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HYPERELLIPTIC d-OSCULATING COVERS
AND RATIONAL SURFACES

by Armando Treibich

Abstract. — Let d be a positive integer, K an algebraically closed field of charac-
teristic p 6= 2 and X an elliptic curve defined over K. We consider the hyperelliptic
curves equipped with a projection over X, such that the natural image of X in the
Jacobian of the curve osculates to order d to the embedding of the curve, at a Weier-
strass point. We first study the relations between the degree n, the arithmetic genus
g and the osculating degree d of such covers. We prove that they are in a one-to-one
correspondence with rational curves of linear systems in a rational surface and deduce
(d− 1)-dimensional families of hyperelliptic d-osculating covers, of arbitrary big genus
g if p = 0 or such that 2g < p(2d+1) if p > 2. It follows at last, (g+d−1)-dimensional
families of solutions of the KdV hierarchy, doubly periodic with respect to the d-th
variable.

Résumé (Projections hyperelliptiques d-osculantes et surfaces rationnelles)
Soit d un entier positif, K un corps algébriquement clos de caractéristique p 6= 2 et X

une courbe elliptique définie sur K. On étudie les courbes hyperelliptiques munies d’une
projection sur X, telles que l’image naturelle de X dans la jacobienne de la courbe,
oscule à l’ordre d au plongement de celle-ci, et ce en un point de Weierstrass. On étudie
tout d’abord les relations entre le degré n, le genre arithmétique g et l’ordre d’osculation
d des ces projections. On prouve qu’elles sont en correspondance biunivoque avec des
courbes rationnelles dans des systèmes linéaires d’une surface rationnelle et on en
déduit des familles (d−1)-dimensionnelles de revetements hyperelliptiques d-osculants
de genre g, arbitrairement grand si la caractéristique p = 0, ou 2g < p(2d+1) si pp > 2.
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HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES 379

Il en résulte des familles (g +d−1)-dimensionnelles de solutions de la hiérarchie KdV ,
doublement périodiques par rapport à la d-ième variable.

1. Introduction

1.1. — Let P1 := K ∪ {∞} and (X, q) denote, respectively, the projective line
and a fixed elliptic curve marked at its origin, both defined over an algebraically
closed field K of arbitrary characteristic p 6= 2. We will study all finite separa-
ble marked morphisms π : (Γ, p)→ (X, q), called hereafter hyperelliptic covers,
such that Γ is a degree-2 cover of P1, ramified at the smooth point p ∈ Γ.
Canonically associated to π there is the Abel (rational) embedding of Γ into
its generalized Jacobian, Ap : Γ → JacΓ, and {0} ( V 1

Γ,p · · · ( V gΓ,p, the flag
of hyperosculating planes to Ap(Γ) at Ap(p) ∈ JacΓ (cf. 2.1 & Definition 2.1).
On the other hand, we also have the homomorphism ιπ : X → JacΓ, obtained
by dualizing π. There is a smallest positive integer d such that the tangent
line to ιπ(X) is contained in the d-dimensional osculating plane V dΓ,p. We call
it the osculating order of π, and π a hyperelliptic d-osculating cover (Defini-
tion 2.3 (2)). If π factors through another hyperelliptic cover, the arithmetic
genus increases, while the osculating order can not decrease (Corollary 2.7).

Studying, characterizing and constructing those with given osculating or-
der d but maximal possible arithmetic genus, so-called minimal-hyperelliptic
d-osculating covers, will be one of the main issues of this article. The other
one, to which the first issue reduces, is the construction of all rational curves
in a particular anticanonical rational surface associated to X (i.e., a rational
surface with an effective anticanonical divisor). Both problems are interesting
on their own and in any characteristic p 6= 2. Up to recently they were only
considered over the complex numbers and through their link with solutions of
the Korteweg-deVries hierarchy, doubly periodic with respect to the d-th KdV
flow (cf. [1], [3], [8], [10], [16], [17] for d = 1, [13], [2], [4], [5] for d = 2 and [15]
for d ≥ 3). At last let me point out a less restrictive situation already studied
but only over C: one may drop the hyperelliptic assumption on the curve Γ and
choose a degree-d effective divisor D =

∑l
j=1mjpj with support at l generic

points of Γ. Forcing the line ιπ(X) to be contained in the hyperosculating plane∑l
j=1 V

mj

Γ,pj
one obtains so-called D-tangential covers. In case d = 1, or mj = 1

and π is étale at pj (∀j = 1, · · · , l), the corresponding covers were constructed
by solving the associated Calogero-Moser integrable system (e.g., [11] & [10];
see also [2]) and give rise to d×dmatrix solutions of the Kadomtsev-Petviashvili
equation, a suitable generalization of the KdV one (cf. [9]). Constructing the

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



380 A. TREIBICH

general D-tangential cover was considered as a geometrical problem for Gener-
alized Jacobians of irreducible complex projective curves but (reduced to and)
solved as a geometric problem for a particular ruled surface πS : S → X (cf.
[14]), the same one constructed in Section 3 below.

