Ly—2(s,0/w"))
for any positive integer m.
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Proof. — (1) It follows from (2.1).
(2) First we calculate I/ (X,Y). By the definition of I¢/(X,Y), we have

V=10 e
I/ (X,Y) = / G'(2)(X — 2Y)*2dz — a(0, G’)/O (X — 2Y)F 24z

=Z€(0%)
- a;)a(0,Glay ” — 2Y)kF24dz
5 e(@al0, G >/0 (X — 2Y)*~2

V=lo
/ (Glag)(2)(X — 2Y)F2dz

20

i Ve k—2
= Z ol e / (Glay)(2)a; x (X — 2Y)* " 4dz

Z0

zo
- g ot e a(0, G|ai)/ ;% (X — 2Y)F2dz.
; 0

Therefore, by the definition of g («;), we have

Ie/(X,Y)+ ) of e Fz0)(ctizo)

= I (X,Y) + Y ale [/WO G()(X - 2Y)*2dz

-/ T B (X = Y2+ a(0,6) [
= Zag o o (),

as required.
(3) We fix a prime number [. Using Lemma 2.2, (2.2) and (2), we obtain

e (v) = mg|[Lal](y) = (v = 1) e <IG' (X,Y)+ Zaé . F(Zo)(%Zo)) (by (2.2))

K2

=(y—1e <Z aje WG(Oéi)) (by (2))
=(y—1)e <Z a; ea(0,G) /Olfi(X - zY)k_de>

=0 (modw"O)

for any v € T'. Here the third equality follows from Proposition 1.6 (2) and the
last congruence follows from an explicit calculation with S-?_1 71 = 0 (mod p)
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for any non-negative integer j such that j + 1 < p — 1 if [ = p. Therefore, by
using (1), we prove (3). O

2.3. Canonical periods. — We put I'g = I'o(N) and 'y = T';(N). Let f €
Sk (Lo, e,0) be a normalized Hecke eigenform. We assume that if £ > 2,
then (p, N) =1 and k — 2 < p. Let Y denote the modular curve I'1\$) with
I'i-structure. Let L;_2(O) be the local system on Y corresponding to the
I';-module Li_5(0). For a prime number [, we simply write T; = T(l) if
(l,N) =1and U, = T(l) if IIN. We denote by M, a maximal ideal of the
Hecke algebra generated by w, T —a(l, f) (for (I, N) = 1), Uy—a(l, f) (for I|N),

and (d) —e(d). For 7 = <1 0 , we consider the complex conjugation [I';7I]

0-1
on Hy, (T'1,Li_2(0)) defined in §2.2. We note that the complex conjugation
[[17T4] commutes with T} and U, for any prime number [ because I'17T'y = 'y 7

and I'; ((1) (l)) Iy = ]'_L Tio; = ]_L 1‘\17_710[2,7_.

PROPOSITION 2.4. — For each parity o € {£1},
the a-eigenspace HL(Y, Lr—2(0))ign, is free of rank 1 over O.

Proof. — The Eichler-Shimura isomorphism and the g-expansion principle
over C imply that
(2.3) H (Y, Ly—2(C))s, = Hpor(Y, Li—2(C))5y,

whose dimension over C is equal to 1. Then it suffices to show that H.(Y, L;_5(O))
is torsion-free. First suppose that & = 2. By considering the exact sequence
0— 0 X2 O — O/w — 0 and taking its cohomology, we see that Hl(Y,0)is
torsion-free. Next suppose that k& > 2. We note that, if (p, N) =1 and k—2 < p,
then

(2.4) HO(Y, ﬁk,Q(A)) >~ HO(Fl,Lk,Q(A)) =0 for A= O, O/w

because ((1) 1), ( ]{] (1)> € T';. Thus, by considering the exact sequence 0 —

O XZ, O — O/w — 0 and taking its cohomology, we see that H' (Y, Lj_2(O))
is torsion-free. In particular, H}, (Y, Lr_2(0)) is torsion-free. Thus it suffices
to show that the kernel of HX(Y, Lr—_2(0)) — H],.(Y,Lr_2(0)) is torsion-
free. The Gysin sequence with the help of (2.4) implies that the kernel is
identified with the boundary cohomology of degree 0 and hence it is torsion-
free as desired. U

PROPOSITION 2.5. — For each parity a € {£1}, the canonical morphism in-
duces an isomorphism

H (Y, Li—2(0))in, = Hpor(Y, Li—2(0))n, -

par
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Proof. — It suffices to show the injectivity of this morphism. As mentioned
in the proof of Proposition 2.4, both HJ (Y, Lx—2(0)) and H], (Y, Ly_2(0))
are torsion-free. Hence the injectivity follows from the isomorphism (2.3). O

For each parity a € {£1}, we define the canonical period Q2}. We choose a
generator [67] (resp. [67]%) of HL(Y, L—2(0))5n, (resp. HL.(Y, Lr—2(0))5n, )

Let Q°*(Y,C) denote the complex of C-valued C*°-differential I';-invariant
forms in $). Moreover, let Q2(Y,C) denote the complex of forms in Q°(Y,C)
which, together with their exterior differentials, are fast decreasing at each cusp
s € Z(I'1). By [4, Theorem 5.2], we have

Hig (Y, Q2(Y,C) ®c Lk—2(C)) ~ H (Y, Ly—2(C)).

Let [wflar € Hig (Y, Q2(Y,C) ®c Liy—2(C)) be the de Rham cohomology class
attached to f. Let [ws]c € HL (Y, Li_2(C)) (resp. [wy] € HL, (Y, Lr_2(C))) be
the image of [wrlar. We note that, by (2.1), the cocycle 7y defines the same
cohomology class as wy(zp) and also [wy] = [wf(20)] via the comparison theorem
between Betti cohomology and group cohomology (cf. [3, Proposition 2.5]). By
using the proof of Proposition 2.3, the Hecke eigenvalues of the cohomology
classes [wys]c and [wy] are the same as those of f. We write [w¢]|? and [wy]* for
the projections to the a-parts. Thus, by Proposition 2.4 and Proposition 2.5,
there exist complex numbers Q% , Qf € C* such that

(2.5) [wile = QF c[6¢12,
[wel® = QF (6]

We note that, by the definition, Q"‘,c is equal to Qj} up to 0.
PROPOSITION 2.6. — For each parity o € {£1}, let
1
¢ = 3 (m¢ + amg|[[17I4]) .

Then the image of I'o under the map w¢/Q¢ and ¢ (0)/QG € Liy—2(C) are
contained in Li_o(0).

Proof. — By the proof of Theorem 1.9, it suffices to show the integrality of
the coefficients of X*~277Y7 in D(f,1)/Q} € Ly_2(C) for each j with a =
(=1)7 and D<1 %) (f;1)/Qf € Ly—2(C) for each m € S, i, and j with o =
01
x(—1)(—1). Here we note that 7¢(c) = —D(f,1) by Proposition 1.5 (1). In
order to prove this integrality, we give a cohomological treatment of the special
values of the L-functions.

Let x be the trivial character or a Dirichlet character with conductor m € S.

We note that m is prime to p. Fix a representative set {b;}; of (Z/mZ)™ in Z.
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For each b;, we consider the following subset Hp, of $:
bi X bz .
Hy,=—+v-1RI]=q—+v-1ly | yec Rwithy>0,.
m m
Then we have Hy, — Y and it induces

(2.6) HY (Y, Li—2(A)) — H}(Hy,, Lr—2(A))

for A= 0O, K, C. Then, for each j with 0 < j < k—2, we define the evaluation
map

(2.7) evi 4t H(Y,Ly-2(A)) — A

by the composition of

L b
m

0o 1

—_

2.8) H(Y, Lya(A)) ZD HY(H,,, Lx-(A))

H. (Hy,, Li—2(A))
and

coeff. of Xk—2-JyJ

(2.9)  H(Hy,, Lr—2(4)) HY(H,,, A) &% A

Here the second arrow of (2.8) is induced by

Ly—2(A) = Ly—2(A); P(X,Y) — (é _1?”> * P(X,Y)

because m is prime to p, the first arrow of (2.9) is induced by

k—2
Li—2(A) = A; Y a;XF279Y7 5 a,

Jj=0

and the second arrow of (2.9) is the trace map:

w — w
v—=1co
PROPOSITION 2.7. — Let x be the trivial character or a character with con-
ductor m € S. Then
k—2¢(m) ‘
_T()_C)D(f7Xa1) = X(bi)eVii’C([Wf]c)-
j=0 i=1
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Proof. — Direct calculation shows that

W(m) —1oco
rOD( 1) = Y xlb) (3 ) « | i

i=1
p(m) —1loo
— 1 b k—2

=Y w0 (7)) x [, FEX Y

=1 m

k—2 p(m) A
= - xX(bi)evy, c([wyle)

7j=0 i=1

Here the first equality follows from the proof of Lemma 1.8, the second equality
follows from the pull-back formula (0.1), and the last equality follows from the
definition of the evaluation map evj . O

We also treat the anti-holomorphic case.

PROPOSITION 2.8. — Under the same notation of Proposition 2.7,
k=2 ¢(m)
—X(—D)7 e T(X)D(f,x, 1) = Y Y x(bi)evy, c([wyle|[TarT1)).
7=0 i=1
Proof. — We note that [w¢].|[I'17I'1] corresponds to the de Rham cohomology
class

7' o f(=2)(X = (=2)Y)"2d(=2) = —f(-2)(X —zY)**dz
via the de Rham theorem (cf. [18, §6.4]). Thus,

2 o(m)
kz: > x(i)evy, c(lwslelT17T1])
7=0 =1
©(m) b
= w00 () e [T R0 o)
@(m) —k
= z_: x(b;) ((1] _:E> 7" ® / _moo f(2)(X = 2Y)*2d2
o(m) —k
= > (%) « /F’"OO )X — oY)
- @(m) . —h
=x(=1)r"e Z X(—b;) (é f) */ f)(X - zY)k_de
i=1 —leo
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Here the third equality follows from

1 —bi 1 b
— m
67) = (%)

and the last equality follows from the proof of Lemma 1.8. O
PROPOSITION 2.9. — For each o € {£1}, under the same notation of Propo-
sition 2.7,
k—2 @(m) — .
1+ ax 1)/ k-2
33 stger cllrit) = (0 3 (HEAGUE) (5 22)
7j=0 i=1 j=0

1 Jt+l o
ﬂ<2 L gt
=

Proof. — Direct calculation shows that
k—2 ¢(m) 1 k= 2 p(m)
Z Z (b )evb cwrld) =5 Z Z evb c (wrle + afwsle|M17T'1])

7j=0 i=1 ]07,1

- —%T()‘()D(f,x, 1) - %ax(—l)TL o 7(X)D(f,x:1).

Here the last equality follows from Proposition 2.7 and Proposition 2.8. Hence,
our proposition follows from (1.1):

D(f,x,1) = —kf (k_2> J! <1>H1L(f Y, i+ )XF2-iyi. O
s Xy = ] QW\/jl s Xy

Therefore, Proposition 2.6 follows from Proposition 2.9, the functoriality of
the evaluation map evy , for A, the integrality of [wy]/Q¢ € HI (Y, Lr—2(0)),
Lemma 1.8, and (1.3). O

2.4. Congruences of special values. — For modular forms f, g € M (T, O) and
a positive integer r € Z, we define a congruence of modular forms f = g (mod
w") by a(m, f) = a(m, g)(mod w") for any integer m € Z.

THEOREM 2.10. — Let p be an odd prime number, r a positive integer, and k
an integer with 2 <k <p—1. Let f => ", a(n, f) e(nz) € Sk(Lo(N),e,0)
be a p-ordinary normalized Hecke eigenform. Assume that the residual Galois
representation py associated to f is reducible of the form

and either &1 or &5 is unramified at p. Assume also that there exists an Eisen-
stein series G = Er(¢1,1%2) € Myp(To(N),e,0) (for the definition, see The-
orem 38.18) such that G satisfies the assumptions of Theorem 1.9 and f =
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G (mod w"). Then there exist a parity o € {£1} (explicitly given by (A.27)),
a complex number Q? € C%, and a p-adic unit u € O such that, for ev-
ery primitive Dirichlet character x whose conductor m, is prime to N, the
following congruence holds:

(1) if (my,p) =1, then, for each j with 0 < j <k —2 and a = x(—1)(-1)7,

o\ Lf,ix,1+35) _ _L(Gx,1+7)

T(X)m = ur(X) (2my/—1)1+i

(2) if plmy, we assume that m, € w"O, x is non-exceptional (see Defini-
tion 2.11) and a = x(—1). Then

(mod w");

_ LG x. 1)
(2ry/=1)03 w0 T

Proof. — We put I' = T'¢(N). By Proposition 2.3 (3), we get [ﬂg]a|T(m) =
a(m,G)[rg]* (mod w") and [6;]%|T(m) = a(m, f)[67]* (mod w") for any
positive integer m. We will see that [7¢]® is non-trivial in H}, (T, Lr_2(e, O /w))
by a mod p non-vanishing theorem ([14, Lemma 3, page 430 (cf. the remark at
the end of the proof, page 432)]) and (2.10) represented as below. Therefore,
by Theorem A.12, there exists a p-adic unit u € O™ such that [6;]* = u[rg]*
in Hy, (T1(N), L—2(O/@")*[My] =~ O/w”. Let 64 = «¢/Q¢ which is in-
tegral by Proposition 2.6 and represents [07]*. Hence, for some Q(X,Y) €
Ly—2(e,0/w"), we obtain 6% — ur@ = 9Q(X,Y) in Z'(T, Ly,_a(e, O /w")).

