[Propagation des singularités près d'une sous-variété Lagrangienne des points radiaux]
In this work we study the wavefront set of a solution to , where is a pseudodifferential operator on a manifold with real-valued homogeneous principal symbol , when the Hamilton vector field corresponding to is radial on a Lagrangian submanifold contained in the characteristic set of . The standard propagation of singularities theorem of Duistermaat-Hörmander gives no information at . By adapting the standard positive-commutator estimate proof of this theorem, we are able to conclude additional regularity at a point in this radial set, assuming some regularity around this point. That is, the a priori assumption is either a weaker regularity assumption at , or a regularity assumption near but not at . Earlier results of Melrose and Vasy give a more global version of such analysis. Given some regularity assumptions around the Lagrangian submanifold, they obtain some regularity at the Lagrangian submanifold. This paper microlocalizes these results, assuming and concluding regularity only at a particular point of interest. We then proceed to prove an analogous result, useful in scattering theory, followed by analogous results in the context of Lagrangian regularity.
Dans cet article on étudie le spectre singulier, , pour les solutions de l'équation , où est un operateur pseudo-différentiel sur une variété de la classe , , avec symbole principal homogène , si le champ Hamiltonien de est radial sur une sous-variété lagrangienne, , contenue dans l'ensemble caractéristique de . Le théorème classique de Duistermaat et Hörmander ne fournit aucune information sur . Nous adaptons la preuve de ce théorème utilisant des commutateurs positifs, et prouvons que la solution possède d'une régularité additionelle près d'un point si on suppose certaine régularité au fond. C'est à dire, l'hypothèse a priori est soit une hypothèse de régularité plus faible à , soit une hypothèse de régularité près de, mais pas à . Les résultats plus anciens de Melrose et Vasy donnent une version plus globale de cette analyse. Cet article fournit une version microlocale des résultats de ces auteurs; on suppose et prouve la régularité seulement près du point d'intérêt, . Nous prouvons aussi un résultat similaire qui est utile dans la théorie de la diffusion, et aussi des résultats de la régularité lagrangienne.
@article{BSMF_2015__143_4_679_0,
author = {Haber, Nick and Vasy, Andr\'as},
title = {Propagation of singularities around a {Lagrangian} submanifold of radial points},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {679--726},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {4},
doi = {10.24033/bsmf.2702},
mrnumber = {3450499},
zbl = {1336.35015},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2702/}
}
TY - JOUR AU - Haber, Nick AU - Vasy, András TI - Propagation of singularities around a Lagrangian submanifold of radial points JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 679 EP - 726 VL - 143 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2702/ DO - 10.24033/bsmf.2702 LA - en ID - BSMF_2015__143_4_679_0 ER -
%0 Journal Article %A Haber, Nick %A Vasy, András %T Propagation of singularities around a Lagrangian submanifold of radial points %J Bulletin de la Société Mathématique de France %D 2015 %P 679-726 %V 143 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2702/ %R 10.24033/bsmf.2702 %G en %F BSMF_2015__143_4_679_0
Haber, Nick; Vasy, András. Propagation of singularities around a Lagrangian submanifold of radial points. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 4, pp. 679-726. doi: 10.24033/bsmf.2702
Microlocal kernels of pseudodifferential operators at a hyperbolic fixed point, J. Funct. Anal., Volume 252 (2007), pp. 68-125 | MR | Zbl | DOI
Gluing semiclassical resolvent estimates via propagation of singularities, Int. Math. Res. Not., Volume 2012 (2012), pp. 5409-5443 (ISSN: 1073-7928) | MR | Zbl | DOI
Fourier Integral Operators, II, Acta Math., Volume 128 (1972), pp. 183-269 | MR | Zbl | DOI
On a certain class of Fuchsian partial differential equations, Duke Mathematical Journal, Volume 44 (1977), pp. 157-199 | MR | Zbl
Spectral and scattering theory for symbolic potentials of order zero, Advances in Mathematics, Volume 181 (2004), pp. 1-87 | MR | Zbl | DOI
Microlocal propagation near radial points and scattering for symbolic potentials of order zero, Analysis and PDE, Volume 1 (2008), pp. 127-196 | MR | Zbl | DOI
Quantum scattering for potentials independent of : asymptotic completeness for high and low energies, Communications in Partial Differential Equations, Volume 29 (2004), pp. 547-610 | MR | Zbl | DOI
Absence of quantum states corresponding to unstable classical channels, Annales Henri Poincaré, Volume 9 (2008), pp. 509-552 | MR | Zbl | DOI
Fourier integral operators. I, Acta Math., Volume 127 (1971), pp. 79-183 | MR | Zbl | DOI
On the existence and regularity of solutions of linear pseudo-differential equations, Enseignement Math., Volume 17 (1971), pp. 99-163 | MR | Zbl
The analysis of linear partial differential operators III: Pseudo-differential operators, Classics in Mathematics, Springer, 2007 | MR | Zbl
The analysis of linear partial differential operators. IV, Classics in Mathematics, Springer, 2009, 352 pages (ISBN: 978–3-642–00117–8) | DOI | MR | Zbl
Spectral and Scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (1994), pp. 85-130 | MR | Zbl
Partial differential equations I. Basic theory, Applied Mathematical Sciences, 115, Springer, 1996 | MR | Zbl
Asymptotic behavior of generalized eigenfunctions in -body scattering, J. Funct. Anal., Volume 173 (1997), pp. 170-184 | MR | Zbl | DOI
Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, Inv. Math., Volume 194 (2013), pp. 381-513 (with an appendix by Semyon Dyatlov) | MR | Zbl | DOI
Cité par Sources :