We sketch hereafter the structure and main results of our article. (1)

1. We start defining in Section 2 the Abel rational embedding Ap : Γ →
JacΓ, and construct the flag {0} ( V 1

Γ,p · · · ( V gΓ,p = H1(Γ, OΓ), of hyper-
osculating planes at the image of any smooth point p ∈ Γ. We then define
the homomorphism ιπ : X → JacΓ, canonically associated to the hyperel-
liptic cover π, and its osculating order (Definition 2.3 (2)). Regardless of
the osculating order, we prove that any degree-n hyperelliptic cover has
odd ramification index at the marked point, say ρ, and factors through
a unique one of maximal arithmetic genus 2n − ρ+1

2 (Theorem 2.5). We
finish characterizing the osculating order by the existence of a particular
projection κ : Γ→ P1 (Theorem 2.5).

2. The d-osculating criterion in Theorem 2.5 paves the way to the algebraic
surface approach developed in the remaining sections. The main charac-
ters are played by (two morphisms between) three projective surfaces,
canonically associated to the elliptic curve X:
• e : S⊥ → S: the blowing-up of a particular ruled surface πS : S →
X, at the 8 fixed points of its involution;
• ϕ : S⊥ → S̃: a projection onto an anticanonical rational surface.

3. Once S, S⊥ and S̃ are constructed (Definitions 3.1 & 3.3), we prove that
any hyperelliptic d-osculating cover π : (Γ, p)→ (X, q) factors canonically
through a curve Γ⊥ ⊂ S⊥, and projects, via ϕ : S⊥ → S̃, onto a rational
irreducible curve Γ̃ ⊂ S̃ (Proposition 3.7). We also prove that any hyperel-
liptic d-osculating cover dominates a unique one of same osculating order
d, but maximal arithmetic genus, so-called minimal-hyperelliptic (Corol-
lary 3.8). Conversely, given Γ̃ ⊂ S̃, we study when and how one can re-
cover all minimal-hyperelliptic d-osculating covers having same canonical
projection Γ̃ (Corollary 3.10).

4. Section 4 is mainly devoted to studying the linear equivalence class of the
curve Γ⊥ ⊂ S⊥, canonically associated to any hyperelliptic d-osculating
cover π, and associated invariants (Lemma 4.2 & Theorem 4.3). We end
up with a numerical characterization ofminimal-hyperelliptic d-osculating
covers (Corollary 4.5).

(1) I am grateful to the referee for his comments, remarks and suggestions which helped me
improve and clarify the exposition
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HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES 381

5. At last, we dress the list of all (−1) and (−2)-irreducible curves of S̃
(Corollary 5.6), needed to study its nef cone, and give, for any n, d ∈ N∗,
two different constructions of (d − 1)-dimensional families of smooth,
degree-n, minimal-hyperelliptic d-osculating covers: one based on Brian
Harbourne’s results on anticanonical rational surfaces ([6]), the other one
based on [15] and leading, ultimately, to explicit equations for the corre-
sponding covers.

2. Jacobians of curves and hyperelliptic d-osculating covers

2.1. — Let K be an algebraically closed field of characteristic p 6= 2, P1 :=

K∪{∞} the projective line over K and (X, q) a fixed elliptic curve, also defined
over K. The latter will be equipped with its canonical symmetry [−1] : (X, q)→
(X, q), fixing ωo := q as well as the other three half-periods {ωj , j = 1, 2, 3}.
We will also choose once for all, an odd local parameter of X centered at q, say
z, such that z ◦ [−1] = −z.

By a curve we will mean hereafter a complete integral curve over K, say
Γ, of positive arithmetic genus g > 0. The moduli space of degree-0 invertible
sheaves over Γ, denoted by JacΓ and called the generalized Jacobian of Γ, is
a g-dimensional connected commutative algebraic group, canonically identified
to H1(Γ, O∗Γ), with tangent space at its origin equal to H1(Γ, OΓ). Recall also
the Abel (rational) embedding Ap : Γ→ JacΓ, sending any smooth point p′ ∈ Γ

to the isomorphism class of OΓ(p′ − p). For any marked curve (Γ, p) as above,
and any positive integer j, let us consider the exact sequence of OΓ-modules
0 → OΓ → OΓ(jp) → Ojp(jp) → 0, as well as the corresponding long exact
cohomology sequence:

0→ H0(Γ, OΓ)→ H0
(
Γ, OΓ(jp)

)
→ H0

(
Γ, Ojp(jp)

) δ→ H1(Γ, OΓ)→ · · · ,

where δ : H0
(
Γ, Ojp(jp)

)
→ H1(Γ, OΓ) is the coboundary morphism. Ac-

cording to the Weierstrass gap Theorem, for any d ∈ {1, . . . , g}, there exists
0 < j < 2g such that δ

(
H0
(
Γ, Ojp(jp)

))
is a d-dimensional subpace, denoted

hereafter by V dΓ,p.

For a generic point p of Γ we have V dΓ,p = δ
(
H0
(
Γ, Odp(dp)

))
(i.e., j = d),

while for any p ∈ Γ, the tangent to Ap(Γ) at 0 is equal to V 1
Γ,p =

δ
(
H0
(
Γ, Op(p)

))
.