Let x be a non-trivial primitive Dirichlet character, whose conductor is
denoted by m,. We fix bi,...,by(m,) € Z such that {l_)l,...,l_)(p(mx)} =
(Z/myZ)*.

We consider in two cases.

(i) We treat the case (p,m,) = 1.

We put m = m,,. For each b;, we put

(mod w").

for some choice of a;,c;,h € Z with p" € @w"O. An explicit calculation with
the cocycle condition (Proposition 1.6 (1)) and Theorem 1.9 shows that

7a(W,0) = 7a(,) + 1, @ Ta(0) € Ly—2(g, O).

Here we recall that 7g(0) = —D(G,1) € Li_2(e,O) by Proposition 1.5 (1).
By the choice of h, the action of v, on Li_2(e,O/w") is given by

v, ¢ P(X,Y) = e(m)P(mX,m'Y) (mod =").

We remark that the action of v, on Ly_o(e, O/w") is independent of b;. On
the other hand, by using Proposition 1.6 (2) with 7g(v,0) € Li—2(e, O) and
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our assumption, we get

e (Y, 0) = T (1 biph) (o) (mod @").

\0 m

Here we remark that a(0, G|vy,0) € O. Therefore, by Lemma 1.8, computing
modulo w", we obtain

p(m) 1 biph
T(X)D(G,x,1) = — Z x(bip") (0 N > *T, (1 biph) (o)

'\0 m
p(m) . (1 ph
=- Y x(bip") * 76 (1,0)
i=1 0
p(m)

—Z 7TG’YbU)

(m)
= > xbip"){ma(w.) +m, e 7 (o)}

i=1

- Z ")ra(m,) (mod @),

By definition, we recall that
me|[LTT)(y,) = 7 @ ma(1,),

h
/ 1 a; —bp
= . = F.
Voo = TVT <_ciph . ) S

where

In a similar way as above, we get
e(m)
x(-D)7(x)D(G, x,1) = — Z )Z(biph)ﬂ'a(’y{,i) (mod w").

i=1
Therefore, computing modulo w”, we obtain

p(m) p(m)
(210) S xGr"mE(n) = 5 O X" (raln,) +or* e76(,))
- i=1
= —5 (1 +ax(-1)r") ¢ T()D(G,x, 1)
NS (R —2) (14 ax(-1)(-1)
-y (57) ()

1 J+l o
-j!< ) L(G,x,j+1)X"=77Y7.
2my/—1
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Here the last equality follows from (1.1). We put
r(R)D(E X 1)* = — 5 (1+ ax(~1)) e 7(R)D(G, x,1).
By the cocycle condition (Proposition 1.6 (1)), we have
Ty (V,0) = 75 (W) + Yo, @ T4 (0),
(/[P (y,0) = 7* @ 74 (7, (=0))
=" (mr(%,) + v, o7 (—0))
= (mf|[CTLN) (96,) + Yo, ® (w4 [[L7IT) (o).
Thus we get
87 (Y,0) = 67 (9,) + v, ® 67 (0) € Li—2(e, 0),

where the integrality follows from Proposition 2.6. On the other hand, we have

5%(,0) = ml?w (1,) + (| [C7T]) (3, 0))

- 2éf (75 (10) + a* o 74 (7}, (~0)))

1
= oo | T fiep\(0) taTiem ok (a)) .
2Qf ( f’(o rg) f’(o mp>
Here the last equality follows from that 7 (v, (—o)) = m¢(v; o) and Proposi-
tion 1.6 (2). Therefore, by Lemma 1.8, computing modulo w”, we obtain

»(m) ©(m)
X(bzph)é? (’71)@) = X(bzph) (5? (,Ybia-) - Vo, ® 5?(0))
i=1 i=1
©(m) ©(m) 1 bip"
= Y w0550 = 3 x0) (5 71 ) #5500
i=1 i=1
D
= 5 (+ax(-1)r") s T(x)(g;f’ D)
k—2 A
_ k—2 14 —-1)(—1)7
—ey (F7) (B
7=0
. 1 i+ L(faXa.]"']-) k—2—j ]
'j!<27r\/—71> Q? X Ty 7.
We put
D(f,x,1)° 1 . \D(f,x,1
PG = (a1 o) PG
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Since ¢ — urg = 0Q(X,Y) for some Q(X,Y) € Ly_2(e, O/w"), we have

r(x)D({;;f’” —wr(x)D(G,x,1)* (mod =)
®(m)
= > X" w1 # Q(X.Y)
©(m)
= Z x(b:ip™){e(m)Q(mX,m~Y) — Q(X,Y)}

=0

if x is non-trivial, as required.

(if) We consider the case p|m,,.
This case is more difficult because the relation 7g(v,0) = 7 (1 b )(cr) (mod
P\ 0 my
w”) does not hold, since m, is not invertible in @. Thus this case is more
delicate. In order to obtain the congruence for special values of L-functions,
we will make the substitution ¥ = 0.
We put m = m,,. Let p be the maximal ideal of O[y].

DEFINITION 2.11. — We say that a Dirichlet character x is non-exceptional
at p if x satisfies the following three conditions:
(a) plm;

(b) for each j € {k — 2,k — 1}, x(z) # 27 (mod p) for some z € Z;

(¢) x(z) # z (mod p) for some z € Z.

SUBLEMMA. — Assume that x is non-exceptional at p. Then,
o(m) b o(m)

_ i b\’
A= Y X002, 400 = 3 x0) (2) e fh-2k-1)
i=1 i=1

are p-integral.

Proof. — We treat the case A;(x) (the case A(x) is similar). Let z € Z
such that x(z) — 27 is a p-unit of O[x]. If (m,z) = 1, then {b;z}; is a set of
representatives of (Z/mZ)* and hence we get

>j

(x(@) = #) 4300 = w(f)anm < : )j - Sa(m)x(bi) <bi
= g‘:)x(bi) <bnf>] - qg%)x(b,-) (bwf)j mod O[x]

X
po p(m) m
i=1 i=1

=0 mod Olx].

~

i=1
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Suppose that d = (m,z) # 1. We put m = dm’ and z = da’. Since x is
primitive, we have

00— 5 A0 (b”')j

, m’
=1

w(m’)

S ooy () mod ofy

1 b;=s( mod m’)

0 mod O[x]. O

h
_ (a;p" b;
Yo, = ( ) m) el

C;

S

We define

for some choice of a;,c¢;,h € Z with p" € @"O. By the choice of h and our
assumption that m € w”O, the action of v, on Li_o(e,O/w") is given by
Y, ® P(X,Y) = e(m)P(=bY,—¢;X) (mod w").

By the definition of 7s,,

h h
_ [ aip bl 0-1 _ bl —a;p
’Ybig_( ci m) (1 O>_(m —c; /-
By the cocycle condition (Proposition 1.6 (1)) and Theorem 1.9, we have

76 (W,0) = 7 (W) + W, * TG (0) € Li—2(e,0).
On the other hand, by using Proposition 1.6 (2), we get

by
we(V,0) = a(O,G)/ (X —2Y)*2dz
0
0

+ &(m)a(0,Glo) /C Yp,0 % (X — 2Y)F2dz + 7TG7(1 bi) (o).

0m

Therefore, by Lemma 1.8, we obtain

p(m)
HODGx D == Y 1) (1) e, ()@
"\0 m

i=1

b,

=— ) x(b:) (0 1’”) * 76 (V6,0)
=1

- g) ) ((1) ‘F) " {—a(O, Q) /OH(X - zY)“dz}
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w(m)

- Z ( ) * {—5(7”)(1(0, Glo) /; Y, 0 x (X — zY)dez} )

Then an explicit calculation shows that the coefficients of X*~2 in the second
and final terms are

p(m) k_i_1 e(m)
) Jj—

a(0,G) Y x(bi)%, a(0,Glo) i (k 2) jt1

i=1

k—1
4

_ (6%
X(bz) m 3

i=1

respectively. Thus they are integral and congruent to 0 modulo @w", since both
A(x) and Ak_1(x) are integral by Sublemma and both a(0,G) and a(0,G|o)
belongs to @w"O by our assumptions. Therefore, in the same way as the case
(i), computing modulo w”, we obtain

E-%X < )*WG(%U)

w(m

- Z x(bi)mwa (v,0)

T(X)D(G,x,1)

Y=0 Y=0

Y=0
sa(m
=- Z X)) {mc(,) + b, ® 7 (o)}
Y=0
sO(m)
=— Z X(b:)7a () (mod w").
Y=0

Here the last equality follows from that, for any P(X,Y) € Lx_2(O),

=0 (mod @"),

(2.11) S X0, ¢ P(X,Y)
i Y=0

which is obtained by m € @w”O and Ag_s(x) is integral by Sublemma. Similarly
as above by substituting —b; and v, for b; and +,, respectively, we have

X(_l)T(X)D(G7 X 1)

=- x(bi)ma (v,) (mod @"),

Y=0 i=1 Y=0

where

ok b,
Voo = TUoT = (a’p b’> eT.

—C; m
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Therefore, computing modulo w”, we obtain

p(m) p(m)
1
(212) > x(b)7&(w,) =3 > x(b) (ma(w,) + ot e 7a(1,))
i=1 Y= i=1 Y=0
1
=—5 @ +ax(=1)7") e 7(x)D(G, x,1)
Y=0

— 1+aX(_1) L(G7X71) -2
T(X)< 2 ) 2my/—1 X

Here the last equality follows from (1.1). We put

r(©)D(G,x 1) = =5 (1+ ax(=1)r) e 7(R)D(G, 1)

Y=0
In the same way as the case (i) with the help of (2.11), computing modulo
w", we obtain

p(m)

D
S e n)| = -k (1t ax(-1)r) er(n LX)
i=1 Y=0 f Y=0
_ oy (1tax(=1D)\ L(f,x1) e
=) ( 2 ) e
and put
A D(fx. )" 1 ) D(f:x,1)
T(X)—F— =—z(1+ —1)T") e 7(X) —~— .
(x) o 5 (1 +ax(=1)7) e 7(x) By
Since 6% — ung = 0Q(X,Y) for some Q(X,Y) € Lx—2(e,O/w"), we have
[ p(m)
0 2D D@ ) = Y %), 1) e QX.Y)
f =1 Y=0
= Z —bY,—c:X) - Q(X,Y)}
i=1 Y=0

(mod @w") (by (2.11))

if x is non-trivial and non-exceptional. We have completed the proof of our
theorem. 0

3. Application to the Iwasawa invariants

In this section, we first compare the Iwasawa invariant of non-primitive
Selmer groups associated to modular forms with that of Selmer groups associ-
ated to Dirichlet characters. Next, in order to provide evidence for the Iwasawa,
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main conjecture, we prove congruences between the p-adic L-function of a cer-
tain cusp form and a product of two Kubota-Leopoldt p-adic L-functions.

3.1. Iwasawa modules. — In this subsection, we summarize basic results on
Iwasawa modules to define the Iwasawa invariants. We refer the reader to [42]
for proofs. Let O be the ring of integers of a finite extension over Q,, w a
uniformizer, and A = O[[T]] the power series ring in one variable T" over O.

DEFINITION 3.1. — A polynomial P(T) € O[T] is said to be distinguished if
P(T)=T"+ap1T" '+ -+ ag with a; € @O for 0 <i <n—1.

THEOREM 3.2 (Weierstrass Preparation Theorem). — If f(T) € A is non-zero,
then we may uniquely write

f(T) = =" P(T)U(T),
where U(T) € A is a unit, P(T) is a distinguished polynomial, and u is a

non-negative integer.

For a non-zero element f(7T) € A, we define the Iwasawa A-invariant and the
Iwasawa p-invariant of f(T) by

A(f(T)) = deg(P(T)), u(f(T)) = p,

respectively.

DEFINITION 3.3. — Two A-modules M and M’ are said to be pseudo-isomorphic
and we write M ~ M’, if there is a homomorphism M — M’ with finite kernel
and cokernel.

THEOREM 3.4. — Let M be a finitely generated A-module. Then

M~ A% (@ A/(w””)) o | DA/ FHT)™)
i=1 j=1

for some non-negative integersr, s, t, m;, n;, and distinguished and irreducible
polynomials f;(T) for 1 < j <t.

We say that a A-module is a torsion A-module if every element is annihi-
lated by some power of the maximal ideal (w,T). If M is a finitely generated
torsion A-module, then r = 0. We define the Iwasawa A-invariant, the Iwasawa
u-invariant, and the characteristic ideal of M by

t s s t
AM) =) deg(f5(T)"), p(M) = mi, Chara(M) = | [[=™ [ £ |,
j=1 i=1 i=1 j=1
respectively.
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For a number field K, let K, denote the cyclotomic Z,-extension of K and
A = Z,[[T]] = lim  Z,[Z/p"]. Then Gal(Ko/K) is a finitely generated torsion
A-module.

THEOREM 3.5 (Ferrero-Washington [11]). — Let K be a finite abelian extension
of Q and p a prime number. Then u(Gal(K/K)) for K is equal to zero.

3.2. Selmer groups. — We will recall general results on Selmer groups. We
omit details, which can be found in [15], [16]. Let X be a finite set of primes of Q
containing p and oo, and let Qs be the maximal extension of Q which is unram-
ified outside 3. Let F, be a finite extension of Q, and V,, a finite dimensional
F,-vector space endowed with a continuous F)-linear action of Gal(Qx/Q).
We put d = dimp,(V,). Let O denote the ring of integers of F,. Choose a
Gal(Qx/Q)-stable O-lattice T, in V,,. We put A = V,,/T,. Then A is a dis-
crete Gal(Qs/Q)-module which is isomorphic to (F,/O)? as an O-module. We
denote by d* the dimension of the (41)-eigenspaces of complex conjugation
acting on V,,, respectively. Then we have d = d* + d~. Since we have fixed
an embedding Q — @p, we can identify G, with a decomposition group for
some prime of Q above p. We will assume that Vp is ordinary at p, that is, V,,
contains an F,-vector subspace F'*V, of dimension d* which is stable under the
action of Gg,. Let F" A denote the image of F*V, in A under the canonical
map V, — A.

