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HYPERELLIPTIC d-OSCULATING COVERS
AND RATIONAL SURFACES

BY ARMANDO TREIBICH

ABsTRACT. — Let d be a positive integer, K an algebraically closed field of charac-
teristic p # 2 and X an elliptic curve defined over K. We consider the hyperelliptic
curves equipped with a projection over X, such that the natural image of X in the
Jacobian of the curve osculates to order d to the embedding of the curve, at a Weier-
strass point. We first study the relations between the degree n, the arithmetic genus
g and the osculating degree d of such covers. We prove that they are in a one-to-one
correspondence with rational curves of linear systems in a rational surface and deduce
(d — 1)-dimensional families of hyperelliptic d-osculating covers, of arbitrary big genus
g if p = 0 or such that 2g < p(2d+1) if p > 2. It follows at last, (g9+ d — 1)-dimensional
families of solutions of the KdV hierarchy, doubly periodic with respect to the d-th
variable.

RESUME (Projections hyperelliptiques d-osculantes et surfaces rationnelles)

Soit d un entier positif, K un corps algébriquement clos de caractéristique p # 2 et X
une courbe elliptique définie sur K. On étudie les courbes hyperelliptiques munies d’une
projection sur X, telles que I'image naturelle de X dans la jacobienne de la courbe,
oscule a lordre d au plongement de celle-ci, et ce en un point de Weierstrass. On étudie
tout d’abord les relations entre le degré n, le genre arithmétique g et I’ordre d’osculation
d des ces projections. On prouve qu’elles sont en correspondance biunivoque avec des
courbes rationnelles dans des systémes linéaires d’une surface rationnelle et on en
déduit des familles (d — 1)-dimensionnelles de revetements hyperelliptiques d-osculants
de genre g, arbitrairement grand si la caractéristique p = 0, ou 2g < p(2d+1) si pp > 2.
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HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES 379

11 en résulte des familles (g + d — 1)-dimensionnelles de solutions de la hiérarchie KdV/,
doublement périodiques par rapport & la d-iéme variable.

1. Introduction

1.1. — Let P! := KU {oo} and (X, q) denote, respectively, the projective line
and a fixed elliptic curve marked at its origin, both defined over an algebraically
closed field K of arbitrary characteristic p # 2. We will study all finite separa-
ble marked morphisms 7 : (I, p) — (X, q), called hereafter hyperelliptic covers,
such that I' is a degree-2 cover of P!, ramified at the smooth point p € T.
Canonically associated to 7 there is the Abel (rational) embedding of I" into
its generalized Jacobian, A, : T' — Jacl', and {0} C Vrl,p e C Vlf”p7 the flag
of hyperosculating planes to A,(T") at A,(p) € Jacl' (cf. 2.1 & Definition 2.1).
On the other hand, we also have the homomorphism ¢, : X — JacI', obtained
by dualizing 7. There is a smallest positive integer d such that the tangent
line to ¢ (X) is contained in the d-dimensional osculating plane Vrd,p. We call
it the osculating order of m, and m a hyperelliptic d-osculating cover (Defini-
tion 2.3 (2)). If 7 factors through another hyperelliptic cover, the arithmetic
genus increases, while the osculating order can not decrease (Corollary 2.7).

Studying, characterizing and constructing those with given osculating or-
der d but maximal possible arithmetic genus, so-called minimal-hyperelliptic
d-osculating covers, will be one of the main issues of this article. The other
one, to which the first issue reduces, is the construction of all rational curves
in a particular anticanonical rational surface associated to X (i.e., a rational
surface with an effective anticanonical divisor). Both problems are interesting
on their own and in any characteristic p # 2. Up to recently they were only
considered over the complex numbers and through their link with solutions of
the Korteweg-de Vries hierarchy, doubly periodic with respect to the d-th KdV
flow (cf. [1], [3], [8], [10], [16], [17] for d = 1, [13], [2], [4], [5] for d = 2 and [15]
for d > 3). At last let me point out a less restrictive situation already studied
but only over C: one may drop the hyperelliptic assumption on the curve I' and
choose a degree-d effective divisor D = 22:1 m;p; with support at | generic
points of I'. Forcing the line ¢, (X) to be contained in the hyperosculating plane
22:1 Vrnf ;j one obtains so-called D-tangential covers. In case d =1, or m; =1
and = is étale at p; (Vj =1,---,1), the corresponding covers were constructed
by solving the associated Calogero-Moser integrable system (e.g., [11] & [10];
see also [2]) and give rise to d x d matrix solutions of the Kadomtsev-Petviashvili
equation, a suitable generalization of the KdV one (cf. [9]). Constructing the
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380 A. TREIBICH

general D-tangential cover was considered as a geometrical problem for Gener-
alized Jacobians of irreducible complex projective curves but (reduced to and)
solved as a geometric problem for a particular ruled surface 7g : S — X (cf.
[14]), the same one constructed in Section 3 below.

We sketch hereafter the structure and main results of our article. ()

1. We start defining in Section 2 the Abel rational embedding A, : I' —
JacT', and construct the flag {0} C V& ,--- C V¥ = H'(T', Or), of hyper-
osculating planes at the image of any smooth point p € I'. We then define
the homomorphism ¢, : X — Jacl', canonically associated to the hyperel-
liptic cover m, and its osculating order (Definition 2.3 (2)). Regardless of
the osculating order, we prove that any degree-n hyperelliptic cover has
odd ramification index at the marked point, say p, and factors through
a unique one of maximal arithmetic genus 2n — £ ;1 (Theorem 2.5). We
finish characterizing the osculating order by the existence of a particular
projection k : I' — P! (Theorem 2.5).

2. The d-osculating criterion in Theorem 2.5 paves the way to the algebraic
surface approach developed in the remaining sections. The main charac-
ters are played by (two morphisms between) three projective surfaces,
canonically associated to the elliptic curve X:

e ¢: St — S: the blowing-up of a particular ruled surface mg : S —
X, at the 8 fixed points of its involution;
e p: St — S: a projection onto an anticanonical rational surface.

3. Once S, S+ and S are constructed (Definitions 3.1 & 3.3), we prove that
any hyperelliptic d-osculating cover m : (T, p) — (X, q) factors canonically
through a curve I't € S+, and projects, via ¢ : S+ — §, onto a rational
irreducible curve I' C S (Proposition 3.7). We also prove that any hyperel-
liptic d-osculating cover dominates a unique one of same osculating order
d, but maximal arithmetic genus, so-called minimal-hyperelliptic (Corol-
lary 3.8). Conversely, given rcs , we study when and how one can re-
cover all minimal-hyperelliptic d-osculating covers having same canonical
projection I' (Corollary 3.10).

4. Section 4 is mainly devoted to studying the linear equivalence class of the
curve I't € S, canonically associated to any hyperelliptic d-osculating
cover m, and associated invariants (Lemma 4.2 & Theorem 4.3). We end
up with a numerical characterization of minimal-hyperelliptic d-osculating
covers (Corollary 4.5).

(1) T am grateful to the referee for his comments, remarks and suggestions which helped me
improve and clarify the exposition
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5. At last, we dress the list of all (—1) and (—2)-irreducible curves of S
(Corollary 5.6), needed to study its nef cone, and give, for any n,d € N*,
two different constructions of (d — 1)-dimensional families of smooth,
degree-n, minimal-hyperelliptic d-osculating covers: one based on Brian
Harbourne’s results on anticanonical rational surfaces ([6]), the other one
based on [15] and leading, ultimately, to explicit equations for the corre-
sponding covers.

2. Jacobians of curves and hyperelliptic d-osculating covers

2.1. — Let K be an algebraically closed field of characteristic p # 2, P! :=
KuU{oo} the projective line over K and (X, q) a fixed elliptic curve, also defined
over K. The latter will be equipped with its canonical symmetry [—1] : (X, q) —
(X, q), fixing w, := ¢ as well as the other three half-periods {w;,j = 1,2, 3}.
We will also choose once for all, an odd local parameter of X centered at ¢, say
z, such that z o [-1] = —2z.

By a curve we will mean hereafter a complete integral curve over K, say
T, of positive arithmetic genus g > 0. The moduli space of degree-0 invertible
sheaves over I', denoted by Jacl' and called the generalized Jacobian of T', is
a g-dimensional connected commutative algebraic group, canonically identified
to H'(T',0}), with tangent space at its origin equal to H' (T, Or). Recall also
the Abel (rational) embedding A, : I' — JacI', sending any smooth point p’ € T’
to the isomorphism class of Or(p’ — p). For any marked curve (T', p) as above,
and any positive integer j, let us consider the exact sequence of Opr-modules
0 — Or — Or(jp) — Ojp(jp) — 0, as well as the corresponding long exact
cohomology sequence:

0— HO(ROF) - HO(FaOF(Jp)) - HO(F’OJP(]p)) i Hl(]-_‘vol") —

where § : H°(T,0,,(jp)) — H'(T,Or) is the coboundary morphism. Ac-
cording to the Weierstrass gap Theorem, for any d € {1,...,g}, there exists

0 < j < 2g such that 5(H0 (I‘, ij(jp))) is a d-dimensional subpace, denoted
hereafter by Vrd, b

For a generic point p of I we have V¢ = (HO T, Ogp( dp)))(i e., j =d),
while for any p € T, the tangent to A,(T') at 0 is equal to Vg p =

5(HO(T, 05(p)).

