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UN THÉORÈME LIMITE CENTRAL LOCAL
EN ENVIRONNEMENT ALÉATOIRE STATIONNAIRE

DE CONDUCTANCES SUR Z

par Jean-Marc Derrien

Résumé. — On démontre un théorème limite central local pour les marches aléatoires
aux plus proches voisins en environnement aléatoire stationnaire de conductances sur Z
en s’affranchissant simultanément des deux hypothèses classiques d’uniforme ellipticité
et d’indépendance sur les conductances. Outre le théorème limite central, on utilise
pour cela des inégalités différentielles discrètes du type « inégalités de Nash » associées
à la représentation de Hausdorff des suites complètement décroissantes. La méthode
s’adapte aux chaînes de Markov analogues en temps continu.

Abstract (A local central limit theorem in stationary random environment of con-
ductances on Z)

We prove a local central limit theorem for nearest neighbors random walks in sta-
tionary random environment of conductances on Z without using any of both classic
assumptions of uniform ellipticity and independence on the conductances. Besides
the central limit theorem, we use discrete differential Nash-type inequalities associ-
ated with the Hausdorff’s representation of the completely decreasing sequences. The
method is also valid for analogous continuous time Markov chains.

Texte reçu le 13 février 2013, révisé le 25 mai 2014 et accepté le 4 juillet 2014.

Jean-Marc Derrien, Université de Brest, CNRS - UMR 6205, Laboratoire de Mathéma-
tiques de Bretagne Atlantique - 6, avenue Le Gorgeu, CS 93837, 29238 BREST cedex 3,
France

Classification mathématique par sujets (2000). — 60J10, 60K37.

Mots clefs. — Marches aléatoires, environnement aléatoire stationnaire de conductances,
théorème limite central local, inégalités de Nash, représentation de Hausdorff des suites com-
plètement décroissantes, théorèmes ergodiques.
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468 J.-M. DERRIEN

1. Le modèle et la présentation des principaux résultats

Depuis les années 1980, une part importante de l’étude des milieux aléa-
toires a trait aux marches aléatoires aux plus proches voisins en environnement
aléatoire stationnaire de conductances sur Zd (dont notamment les marches
aléatoires sur l’amas de percolation). Dans ce cadre particulier, les différences
entre les milieux considérés s’articulent essentiellement autour des trois moda-
lités suivantes :

– la dimension d,
– le domaine des valeurs autorisées pour les conductances,
– considérer une famille de conductances aléatoires stationnaire ergodique

(environnement stationnaire) vs. considérer le cas particulier d’une famille
de conductances indépendantes et identiquement distribuées (environne-
ment i.i.d.).

Par exemple, l’hypothèse d’uniforme ellipticité, c’est-à-dire d’encadrement
des conductances par deux constantes strictement positives, permet l’utilisation
de nombreuses méthodes classiques dans l’étude des équations aux dérivées
partielles.

Pour faire un historique succinct des travaux qui ont motivé la présente
étude, on peut citer, entre autres, [28] pour une vue d’ensemble des modèles
de marches aléatoires en milieux aléatoires sur Zd et la systématisation des
techniques de martingales et d’« environnement vu de la particule » dans ce
contexte, [23], [6] et [13] pour l’étude de la récurrence sur l’amas de percolation
et en environnement (de conductances) stationnaire non uniformément ellip-
tique en dimension d > 2, [19] pour une étude de la variance asymptotique en
environnement stationnaire non uniformément elliptique sur Z, [12], [38] et [18]
pour un théorème limite central en environnement stationnaire uniformément
elliptique en dimension d > 1, [38], [7], [11], [31], [30], [4], [9], [1] et [2] pour
des théorèmes limites centraux et des principes d’invariance en environnements
stationnaires non uniformément elliptiques en dimension d > 2, [17] pour des
inégalités gaussiennes en environnement déterministe uniformément elliptique
en dimension d> 1, [32], [33] et [3] pour des inégalités gaussiennes pour l’amas
de percolation en dimension d > 2, [8], [14] et [10] pour des comportements
singuliers du noyau de la chaleur en environnements i.i.d. non uniformément
elliptiques en dimension d > 4, [5] pour un théorème limite central local pour
l’amas de percolation en dimension d> 2.

Dans cet article, on démontre un théorème limite central local dans le cas
stationnaire non uniformément elliptique unidimensionnel. On constate en par-
ticulier que le rapport entre la moyenne des résistances et celle des conductances
joue un rôle dans le théorème limite central local alors que seul le produit de ces
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UN THÉORÈME LIMITE CENTRAL LOCAL 469

moyennes apparaît dans l’expression de la variance asymptotique de la marche
aléatoire.

Précisons à présent le modèle étudié.
On considère en premier lieu un système dynamique probabilisé ergodique

(Ω, F , µ, T ), c’est-à-dire une mesure de probabilité µ sur un espace mesurable
(Ω, F ) et une transformation T de Ω, inversible, bi-mesurable, préservant la
probabilité µ et pour laquelle les ensembles invariants sont de mesure égale à 0
ou à 1 (voir [36] par exemple). Alors, étant donnée une application mesurable
c : Ω→]0,+∞[, on appelle conductance de l’arête (non orientée) {x, x+1} de Z
dans l’environnement ω le réel strictement positif c(x, x+ 1)(ω) := c(T xω) (on
pose aussi c(x + 1, x)(ω) := c(x, x + 1)(ω)). De la sorte, la famille de conduc-
tances (c(x, x + 1))x∈Z constitue une suite de variables aléatoires stationnaire
ergodique.

