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GLOBAL INFINITE ENERGY SOLUTIONS
FOR THE CUBIC WAVE EQUATION

by Nicolas Burq, Laurent Thomann & Nikolay Tzvetkov

Abstract. — We prove the existence of infinite energy global solutions of the cubic
wave equation in dimension greater than 3. The data is a typical element on the support
of suitable probability measures.

Résumé (Solutions globales d’énergie infinie pour l’équation des ondes cubique)
On considère l’équation des ondes cubique sur un tore de dimension supérieure à

3, et on montre l’existence de solutions globales d’énergie infinie. La condition initiale
de l’équation est un élément typique du support d’une mesure de probabilité.
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302 N. BURQ, L. THOMANN & N. TZVETKOV

1. Introduction

This paper is a higher dimensional sequel of the recent article [10] by the
first and the third authors (and also of [8, 9, 5]). As such it aims to construct
global in time solutions of the cubic wave equation with low regularity (infinite
energy) random initial data. To the best of our knowledge such a regularity
is out of reach of the present deterministic methods. The major difference
between the present paper and [10] is that here we only establish existence
results and in particular no uniqueness statement is proven. Let us recall that
in [10] a suitable uniqueness and a probabilistic continuity of the flow were
proven. This result was followed by more recent results by Nahmod-Pavlovic-
Staffilani [15] on the 2 and 3-dimensional homogeneous Navier-Stokes equation,
where the authors obtain strong (in 2-d) and weak (in 3-d) results, and in turn,
here we are inspired by this latter 3-d weak-existence result. Related weak-
existence results had been already used in the context of the randomly forced
Navier-Stokes equation by Da Prato-Debussche [12] and the Euler equation by
Albeverio-Cruzeiro [1], using more sophisticated probabilistic tools (Prokhorov
and Skorohod Theorems). This approach may be seen as the analogue in the
random setting of the Leray compactness method for constructing solutions of
nonlinear evolution equations. It has the advantage to require less regularity
on the initial data, one allows infinite energy while the Leray method requires
finite energy of the data. It should however be emphasised that as in the Leray
method our approach still makes a crucial use of the energy functional. In
this paper we will only need an invariance property for the linear evolution
combined with large deviation estimates on the nonlinear part which are much
easier to achieve than the invariance properties as in [12, 1]. Let us now describe
our model. Let d ≥ 4 and consider the cubic wave equation on the torus Td =

(R/2πZ)d

(1.1)

{
∂2
t u−∆u+ u3 = 0, (t, x) ∈ R× Td,

(u, ∂tu)(0, ·) = (u0, u1) ∈ H s,

where ∆ := ∆Td is the Laplace operator and

H s = H s(Td) := Hs(Td)×Hs−1(Td).

Denote by sc = (d − 2)/2 the critical (scaling) Sobolev index for (1.1). Then
one can show that (1.1) is well-posed in H s for s > sc ([13]) and ill-posed when
s < sc ([13, 11, 14]). See the introduction of [10] for more details. The energy
of (1.1) reads

E(u) =
1

2

∫
Td

(
|∇u|2 + (∂tu)2

)
+

1

4

∫
Td
u4,

thus with deterministic compactness methods due to Leray (see e.g. Lebeau
[14, Section 6] for the application of the method in the context of (1.1)), we
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can construct global weak solutions to (1.1) so that(
u, ∂tu

)
∈ Cw

(
R;H1(Td) ∩ L4(Td)

)
× Cw

(
R;L2(Td)

)
,

(here Cw means weak continuity in time) and E(u)(t) ≤ E(u)(0) for all t ∈ R.
Observe that for d > 4 one has 1 < sc and thus the construction of weak
solutions works for data of supercritical regularity with respect to the scaling
of the equation. However it requires finite energy of the initial data. The main
goal of this paper is to show that weak solutions still exist for infinite energy,
almost surely with respect to a large class of probability measures.

Let us now describe precisely the initial data sets (statistical ensembles)
that we shall consider in this article. Here we follow [10]. Let 0 < s < 1 and let
(v0, v1) ∈ H s with Fourier series

vj(x) = aj +
∑
n∈Zd?