DEFINITION 2.1. — (1) The filtration {0} C V¢ --- C V¢ = H'(T, Or) will
be called the flag of hyperosculating spaces to A,(I") at 0.
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382 A. TREIBICH

(2) The curve I will be called a hyperelliptic curve, and p € T a Weierstrass
point, if there exists a degree-2 projection onto P!, ramified at p. Or equiva-
lently, if there exists an involution, denoted in the sequel by 7+ : I' — I" and
called the hyperelliptic involution, fixing p and such that the quotient curve
T'/7r is isomorphic to P

PROPOSITION 2.2 ([14] §1.6). — Let (', p, \) be a hyperelliptic curve of arith-
metic genus g, equipped with a local parameter \ centered at a smooth Weier-
strass point p € I'. For any odd integer 1 < j :=2d — 1 < g, consider the exact
sequence of Or-modules:

0 — Or — Or(jp) = Ojp(jp) — 0,

as well as its long exact cohomology sequence
0 — H(T,Or) — H(T, Or(jp)) — H(T,0;(jp)) > H'(T,Or) — -+,

6 being the coboundary morphism.
For any m > 1, we also let [\"™] denote the class of \™™ in H° (F, Omp(mp)).

Then fo’p is generated by {6([A2l_1]),l =1,... ,d}. In other words, the d-th
osculating subspace to Ap(T') at 0 is equal to 6(H0 (F, ij(jp))) , forj=2d-1.

DEFINITION 2.3. — (1) A finite separable marked morphism 7 : (T',p) —
(X, q), such that T is a hyperelliptic curve and p € T' a smooth Weierstrass
point, will be called a hyperelliptic cover. Up to a translation we will always
assume 7(p) = g. We will say that 7 dominates another hyperelliptic cover
7: (T,p) — (X, q), if there exists a degree-1 morphism j : (I',p) — (T, p), such
that m =7 o j.

(2) Let ¢ : X — JacI denote the group homomorphism ¢’ — A, (w*(q’—q)).
There is a minimal integer d > 1, called henceforth osculating order of 7, such
that the tangent to tr(X) at 0 is contained in Vi# . We will then call 7 a
hyperelliptic d-osculating cover.

PROPOSITION 2.4. — Let 7 : (I',p) — (X, q) be a degree-n hyperelliptic cover
with ramification index p at p, f: (T,p) — (P!, 00) the corresponding degree-2
projection, ramified at p, and let Ty . denote the image curve (f,n)(T') C P x
X. Then (see diagram below),

1. the hyperelliptic involution T satisfies [—1]om =m o1 and p is odd;

2. Ty has arithmetic genus 2n — 1 and is unibranch at (00, q);

3. letj: (T,p) — (s, (00,q)) denote the partial desingularization at (0o, q)
and 7 : (T,p) — (X, q) its canonical projection, then: T is a hyperelliptic
cover of arithmetic genus 2n — %(p +1);

4. 7, as well as any hyperelliptic cover dominated by m, factors through 7.

TOME 142 — 2014 — N° 3
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/(f\ 1

il (00, 9) erf,c—uPﬂxX

7 \

oo € P!

qge X

Proof. — (1) Let Alb, : JacT' — JacX denote the Albanese homomorphism,
sending any L € Jacl' to Alb, (L) := det(m.L) ® det(m.Or)~!, and T'° denote
the open dense subset of smooth points of I'. Up to identifying JacX with
(X, q), we know that Alb, o, = [n], the multiplication by n, and Alb, o A4,
is well defined over I'° and equal there to w. Knowing, on the other hand, that
Apom = [—1]oAp, we deduce that mom = AlbroA,om = [-1]oAlbr oA, =
[—1] o 7 (over the open dense subset I'°, hence) over all I as asserted.

(2) & (3) The projections f and 7 have degrees 2 and n, implying that 'y ,
is numerically equivalent to n.{co} x X + 2.P! x {¢} and, by means of the
adjunction formula, that it has arithmetic genus 2n — 1. We also know that f
and 7 have ramification indices 2 and p at p € I'. Hence, I'¢ . intersects the
fibers P! x {q} and {co} x X at (oco,q), with multiplicities p and 2. Adding
property (1) of Proposition 2.4 we deduce that its local equation at (oo, q)
can only have even powers of z, and must be equal to 22 = w?h(w, 2%), for
some invertible element h (i.e., h(0,0) # 0). In particular I'y . is unibranch
and has multiplicity min{2, p} at (oo, q). Moreover, for its desingularization
over (00,q), ;1 successive monoidal transformation are necessary, each one
of which decreases the arithmetic genus by 1. Hence T’ has arithmetic genus
2n —1— pT_l =2n — pTH as asserted.

(4) The smooth point p € T' is the unique pre-image of (c0,q) by (f,7) :
I' - I'y . while T'\ {p} is isomorphic to Iy~ \ {(c0,q)}. Hence, (f, ) lifts to
a birational morphism j : (I',p) — (I',p) (and m# = 7 o j). Reciprocally, any
other hyperelliptic cover dominated by 7 must factor through (FfﬂTv (oo,q))
and should lift to its partial desingularization (T, 7). In other words, it should
dominate 7. O

THEOREM 2.5. — The osculating order of an hyperelliptic cover w : (I',p) —
(X, q), is the minimal integer d > 1 for which there exists a morphism k : T —
P! satisfying:

1) the poles of  lie along m~1(q);

(
(2) kK + 7 (27 1) has a pole of order 2d — 1 at p, and no other pole along
7Y

q) (2.1).
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384 A. TREIBICH

Furthermore, for such d there exists a unique morphism k : I — P! satisfying
properties (1) & (2) above, as well as (Definition 2.1 (2)):
(3) (k) = —&.

Proof. — According to Proposition 2.2, Vr > 1 the r-th osculating subspace
VI, is generated by {(5([)\_(2l_1)]),l =1,.. .,r}. On the other hand, 7 being
separable, the tangent to ¢, (X) C Jacl" at 0 is equal to 7* (Hl(X, OX)), hence,
generated by & ([m*(z71)]).

In other words, the osculating order d is the smallest positive integer such
that §([7*(2~1)]) is a linear combination )7, a;6([\~!=1]), with ag # 0.
Or equivalently, thanks to the Mittag-Leffler Theorem, the smallest for which
there exists a morphism x : I' — P!, with polar parts equal to m*(2~!) —
221:1 a;A~(=1) The latter conditions on k are equivalent to Theorem 2.5 (1)
& (2). Moreover, up to replacing « by 3 (k—7{(k)), we can assume & is p-anti-
invariant. The difference of two such functions should be rr-anti-invariant, while
having a unique pole at p, of order strictly smaller than 2d — 1 < 2g — 1, where
g denotes the arithmetic genus of I'. Hence the difference is identically zero,
implying the uniqueness of such a morphism x. O

DEFINITION 2.6. — 1. The pair of marked projections (m,k), satisfying
Theorem 2.5 (1), (2) & (3), will be called a hyperelliptic d-osculating
pair, and k the hyperelliptic d-osculating function associated to 7.

2. If the latter 7 : (T',p) — (X, ¢) does not dominate any other hyperelliptic
d-osculating cover, we will call it minimal-hyperelliptic d-osculating cover.

COROLLARY 2.7. — Let w : (T,p) — (X,q) and 7' : (I',p) — (X, q) be two
hyperelliptic covers of osculating orders, d and d’' respectively, such that m dom-
inates w'. Then d < d’.

Proof. — Let ' be the hyperelliptic d-osculating function associated to 7/, and
j: (T,p) — (I",p') the birational morphism such that m = 7’ o j. Then, the
poles of £'0j : I' — P! lie along 7~ *(q), while £'0j+7*(271) = (k'+7'"(271))0j
has a pole of order 2d’ — 1 and no other pole along 7~1(q). It follows (along
the same lines of proof as in Theorem 2.5) that the tangent to ¢, (X) must be
contained in Vlii:p. Hence, the minimality of d implies d < d’. O

3. The algebraic surface set up

3.1. — We will construct hereafter the ruled surface 7g : S — X and its
blowing-up e : S* — S, both naturally equipped with involutions 7 : S —
S and 7+ : S+ — S+, as well as a degree-2 projection ¢ : S+ — S to a
known anticanonical rational surface . We will then prove that any hyperelliptic
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d-osculating cover © : (T',p) — (X,q) factors uniquely through mg. : mg o
e : S+ — X and projects, via St 48 , onto an irreducible rational curve.
Moreover, we will prove that 7 dominates a unique hyperelliptic d-osculating
cover (Corollary 3.8).

