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UN THEOREME LIMITE CENTRAL LOCAL
EN ENVIRONNEMENT ALEATOIRE STATIONNAIRE
DE CONDUCTANCES SUR Z

PAR JEAN-MARC DERRIEN

RESUME. — On démontre un théoréme limite central local pour les marches aléatoires
aux plus proches voisins en environnement aléatoire stationnaire de conductances sur Z
en s’affranchissant simultanément des deux hypothéses classiques d’uniforme ellipticité
et d’indépendance sur les conductances. Outre le théoréme limite central, on utilise
pour cela des inégalités différentielles discrétes du type « inégalités de Nash » associées
a la représentation de Hausdorff des suites complétement décroissantes. La méthode
s’adapte aux chaines de Markov analogues en temps continu.

ABsTRACT (A local central limit theorem in stationary random environment of con-
ductances on 7Z)

We prove a local central limit theorem for nearest neighbors random walks in sta-
tionary random environment of conductances on Z without using any of both classic
assumptions of uniform ellipticity and independence on the conductances. Besides
the central limit theorem, we use discrete differential Nash-type inequalities associ-
ated with the Hausdorff’s representation of the completely decreasing sequences. The
method is also valid for analogous continuous time Markov chains.

Texte regu le 13 février 2013, révisé le 25 mai 2014 et accepté le 4 juillet 2014.
JEAN-MARC DERRIEN, Université de Brest, CNRS - UMR 6205, Laboratoire de Mathéma-
tiques de Bretagne Atlantique - 6, avenue Le Gorgeu, CS 93837, 29238 BREST cedex 3,
France

Classification mathématique par sujets (2000). — 60J10, 60K37.
Mots clefs. — Marches aléatoires, environnement aléatoire stationnaire de conductances,

théoréme limite central local, inégalités de Nash, représentation de Hausdorff des suites com-
plétement décroissantes, théorémes ergodiques.
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468 J.-M. DERRIEN

1. Le mode¢le et la présentation des principaux résultats

Depuis les années 1980, une part importante de ’étude des milieux aléa-
toires a trait aux marches aléatoires aux plus proches voisins en environnement
aléatoire stationnaire de conductances sur Z? (dont notamment les marches
aléatoires sur ’amas de percolation). Dans ce cadre particulier, les différences
entre les milieux considérés s’articulent essentiellement autour des trois moda-
lités suivantes :

— la dimension d,

— le domaine des valeurs autorisées pour les conductances,

— considérer une famille de conductances aléatoires stationnaire ergodique
(environnement stationnaire) vs. considérer le cas particulier d’une famille
de conductances indépendantes et identiquement distribuées (environne-
ment 4.i.d.).

Par exemple, ’hypothése d’uniforme ellipticité, c’est-a-dire d’encadrement
des conductances par deux constantes strictement positives, permet 1'utilisation
de nombreuses méthodes classiques dans I’étude des équations aux dérivées
partielles.

Pour faire un historique succinct des travaux qui ont motivé la présente
étude, on peut citer, entre autres, [28] pour une vue d’ensemble des modéles
de marches aléatoires en milieux aléatoires sur Z® et la systématisation des
techniques de martingales et d’« environnement vu de la particule » dans ce
contexte, [23], [6] et [13] pour l’étude de la récurrence sur ’amas de percolation
et en environnement (de conductances) stationnaire non uniformément ellip-
tique en dimension d > 2, [19] pour une étude de la variance asymptotique en
environnement stationnaire non uniformément elliptique sur Z, [12], [38] et [1§]
pour un théoréme limite central en environnement stationnaire uniformément
elliptique en dimension d > 1, [38], [7], [11], [31], [30], [4], [9], [1] et [2] pour
des théorémes limites centraux et des principes d’invariance en environnements
stationnaires non uniformément elliptiques en dimension d > 2, [17] pour des
inégalités gaussiennes en environnement déterministe uniformément elliptique
en dimension d > 1, [32], [33] et [3] pour des inégalités gaussiennes pour ’amas
de percolation en dimension d > 2, [8], [14] et [10] pour des comportements
singuliers du noyau de la chaleur en environnements i.i.d. non uniformément
elliptiques en dimension d > 4, [5] pour un théoréme limite central local pour
I’amas de percolation en dimension d > 2.

Dans cet article, on démontre un théoréme limite central local dans le cas
stationnaire non uniformément elliptique unidimensionnel. On constate en par-
ticulier que le rapport entre la moyenne des résistances et celle des conductances
joue un roéle dans le théoréme limite central local alors que seul le produit de ces
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UN THEOREME LIMITE CENTRAL LOCAL 469

moyennes apparait dans ’expression de la variance asymptotique de la marche
aléatoire.

Précisons & présent le modéle étudié.