(
bn,j cos(n · x) + cn,j sin(n · x)

)
, j = 0, 1,

where Zd? = Zd\{0}. Then let
(
αj(ω), βn,j(ω), γn,j(ω)

)
, n ∈ Zd?, j = 0, 1 be

a sequence of independent real random variables given on a probability space
(Ω, F ,p) with a joint distribution θ satisfying

∃ c > 0, ∀ γ ∈ R,
∫ ∞
−∞

eγxdθ(x) ≤ ecγ
2

.

We then define the random variables vωj by

vωj (x) = αj(ω)aj +
∑
n∈Zd?

(
βn,j(ω)bn,j cos(n · x) + γn,j(ω)cn,j sin(n · x)

)
,

and we define the measure µ(v0,v1) on H s as the image of p under the map

ω 7−→ (vω0 , v
ω
1 ) ∈ H s.

We then define Ms by

Ms =
⋃

(v0,v1)∈ H s

{
µ(v0,v1)

}
.

For (u0, u1) ∈ H s, denote by

(1.2) S(t)(u0, u1) = cos
(
t
√
−∆

)
(u0) +

sin
(
t
√
−∆

)
√
−∆

(u1),

the free wave evolution. Then our result reads

Theorem 1.1. — Let d ≥ 4, 0 < s < 1 and µ = µ(v0,v1) ∈ Ms. Then there
exists a set Σ of full µ measure so that for every (u0, u1) ∈ Σ ⊂ H s the equation
(1.1) with initial condition (u(0), ∂tu(0)) = (u0, u1) has a solution

u(t) = S(t)(u0, u1) + w(t),

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



304 N. BURQ, L. THOMANN & N. TZVETKOV

where for any ε > 0(
w, ∂tw

)
∈ C

(
R;H1−ε(Td)×H−ε(Td)

)
.

Moreover, for all t ∈ R

‖(w(t), ∂tw(t))‖ H 1(Td) ≤ C(M + |t|)
1−s
s +ε,

‖w(t)‖L4(Td) ≤ C(M + |t|)
1−s
2s +ε,

with µ(M > λ) ≤ Ce−λδ for some δ > 0.

Remark 1.2. — Let us recall (see [10]) that if the measure µ ∈ Ms is con-
structed using data (v0, v1) ∈ H s(Td), then µ( H s) = 1, while if for some s < σ,
we have (v0, v1) /∈ H σ(Td), then as soon as the random variables (αj , βn,j , γn,j)

do not accumulate at 0 (for example, in the case where they are non trivial
and identically distributed, then µ( H σ) = 0. On the other hand, under rather
weak assumptions, µ(Bs) > 0 for any non empty open ball Bs ⊂ H s (see [10,
Proposition 1.2]).

Let us now mention two possible extensions of our result. In the case d = 4

one may expect to get uniqueness by combining the analysis of [10] with the
critical H1 theory for (1.1). One may also expect to include the case s = 0

by elaborating on the arguments developed in [10] to treat this case. It is not
clear to us what happens for s < 0 (and in [10] as well). In particular we do
not know whether s = 0 is the optimal regularity one may achieve by our
approach. Invariant Gibbs measures for dispersive equations were extensively
studied (see e.g. [20, 3, 2, 18, 19, 17, 16, 6] ). In these papers the Gibbs measure
is combined with a suitable local in time result (which can sometimes be quite
involved) to get global existence and uniqueness on the support of the measure.
By an extension of the method (using in particular Skorohod and Prokhorov
theorems) we use in this paper one may construct a dynamics (without any
uniqueness) on the support of a Gibbs measure and prove its invariance. We
plan to give several relevant examples of this observation in [7]. We however
do not see how to make work such an approach in the context of (1.1). Indeed,
the present methods of renormalization of Gibbs measures are restricted to
dimensions ≤ 2 (see [3]). Let us also recall that as mentioned above a global
existence based on Gibbs measures only works for a very specific choice of the
initial distribution. On the other hand, it has of course the advantage to give
a quite remarkable dynamical property of the flow.

The rest of the paper is organised as follows. In Section 2 we recall stochastic
properties of the linear flow which were proven in [10]. In Section 3 we study
the dynamics of an approximation of (1.1). Section 4 is devoted to the proof of
Theorem 1.1.
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2. Stochastic estimates on the linear flow

Once for all we fix 0 < s < 1 and µ = µ(v0,v1) ∈ Ms. Recall the definition
(1.2) of the linear wave propagator S(t). In this section we prove estimates
which reflect the invariance of µ under S(t). This is the only measure invariance
aspect used in this paper.