DEFINITION 3.1. — (1) Fix an odd meromorphic function ¢ : X — P! :=
K U {oo} with divisor of zeroes and poles equal to ({) = ¢ + w1 — wa — ws
and consider the open affine subsets U, := X \ {¢} and U; := X \ {w1}. We
let 7g : S — X denote the ruled surface obtained by identifying P! x U, with
P! x Uy, over X \ {q,w1}: V¢’ # q,w1, (Tn,q') € P! x U, is identified with
(Ty + gy, 4) € P x UL

In other words, we glue the fibers of P! x Uy and P! x Uy, over any ¢’ # ¢, w1,
by means of a translation. Hence the constant sections ¢’ € U, — (00, q’) € P x
Ui (k=0,1), get glued together, defining a particular one denoted by C, C S.

(2) The involutions P! x Uy, — P! x Uy, (Tk,q') — (— Tk, [-1)(¢))(k =
0,1), get glued under the above identification and define an involution 7 : S —
S such that g o 7 = [—1] o mg. In particular 7 has two fixed points over each
half-period w;: one in C,, denoted by s;, and the other one denoted by r;
(1=0,...,3). It can also be checked that translating along the fibers of K x Uy,
by any scalar a € K(k = 0, 1), extends to an automorphism t, : S — S leaving
fixed C, and such that g ot, = 7g.

(3) Whenever p > 3 we choose ¢ (Definition 3.1 (1)) as a local parameter
of X centered at q and consider the unique meromorphic function f, : X — P!
having a local development f, = C%, +é+ 0(¢), for some ¢ € K. We denote
C, C S the curve defined over P! x U, by the equation T? + ¢T, + f, = 0 and
over P! x U; by the equation T + ¢Ty + f, — Cip -¢=0

PRrROPOSITION 3.2. — The ruled surface mg : S — X has a unique section of
self-intersection 0, namely C,, and its canonical divisor is equal to -2C,. In
particular S — X is isomorphic to P(E) — X, the ruled surface associated to
the unique indecomposable rank-2, degree-0 vector bundle over X (cf. [7,§V.2],
[16, §3.1]). It also follows that up to isomorphism wg is independent of the
choice of p € X and the half-period wy .

Proof. — The meromorphic differentials dT, and dT; get also glued together,
implying that Kg, the canonical divisor of S is represented by -2C,. Any sec-
tion of mg : § — X, other than C,, is given by two non-constant morphisms
gi Uy — P! (i =1,2), such that g, = g1 — % outside {q,w;1}. A straight-
forward calculation shows that a section as above intersects C,, while having
self-intersection number greater or equal to 2. It follows from the general Theory
of Ruled Surfaces (cf. [7]) that C, must be the unique section with zero self-
intersection. Hence, the ruled surface 7g : S — X defined above, is isomorphic
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386 A. TREIBICH

to the projectivization of the unique indecomposable rank-2, degree-0 vector
bundle over X (cf. [7, § V.2]). O

DEFINITION 3.3 ([16, §4.1]). — Let e : St — S denote hereafter the monoidal
transformation of S at {s;,7;,i = 0,...,3}, the eight fixed points of 7, and
r+: 8+ — St its lift to an involution fixing the corresponding exceptional
divisors {s; := efl(si), ri- == e 1(r;),i=0,...,3}. Taking the quotient of S+

with respect to 7+, we obtain a degree-2 projection ¢ : S+ — § onto a smooth
rational surface S, ramlﬁed along the exceptional curves {s;-,r,i =0,...,3}.

LEMMA 3.4. — Whenever p > 3, the curve C, (Definition 3.1 (3)) is irre-
ducible and linearly equivalent to pC,. Moreover, any irreducible curve numer-
ically equivalent to a multiple of C,, is either C, itself or a translate of Cp. In
particular Cp and pC, generate the complete linear system |pCo|, and S is an
elliptic surface.

Proof. — The curve C), is 7-invariant, does not intersect the section C, and
projects onto X with degree p. Hence, C,, is linearly equivalent to pC, and has
multiplicity one at 7, € S. In order to prove its irreducibility, we may assume
C, — X is separable, or equivalently, that ¢ # 0 in Definition 3.1 (3). Otherwise
Cp — X would be purely inseparable and C), isomorphic to X. The curve C),
is then smooth and transverse to the fiber S, := ﬂgl(q), and their intersection
number at r, € S, N C) is equal to 1. Let C’ denote the unique irreducible
T-invariant component of C,, going through r,, and suppose that C’ # C),. Then
C' has zero self-intersection and the projection C' — X has odd degree p’, for
some 1 < p’ < p. Otherwise (i.e., if p’ = 1), C’ would give another section of 7g
having zero self-intersection. Contradiction! Its complement, say C” := C, \ C’,
is a smooth, effective divisor linearly equivalent to (p —p’)C,. Translating C’ by
an appropiate automorphism ¢, (Definition 3.1 (2)), we may assume that t,(C")
intersects C”, hence t,(C’) C C” because their intersection number is equal
to 0. It follows that any irreducible component of C), is a translate of C’, forcing
the prime number p to be a multiple of p’ > 1. Therefore, p = p’ and Cp, = C’
is irreducible as asserted. Consider at last, any other irreducible curve, say C,
linearly equivalent to mC, for some m > 1. It has zero intersection number
with C, and must intersect some translate of Cp, implying that they coincide.
In particular m = p and any element of | pCo|, other than pC,, is a translate
of Cp. O

The lemma and propositions hereafter, proved in [14, §2.3, §2.4 & §2.5],
will be instrumental in constructing the equivariant factorization ¢+ : I' — S+
(Definition 3.1).
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LEMMA 3.5. — There exists a unique, T-anti-invariant, rational morphism
ks : S — P, with poles over C, + ﬂgl(q), such that over a suitable neigh-
borhood U of ¢ € X, the divisor of poles of ks + m5(27 1) is reduced and equal
to CoNg'(U).

PROPOSITION 3.6. — For any hyperelliptic cover 7w : (I',p) — (X,q), the ez-
istence of the unique hyperelliptic d-osculating function k : T — P! (Defini-
tion 2.6 (1)) is equivalent to the existence of a unique morphism ¢ : T' — S
such that Lo =ToL, 1 =mg ot and t*(C,) = (2d — 1)p.

PROPOSITION 3.7. — For any hyperelliptic d-osculating pair (7, k), the above
morphism + : T — S lifts to a unique equivariant morphism 1+ : I — S+
(i.e., 7+ o1t = 1t o). In particular, (7, k) is the pullback of (Tgi,ker) =
(rsoe,ks0e), and T lifts to a T+-invariant curve, T+ := 1+(T') C S+, which
projects onto the rational irreducible curve [ = go(Fl) cS. In particular,
2d — 1 =e*(C,) - 1+, ().

Proof. — The monoidal transformation e : S* — S, as wellas ¢ : I' — S,
can be pushed down to the corresponding quotients, making up the following
diagram:

Moreover, since € : S— S /T is a birational morphism and I'/7r is a smooth
curve (in fact isomorphic to P!), we can lift ./ : I'/rr — S/ to S, obtaining a
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morphism 7: ' — r'c §, fitting in the diagram:

rcs

SN
RN

Recall now that S is the fibre product of €: S — S/7 and S — S/7 (cf. [16,
§4.1]). Hence, ¢ and 7 lift to a unique equivariant morphism +*+ : ' — I't c S+,
fitting in

Furthermore, since 7 : I' — S factors through I' — T'/m = P!, its image
I':=¢(+(T)) =UT) C S is a rational irreducible curve as claimed. O

COROLLARY 3.8. — Any hyperelliptic d-osculating cover = : (I',p) — (X,q)
dominates a unique minimal-hyperelliptic d-osculating cover, with same image

It c St as.

Proof. — Let 7 : (I,p) — (X,q) be an arbitrary hyperelliptic d-osculating
cover dominated by 7 : (I',p) — (X,q), ¥ : (I,p) — (T,p) the corresponding
birational morphism and 7+ : T' — St the factorization of @ via S*. The
uniqueness of ¢ implies that ¢= = 7+ o 4. Hence, they have same image in S+,
() = 74(T) = I'Y, and project onto the same curve I' C S. Furthermore,
¢ and 7+ being equivariant morphisms, we can push down ¢ : I' — T to an

identity between their quotients, I'/r7r & P! S P! 2 T'/7x, as well as 7+ to a
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morphism 7: P! — T (of same degree as 7+ : ' — '), as shown hereafter:

U

pel qge X

ot ﬁ/
" o

pel — Tt c st

+L

A l

2:1 @
L
PL—* sTcCS

Taking the fiber product of 7: P! — T and o: Tt — f, say I'*, we then
factorize 7+ in the above diagram, through a birational morphism I' — I'* as
follows:

™

pel qge X

\\\ s

21 prel* ——TItcst
L*L

L7

Pl — —Tcs§

where p* € I'* is the image of p € . Furthermore, since p is smooth and
the unique pre-image of p*, we deduce that the latter morphism factorizes
via the desingularization of I'* at the unibranch point p*. We will therefore
assume till the end of the proof, that I'* is indeed smooth at p*. On the other
hand, the degree-2 projection (I' — P! is ramified at p, hence) I'* — P! is
ramified at p*. Then, applying Proposition 3.7 one immediately checks that
the natural projection m* := mgr o ** : (T*,p*) — (X,q) is a hyperelliptic
d-osculating cover, dominated by 7 (and 7 as well). Thus, the latter 7* is the
unique minimal-hyperelliptic d-osculating cover dominated by 7. O

REMARK 3.9. — The minimal-hyperelliptic d-osculating cover ©*, explicitely
constructed in the proof of Corollary 3.8, can not be recovered from [:= (T4,
unless m := deg(t+ : T — I't) is equal to 1. There exists indeed a (m — 1)-di-
mensional family of (non-isomorphic) minimal-hyperelliptic d-osculating covers,
with same image rcs , as shown hereafter. We will actually start in Corol-
lary 3.10 from a minimal-hyperelliptic d-osculating cover w (i.e., identifying I'
with I'*), and give its complete factorization in terms of the rational curve
rcs.