Un environnement ω dans Ω étant fixé, on s’intéresse au comportement de
la chaîne de Markov (Sn)n>0 sur Z partant de x0 ∈ Z dont les probabilités de
transition sont données par :

Pωx0
[Sn+1 = x+ 1 | Sn = x] =

c(x, x+ 1)(ω)

c(x)(ω)
=: p(x, x+ 1)(ω)

et

Pωx0
[Sn+1 = x− 1 | Sn = x] =

c(x, x− 1)(ω)

c(x)(ω)
=: p(x, x− 1)(ω),

où l’on a posé c(x)(ω) := c(x−1, x)(ω)+c(x, x+1)(ω), ceci pour tout x dans Z
(Pωx0

est la probabilité sous laquelle évolue, dans l’environnement ω, la chaîne
de Markov (Sn)n>0 partant de x0). Notons que la chaîne de Markov (Sn)n>0

est réversible sur Z au sens où :

∀n ∈ N, ∀x, y ∈ Z,
Pωx [Sn = y]

c(y)
=

Pωy [Sn = x]

c(x)
.

L’objet de cet article est de démontrer les trois résultats suivants qui pro-
longent le travail commencé dans [20]. Ils donnent l’ordre de grandeur de la
probabilité pour la marche aléatoire partant de 0 d’être au temps n en un
point x de Z.

Théorème 1.1. — On a, pour presque tout ω dans Ω et pour tout x dans 2Z,

lim
n→+∞

√
2n

Pω0 [S2n = x]

c(x)(ω)
=



1√
π

√ ∫
1
c dµ∫
c dµ

si c et 1/c sont intégrables

0 si 1/c est intégrable et si
∫
c dµ = +∞

+∞ si
∫

1
c dµ = +∞ et si c est intégrable.
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470 J.-M. DERRIEN

Pour les valeurs de x de l’ordre de
√
n, on montre le

Théorème 1.2. — Si c et 1/c sont intégrables alors, pour presque tout ω dans
Ω, pour tout réel x0, on a

lim
n→+∞

√
2n

Pω0 [S2n = gn(x0)]

c (gn(x0)) (ω)
=

1√
π

√∫
1
c dµ∫
c dµ

exp

(
−
∫
cdµ

∫
1
cdµ

4
x2

0

)
,

où gn(x0) désigne un plus proche entier pair de x0

√
2n.

Le théorème suivant résume les comportements « uniformes » obtenus dans
le cadre de cette étude.

Théorème 1.3. — Si 1/c est intégrable alors, pour presque tout ω dans Ω,
pour tout réel a > 0, la suite(

√
2n max

x∈B(0,a
√

2n)∩2Z

Pω0 [S2n = x]

c(x)

)
n>0

est bornée.
Si, de plus,

∫
c dµ = +∞ alors, pour presque tout ω dans Ω, pour tout réel

a > 0, on a

lim
n→+∞

√
2n max

x∈B(0,a
√

2n)∩2Z

(
Pω0 [S2n = x]

c(x)

)
= 0.

(On a noté B(0, a
√

2n) l’ensemble des entiers relatifs z tels que |z| < a
√

2n.)

Remarques. — Dans le théorème 1.1, le résultat correspondant au cas où 1/c

est intégrable mais c ne l’est pas est un cas particulier du second point du
théorème 1.3.

La preuve du cas non dégénéré du théorème 1.1 et celle du théorème 1.2
étant très similaires, on détaillera seulement cette dernière (au paragraphe 4).

A posteriori (car cela n’apparaît pas explicitement dans les preuves), le
théorème 1.1 pour x = 0 doit pouvoir s’interpréter de la façon suivante : les
grandes valeurs prises par c constituent des « pièges » pour la marche aléatoire
(Sn)n>0 qui la « retiennent loin de 0 » tandis que les grandes valeurs prises par
1/c sont des « barrières » qui, au contraire, la « confinent » dans des voisinages
de 0.

Ces théorèmes constituent des « localisations » du théorème limite central
pour la marche aléatoire (Sn)n>0. Sauf pour le cas où 1/c n’est pas intégrable,
on les démontre à partir d’estimations du noyau de la chaleur associé à (Sn)n>0

qui résultent elles-mêmes d’inégalités différentielles discrètes, suivant une dé-
marche initiée par Nash dans [35], et de la représentation de Hausdorff des suites
complètement décroissantes (voir la propriété 2.2 ci-dessous pour une définition
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UN THÉORÈME LIMITE CENTRAL LOCAL 471

des suites complètement décroissantes). L’utilisation de cette démarche de Nash
pour obtenir des estimations sur les probabilités de transition des processus de
Markov réversibles est maintenant très classique (voir [15] et [16] par exemple).
La représentation de Hausdorff des suites complètement décroissantes comme
suites de moments de lois sur [0, 1] (cf aussi le « problème des moments ») est
exposée par exemple dans [22] chapitre VII. Le théorème limite central pour la
marche aléatoire (Sn)n>0 est rappelé ci-dessous.

Théorème 1.4 (Théorème limite central ([28], [19], [29]))
(1) Si c et 1/c sont intégrables alors, pour presque tout ω dans Ω, pour tous

−∞6 a < b6 +∞, on a

lim
n→+∞

Pω0
[
a <

Sn√
n
6 b

]
=

∫ b

a

kσ(z) dz ,

avec

kσ(z) :=
1

σ
√

2π
exp

(
− z2

2σ2

)
et σ2 :=

2∫
c dµ

∫
1
c dµ

.