Definition 2.1. — (1) The filtration {0} ( V 1
Γ,p · · · ( V gΓ,p = H1(Γ, OΓ) will

be called the flag of hyperosculating spaces to Ap(Γ) at 0.
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382 A. TREIBICH

(2) The curve Γ will be called a hyperelliptic curve, and p ∈ Γ a Weierstrass
point, if there exists a degree-2 projection onto P1, ramified at p. Or equiva-
lently, if there exists an involution, denoted in the sequel by τΓ : Γ → Γ and
called the hyperelliptic involution, fixing p and such that the quotient curve
Γ/τΓ is isomorphic to P1.

Proposition 2.2 ([14] § 1.6). — Let (Γ, p, λ) be a hyperelliptic curve of arith-
metic genus g, equipped with a local parameter λ centered at a smooth Weier-
strass point p ∈ Γ. For any odd integer 1 ≤ j := 2d− 1 ≤ g, consider the exact
sequence of OΓ-modules:

0→ OΓ → OΓ(jp)→ Ojp(jp)→ 0,

as well as its long exact cohomology sequence

0→ H0(Γ, OΓ)→ H0
(
Γ, OΓ(jp)

)
→ H0

(
Γ, Ojp(jp)

) δ→ H1(Γ, OΓ)→ · · · ,

δ being the coboundary morphism.
For any m ≥ 1, we also let [λ−m] denote the class of λ−m in H0

(
Γ, Omp(mp)

)
.

Then V dΓ,p is generated by
{
δ
(
[λ2l−1]

)
, l = 1, . . . , d

}
. In other words, the d-th

osculating subspace to Ap(Γ) at 0 is equal to δ
(
H0
(
Γ, Ojp(jp)

))
, for j = 2d−1.

Definition 2.3. — (1) A finite separable marked morphism π : (Γ, p) →
(X, q), such that Γ is a hyperelliptic curve and p ∈ Γ a smooth Weierstrass
point, will be called a hyperelliptic cover. Up to a translation we will always
assume π(p) = q. We will say that π dominates another hyperelliptic cover
π : (Γ, p)→ (X, q), if there exists a degree-1 morphism j : (Γ, p)→ (Γ, p), such
that π = π ◦ j.

(2) Let ιπ : X → JacΓ denote the group homomorphism q′ 7→ Ap
(
π∗(q′−q)

)
.

There is a minimal integer d ≥ 1, called henceforth osculating order of π, such
that the tangent to ιπ(X) at 0 is contained in V dΓ,p. We will then call π a
hyperelliptic d-osculating cover.

Proposition 2.4. — Let π : (Γ, p) → (X, q) be a degree-n hyperelliptic cover
with ramification index ρ at p, f : (Γ, p)→ (P1,∞) the corresponding degree-2
projection, ramified at p, and let Γf,π denote the image curve (f, π)(Γ) ⊂ P1 ×
X. Then (see diagram below),

1. the hyperelliptic involution τΓ satisfies [−1] ◦ π = π ◦ τΓ and ρ is odd;
2. Γf,π has arithmetic genus 2n− 1 and is unibranch at (∞, q);
3. let j : (Γ, p)→ (Γf,π, (∞, q)) denote the partial desingularization at (∞, q)

and π : (Γ, p)→ (X, q) its canonical projection, then: π is a hyperelliptic
cover of arithmetic genus 2n− 1

2 (ρ+ 1);
4. π, as well as any hyperelliptic cover dominated by π, factors through π.
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p ∈ Γ
π //

j

1:1

&&

q ∈ X

p ∈ Γ

j

1:1

;;

f
,,

(f,π)
// (∞, q) ∈ Γf,π

77

''

� � // P1 ×X[d] OO

OO

∞ ∈ P1

Proof. — (1) Let Albπ : JacΓ → JacX denote the Albanese homomorphism,
sending any L ∈ JacΓ to Albπ(L) := det(π∗L) ⊗ det(π∗OΓ)−1, and Γ0 denote
the open dense subset of smooth points of Γ. Up to identifying JacX with
(X, q), we know that Albπ ◦ ιπ = [n], the multiplication by n, and Albπ ◦ Ap
is well defined over Γ0 and equal there to π. Knowing, on the other hand, that
Ap ◦ τΓ = [−1]◦Ap, we deduce that π ◦ τΓ = Albπ ◦Ap ◦ τΓ = [−1]◦Albπ ◦Ap =

[−1] ◦ π (over the open dense subset Γ0, hence) over all Γ as asserted.
(2) & (3) The projections f and π have degrees 2 and n, implying that Γf,π

is numerically equivalent to n.{∞} × X + 2.P1 × {q} and, by means of the
adjunction formula, that it has arithmetic genus 2n− 1. We also know that f
and π have ramification indices 2 and ρ at p ∈ Γ. Hence, Γf,π intersects the
fibers P1 × {q} and {∞} × X at (∞, q), with multiplicities ρ and 2. Adding
property (1) of Proposition 2.4 we deduce that its local equation at (∞, q)
can only have even powers of z, and must be equal to z2 = wρh(w, z2), for
some invertible element h (i.e., h(0, 0) 6= 0). In particular Γf,π is unibranch
and has multiplicity min{2, ρ} at (∞, q). Moreover, for its desingularization
over (∞, q), ρ−1

2 successive monoidal transformation are necessary, each one
of which decreases the arithmetic genus by 1. Hence Γ has arithmetic genus
2n− 1− ρ−1

2 = 2n− ρ+1
2 as asserted.