On considére en premier lieu un systéme dynamique probabilisé ergodique
(Q,F, u,T), c’est-a-dire une mesure de probabilité p sur un espace mesurable
(Q, F) et une transformation T' de (2, inversible, bi-mesurable, préservant la
probabilité p et pour laquelle les ensembles invariants sont de mesure égale 4 0
ou & 1 (voir [36] par exemple). Alors, étant donnée une application mesurable
¢ : 2 —]0, +o0], on appelle conductance de l’aréte (non orientée) {x,x+1} de Z
dans 1'environnement w le réel strictement positif ¢(z,z + 1)(w) := ¢(T*w) (on
pose aussi ¢(z + 1,2)(w) := ¢(z,z + 1)(w)). De la sorte, la famille de conduc-
tances (c(z,x + 1))zez constitue une suite de variables aléatoires stationnaire
ergodique.

Un environnement w dans €2 étant fixé, on s’intéresse au comportement de
la chaine de Markov (S,,),>0 sur Z partant de zo € Z dont les probabilités de
transition sont données par :

Py [Spyr=x+1] 8, =x]= =:p(z,z + 1)(w)

et

c(z,z —1)(w)
(z)(w)

ot lon a posé ¢(z)(w) := c(z—1, z)(w) +c(z, z+1)(w), ceci pour tout = dans Z

(P&, est la probabilité sous laquelle évolue, dans I’environnement w, la chaine

de Markov (Sp)n>0 partant de xg). Notons que la chaine de Markov (S,)n>0

est réversible sur Z au sens ol :

Py [Spy1=2—1] S, =x] = =:p(z,z — 1)(w),

Pv[S,, = Pe[S, =«
Vn eN, Vz,y € Z, ’C[JL y]: y[in ]
c(y) c(z)
L’objet de cet article est de démontrer les trois résultats suivants qui pro-
longent le travail commencé dans [20]. Ils donnent l'ordre de grandeur de la
probabilité pour la marche aléatoire partant de 0 d’étre au temps n en un

point x de Z.

THEOREME 1.1. — On a, pour presque tout w dans §) et pour tout x dans 27,

1
# ffgj;j si € et 1/c sont intégrables

ngl}rloo 2n o(r)(w) 0 si 1/c est intégrable et si [ cdu = 400

+00 si [ % du = 400 et si ¢ est intégrable.
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470 J.-M. DERRIEN

Pour les valeurs de = de ’ordre de y/n, on montre le

THEOREME 1.2. — Si ¢ et 1/c sont intégrables alors, pour presque tout w dans
Q, pour tout réel xy, on a

© [Spp = 1g ey [ Ld
hm \/%PO [SQTL gn(ﬂfo)] 1 f c /'Lexp <_fC W f c um2>,

n+oo c(gn(@o) (@) V7 \ Jedu 4 0

ot gn(xo) désigne un plus proche entier pair de xov/2n.

Le théoréme suivant résume les comportements « uniformes » obtenus dans
le cadre de cette étude.

THEOREME 1.3. — Si 1/c est intégrable alors, pour presque tout w dans €,
pour tout réel a > 0, la suite

(m max L85 =7] “’]>
n>=0

2€B(0,av/2n)N2Z ¢(x)

est bornée.
Si, de plus, [€dp = +oo alors, pour presque tout w dans 2, pour tout réel
a>0,o0na

lim v2n max (]PO[SQTL::U]> =0.

n—+oo 2€B(0,av/2n)N2Z ¢(x)

(On a noté B(0,av/2n) ’ensemble des entiers relatifs z tels que |z| < av/2n.)

Remarques. — Dans le théoréme 1.1, le résultat correspondant au cas ou 1/c
est intégrable mais ¢ ne l’est pas est un cas particulier du second point du
théoréme 1.3.

La preuve du cas non dégénéré du théoréme 1.1 et celle du théoréme 1.2
étant trés similaires, on détaillera seulement cette derniére (au paragraphe 4).

A posteriori (car cela n’apparait pas explicitement dans les preuves), le
théoréme 1.1 pour z = 0 doit pouvoir s’interpréter de la fagon suivante : les
grandes valeurs prises par ¢ constituent des « piéges » pour la marche aléatoire
(Sn)n>0 qui la « retiennent loin de 0 » tandis que les grandes valeurs prises par
1/c sont des « barriéres » qui, au contraire, la « confinent » dans des voisinages
de 0.

Ces théorémes constituent des « localisations » du théoréme limite central
pour la marche aléatoire (Sy,)n>0. Sauf pour le cas ot 1/c n’est pas intégrable,
on les démontre & partir d’estimations du noyau de la chaleur associé a (Sp,)n>0
qui résultent elles-mémes d’inégalités différentielles discrétes, suivant une dé-
marche initiée par Nash dans [35], et de la représentation de Hausdorff des suites
complétement décroissantes (voir la propriété 2.2 ci-dessous pour une définition
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UN THEOREME LIMITE CENTRAL LOCAL 471

des suites complétement décroissantes). L’utilisation de cette démarche de Nash
pour obtenir des estimations sur les probabilités de transition des processus de
Markov réversibles est maintenant trés classique (voir [15] et [16] par exemple).
La représentation de Hausdorff des suites complétement décroissantes comme
suites de moments de lois sur [0, 1] (cf aussi le « probléme des moments ») est
exposée par exemple dans [22] chapitre VII. Le théoréme limite central pour la
marche aléatoire (S,,)n>0 est rappelé ci-dessous.