(2) Si
∫
c dµ = +∞ ou

∫
1
c dµ = +∞ alors, pour presque tout ω dans Ω,

pour tous −∞6 a < b6 +∞ avec a et b non nuls, on a

lim
n→+∞

Pω0
[
a <

Sn√
n
6 b

]
=

{
1 si 0 ∈ ]a, b]

0 sinon
.

Quelques remarques et notations supplémentaires. — Pour tout x0 dans Z et
pour tout réel r > 0, on note B(x0, r) l’ensemble des éléments x de Z tels
que |x− x0| < r.

On désigne par F (Z) l’ensemble des fonctions définies sur Z, à valeurs dans
R et à support fini.

Dans la suite (sauf dans le paragraphe 2 où il n’y a pas d’aléa), tous les
raisonnements sont menés presque sûrement en ω dans Ω. On omet systémati-
quement de mentionner les « ω ».

Pour toute partie finie A de Z, on désigne par c(A) le volume de A défini
par :

c(A) :=
∑
x∈A

c(x).

L’opérateur de transition P sur Z de la marche aléatoire (Sn)n>0 est donné
par :

Pf(x) = f(x− 1) p(x, x− 1) + f(x+ 1) p(x, x+ 1), x ∈ Z, f ∈ F (Z).

Il préserve l’ensemble F (Z).
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472 J.-M. DERRIEN

On munit F (Z) d’un produit scalaire et de la norme associée en posant pour
f et g dans F (Z) :

(f, g) :=
∑
x∈Z

f(x) g(x) c(x) et ‖f‖2 := (f, f).

La réversibilité de la marche (Sn)n>0 s’exprime alors de manière fonction-
nelle comme suit :

∀f, g ∈ F (Z), (f, Pg) = (Pf, g).

En particulier, (c(x))x∈Z est une mesure sur Z invariante sous l’action de P .

Plan de l’article. — Dans le paragraphe suivant, on étudie l’équation de la
chaleur discrète associée à une chaîne de Markov réversible et on remarque
en particulier la « complète décroissance » au cours du temps de l’« énergie »
de la solution d’une telle équation. La représentation de Hausdorff des suites
complètement décroissantes nous permet alors de majorer la différence entre
deux valeurs successives de cette « énergie ». Cette majoration est appliquée à
la marche aléatoire (Sn)n>0 aux paragraphes 3 et 4. Deux inégalités gaussiennes
ainsi que les cas dégénérés du théorème 1.1 sont obtenus dans le paragraphe 3.
Les théorèmes 1.2 et 1.3 sont démontrés dans le paragraphe 4 à la suite d’une
étude de la régularité du noyau de la chaleur associé à (Sn)n>0. Dans le dernier
paragraphe, on s’intéresse au cas d’une chaîne de Markov analogue en temps
continu.

2. Sur l’équation de la chaleur associée à une chaîne de Markov réversible

Dans ce paragraphe, on considère une probabilité de transitionQ = (qij)i,j∈ S
sur un espace d’états dénombrable S et une mesure positive λ = (λi)i∈ S sur S
que l’on suppose réversible pour Q. On a donc :

∀i, j ∈ S, λi qij = λj qji.

On munit l’ensemble F ( S) des fonctions définies sur S, à valeurs dans R et
à support fini, d’un produit scalaire et d’une norme en posant :

(f, g) :=
∑
i∈ S

f(i) g(i)λi et ‖f‖2 := (f, f).

Pour simplifier la rédaction et compte tenu des applications en vue, on sup-
pose pour la suite que, pour tout élément f de F ( S), Qf est encore élément de
F ( S).

Un calcul élémentaire utilisant la réversibilité de λ pour Q montre que :

∀f, g ∈ F ( S), (f,Qg) = (Qf, g).
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La forme de Dirichlet associée à Q2 et λ est définie par :

E(f, g) :=
1

2

∑
i,j∈ S

(f(i)− f(j)) (g(i)− g(j)) q
(2)
ij λi, f, g ∈ F ( S),

où l’on a noté q(2)ij =
∑
k∈ S qik qkj le coefficient d’indice (i, j) de Q2.

Le lemme suivant est l’analogue de la première formule de Green pour le
laplacien discret I −Q2.

Lemme 2.1. — Pour tout élément f de F ( S), on a :

E(f, f) = (f, (I −Q2)f) = ‖f‖2 − ‖Qf‖2.

En particulier, pour tout entier k > 0, on a :

(f, (I −Q2)kf) > 0.

Démonstration. — L’argument est calculatoire. On a

E(f, f) =
1

2

∑
i,j∈ S

(f(i)− f(j))
2
q
(2)
ij λi

=
1

2

∑
i∈ S

f(i)2

∑
j∈ S

q
(2)
ij

 λi

+
1

2

∑
j∈ S

f(j)2

∑
i∈ S

q
(2)
ij λi

− ∑
i,j∈ S

f(i)f(j) q
(2)
ij λi

=
∑
i∈ S

f(i)2 λi −
∑
i,j∈ S

f(i)f(j) q
(2)
ij λi

en utilisant la réversibilité de λ pour Q2. En utilisant cette fois la réversibilité
de λ pour Q, on obtient donc :

E(f, f) =
∑
i∈ S

f(i)

f(i)−
∑
j∈ S

f(j) q
(2)
ij

 λi = (f, (I −Q2)f) = ‖f‖2 − ‖Qf‖2.