COROLLARY 3.10. — Let 7 : (I',p) — (X, q) be a minimal-hyperelliptic d-os-
culating cover equipped (Proposition 3.7) with oL T — T, its equivariant
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factorization through §l, as well as P' % f, the desingularization of the ratio-
nal irreducible curve I' := o(I't). Then, there exist unique marked morphisms
¥ (@) = (I0p°), = (I°,9°) — (X,q) and &+ = (I7,p") — (T, 5 (p)),
such that (see the diagrams below):

(1) m and v~ factor as ©° o+ and L“‘ ) 1/), respectively;

(2) deg() = m := deg(s*), and v~ (") = {p};

(3) ©° is a minimal-hyperelliptic d"—osculatmg cover, where 2d—1 = m/(2d” —
1);

(4) there exist a polynomial morphism R : (P!, c0) m (P, 00) and a
degree-2 projection (I°,p”) f—i (P, 0), such that T is the fiber product of R
with f° ;

(5) the arithmetic geni of T' and I'®, say g and ¢, satisfy 2g+1 = m(2¢° +1).

(6) T is isomorphic to T if and only if m = 1 and T s isomorphic to P,

Furthermore, the moduli  space of degree-n minimal-hyperelliptic d-osculating
covers having same image I' C S as m is (m — 1)-dimensional.

Proof. — (1)—(2)—(3) Let I'” denote the fiber product of 't 5 I and P* EX T,

bl
equipped with the corresponding birational morphism I'” ‘> I't and degree-2

L

b
cover I’ i P!. The equivariant morphism ¢ can be pushed down, as in Corol-

lary 3.8, to P! & T and factors through j, say © = j o R. Moreover, the latter
morphisms satisfy ¢ o+t =7 = j o R, implying the factorization through the
fiber product I'°. In other words, there exists a degree-m equivariant morphism
r % (ie., 1 o 70 = 7p» 0 ¥), such that ++ = >+ o0 ¢, and with maximal
ramification index at p € T' (i.e., ™1 (p”) = {p}, the fiber of t* over t*(p)). In
particular I'” is unibranch at p°, and up to replacing (I, p*) by its desingular-
ization at p’, we can assume 7° := w1 0’ : (I°,p") — (X, q) is a hyperelliptic
cover. This construction is sketched in the diagrams below:

pEI‘
pel T
x /ﬂ-SL W
f rtcst 0o € P! pel"biﬂ"L
lv R f" so
ooe]P’lﬁﬁefCS ooeIP’lﬂpel"
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According to Proposition 3.7, the osculating order of 7° (Definition 2.3 (2)),
say d°, satisfies 2d° — 1 = e*(C,) - "L, (I), while 2d — 1 = e*(C,) - t*,(T). On
the other hand, the factorization (- = "L o ¢ gives 11,(T') = >+, (v (I)) =
*+,(mI"), and replacing in the former equality gives 2d—1 = m(2d”—1). More-
over, the minimal-hyperelliptic d’-osculating cover dominated by 7° (Corol-
lary 3.8) has same image I'* as 7°, hence, it must dominate the fiber product

product of I't % T and P' % f, and I'* as well. In other words, 7° is minimal-
hyperelliptic.

(4) Recall that (I'®, p?) N (P!, c0) is classically represented in affine coor-
dinates as the zero locus {y2 = P(:z:)} projecting onto the first coordinate, for
some degree-(2¢” + 1) polynomial P(z), p° being identified with the smooth
Weierstrass point added at infinity. On the other hand, P* Eid P!, the pushed
down of T % T* defined above, has maximal ramification index at f(p) € P!
(i.e., f(p) € P! is the unique pre-image of f°(p”) € P'). Therefore, up to iden-
tifying the latter points with co € P! we may say that (P!, o) it (P, o) is
defined by a degree-m separable polynomial R(t) (i.e., with non-zero deriva-
tive). Taking the fiber product of I’ N P! with P! % P! amounts then
to replacing x by R(t), giving the affine equation {y2 = P(R(t))}, where the
composed polynomial P(R(t)) has odd degree equal to (2¢° + 1)m. Hence, the
latter fiber product is a hyperelliptic curve, say I'g, of arithmetic genus gg such
that 2gp+1 = m(ng +1), equipped with a smooth Weierstrass point pg € T'r
and a separable marked projection (I'g, pr) m, (I'”, p”) fitting in the following
diagram:

We can also check that pr € T'g is the unique pre-image of p” € I', i.e., the

ramification index of (I'g, pr) ml (I'®,p") at pg is equal to m. Hence, if £ is the
hyperelliptic d’-osculating function for 7, its inverse image gives a hyperelliptic
d-osculating function for mg. In other words, wg is a hyperelliptic d-osculating
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cover dominated by the minimal-hyperelliptic d-osculating cover . Hence, they
are isomorphic, implying that w factors as 7Tb o,29+1= m(2gb +1),and T

is the fiber product of P! - P! and I 5 P! as claimed.

(5) It follows from the latter constructions that T' is isomorphic to I'*, if and
only if j : P! — T is an isomorphism and m = 1.

Consider at last, any other minimal-hyperelliptic d-osculating cover having
same image I C S. The latter must also factor through the above minimal-
hyperelliptic d°-osculating cover 7. We may replace then R(t) by any other

degree-m separable polynomial and take its fiber product with I’ < P!, to
produce the general degree-n minimal-hyperelliptic d-osculating cover having
image . Two such polynomials give rise to isomorphic covers, if and only if
they differ by a linear change of variable (e.g., t — at + b). Thus, the moduli
space has dimension m +1—2=m — 1. [

4. The hyperelliptic d-osculating covers as divisors of a surface

4.1. — The next step concerns studying the rl-invariant irreducible curve
't C S+ associated in Section 3 to any hyperelliptic cover m. We calculate
its linear equivalence class in terms of the numerical invariants of 7, and dress
the basic relations between them. We also prove, whenever p := char(K) > 3,
the supplementary bound 2g + 1 < p(2d — 1) (Theorem 4.3 (1) & (6)). We
end up giving a numerical characterization for m to be minimal-hyperelliptic
(Corollary 4.5).

DEFINITION 4.1. — For any 7 = 0,..., 3, the intersection number between the
divisors ¢*,(I') and r;- will be denoted by ;, and the corresponding vector
v = () € N* called the type of 7. Furthermore, for any u = (p;) € N*, p(M
and p(® will denote, respectively:

3 3
pM = "p; and p® =Y p?.
i=0 1=0

™

LEmMMA 4.2. — Let (T,p) — (X,q) be a degree-n hyperelliptic d-osculating
cover, of type v and ramification indezx p at p. Consider its unique equivariant
factorization through S+, 1+ : T — T't, and let m denote its degree and 1 :=
e ot its composition with the blowing up S+ = S. Then:

1. () is equal to m..(T') and linearly equivalent to nC, + (2d — 1)S,;
(") is unibranch, and transverse to the fiber S, := w5(q), at s, = ¢(p);
p s odd, bounded by 2d — 1 and equal to the multiplicity of 1.(T) at so;
the degree m divides n, 2d—1 and p, as well as y;, for any i € {0,...,3};

> 0N
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5. Y% + 1 =791 = 72 = 73 = n(mod.2);

6. 1=.(T) is linearly equivalent to e* (nC, + (2d —1)S,) — psx ‘Z?:o iy
Proof. — (1) Checking that ¢, (T") is numerically equivalent to nC,+ (2d—1)S,
amounts to proving that the intersections numbers ¢.(T') - S, and t.(T) - C,
are equal to n and 2d — 1. The latter numbers are equal, respectively, to the
degree of 7 : I' — X and the degree of t*(C,) = (2d — 1)p, hence the result.
Finally, since ¢.(I") and C, only intersect at s, € S,, we also obtain their linear
equivalence.

(2) & (3) Let & : T' — P! be the hyperelliptic d-osculating function associated
to 7, uniquely characterized by properties (1), (2) & (3) of Theorem 2.5, and
U C X a symmetric neighborhood of ¢ := 7(p). Recall that x + 7*(z71) is
rr-anti-invariant and well defined over 7=1(U), where it has a (unique) pole of
order 2d — 1 at p. Studying its trace with respect to m we can deduce that p
must be odd and bounded by 2d — 1.

On the other hand, let (L* ), SO)S and (L* m, CO)s denote the intersec-
tion multiplicities at s,, between L*(ﬁ) and the curves OSO and C,. They are
respectively equal, via the projection formula for ¢, to p and 2d — 1. At last,
since ¢(T') is unibranch at s, and (¢.(T), SO)s =p<2d—1= (0, (T), CO)S , We
immediately deduce that 2 is the multiplicit§ of t(T") at s, (and S, is transverse
to ¢(T) at s,).