0 F+V, v,
0 F+A A=V,/T,— = A/JF+A— 0.

For a pair (4, FTA), we define the Selmer group of A in the sense of Green-
berg [15] by

SA(QOO) = S(QooaAaF+A) = ker (Hl(QE/QooaA) - HHZ(QoovA)> )

lex
where H;(Quo, A) is defined as follows: if [ # p, we let
H1(Qoo; A) = [T H' (@), 4),
|l

where the product is taken over the finite set of primes 7 of Q4 lying above [.
There is a unique prime 7, of Q. lying above p. Let I, denote the inertia
subgroup of G(Qw)%. We define

Hy(Qoo, A) = Hp(Qoo; A, FTA) = im (H'((Qo0)y,, A) — H'(I,,,, A/FTA)).
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We define the Iwasawa algebra A by A = O[[T]], where I' = Gal(Q/Q).
We know that the groups H!(Qs/Qs,A4), H*(Qs/Qo0, A), Hi(Quo, A), and
S4(Q) are discrete O-modules with a natural continuous action of I". Hence
these groups are regarded as A-modules and are known to be cofinitely gen-
erated, that is, their Pontryagin duals are finitely generated A-modules. The
following corank formulas follow from the results in [15, §3, §4]:

PROPOSITION 3.6. — The following statements hold:

(1) corankp(H'(Qs/Qu0, A)) = d~ + corankp (H?(Qs/Qu0, 4)).
(2) coranka(Hp(Qoo, A)) =d~.

(3) corankp (H;(Quo, A)) =0 if I # p.

We always assume that S4(Qu) is A-cotorsion in the rest of §3.2. Put
A* = Hom(T), ptpoo). This is also a discrete O-module equipped with a con-
tinuous action of Gal(Qx/Q). The next proposition, which is proved in [16,
Proposition 2.1], is important in this paper.

PROPOSITION 3.7. — Assume that Sa(Qoo) is A-cotorsion and H(Q, A*) is
finite. Then the following sequence is exact:

0= S4(Qw) = H'(Qs/Quc, 4) = [[ Hi(Qos, 4) — 0

lex

Next we recall the non-primitive Selmer groups of A in the sense of Green-
berg. Let ¥g be any finite subset of ¥ which does not contain neither p nor oco.
The non-primitive Selmer groups for (A, F* A) and 3 is defined by

SEO(QOO):SEO(QOO;A,F"'A):ker Hl(@E/QooyA)_) H Hl(@oozA)

1eX\Zo

We have S4(Qx) C SEO(QOO) by the definition. We denote by MY the
Pontryagin dual of any locally compact Z,-module M. We obtain the following
corollary of Proposition 3.6 (3), Proposition 3.7, and [15, Proposition 2], which
is proved in [16, Corollary 2.3].

COROLLARY 3.8. — Under the assumption as in Proposition 3.7, we have
(Q00)/S4(Qw0) = [ Hi(Qeo, A
lexy

as A-modules. In particular, SEO (Qxo) is A-cotorsion, and the following equal-
ities hold:

coranko (S%°(Qu)) = coranko (Sa(Quo)) + 3, coranko (Hi(Qoo, A)),
lexy

1(55°(Qoo)Y) = 1(S4(Qos)").
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Next, in order to compare coranke (5%°(Q)) With coranke (Sa(Qu)), We
would like to find a generator of H;(Qoo, A)Y. The following proposition is the
result in [16, Proposition 2.4].

PROPOSITION 3.9. — Let | be a prime number with | # p. Put P(X) =
det((1 — Frob; X)|(v,), ) € O[X] and P, = P(I7'y) € A = O[[T)], where
v, denotes the Frobenius automorphism corresponding to the prime l in I’ =
Gal(Quo/Q). The characteristic ideal of the A-module H;(Qs0, A)Y is generated
by Pr.

Let w be a uniformizer of O. Let A[w] denote the w-torsion of A. We now

define a Selmer group of A[w]. For any subset ¥y of ¥ — {p, 0o}, we define
S0 (Qoo) = =0 (Qoo; Alww], F* Al))

= ker HI(QE/QM,A[W])—’ H Hl(@omA[w]) ’

e\
where H;(Quo, A[w]) is defined by
I, H'(I, Alw])  if I #p,
Hl(Inp,A[w]/F"’A[w]) if I=p.
Under certain hypotheses, the next proposition obtained by [16, Proposi-

tion 2.8] allows us to describe A\(5%°(Qx)) in terms of the Galois module A[zw].
We put Ram(A) = {l|l # p, oo and the action of Gg, on A is ramified}.

ProOPOSITION 3.10. — Let p be an odd prime number and ¥ a subset of ¥ —
{p, o0} containing Ram(A). Assume that I, acts trivially on A/FTA and
H%(Qu, A) = 0. Then we have

Sio (QOO)[W] = Sifw] (Qoo)
Consequently, Sa(Qw) is A-cotorsion, and has p-invariant is zero if and only

if Sifw] (Quo) s finite. If this is the case,

M85 Qo)) = dimo /w0 (S5 (Qo))-

Now we apply the general theory recalled above to the Iwasawa main con-
jecture of modular forms. Let f = Y >°  a(n, f)e(nz) € Sp(o(N),e,0) be a
normalized Hecke eigenform and

pPf: GQ — GL(Tf) >~ GLQ(O)
the associated Galois representation, which satisfies

(1) py is unramified at all primes [ { Np,
(2) Tr(py(Froby)) = al, f) for L1 Np,
(3) det(pys(Froby)) = e(1)I*~! for I { Np,
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(4) py is odd.

We write  for the residue field of O. Let Ay = Ty ®z, (Q,/Zy) denote the
cofree O-module of corank 2 with Gg-action via py. We assume that

(RR)  the residual representation py : Gg — GLa(k) is reducible.

that is, there exists an exact sequence

(3.1) 0—-®— Affw] > T -0

Then py is of the form

of k[Gg]-modules, where Gg acts on ¥ via the character ¢: Gg — k>, and
on ® via the character ¢: Gg — k*.

Hereafter we assume that f is p-ordinary. From the result of [27] and [43,
Theorem 2.1.4], the restriction of p; to the decomposition group D, is of the

form
pf D, 0 P2 )

where p1,p2: Gg, — O are unramified characters such that p, sends the
arithmetic Frobenius to a unit-root of X2 — a(p, f)X +e(p)p*~! = 0 and ¥, is
the p-adic cyclotomic character. Then F* Ay is defined by the following exact
sequence of O[Gg,]-modules:

(3.2) O—>F+Af—>Af—>Af/F+Af—>0,

where G, acts on FT Ay via the character x5~ 'p1: Gg, — O, and on Ay /F* Ay
via the character pa: Gg, — O*. We can define the Selmer group of (Ay, FTAy)
by
SAf(Qoo) = S(Qoo; Af)FJrAf)
Let ¥y = {l € N|l is a prime number such that [[N} and ¥ = ¥o U {p,0} a
finite set of places of Q. Then the non-primitive Selmer group of A; is defined
by
Sﬁ?(@oo) = SEO(QOO? Af,F+Af)-
We assume that 2 < k£ <p—1 and

(Assumption) 1) is unramified at p and odd, and

@ is ramified at p and even.
Hence ¢(Frob,) = a(p, f)(mod w).

LEMMA 3.11. — We assume that ¢ and v are as above and p is odd. Then we
have
HO(Q’ Af[w]) = 0.
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Proof. — Since ¢ is ramified at p, H*(Q,®) c H°(Gg,,®) = 0. Since ¢ is
odd and p is odd, H*(Q,¥) C H°((c),¥) = 0, where ¢ € Gg is the complex
conjugation. O

LEMMA 3.12. — Suppose that ¥ is odd and p is odd. Then,

H°(Qu, ¥) = 0.
Proof. — Since 9 is odd and p is odd, H°(Qu, ¥) C H%((c), ¥) = 0, where
¢ € Gq,, is the complex conjugation. O

LEMMA 3.13. — Assume that p is odd. Then,
H*(Q5/Qo0, ®) = 0.
Proof. — For a Galois module A & F,/O via the character Gal(Qs/Qq) -

k> — O, we have
0P >4 A4A—0.
Therefore, in order to prove the lemma, it is enough to show that
(i) H(Qs/Qoo, A) is divisible, and
(i) H*(Qs/Qoo, A) = 0.

Indeed, we have an exact sequence

H'(Qz/Qu, 4) = H'(Qz/Quo, A) = H*(Qs/Qoc, @) — H?*(Q5/Qoo, A)

as a part of the cohomology long exact sequence. The proof of (i) and (ii) can
be found in [16, p.46] just after the equation (16) under the assumptions that
 is even and non-trivial. ([l

Therefore, using Lemma 3.12 and Lemma 3.13, we have an exact sequence

0= H'(Qs/Qu, ®) = H'(Qs/Que, Aflw]) & H(Qs/Qoc, ¥) - 0.
By this exact sequence and the definition of Si; [w]((@oo), S%O(Qoo), and SqE,O(QOO), we
have
30 11 (@00)/55° (Qeo) = S7°(Quo)-
Here, by the definition, S3°(Qs) = ker(H!(Qx/Quo, ¥) — H(I, ,¥)) and
52°(Qoo) = H(Q5/Qoo, ®). Hence we have

dimO/wO(SE(f)[w] (Qs0)) = dimp /550 (S3° (Vo)) + dime /o0 (S5° (Qoo))-

We compute the Selmer groups for one-dimensional representations V,, with
some assumptions. The Galois group Gal(Qx/Q) acts on V, via a contin-
uous homomorphism 0: Gal(Qs/Q) — O*. Then, @ factors through G =
Gal(K»/Q), where K, is a certain finite extension of Q. such that K, is
an abelian extension over Q. We put A = Gal(K»/Qx) and assume that
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(p,#A) = 1. We can identify I’ with a subgroup of G such that G = A xT'. This
decomposition is unique for our case (p, fA) = 1. We have Z,[[G]] = Z,[A][[T']].

Let Xoo = Gal(Ms/Kw) and Yo = Gal(Lo/K ). Here M, denotes the
maximal abelian pro-p extension of K, which is unramified outside {p, oo}, and
L., denotes the maximal abelian pro-p extension of K., which is unramified
everywhere. Let £ = 0|a be the restriction of § to A and Xy = ¥ — {p,o0}. If
6 is even (resp. odd), then dt =1 (resp. dt = 0) and we have F*V, =V,
(resp. FtV, =0).

PROPOSITION 3.14 ([16], p.45, 46). — The Selmer groups for one-dimen-
sional representations have the following properties.

(1)
Homo ((Xoo ®z, O)¢, A) if 0 is even,

S4(Quo) =~
4(Q) {Homo((yoo ®z, 0), A) if is odd.

(2) The A-modules S4(Quo) and S3°(Quo) are cotorsion, and we have
1(84(Qw)”) = w(S3°(Qe0)") = 0.

(3) Assume that & is non-trivial if 6 is even, and £ # w if 0 is odd. Then we
have

dimo /w0 (S04 (Qoo)) = coranko (53°(Qoo))
= corankop (54 (Qw)) + Z corankp (H;(Qso, A4)).

1S3
In particular, Sifw] (Qwo) is finite.

We can apply these results to (A4,0) = (A,, ) (resp. (Ay,¥)) for a Galois
module A, = F,/O (resp. Ay = F,/O) via the character ¢ = XZ’?’la@Z*l :
Gg — KX — O (resp. ¥ : Gg — K* — O*). We remark that A,[w] = ®
and Ay[w] = V.

(i) We consider S3°(Qo0) = 5% (Quo; @, D).

Since ¢ is even and ramified at p by our assumption, it is non-trivial. Therefore
we have ,u(Sii (Qx)Y) =0 and

dimo /=0 (S3° (Quo)) = coranko (53° (Qoo))-

(ii) We consider S5°(Qu0) = 57°(Qoo; ¥, 0).
Since ¥ is odd and unramified at p, we have ¢ # w. Therefore, we have
u(S3 (@)¥) = 0 and

dime /50 (53° (Vo)) = coranko(Si“p (Quo))-
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We define the Iwasawa A-invariants by
Ao, 5o = coranko(Siz (Qw)), Ay = coranko(Sii (Qs0))-
By Proposition 3.14 (3), using the exact sequence

0= 55 (Quo) = S7° ) (Qo) = S (o) = 0,

Si; (0] (Qx) is finite. Therefore, by combining these results, Proposition 3.10

and Lemma 3.11, we see that Sa,(Qu) and Sﬁ? (Qx) are A-cotorsion. Thus
we can define the algebraic Iwasawa invariants by

AT = A(S4,(Quo)”) = A(S(Quo; Ay, FT Ap)¥) = deg(f*'5(T)),
13 = p(Sa,(Qoo)) = 1(S(Quo; Ag, FTAf)Y),

ATS, = AT (Quo)Y) = A(S™(Qoos Af, FTAf)Y) = deg(f5E(T)),
1% = (S50 (Qeo)Y) = p(S™ (Qoo; Ag, FTAf)Y),

where f2!8(T) (resp. falg( T)) is the distinguished polynomial corresponding
to Sa,;(Qu)" (resp. Af °(Qu0)Y) via the Weierstrass preparation theorem.
Again by using Proposition 3.10 and Lemma 3.11, we obtain

(3:3) WpE = ny%, =0
and
(3.4) A%, = dimo /oo (550 4 (Qx))
= dimo /0 (53" (Q)) + ditmo /=0 (55" (Vo))
= A5 + A5
3.3. p-adic L-functions. — We recall p-adic L-functions of modular forms.