Ainsi, toujours par réversibilité de λ, il vient, pour k = 2l pair,

(f, (I −Q2)kf) = ((I −Q2)lf, (I −Q2)lf) > 0

et, pour k = 2l + 1 impair,

(f, (I −Q2)kf) = ((I −Q2)lf, (I −Q2) ((I −Q2)lf)) > 0.
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474 J.-M. DERRIEN

Étant donné f dans F ( S), on considère à présent la suite (fn)n>0 d’éléments
de F ( S) solution de l’équation de la chaleur discrète (associée à Q et f) :{

f0 = f,

fn − fn+1 = (I −Q)fn, n> 0.

On a donc, pour tout n> 0, fn = Qnf .
Intéressons-nous plus particulièrement à la suite des « énergies »

(
‖Qnf‖2

)
n>0

d’une telle solution et, pour cela, introduisons la famille des suites de ses « dif-
férences successives » en notant, pour tout k > 0,

∆(k+1)
n (f) := ∆(k)

n (f)−∆
(k)
n+1(f), n> 0,

où l’on a posé ∆
(0)
n (f) := ‖Qnf‖2 pour tout n> 0.

La propriété suivante est élémentaire mais elle joue un rôle déterminant dans
la suite.

Propriété 2.2. — Pour tout élément f de F ( S), la suite (‖Qnf‖2)n>0 est
complètement décroissante au sens où :

∀k, n ∈ N , ∆(k)
n (f) > 0.

Démonstration. — C’est une conséquence du lemme 2.1 une fois vérifié par
récurrence sur k et en utilisant la réversibilité de λ que

∀k, n ∈ N , ∆(k)
n (f) =

(
Qnf, (I −Q2)kQnf

)
.

Corollaire 2.3. — Pour tout élément f de F ( S), il existe une mesure de
probabilité borélienne νf sur [0, 1] telle que :

∀n> 0, ‖Qnf‖2 = ‖f‖2
∫

[0,1]

xn dνf (x).

Démonstration. — C’est une application directe du théorème de Hausdorff de
représentation des suites complètement décroissantes (voir par exemple [22]
chapitre VII).

Remarques. — Le théorème de Hausdorff de représentation des suites complè-
tement décroissantes ([25]) est à rapprocher du théorème d’Herglotz de repré-
sentation des suites de type positif ([26]) ; la première représentation est donnée
par la suite des moments d’une loi sur [0,1], la seconde par la transformée de
Fourier d’une telle loi.

La théorie spectrale des opérateurs symétriques dans les espaces de Hilbert
permet d’obtenir cette même représentation de la suite

(
‖Qnf‖2

)
mais de ma-

nière moins élémentaire (voir [37] par exemple).
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UN THÉORÈME LIMITE CENTRAL LOCAL 475

Corollaire 2.4. — Pour tout élément f de F ( S), pour tout entier n>0, on
a :

‖Q2nf‖2 − ‖Q2n+1f‖2 6 1

n
‖Qnf‖2.

Démonstration. — En utilisant la représentation de Hausdorff précédente, il
vient :

‖Q2nf‖2 − ‖Q2n+1f‖2 = ‖f‖2
∫

[0,1]

x2n(1− x) dνf (x)

6 max
x∈[0,1]

(xn(1− x))

(
‖f‖2

∫
[0,1]

xn dνf (x)

)

=
nn

(n+ 1)n+1
‖Qnf‖2 6 1

n
‖Qnf‖2.

On suppose à présent que, pour tout i dans S, λi est strictement positif. De
plus, on particularise un élément o de S.

On définit le noyau de la chaleur (hn)n>0 (« basé en o » et) associé à la
probabilité de transition Q comme étant la solution de l’équation de la chaleur
discrète associée à Q et à la fonction h0 donnée par :

h0(i) =
1

λo
I{o}(i) =

{
1
λo

si i = o

0 sinon
, i ∈ S.

Il vient, pour tout entier n> 0 et pour tout i dans S,

hn(i) = Qnh0(i) =
Pi[Xn = o]

λo
=

Po[Xn = i]

λi
,

où (Xn)n∈N désigne la chaîne de Markov sur S de probabilité de transition Q
(partant de i sous la probabilité Pi).

Le lemme suivant est très classique. Il permet notamment de reformuler le
théorème 1.1 (pour x = 0) en terme d’« énergie » du noyau de la chaleur.

Lemme 2.5. — Pour tout entier n> 0, on a :

‖hn‖2 =
Po[X2n = o]

λo
= h2n(o).

Démonstration. — On a, grâce à la réversibilité de λ,

‖hn‖2 = (Qnh0, Q
nh0) = (Q2nh0, h0) = Q2nh0(o) = h2n(o).
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476 J.-M. DERRIEN

3. Des inégalités gaussiennes et les cas dégénérés

On revient à présent à la marche aléatoire (Sn)n>0 du paragraphe 1.
Tout au long de ce paragraphe 3, on omet de préciser que les résultats

obtenus ont lieu pour presque tout environnement de conductances.
Les résultats du paragraphe précédent s’appliquent à l’opérateur P et à la

mesure réversible (c(x))x∈Z. Dans ce contexte, la forme de Dirichlet associée à
P 2 est donnée, pour tous f et g dans F (Z), par :

E(f, g) =
∑
x∈Z

(f(x− 1)− f(x+ 1)) (g(x− 1)− g(x+ 1))
c(x− 1, x) c(x, x+ 1)

c(x)
.

(La quantité
c(x− 1, x) c(x, x+ 1)

c(x)
=

1
1

c(x−1,x) + 1
c(x,x+1)

est égale, comme il se doit, à la conductance d’un circuit électrique constitué
de deux conductances c(x− 1, x) et c(x, x+ 1) disposées en série.)