THEOREME 1.4 (Théoréme limite central ([28], [19], [29]))

(1) Sic et 1/c sont intégrables alors, pour presque tout w dans Q, pour tous
—o<a<b<+oo, ona

. S b
nEIEOOIPB’ [a < \/—% gb] =/a ko(2)dz,
avec
1 22 > 2
ko(2) = ——=exp| ——= et 02 = —— "
(%) o2 p( 202 fEd,uf%d,u
(2) Si [edu = +oo ou f%du = 400 alors, pour presque tout w dans 2,
pour tous —oo < a < b < 400 avec a et b non nuls, on a

n 1 0 ,b
lim Paf |:a<5<b:| — 81 G]a ] )
n—-+o00 vn 0 sinon

Quelques remarques et notations supplémentaires. — Pour tout zy dans Z et
pour tout réel r > 0, on note B(zg,r) 'ensemble des éléments = de Z tels
que |z — zo| < 1.

On désigne par & (Z) ’ensemble des fonctions définies sur Z, a valeurs dans
R et & support fini.

Dans la suite (sauf dans le paragraphe 2 ou il n’y a pas d’aléa), tous les
raisonnements sont menés presque sirement en w dans 2. On omet systémati-
quement de mentionner les « w ».

Pour toute partie finie A de Z, on désigne par ¢(A) le volume de A défini
par :

o(A) =) e(x).

z€A

L’opérateur de transition P sur Z de la marche aléatoire (S, )n>0 est donné
par :

Pf(z) = flz—Dp(z,z-1)+ flz+)plx,z+1), z€, feT(Z).
Il préserve ’ensemble & (Z).
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472 J.-M. DERRIEN

On munit ¥(Z) d’un produit scalaire et de la norme associée en posant pour
f et g dans F(Z) :

(f,9) =Y f(@)gl@)e) et [fI*:=(ff)
TEZ
La réversibilité de la marche (Sy,),>0 s’exprime alors de maniére fonction-
nelle comme suit :

Vf,9€ 9(Z), (f,Pg)=(Pfg)-

En particulier, (¢(z)),cz est une mesure sur Z invariante sous 'action de P.

Plan de l’article. — Dans le paragraphe suivant, on étudie 1’équation de la
chaleur discréte associée & une chaine de Markov réversible et on remarque
en particulier la « compléte décroissance » au cours du temps de 1’« énergie »
de la solution d’une telle équation. La représentation de Hausdorff des suites
complétement décroissantes nous permet alors de majorer la différence entre
deux valeurs successives de cette « énergie ». Cette majoration est appliquée a
la marche aléatoire (S,,), >0 aux paragraphes 3 et 4. Deux inégalités gaussiennes
ainsi que les cas dégénérés du théoréme 1.1 sont obtenus dans le paragraphe 3.
Les théorémes 1.2 et 1.3 sont démontrés dans le paragraphe 4 & la suite d’une
étude de la régularité du noyau de la chaleur associé & (Sy, ), >0. Dans le dernier
paragraphe, on s’intéresse au cas d’une chaine de Markov analogue en temps
continu.

2. Sur ’équation de la chaleur associée a une chaine de Markov réversible

Dans ce paragraphe, on considére une probabilité de transition Q@ = (¢s5)i jey
sur un espace d’états dénombrable ¢f et une mesure positive A = (A;);cy sur f
que ’on suppose réversible pour Q. On a donc :

On munit Pensemble & () des fonctions définies sur f, & valeurs dans R et
4 support fini, d’un produit scalaire et d’'une norme en posant :

(f,9):=>_f@)g@)xi et |fI*:= (£, 1)
i€
Pour simplifier la rédaction et compte tenu des applications en vue, on sup-
pose pour la suite que, pour tout élément f de F(J), Qf est encore élément de

().

Un calcul élémentaire utilisant la réversibilité de A pour ¢ montre que :
Vige9(d), (f,Qg)=(Qf9).
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UN THEOREME LIMITE CENTRAL LOCAL 473

La forme de Dirichlet associée ¢ Q2 et \ est définie par :

£(f.9) :=§ 2 (F6) - £G)) (9~ 90)) 4P N Fr9 € T (D),

i,j€d
ol 'on a noté q Zkedqzk qk; le coeflicient d’indice (4,7) de Q2.

Le lemme suivant est I’analogue de la premiére formule de Green pour le
laplacien discret I — Q2.