2.1. The projectors. — Denote by Zd? = Zd\{0}. For a Fourier series u

u(x) = a+
∑
n∈Zd?

(
bn cos(n · x) + cn sin(n · x)

)
,

we denote by Π0(u) = a and for N ≥ 1

ΠN (u) = a+
∑

1≤|n|≤N

(
bn cos(n · x) + cn sin(n · x)

)
and ΠN = 1−ΠN .

Let χ ∈ C∞0 (−1, 1), so that χ ≡ 1 on (−1/2, 1/2). Let us also introduce the
smooth spectral projector

SN (u) ≡ χ(−N−2∆) = a+
∑
n∈Zd?

χ
( |n|2
N2

)(
bn cos(n · x) + cn sin(n · x)

)
,

which will be needed in the next section. This operator has the following prop-
erty (see e.g. [4] for a proof).

Lemma 2.1. — Let M be a compact Riemannian manifold. Let ∆ be the
Laplace-Beltrami operator on M . Let 1 ≤ p ≤ ∞ and denote by Lp = Lp(M).
Then SN = χ(−N−2∆) : Lp −→ Lp is continuous and there exists C > 0 so
that for every N ≥ 1,

‖SN‖Lp→Lp ≤ C.

Moreover, for all f ∈ Lp, SNf −→ f in Lp, when N −→ +∞.
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2.2. The estimates. — Following [10], we introduce the following sets for

δ > 1/2, δ̃ > 1/3, δ̌ > 0, ε > 0

FM =
{

(u0, u1) : ‖ΠM (u0, u1)‖ H 1(Td) ≤M1−s+ε
}
,

GM =
{

(u0, u1) : ‖ΠM (u0)‖L4(Td) ≤Mε
}
,

HM =
{

(u0, u1) : ‖〈t〉−δS(t)(ΠM (u0, u1))‖L2(Rt;L∞(Td)) ≤Mε−s
}

KM =
{

(u0, u1) : ‖〈t〉−δ̃S(t)(ΠM (u0, u1))‖L3(Rt;L6(Td)) ≤Mε−s
}

RM =
{

(u0, u1) : ‖〈t〉−δ̌S(t)ΠM (u0, u1)‖L∞(R;L4(Td)) ≤Mε−s
}
,

and EM = FM ∩GM ∩HM ∩KM ∩RM . Then the following result holds true.

Lemma 2.2. — For any ε > 0, there exists ε0 > 0 such that there exist C, c > 0

such that for every M ≥ 1

µ(F cM ) ≤ Ce−cM
2ε0
, µ(GcM ) ≤ Ce−cM

2ε0
,

µ(Hc
M ) ≤ Ce−cM

2ε0
, µ(Kc

M ) ≤ Ce−cM
2ε0
, µ(RcM ) ≤ Ce−cM

2ε0
.

Proof. — This result is very close to [10, Lemma 4.2]. Indeed, the only new
point is the bound on the measure of RM , whose proof follows the same lines as
the proof of the bound on KM , once we notice that by (1-d) Sobolev injection,
with p sufficiently large and such that δ̌ > 1

p , σ >
1
p , σ < s,

(2.1) ‖〈t〉−δ̌S(t)ΠM (u0, u1)‖L∞(R;L4(Td))

≤ C‖(1 + |Dt|)σ〈t〉−δ̌S(t)ΠM (u0, u1)‖Lp(R;L4(Td))

≤ C ′‖〈t〉−δ̌(1 + |Dt|)σS(t)ΠM (u0, u1)‖Lp(R;L4(Td))

≤ C ′‖〈t〉−δ̌(1 + |Dx|)σS(t)ΠM (u0, u1)‖Lp(R;L4(Td)).