On note encore (hn)n>0 le noyau de la chaleur associé à (Sn)n>0 partant
de 0 :

∀n> 0, hn = Pn
(

1

c(0)
I{0}

)
.

Commençons par établir la convergence vers 0 de la suite
(
‖hn‖2

)
n>0

.

Proposition 3.1. — La marche (Sn)n>0 est une chaîne de Markov récurrente
nulle.

On a donc en particulier la convergence :

lim
n→+∞

‖hn‖2 = lim
n→+∞

P0[S2n = 0]

c(0)
= 0.

Démonstration. — Pour tout K dans N∗, la probabilité pour (Sn)n>0 d’at-
teindre {−K,K} avant de revenir en 0 est donnée par

1

c(0)

(
1∑−1

x=−K
1

c(x,x+1)

+
1∑K−1

x=0
1

c(x,x+1)

)
,

la conductance effective entre 0 et {−K,K} divisée par c(0) ([21]). Or, le théo-
rème de récurrence de Poincaré (voir [36] par exemple) garantit les deux diver-
gences :

−1∑
x=−∞

1

c(x, x+ 1)
= +∞ et

+∞∑
x=0

1

c(x, x+ 1)
= +∞.

On en déduit la récurrence de (Sn)n>0. La récurrence nulle de (Sn)n>0 résulte
alors de ce que (c(x))x∈Z est une mesure sur Z, P -invariante et de masse totale
infinie (toujours d’après le théorème de récurrence de Poincaré).
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La convergence de la suite (P0[S2n = 0])n>0 vers 0 est une conséquence de
cette récurrence nulle comme il est exposé par exemple dans [24] p. 214.

Le théorème suivant donne un minorant (asymptotique) de la suite(√
n ‖hn‖2

)
n>0

.

Théorème 3.2. — Si c est intégrable alors

lim inf
n→+∞

√
n ‖hn‖2 >

1

13

√∫
1
c dµ∫
c dµ

.

En particulier, si c est intégrable et si
∫

1
c dµ = +∞ alors

lim
n→+∞

√
n ‖hn‖2 = +∞.

Démonstration. — On va exploiter le fait que, typiquement, jusqu’à l’instant n,
la marche aléatoire (Sn)n>0 « évolue » dans un voisinage de 0 dont la longueur
est de l’ordre de

√
n.

Pour tout δ > 0 et pour tout entier n> 1, on a :
√
n ‖hn‖2 >

√
n

∑
x∈B(0,δ

√
n)

hn(x)2 c(x) =
√
n

∑
x∈B(0,δ

√
n)

P0[Sn = x]2

c(x)
.

Or, en utilisant l’inégalité de Cauchy-Schwarz, il vient : ∑
x∈B(0,δ

√
n)

P0[Sn = x]

2

6 c
(
B(0, δ

√
n)
) ∑
x∈B(0,δ

√
n)

P0[Sn = x]2

c(x)
.

On en déduit que

√
n ‖hn‖2 >

√
n

c (B(0, δ
√
n))

 ∑
x∈B(0,δ

√
n)

P0[Sn = x]

2

=
1

2δ

2δ
√
n

c (B(0, δ
√
n))

P0

[∣∣∣∣ Sn√n
∣∣∣∣ < δ

]2
.

On applique à présent le théorème ergodique ponctuel de Birkhoff à c (voir
[36] par exemple) et le théorème limite central (théorème 1.4 ci-dessus) en
distinguant selon que 1/c est intégrable ou non.

Si
∫

1
c dµ = +∞ alors, pour tout δ > 0,

lim inf
n→+∞

√
n ‖hn‖2 >

1

2δ
∫
c dµ

;

ce qui donne, en passant à la limite δ → 0+, la convergence :

lim
n→+∞

√
n ‖hn‖2 = +∞.
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Si 1/c est intégrable alors il vient, pour tout δ > 0 et avec les notations du
théorème 1.4,

lim inf
n→+∞

√
n ‖hn‖2 >

1

2δ

1∫
c dµ

(∫ δ

−δ
kσ(z) dz

)2

.

Soit encore :

lim inf
n→+∞

√
n ‖hn‖2 >

1

4π

1

σ
∫
c dµ

σ

δ

(∫ δ/σ

−δ/σ
exp

(
−z

2

2

)
dz

)2

.

En prenant par exemple δ = σ, on obtient par une minoration grossière :

lim inf
n→+∞

√
n ‖hn‖2 >

1

πe
√

2

√∫
1
c dµ∫
c dµ

>
1

13

√∫
1
c dµ∫
c dµ

.

Remarque. — Le théorème 3.2 assure ainsi que, lorsque c est intégrable sans
que 1/c ne le soit, on a, pour presque tout environnement et pour tout x dans
2Z,

lim
n→+∞

√
2n

Px[S2n = x]

c(x)
= +∞

(on a utilisé également le lemme 2.5 et la stationnarité de l’environnement).
On en déduit la partie du théorème 1.1 correspondante à ces hypothèses sur les
conductances en utilisant l’irréductibilité de (Sn)n>0 et la propriété de Markov.

On s’intéresse à présent à la majoration de la suite
(√
n ‖hn‖2

)
n>0

.

Théorème 3.3. — Si 1/c est intégrable alors

lim sup
n→+∞

√
n ‖hn‖2 6 4

√∫
1
c dµ∫
c dµ

.

En particulier, si 1/c est intégrable et si
∫
c dµ = +∞ alors

lim
n→+∞

√
n ‖hn‖2 = 0.