(4) By definition of m, we clearly have ¢.(I') = m.(T"), while {p,v;,i =
0,...,3} are the multiplicities of ¢, (") at different points of S. Hence, m divides
n and 2d — 1, as well as all integers {p,v;,4=0,...,3}.

(5) For any i = 0,...,3, the strict transform of the fiber S; := mg"(w;),
by the monoidal transformation e : S* — S, is a 71-invariant curve, equal
to S = e*(S;) — s+ — ri, but also to ©*(S;), where S; := ©(S;). Hence,
the intersection number (1, (') - Si* is equal to the even integer 1+, (T') - Si- =
L) 07 (S;) = @ (L4 (D)) .S; = 2I'- S;, implying that n = o+, (T) - €*(S;) is
congruent mod.2 to ¢, (T)-Sit 4+, (1) (s +73) = 1 1.(T) - (i +7;-) (mod .2).

We also know, by definition, that v; := ¢+, () - 7, while ¢+, (T) - s+ = p,
the multiplicity of ¢.(T) at s,, and ¢, (T) - s = 0 if i # 0, because s; ¢ ¢(T).
Hence, n is congruent mod.2, to p + v, = 1 + 7,(mod .2), as well as to ~;, if
i # 0.

(6) The Picard group Pic(S+) is the direct sum of e*(Pic(S)) and the rank-8

lattice generated by the exceptional curves {si,7;-,i = 0, ..., 3}. In particular,
knowing that ¢, (T") is linearly equivalent to nC,+(2d—1)S,, and having already
calculated ¢+, (T) - sit and ¢4, (T) -7, for any i = 0,...,3, we can finally check

that ¢, (T) is linearly equivalent to e*(nC,+ (2d—1)S,) — ps3 — Zg yr. O
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THEOREM 4.3. — Consider any hyperelliptic d-osculating cover = : (T,p) —
(X,q), of degree m, type 7, arithmetic genus g and ramification index p at p.
Let m denote the degree of its canonical equivariant factorization & : T' —
't c S+, and § the arithmetic genus of the rational irreducible curve T =
©(T+). Then, the numerical invariants {n,d,g,d, p, m,v} satisfy the following
inequalities:

1. 2g+1 <M

2. 4m?g = (2d — 1)(2n — 2m) + 4m? — p?> — @ and v? < 2(2d — 1)(n —

m) + Am?2 — P2;

3. (2g+1)2<8(2d —1)(n—m) + 13m? — 4p? < 8(2d — 1)n + (2d — 1)* ;

4. p=1 impliesm =1, as well as (29 +1)2 <8(2d - 1)(n—1)+9 ;

5. if p > 3, we must also have vV < p(2d — 1)

Proof. — (1) For any i = 0,...,3, the fiber of mg1 := mg0e: S+ — X over the
half-period w;, decomposes as s;- +7;- +S;-, where S;* is a 7*-invariant divisor
and s;- is disjoint with ¢+, (T'), if i # 0, while " (s-) = pp, by Lemma 4.2 (2).
Hence, the divisor R; := 11" (r-) of T is linearly equivalent to R; = 7! (w;) —
(n — v;)p (and also 2R; = 2v;p). Recalling at last, that 2?21 w; = 3w,, and
taking inverse image by m, we finally obtain that Z?:o ; = vWp. In other
words, there exists a well defined meromorphic function, (i.e., a morphism),
from T to P!, with a pole of (odd!) degree v(!) at the Weierstrass point p. The
latter can only happen (by the Riemann-Roch Theorem) if 2g + 1 < 4D as
asserted.

(2) The curve I't is 71-invariant and linearly equivalent (Lemma 4.2 (4) &

(6)) to:
1 1/, _ o1 - L
r - (e (nCo +(2d l)So) Sy ;:0 YiT; )

Recall also that g > 0 and K , the canonical divisor of S , is linearly equivalent
t0 Yy (e*(—C’O)) ([16, §4.2. (3)]). Applying the projection formula for S+ %8,

to T+ = ¢*(T'), we obtain 0 < § = g2 ((2d—1)(2n —2m) +4m?— p2 —7?)),

4m?2

implying v < (2d — 1)(2n — 2m) + 4m? — p?, as claimed.

(3) & (4) We start remarking that, for any j = 1,2,3, (7, —+;) is a non-zero
multiple of m. Hence, 3, _;(v: —~;)* > 3m?, and replacing in Theorem 4.3 (1)
we get:

(2g+1)% < (vV)? =49 = (3 — 45)* < 49y — 3m>.
i<j
Taking into account Theorem 4.3 (3), we obtain the inequality (4). At last, since
m divides p (Lemma 4.2 (4)), p = 1 implies m = 1. Replacing in Theorem 4.3 (3)
gives us (4).
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(5) Finally, let us assume p > 3 and denote by CIJ; C S+ the unique 7+-in-
variant irreducible curve, linearly equivalent to e*(pC,) — Z?:o . In partic-
ular, it can not be equal to I't, hence C; - T+ = p(2d — 1) — ¥!) must be

non-negative. O

COROLLARY 4.4. — Let m : T' — X be a degree-n separable projection of
a hyperelliptic curve onto the elliptic curve X, and let g denote its arith-
metic genus. Then, there exists a smooth Weierstrass point p € I' such that
m: (T,p) — (X,T('(p)) s a hyperelliptic d-osculating cover, non ramified at p,
with d satisfying: (2d —1)(2n — 2) > g% + g — 2.

Proof. — Consider the global desingularization morphism j : ' — T', com-
posed, either with 7, or with the degree-2 cover I' — I'/7r = PL. As a ramified
cover of X and P!, we deduce from the Hurwitz formula that I is a smooth
hyperelliptic curve of positive genus, say g, with 2g+2 Weierstrass points, while
T:=moj:I — X has, at most, 2g — 2 ramifications points. We can choose,
therefore, a Weierstrass point p € I, at which 7 is not ramified. In particular,
its image p := j(p) € I' must be a unibranch point. On the other hand, since 7
is not ramified at p and factors through 7 : I' — X, we see that 7 restricts to
a local isomorphism between neighborhoods of p € T" and ¢ := 7 (p) € X:

7:pel bpel HgeX.
Hence, p is a smooth Weierstrass point of I, at which 7 is not ramified, and
m: (T,p) — (X, q) is a hyperelliptic d-osculating cover (Definition 2.3 (2)), for

some integer d < g. Applying Theorem 4.3 (4), we obtain (2d — 1)(2n — 2) >
(g+2)(g—1) as claimed. O

COROLLARY 4.5. — Let w : (I,p) — (X,q) be a hyperelliptic d-osculating
cover of type v and arithmetic genus g. Then 2g+1 < v with equality if and
only if m is minimal-hyperelliptic.

Proof. — Recall that m dominates a unique minimal-hyperelliptic d-osculating
(Corollary 3.8), say m*, factoring through the same curve I't C S*. Therefore,
7* has same type < as m, but a bigger arithmetic genus, say g*, satisfying
29 +1 < 2¢g* +1 < ¥ (Theorem 4.3 (1)). Hence, it is certainly enough to
assume 7 is minimal-hyperelliptic and prove that 2g + 1 > ).

Recall also, that t* : I' — I't has odd degree m and factors through the
cover 7 : (I, p’) — (X,q), of type 4* and arithmetic genus ¢, such that
7 = my*® and 2g + 1 = m(2¢° + 1) (Corollary 3.10 & Lemma 4.2 (4)).
Hence 29 +1 = m(2¢° + 1) < my*M = ~y(I with equality if and only if
29" +1 = v* (). We have thus reduced the problem, from m to the minimal-
hyperelliptic ©. So let us suppose in the sequel that m = 1, or in other words,
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that (T,p) = (I”,p"). Let (I'°,p®) denote the fiber product of the marked
morphisms (I't, v (p)) 5 (T,p) and (P, 00) —— (T',p) (Corollary 3.10). The
marked curve (T',p) = (I”,p"), is in fact the desingularization of I'® at its
unibranch point p® (Corollary 3.10), and fits in the following diagram:

Let g, 9%, g° and g denote the arithmetic geni of f, '+, T¢ and T, respectively.
Knowing the numerical equivalence class of I'" we easily obtain (e.g., Theo-
rem 4.3 (2)):

_ 1 1
§= Z((2(1—1)(271—2)+4—p2 —7@)) and gt =25+ 5(p—2+7"),

We can then deduce g, arguing as follows (like in the proof of [16, § 5.8 (2)]):
since '+ 5 T is a flat degree-2 morphism, and P! has arithmetic genus = 0,
we must have the relation g+ — ¢g¢ = 2(§—0) = 2. Hence, g© = %(p—Z—f-’y(l)).

We might as well argue that the desingularization morphism P! % I is obtained
by monoidal transformation S (i.e., j is the restriction of a finite sequence of

monoidal transformations S’ ——» S such that the strict transform of I' C S is
isomorphic to P'), implying that I'® is contained in the fiber product of S+ LN

Sand 8" -1 S , for which we can calculate its canonical divisor. Applying the
adjunction formula gives the above value of g?.