(4) The smooth point p ∈ Γ is the unique pre-image of (∞, q) by (f, π) :

Γ → Γf,π while Γ \ {p} is isomorphic to Γf,π \ {(∞, q)}. Hence, (f, π) lifts to
a birational morphism j : (Γ, p) → (Γ, p) (and π = π ◦ j). Reciprocally, any
other hyperelliptic cover dominated by π must factor through

(
Γf,π, (∞, q)

)
and should lift to its partial desingularization (Γ, p). In other words, it should
dominate π.

Theorem 2.5. — The osculating order of an hyperelliptic cover π : (Γ, p) →
(X, q), is the minimal integer d ≥ 1 for which there exists a morphism κ : Γ→
P1 satisfying:

(1) the poles of κ lie along π−1(q);
(2) κ + π∗(z−1) has a pole of order 2d − 1 at p, and no other pole along

π−1(q) (2.1).
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384 A. TREIBICH

Furthermore, for such d there exists a unique morphism κ : Γ→ P1 satisfying
properties (1) & (2) above, as well as (Definition 2.1 (2)):

(3) τ∗Γ(κ) = −κ.

Proof. — According to Proposition 2.2, ∀r ≥ 1 the r-th osculating subspace
V rΓ,p is generated by

{
δ
(
[λ−(2l−1)]

)
, l = 1, . . . , r

}
. On the other hand, π being

separable, the tangent to ιπ(X) ⊂ JacΓ at 0 is equal to π∗
(
H1(X,OX)

)
, hence,

generated by δ
(
[π∗(z−1)]

)
.

In other words, the osculating order d is the smallest positive integer such
that δ

(
[π∗(z−1)]

)
is a linear combination

∑d
l=1 alδ

(
[λ−(2l−1)]

)
, with ad 6= 0.

Or equivalently, thanks to the Mittag-Leffler Theorem, the smallest for which
there exists a morphism κ : Γ → P1, with polar parts equal to π∗(z−1) −∑d
l=1 alλ

−(2l−1). The latter conditions on κ are equivalent to Theorem 2.5 (1)
& (2). Moreover, up to replacing κ by 1

2

(
κ−τ∗Γ(κ)

)
, we can assume κ is τΓ-anti-

invariant. The difference of two such functions should be τΓ-anti-invariant, while
having a unique pole at p, of order strictly smaller than 2d− 1 ≤ 2g− 1, where
g denotes the arithmetic genus of Γ. Hence the difference is identically zero,
implying the uniqueness of such a morphism κ.

Definition 2.6. — 1. The pair of marked projections (π, κ), satisfying
Theorem 2.5 (1), (2) & (3), will be called a hyperelliptic d-osculating
pair, and κ the hyperelliptic d-osculating function associated to π.

2. If the latter π : (Γ, p)→ (X, q) does not dominate any other hyperelliptic
d-osculating cover, we will call it minimal-hyperelliptic d-osculating cover.

Corollary 2.7. — Let π : (Γ, p) → (X, q) and π′ : (Γ′, p) → (X, q) be two
hyperelliptic covers of osculating orders, d and d′ respectively, such that π dom-
inates π′. Then d ≤ d′.

Proof. — Let κ′ be the hyperelliptic d-osculating function associated to π′, and
j : (Γ, p) → (Γ′, p′) the birational morphism such that π = π′ ◦ j. Then, the
poles of κ′◦j : Γ→ P1 lie along π−1(q), while κ′◦j+π∗(z−1) =

(
κ′+π′

∗
(z−1)

)
◦j

has a pole of order 2d′ − 1 and no other pole along π−1(q). It follows (along
the same lines of proof as in Theorem 2.5) that the tangent to ιπ(X) must be
contained in V d

′

Γ,p. Hence, the minimality of d implies d ≤ d′.

3. The algebraic surface set up

3.1. — We will construct hereafter the ruled surface πS : S → X and its
blowing-up e : S⊥ → S, both naturally equipped with involutions τ : S →
S and τ⊥ : S⊥ → S⊥, as well as a degree-2 projection ϕ : S⊥ → S̃ to a
known anticanonical rational surface . We will then prove that any hyperelliptic
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HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES 385

d-osculating cover π : (Γ, p) → (X, q) factors uniquely through πS⊥ : πS ◦
e : S⊥ → X and projects, via S⊥ ϕ→ S̃, onto an irreducible rational curve.
Moreover, we will prove that π dominates a unique hyperelliptic d-osculating
cover (Corollary 3.8).