Démonstration. — Pour tout n> 1, pour tout K > 1, on considère un élément
x0 dans B(0,K) ∩ 2Z tel que

h2n(x0) = min{h2n(x) | x ∈ B(0,K) ∩ 2Z}.

Il vient :

h2n(x0) 6
1∑

x∈B(0,K)∩2Z c(x)

∑
x∈B(0,K)∩2Z

h2n(x)c(x) 6
1∑

x∈B(0,K)∩2Z c(x)
.
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En supposant par exemple x0 = 2l0 + 2 et l0 > 0, on obtient donc :

‖hn‖2 −
1∑

x∈B(0,K)∩2Z c(x)

6 h2n(0)− h2n(x0)

6
l0∑
l=0

|h2n(2l)− h2n(2l + 2)|

6

√√√√ l0∑
l=0

(h2n(2l)− h2n(2l + 2))2
c(2l, 2l + 1) c(2l + 1, 2l + 2)

c(2l + 1)

×

√√√√ l0∑
l=0

1

c(2l, 2l + 1)
+

1

c(2l + 1, 2l + 2)
,

en utilisant l’inégalité triangulaire puis l’inégalité de Cauchy-Schwarz. Ainsi,
compte tenu de l’expression de la forme de Dirichlet associée à P 2 et du
lemme 2.1, il vient :

‖hn‖2 −
1∑

x∈B(0,K)∩2Z c(x)
6
√

E (h2n, h2n)

(
K−1∑
x=−K

1

c(x, x+ 1)

)1/2

=
√
‖h2n‖2 − ‖h2n+1‖2

(
K−1∑
x=−K

1

c(x, x+ 1)

)1/2

.

Le corollaire 2.4 assure alors que

‖hn‖2 −
1∑

x∈B(0,K)∩2Z c(x)
6

1√
n
‖hn‖

(
K−1∑
x=−K

1

c(x, x+ 1)

)1/2

(1)

Pour tout entier n assez grand, on définit à présent K(n)> 1 par la relation

∑
x∈B(0,K(n)−1)∩2Z

c(x) 6
3

‖hn‖2
<

∑
x∈B(0,K(n))∩2Z

c(x)(2)

Remarquons que la proposition 3.1 garantit que limn→+∞K(n) = +∞.
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Il vient d’après (1) et la seconde inégalité de (2) :

1√
n
‖hn‖ >

2

3
‖hn‖2

 K(n)−1∑
x=−K(n)

1

c(x, x+ 1)

−1/2

=

√
2

3
‖hn‖2

 1

2K(n)

K(n)−1∑
x=−K(n)

1

c(x, x+ 1)

−1/2

×

(∑
x∈B(0,K(n)−1)∩2Z c(x)

K(n)

)1/2
 ∑
x∈B(0,K(n)−1)∩2Z

c(x)

−1/2

;

ce qui donne en utilisant cette fois la première inégalité de (2) :

1√
n
‖hn‖ >

√
2

3
‖hn‖2

 1

2K(n)

K(n)−1∑
x=−K(n)

1

c(x, x+ 1)

−1/2

×

(∑
x∈B(0,K(n)−1)∩2Z c(x)

K(n)

)1/2(
‖hn‖2

3

)1/2

.

On achève la preuve du théorème 3.3 en divisant par ‖hn‖/
√
n et en appli-

quant à 1/c et à c le théorème ergodique ponctuel de Birkhoff.

4. Un théorème limite central local non dégénéré

On commence par établir une propriété de régularité du noyau de la chaleur.

Théorème 4.1. — Si 1/c est intégrable alors, pour presque tout environne-
ment, il existe un réel C > 0 tel que, pour tout réel x0, pour tout réel a > 0, il
existe un entier n0 tel que, pour tout entier n> n0, on a :

max
x∈B(gn(x0),a

√
2n)∩2Z

|h2n(x)− h2n (gn(x0))|6 C

√
a√
n
,

où gn(x0) désigne comme précédemment un plus proche entier pair de x0

√
2n.

Démonstration. — En utilisant le théorème 3.3 ainsi que sa preuve, on obtient
que, pour presque tout environnement, il existe une constante C ′ telle que,
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pour tout x0, pour tout a > 0, pour tout entier n > 1, pour tout x dans
B(gn(x0), a

√
2n) ∩ 2Z, on a :

|h2n(x)− h2n(gn(x0))| 6 1√
n
‖hn‖

 ∑
z∈B(gn(x0),a

√
2n)

1

c(z, z + 1)

1/2

(3)

6
C ′√
n

 1√
n

∑
z∈B(gn(x0),a

√
2n)

1

c(z, z + 1)

1/2

(4)

Par ailleurs, d’après le théorème ergodique ponctuel de Birkhoff, pour
presque tout ω dans Ω, pour tout x0 et tout a avec 0 < a < x0, il existe un
entier N0 = N0(ω, x0, a) > 0 tel que, pour tout N >N0, on a :

N

(∫
1

c
dµ− a

x0

)
6
N−1∑
z=0

1

c(z, z + 1)(ω)
6N

(∫
1

c
dµ+

a

x0

)
.

Ainsi, en considérant un entier n0 = n0(ω, x0, a) tel que, pour tout n> n0, on
ait l’inégalité gn(x0)− a

√
2n>N0 , il vient :∑

z∈B(gn(x0),a
√

2n)

1

c(z, z + 1)(ω)

6
∑

06z6gn(x0)+a
√

2n

1

c(z, z + 1)(ω)
−

∑
06z6gn(x0)−a

√
2n

1

c(z, z + 1)(ω)

6 (gn(x0) + a
√

2n)

(∫
1

c
dµ+

a

x0

)
− (gn(x0)− a

√
2n− 1)

(∫
1

c
dµ− a

x0

)

6 a
√

2n

(
5 + 3

∫
1

c
dµ

)(5)

(on a supposé pour simplifier n assez grand pour avoir l’inégalité a
√

2n> 1).
Les inégalités (4) et (5) permettent de conclure dans le cas 0 < a < x0. Les

autres cas se traitent de manière analogue.

