Factors of Pisot tiling spaces and the Coincidence Rank Conjecture
[Facteurs de l'espace des pavages d'une substitution de Pisot et conjecture du rang de coïncidence]
Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 357-381

We consider the structure of Pisot substitution tiling spaces, in particular, the structure of those spaces for which the translation action does not have pure discrete spectrum. Such a space is always a measurable m-to-one cover of an action by translation on a group called the maximal equicontinuous factor. The integer m is the coincidence rank of the substitution and equals one if and only if translation on the tiling space has pure discrete spectrum. By considering factors intermediate between a tiling space and its maximal equicontinuous factor, we establish a lower bound on the cohomology of a one-dimensional Pisot substitution tiling space with coincidence rank two and dilation of odd norm. The Coincidence Rank Conjecture, for coincidence rank two, is a corollary.

Nous considérons la structure de l'espace des pavages d'une substitution de Pisot, en particulier dans le cas où l'action par les translations n'a pas de spectre purement discret. Un tel espace est toujours recouvrement presque partout de degré m d'une translation sur un groupe. Ce groupe s'appelle le facteur maximal équicontinu. L'entier m est le rang de coïncidence de la substitution et il vaut 1 si et seulement si l'action par les translations a un spectre purement discret. En tenant compte des facteurs intermédiaires entre l'espace de pavage et son facteur maximal équicontinu, nous établissons une borne inférieure sur la cohomologie des espaces des pavages d'une substitution de Pisot unidimensionelle avec rang de coïncidence 2 et dilatation de norme impaire. La conjecture du rang de coïncidence, pour un rang de coïncidence égal a 2, en découle en tant que corollaire.

Publié le :
DOI : 10.24033/bsmf.2691
Classification : 37B05, 37B50
Keywords: Pisot substitution, tiling space
Mots-clés : Substitution de Pisot, espace des pavages
@article{BSMF_2015__143_2_357_0,
     author = {Barge, Marcy},
     title = {Factors of {Pisot} tiling spaces and the {Coincidence} {Rank} {Conjecture}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {357--381},
     year = {2015},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {143},
     number = {2},
     doi = {10.24033/bsmf.2691},
     mrnumber = {3351184},
     zbl = {1351.37072},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2691/}
}
TY  - JOUR
AU  - Barge, Marcy
TI  - Factors of Pisot tiling spaces and the Coincidence Rank Conjecture
JO  - Bulletin de la Société Mathématique de France
PY  - 2015
SP  - 357
EP  - 381
VL  - 143
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2691/
DO  - 10.24033/bsmf.2691
LA  - en
ID  - BSMF_2015__143_2_357_0
ER  - 
%0 Journal Article
%A Barge, Marcy
%T Factors of Pisot tiling spaces and the Coincidence Rank Conjecture
%J Bulletin de la Société Mathématique de France
%D 2015
%P 357-381
%V 143
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2691/
%R 10.24033/bsmf.2691
%G en
%F BSMF_2015__143_2_357_0
Barge, Marcy. Factors of Pisot tiling spaces and the Coincidence Rank Conjecture. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 357-381. doi: 10.24033/bsmf.2691

Akiyama, S.; Barge, Marcy; Berthé, Valérie; Lee, Jeong-Yup; Siegel, Anne On the Pisot substitution conjecture (2012) (preprint http://www.liafa.jussieu.fr/~berthe/Articles/AkiyamaBargeBertheLeeSiegel.pdf ) | MR

Anderson, Jared E.; Putnam, Ian F. Topological invariants for substitution tilings and their associated C*-algebras, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 509-537 (ISSN: 0143-3857) | MR | Zbl | DOI

Baake, Michael; Gähler, Franz; Grimm, Uwe Examples of substitution systems and their factors, J. Integer Seq., Volume 16 (2013) (ISSN: 1530-7638) | MR | Zbl

Baake, Michael; Moody, Robert V.; Richard, C.; Sing, B. Which distributions of matter diffract? Some answers, Quasicrystals—Structure and Physical Properties, Wiley-VCH, Weinheim (2003), pp. 188-207