Definition 3.1. — (1) Fix an odd meromorphic function ζ : X → P1 :=

K ∪ {∞} with divisor of zeroes and poles equal to (ζ) = q + ω1 − ω2 − ω3

and consider the open affine subsets Uo := X \ {q} and U1 := X \ {ω1}. We
let πS : S → X denote the ruled surface obtained by identifying P1 × Uo with
P1 × U1, over X \ {q, ω1}: ∀q′ 6= q, ω1, (To, q

′) ∈ P1 × Uo is identified with
(T1 + 1

ζ(q′) , q
′) ∈ P1 × U1.

In other words, we glue the fibers of P1×U0 and P1×U1, over any q′ 6= q, ω1,
by means of a translation. Hence the constant sections q′ ∈ Uk 7→ (∞, q′) ∈ P1×
Uk (k = 0, 1), get glued together, defining a particular one denoted by Co ⊂ S.

(2) The involutions P1 × Uk → P1 × Uk, (Tk, q
′) 7→

(
− Tk, [−1](q′)

)
(k =

0, 1), get glued under the above identification and define an involution τ : S →
S such that πS ◦ τ = [−1] ◦ πS . In particular τ has two fixed points over each
half-period ωi: one in Co, denoted by si, and the other one denoted by ri
(i = 0, . . . , 3). It can also be checked that translating along the fibers of K×Uk
by any scalar a ∈ K(k = 0, 1), extends to an automorphism ta : S → S leaving
fixed Co and such that πS ◦ ta = πS .

(3) Whenever p ≥ 3 we choose ζ (Definition 3.1 (1)) as a local parameter
of X centered at q and consider the unique meromorphic function fp : X → P1

having a local development fp = 1
ζp + c

ζ + O(ζ), for some c ∈ K. We denote
Cp ⊂ S the curve defined over P1 ×Uo by the equation T p

o + cTo + fp = 0 and
over P1 × U1 by the equation T p

1 + cT1 + fp − 1
ζp − c

ζ = 0.

Proposition 3.2. — The ruled surface πS : S → X has a unique section of
self-intersection 0, namely Co, and its canonical divisor is equal to -2Co. In
particular S → X is isomorphic to P(E) → X, the ruled surface associated to
the unique indecomposable rank-2, degree-0 vector bundle over X (cf. [7, §V.2],
[16, § 3.1]). It also follows that up to isomorphism πS is independent of the
choice of p ∈ X and the half-period ω1.

Proof. — The meromorphic differentials dTo and dT1 get also glued together,
implying that KS , the canonical divisor of S is represented by -2Co. Any sec-
tion of πS : S → X, other than Co, is given by two non-constant morphisms
gi : Ui → P1 (i = 1, 2), such that go = g1 − 1

ζ outside {q, ω1}. A straight-
forward calculation shows that a section as above intersects Co, while having
self-intersection number greater or equal to 2. It follows from the general Theory
of Ruled Surfaces (cf. [7]) that Co must be the unique section with zero self-
intersection. Hence, the ruled surface πS : S → X defined above, is isomorphic

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



386 A. TREIBICH

to the projectivization of the unique indecomposable rank-2, degree-0 vector
bundle over X(cf. [7, §V.2]).

Definition 3.3 ([16, § 4.1]). — Let e : S⊥ → S denote hereafter the monoidal
transformation of S at {si, ri, i = 0, ..., 3}, the eight fixed points of τ , and
τ⊥ : S⊥ → S⊥ its lift to an involution fixing the corresponding exceptional
divisors

{
s⊥i := e−1(si), r

⊥
i := e−1(ri), i = 0, . . . , 3

}
. Taking the quotient of S⊥

with respect to τ⊥, we obtain a degree-2 projection ϕ : S⊥ → S̃, onto a smooth
rational surface S̃, ramified along the exceptional curves {s⊥i , r⊥i , i = 0, . . . , 3}.

Lemma 3.4. — Whenever p ≥ 3, the curve Cp (Definition 3.1 (3)) is irre-
ducible and linearly equivalent to pCo. Moreover, any irreducible curve numer-
ically equivalent to a multiple of Co, is either Co itself or a translate of Cp. In
particular Cp and pCo generate the complete linear system

∣∣pCo∣∣, and S is an
elliptic surface.

Proof. — The curve Cp is τ -invariant, does not intersect the section Co and
projects onto X with degree p. Hence, Cp is linearly equivalent to pCo and has
multiplicity one at ro ∈ S. In order to prove its irreducibility, we may assume
Cp → X is separable, or equivalently, that c 6= 0 in Definition 3.1 (3). Otherwise
Cp → X would be purely inseparable and Cp isomorphic to X. The curve Cp

is then smooth and transverse to the fiber So := π−1
S (q), and their intersection