. 1S
At last, composing (T, p) 1 (°, p®) with (I'°, p®) AR (P!, o), we get the
degree 2 cover f: T’ EN P!, and a morphism (f,7) : T — Ty C P! x X as in
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Proposition 2.4, fitting in:

ooEIE”1
// N
pel —113p® €T —— (00,q) €Ty, ——— P x X
Py n\'Ll
ge X

We have shown in the proof of Proposition 2.4 (3), that (p—1) consecutive
monoidal transformations are necessary to desingularize F f,n at its unibranch
point (00, q), and each monoidal transformation lowers its arithmetic genus
by 1. On the other hand, since (I',p) dominates (I'®,p®) and is smooth over
(00,q), we easily deduce that g© — g < 1(p —1). Hence g — 2(p — 1) =
3(-14yW) < g. O

5. On hyperelliptic d-osculating covers of arbitrary high genus

5.1. — We will let C;- and CIJ; denote, hereafter, the strict transforms of C,
and C, by e : St — S and C,:= ©(C4). Recall that to any hyperelliptic cover
7 : (T,p) — (X, q) we have uniquely associated a morphism ¢+ : T' — I't ¢ S+,
a rational irreducible curve I := (I't) € S and a vector (n,d, p,7) € N*3 x N4,
satisfying the following restrictions (Lemma 4.2 & Theorem 4.3):

—

. pis odd, bounded by 2d — 1, and v, + 1 = 1 = 72 = v3 = n(mod .2);
2. if p > 3, we must have (1) < p(2d — 1).
Furthermore, 7 can be canonically recovered from I' := ¢(I'") if, and

only if, I' is birational to I't, in which case:

3. T has arithmetic genus § := 1((2d—1)2n—2) +4—p* —~7?) > 0;

4. T+ = ¢*(T) is linearly equivalent to e* (nCo + (2d — 1)S,) — pso™ —
Z?:o Vit

5. T intersects 3, := ©(s,%), at a unique unibranch point, with multiplicity
ps

6. Tt and T intersect C- and C,, (at most) at pt := CL N st and (pt),

respectively, with multiplicities 2d — 1 — p and %(Qd —1-—p).

DEFINITION 5.1. — For any (n,d,p,vy) € N** x N* satisfying 5.1 (1), (2)
& (3), we let A(n,d,p,v) denote the unique element of Pic(S) such that
¢*(A(n,d, p,v)) is linearly equivalent to e*(nC, + (2d — 1)S,) — pso™ —
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25’:0 virit, and M Hx (n,d, p,7) denote the moduli space of degree-n minimal-
hyperelliptic d-osculating covers of type v, ramification index p at their marked
point, and birational to their canonical images in S*.

PROPOSITION 5.2. — Any @ € MHx(n,d,p,y) can be canonically recov-
ered from T' C S (Corollary 3.10 (2)). Conversely, any rational irreducible

curve I' C S satisfying properties 5.1 (1)—(6), gives rise to a unique element
Of MHX(”? da P ’Y)

Proof. — Given rcs satisfying 5.1 (1)—(6), we denote 't := <p*(f) C S+ and
consider the fiber product of (I't, p) R (f, w(pl)) with the desingularization
morphism (P!, co) ER (f,cp(pL)), say (I',p). Proceeding as in the proof of
Corollary 3.10, for the construction of 7°, we can easily prove that the natural
domination (T',p) — (I't, pt), composed with 7+ : (I't, pt) — (X, q) is indeed
the announced minimal-hyperelliptic d-osculating cover. [

Studying M Hx (n,d, p,~y) for a general vector (n,d, p,~), is a difficult and
elusive problem. We will henceforth restrict to the simpler case where p =1
and T is isomorphic to P!. In other words, we will focus on degree-n minimal-
hyperelliptic d-osculating covers with p = m = 1, and type v satisfying v(? =
(2d — 1)(2n — 2) + 3 (as well as v < p(2d — 1), if p > 3).

PRrROPOSITION 5.3 ([14, §3.4]). — Any curve I' C S intersecting C, at a
unique smooth point p € I' is irreducible, unless p > 3 and C}, is a component

of T.

PROPOSITION 5.4. — Let TV € S+ be a curve with no irreducible component
in {ri,i =0,...,3}, and intersecting C;- (at most) at a unique smooth point
pt € TL. Then, T is an irreducible curve, unless p > 3 and C’ZJ; s a component

of T+,

Proof. — The properties satisfied by 't assure us that T' := e, (I'}), its direct
image by e : S+ — S, does not contain C,, and that T'" is the strict transform
of T'. We can also check, that T is smooth at p := e(pt) and I N C, = {p}. It
follows, by Proposition 5.3, that (T, as well as its strict transform) I'* is, either
an irreducible curve, or p > 3 and C;‘ is a component of I'". O]

PROPOSITION 5.5 ([16, §6.2] & [12]). — Any a = (o) € N* such that o?) =
2a+1 s odd (and a® < p, whenever p > 3), gives rise to an exceptional curve
of the first kind [, C S. More precisely, let k € {0,1,2,3} denote the index
satisfying ar + 1 = oj(mod.2), for any j # k, and Sy = ng Ywy), then T,

€L

is a (—1)-curve and go*(fa) C S+ is the unique T -invariant irreducible curve

linearly equivalent to e*(aCy + Sk) — s — Z?:o ;T
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Proof. — Let A denote the unique numerical equivalence class of S satisfying
©*(A) = e*(aC, + Sk) — sy — Zf o a;r. It has self-intersection A - A = —1,
and A-K = —1 as well, hence, h° (S O3 (A)) > x(0z(A)) =1, and there exists
an effective divisor T’ € |A|. If p = 0, such a divisor I is known to be unique
and irreducible ([16, §6.2]). Its proof takes in account that for any m > 1 there
is no irreducible curve in S, numerically equivalent to mC,. However, when
p > 3 the latter property fails, due to the existence of C;, C S, implying that
the intersection number C), - A = p — a® must be non-negative. Conversely, if
a® < p, A intersects non-negatively 5p = p(Cp1), (as well as all other (-1)
and (-2)-curves in S), and M.Lahyane’s irreducibility criterion for (-1)-classes
applies to A ([12]). O

According to Proposition 5.5, any a € N* such that o(? is odd (and a < p,
if p > 3), gives rise to an exceptional curve of the first kind ', C S. Conversely,
we have the

COROLLARY 5.6. — Any irreducible curve in S with negative self-intersection,
is either equal to some F as above (Proposition 5.5), to C if p > 3, or belongs

to the set {Co,si,ri,z =0,.. .,3}.

Proof. — The arithmetic genus of an arbitrary irreducible curve T c S is non-
negative and equal to g := 141 (F T+T-K ) > 0, where K denotes the canonical
divisor of S. In particular I'-T'+T'- K > —2. Moreover, since ¢*(K) = e*(—2C,)
(cf. [16]) and C, is nef, we immediately deduce that I' K <0.Hence, [T <0
implies, either ['T=-2and[-K = 0, or [ T=-1=[-K.It follows, in any
case, that g = 0, hence Tis isomorphic to ]P’l IfIr-T=-1=T- K one can easily
check, via the projection formulae for S+ % S and S+ 5 S, that I+ := = (F)
is a TJ-—lnvarlant divisor in S and its projection in S, T' := e, (1), satisfies:
[0y =e () Cp =Tt e*(Cy) = -3t - e*(—2C,) = -t . p*(K) =
- -K=1

It immediately follows that T' (as well as ') is irreducible. Otherwise it
would break as a sum of two divisors exchanged by 7 : S — S, in which
case the above intersection number I' - C, should have been even. In other
words, I is an irreducible 7-invariant curve, intersecting C, at si, for a unique
k € {0,1,2,3}. Hence, I is linearly equivalent to aC, + Sk, for some a € N.

Recall also that T- - (CF + 32 s) = T'L - e*(C,) = 1, and let a = (o)
denote the vector of intersection numbers (I't - 7). Then, I'* is linearly equiv-
alent to e*(aC, + Sk) — s — Zf’ 0 QTF and intersecting with the numerically

equivalent curves {SzL = e*(S;) — sL rii=0,1,2 3} one easily finds out
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that ap + 1 = @;(mod.2), for any ¢ # k. Moreover, its self-intersection is equal
to2a —1—a® =T+ . T+ =¢*T) T+ =T p,(It)=2T-T = -2.
In other words, 2a + 1 = a(® and T = T, (Proposition 5.5).