LEMME 2.1. — Pour tout élément f de F(J), on a :
S, ) =(£T =@ ) =fI” - Qs>

En particulier, pour tout entier k >0, on a :

(f,(I-Q)f)=0

Démonstration. — L’argument est calculatoire. On a
1 . .
65 =5 2 (PO = FG) ¢ x
i,j€J
1 )
= 5 Z f Z a;; i
i€d =
1 (2
jed ied i,j€J
=S TN - Y FOFG) 6
i€ i,j€J

en utilisant la réversibilité de A pour Q2. En utilisant cette fois la réversibilité
de A pour @, on obtient donc :

P =256 [ F6) =D fG)as | di= (£ =Q)) = IFI? - 1QfI
i€y j€d
Ainsi, toujours par réversibilité de A, il vient, pour k = 2[ pair,

(fLT=Q) ) =(T-Q*)'f,(I-Q})'f)>0
et, pour k = 2] + 1 impair,

(f =@ N=(T-)'f,U-@)((I-Q)'f)=0. 0
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474 J.-M. DERRIEN

Etant donné f dans ¥ (¢J), on considére 4 présent la suite (f,,),>0 d’éléments
de () solution de ’équation de la chaleur discréte (associée & Q et f) :

{ fo= 1,
fn_fn+1:(I_Q)fm n 2 0.
On a donc, pour tout n >0, f, = Q™ f.
Intéressons-nous plus particuliérement a la suite des « énergies » (||Q” f ||2)n20

d’une telle solution et, pour cela, introduisons la famille des suites de ses « dif-
férences successives » en notant, pour tout k > 0,

AE(f) = AR () = AR (), n>0,

ot l'on a posé A%O)(f) := [|Q" f||? pour tout n > 0.
La propriété suivante est élémentaire mais elle joue un réle déterminant dans
la suite.

PROPRIETE 2.2. — Pour tout élément f de F(J), la suite (|Q™f||*)n>0 est
complétement décroissante au sens o :

Vk,ne N, AB(f)>o.

Démonstration. — C’est une conséquence du lemme 2.1 une fois vérifié par
récurrence sur k et en utilisant la réversibilité de A que

Ve,neN, AP(f) = (Q"f,(I-QH)*Q"f). O

COROLLAIRE 2.3. — Pour tout élément f de F(J), il existe une mesure de
probabilité borélienne vy sur [0,1] telle que :

20, QI =117 [ oy
Démonstration. — C’est une application directe du théoréme de Hausdorff de
représentation des suites complétement décroissantes (voir par exemple [22]
chapitre VII). O

Remarques. — Le théoréme de Hausdorff de représentation des suites comple-
tement décroissantes ([25]) est a rapprocher du théoréme d’Herglotz de repré-
sentation des suites de type positif ([26]) ; la premiére représentation est donnée
par la suite des moments d’une loi sur [0,1], la seconde par la transformée de
Fourier d’une telle loi.

La théorie spectrale des opérateurs symétriques dans les espaces de Hilbert
permet d’obtenir cette méme représentation de la suite (||Q" f||?) mais de ma-
niére moins élémentaire (voir [37] par exemple).
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UN THEOREME LIMITE CENTRAL LOCAL 475

COROLLAIRE 2.4. — Pour tout élément f de F(J), pour tout entier n >0, on
a:

Q%" 112~ Q> FIP < Q" P

Démonstration. — En utilisant la représentation de Hausdorff précédente, il
vient :

Q"I = Q1P = 151 | (1~ ) dus(a)

)

ng[gﬁ] (" (1~ 2) <||f|| s duf<x>>

)

-  (n+ 1)n+1 Q™ fII* < ||an||2- O

N

On suppose a présent que, pour tout i dans S, A; est strictement positif. De
plus, on particularise un élément o de .

On définit le noyau de la chaleur (hyp)n>0 (« basé en o» et) associé a la
probabilité de transition () comme étant la solution de I’équation de la chaleur
discréte associée a @) et a la fonction hg donnée par :

] 1 ) L sii=o ]
ho(z):%ﬂ{o}(z)z{&’ . , 1€d.

0  sinon
Il vient, pour tout entier n > 0 et pour tout ¢ dans ,
Pi[X, =0 P,[X, =i

ot (X, )nen désigne la chaine de Markov sur J de probabilité de transition @
(partant de ¢ sous la probabilité P;).

Le lemme suivant est trés classique. Il permet notamment de reformuler le
théoréme 1.1 (pour z = 0) en terme d’« énergie » du noyau de la chaleur.

LEMME 2.5. — Pour tout entier n >0, on a :
Po [XQn = O]
2 = =222 =2 = iy (o).
Démonstration. — On a, grace a la réversibilité de A,
[hn]l” = (Q"ho, Q" ho) = (Q*"ho, ho) = Q*"ho(0) = han(0). O
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476 J.-M. DERRIEN

3. Des inégalités gaussiennes et les cas dégénérés

On revient & présent a la marche aléatoire (S,,)n>0 du paragraphe 1.

Tout au long de ce paragraphe 3, on omet de préciser que les résultats
obtenus ont lieu pour presque tout environnement de conductances.