Remarques. — Dans l’approche classique de Moser ([34]), un tel résultat de
régularité se déduit d’inégalités du type « inégalités de Harnack paraboliques »
(voir [17] et [5] pour des applications de cette méthode dans le cas d’espaces
discrets). En utilisant les inégalités gaussiennes du paragraphe précédent, on
est ici plus proche de la démarche de Nash ([35]).

Le théorème 1.3 se déduit sans difficulté du théorème 3.3, du théorème 4.1
et des inégalités (3) et (5), en utilisant l’inégalité triangulaire :

h2n(x) 6 |h2n(x)− h2n(0)|+ h2n(0) = |h2n(x)− h2n(0)|+ ‖hn‖2.
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Preuve du théorème 1.2. — On procède comme dans [5].
Commençons par remarquer qu’en appliquant le théorème ergodique ponc-

tuel de Birkhoff à c et à une différence de sommes ergodiques suivant l’idée de
la preuve du théorème précédent, on montre que, pour presque tout environ-
nement, pour tout réel x0, pour tout δ > 0, on a :

lim
n→+∞

c(B(gn(x0), δ
√

2n) ∩ 2Z)

δ
√

2n
=

∫
c dµ(6)

Par ailleurs, pour tout δ > 0, pour tout n> 1, il vient :
√

2n
P0[S2n = gn(x0)]

c(gn(x0))

∫
c dµ− 2kσ(x0)

=
√

2nh2n(gn(x0))

∫
c dµ− c(B(gn(x0), δ

√
2n) ∩ 2Z)

δ
h2n(gn(x0))

+
1

δ

∑
x∈B(gn(x0),δ

√
2n)∩2Z

h2n(gn(x0)) c(x)− 1

δ

∑
x∈B(gn(x0),δ

√
2n)∩2Z

h2n(x) c(x)

+
1

δ
P0[S2n ∈ B(gn(x0), δ

√
2n)]− 1

δ

∫ x0+δ

x0−δ
kσ(z) dz

+
1

δ

∫ x0+δ

x0−δ
kσ(z) dz − 2 kσ(x0),

où l’on a repris les notations du théorème 1.4.
Ainsi,∣∣∣∣√2n

P0[S2n = gn(x0)]

c(gn(x0))

∫
c dµ− 2kσ(x0)

∣∣∣∣
6
√

2nh2n(gn(x0))

∣∣∣∣∣
∫
c dµ− c(B(gn(x0), δ

√
2n) ∩ 2Z)

δ
√

2n

∣∣∣∣∣
+
√
n max
x∈B(gn(x0),δ

√
2n)∩2Z

(|h2n(gn(x0))− h2n(x)|)
c
(
B(gn(x0), δ

√
2n) ∩ 2Z)

)
δ
√
n

(7)

+
1

δ

∣∣∣∣∣P0

[
gn(x0)√

2n
− δ 6 S2n√

2n
6
gn(x0)√

2n
+ δ

]
−
∫ x0+δ

x0−δ
kσ(z) dz

∣∣∣∣∣
+ 2

(
1

2δ

∫ x0+δ

x0−δ
|kσ(z)− kσ(x0)| dz

)
.

(8)

Pour presque tout environnement, un réel ε > 0 étant donné, on peut fixer
δ > 0 assez petit de manière à majorer pour tout n assez grand les expressions
(7) et (8) par ε. Pour cela, on utilise le théorème 4.1, la convergence (6) et
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la continuité de z 7→ kσ(z) en x0. On conclut alors en passant à la limite
supérieure en n et en utilisant à nouveau la convergence (6), le théorème 1.3
(pour justifier que la suite (

√
2nh2n(gn(x0)))n>0 est bornée) et le théorème

limite central associé à la continuité de la loi normale.

5. Une chaîne de Markov analogue en temps continu

Dans ce paragraphe, on s’intéresse à un processus stochastique en temps
continu analogue à la marche aléatoire (Sn)n>0. Ce processus est parfois appelé
marche aléatoire à vitesse variable dans la littérature (voir [4] par exemple).
Parmi les nombreuses manières possibles de l’introduire, nous choisissons ici
celle consistant à partir de (Sn)n>0.

On considère donc à nouveau un environnement de conductances fixé et
la marche aléatoire (Sn)n>0 associée. Pour chaque réalisation de (Sn)n>0, on
considère également la réalisation d’une suite (Tn)n>1 de variables aléatoires
indépendantes de lois exponentielles telles que, pour tout n> 1, la moyenne de
Tn soit égale à c(Sn−1)−1.

On introduit alors les instants de sauts en posant J0 := 0 et, pour tout n>1,

Jn := T1 + T2 + · · ·+ Tn.

On pose enfin Xt := Sn, pour tout t> 0 satisfaisant Jn 6 t < Jn+1.
A environnement de conductances fixé, on a ainsi défini un processus sto-

chastique (Xt)t>0 qui est en fait une chaîne de Markov à temps continu sur
Z. La marche aléatoire (Sn)n>0 étant irréductible et récurrente, la chaîne de
Markov (Xt)t>0 est irréductible, non explosive et récurrente.

