[Facteurs de l'espace des pavages d'une substitution de Pisot et conjecture du rang de coïncidence]
We consider the structure of Pisot substitution tiling spaces, in particular, the structure of those spaces for which the translation action does not have pure discrete spectrum. Such a space is always a measurable -to-one cover of an action by translation on a group called the maximal equicontinuous factor. The integer is the coincidence rank of the substitution and equals one if and only if translation on the tiling space has pure discrete spectrum. By considering factors intermediate between a tiling space and its maximal equicontinuous factor, we establish a lower bound on the cohomology of a one-dimensional Pisot substitution tiling space with coincidence rank two and dilation of odd norm. The Coincidence Rank Conjecture, for coincidence rank two, is a corollary.
Nous considérons la structure de l'espace des pavages d'une substitution de Pisot, en particulier dans le cas où l'action par les translations n'a pas de spectre purement discret. Un tel espace est toujours recouvrement presque partout de degré d'une translation sur un groupe. Ce groupe s'appelle le facteur maximal équicontinu. L'entier est le rang de coïncidence de la substitution et il vaut 1 si et seulement si l'action par les translations a un spectre purement discret. En tenant compte des facteurs intermédiaires entre l'espace de pavage et son facteur maximal équicontinu, nous établissons une borne inférieure sur la cohomologie des espaces des pavages d'une substitution de Pisot unidimensionelle avec rang de coïncidence 2 et dilatation de norme impaire. La conjecture du rang de coïncidence, pour un rang de coïncidence égal a 2, en découle en tant que corollaire.
DOI : 10.24033/bsmf.2691
Keywords: Pisot substitution, tiling space
Mots-clés : Substitution de Pisot, espace des pavages
@article{BSMF_2015__143_2_357_0,
author = {Barge, Marcy},
title = {Factors of {Pisot} tiling spaces and the {Coincidence} {Rank} {Conjecture}},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {357--381},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {2},
doi = {10.24033/bsmf.2691},
mrnumber = {3351184},
zbl = {1351.37072},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2691/}
}
TY - JOUR AU - Barge, Marcy TI - Factors of Pisot tiling spaces and the Coincidence Rank Conjecture JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 357 EP - 381 VL - 143 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2691/ DO - 10.24033/bsmf.2691 LA - en ID - BSMF_2015__143_2_357_0 ER -
%0 Journal Article %A Barge, Marcy %T Factors of Pisot tiling spaces and the Coincidence Rank Conjecture %J Bulletin de la Société Mathématique de France %D 2015 %P 357-381 %V 143 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2691/ %R 10.24033/bsmf.2691 %G en %F BSMF_2015__143_2_357_0
Barge, Marcy. Factors of Pisot tiling spaces and the Coincidence Rank Conjecture. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 357-381. doi: 10.24033/bsmf.2691
On the Pisot substitution conjecture (2012) (preprint http://www.liafa.jussieu.fr/~berthe/Articles/AkiyamaBargeBertheLeeSiegel.pdf ) | MR
Topological invariants for substitution tilings and their associated -algebras, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 509-537 (ISSN: 0143-3857) | MR | Zbl | DOI
Examples of substitution systems and their factors, J. Integer Seq., Volume 16 (2013) (ISSN: 1530-7638) | MR | Zbl
Which distributions of matter diffract? Some answers, Quasicrystals—Structure and Physical Properties, Wiley-VCH, Weinheim (2003), pp. 188-207
Homological Pisot substitutions and exact regularity, Israel J. Math., Volume 188 (2012), pp. 281-300 (ISSN: 0021-2172) | MR | Zbl | DOI
A complete invariant for the topology of one-dimensional substitution tiling spaces, Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 1333-1358 (ISSN: 0143-3857) | MR | Zbl | DOI
Proximality in Pisot tiling spaces, Fund. Math., Volume 194 (2007), pp. 191-238 (ISSN: 0016-2736) | MR | Zbl | DOI
Cohomology in one-dimensional substitution tiling spaces, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 2183-2191 (ISSN: 0002-9939) | MR | Zbl | DOI
Geometric realization for substitution tilings, Ergodic Theory Dynam. Systems, Volume 34 (2014), pp. 457-482 (ISSN: 0143-3857) | MR | Zbl | DOI
Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., Volume 62 (2013), pp. 793-822 (ISSN: 0026-2285) | MR | Zbl | DOI
Geometric theory of unimodular Pisot substitutions, Amer. J. Math., Volume 128 (2006), pp. 1219-1282 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI
Asymptotic structure in substitution tiling spaces, Ergodic Theory Dynam. Systems, Volume 34 (2014), pp. 55-94 (ISSN: 0143-3857) | MR | Zbl | DOI
Tilings associated with beta-numeration and substitutions, Integers, Volume 5 (2005) (ISSN: 1867-0652) | MR | Zbl
A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 (ISSN: 0012-365X) | MR | Zbl | DOI
Spectral theory and x-ray diffraction, J. Math. Phys., Volume 34 (1993), pp. 2965-2967 (ISSN: 0022-2488) | MR | Zbl | DOI
On diffraction by aperiodic structures, Comm. Math. Phys., Volume 169 (1995), pp. 25-43 http://projecteuclid.org/euclid.cmp/1104272610 (ISSN: 0010-3616) | MR | Zbl | DOI
Expansions of self-affine tilings are integral Perron (2013) (preprint)
, Directions in mathematical quasicrystals (CRM Monogr. Ser.), Volume 13, Amer. Math. Soc., Providence, RI, 2000, pp. 61-93 | MR | Zbl | DOI
Substitution Delone sets, Discrete Comput. Geom., Volume 29 (2003), pp. 175-209 (ISSN: 0179-5376) | MR | Zbl | DOI
Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, Volume 3 (2002), pp. 1003-1018 (ISSN: 1424-0637) | MR | Zbl | DOI
Pisot family self-affine tilings, discrete spectrum, and the Meyer property, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 935-959 (ISSN: 1078-0947) | MR | Zbl | DOI
Aperiodic order and pure point diffraction (preprint arXiv:0802.3242 )
, The mathematics of long-range aperiodic order (Waterloo, ON, 1995) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 489, Kluwer Acad. Publ., Dordrecht, 1997, pp. 403-441 | MR | Zbl
Substitution dynamical systems—spectral analysis, Lecture Notes in Math., 1294, Springer, Berlin, 1987, 240 pages (ISBN: 3-540-18692-1) | MR | Zbl | DOI
Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., Volume 20 (1998), pp. 265-279 (ISSN: 0179-5376) | MR | Zbl | DOI
, Probability and number theory—Kanazawa 2005 (Adv. Stud. Pure Math.), Volume 49, Math. Soc. Japan, Tokyo, 2007, pp. 433-454 | MR | Zbl | DOI
Cité par Sources :