These functions have been constructed by Amice-Vélu [1], Vishik [40], Mazur,
Tate, and Teitelbaum [26]. Also, we recall non-primitive p-adic L-functions
of modular forms in the sense of Greenberg. Let K be an abelian number
ﬁelda 2 < k < b — 15 and f(Z) = Zr:ozl a’(n»f)e(nz) € Sk(FO(N)’EvO) a
p-ordinary normalized Hecke eigenform which satisfies (RR), (3.1), and (As-
sumption). We assume that K is unramified at all primes dividing the level
N, and tamely ramified at p. Put G = Gal(K/Q), and fix a character x
of G. We write I' = Gal(K/K), where K, denotes the cyclotomic Z,-ex-
tension of K. We can identify I' with the Galois group of the cyclotomic
Zp-extension of Q. Let v denote a fixed topological generator of I'. Put
A =0l 2 OX]IT]]; v+ 1+T. For a finite order character p: I' — C*,
we define ¢ € ppo by ¢ = p(7y). The p-adic L-function .Z,(f,x,T) € A is the
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power series characterized by the following interpolation property: for every
non-trivial p-adic character p: I' — @; of finite order with conductor p*~,

L(f,xp,1)
(—2’/T\/?1)Q?

where 7(x"1p71) is the Gauss sum of x " 1p~1, a(p, f) is a unit root of X2 —
a(p, )X +e(p)p*~! =0, Q% is the canonical period defined by (2.5), and o =
x(—1). By the Weierstrass preparation theorem, this interpolation property
characterizes Z,(f, x,T). Also, for any finite set of primes ¥y with p ¢ 3,
the non-primitive p-adic L-function ngo (f,x,T) € A is characterized by the
interpolation property

Ly (fix, (= 1) =7(x"p Nalp, £

Lo(fix: =) =7(x""p alp, f)™" € Olx, pl,

Ly, (f,xp, 1)
(—2mV/=1)Q5

where L(f, x, s) Hlezo Ei(f,x,s) = Ls,(f,x,s). Here, Ei(f,x,s) is the Euler
factor of L(f,x,s) at I. Then, putting x = trivial character, we have

L0 (f,T) = 7) [[ P(T

lexy

€ Olx, ol,

where P;(T) is defined by Proposition 3.9. We define the analytic Iwasawa
invariants by
)\anal

ML (f,T)) = deg(f**(T)),
p3 = (L (£, 7)),
?nfﬁ ML (£, T)) = deg(f5°4(T)),
B3, = w( L (£, 1),
where f22(T) (resp. f&@(T)) is the distinguished polynomial corresponding
to .2, (resp. XPEO) via the Weierstrass preparation theorem.

3.4. The Iwasawa main conjecture. — In this subsection, we assume that 2 <
k < p—1 and a normalized Hecke eigenform f € Si(To(NN),e,0) is p-or-
dinary and satisfies (RR), (3.1), and (Assumption). Let Chara(Sa,(Qc)")
be the characteristic ideal of the Pontryagin dual of the Selmer group S, (Qoo)-
The following main conjecture for py is formulated by Greenberg.

CONJECTURE 3.15. — We have
Char (54, (Qx)") = (L (f,T)) in A.
Kato has proven the following deep theorem in [21].
THEOREM 3.16. — We have

Charp (Sa, (Qx)") D (Zp(f,T)) in A®z, Qp.
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Therefore, in order to confirm the Iwasawa main conjecture, we will show
that
alg _ yanal
Ao = AP

Non-primitive objects Sﬁ; (Qx) and .ZPEO( f,T) will behave well under con-

gruences, where ¥y = {l is a prime number|/|N}. Then the following theorem
obtained by [16, Theorem 1.5] is crucial for our proof.

THEOREM 3.17. — The following statements hold:
1) alg anal anal

if and only zf/,afE = ugy, -

(
(2) Aalg = Aanal if and only if A7, = A3nal.
(

3) falg< ) = f219U(T) if and only if f&5(T) = f&\(T).

Now, we analogously define the p-adic L-functions for the Galois represen-
tations A, and A, appearing in the previous subsection.

(i) The p-adic L-function Z,(A,,T) € A is defined by the interpolation
property

Zp(Ap,C—1) = L(ey™'p,2 — k) = L(x} 'ey"p, 1)

for every non-trivial p-adic character p: I' — @: of finite order and ¢ = p(7).

Here we remark that, by (Assumption), w®*~1e1~! is non-trivial character and
hence L(xF~'eyp~!p, s) is holomorphic for s € C. Then, .Z,(A,,T) is related
to the Kubota-Leopoldt p-adic L-function by

Lp(sxﬁ_wa_l, s) =Zp(Ap,k(y)"° = 1)

for any s € Z,,. Here, k(7) is the element of 14+pZ, which induces the action of y
on pye- when we identify I' with Gal(Q(up-)/Q(pp)). The Ferrero-Washington
theorem (Theorem 3.5) and the Mazur-Wiles theorem assert that .Z,(A,,T') ¢
wA and the A-invariant of £,(A,,T) is equal to coranke (Sa, (Qo)), which is
denoted by A k-14-1 = A,. In addition, the non-primitive p-adic L-function
Z7°(A,,T) is defined by

LA, T) = Z,(A,, T) [[ 0 = e ' OIF2(1 + T)).
1€,

Here f; € 7Z, is determined by v, = +%t, where «; is the Frobenius element
corresponding to the prime [ in T".

(ii) The p-adic L-function .Z,(Ay,T) € A is defined by the interpolation
property
¥p,1) _ 1

LAu¢ -1 =10 2

Ly~ 'p71,0)
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for every non-trivial p-adic character p : I’ — @: of finite order and ¢ = p(vy).
Here we remark that, by (Assumption), wi~! is non-trivial character. Then
Z,(Ay,T) is related to the Kubota-Leopoldt p-adic L-function by

Lyt ) = 3. %Ay, 5(7)° = 1)

for any s € Z,. The p-invariant of .Z},(Ay,T) is again zero and its A-invariant
is A,y-1 = Ay, which is equal to corankop (S, (Qo)) by the Mazur-Wiles the-
orem. In addition, the non-primitive p-adic L-function XPEO (Ay,T) is defined
by

LP0(44,T) = Zp(Ap,T) [[ 1 = @17 (1 +T)%).
leXg
To state our theorem, we need to recall some facts about Eisenstein series.
The following theorem is obtained from the results in [28, Theorem 4.7.1].

THEOREM 3.18 (Lifting). — Let &; be a primitive Dirichlet character modulo
M; fori=1,2. We put M = MMy and € = e165. If e(—1) = (=1)F, there
exists an Eisenstein series G = Ey(e1,€2) € My (To(M),e,C) such that

L(G,s) = L(e1,8)L(e2,s — k+ 1).
Moreover, a(0,G) =0 if k # 1 and €1 is non-trivial.

Let G = Y0 ja(n,G)e(nz) € My(I'o(M),e,0) be the Eisenstein series of
weight k determined by

L(G,s) = Ly, (4, 8) Ly, (e~ s —k + 1).

Note that Theorem 3.18 assures the existence of such G.

We define the p-adic L-function .%,(G,T) by the interpolation property
L(G,p,1)
2/ —1

=Ly (™' p,2 = k)T(¥~1p7h)

LG, (=) =1(¥""p7")
LZo WP, 1)
2my/—1
for every non-trivial p-adic character p: I' — @; of finite order and ¢ = p(7).
Then clearly we have
Z5(G,T) = ZL7°(A,, T) L7 (Ay, T).
Therefore, the p-invariant of .Z,(G,T) is zero and the A-invariant of .Z,(G,T)

is equal to Ay 5= + Ay, 3, -
We define an eigenform g(z) € Si(I'o(M),e,O) by

(fe1N)(2)= Y aln, fle(nz),

(n,N)=1
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where 15 denotes the trivial character on (Z/NZ)*.

THEOREM 3.19. — With the notation and the assumptions above, we have the
congruence

Q+
é.i”pzo (£, T)=ul+T)™.%,(G,T) mod wA,

where u is @ unit in O and (1 +T)™ € A* is the image of the conductor my,
under Zy, - 1+ pZ, ~T — A. Here a (explicitly given by (A.27)) is equal
to +1 by our assumption of ¢ and .

Proof. — We remark that
L(f,s) = [T —a(t, N7 +e@I*72)" % 37 a(n, fHn~*,
UN (n,N)#1
L(g,s) = [[(1 = al, I~ + e@)iF172) 7",

UN

+
Thus, we have .Z,(g9,{ — 1) = g—ifpzo(f,g — 1) for every ¢ # 1 and hence

o)
"iﬂp(g7T) = Qi"?p):o(fa T)
g

For any ! with [ { Np,
a(l,g) = a(l, f) = Tr(ps(Froby))
= 1(Frob;) + ¢(Frob;)
= ¢(Frob;) + det(ps )b~ (Froby)
= 1 (Frob;) + exlg_lw_l(Frobl)
= () + (71D
=a(l,G) (mod w).
Also, by (3.1), (3.2), and (Assumption), we obtain
a(p, 9) = a(p, f) = P(Frob,) = a(p, G) (mod =).
Therefore we have
g =G (mod w).
We have a(0,G) = 0 since 1 is non-trivial. Since (p, M) = 1, the assumption
(2) of Theorem 1.9 follows immediately from the g-expansion principle. Next

we will check the assumptions (3) and (4) of Theorem 1.9. We claim that,
under the assumption k < p,

p(m)

(3.5) (DG, x, 1) = > x(b)P;

i=1
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for some P; € Ly_5(O) depending only on the parity x(—1).
For the moment, we admit the claim (3.5). For d € {0, 1}, note that

¢(m)/2 if ¢=1 (modm),
Z x(c) = ¢ (=1)%p(m)/2if ¢=—1 (modm),
X€(Z/mI)* 0 otherwise.

x(-1)=(-1)°

By (3.5), we have
Z X(bz)T(X)D(Gr X l) = Z X(bz)T(X)D(G7 X 1)

XE(Z/mZ)* XE(Z/mZ)*
x(-1)=1
XE(Z/mZ)*
x(=1)=-1
= w(m)PZ S Lk,Q(O).

On the other hand, by Lemma 1.8, we have

1 —bi
S x®r0DEx) = olm) f)*DCmyGJ)

X€(Z/mZ)* o1

Therefore, the assumptions (3) and (4) of Theorem 1.9 are satisfied.
Thus it remains to prove the claim (3.5). The coefficient of X*~2-7Y7J
in 7(x)D(G, x, 1) is equal to

L

k—2\ _ _\Jl'Ls,(¥x,j +1) -1 ;

——( ~>NM®WCHHL-MMW¢,1—%—J—U)
Then the existence of such polynomials P; in Ly_o(F}) follows from the func-
tional equation for Ly, (¢x, s) (see, for example, [28, Theorem 3.3.1, page 93]
or [18, Theorem 2, page 47]) and the Siegel-Klingen theorem. We prove that
P; belongs to Li_2(0O). In order to do it, we show that 7(x)D(G,x,1) €
Ly_2(O[Xs]). For any Dirichlet character x and any positive integer n, we
have

L(x,1—n) = —% 2 x(@)m" B, (“) .

My
Here recall that the n-th Bernoulli polynomial B,,(X) is characterized by
B, (X) = L) B; X",
(x) Z;@)J
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where B; is the j-th Bernoulli number. The von Staudt-Clausen theorem im-
plies that, for a positive integer j,

1
Bi+ Y. €L
a=1)lj

Here the sum runs over prime numbers [ such that [ — 1 divides j. Hence, for
each 1 <n < p — 1 and Dirichlet character x with (p,m,) =1,

(3.6) L(x,1 = n) € Zp[x].

Hence the integrality 7(X)D(G, x,1) € Li_2(O[Xs]) follows from (3.6) and
the functional equation for Ly, (%X, s), where we use the assumption that the
conductor of ¥y is prime to p. Therefore, the integrality P; € Ly_2(O) fol-
lows from ¢(m)P; € Lr_2(O[Xs]), which is obtained by the same argument
mentioned after (3.5), and (p(m),p) = 1.

Therefore, by applying the proof of Theorem 2.10 to the triple (g, G, p)
instead of (f,G,x), there exists a p-adic unit v’ in O* such that [§,]7 =
w'[ng]t in HY, (T1(M), Ly_2(O/w)) (by the same argument mentioned at the
beginning of the proof), and it gives the congruence for L-functions.

L(g, p,1) L(G,p,1)
(2my/—1)QF 2my/—1
for every non-trivial, and non-exceptional p-adic character p : I" — @; of finite

order whose conductor m, = p”». An explicit calculation with (m,, my) =1
shows that

7(p) = u'7(p)

(mod w)

T(Y)7(p) = (mp) ' p(my) ™ 7 ($p).
We remark that ¥(m,) = a(p, g) ™" (mod w). Therefore we obtain

(A —, L(g,p,1)
gp(ga C - ]-) - T(p)Oé(p, g) (271'\/—71)93_
(= —v, L(G,p,1)
=u T(p)a(p7 g) 27r\/—71
L(G,p,1)

W) pme) )
=u'7(¥) 1+ T) ™ %(G,¢ — 1) (mod @),
for every ¢ = p(y) # 1. This proves the theorem. a

Finally, we prove Theorem 0.2. By Theorem 3.19 and u(.%,(G,T)) = 0, we
obtain

AP = ML (G, T)) = ML (A, T)) + ML (Ay, T)).