Les résultats du paragraphe précédent s’appliquent & 'opérateur P et a la
mesure réversible (¢(x))zez. Dans ce contexte, la forme de Dirichlet associée a
P? est donnée, pour tous f et g dans ¥ (Z), par :

6(£,9) = (fle=1) = fl@+1)) (9(z = 1) - g(z + 1))

z€Z

clz—1,z)c(z,z+1)
c(z)

(La quantité
clx —1,z)c(x,z+1) 1
6(.’1)) c(z—ll,z) + c(z,all:—i-l)
est égale, comme il se doit, & la conductance d’un circuit électrique constitué
de deux conductances c¢(z — 1,z) et c(x,z + 1) disposées en série.)
On note encore (hy,)n>0 le noyau de la chaleur associé a (S,),>0 partant

de 0 :

1
Yn>0, h,=P"'(——1 .
" <c<0> {°}>
Commengons par établir la convergence vers 0 de la suite (||hn|?) -,
PROPOSITION 3.1. — La marche (Sp)n>0 est une chaine de Markov récurrente
nulle.
On a donc en particulier la convergence :
Po[S2r =0
lim |hy|?= lim PolSan =0] _,
n—-+00 n—-+00 C(O)

Démonstration. — Pour tout K dans N*, la probabilité pour (S,),>o d’at-
teindre {—K, K'} avant de revenir en 0 est donnée par

1 ( 1 . 1 )
=(0) —1 1 K-1 ?
C(O) z=—K c(z,z+1) Zx:O m
la conductance effective entre 0 et {—K, K} divisée par ¢(0) ([21]). Or, le théo-

réme de récurrence de Poincaré (voir [36] par exemple) garantit les deux diver-

gences :
—1 400

1 . 1
w:z—oo c(z,z+1) = too e ;c(m,m—l—l) = foo

On en déduit la récurrence de (Sy,)r>0. La récurrence nulle de (S,,)n>0 résulte
alors de ce que (¢(x)),ez est une mesure sur Z, P-invariante et de masse totale
infinie (toujours d’aprés le théoréme de récurrence de Poincaré).

TOME 143 — 2015 — N° 3



UN THEOREME LIMITE CENTRAL LOCAL 471

La convergence de la suite (Po[S2, = 0]),,, vers 0 est une conséquence de
cette récurrence nulle comme il est exposé par exemple dans [24] p. 214. O

Le théoréme suivant donne un minorant (asymptotique) de la suite

(Vllhall?),,5o-

THEOREME 3.2. — Si C est intégrable alors

1 /[ zdu
lim inf holl? > — e,
S A N

En particulier, si ¢ est intégrable et si [ % dp = +00o alors

lim /7 ||h,|* = +o0.
n—-+oo

Démonstration. — On va exploiter le fait que, typiquement, jusqu’a 'instant n,
la marche aléatoire (S, )n>0 « évolue » dans un voisinage de 0 dont la longueur
est de ordre de /n.

Pour tout 6 > 0 et pour tout entier n > 1, on a :

Villha|?>vn Y ha(@)?e@) =vn Y
z€B(0,6+/n) z€B(0,6+/n)
Or, en utilisant 'inégalité de Cauchy-Schwarz, il vient :
2

> PlSa=1]| <c(B(O0,6vn) >
z€B(0,6+/n) z€B(0,6/n)
On en déduit que

IPO [Sn = ZE]Q
e@)

n 2 L =z
Vo lhall >E<B(O’5\/ﬁ)) IGB%W)PO[STL ]
<a] |

_ 12y S,
25 2(B0,6vn) { NG
On applique & présent le théoréme ergodique ponctuel de Birkhoff & ¢ (voir
[36] par exemple) et le théoréme limite central (théoréme 1.4 ci-dessus) en
distinguant selon que 1/c est intégrable ou non.
Si [ L du = +o0 alors, pour tout § > 0,

1
26 [edu’
ce qui donne, en passant & la limite § — 0T, la convergence :

lirJIrl VvV ||ha||? = 4o0.

lim inf v/n ||k, ||? >
n—-4oo
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Si 1/c est intégrable alors il vient, pour tout § > 0 et avec les notations du
théoréme 1.4,

ol

2
1 1 o
lﬁgl}rrgof\/ﬁ hn)? = % Tedn </6ka(z) dz) .

Soit encore :

2
1 1 o 8/e 22
lim inf ol > — —— = / -——]d
nlgigo\/ﬁﬂ nll 4 crfcd,ué( J/Uexp< 2) Z)

En prenant par exemple § = o, on obtient par une minoration grossiére :

1 fidp 1 [[ldp
lim inf holl? > —— c T > c T, O
lim tnf Vo > 25 Todn © 18\ Teau

Remarque. — Le théoréme 3.2 assure ainsi que, lorsque ¢ est intégrable sans
que 1/c ne le soit, on a, pour presque tout environnement et pour tout = dans
27.,

P =
lim v2n M = 400

n—-+oo ¢(x)

(on a utilisé également le lemme 2.5 et la stationnarité de I’environnement).
On en déduit la partie du théoréme 1.1 correspondante & ces hypothéses sur les
conductances en utilisant I'irréductibilité de (S,)n>0 et la propriété de Markov.