number at ro ∈ So ∩ Cp is equal to 1. Let C ′ denote the unique irreducible
τ -invariant component of Cp going through ro, and suppose that C ′ 6= Cp . Then
C ′ has zero self-intersection and the projection C ′ → X has odd degree p′, for
some 1 < p′ < p. Otherwise (i.e., if p′ = 1), C ′ would give another section of πS
having zero self-intersection. Contradiction! Its complement, say C ′′ := Cp \C ′,
is a smooth, effective divisor linearly equivalent to (p−p′)Co. Translating C ′ by
an appropiate automorphism ta (Definition 3.1 (2)), we may assume that ta(C ′)

intersects C ′′, hence ta(C ′) ⊂ C” because their intersection number is equal
to 0. It follows that any irreducible component of Cp is a translate of C ′, forcing
the prime number p to be a multiple of p′ > 1. Therefore, p = p′ and Cp = C ′

is irreducible as asserted. Consider at last, any other irreducible curve, say C,
linearly equivalent to mCo for some m > 1. It has zero intersection number
with Cp and must intersect some translate of Cp , implying that they coincide.
In particular m = p and any element of

∣∣pCo∣∣, other than pCo, is a translate
of Cp .

The lemma and propositions hereafter, proved in [14, § 2.3, § 2.4 & § 2.5],
will be instrumental in constructing the equivariant factorization ι⊥ : Γ→ S⊥

(Definition 3.1).
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Lemma 3.5. — There exists a unique, τ -anti-invariant, rational morphism
κs : S → P1, with poles over Co + π−1

S (q), such that over a suitable neigh-
borhood U of q ∈ X, the divisor of poles of κs + π∗S(z−1) is reduced and equal
to Co ∩ π−1

S (U).

Proposition 3.6. — For any hyperelliptic cover π : (Γ, p) → (X, q), the ex-
istence of the unique hyperelliptic d-osculating function κ : Γ → P1 (Defini-
tion 2.6 (1)) is equivalent to the existence of a unique morphism ι : Γ → S

such that ι ◦ τΓ = τ ◦ ι, π = πS ◦ ι and ι∗(Co) = (2d− 1)p.

Proposition 3.7. — For any hyperelliptic d-osculating pair (π, κ), the above
morphism ι : Γ → S lifts to a unique equivariant morphism ι⊥ : Γ → S⊥

(i.e., τ⊥ ◦ ι⊥ = ι⊥ ◦ τΓ). In particular, (π, κ) is the pullback of (πS⊥ , κs⊥) =

(πS ◦ e, κs ◦ e), and Γ lifts to a τ⊥-invariant curve, Γ⊥ := ι⊥(Γ) ⊂ S⊥, which
projects onto the rational irreducible curve Γ̃ := ϕ

(
Γ⊥
)
⊂ S̃. In particular,

2d− 1 = e∗(Co) · ι⊥∗(Γ).

Γ⊥ ⊂ S⊥
ϕ
//

e

�� π
S⊥

��

Γ̃ ⊂ S̃

Γ ι //

ι⊥
;;

π

**

ι(Γ) ⊂ S

πS

%%
X

Proof. — The monoidal transformation e : S⊥ → S, as well as ι : Γ → S,
can be pushed down to the corresponding quotients, making up the following
diagram:

Γ

2:1

��

ι

""

S⊥

ϕ

��

e

}}

Γ/τΓ
ι/

""

S

2:1

��

S̃

ẽ

~~

S/τ

Moreover, since ẽ : S̃ → S/τ is a birational morphism and Γ/τΓ is a smooth
curve (in fact isomorphic to P1), we can lift ι/ : Γ/τΓ → S/τ to S̃, obtaining a
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morphism ι̃ : Γ→ Γ̃ ⊂ S̃, fitting in the diagram:

Γ̃ ⊂ S̃
ẽ

##

Γ

ι̃

==

ι
""

S/τ

S

2:1

;;

Recall now that S⊥ is the fibre product of ẽ : S̃ → S/τ and S → S/τ (cf. [16,
§ 4.1]). Hence, ι and ι̃ lift to a unique equivariant morphism ι⊥ : Γ→ Γ⊥ ⊂ S⊥,
fitting in

S̃

ẽ

  

Γ

ι̃

77

ι

''

ι⊥ // S⊥

ϕ

??

e

��

S/τ

S

2:1

>>

Furthermore, since ι̃ : Γ → S̃ factors through Γ → Γ/τΓ ∼= P1, its image
Γ̃ := ϕ

(
ι⊥(Γ)

)
= ι̃(Γ) ⊂ S̃ is a rational irreducible curve as claimed.

Corollary 3.8. — Any hyperelliptic d-osculating cover π : (Γ, p) → (X, q)

dominates a unique minimal-hyperelliptic d-osculating cover, with same image
Γ⊥ ⊂ S⊥ as π.