TOME 146 — 2018 — N° 1



CONGRUENCES OF MODULAR FORMS AND THE IWASAWA X-INVARIANTS 51

By the definition,
MZP(3,T)) = MLy(Ap, T)) + > ML= ()17 1+ 1)),

lex,
ML (@, T)) = NLp(Ay, T)) + Y- A1 =) (1 + 1)),
lexy

On the other hand, by Proposition 3.14 (3), we have
AST (@s0)Y) = A5, (Qee)”) + D A(Hi(Quo, Ap)),

ey

MST (Qoo)Y) = A(Sa, (Qe)¥) + Y AHI(Qoo, Ay)).

lexy

Moreover, by Proposition 3.9, for [ € ¥,
AH1(Qoo; Ap)) = A1 = (I (1 +T)T),
AH1(Qoo, Ay)) = A1 = DI (1 +T)7).
Thus, by the Mazur-Wiles theorem, we get
ML (A, T)) = M50 (Qe)Y), AL (Ay, T)) = M55 (Quo)¥)-
Combining these results with Theorem 3.19, we obtain
AR = ML (G, 1)) = ML (A, T)) + ML, (Ags T)) = Ag 50 + A5

Thus, by (3.4), A7%, = A3%], which by Theorem 3.17 implies that A}® = A3n2l,

We have completed the proof of Theorem 0.2.

Appendix A. Comparison theorem for torsion cohomology in the GL, (Q) case

In this section, we retain the notation as before. Let p be an odd prime
number and N > 4 a positive integer with (p, N) = 1. Let C = X;(N) be
the modular curve over Z[1/N|] parametrizing generarized elliptic curves with
I’y (N)-structure. The cuspidal subscheme Z = Zy is étale over Z[1/N] and set
C° =C —Z. We write m: £ — C for the universal generalized elliptic curve
with I'y (IV)-structure. The map 7 is smooth away from Z and the fibers of 7
over Z are the standard Neron N’-gon, where N’ divides N. Let f: X — C be
the k-fold fiber product of £ over C. If £ > 2, X is singular and proper.
Let f: X — C denote the desingularization of X constructed by Deligne [7],
and explained by Scholl [31], [29], Ulmer [37], and Subsection A.2 in this paper.
Put X° = f*(C°). Then X° is smooth and not proper. Note that f°: X° —
C° is smooth.

Let Gy = (Z/N7Z x p3)k x & and Hy, = pb x &g, where & is the
symmetric group and the action of pus = {1} on Z/NZ is by the multi-
plication and the action of &y is by permutation. Moreover, Z/NZ acts
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on X° by translation by points of order N, us acts on X° by inversion in
the fibers and &) acts on X° by permuting the factors of the fiber prod-
uct. Then both Gy and Hj act on X°. This action extends to X and X
by definition. Let e: G — {£1} be the homomorphism which is trivial on
each factor Z/NZ, the identity on each factor uy and the sign character sgn”
on 8. Let II := ﬁngGk e(9)g™" € Z|555][Gx] be the projector at-
tached to e. Also we denote by g, = €|y, the restriction of the character
€ to the subgroup Hj, and IIj := If}iklzger ex(9)9™" € Zlzx7l[Hr) the
projector associated to €. If p > 3, £ < p, and p is prime to N, then

Il € O[Gk] and II;, € O[Hy]. We denote by V(e) the e-eigenspace for any

Z|3n7|Gr]-module V, and W (e, the e;-eigenspace for any Z[ 53— |[Hx]-mod-

ule W. Note that V(¢) = im[Il: V — V] for any Z[357][Gx]-module V and
W (ex) = im[[l: W — W] for any Z[5x|[Hg]-module W.
A.1. The Hecke correspondence and the Atkin correspondence. — We define

the Hecke correspondence T; and the Atkin correspondence U; on the curves
X1(N) and Y7 (N) over Z[1/N].

First, we assume that [ is prime to N. Let Y7 (N, 1) be the fine moduli scheme
over Z[1/N] which represents the functor of triples (E, P,C), where E — S is
an elliptic curves over a Z[1/N]-scheme S, P a point of exact order N on FE,
and C a finite locally free subgroup scheme of order ! in E[l]. The morphism
p1: Y1(N,1) — Y1(N) defined by

p1: (E,P,C)— (E,P)
is finite flat. Since (I, N) = 1, we can define a morphism ps: Y7 (N,l) — Y1(N)
of schemes over Z[1/N] by
b2 (EaP7 C) — (E/Cvp(mOd C))
We define a morphism ¢: Y;(N,1) — Y1(N,!) of schemes over Z[1/N] by
Y: (E,P,C)— (E/C, P (mod C), E[l]/C).

Since ¥?(E, P,C) = (E,IP,C), v is an automorphism of Y;(N, ). Hence p, =
p1 o9 implies that p, is also finite flat.

Then we have a commutative diagram

oF . P* o5 &

Ek plgk pSE’“ —£
R
Yi(N) =5 —Yi(N,)) =—=Y1(N,]) = Y1(N),

where the first and third squares are cartesian. Thus we define the Hecke
correspondence 77 on X° by scheme-theoretic image of the morphism

(¢F, ¢ opF): pi&F — EF x EF,
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which induces an endomorphism of H;(X°) for ? = ét or dR (see §A.2 and
§A.3). We also define the Hecke correspondence T} on Y7 (IN) by

(pl,pg)l Yl(N,l) — Yl(N) X Yi(N)

Then 7] and 1" induce an endomorphism of Hj(Y;(N)) for ? = ét or dR (see
§A.2 and §A.3). If (E, P) is a Q-valued point of Y7 (), then

T/(E,P) =) (¢E.¢P),
]
where the sum runs over the l-isogenies ¢ with source E.

Similarly, we define the Hecke correspondence 7} on X; (V) and it induces
an endomorphism of compact support cohomologies H; (Y1(N)) for ? = ét or
dR (see §A.2 and §A.3).

Next we assume that ! divides N. Let X;(N,!) be the fine moduli scheme
over Z[1/N] which represents the functor of triples (E, P,C), where E — S is
a generalized elliptic curves over a Z[1/N]-scheme S, P a point of exact order
N on E, and C a finite locally free subgroup scheme of order ! in E[l] which is
not contained in the subgroup generated by P. The morphism p;: X;(N,l) —
X1(N) defined by

pi: (BE,P,C)— (E,P)
is finite. Since C' is not contained in the subgroup generated by P, we can
define a finite morphism po: X;(N,1) — X; (V) of schemes over Z[1/N] by

Db2: (EaP7 C) — (E/CaP(mOd C))
Then, we define the Atkin correspondence U; on X by scheme-theoretic image
of the map
(61,95 0 9*): pi&F — £F x X,
which induces an endomorphism of Hy ™ (X°), and U] on X;(N) by
(p1,p2): Yi(N,1) — Y1(N) x Y1(N),

which induces an endomorphism of H;(Y;(N)) for ? = ét or dR (see §A.2 and
§A.3). If (E, P) is a Q-valued point of Y;(N), then

Ul/(E? P) = Z(‘pEv <PP)a
%]
where the sum runs over the l-isogenies ¢ with source E such that ker(y) is
not contained in the subgroup generated by P.

Similarly, we define the Hecke correspondence U] on X;(NN) and it induces
an endomorphism of compact support cohomologies H; (Y1(NV)) for ? = ét or
dR (see §A.2 and §A.3).

We now define the Hecke correspondence Tl on X as the closure of T; in XxX
and the Atkin correspondence U, on X as the closure of U; in X x X. These
induce an endomorphism of H3(X) for ? = ét or dR (see §A.2 and §A.3).
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A.2. Comparison with p-adic étale cohomology. — In this subsection, we as-
sume that 2 < k < p. Let O be the ring of integers of a finite extension over Q,
and @ € O a uniformizer. Let A = O or O/w™. For any scheme T over O,
we denote by T =T Xo @p its base change to Spec(@p). The aim of this

P
subsection is to prove the following proposition which gives an isomorphism be-
tween p-adic torsion étale cohomology for the modular curve with non-constant
coefficients and for the Kuga-Sato variety with constant coefficients.

PrOPOSITION A.1. — Assume that k < p. Then there exists the canonical
exact sequence

(A1) 0- Héi“()?@p, A)(e) — Héi“(Xép,A)(sk) — Hg(Zg , A)(=k —1)
— Hg"(Xg,, A)(e) — Hi*(Xg , A)(ex) = 0

and canonical isomorphisms

(A.2) Hélt(C%p, Sym"* R'm, A) ~ Héi“(Xép, A)(ek),

(A.3) Hgt,par(%p, Sym* R'm, A) ~ ngl()?@p, A)(e),

(A.4) H;;(X@p,A)(e)zo ifn#k+1,k+2 and k >0,

as Hecke modules endowed with a continuous Q,-linear action of Gg,. Here
the parabolic cohomology group in p-adic theories was defined by Deligne as

Hélt’par(cﬁp , Symk RIW*A)
=im (Hgt(C@p,jg Sym* R'm, A) — Hélt(C%p, Sym* R17T*A)) ,
where j denotes the open immersion j : C° — C.

In order to prove this proposition, we strictly follow the arguments in [29].
First we construct the isomorphism (A.2). There exists the Leray spectral
sequence for f°: X° — C°:

Ey) = H,(C3 R f24) = HLI (X, A),

Since C° is affine, we have E;J = 0 for 4 > 2. By using the Kiinneth formula,
we have

RifA~ @B R'mA®-- ®R*mA
ritetr=j
Note that —1 € uy acts as (—1)" on R"m.A. Hence, if k < p, then we have
Sym* Rlm, Aif r =k,

R Alew) = {o if %k
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Therefore we get
(A.5) Hgt(C%P, Sym” Rz, A) ~ ngk()%p ,A)(er)

for i = 0,1. This proves (A.2).
Secondly we prove (A.1). We begin by considering the cuspidal fibers of X.
We remark that, for any smooth scheme of finite type S over @p, the Kiinneth
map induces an isomorphism

(A.6) H(GE, xq S, A)(k) = H (S, A) ® \(Aty + - + Aty),

where t; = pr} (t) € H'(G,,, A)(1) and A\(At1+- - -+ Aty) is the exterior algebra
on Aty + -+ Aty.

The symmetric group &, acts on G¥, by permuting the coordinates and u5%
acts on GE, by (z;) — () for any (a;); € p&. Then the group Hj, acts on G,.

PROPOSITION A.2. — Cup product with t; U --- Uty defines isomorphisms
HZ (S, A)(—k) =~ HiM (G, xg, S, A)(ex)
for any smooth scheme of finite type S over @p,

Proof. — We denote by Il the projector associated to €. Then, by (A.6),
it is enough to show that II;(t; U---Ut,.) = 0 for each » < k. Since ug acts
on k-th component of Gﬁl by zp — :L‘Zk, it acts trivially on t; U --- U t, and
€k|uz is non-trivial. Hence we obtain the assertion as required. |

Let P, = Proj Olz1,y1,---, Tk, Yk)/(T1y1 = Tays = -+ = xpyg) be the
closed subscheme of the projective space IP’?Q’“*1 over O defined by the equations
T1Yy1 = XToYs = -+ = TxYg. Note that Hy acts on P,. We define a subscheme
P°® as

k

P.*® = {(;,y;) € Py|there are no two pairs (z;,y;) simultaneously vanish}.

As in the proof of [31, Proposition 2.4.1] or [29, Proposition 7.2.3.1], we obtain
the following result.

PROPOSITION A.3. — Assume that k < p. Then Hg‘t(P;%p xg, S:A)(er) =0

for any smooth scheme of finite type S over @p.

Let X™# be the regular locus of X and X* = X° U (Z x GE,) the open
variety whose fiber over € C' is the connected component of the Néron model
of X° — C°.

PROPOSITION A.4. — (1) Hgt(X@p,A)(s) ~ Hgt(ng,A)(e).
(2) Hgt(xag, A)(e) ~ Hgt()%p, A)(ex).
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Proof. — (1). We define V = X x¢ Z = X — X° and a filtration of V by
closed subschemes

VZVkDVk_lD"'DV()DV_lzw,

where V; is the set of (z1,z2,...,2x) such that at least (k — ) of the com-
ponents z; are singular points of corresponding Néron polygon. We define a
desingularization X=X (k—1) of X and a filtration on V=Xx¢cZ We
put X(0) = X and P{0) = Vi. We define inductively X (j) and P(j) as fol-
lows: Let ¢;: X(j) — X(j — 1) be the blowing-up with center P(j — 1) and
let P(j) C X(j) be the strict transform of V;. We write X = X (k — 1) and

Pr—2 Dj+1 X<j>

bir X = X(k—1) 25 X (k- 2) 22,
for the composition ¢;1 00 ¢p_2 0 ¢r_1. We will show that
H*(Vg,, A)(e) =0
We define a filtration on V by
VDW():)WlD"":)kazDkalzw

given by
Wy =95 (X (j)""®).

Here X (j)*™ is the singular locus of X (j).
We claim that

H*((Wj = Wjs1)g,,A)(e) =0

for all 0 < j < k—2. The proof of this claim is same as [31, Theorem 3.1.0,(ii)]
using Proposition A.3 instead of [31, Proposition 2.4.1]. Thus we have, for j > 0,

HE (W, 5, A)E) = HE (W, 5, AE).
Since V — Wy ~ Vres,
Hy (V  A)e) = Hi(Wy g, A)e).
Therefore we get
H, (Vg A)e) = B (Wy g, A)E) = - o HE (W, _, 5 A)() = 0.
Since X — V ~ X8 we obtain
H; (Xg,, A)(e) ~ HE (XG5 A)e),
as required.
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(2). Fix a cusp z € Z. Then we have, on f~!(x),

Vi1 — Vik—a = {(z1,...,x) € V|there exists one pair such that x; is singular}
= U c{(z1,...,2x) € V|zy is singular, z; is non-singular for any i # 1}
c€eGy

= H oT.