On s’intéresse & présent a la majoration de la suite (\/ﬁ ||hn||2)

n>0"
THEOREME 3.3. — Si 1/c¢ est intégrable alors
1
~d
lim sup v/ ||, || < 4 ) - g
n—-+oo Jedu
En particulier, si 1/c est intégrable et si [€du = +oo alors
lim v/ 2 = 0.
Démonstration. — Pour tout n > 1, pour tout K > 1, on considére un élément
xo dans B(0, K) N 27Z tel que
han(z9) = min{hay(z) | x € B(0, K) N 2Z}.
Il vient :
han (o) < : > b)) < 1
2n\20) & — on(T)C(T) < —.
" 2 zeB(0,K)n2z (%) +€B(0,K)n2z " 2 zeB(0,K)n2z (%)
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En supposant par exemple zog = 2l + 2 et [y > 0, on obtient donc :

1

[[n|* — —
ZzEB(O,K)ﬂ2Z c(z)

< han(0) — hon (o)

lo

e(20,21 + 1) (20 + 1,21 + 2)
< L(20) — By (21 + 2))2

i S
£ 2121+1) c(20+1,20+2)

en utilisant 'inégalité triangulaire puis l'inégalité de Cauchy-Schwarz. Ainsi,
compte tenu de l’expression de la forme de Dirichlet associée a P? et du
lemme 2.1, il vient :

1
1|

> e B(0,K)N2Z c(z)

K 1/2
V6h2n7h2n <Z SC:E+1>

K—1 1/2
= hn2—h" 2 .
VI =Tl (3 )

Le corollaire 2.4 assure alors que

1 1 K-1 1/2
1D lhal® = —— < — ||hn|
Yren(o,K)n2z C(@) V" — clz,z+ c(z,z+1)

Pour tout entier n assez grand, on définit & présent K (n) > 1 par la relation

(2) > &(x) < ﬁ < > ()

z€B(0,K (n)—1)N27Z " z€B(0,K (n))N27Z

Remarquons que la proposition 3.1 garantit que lim,, 1., K(n) = 4o00.
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11 vient d’aprés (1) et la seconde inégalité de (2) :

—1/2
K(n)—1
1 2 1
=l = S MRl | >
etz gimi® | 3
—1/2
K(n)-1
V2 1 1
B 1n 2K (n) Z c(z,z+1)
z=—K(n) ’

—1/2

_ 1/2
Cc\T
% (ZzeB(O,K(n)—l)r‘QZ ( )) Z 6(1‘) :

K(n)
z€B(0,K(n)—1)N2Z

ce qui donne en utilisant cette fois la premiére inégalité de (2) :

—1/2
K(n)—1
1 V2 1 1
= Nl = 2 (12 D
vn 3 2K (n) clz,z+1)
z=—K(n)
_ 1/2
" 2 weB(0,K (n)—1)n2z E(T) <||hn||2>1/2
K(n) 3 ’

On achéve la preuve du théoréme 3.3 en divisant par ||h,||/+/n et en appli-
quant & 1/c et a ¢ le théoréme ergodique ponctuel de Birkhoff. O]

4. Un théoreme limite central local non dégénéré

On commence par établir une propriété de régularité du noyau de la chaleur.

THEOREME 4.1. — Si 1/c est intégrable alors, pour presque tout environne-
ment, il existe un réel C > 0 tel que, pour tout réel xq, pour tout réel a > 0, il
existe un entier ng tel que, pour tout entier n > ng, on a :

Ja

max hon(z) — h r <cYe
zeB(gnuo),aM)mz' 2n (%) = han (gn(20)))] N

0t gn(xo) désigne comme précédemment un plus proche entier pair de xoV2n.

Démonstration. — En utilisant le théoréme 3.3 ainsi que sa preuve, on obtient
que, pour presque tout environnement, il existe une constante C’ telle que,
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pour tout zg, pour tout a > 0, pour tout entier m» > 1, pour tout x dans
B(gn(z0),aVv2n)N2Z, on a :
1/2

1
(3) |han(@) — h2n(gn (o))l [ > —
z,z+1
\/> ZGB(gn(xO)’am) ( )
1/2
c’ 1 1

() << | s
n n c(z,z+1
v\ Ve 2€B(gn(z0),av/2n) ( )

Par ailleurs, d’aprés le théoréme ergodique ponctuel de Birkhoff, pour
presque tout w dans 2, pour tout zy et tout a avec 0 < a < xg, il existe un
entier Ng = Ny(w, zo,a) = 0 tel que, pour tout N > N, on a :

N-1
1 a 1
N dpy— — ) < —— <N / dp + )
</ a xo) = Zz:(:) c(z,z 4+ 1)(w) ( a Zo
Ainsi, en considérant un entier ny = ng(w, o, a) tel que, pour tout n > ng, on
ait l'inégalité g, (xo) — av2n = Ny , il vient :

1
Z c(z,z+ 1) (w
2€B(gn (z0),av/2n) ( )( )

1 1
< > S B 3 o
0<z<gn(z0)+av2n oz 2+ W) 0<2<gn (z0)—av2n c(z,z +1)(w)
<(gn(l’0)+a\/ﬁ)(/idu+;)>—(gn(xo)_a\/ﬁ_l)</ du_;())
(5)

