On the birational geometry of Schubert varieties
[Sur la géométrie birationnelle des variétés de Schubert]
Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 3, pp. 489-502

We classify all -factorializations of (co)minuscule Schubert varieties by using their Mori dream space structure. As a corollary we obtain a description of all IH-small resolutions of (co)minuscule Schubert varieties generalizing results of Perrin. We improve his results by including algebraically closed fields of positive characteristic and cominuscule Schubert varieties. Moreover, the use of -factorializations and Mori dream spaces simplifies the arguments substantially.

Nous décrivons toutes les petites contractions de Mori des variétés de Schubert (co)minuscules en utilisant leur structure d'espace de rêve de Mori (Mori dream space). Nous en déduisons une description de toutes les résolutions IH-petites des variétés de Schubert (co)minuscules et généralisons ainsi les résultats de Perrin : nous étendonds ses résultats à tout corps algebriquement clos de caracteristique quelconque et aux variétés de Schubert cominuscules. En outre, l'utilisation des petites contractions des espaces de rêve de Mori simplifie grandement les arguments.

Publié le :
DOI : 10.24033/bsmf.2696
Classification : 14M15, 14E30
Keywords: Schubert varieties, birational geometry, small resolutions
@article{BSMF_2015__143_3_489_0,
     author = {Schmidt, Benjamin},
     title = {On the birational geometry of {Schubert} varieties},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {489--502},
     year = {2015},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {143},
     number = {3},
     doi = {10.24033/bsmf.2696},
     mrnumber = {3417731},
     zbl = {1349.14158},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2696/}
}
TY  - JOUR
AU  - Schmidt, Benjamin
TI  - On the birational geometry of Schubert varieties
JO  - Bulletin de la Société Mathématique de France
PY  - 2015
SP  - 489
EP  - 502
VL  - 143
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2696/
DO  - 10.24033/bsmf.2696
LA  - en
ID  - BSMF_2015__143_3_489_0
ER  - 
%0 Journal Article
%A Schmidt, Benjamin
%T On the birational geometry of Schubert varieties
%J Bulletin de la Société Mathématique de France
%D 2015
%P 489-502
%V 143
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2696/
%R 10.24033/bsmf.2696
%G en
%F BSMF_2015__143_3_489_0
Schmidt, Benjamin. On the birational geometry of Schubert varieties. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 3, pp. 489-502. doi: 10.24033/bsmf.2696

Bott, Raoul; Samelson, Hans Applications of the theory of Morse to symmetric spaces, Amer. J. Math., Volume 80 (1958), pp. 964-1029 (ISSN: 0002-9327) | MR | Zbl | DOI

Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer, Berlin, 2002, 300 pages (ISBN: 3-540-42650-7) | MR | Zbl | DOI

Brion, Michel; Polo, Patrick Generic singularities of certain Schubert varieties, Math. Z., Volume 231 (1999), pp. 301-324 (ISSN: 0025-5874) | MR | Zbl | DOI

Demazure, Michel Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., Volume 7 (1974), pp. 53-88 (ISSN: 0012-9593) | MR | Zbl | Numdam | DOI

Hironaka, Heisuke Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. 79 (1964), 109–203; ibid., Volume 79 (1964), pp. 205-326 (ISSN: 0003-486X) | MR | Zbl

Hu, Yi; Keel, Sean Mori dream spaces and GIT, Michigan Math. J., Volume 48 (2000), pp. 331-348 (ISSN: 0026-2285) | MR | Zbl | DOI

Lauritzen, Niels; Thomsen, Jesper Funch Line bundles on Bott-Samelson varieties, J. Algebraic Geom., Volume 13 (2004), pp. 461-473 (ISSN: 1056-3911) | MR | Zbl | DOI

Perrin, Nicolas Small resolutions of minuscule Schubert varieties, Compos. Math., Volume 143 (2007), pp. 1255-1312 (ISSN: 0010-437X) | MR | Zbl | DOI

Perrin, Nicolas The Gorenstein locus of minuscule Schubert varieties, Adv. Math., Volume 220 (2009), pp. 505-522 (ISSN: 0001-8708) | MR | Zbl | DOI

Sankaran, Parameswaran; Vanchinathan, P. Small resolutions of Schubert varieties in symplectic and orthogonal Grassmannians, Publ. Res. Inst. Math. Sci., Volume 30 (1994), pp. 443-458 (ISSN: 0034-5318) | MR | Zbl | DOI

Sankaran, Parameswaran; Vanchinathan, P. Small resolutions of Schubert varieties and Kazhdan-Lusztig polynomials, Publ. Res. Inst. Math. Sci., Volume 31 (1995), pp. 465-480 (ISSN: 0034-5318) | MR | Zbl | DOI

Schmidt, Benjamin Resolutions of some Schubert varieties, University of Bonn (2011) ( https://people.math.osu.edu/schmidt.707/masters_thesis.pdf )

Stembridge, John R. On the fully commutative elements of Coxeter groups, J. Algebraic Combin., Volume 5 (1996), pp. 353-385 (ISSN: 0925-9899) | MR | Zbl | DOI

Totaro, Burt Chern numbers for singular varieties and elliptic homology, Ann. of Math., Volume 151 (2000), pp. 757-791 (ISSN: 0003-486X) | MR | Zbl | DOI

Zelevinskiĭ, A. V. Small resolutions of singularities of Schubert varieties, Funktsional. Anal. i Prilozhen., Volume 17 (1983), pp. 75-77 (ISSN: 0374-1990) | MR | Zbl | DOI

Cité par Sources :