[Représentations galoisiennes associées aux variétés abéliennes de type CM]
Let be a number field, be an absolutely simple abelian variety of CM type, and be a prime number. We give explicit bounds on the degree over of the division fields , and when is an elliptic curve we also describe the full Galois group of . This makes explicit previous results of Serre [17] and Ribet [14], and strengthens a theorem of Banaszak, Gajda and Krasoń [2]. Our bounds are especially sharp when the CM type of is nondegenerate.
Soient un corps de nombres, une variété abélienne géométriquement simple de type CM et un nombre premier. Nous donnons des bornes explicites sur le degré sur des extensions engendrées par les points de -torsion de , et quand est une courbe elliptique nous décrivons le groupe de Galois de tout entier. Cela fournit une version explicite de résultats antérieurs de Serre [17] et Ribet [14], et renforce un théorème de Banaszak, Gajda and Krasoń [2]. Nos bornes sont particulièrement fines quand le type CM de est non-dégénéré.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2745
Keywords: Complex multiplication, Galois representations, elliptic curves, Mumford-Tate group
Mots-clés : Multiplication complexe, représentations galoisiennes, courbes elliptiques, groupe de Mumford-Tate
Lombardo, Davide 1
@article{BSMF_2017__145_3_469_0,
author = {Lombardo, Davide},
title = {Galois representations attached to abelian varieties of {CM} type},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {469--501},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {3},
doi = {10.24033/bsmf.2745},
zbl = {1390.14137},
mrnumber = {3766118},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2745/}
}
TY - JOUR AU - Lombardo, Davide TI - Galois representations attached to abelian varieties of CM type JO - Bulletin de la Société Mathématique de France PY - 2017 SP - 469 EP - 501 VL - 145 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2745/ DO - 10.24033/bsmf.2745 LA - en ID - BSMF_2017__145_3_469_0 ER -
%0 Journal Article %A Lombardo, Davide %T Galois representations attached to abelian varieties of CM type %J Bulletin de la Société Mathématique de France %D 2017 %P 469-501 %V 145 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2745/ %R 10.24033/bsmf.2745 %G en %F BSMF_2017__145_3_469_0
Lombardo, Davide. Galois representations attached to abelian varieties of CM type. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 469-501. doi: 10.24033/bsmf.2745
Class field theory, AMS Chelsea Publishing, Providence, RI, 2009, 194 pages (Reprinted with corrections from the 1967 original) | MR | Zbl
The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, Automorphic representations and -functions (Tata Inst. Fundam. Res. Stud. Math.), Volume 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 23-91 | MR | Zbl
On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory, Volume 100 (2003), pp. 117-132 | MR | Zbl | DOI
Points de torsion sur les variétés abéliennes de type GSp, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 27-65 | MR | Zbl | DOI
On the field extension by complex multiplication, Trans. Amer. Math. Soc., Volume 118 (1965), pp. 113-122 | MR | Zbl | DOI
Complex multiplication, Grundl. math. Wiss., 255, Springer, New York, 1983, 184 pages | MR | Zbl | DOI
Lower bounds for the ranks of CM types, Journal of Number Theory, Volume 32 (1989), pp. 192 -202 http://www.sciencedirect.com/... | Zbl | MR | DOI
Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 347-351 | MR | Zbl | DOI
Class field theory, Grundl. math. Wiss., 280, Springer, Berlin, 1986, 140 pages | MR | Zbl | DOI
Cohomology of Number Fields, Grundl. math. Wiss., Springer, 2013 http://books.google.fr/books?id=ZX8CAQAAQBAJ | Zbl | MR
Additive reduction of algebraic tori, Arch. Math. (Basel), Volume 57 (1991), pp. 460-466 | MR | Zbl | DOI
Arithmetic of algebraic tori, Ann. of Math., Volume 74 (1961), pp. 101-139 | MR | Zbl | DOI
Algebraic cycles on abelian varieties of complex multiplication type, Ann. of Math., Volume 88 (1968), pp. 161-180 | MR | Zbl | DOI
Division fields of abelian varieties with complex multiplication, Mém. Soc. Math. France (N.S.), Volume 2 (1980/81), pp. 75-94 Abelian functions and transcendental numbers (Colloq., École Polytech., Palaiseau, 1979) | MR | Zbl | Numdam | DOI
Generalization of a theorem of Tankeev, Seminar on Number Theory, 1981/1982, Univ. Bordeaux I, Talence, 1982, Exp. No. 17, 4 pages | MR | Zbl
Corps locaux, Hermann, Paris, 1968, 245 pages (Deuxième édition, Publications de l’Université de Nancago, No. VIII) | MR | Zbl
Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. math., Volume 15 (1972), pp. 259-331 | MR | Zbl | DOI
Lectures on the Mordell-Weil theorem, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997, 218 pages | MR | Zbl | DOI
Profinite groups, arithmetic, and geometry, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972, 252 pages (Annals of Mathematics Studies, No. 67) | MR | Zbl | DOI
Torsion points on abelian varieties of CM-type, Compos. math., Volume 68 (1988), pp. 241-249 | Numdam | MR | Zbl
Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, 6, The Mathematical Society of Japan, Tokyo, 1961, 159 pages | MR | Zbl
Good reduction of abelian varieties, Ann. of Math., Volume 88 (1968), pp. 492-517 | MR | Zbl | DOI
Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Amer. Math. Soc., Volume 25 (2012), pp. 1091-1117 | MR | Zbl | DOI
Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, Amer. Math. Soc., Providence, RI, 1998, 218 pages | MR | Zbl
Cité par Sources :






