Galois representations attached to abelian varieties of CM type
[Représentations galoisiennes associées aux variétés abéliennes de type CM]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 469-501

Let K be a number field, A/K be an absolutely simple abelian variety of CM type, and be a prime number. We give explicit bounds on the degree over K of the division fields K(A[n]), and when A is an elliptic curve we also describe the full Galois group of K(Ators)/K. This makes explicit previous results of Serre [17] and Ribet [14], and strengthens a theorem of Banaszak, Gajda and Krasoń [2]. Our bounds are especially sharp when the CM type of A is nondegenerate.

Soient K un corps de nombres, A/K une variété abélienne géométriquement simple de type CM et un nombre premier. Nous donnons des bornes explicites sur le degré sur K des extensions K(A[n]) engendrées par les points de n-torsion de A, et quand A est une courbe elliptique nous décrivons le groupe de Galois de K(Ators)/K tout entier. Cela fournit une version explicite de résultats antérieurs de Serre [17] et Ribet [14], et renforce un théorème de Banaszak, Gajda and Krasoń [2]. Nos bornes sont particulièrement fines quand le type CM de A est non-dégénéré.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2745
Classification : 14K22, 11F80, 11G10
Keywords: Complex multiplication, Galois representations, elliptic curves, Mumford-Tate group
Mots-clés : Multiplication complexe, représentations galoisiennes, courbes elliptiques, groupe de Mumford-Tate

Lombardo, Davide 1

1 Dipartimento di Matematica Università di Pisa Largo Bruno Pontecorvo 5, 56127 Pisa (Italia) http://people.dm.unipi.it/lombardo/
@article{BSMF_2017__145_3_469_0,
     author = {Lombardo, Davide},
     title = {Galois representations attached to abelian varieties of {CM} type},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {469--501},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {3},
     doi = {10.24033/bsmf.2745},
     zbl = {1390.14137},
     mrnumber = {3766118},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2745/}
}
TY  - JOUR
AU  - Lombardo, Davide
TI  - Galois representations attached to abelian varieties of CM type
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 469
EP  - 501
VL  - 145
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2745/
DO  - 10.24033/bsmf.2745
LA  - en
ID  - BSMF_2017__145_3_469_0
ER  - 
%0 Journal Article
%A Lombardo, Davide
%T Galois representations attached to abelian varieties of CM type
%J Bulletin de la Société Mathématique de France
%D 2017
%P 469-501
%V 145
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2745/
%R 10.24033/bsmf.2745
%G en
%F BSMF_2017__145_3_469_0
Lombardo, Davide. Galois representations attached to abelian varieties of CM type. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 469-501. doi: 10.24033/bsmf.2745

Artin, E.; Tate, J. Class field theory, AMS Chelsea Publishing, Providence, RI, 2009, 194 pages (Reprinted with corrections from the 1967 original) | MR | Zbl

Bhargava, M.; Gross, B. H. The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, Automorphic representations and L -functions (Tata Inst. Fundam. Res. Stud. Math.), Volume 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 23-91 | MR | Zbl

Banaszak, G.; Gajda, W.; Krasoń, P. On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory, Volume 100 (2003), pp. 117-132 | MR | Zbl | DOI

Hindry, M.; Ratazzi, N. Points de torsion sur les variétés abéliennes de type GSp, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 27-65 | MR | Zbl | DOI

Kubota, T. On the field extension by complex multiplication, Trans. Amer. Math. Soc., Volume 118 (1965), pp. 113-122 | MR | Zbl | DOI

Lang, S. Complex multiplication, Grundl. math. Wiss., 255, Springer, New York, 1983, 184 pages | MR | Zbl | DOI

Mai, L. Lower bounds for the ranks of CM types, Journal of Number Theory, Volume 32 (1989), pp. 192 -202 http://www.sciencedirect.com/... | Zbl | MR | DOI

Mumford, D. Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 347-351 | MR | Zbl | DOI

Neukirch, J. Class field theory, Grundl. math. Wiss., 280, Springer, Berlin, 1986, 140 pages | MR | Zbl | DOI

Neukirch, J.; Schmidt, A.; Wingberg, K. Cohomology of Number Fields, Grundl. math. Wiss., Springer, 2013 http://books.google.fr/books?id=ZX8CAQAAQBAJ | Zbl | MR

Nart, E.; Xarles, X. Additive reduction of algebraic tori, Arch. Math. (Basel), Volume 57 (1991), pp. 460-466 | MR | Zbl | DOI

Ono, T. Arithmetic of algebraic tori, Ann. of Math., Volume 74 (1961), pp. 101-139 | MR | Zbl | DOI

Pohlmann, H. Algebraic cycles on abelian varieties of complex multiplication type, Ann. of Math., Volume 88 (1968), pp. 161-180 | MR | Zbl | DOI

Ribet, K. A. Division fields of abelian varieties with complex multiplication, Mém. Soc. Math. France (N.S.), Volume 2 (1980/81), pp. 75-94 Abelian functions and transcendental numbers (Colloq., École Polytech., Palaiseau, 1979) | MR | Zbl | Numdam | DOI

Ribet, K. A. Generalization of a theorem of Tankeev, Seminar on Number Theory, 1981/1982, Univ. Bordeaux I, Talence, 1982, Exp. No. 17, 4 pages | MR | Zbl

Serre, J.-P. Corps locaux, Hermann, Paris, 1968, 245 pages (Deuxième édition, Publications de l’Université de Nancago, No. VIII) | MR | Zbl

Serre, J.-P. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. math., Volume 15 (1972), pp. 259-331 | MR | Zbl | DOI

Serre, J.-P. Lectures on the Mordell-Weil theorem, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997, 218 pages | MR | Zbl | DOI

Shatz, S. S. Profinite groups, arithmetic, and geometry, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972, 252 pages (Annals of Mathematics Studies, No. 67) | MR | Zbl | DOI

Silverberg, A. Torsion points on abelian varieties of CM-type, Compos. math., Volume 68 (1988), pp. 241-249 | Numdam | MR | Zbl

Shimura, G.; Taniyama, Y. Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, 6, The Mathematical Society of Japan, Tokyo, 1961, 159 pages | MR | Zbl

Serre, J.-P.; Tate, J. Good reduction of abelian varieties, Ann. of Math., Volume 88 (1968), pp. 492-517 | MR | Zbl | DOI

Tsimerman, J. Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Amer. Math. Soc., Volume 25 (2012), pp. 1091-1117 | MR | Zbl | DOI

Voskresenskiĭ, V. E. Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, Amer. Math. Soc., Providence, RI, 1998, 218 pages | MR | Zbl

Cité par Sources :