1
<a\/2n(5+3/d,u>
c

(on a supposé pour simplifier n assez grand pour avoir I'inégalité av/2n > 1).
Les inégalités (4) et (5) permettent de conclure dans le cas 0 < a < xg. Les
autres cas se traitent de maniére analogue. O

Remarques. — Dans I'approche classique de Moser ([34]), un tel résultat de
régularité se déduit d’inégalités du type « inégalités de Harnack paraboliques »
(voir [17] et [5] pour des applications de cette méthode dans le cas d’espaces
discrets). En utilisant les inégalités gaussiennes du paragraphe précédent, on
est ici plus proche de la démarche de Nash ([35]).

Le théoréme 1.3 se déduit sans difficulté du théoréme 3.3, du théoréme 4.1
et des inégalités (3) et (5), en utilisant I’inégalité triangulaire :

hon(2) < |h2n(2) — hon(0)| + h2n(0) = |hon(x) — h2n(0)] + ||hn||2
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Preuve du théoréme 1.2. — On procéde comme dans [5].

Commengons par remarquer qu’en appliquant le théoréme ergodique ponc-
tuel de Birkhoff & ¢ et & une différence de sommes ergodiques suivant 1’idée de
la preuve du théoréme précédent, on montre que, pour presque tout environ-
nement, pour tout réel zy, pour tout § > 0, on a :

. e(B(gn(x0),6V2n)N2Z)  [_
(6) nl{r-&]iloo 6\/% _/Cdu

Par ailleurs, pour tout § > 0, pour tout n > 1, il vient :

Von FolSan = gn(0)] /Edu — 2k, (o)

E(gn(xO))
¢(B(gn(zg),0v2n) N 27Z
= Vauhan(gn(eo) [~ LEEALVINOI b (g 1)
1 1
+3 > han(gn(20)) () = > han (z) 2(x)
z€B(gn(z0),6V2n)N2Z 2E€B(gn(20),6V2n)N2Z
1 o+
ts PO[SQn € B(gn(wo),6v2n)] — 3 ko (2) dz
-5
1 I0+6
+ = / ko(2)dz — 2k, (o),
5 110—5
ou l'on a repris les notations du théoréme 1.4.
Ainsi,
‘\/7]?0 [S2n = gn(@0)] /Edu — 2k, (z0)
gn(iﬂo))
,0V2n) N 27Z)
2n(gn(x0)) | | Cdp VT
(7)
¢ (B(gn(w0),3V20) N22))
+ vn ma; hon(9n (o)) — hon(x
fxeB(g"(xo)ﬁm)m(I 2n(gn(20)) — han()[) o/n
1 gn(xO) SZn gn($0) :| /IO-HS
4+ =Py |=—— - < +0 ks(2)d
4 0 |: V2n V2 V2 T0—0 (Z) ¢

(8)
zo+9d
+2 <215/ . |k0(z)—kg(m0)|dz>.

Pour presque tout environnement, un réel € > 0 étant donné, on peut fixer
0 > 0 assez petit de maniére & majorer pour tout n assez grand les expressions
(7) et (8) par . Pour cela, on utilise le théoréme 4.1, la convergence (6) et
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la continuité de z +— k,(z) en zp. On conclut alors en passant a la limite
supérieure en n et en utilisant & nouveau la convergence (6), le théoréme 1.3
(pour justifier que la suite (v/2n han(gn(20)))n>0 est bornée) et le théoréme
limite central associé a la continuité de la loi normale. O

5. Une chaine de Markov analogue en temps continu

Dans ce paragraphe, on s’intéresse & un processus stochastique en temps
continu analogue & la marche aléatoire (S, ), >0. Ce processus est parfois appelé
marche aléatoire & vitesse variable dans la littérature (voir [4] par exemple).
Parmi les nombreuses maniéres possibles de I’introduire, nous choisissons ici
celle consistant a partir de (Sy,)n>0.

On considére donc & nouveau un environnement de conductances fixé et
la marche aléatoire (S, )n>0 associée. Pour chaque réalisation de (Sy)n>0, On
considére également la réalisation d’une suite (7),),>1 de variables aléatoires
indépendantes de lois exponentielles telles que, pour tout n > 1, la moyenne de
T,, soit égale a ¢(S,_1)~!

On introduit alors les instants de sauts en posant Jy := 0 et, pour tout n>1,

Jpi=T1 +To+---+ T,

On pose enfin X; := S, pour tout ¢ > 0 satisfaisant J, <t < J,41.

A environnement de conductances fixé, on a ainsi défini un processus sto-
chastique (X¢):>0 qui est en fait une chaine de Markov & temps continu sur
Z. La marche aléatoire (S,)n>0 étant irréductible et récurrente, la chaine de
Markov (X;)¢>0 est irréductible, non explosive et récurrente.