Proof. — Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic d-osculating
cover dominated by π : (Γ, p) → (X, q), ψ : (Γ, p) → (Γ, p) the corresponding
birational morphism and ι⊥ : Γ → S⊥ the factorization of π via S⊥. The
uniqueness of ι⊥ implies that ι⊥ = ι⊥ ◦ψ. Hence, they have same image in S⊥,
ι⊥(Γ) = ι⊥(Γ) = Γ⊥, and project onto the same curve Γ̃ ⊂ S̃. Furthermore,
ψ and ι⊥ being equivariant morphisms, we can push down ψ : Γ → Γ to an
identity between their quotients, Γ/τΓ ∼= P1 =→ P1 ∼= Γ/τΓ, as well as ι⊥ to a
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morphism ι̃ : P1 → Γ̃ (of same degree as ι⊥ : Γ→ Γ⊥), as shown hereafter:

p ∈ Γ

2:1

$$

ψ
''

ι⊥

++

π // q ∈ X

p ∈ Γ

2:1

��

ι⊥
// Γ⊥ ⊂ S⊥

ϕ

��

π
S⊥

99

P1 ι̃ // Γ̃ ⊂ S̃

Taking the fiber product of ι̃ : P1 → Γ̃ and ϕ : Γ⊥ → Γ̃, say Γ?, we then
factorize ι⊥ in the above diagram, through a birational morphism Γ → Γ? as
follows:

p ∈ Γ

$$

2:1

��

ι⊥

**

π // q ∈ X

p? ∈ Γ?

2:1

��

ι?⊥
// Γ⊥ ⊂ S⊥

ϕ

��

π
S⊥

99

P1 ι̃ // Γ̃ ⊂ S̃
where p? ∈ Γ? is the image of p ∈ Γ. Furthermore, since p is smooth and
the unique pre-image of p?, we deduce that the latter morphism factorizes
via the desingularization of Γ? at the unibranch point p?. We will therefore
assume till the end of the proof, that Γ? is indeed smooth at p?. On the other
hand, the degree-2 projection (Γ → P1 is ramified at p, hence) Γ? → P1 is
ramified at p?. Then, applying Proposition 3.7 one immediately checks that
the natural projection π? := πS⊥ ◦ ι?⊥ : (Γ?, p?) → (X, q) is a hyperelliptic
d-osculating cover, dominated by π (and π as well). Thus, the latter π? is the
unique minimal-hyperelliptic d-osculating cover dominated by π.

Remark 3.9. — The minimal-hyperelliptic d-osculating cover π?, explicitely
constructed in the proof of Corollary 3.8, can not be recovered from Γ̃ := ϕ(Γ⊥),
unless m := deg(ι⊥ : Γ→ Γ⊥) is equal to 1. There exists indeed a (m− 1)-di-
mensional family of (non-isomorphic)minimal-hyperelliptic d-osculating covers,
with same image Γ̃ ⊂ S̃, as shown hereafter. We will actually start in Corol-
lary 3.10 from a minimal-hyperelliptic d-osculating cover π (i.e., identifying Γ

with Γ?), and give its complete factorization in terms of the rational curve
Γ̃ ⊂ S̃.

Corollary 3.10. — Let π : (Γ, p) → (X, q) be a minimal-hyperelliptic d-os-
culating cover equipped (Proposition 3.7) with ι⊥ : Γ → Γ⊥, its equivariant
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factorization through S⊥, as well as P1 j→ Γ̃, the desingularization of the ratio-
nal irreducible curve Γ̃ := ϕ(Γ⊥). Then, there exist unique marked morphisms
ψ : (Γ, p) → (Γ[, p[), π[ : (Γ[, p[) → (X, q) and ι[⊥ : (Γ[, p[) →

(
Γ⊥, ι⊥(p)

)
,

such that (see the diagrams below):
(1) π and ι⊥ factor as π[ ◦ ψ and ι[⊥ ◦ ψ, respectively;
(2) deg(ψ) = m := deg(ι⊥), and ψ−1(p[) = {p};
(3) π[ is a minimal-hyperelliptic d[-osculating cover, where 2d−1 = m(2d[−

1);

(4) there exist a polynomial morphism R : (P1,∞)
m:1−→ (P1,∞) and a

degree-2 projection (Γ[, p[)
f[

→ (P1,∞), such that Γ is the fiber product of R
with f [ ;

(5) the arithmetic geni of Γ and Γ[, say g and g[, satisfy 2g+1 = m(2g[+1).
(6) Γ is isomorphic to Γ⊥ if and only if m = 1 and Γ̃ is isomorphic to P1.
Furthermore, the moduli space of degree-n minimal-hyperelliptic d-osculating

covers having same image Γ̃ ⊂ S̃ as π is (m− 1)-dimensional.

Proof. — (1)–(2)–(3) Let Γ[ denote the fiber product of Γ⊥
ϕ→ Γ̃ and P1 j→ Γ̃,

equipped with the corresponding birational morphism Γ[
ι[⊥→ Γ⊥ and degree-2

cover Γ[
f[

→ P1. The equivariant morphism ι⊥ can be pushed down, as in Corol-
lary 3.8, to P1 ι̃→ Γ̃ and factors through j, say ι̃ = j ◦ R. Moreover, the latter
morphisms satisfy ϕ ◦ ι⊥ = ι̃ = j ◦ R, implying the factorization through the
fiber product Γ[. In other words, there exists a degree-m equivariant morphism
Γ