At last, let us suppose that 'T=-2andT-K = 0, but T does not belong
to {Ei,?i,i = O,...,3}. It then follows that I't := @*(f) is a Tr-invariant
divisor of S*, of self-intersection I't - 't = —4, equal to the strict transform
of T' := e(I't) C S. Therefore, it must be, either an irreducible degree-2 cover
of I~“, or break as the sum of two copies of [~ P!, interchanged by 7+. In the
latter case, 't should be the strict transform of the divisor s ~1(¢’ + [~1]¢’),
for some ¢’ € X, in which case I't - 't # —4. Hence, I'* is indeed irreducible
(and T = e, (I'1) as well). On the other hand, recalling that ¢*(K) = e*(—2C,)
and ¢, (T'Y) = 2T, we obtain T' - (—=2C,) = e, (T'}) - (=2C,) =T+ . e*(=2C,) =
L. p* (f( ) = of - K =0, implying I' is numerically equivalent to a multiple
of C, According to Lemma 3.4 this can only happen if I' = C, and 't = C},
orpZB,F:CPandI‘l:Cj;. [

LEMMA 5.7. — Let A := A(n,d,1,v) be as in Definition 5.1, T an arbitrary
exceptional curve of the ﬁl"st liind on S and a € N* the unique vector as in
Proposition 5.5 such that ' =T, (Corollary 5.6). Then:

(y—@d—1)a)® —(@2d-1)2=3 , if Ta-5 =1

4(2d—1)Ty-A =
(v—(2d - 1)04)(2) +2(2d —1) — (2d — 1)2 — 3 otherwise.

Proof. — Straightforward verification. O

For A(n,d,1,v) to be nef, we must have A(n,d,1,7) - [, > 0, for any « as
above. On the other hand, minimizing their value is tantamount (Lemma 5.7)
to minimizing the norm of v — (2d —1)a. In order to do it we make the following
definitions.

DEFINITION 5.8. — 1. Given (n,d,vy) € N* x N* x N* satisfying 7, + 1 =
vj(mod.2),Vj = 1,2,3, as well as 7?) = (2d —1)(2n — 2) + 3, we let v =
(2d — 1)u + 2¢ be the unique decomposition, with x € N* having same
parity as v, and € € Z* such that max{|e;|} < d— 1. We will also assume,
here and henceforth, that v = (2d—1)u™ 426V < p(2d—1), whenever
p>3.
2. We define "y = (fu;) € N* in order to have (s — wi)ei = leg|, Vi =
0,---,3:
h,ui:,u,-—l—l if g >0 or hui:ui—l if g <O.
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3. At last, we choose two indices i, # j,, where |¢;| attains its two maximal
values, and let " = ("u;) € N* be such that for all i € {0,1,2,3} :

b b

pi="pi i i€ {io o} or  Ppi=p i ¢ {iojo}
REMARK 5.9. — The vector ’z may not be uniquely defined by Defini-

tion 5.8 (3). It should also be clear that g = ~v(mod.2), and 4¢® =
3(mod.(2d — 1)). Conversely, we have the

PROPOSITION 5.10. — Given any n € N* and v = (2d-1)u + 2¢, with u € N*
and € € Z*, such that:

o + 1= p1 = p2 = p3(mod.2)

4¢® =3(mod.(2d — 1)) and |g| <d-1, i=0,---,3,
7@ = (2d-1)(2n-2) + 3,

(as well as vV < p(2d-1), ifp > 3),

the minimal value of A(n,d,1,7) -fa, taken amongst all o € N* with o?) odd,
is attained at o equal, either to u, to 'u, or to *p.

COROLLARY 5.11. — The divisor A(n,d,1,7) is nef if and only if the vector
26 = v — (2d — 1)u € Z* (Definition 5.8), such that 4¢® = 3(mod.(2d — 1))
and maz{le;|} < d— 1, satisfies the supplementary conditions:

1. e®>d?—d+1;
2. 2d—1)(tp—p)-e=(2d —1)(0, leil) <3d? —3d+e@;
3. (2d— 1) — p) -e = maz{|e;| + |gj|, Vi £ 4, } <d? =1+,

As we shall see, given any n,d € N*, there exist types v = (2d—1)u+2¢ € N4,
such that v, + 1 = 71 = 72 = 73(mod.2) and y? = (2n — 2)(2d — 1) + 3, for
which A := A(n,d,1,v) is, either nef or not. We will actually construct in
Propositions 5.12 and 5.13, explicit examples where, either ¢ satisfies Corol-
lary 5.11 (1), (2) & (3), hence A is nef, or it does not satisfy Corollary 5.11 (1),
hence A is not nef. We actually conjecture that Proposition 5.12 exhausts all
types such that v = (2d — 1)(2n — 2) + 3 and A(n,d, 1,7) is nef.

PROPOSITION 5.12. — Let us fir d > 2, k € {0,1,2,3}, and p € N* such
that po + 1 = pj(mod.2) (for j = 1,2,3). Pick any vector 2 = (2¢;) € 274,
satisfying (Vi =0,...,3):

|2¢;| = d — (=1)%* if d is odd,

either |2e;| = (2d — 2)(1 — 0; ), or o
|2e:] = d — 26; if d is even.
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Then, for n satisfying v? = (2d — 1)(2n — 2) + 3, and assuming v = (2d —
)p + 2¢ belongs to N* (as well as vV < p(2d — 1), if p > 3), the divisor
A(n,d,1,7) is nef.

Proof. — One only needs to check (straightforward verification!), that any
such ¢ satisfies Corollary 5.11 (1), (2) & (3). O

PROPOSITION 5.13. — Let us fit d > 3 and p € N* such that p, + 1 =
pi(mod.2) (for j = 1,2,3), and let k denote the residue (mod.4) of d + 1.
Choose any integer vector € € Z* subject to the conditions

4@ =34 (2d-1)(d-2+ k) and v := (2d-1)u + 2e € N*,
and let n satisfy v = (2d — 1)(2n — 2) + 3. Then A(n,d,1,7) is not nef.

Proof. — Take any vector & € Z* satisfying (2) = 8h%+3(2k—3)h+k>—3k+3.
A straightforward verification shows that e? < e? < (2d -1)%Vi=0,...,3
and 4e® = 3 + (2d — 1)(d — 2 + k). In particular, 4¢®? < 3 + (2d — 1)? =
4d? — 4d + 4, hence ¢ does not satisfy property Corollary 5.11 (1). Therefore,
choosing any p € N* such that p,+1 = p;(mod.2) (for j = 1,2,3), and defining
v € N*and n € N by v := (2d — 1)u + 2¢ and v® = (2d — 1)(2n — 2) + 3,
respectively, the corresponding divisor A(n,d, 1,v) is not nef. O

LEMMA 5.14. — Let (n,d,v) € N* x N* x N* be such that d > 2, v = (2d —
1)(2n —2) + 3 and A(n,d,1,v) is nef. Then, for any j = 1,2,3, there exists at
most one exceptional curve of the first kind Ic g, such that f-A(n, d,1,7)=0
and T - s; = 1. In particular, the sum of the latter exceptional curves, denoted
by Z(n, d,1,7), is a reduced divisor with (at most) three irreducible components.

Proof. — Straightforward verification again! [

REMARK 5.15. — According to Brian Harbourne’s results on anticanonical
rational surfaces (cf. [6]), for any nef divisor D € Pic(S), such that -K - D > 2,
the complete linear system |D| is base point free and dim|D| = D - (D — K).
The following result is in order.

LEMMA 5.16. — Let (n,d,y) € N* x N* x N* be such that d > 2, (3 =
(~2d —1)(2n — 2) + 3, and let A and Z denote, respectively, A(n,d,1,7) and
Z(n,d,1,v), the divisors defined in Lemma 5.14. Then, A nef implies:
1.A-C,— Z?:1 S — Z is nef:
2. |A -C,— ij:l 5 — Z| is base point free;
3. A-Co| =015+ Z+|A-Co— Y75 - Z);
4

)

. dim|A] =2d—2, dim|A—Co|=d—2 and h'(S,05(A-C,)) =0.
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DEFINITION 5.17. — Let Do € S denote the unique point of intersection
{Po} := C, N5, and consider any divisor A := A(n,d,1,7) as in Lemma 5.14.
We define the following subsets of ’A|:

(1) Al

={DE|A|, pné,={p} or G,cDf

&5 [ o+ [A5)).
PROPOSITION 5.18. — If A := A(n,d,1,7) is nef, then:
1. |A|5m5o is a (d — 1)-dimensional subspace of |A|;

Co,Po

(2) A3

= |A|5

Co,Po

2. Cy + |A — 50| and ‘A%’ 5, are two different hyperplanes of ’A|5 5.7
3. any element Te |A|5 5. in the complement of the latter hyperplanes, is

a smooth integral divisor isomorphic to PL.

Proof. — (1) According to Lemma 5.16 (4), we have h' (§, Og(A - 5’0)) =
Hence, the exact sequence of Og-modules:
0 — O5(A-Co) — Og(A) — Og (A) — 0,
gives rise to the exact sequence
0— H°(S,05(A-C,)) — H(S,05(A)) — H(C,, 05 (A)) — 0.

Since deg(05o (A)) = d — 1, we can pick a section f € Ho(éo,an (A))
which only vanishes at p, (i.e., with zero divisor (f), = (d — 1)p,), as well
as a preimage of f, say v € H° (5, O§(A)), such that its zero divisor D :=

€ |A| only intersects C, at P, (i.e., DNnC, = {;70}) Any other section
of Og(A), satisfying the same property as v, is obtained by adding the image
of an arbitrary element of H° (g, O§(A—6o)). In other words |A|C~?o,ﬁo C |A| is
the (d — 1)-dimensional subspace generated by D and C, + |A—50|.