Barge, Marcy; Bruin, Henk; Jones, Leslie; Sadun, Lorenzo Homological Pisot substitutions and exact regularity, Israel J. Math., Volume 188 (2012), pp. 281-300 (ISSN: 0021-2172) | MR | Zbl | DOI

Barge, Marcy; Diamond, Beverly A complete invariant for the topology of one-dimensional substitution tiling spaces, Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 1333-1358 (ISSN: 0143-3857) | MR | Zbl | DOI

Barge, Marcy; Diamond, Beverly Proximality in Pisot tiling spaces, Fund. Math., Volume 194 (2007), pp. 191-238 (ISSN: 0016-2736) | MR | Zbl | DOI

Barge, Marcy; Diamond, Beverly Cohomology in one-dimensional substitution tiling spaces, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 2183-2191 (ISSN: 0002-9939) | MR | Zbl | DOI

Barge, Marcy; Gambaudo, Jean-Marc Geometric realization for substitution tilings, Ergodic Theory Dynam. Systems, Volume 34 (2014), pp. 457-482 (ISSN: 0143-3857) | MR | Zbl | DOI

Barge, Marcy; Kellendonk, Johannes Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., Volume 62 (2013), pp. 793-822 (ISSN: 0026-2285) | MR | Zbl | DOI

Barge, Marcy; Kwapisz, Jaroslaw Geometric theory of unimodular Pisot substitutions, Amer. J. Math., Volume 128 (2006), pp. 1219-1282 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Barge, Marcy; Olimb, Carl Asymptotic structure in substitution tiling spaces, Ergodic Theory Dynam. Systems, Volume 34 (2014), pp. 55-94 (ISSN: 0143-3857) | MR | Zbl | DOI

Berthé, Valérie; Siegel, Anne Tilings associated with beta-numeration and substitutions, Integers, Volume 5 (2005) (ISSN: 1867-0652) | MR | Zbl

Durand, Fabien A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 (ISSN: 0012-365X) | MR | Zbl | DOI

Dworkin, Steven Spectral theory and x-ray diffraction, J. Math. Phys., Volume 34 (1993), pp. 2965-2967 (ISSN: 0022-2488) | MR | Zbl | DOI

Hof, A. On diffraction by aperiodic structures, Comm. Math. Phys., Volume 169 (1995), pp. 25-43 http://projecteuclid.org/euclid.cmp/1104272610 (ISSN: 0010-3616) | MR | Zbl | DOI

Kwapisz, Jaroslaw Expansions of self-affine tilings are integral Perron (2013) (preprint)

Lagarias, Jeffrey C., Directions in mathematical quasicrystals (CRM Monogr. Ser.), Volume 13, Amer. Math. Soc., Providence, RI, 2000, pp. 61-93 | MR | Zbl | DOI

Lagarias, Jeffrey C.; Wang, Yang Substitution Delone sets, Discrete Comput. Geom., Volume 29 (2003), pp. 175-209 (ISSN: 0179-5376) | MR | Zbl | DOI

Lee, Jeong-Yup; Moody, Robert V.; Solomyak, Boris Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, Volume 3 (2002), pp. 1003-1018 (ISSN: 1424-0637) | MR | Zbl | DOI

Lee, Jeong-Yup; Solomyak, Boris Pisot family self-affine tilings, discrete spectrum, and the Meyer property, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 935-959 (ISSN: 1078-0947) | MR | Zbl | DOI

Lenz, D. Aperiodic order and pure point diffraction (preprint arXiv:0802.3242 )

Moody, Robert V., The mathematics of long-range aperiodic order (Waterloo, ON, 1995) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 489, Kluwer Acad. Publ., Dordrecht, 1997, pp. 403-441 | MR | Zbl

Queffélec, Martine Substitution dynamical systems—spectral analysis, Lecture Notes in Math., 1294, Springer, Berlin, 1987, 240 pages (ISBN: 3-540-18692-1) | MR | Zbl | DOI

Solomyak, Boris Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., Volume 20 (1998), pp. 265-279 (ISSN: 0179-5376) | MR | Zbl | DOI

Solomyak, Boris, Probability and number theory—Kanazawa 2005 (Adv. Stud. Pure Math.), Volume 49, Math. Soc. Japan, Tokyo, 2007, pp. 433-454 | MR | Zbl | DOI

Cité par Sources :