3. Uniform bounds on the Sobolev norms, s > 0

For N � 1 we consider the following truncation of (1.1)

(3.1)

{
∂2
t uN −∆uN + SN

(
(SNuN )3

)
= 0, (t, x) ∈ R× Td,

(uN , ∂tuN )(0, ·) = (u0, u1) ∈ H s.
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In fact, equation (3.1) is an ODE in low frequencies, and is the linear wave
equation in high frequencies. Indeed, if K is large enough so that ΠKSN = SN ,
then the equation (3.1) is equivalent to the uncoupled system

∂2
t ΠKuN −∆ΠKuN + SN

(
(SNuN )3

)
= 0, (t, x) ∈ R× Td,

(ΠKuN , ∂tΠKuN )(0, ·) = (ΠKu0,ΠKu1),

(Id−ΠK)(uN ) = S(t)
(

(Id−ΠK)u0, (Id−ΠK)u1

)
.

Then from the conservation of the energy

EN (ΠK(uN ))(t) =
1

2

∫
Td

(
(∂tΠKuN )2 + |∇xΠKuN |2 +

1

2
(SNuN )4

)
dx,

we deduce that, for all N ≥ 1, (3.1) admits a global flow ΦN (t). The goal of
this section is to prove the following statement.

Proposition 3.1. — Let 0 < s < 1 and µ ∈ Ms. Then for any ε > 0 there
exist C, δ > 0 such that for every (u0, u1) ∈ Σ, there exists M > 0 such that
the family of global solution (uN )N∈N to (3.1) satisfies

uN (t) = S(t)Π0(u0, u1) + wN (t),

‖(wN (t), ∂twN (t))‖ H 1 ≤ C(Ms + |t|)
1−s
s +ε,

‖SN (uN )‖L4(Td) ≤ C(Ms + |t|)
1−s
2s +ε,

with µ(M > λ) ≤ Ce−λδ .

Proof. — We only give the proof for positive times, the analysis for negative
times being analogous. Fix ε > 0 and ε1 > 0 such that

(3.2) ε <
s

2
,

1− s+ ε

s− 2ε
≤ 1− s

s
+ ε1,

and fix δ > 1/2, δ̃ > 1/3 such that

(3.3) (δ − 1

2
)s < 2δε, δ̃ < 1.

We have the following statement.

Lemma 3.2. — For every c > 0 there exists C > 0 such that for every t ≥ 1,
every integer M ≥ 1 such that t ≤ cMs−2ε, every (u0, u1) ∈ EM the solution
of (3.1) with data (u0, u1) satisfies

‖uN (t)− S(t)Π0(u0, u1)‖ H 1(Td) ≤ CM1−s+ε.

In particular, thanks to (3.2), if t ≈Ms−2ε then

‖uN (t)− S(t)Π0(u0, u1)‖ H 1(Td) . t
1−s
s +ε1 .
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Proof. — For (u0, u1) ∈ EM we decompose the solution of (3.1) with data
(u0, u1) as

uN (t) = S(t)ΠM (u0, u1) + wN,M ,

where wN,M solves the problem{
(∂2
t −∆Td)wN,M + SN

(
(SNwN,M + SNS(t)ΠM (u0, u1))3

)
= 0,

(wN,M (0), ∂twN,M (0)) = ΠM (u0, u1).

Then thanks to an integration by parts and the fact that SN is self adjoint, we
get

(3.4)
d
dt

EN (wN,M ) =

=

∫
Td

(
∂2
twN,M∂twN,M +∇xwN,M · ∂t∇xwN,M + (SNwN,M )3∂tSNwN,M

)
dx

=

∫
Td
∂twN,M

(
∂2
twN,M −∆wN,M + SN

(
(SNwN,M )3

))
dx

=

∫
Td
∂twN,M

(
SN
(
(SNwN,M )3

)
− SN

(
(SNS(t)ΠM (u0, u1) + SNwN,M )3

))
dx.

Denote by

gM (t) = ‖S(t)ΠM (u0, u1)‖3L6(Td) and fM (t) = ‖S(t)ΠM (u0, u1)‖L∞(Td).