TEGK/pa X (5™ Gy 1)
Here T is the component
T :={(x1,...,2) € V|z; is singular and z; is non-singular for any i # 1}

and pg X (ﬂg_l X Gj_1) is the stabilizer of T" under Gi. Note that the first
factor po acts on T trivially. Therefore

He (Vi1 = Vi2)g,, A)(€) = Ind Hg (Tg , A)(e) = 0

pax (uETT X6, 1)

by Frobenius reciprocity. Then by using the Gysin sequence for X — Vi1 —
X' = X — Vi_o, we have

Hé‘t(ng, A)(e) = Hg (X = Vi1)g, , A)(e)-
Note that
(X =Vii1)x Z~(G,, xZ/NZ) x Zand X* = (X = V)=X*xZ=G* x Z.

Then by using the Gysin sequence for X° = X -V — X" and X° = X -V —
X*, we see that

Hi(Xg", A)(e) =~ Hi(Xg , A)(ew)- O

By the Gysin sequence for X° — X* we have the exact sequence

(A7)
= HY P (Zg) % G, ) (1) (er) — HL(XG L A)(ex) — HL (XS A)(er)

— Hi Y(Zg, x G}, A)(—=1)(ex) — HLH (X3, A)(ex) — -+

Therefore (A.1) follows from (A.7), Proposition A.2, and Proposition A.4. Also
(A.4) follows from (A.7), Proposition A.2, (A.5), and HY, (€5 ,Sym” R'm, A) =
P

0if (p, N)=1and k > 0 (by (2.4)).

Thirdly, we construct the isomorphism (A.3). Let j (resp. j) denote the
open immersion C° — C (resp. X° — X ). There exists the Leray spectral
sequence

Ey" = Hg(Cg,, R' fjiA) = HE (Xg , jiA).
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As before in the proof of (A.5), by using the proper base change theorem and
the Kiinneth formula, we see that

. k 1 .
. . s Sym” R'm, Aif b=k,
Rbf.1A(e) ~ IRV F2 A(e) =~
feaiA(e) = jiR” £ A(e) {0 bk
Therefore we have a commutative diagram

(A8) H},(Cy i Sym® Rim, A) —=— HEV (X5 Gi4)(e)

|

o HE(Xg,, A)e)

|

HEH (X5 A)(er)

~

Hélt(C% ,Sym* Rlm, A)

from the functoriality of the Leray spectral sequence and (A.2). By Poincaré
duality, we see that

HEHXG , A)ew) x HiTH (X A) ) 75 Q/Z,

ét,c
v v — trace
HiM (Xg,, A)(e) x HiH (Xg, Ae™) =5 Q/Z

1

are perfect pairings. Note that ¢ = ™" and

Hy ™ (Xg,, A)(e) — Hi ™ (X5, A)(en)
is an injection by (A.1). Thus we see that
HEH(XG L A)(er) — HE™ (X, A)(e)

ét,c
is a surjection by duality. Therefore we have
H{y e (CF  Sym"® R'm. A) =~ HEH (X, A)e)-

This proves (A.3).

We prove that the isomorphisms (A.2) and (A.3) are compatible with the
Hecke operator and the Atkin operator. From the Leray spectral sequence
and its functoriality for A — p1,p1*A4, A — ,.9* A, and the trace map trp, :
p2,.p2*A — A, the diagram

k k
&k 1 palkgk ¥ ngk 2 = &k
R
YVi(N) =5 —Yi(N,l) ==Y1(N,l) —— "1 (N)
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implies that the isomorphism (A.2) is an isomorphism of Hecke modules as
desired.

In order to prove that the isomorphism (A.3) is compatible with the Hecke
operator and the Atkin operator, from the diagram (A.8) it suffices to show
that the commutative diagram

e e |

TLSXOXXO?X"

induces the following commutative diagram

HEM (Xg,, A) HiH (XS L A)
P P

pry [0 pri

HiH (Xg, x Xg,,4) ngl(Xép x X5 . A)

Ucl(Ty) O Ucl(Ty)

HgH (Xg, x Xg,, Ak +1) ——= Hi M (X5 x X3, A)(k+1)

Q,’
PTa, O P2,
HiH (Xg,, 4) HiH (X5, 4).

Here cl is the cycle map. The first square is compatible by the smooth base
change theorem and the second square is compatible by the semi-purity theo-
rem. The compatibility of third square follows from the fact that trace maps
are compatible with base change. This completes the proof of Proposition A.1.

A.3. Comparison with algebraic de Rham cohomology. — The aim of this sub-
section is to prove Proposition A.8, which gives an isomorphism between mod
p de Rham cohomology for the modular curve with non-constant coeflicients
and for the Kuga-Sato variety with constant coefficients. In order to do it, we
use the terminology of logarithmic structures in Kato [19].

Let Y be a regular scheme and D a reduced divisor with normal crossings
on ). Then the subsheaf L of monoids on Y defind by

(A.9) L(U)={g € Oy(U)|g is invertible outside D xy U}
for each étale V-scheme U is a fine log structure ([19, (2.5)]).
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We fix an algebra Ay = Z[1/N]. We define a log scheme C* over Ag to
be the scheme C over Ay endowed with the log structure L={g € O¢lg is
invertible outside Z}, and £* the scheme &£ over Ay endowed with the log
structure M={g € Og|g is invertible outside 7=*(Z)}. Then the morphism of
log schemes £* — C* over Ag is log smooth ([19, Theorem 3.5]) and hence
the Oc-module Q. o« = Qg (log(M/L)) is locally free of finite type ([19,
Theorem 3.10]).

For any Ag-algebra A and Ag-scheme ), we denote by )Y, its base change
to Spec(A). Moreover, for any Ap-algebra A and Ap-log scheme Y* = (), L),
we denote by Y = (¥, L) 4 its base change to (Spec(A), triv) with the trivial
log structure.

In this subsection, let O be the ring of integers of a finite extension over Q,
and k the residue field of O.

We define the de Rham cohomology sheaf on C,; by

L, = Rlﬂ'*Q;KX Jox
We have the invertible sheaf

_ 1
wr =80
([8, I1.1.6], [24, §10.13]). The exact sequence
0— Q}:KX o7 = Qgx ox = Ogze = 0

induces an exact sequence
(A.10) 0—w,— L, —w. ' =0
(cf. [23, A1.2.1, page 163]). This sequence (A.10) defines the Hodge filtration
L.=F%L,) D FYL,) =w.DF*L,)=0.
We have the canonical integrable Gauss-Manin connection
Vit L= Li ®00, U -
For a non-negative integer k, we denote by L, ; the k-th symmetric tensor
Sym* £, of £, and by Viek: Lok = Lek ®oc, O the k-th symmetric
power of V. Explicitly, it is given by

1
CX/k

k
(A.11) Vik(@i,...,z8) = Z Xy T 1Ty Tk Vi (T0).
r=1

We define a complex of sheaves Q°*(L, x) by
Qo(ﬁn,k) = En,lm Ql([ﬁe,k) = Em,k ®OC,€ Qlcg /K
and the cohomology H™(Cy, Ly k, Vi, k) by

Hm(cna Eﬁ,ka Vn,k) = Hm(Cna Q.(En,k))~
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Let R, denote the canonical residue map in the sense of Deligne, which gives
an exact sequence

0 Qf = Qb ~ Oz, — 0.

Since Rx (Vi k(ax)) = Re(aVik(2))+Re(2®da) = Re(aV k() on Ly xR0,
Oz, for any a € O¢, and = € L, i, the morphism R, induces an O¢, -linear
morphism

Vi,

Ry
Ly — Lek Qog, — Lk 0, Oz,

1
CX/k

We define a complex of sheaves Q2 (L 1) by

par

anr([’fﬁ,k) = Ln,ka Q;)ar(‘cn,k) = Vn,k(Ln,k) + Em,k (X)OcN Qlc'm/,.g
and the parabolic cohomology H[, (Cy, Lk k, Vi k) in the sense of Scholl [30]
by
Hg;r(cma ‘Cn,ka Vn,k) = Hm(crm Q° (‘Cn,k))~

par

PROPOSITION A.5. — Assume that k < p. Then, the morphism R, induces an
exact sequence

0— H. o (Crs Looos Vi) = HY(Cro, Loy Vi) = HY(Cry w0 @ O,).

par

Proof. — Fix a cusp s. The level structure on Tatey:(¢q) = G, /(¢"/N')%
defines a morphism

¥ SpecAo[[q*/N']) — C

identifying Ay’ = Ag[[¢"/N']] with the formal completion of C along the cusp
s, where N'|N. Then ¢*(w4,) has the nowhere vanishing section dt/¢ on the
formal completion of C' along the cusp s, where ¢ is the parameter on G,,
(cf. [8, VII,1.16.2], [23, A1.3.18]). Let w be the canonical generator. Since
(p, N) =1, V4, induces

/ d
VAO: Q/)*‘CAO - w*[’Ao : dlog(ql/N ) = 1/)*5140 ’ ?q7

and we have
YLy, =AN - w P Ans - €,
where V4, (w) =& - %q and Vy4,(€) =0 (cf. [23, A.1.3]). Then we get
k
(A.12) U Lagk =D An - FrE"
=0
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and, by (A.11),

k—r k
vAo,k(Wkirgr) — Z wkfrflé-rvAO (w) + Z wkfré-rflvAO (é-)
i=1 j=k—r+1
) (k- r)wk_r_lfr*'l% if r+#k,
o if r=k.
Since k < p, we obtain the exact sequence
(A.13) 0= Q8 (Lep) = Q(Lak) = W ©o,, Oz,[-1] — 0.
This proves the theorem. O

We denote by X * the k-fold fiber product of £* over C*.

PROPOSITION A.6. — Assume that k < p. Then there exists a canonical iso-
morphism
H™(Cyy Ly, Vir) ~ H"H(X,, Q% ,)(€) for all m.

Proof. — Similarly as in the proof of (A.2), by using the Kiinneth formula,
we see that

A Lorif j=F,

R f.Q% x o (€) = ’
P o (€) {o if j# k.

Thus, the Leray spectral sequence ([22, Remark 3.3]) implies the assertion as
required. O

We define X* to be the scheme X endowed with the log structure defined
by the subsheaf of functions invertible on the cuspidal fibers as (A.9).

PROPOSITION A.7. — The morphism g: X* — X* induces isomorphisms

Rg*Q}(z I Q;(,? I and Rg*Q}(z Jox = Q;(’? Jox

Proof. — In virtue of [20, Theorem 11.3], Rg.O% =~ Ox,. Since g is log
étale, applying [19, (3.12)] to XX & XX — (k, triv) (resp. XX L XX — C)),
we obtain

I Wy = Vg TP 9" U0 = Vo)
for all 7. Hence the projection formula implies that

J ~ OJ J ~ OJ
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PRrROPOSITION A.8. — Assume that k < p. Then there exist canonical isomor-

phisms

(A.14) HY(Cri, Lok, Vi) = HH (X, Q% x RICH

(A15) par(Cm‘cn k?v ) Hk+1(X Q. X./k )( )

as filtered Hecke modules. Here the filtration on H'(Cy, Ly, Vi) (Tesp.
H}. (Cx, Ly, Vir)) is induced by the filtration (A.21) (resp. (A 23)) and

k+1(% o k+1(y )
the filtration on H (X,Q,QXKX /K)(E) and H (X”’QXH/K)(E) are defined by
the Hodge filtration.

Proof. — First, the isomorphism (A.14) is obtained by Proposition A.6 and
Proposition A.7.

Secondly, we construct the isomorphism (A.15) by using the Leray spectral
sequence [22]. In order to do it, we make a general observation on logarithmic
differential. Let )’ be a regular scheme and suppose that D, D', and D + D’
are reduced divisors with normal crossings on ). Let M be the log structure
associated to D as (A.9). Etale locally on Y, we can write D = Y.._, C;,
where C; is a regular closed subsheme of ) defined by m; = 0 for a non-zero
divisor m; € I'(Y,Oy) and M is isomorphic to the log structure associated
to (N")y — Oy : (n;) — Hn"". The residue map Res from Q3,(log(D + D’))
to QE:l(log(Ci N D")) is defined by the formula

Res(dlog(m;) Aw) = w|, -
Summing over all components, we get the morphism
Res: Q3,(log(D + D')) — a*(Qfﬁ_l(log(a*D nD")))

for the normalization o : D — D of D.

We define D; as the strict transform of the exceptional divisor ¢;J:1(P(j>)
in X, for j =0,1,...,k—2 and D}, as the strict transform in X, of the cuspidal
fibers of f: X,, — C\ over the cusps. We write ﬁj for the normalization of D;
forall j. Put D = Do+ --+Dy_2+Dy and E; = Do+---+D; for 0 < j < k-2.
Let D,j be the scheme Dj, endowed with the log structure associated to the
normal crossing divisor Ek_2(ﬁk N Dj).

Filtrations on Q’ X /n and 0% B are defined by
(A.16) Q'~X/n=FO(Q;(NX/ )DF (Q)Z’é/ )D FQ(Q;Z'NX/ ) =0 and
° 0 ° _ 1 ° 2 ° _
QD X /0 =F (QD:/H)_F (QD X/ )D F (QD;/,«,)_O’
respectively, where
104 _: q—1
FU QY ) =im 04! o, fob. —0%, |
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(see, for example, [22, (3.2)]). The residue map Res: Q;Z'X/n — Q})_/ for

the canonical morphism « : f),j - X < and the exact sequence 0 — GrF —
F% — Gr% — 0 induce a commutative diagram

Vi, k
(A17) Acn,k — ‘cn,k (8(90N Q!