(2) On the other hand, according to Lemma 5.16 (2) & (3), there exists

|A C, | avoiding p,, in which case C,+ D e |A| is smooth at p,. Up
to replacmg the former divisor D € |A| by the generic element of the pencil
generated by D and (C’ +D' ), we can assume hereafter D smooth and tangent
to C, at Do- In particular, for any D" e |A—50|7 either p, ¢ D" and C, + D"
is also smooth and tangent to C, at p,, or p, € D" and C, + D" is singular
at D,. In both cases, all but one element of the pencil generated by D and
C, + D" is smooth and tangent to C, at p,. Therefore, such a generic element
is transverse at p, to S,, and can not contain s, as an irreducible component.
At last, since A -5, = 1, the unique singular element of the latter pencils must
belong to s, + |A — §O| Hence, |A|SC~°O’5O and C, + |A — 5o| are indeed distinct
hyperplanes of ’A

Co,Do”
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(3) Any T € |A| G5, 0 the complement of the latter hyperplanes, has arith-

metic genus 0. Let us also prove its irreducibility. We start remarking that r
can only intersect 5’0 at p,, and does not contain 50 nor $;, (¢ = 0,1,2,3),
as an irreducible component. Hence, its inverse image I't := ¢* (f) c Stis
linearly equivalent to e*(nC, + S,) — s+ — >0 ~ri-, and neither CX, nor
sf- (Vi =0,...,3), is an irreducible component of I't. In order to check that
I'* (hence f) is an irreducible curve, by means of Proposition 5.4, we still need
to show that 73 ¢ I't,Vi=0,...,3. Otherwise I't would have an irreducible

—1
component ' C S+, linearly equivalent to e*(nC, + S,) — s — E?:o yiri
— 1 ~
for some type 7 strictly bigger than ~, implying that ¢(I'") C S has a negative
arithmetic genus. Contradiction! In case p > 3, an analogous line of reasoning
shows that I'* can not contain CIJ; as an irreducible component and Proposi-

tion 5.4 still applies. [

Recalling that M Hx (n,d, 1,7) is birationally isomorphic to [A(n,d,1,7)|5
(Proposition 5.2), we deduce the:

0:Po

COROLLARY 5.19. — For any (n,u) € N* x N* satisfying pio +1 = 1 = po =
p3(mod.2) and p® = 2n 4+ 1, (and p™ < p, if p > 3), we let m,, denote
ztvhe mi@'mal-hyperelliptic 1-osculating cover associated to the e:cceptz'oqal curve
Iy C S (cf. Proposition 5.5 & (16, §6.2]). Then, |A(n,d,1,7)| = {I'y} and
MHx(n,1,1, u) reduces to {m,}.

More generally, for any (n,d,v) € N* x N* x N* such that:

L Yo+1=m =7 =73(mod.2) (and v < p, ifp>3),

2.d>2 and ~+? = (2d —1)(2n —2) + 3,

3. Aln,d,1,v) is mnef,
the moduli space M Hx (n,d,1,7) is birational to |A(n,d, 1,7)|5 5

In particular, dim(MHX(n,d, 1,7)) =d—1, for any (n,d,v) as in Propo-
sition 5.12.

At last, we propose a less conceptual but more geometrical construc-
tion of MHx(n,d,1,7v). We will construct d effective divisors {GL,FJ-J-,j =
o0,... ,d—2} of S+, with birational models given by explicit equations in P' x X,
which generate all M Hx(n,d,1,v). Hence, any element of M Hx(n,d,1,7)
is birational to the zero set of a linear combination of d specific degree-n
polynomials with coefficients in K(X), the field of meromorphic functions
on X.

THEOREM 5.20. — For any (n,d,y) € N* x N* x N* as in Proposition 5.12,
le* (nCo+ (2d—1)S,) — st — >, virit| contains a (d— 1)-dimensional subspace
with a generic element, say T, satisfying:
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1. Tt is a 71 -invariant smooth irreducible curve of genus g : = %(—1—}—7(1));
2. T can only intersect C- at pt := C N st;
3. o(Tt) C S is isomorphic to P!.

COROLLARY 5.21. — Given (n,d,v) € N* xN*xN* as above, the moduli space
MHx (n,d,1,7) (Definition 5.1) has dimension d — 1, and its generic element
18 smooth of genus g : = %(—1 +~M),

Proof of Theorem 5.20. — We will only work out the case v := (2d — 1) + 2¢,
with e = (0,d —1,d—1,d —1).

For any other choice of ¢, the corresponding proof runs along the same lines
and will be skipped. In our case, the arithmetic genus g and the degree n satisfy:

29+ 1= (2d—1)u +6(d— 1) and 2n = (2d — )@ +4(d — 1)(p1+pa+pus)+6d — 7.

Consider 7o : = p+ (1,1,1,1),p4" : = p+(0,2,1,1), 4" = p+ (0,0,1,1),
and let 7l, 7'+, 72"+ c S1 denote the unique 71-invariant curves linearly
equivalent to:

1) 7"~ e*(mCy + S,) — s — >, ;ri-, where 2m + 1 = i,
2) Z'" ~ e*(m'Co+ S1) — st — >, i, where 2m/ + 1 = w®;
3) 2" ~e*(m/Cy + S1) — st — >, v, where 2m” +1 = aSE

Moreover, if p, # 0 we choose p = p+(—1,1,1,1) and 2m + 1 = E@)’ and

let Z+ ¢ S+ denote the unique 71-invariant curve Z+ ~ e* (mCy+S,) — s+ —

o
Zi Hi’ril'

However, if p, = 0 we will simply put Zt . = ZJ_ + 27“0l7 so that in both
cases, the divisors D := 7 +zt + 2s¢ and Di- := 2’ + Z"" 4+ 257 will be
linearly equivalent. Let us also define,

/J’(l) = IMN =p + (0707 1a 1)7
I'L(2) = + (Oa la 07 1)7

“(3) = + (Oa 1a 1’0)7
and let Z(lk)(k = 1,2,3) be the 71-invariant curve of S, linearly equivalent
to e*(m)Co + Sk) — st =Y, u(k)irf, where 2m ) +1 =73, /“L%k)i'
At last, consider Z1 ~ e*(mC, + S,) — st — >, pirit, where 2m + 1 =

> 1?2 (Definition 5.1). Let A € Pic(S) denote the unique class such that
’e* (nCo + (2d — 1)S,) — s+ = %, 'yirﬂ = ‘go*(A)| The (d — 1)-dimensional
subspace of |<p* (A)‘ we are looking for, will be made of all above curves. We
first remark the following facts:
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a) we can check via the adjunction formula, that the divisors ¢*(A) and A
have arithmetic genus g : = %(—1 + ’y(l)) and 0, respectively, and that ¢* (|AD
€1
is equal to |g0* (A)|T , the sub-space of 7+-invariant elements of |<p* (A)|;
b) the d — 1 divisors

3
S+ (Zhyt2si)+iDr+H(d—2—§)Df,  j=0,..,d—2,
k=1

as well as

Gt :=Z2"+(d-1)D;,
are 7--invariant, belong to |<p* (A)| and have p} := C+ N s} as their unique
common point;

c) the curve F3- is smooth at p}, while any other Fjl has multiplicity 1 <
2j +1 < 2d at p-. In particular, they span a (d — 2)-dimensional subspace
of |<p* (A)|, having a generic element smooth and transverse to s> at p.;

d) the curve G+ has multiplicity 2d at pOL, and no common irreducible com-
ponent with any FjJ- (Vj =0,...,d—2), implying that (G+, FjJ-,j =0,...,d—2),
the (d —1)-dimensional subspace they span in |cp*(A)|, is fixed component-free;

e) any irreducible curve I't € (GJ-,FjJ-,j = 0,...,d — 2) projects onto a
smooth irreducible curve (isomorphic to P!). In particular I't must be smooth
outside U3_,ri-.

f) the curves G+ and F;- have no common point on any 7 (i = 0,...,3),
implying that ', the generic element of (G, FjJ-,j =0,...,d—2), is smooth
at any point of U?_,7- and satisfies the announced properties, i.e.,

(1) T+ is 71-invariant, smooth and satisfies the irreducibility criterion in
Proposition 5.4;

(2) pt is the unique base point of the linear system and I't N C- = {pt};

(3) its image (') C S is irreducible, linearly equivalent to A(n,d,1,7)
and of arithmetic genus 1 ((2d — 1)(2n — 2) + 3 — v(?)) = 0; hence, isomorphic
to PL. O

Proof of Corollary 5.21. — The degree-2 projection ¢ : I't — (I'*) is ram-
ified at p} and ¢(I'!) is isomorphic to P'. Moreover, I'" is a smooth ir-
reducible curve linearly equivalent to ¢* (A(n,d,l,’y)), of arithmetic genus

9= 350 -1).
In other words, the natural projection (I't,pt) C (S+,pt) I (X,q) is a

smooth degree-n minimal-hyperelliptic d-osculating cover of type -, and genus
g, such that (2n —2)(2d-1) +3 = 7 and 29 + 1 = (). O
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