Therefore from (3.4) and the Cauchy-Schwarz inequality, we deduce that
d
dt

EN (wN,M ) ≤ C E1/2
N (wN,M )‖(SNwN,M )3

−
(
SNS(t)ΠM (u0, u1) + SNwN,M

)3‖L2(Td)

≤ C E1/2
N (wN,M )

(
‖S(t)ΠM (u0, u1)‖3L6(Td)

+ ‖S(t)ΠM (u0, u1)‖L∞(Td)‖SNwN,M‖2L4(Td)

)
≤ C E1/2

N (wN,M )
(
gM (t) + fM (t) E1/2

N (wN,M )
)
,

and with the Gronwall lemma, we obtain

E1/2
N (wN,M )(t) ≤ CeC

∫ t
0
fM (τ)dτ

(
E1/2
N (wN,M )(0) +

∫ t

0

gM (τ)dτ
)

≤ CeC
∫ T
0
fM (τ)dτ

(
E1/2
N (wN,M )(0) +

∫ T

0

gM (τ)dτ
)

:= GM (T )(3.5)

(notice that since wN,M (0) does not depend onN , the right-hand side in the last
inequality is also independent on N). We now observe that for (u0, u1) ∈ EM∣∣∣ ∫ t

0

gM (τ)dτ
∣∣∣ ≤ CM3(−s+ε)〈t〉3δ̃ ≤ CM3(−s+ε)+3δ̃(s−2ε) ≤ C,
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provided
−s+ ε+ δ̃(s− 2ε) ≤ 0.

The last condition can be readily satisfied according to (3.3).
Next, we have (using Cauchy-Schwarz inequality in time) that for (u0, u1) ∈ EM ,∣∣∣ ∫ t

0

fM (τ)dτ
∣∣∣ ≤ ‖〈τ〉−δfM‖L2(R)〈t〉δ+

1
2 + ≤ CM−s+ε〈t〉δ+ 1

2

≤ CM−s+ε+(δ+ 1
2 )(s−2ε) ≤ C,

provided −s+ ε+ (δ + 1
2 )(s− 2ε) ≤ 0, a condition which is satisfied thanks to

(3.3).
For (u0, u1) ∈ EM , we have

E1/2(wN,M (0)) ≤ C(‖ΠM (u0, u1)‖ H 1 + ‖ΠM (u0)‖2L4) ≤ CM1−s+ε,

and coming back to (3.5), we get

(3.6) E1/2(wN,M (t)) ≤ CM1−s+ε.

Recall that

uN (t) = wN,M (t) + S(t)ΠM (u0, u1) = S(t)Π0(u0, u1) + wN,M (t)− S(t)ΠMΠ0(u0, u1).

We have that for a solution to the linear wave equation the linear energy

‖∇xu‖2L2(Td) + ‖∂tu‖2L2(Td)

is independent of time and that if (u, ∂tu) is orthogonal to constants
((u, ∂tu) = Π0(u, ∂tu)), then this energy controls the H 1(Td)-norm, we
deduce for (u0, u1) ∈ EM ⊂ FM that

‖S(t)ΠMΠ0(u0, u1)‖ H 1(Td) ≤ CM1−s+ε

and therefore

‖uN (t)− S(t)Π0(u0, u1)‖ H 1(Td) ≤ CM1−s+ε .

This completes the proof of Lemma 3.2.

Next we set
EM =

⋂
K≥M

EK ,

where the intersection is taken over the dyadic values of K, i.e. K = 2j with j
an integer. Thus µ(EM ) tends to 1 as M tends to infinity. Using Lemma 3.2,
we obtain that there exists C > 0 such that for every t ≥ 1, every M , every
(u0, u1) ∈ EM , and every N ∈ N,

‖uN (t)− S(t)Π0(u0, u1)‖ H 1(Td) ≤ C
(
M1−s+ε + t

1−s
s +ε1

)
.
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Furthermore, by (3.6) and the definition of RM , we get that for (u0, u1) ∈ EM ,
and t ≤ cMs−2ε

‖SN (uN )‖L4(Td)(t) ≤ ‖SN (wN,M )‖L4(Td)(t) + ‖SN (S(t)ΠM (u0, u1))‖L4(Td)(t)

≤ E1/4(wN,M )(t) +M−s+2ε ≤ CM
1−s+ε

2 .

Finally, we set

E =

∞⋃
M=1

EM .

We have thus shown the µ almost sure bounds on the possible growths of the
Sobolev norms of the solutions established in the previous section for data in
E which is of full µ measure. This completes the proof of Proposition 3.1.

4. Passing to the limit

4.1. Some deterministic estimates. — We now need an interpolation result. De-
fine the space W 1,∞

T by the norm ‖u‖W 1,∞
T

= ‖u‖L∞T + ‖∂tu‖L∞T , and denote
by Hσ = Hσ(Td).