CX/k
Rest J/Res

0 R0, (0)

obtained by the projection formula and cutting out by . Here we note that
ka*Q' Jor = ~ RFf.Q° %5 /0% by Proposition A.7 and hence ka*”}zx o (e) ~

RFf.Q° % /CX( €) =~ Ly by the proof of Proposition A.6. Thus the Leray

spectral sequence [22, Remark 3.3] and its functoriality induce a commutative
diagram

ker(Res)

HkJrl(X,{, Qe /K)(g)

HI(CH7£N,k7vn,k) Hk+1(XH7Q;E';</K)(E)

Res Res

d k7 Oe ~
HI(CIWO_}R f*QD;/K(E))*)H (Dk7QD X /K )( )

Here, using
H"Y(X,, Q% ), (log(Br—2)))(e) = H*' (X, Q% ), (log(Er—3)))(¢)

:-~-~H’“+1(X %)),

obtained by an inductive argument with the help of the vanishing results [37,
p.146] and Rif*Q})X/ () = 01if ¢ # k by [37, p.145], we see that the second
k K

arrow in the right vertical sequence is an injection and the bottom horizontal
morphism is an isomorphism. Since the image of QX < I ®o, f*Qlcm /K[—l]

under Gr}, Res : Gr}, Q X P QX;(/K/®OXN f*Q c,j/n[_ ] = Gry Q.D,j /K[—l] is
equal to 0, we have Res(Ly 1 ®o0,, Qlcm/ﬁ) = 0. Combining with (A.17), we get
Res(Qll)ar(Eﬁ,k)) = 0. Thus, by the exact sequence (A.13), the map Res factors
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through Q' (L, x)/Q.(Lrk) ~ wE @0, Oz,. Then Res induces wk ®o,,
Oz, — ka*Q;jx/ (¢) and we have a commutative diagram
k K

(Alg) En,k ®OCK Qlc’f /K - E”’k ®OCK Qlc',i< /K
J/RH I/Res
wﬁ ®os. Oz, ka*Q.” x (‘S)
w D} /k

Therefore, we have a commutative diagram

0 0
Hgar(ofw Em,ka vl’i,k) ker(Res)
Hl (CN7 ‘Cn,ka Vﬁ,k) —_— Hl (Cny En,lm Vn,k)
R Res

H®(Cr, wk @0, 0z,) — H'(Cr,0 % REF.OQY., ()
k

Here the left vertical sequence is exact by Proposition A.5.
We claim that w’ ®o, Oz, — ka*Q;f)X/n(E) is an injective morphism.
k
Recall that from (A.12),

k
'(/}*En,k: = @ KN/wk_rfr,
r=0
where k, = AN’/ ®4, k. Since the claim is local on Z,, it is enough to show that
P (wk @0, Oz,) — z/;*(ka*Q'DX/ (€)) is injective. Hereafter we drop the
k K
notation ¢* and write L,  for ¥*L, ; and so on. For any a = bk TEm €
L.k, Ry (adlog(q)) = bow*®1, where b, € K s and by € HN,/(ql/N'). Therefore,
by (A.18), it suffices to show that Res(w* ® dlog(q)) is non-zero. Recall that
Res is the composition of the following morphisms (A.19) and (A.20):

Kiinneth

(Alg) Ln,k (8(90,€ QlC’N/n ka*Q}(; /C’? (8(90,€ Qlc; /K
~ Pk f ° B rx 1 .
~ RO J. (QXS/CS Df-00, f chm)’

k7 ° rx 1 Res oY)
(A.20) R . (Q;zz/c; ®foc, f Qc:/~> — B
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Here the morphism (A.20) is induced by Res : Q% Jox ®f-oc, f*Qlcs P
Yo

We shall compute the image of w* ® dlog(q) under (A.19). We denote
p; by the i-th projection X* — &* and p; : X* — £* by p; o g for any
i. Note that the image of w* ® dlog(q) under the map L, ®og, 1

1 —
CX/k
(le*Qz,? 10 )®* @0, Qlc,é I 18 w®* ® dlog(q) and the image of this element

under the map (RIW*QEKX /C,§)®k ®oq, Qé’{x /n ka*Q;(§ Jox ©0c,

Qé’? I is pj(w) U --- U pf(w) ® dlog(g). The commutative diagram

Kiinneth

P Qe ox [F1] ——= 0210

£X /0 X /X
—10e .
P o T ergex

induces a commutative diagram

hs .
™y o B felo21D o)
1 . pi 1 Jo/

Bm ox RIS o

Here we denote by h; the upper horizontal morphism. We have h;(w) €

le*(azlg;f,?/cs) = ker[j’,kﬂﬁfﬁx/cnX — f*Qicé/C,?]' Similarly, we have

* rF Ol £ 02 : T kD
g hz(ui) € ker[f*Q)'(g/c; — {*QXS/C,?]' By [juttlng hi(w) = g*h;(w), we
have hi(w) A -+ A hi(w) € f*Q,}(S/CKX = ka*(UZkQ}(RX/CS)' The image
of w* ® dlog(q) under (A.19) is p}(w) A -+ A P} (w) ® dlog(g). Thus our claim
follows from f*Q%X/ (€) ~ ka*Q;jx/ (€) obtained by [37, p.145] and hq(w) A
5 kI K/

<o Ahg(w) =dty/tg A--- Adtg/tr # 0 on the smooth locus for the parameter
t,on G,,.

Next, we prove that the isomorphisms (A.14) and (A.15) are filtered isomor-
phisms.

Case (A.14). — We construct the filtration of H'(Cy, Ly k, V). The Hodge
filtration (A.10) on L, defines a decreasing filtration
Fr(LEM) = 3 o [FH(L)® ®oq, L2F7]
geS
on L&* and
F(Ly) = im(F7(LER) 25 L, k)
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on L, 1, where pr: L8k — L, 1 is the canonical projection map. We can define
a filtration on the complex Q°*(L ) by

(A.21) Fr(Q(Lyk)) = F"(Lrk),
F7 (L)) = @ (L) 0 (F7H (L) 00, V), ) -
In order to use the Hodge to de Rham spectral sequence
B} = H'(C, Gr'(Q°(Lu)) = H (Cr,, 0 (L)),
we compute the E1-terms.
PRrROPOSITION A.9. — There is the canonical isomorphism

Cri(Lop) ~ w?=F = wi(w;l)k_i.

Proof. — The canonical morphism

h: w2 @0, LEFD — Gr' (L) = F (Lug)/F T (Lk)
is surjective, since any element ) o -m, € F(Ly 1) with o € &) and m,, €
w® Qo,, £2%9 is equal to >, me in FY(Lyx)/F*(Lyr). The kernel
2i—k

of pr: w¥ ®o,,_ £EF7D 2k s equal to

K :=w® ®0, ws®oy LEFTD 4. 4w R0, LEFTTD g0, w,.

Indeed, over some open subset, if we fix a splitting of the exact sequence (A.10)
and write e; and e, for a basis of w, and w ! respectively, then we can identify
{e1, €2} with a basis of £, and we see that e;®*®e,®*~% is a basis of W& ®o,,

Eg(k_i)/K. Since K C ker(h), we obtain a surjective morphism
wi'™h = Gr'(Lu ),
and hence it is an isomorphism since Gr’(L, ;) is free of rank 1 by the definition
of F"(Ly k). O
The Kodaira-Spencer map

. v 1 —1 1
0: w, — L, —= L, ®oq, ch/ﬁ - w,. ®oc, ch/’{,

which is O¢, -linear, induces an isomorphism

1
CX/k

([23, A1.3.17], [8, VI §4.5], [24, Theorem 10.13.11]). Then 6 induces
Grl(Q* (L)) = [wi* — 0],

GTT(Q.(£R7k)) — |:w’(€2‘r'—k) M wf{?r—k—m ®Ocn QICX/K (fOI' 1 S T S k),

2
w, ~Q

GrF L (L)) = [o — Wk ®o,, O /J .
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We claim that Gr" (L. ®o,, Q.C'X/n) =0for1 <r <k, that is, d ® id is
an isomorphism. Over some open set, if we write w and 7 for a basis of w
and Qlcx/n’ respectively, then there is a basis ¢ of w™! such that f(w) =
€®n. Let £ € L, such that V. (w) = £ ® n. Since V, x(az) = aV, k(z)

in Grr_l(ﬁﬁ,k) o, Qlcx/n for any a € O¢, and x € Gr" (L4 1),

T k
mG(wrgk—r) — Zwr—lgk—r+1 ® n + Z wrgk—r—lvm(g).
j=1 j=r+1
Since the second term of the right hand side belongs to F"(L, ), we have
(0 ®id)(wrEF") = rwré*"+1 @ 5. Thus we have E}J = 0, EEf27 = 0 if
1 <i<kand any j € Z. Therefore we obtain

Hl(cmﬁn,kavn,k) :FS > Ffi = :F/']:Jrl
= H(Cx, w;; ®0c, Q) D FIF2 = 0.

Here F}™! = H(Cy,wk @0, Qlcx/n) follows from the following long exact

sequence induced by the exact sequence 0 — F' — FO — Gr% — 0, the
quasi-isomorphism F* — ... — F! and Gr’ffl = Fk:
0— HO(Cny Eﬁ,k7 vn,k) - HO(Cnv w;k)
— H(Cw,wf ®0c, Ux ) = H (C, Loy Vi) = -+
Hence it suffices to show that the isomorphism (A.14) induces an isomorphism

k
FYth o~ FEEL (e),

where F:,J'I:I}ig = HO(X,, Q];E;l/n)‘ Recall that the filtration F**(Q% /ﬁ)
is defined by (A.16).

We define the filtration F'(Q];;Xl/’{[—(k + 1)]) on Q];;:Xl/m[—(k +1)] by

on
XX /K

QI;”(txl/H[_(k +1)] = l“”(Q')?;/H[—(’C +1)))
= FI(Q’;Q:J/N[—(IC +1)]) D FQ(Q’;;;Xl/H[—(k + 1)) =0.

Similarly as the construction of (A.17), the canonical map Q;“;;l/n[—(k +1)]—

Q;Zx/n and the exact sequence 0 — Gry — F° — Gr% — 0 induce a commu-

tative diagram

0 —"— RMILQEE [=(k+1))(e)

]

‘Cn,k ‘Cn,k ®OCN QIC’? /K’
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The Leray spectral sequence [22, Remark 3.3] and its functoriality induce a

commutative diagram

H'(Cr, 0 % RMIEQAE [—(k +1))(e) — HM(X,,, 0
Hl(Cmﬁn,kyvn,k) = Hk—H(XmQ.

3 =)

1))

Hence, in order to prove that (A.14) is a filtered isomorphism, it suffices to

show that

Kiinneth r
HO(Cr,wi ®0c, Q) — = HO(Co, ROLOL (e)

\

Hl(Cim ﬁn,ka

vn,k)

is commutative and the horizontal morphism is an isomorphism. Since f X —
C is a log-smooth morphism, we have the exact sequence

Frl k k+1
(A.22) 0— f QC;/,.C R0y, Dxx x/ox QX X /k

(119, (3.12)]).

The filtration F’(f*Qlc jox ®0x QX /Cx[ (k+1)]) on f*Qlc

is defined by

f*Qlcg /K ®O;¢R QI;E'?/C'? [_(k + 1)] = Fo(f*Qlcré/K ®O}~(K
= Fl(f*QlC,i(/fc ®O}'{
> Fz(f*QlC,f /& ®OX

Qk-ﬁ-l

XX

Qo4

/CX

QX ol

— 0

[=(k+1)]

% ox[=(k+1)])
%o ox [=(k+ 1))

Qk‘

/CX[ (

Then, similarly as in the proof of (A.17), the canonical diagram

P @0z, Vi jox [=(
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and the exact sequence 0 — Grp — F° — Gr% — 0 induce a commutative
diagram

Kunneth

Rof* (8) ®Ocn Qlof? /',,€ Rof*Q’;:_l/ (6)

.

ﬁn,k ®OCK QIC';( /n.

k 1
W, ®Oc,€ QC’,? XX /Ck

It remains to check that the composition of the horizontal arrows wﬁ ®oc,
QlcﬁX e Rof*Q];;xl/n(s) is an isomorphism.
LEMMA A.10. — There are canonical isomorphisms
o Wi 4§ =k,
R]f*QZX,f/C;( (E) ~ {0 K

otherwise.

Proof. — We define complexes on £ and X as

Cex jox = /cx@gg xjox [ and Ch o _@QX <o [~

respectively. Then we have
L] ~ *x 7@
Cix xjox = ] 1P5Cex el
By using the Kiinneth formula, we obtain

R fuCox jox = S R mCox jox ®0c, "+ ®0c, B mCox o

ni4-fng=n

@ (]%nlﬂ-*(g&c @Rnl_lﬂ'*ﬂé /CX)

12

ni+-+ng=n

Ro¢, B0, (R 1,O¢, © R"’“_lﬂ*QéKX o ).

As in the proof of (A.2) or Proposition A.6, we obtain

n Sym* R'7,.C% .« if n=k,
R f* X /C’X( ): 5 /C .
0 otherwise. O
By Lemma A.10, the long exact sequence of R* f. coming from (A.22), and
g% %x /02 QlX x 10 mentioned in the proof of Proposition A.7, we obtain

an isomorphism

wi @0, Y " ~R°f*9’;(§1/n(g).