Dans la suite, on réunit les éléments permettant de déduire un théorème
limite central local pour (Xt)t>0 des méthodes qui ont été développées en temps
discret aux paragraphes 3 et 4 ci-dessus.

Compte tenu des moyennes des temps d’attente Tn en chaque site, on com-
prend que la chaîne de Markov (Xt)t>0 a « moins de raisons » que (Sn)n>0

d’être « piégée » par les sites qui correspondent à de grandes valeurs de c. Ceci
se traduit en particulier par l’absence de condition d’intégralité sur c dans le
théorème limite central pour (Xt)t>0 que l’on rappelle maintenant.

Théorème 5.1 ([27], [19], [29]). — (1) Si 1/c est intégrable alors, pour
presque tout ω dans Ω, pour tous −∞6 a < b6 +∞, on a

lim
t→+∞

Pω0
[
a <

Xt√
t
6 b

]
=

∫ b

a

kσ(z) dz ,

avec

kσ(z) :=
1

σ
√

2π
exp

(
− z2

2σ2

)
et σ2 :=

2∫
1
c dµ

.
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(2) Si 1/c n’est pas intégrable alors, pour presque tout ω dans Ω, pour tous
−∞6 a < b6 +∞ avec a et b non nuls, on a

lim
t→+∞

Pω0
[
a <

Xt√
t
6 b

]
=

{
1 si 0 ∈]a, b]

0 sinon.

D’autre part, la mesure (c(x))x∈Z sur Z étant réversible pour la marche
aléatoire (Sn)n>0, la mesure de comptage sur Z est réversible pour la chaîne
de Markov (Xt)t>0. Autrement dit, pour tout t> 0,

∀x, y ∈ Z, Px[Xt = y] = Py[Xt = x].

En particulier, (Xt)t>0 admet une mesure invariante de masse totale infinie,
elle est donc récurrente nulle et l’on a :

∀x, y ∈ Z, lim
t→+∞

Px[Xt = y] = 0.

De plus, le semi-groupe (P (t))t>0 associé à (Xt)t>0 est une famille d’opéra-
teurs symétriques de `2(Z) de norme égale à 1. Il en résulte que si L désigne le
générateur associé dans `2(Z), l’opérateur (non borné) − L est symétrique et
positif. En outre, pour toute fonction f à support fini sur Z, on a :

∀x ∈ Z, Lf(x) = c(x, x+ 1)f(x+ 1) + c(x, x− 1)f(x− 1)− c(x)f(x).

Le noyau de la chaleur associé à (Xt)t>0 est défini par :

ht(x) := P0[Xt = x] = P (t)I{0}(x), x ∈ Z, t> 0.

Pour tout t> 0, la symétrie de l’opérateur P (t) donne : (ht, ht) = h2t(0) (on a
noté (·, ·) le produit scalaire dans `2(Z)).

Si à présent on pose, pour tout t>0, u(t) := (ht, ht), on obtient, en utilisant
les équations de Kolmogorov rétrograde et progressive, que

∀n> 0, u(n)(t) = 2n(ht, L
nht),

où u(n) désigne la dérivée n-ième de la fonction u. Ainsi,

∀n> 0, (−1)nu(n)(t) = 2n(ht, (− L)nht) > 0

(distinguer les cas n pair et n impair, et utiliser la positivité et la symétrie de
− L).

Le théorème de Bernstein de représentation des fonctions complètement mo-
notones sur [0,+∞[ (voir par exemple [22] chapitre XIII) assure alors l’existence
d’une mesure de probabilité ν sur [0,+∞[ telle que

∀t> 0, u(t) = u(0)

∫ +∞

0

e−tx dν(x).
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En particulier, pour tout t > 0, on a :

2(h2t,− Lh2t) = −u′(2t) = u(0)

∫ +∞

0

xe−2tx dν(x)

6 max{xe−tx : x ∈ [0,+∞[}u(t)

=
e−1

t
u(t),

ce qui constitue un analogue du corollaire 2.4 ci-dessus.
Remarquons enfin que, pour toute fonction f appartenant au domaine de L,

(f,− Lf) = lim
t→0+

(
f,

1

t
(f − P (t)f)

)
= lim

t→0+

1

2t

∑
x,y∈Z

(f(x)− f(y))2Px[Xt = y]

> lim
t→0+

1

2

∑
x,y∈F

(f(x)− f(y))2
Px[Xt = y]

t

=
∑

x∈F : x+1∈F
(f(x)− f(x+ 1))2c(x, x+ 1),

pour toute partie finie F de Z.
En utilisant les méthodes des deux paragraphes précédents, on montre en

particulier le théorème suivant.

Théorème 5.2. — (1) Si 1/c est intégrable alors, pour presque tout environ-
nement de conductances, pour tout réel x0,

lim
t→+∞

√
tP0

[
Xt = [x0

√
t]
]

=

√∫
1
c dµ

2
√
π

exp

(
−
∫

1
c dµ

4
x2

0

)
(on a noté [x] la partie entière de x).

(2) Si 1/c n’est pas intégrable alors, pour presque tout environnement de
conductances, pour tout x dans Z,

lim
t→+∞

√
tP0 [Xt = x] = +∞.

Remarques. — La première partie de ce théorème est donnée sans démonstra-
tion dans [27].

La même méthode s’applique également à la marche aléatoire à vitesse
constante, c’est-à-dire dans le cas où les temps d’attente Tn en chaque site
suivent tous la loi exponentielle de paramètre 1.

Remerciements. — L’auteur remercie Jérôme Depauw, Yves Derriennic ainsi
que le rapporteur pour leurs précieuses remarques.
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