Lemma 4.1. — Let T > 0, −∞ < σ2 ≤ σ1 < +∞ and assume that

u ∈ L∞
(
[−T, T ];Hσ1

)
, ∂tu ∈ L∞

(
[−T, T ];Hσ2

)
.

Then for all θ ∈ (0, 1), and all t1, t2 ∈ [−T, T ]

‖u(t1)− u(t2)‖Hθσ1+(1−θ)σ2 ≤ C|t1 − t2|1−θ‖u‖θL∞T Hσ1‖u‖
1−θ
W 1,∞
T Hσ2

.

Proof. — By Hölder we get

‖u(t1)− u(t2)‖Hσ2 = ‖
∫ t2

t1

∂τu(τ)dτ‖Hσ2 ≤ |t1 − t2|‖∂tu‖L∞T Hσ2 .

Next we clearly have

‖u(t1)− u(t2)‖Hσ1 ≤ 2‖u‖L∞T Hσ1 ,

and we conclude using that

‖u‖Hθσ1+(1−θ)σ2 ≤ ‖u‖θHσ1‖u‖1−θHσ2 .

Now for σ ∈ R and α ∈ (0, 1), let us define the space CαTHσ =

Cα
(
[−T, T ];Hσ(Td)

)
by the norm

‖u‖ CαTHσ = sup
t1,t2∈[−T,T ],t1 6=t2

‖u(t1)− u(t2)‖Hσx
|t1 − t2|α

+ ‖u‖L∞T Hσx .

According to Ascoli theorem, we obtain
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Lemma 4.2. — For any T > 0, any α > 0 and any ε > 0, the embedding

CαTH
σ 7→ C((0, T );Hσ−ε)

is compact.

4.2. The compactness argument. — According to Proposition 3.1, we know that
almost surely, there exists M ≥ 1 such that the family of solutions to (3.1)

uN (t) = S(t)Π0(u0, u1) + wN (t),

is such that

‖(wN (t), ∂twN (t))‖ H 1(Td) ≤ C(Ms + |t|)
1−s
s +ε

‖SN (uN )‖L4((0,t)×Td) ≤ C(Ms + |t|)
1−s
2s +ε|t|1/4.

We apply Lemma 4.1 with σ1 = 1 and σ2 = 0 and we deduce that the sequence
wN is for any ε > 0 bounded in C ε/2T H1−ε/2. According to Lemma 4.2 we can
almost surely extract a sequence converging for any T in C

(
(0, T );H1−ε), to a

limit that we denote by w. On the other hand, the sequence SN (uN ) is, for any T
bounded in L4

t,x and we can consequently extract a sequence converging weakly
in L4

loc,t,x to a limit that we denote by u. But for any K ∈ N, if K ≤ N − 2,
we have

SK(SN (uN )) = SK(uN ) = SK(S(t)Π0(u0, u1) + wN (t)),

and we deduce that (in distribution sense), SK(SN (uN )) is converging to SK(u)

on the one hand and to SK
(
S(t)(u0, u1) + w

)
on the other hand. Hence

∀K ∈ N, SK(u) = SK
(
S(t)(u0, u1) + w

)
.

We deduce that (in distribution sense) u = S(t)(u0, u1) + w. Now we deduce
that SN (uN ) is converging weakly in L4

loc,t,x and strongly in L2
loc,t,x to u (here

by strong convergence in Lploc,t,x we mean that the convergence is strong on any
compact set). By interpolation, we deduce that SN (uN ) is converging strongly
to u in Lploc,t,x for 2 ≤ p < 4. In particular using this property for p = 3, we
can pass to the limit in (3.1) (here we use Lemma 2.1 to pass to the limit in
the nonlinear term) and obtain that u satisfies (1.1). To prove the convergence
of ∂twN in C

(
(0, T );H−ε(Td)

)
, we estimate

∂2
twN = ∆wN − SN

(
(SNwN + SNS(t)Π0(u0, u1))3

)
,

in L∞
(
(0, T );H−τ (Td)

)
with τ = max (d/4, 1) (here we use L4/3(Td) ⊂

H−d/4(Td)), and we can conclude thanks to Lemma 4.1 with σ1 = 0 and
σ2 = −τ .
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