Hence the isomorphism (A.14) is a filtered isomorphism.
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Case (A.15). — We can define a filtration on the complex Q3 (L, x) by
(A23) par(anr(ﬁﬁyk)) = FT(ENJC)’

Par(Qllmr(‘CK k)) Q;ar(‘c ) N (Fril(‘cn,k) ®OC,~; QlC,f /n) .
Then we have

Cr(Q2,,(Ler)) = [wi* — 0],

par
r— 0®id r—
Cr (o (Lik)) = [w@ b 08I, ork-2) g Qés/n] (for 1 <7 < k),
k+1(Qpar(£n,k)) = |:0 - wﬁ ®oc, Q%}'m/n} :

Thus we have E%J = 0, E¥+29 = 0if 1 <i < k and any j € Z. Therefore we
obtain

par(Clﬁ)En kav ) FIE})pa,I‘ DFripar: _Fk;;r
= H(Cy,w} Qo0 Q) D FEL2 = 0.
Here Fi1. = H°(Cy,wf ®oc, Q) follows from the same argument as

(A.14). Moreover we have the commutative diagram

Re =~
0— HO(X,, O )(e) — HO(X, Q) )(e) == HO(Dy, O )(e)

o~ * |~
R
HO(Cy,wk @0, Qlcg/,) —~ H%(Z,,03.)
(cf. [37, p.150]). Here the isomorphism % is obtained by [37, p.145]. Then
ker(Res) = H(X,, Q];il/n)(s) ~ ker(R.) = H(Cy,wk ®0,_ Qlcﬁ/n). Thus we
obtain a commutative diagram

HO(Cr, ) ®0c, O, 1) — = HO(X,, Q" )(e)

HO(meﬁ Roc, QIC X /K )*:>HO(X”’Q§?E}/R)(E)

|

HE (X, 0%, )(E).

Hl (Crm ['n,ka vx,k)

In the same manner as in the proof of Proposition A.1, we see that the
isomorphisms (A.14) and (A.15) are compatible with the Hecke operators and
the Atkin operators. This completes the proof of Proposition A.8. O
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In the next subsection, we will use the following lemma obtained by [37,
Theorem 5.5] or [38, p.391].

LEMMA A.11. — Assume that k < p. Then
H™(X,.,Q% €)= 0 mtn A k4L

A.4. Rank of parabolic cohomology. — We retain the notation as before. Let
O be the ring of integers of a finite extension K over Q,, @ a uniformizer, and
k the residue field. We will use the results in §A.1, A.2, and A.3 by substituting
k — 2 for k.

Let T = I'1(N), k > 2, S = Si(I',0), and S, = H(Cy,wF™? ®0,_
Qlcm /H). We denote by f € Sy a normalized Hecke eigenform with char-
acter &, and by 9; a maximal ideal of the Hecke algebra generated by w,
T, —a(l, f) (for (I, N) =1), Uy —a(l, f) (for [|N), and (d) — e(d) over O. The
goal of this subsection is to understand the eigenspaces of the complex conjuga-
tion acting on the M -part Hy, par(C"’ ,Sym* ™2 Rlz, (O /w™))[9;]. We will
prove the following theorem in this subsection. The author would like to ex-
press his deep gratitude to Professor Takeshi Tsuji whose guidance was crucial
in proving the following theorem.

THEOREM A.12. — Assume that 2 < k < p — 1 and the residual Galois repre-
sentation py : Gg — GLa(k) associated to f is reducible of the form

*
Py~ (%1 §2>
satisfying that either & or & is unramified at p. Then, for any positive integer
n and a parity o € {£1} as (A.27),
(C’° Sym* 2 R'7, (O /@) [Ms] ~ O /=",
(C2,Sym* 2 Rz, 0)*[Mf] ~ O

et ,par

et ,par

In order to prove this theorem, we need the following proposition. For each
n, we write

V(Tl) - et par(Co Symkiz le*(o/wn))[mf]a
V(00) = Hi; o (CF, Sym" ™2 R'm, O)[90y].
We put V =V (1).

PROPOSITION A.13. — All of the constituents of V are isomorphic to k(£1) or

k(€2).
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Proof. — We denote by p the Galois representation V of Gy = Gal(Q/Q).
Put d = dim, V. Fix a rational prime number [ with (I,pN) = 1. The Eichler-
Shimura relations impose the relation p(Frob;)2—a(l, f)p(Frob;)+e(1)I*~1 = 0.

We denote by a(l) and 3(1) the solutions of X2 — a(l, f)X +e(1)I*~1 = 0. Let
V* = Hom(V, k(ew® 1))

and
wW=vVeV*

the direct sum of V and V*. We consider the characteristic polynomial of Frob;
acting on W. Let G denote a finite quotient of Gg through which the actions
on W, k(1), and k(&2) factor. We denote by N,y and Ng(; the general-
ized eigenspaces of p(Frob;) with respect to a(l) and B(I) respectively. Then
V = No@y ® Np(y. Since the operation Hom(x, s(ew®~1)) interchanges the
eigenvalues of the action of Frob;, the characteristic polynomial of Frob; acting
on W is (T — a(1))*(T — B(1))?. On the other hand, the characteristic polyno-
mial of Frob; acting on x(&1)%¢ @ k(&)®9, which is regarded as a G-module, is
also (T — a(1))4(T — B(1))?. By the Chebotarev density theorem, any element
of G is the image of some Frob; with [ { pN. Thus, by the Brauer-Nesbitt
theorem,

WSS ~ E(&)EBCI o K(@)@d’

where W*° is the semi-simplification of W. Hence there exists a Jordan-Hdélder
filtration

(A.24) 0CVIiCVag - CVa=V

of V satisfying
V;/‘/i—l = ’i(ai)v

where «; is equal to &; or & for each i. O

Using integral p-adic Hodge theory, we shall prove Theorem A.12 by deter-
mining a character such that the number of constituents of V isomorphic to
it is equal to one. The key ingredients in our proof are to restrict the action
of Gg on V to Gq, and to use that the Hodge-Tate weights of £; and £ are
distinct.

First we will briefly review the fully faithful functor from the category
of finitely generated filtered p-module to the category of O-representations
of Gg, = Gal(@p /Q,) of finite length, and state the comparison theorem be-
tween the parabolic étale cohomology and the parabolic log-crystalline coho-
mology, which we will use in this subsection.

For a non-negative integer r, let MF;, denote the category whose objects are
the following triples (M, (Fil'M);cz, (9% )icz):

(1) M is a finitely generated O-module;
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(2) (Fil'M);ez is a decreasing filtration on M by O-submodules such that
Fil’M = M and Fil"™' M = 0;

(3) @i, : Fil'M — M is an O-linear homomorphism such that o, |pyi+1y =
peiit and SO7_, b, (Fil'M) = M.

A morphism in MF{, is a homomorphism of filtered O-modules compatible
with @®. It is known that any morphism 1 : M — M’ in MF, is strict with
respect to the filtrations, that is, n(Fil'M) = Fil'M’ N n(M) for each i € Z
([12, 1.10 (b)]). This implies that MF;, is an abelian category as follows.
Let n : M — M’ be a morphism in MFy,, and let 5 denote n regarded as
a homomorphism of underlying O-modules. Then the O-module N := ker(n)
with Fil’ N and ¢’ defined by Fil'N = NNFil’M and ol = %VI|N’ respectively,
belongs to MF;, and gives the kernel of 1 in MF,. Let N’ denote coker(n).
We define a filtration Fil’ N’ and an O-linear homomorphism o by Fil'N’ =
Fil' M’ /n(Fil' M) and the homomorphism induced by ¢%, and ¢%,,, respectively.
Note that Fil'N’ — N’ is injective because 7 is strict, and hence Fil'N’ may
be regarded as an O-submodule of N’. The triple (N, (Fil'N');cz, (¢’ )icz)
belongs to MFy, and gives the cokernel of 7 in MFy,. The strictness of  further
shows that we have Fil’(im(n)) = n(M) NFil'M’ = n(Fil'M) ~ Fil*(coim(n))
and hence im(n) = coim(n) in MFp,.

Let MF;, denote the full subcategory of MF, consisting of objects M satis-
fying wM = 0. Let Rep,(Gq,) denote the category of representations of G,
on O-modules of finite length. For an integer r such that 0 < r < p — 2, there
exists a fully faithful functor

Tcris : MF% - RepO (GQp)

given by J.-M. Fontaine and G. Laffaille ([12], [6], [41]). Let Repp ,i5(Gq,)
denote the essential image of MF, by Teris. For an object T' of Repp, .i5(Gg, ),
the Hodge-Tate weights of T' mean s € Z for which Gr® M # 0, where M is an
object of MF, such that Teus(M) ~ T.

By (A.15), we have a filtered isomorphism

Héar(cm Em,k—% Vﬁ,k—Z) =~ Hk_l()zm Q;”(N/H)(s)

Here a filtration is given by

0CcS,=F 1l =...=F! CF° . =H! (CeLrr2 Vir2)

K,par K,par K,par par

THEOREM A.14. — Assume that k —1 < p—2. Then there is an isomorphism
of Hecke modules

Tcris(le)ar(Cm En,k—Q, vn,k—Q)) = Tcris(-E[ki1 (Xm Q;?N/K)(é‘))
= Hétil(X@Fﬂ K’) (E) = Hét,par(c%pa Symk_2 R17T*K,).
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Proof. — The first and last isomorphisms follow from Proposition A.8 (A.15)
and Proposition A.1 (A.3) respectively. The second isomorphism is obtained by
the comparison theorem for proper smooth varieties with constant coefficients
(proved by Fontaine-Messing (|13, III 6.4]) and Faltings (|9, Theorem 5.3])
and improved by Breuil-Tsuji ([5, Theorem 3.2.4.6]=[35, Theorem 5.1] and
[6, Theorem 3.2.4.7])). It remains to check that these morphisms are Hecke
equivariant. By the Hodge to de Rham spectral sequence and Lemma A.11, we
have

(A.25) H* (X, 0% )(E) =0,
(A.26) H* (X, Q%)) =0.

By the long exact sequence of cohomology for an exact sequence 0 — O Xz,
O — k — 0, (A.25), and Nakayama’s lemma, we obtain

H (X0, 0)(e) =

Therefore, for any integer n > 1, by the long exact sequence of cohomology for

an exact sequence 0 — O ~Z— 0 — O/w™ — 0, we obtain

Hi por(C  Sym* ™ R'7,0) /@" Hgy e (Cg , Sym*™* R'm.0)

ét,par

= Hélt,par(cé ) Symk_z Rlﬂ'* (O/W”))

Moreover, (A.26) implies that H}

ét,par

(C% ,Sym* 2 Rlm,©) is torsion-free.
P

Therefore the proof reduces to showing that the comparison isomorphism be-
tween HE™ 1( ,Qp) and H*~ 1(XQP’ Q% /0 ) is compatible with the Hecke
¥4

correspondences and Atkin correspondences. This follows from the de Rham
conjecture for proper smooth varieties with constant Q,-coefficients [36, The-
orem Al]. O

Since (p, N) =1, f/(n) is a crystalline representation of Gg, .
Next we construct a filtration of H*~1(X,, Q% /n)(E)[mf] by using the fil-

tration (A.24) of V. We put M = H*~1(X,, Q}(N/n)(e)[?)ﬁf].

Case 1. — ¢&; is unramified at p.

Then there exists M (&;) € MF, k=1 satisfying TC“S(M(&)) =k(£1) and F! =

0 C F° = M(&). Similarly, there is M (&) € MFk satisfying T, is (M (€2))
k(&) and F¥ =0 C F*' = M(&).

Thus we obtain M(a;) € MF*™! satisfying Tuyis(M(a1)) = Vi. Since the
length of module is preserved under T¢;s, we have dim, M(c;) = 1. Since
Teris is fully faithful, the image of M (1) in M is non-trivial. We write M; =
m(M(ay) — M).
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Similarly, by replacing V; by V3/Vi, there exists M () € MFF ™! satisfying
Teris(M(a)) = Vo /Vi. Let Mt = M /My, My = im(M (az) — M), and
My = ker(M — M*'/My).
Then we have
Tcris(MZ) - V2-
Repeating this arguments, we obtain a Jordan-Hdlder filtration
0CM CMy G- CMy=M
of M satisfying
Teris(Mi/M; 1) = V;/ Vi1 = k(o)
where «; is equal to &; or £&. By noting that, for any integer r,

d
dim,, Grlp (M Zdlmn Grp(M;/M;_4),
j=1
we have the following proposition.
ProOPOSITION A.15. — We have
0 if r#£0,k—1

dim, Grio(M) = $ #{jloy = &} if r =0,
ﬁ{j|0&j = 52} lf T = k —1.
Case 2. — &5 is unramified at p.
Similarly as in Case 1, we have the following proposition.
PROPOSITION A.16. — We have
0 if 7£0,k—1
dim, Grp(M) = 9 #{jla; = &} if r =0,
t(ilay = &1} if r=k—1.
Now we can prove Theorem A.12. By the g-expansion principle [23, §1.6],
Grl ! (M) = Sp[ay] = &.

Then, by the above propositions, we have #§{jla; = &} = 1 in Case 1, and
#{jlaj = &} = 1 in Case 2. This proves Theorem A.12 in the case n = 1, 00.
In particular,

(A.27) a =§&(-1) in Case 1 and o = &;(—1) in Case 2.

Next, we prove Theorem A.12 for any n > 1. As noted in the proof of Theo-

rem A.14, H} (C% ,Sym*~2 R'm,©) is torsion free. Then the exact sequence
P

ét,par

002250 - 0/w" —0on X@ & with Proposition A.1 (A.3) and (A.4)
o>

induces an exact sequence
0 — V(00) 25 V(00) — V(n).
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Similarly, using the exact sequence 0 — w" !/w" — O/w" — O/w" "1 — 0
on X@ &> We obtain an exact sequence
-

0= V(1) = V(n) —Vin-1).

Thus an inductive argument proves Theorem A.12.
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