Dans la suite, on réunit les éléments permettant de déduire un théoréme
limite central local pour (X;):>0 des méthodes qui ont été développées en temps
discret aux paragraphes 3 et 4 ci-dessus.

Compte tenu des moyennes des temps d’attente T;, en chaque site, on com-
prend que la chaine de Markov (X;);>0 a « moins de raisons » que (Sp)n>0
d’étre « piégée » par les sites qui correspondent & de grandes valeurs de ¢. Ceci
se traduit en particulier par 'absence de condition d’intégralité sur ¢ dans le
théoréme limite central pour (X;);>0 que l’on rappelle maintenant.

THEOREME 5.1 ([27], [19], [29]). — (1) Si 1/c est intégrable alors, pour
presque tout w dans 2, pour tous —oo < a < b< +o0, on a

lim PY <Xt<b—/bk()d
Jm P |o< Gpst) = [ kG,
avec )
1 z 2
ko(z) = ——— exp | ——= et o?:= .
(2) oV2m p( 202) [ Ldu
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2) Si 1/c n’est pas intégrable alors, pour presque tout w dans 2, pour tous
( 2 g , pour presq ) D
—oo < a < b< 400 avec a et b non nuls, on a

X 1 510 b
lim [Pg |:a < 2t < b:| _ 81 E](L, ]
t—+o00 Vi 0 sinon.

D’autre part, la mesure (¢(x))zez sur Z étant réversible pour la marche
aléatoire (Sp)n>0, la mesure de comptage sur Z est réversible pour la chaine
de Markov (X;)¢>0. Autrement dit, pour tout ¢ > 0,

En particulier, (X;):>0 admet une mesure invariante de masse totale infinie,
elle est donc récurrente nulle et I'on a :

Va,y € Z, tligl P.[X:=y]=0.

De plus, le semi-groupe (P(t))¢>0 associé & (X;)>o est une famille d’opéra-
teurs symétriques de £2(Z) de norme égale & 1. Il en résulte que si ¥ désigne le
générateur associé dans £?(Z), 'opérateur (non borné) —# est symétrique et
positif. En outre, pour toute fonction f & support fini sur Z, on a :

VeeZ, 2Lf(x)=clz,c+1)f(zx+1)+c(z,z—1)f(x—1)—c(z)f(z).
Le noyau de la chaleur associé & (X;):>o est défini par :
hi(z) := Po[X; = x] = P(t)lfoy(x), x€Z, t>0.

Pour tout ¢ > 0, la symétrie de Popérateur P(t) donne : (h¢, ht) = hat(0) (on a
noté (-,-) le produit scalaire dans ¢2(Z)).

Si & présent on pose, pour tout ¢ >0, u(t) := (h¢, ht), on obtient, en utilisant
les équations de Kolmogorov rétrograde et progressive, que

V>0, u™(t)=2"(he, L hy),
ot u(™ désigne la dérivée n-iéme de la fonction u. Ainsi,
vn >0, (=1)"u™(t) =2"(h, (—L)"hs) =0

(distinguer les cas n pair et n impair, et utiliser la positivité et la symétrie de
-9).

Le théoréme de Bernstein de représentation des fonctions complétement mo-
notones sur [0, +o0o[ (voir par exemple [22] chapitre XIII) assure alors ’existence
d’une mesure de probabilité v sur [0, +oo[ telle que

+oo
Vit >0, wu(t)=wu(0) /0 e " dv(x).
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En particulier, pour tout ¢t > 0, on a :

u(0) /0+°° re” 2 dy(x)

< max{ze " : z € [0, +oo[} u(t)
= S u),

ce qui constitue un analogue du corollaire 2.4 ci-dessus.

2(hat, — Lhay) = —u'(2t)

Remarquons enfin que, pour toute fonction f appartenant au domaine de £,

(=20 =t (1,37 - P0D)

t—0+

= lim 5 3 (f0) ~ W)LY =)
z,YyEL

.1
> lim o > (f@) = W)
z,yeF

= Y (f@-fl+1)’e(z,z+1),

zx€F : z+1eF

)2w

pour toute partie finie F' de Z.
En utilisant les méthodes des deux paragraphes précédents, on montre en
particulier le théoréme suivant.

THEOREME 5.2. — (1) Si 1/c est intégrable alors, pour presque tout environ-
nement de conductances, pour tout réel xg,

Jim VB [X, = [zv]] = Jedt (—f = o 3)

NG 1

(on a noté [z] la partie entiere de x).
(2) Si 1/c n'est pas intégrable alors, pour presque tout environnement de
conductances, pour tout x dans 7Z,

lim VtPy[X; = z] = +o0.

t——+o0

Remarques. — La premiére partie de ce théoréme est donnée sans démonstra-
tion dans [27].

La méme méthode s’applique également & la marche aléatoire a vitesse
constante, c’est-a-dire dans le cas ou les temps d’attente T;, en chaque site
suivent tous la loi exponentielle de paramétre 1.

Remerciements. — L’auteur remercie Jérome Depauw, Yves Derriennic ainsi
’
que le rapporteur pour leurs précieuses remarques.
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