ψ→ Γ[ (i.e., ψ ◦ τΓ = τΓ[ ◦ ψ), such that ι⊥ = ι[⊥ ◦ ψ, and with maximal
ramification index at p ∈ Γ (i.e., ψ−1(p[) = {p}, the fiber of ι⊥ over ι⊥(p)). In
particular Γ[ is unibranch at p[, and up to replacing (Γ[, p[) by its desingular-
ization at p[, we can assume π[ := πS⊥ ◦ ι[⊥ : (Γ[, p[)→ (X, q) is a hyperelliptic
cover. This construction is sketched in the diagrams below:

p ∈ Γ

ι⊥

##

f

��

π

++

ψ

��

p ∈ Γ

f

��

ι⊥ $$

π // X X

Γ⊥ ⊂ S⊥

ϕ

��

π
S⊥

<<

∞ ∈ P1

R
##

p[ ∈ Γ[

f[

��

ι[⊥
//

π[

66

Γ⊥

ϕ

��

π
S⊥

@@

∞ ∈ P1 ι̃

m:1
// p̃ ∈ Γ̃ ⊂ S̃ ∞ ∈ P1 j

// p̃ ∈ Γ̃
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According to Proposition 3.7, the osculating order of π[ (Definition 2.3 (2)),
say d[, satisfies 2d[ − 1 = e∗(Co) · ι[⊥∗(Γ[), while 2d− 1 = e∗(Co) · ι⊥∗(Γ). On
the other hand, the factorization ι⊥ = ι[⊥ ◦ ψ gives ι⊥∗(Γ) = ι[⊥∗

(
ψ∗(Γ)

)
=

ι[⊥∗(mΓ[), and replacing in the former equality gives 2d−1 = m(2d[−1). More-
over, the minimal-hyperelliptic d[-osculating cover dominated by π[ (Corol-
lary 3.8) has same image Γ⊥ as π[, hence, it must dominate the fiber product
product of Γ⊥

ϕ→ Γ̃ and P1 j→ Γ̃, and Γ[ as well. In other words, π[ is minimal-
hyperelliptic.

(4) Recall that (Γ[, p[)
f[

−→ (P1,∞) is classically represented in affine coor-
dinates as the zero locus

{
y2 = P (x)

}
projecting onto the first coordinate, for

some degree-(2g[ + 1) polynomial P (x), p[ being identified with the smooth
Weierstrass point added at infinity. On the other hand, P1 R→ P1, the pushed
down of Γ

ψ→ Γ[ defined above, has maximal ramification index at f(p) ∈ P1

(i.e., f(p) ∈ P1 is the unique pre-image of f [(p[) ∈ P1). Therefore, up to iden-
tifying the latter points with ∞ ∈ P1 we may say that (P1,∞)

R→ (P1,∞) is
defined by a degree-m separable polynomial R(t) (i.e., with non-zero deriva-

tive). Taking the fiber product of Γ[
f[

−→ P1 with P1 R−→ P1 amounts then
to replacing x by R(t), giving the affine equation

{
y2 = P

(
R(t)

)}
, where the

composed polynomial P
(
R(t)

)
has odd degree equal to (2g[ + 1)m. Hence, the

latter fiber product is a hyperelliptic curve, say ΓR, of arithmetic genus gR such
that 2gR + 1 = m(2g[+ 1), equipped with a smooth Weierstrass point pR ∈ ΓR

and a separable marked projection (ΓR, pR)
m:1−→ (Γ[, p[) fitting in the following

diagram:

p ∈ Γ

π

,,
%%

2:1

��

pR ∈ ΓR

2:1

��

m:1
%%

πR // X

∞ ∈ P1

R
%%

p[ ∈ Γ[

f[

��

ι[⊥
//

π[

55

Γ⊥

ϕ

��

==

∞ ∈ P1 j
// p̃ ∈ Γ̃

We can also check that pR ∈ ΓR is the unique pre-image of p[ ∈ Γ[, i.e., the
ramification index of (ΓR, pR)

m:1−→ (Γ[, p[) at pR is equal tom. Hence, if κ[ is the
hyperelliptic d[-osculating function for π[, its inverse image gives a hyperelliptic
d-osculating function for πR. In other words, πR is a hyperelliptic d-osculating
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cover dominated by theminimal-hyperelliptic d-osculating cover π. Hence, they
are isomorphic, implying that π factors as π[ ◦ ψ, 2g + 1 = m(2g[ + 1), and Γ

is the fiber product of P1 R−→ P1 and Γ[
f[

−→ P1 as claimed.

(5) It follows from the latter constructions that Γ is isomorphic to Γ⊥, if and
only if j : P1 → Γ̃ is an isomorphism and m = 1.

Consider at last, any other minimal-hyperelliptic d-osculating cover having
same image Γ̃ ⊂ S̃. The latter must also factor through the above minimal-
hyperelliptic d[-osculating cover π[. We may replace then R(t) by any other

degree-m separable polynomial and take its fiber product with Γ[
f[

−→ P1, to
produce the general degree-n minimal-hyperelliptic d-osculating cover having
image Γ̃. Two such polynomials give rise to isomorphic covers, if and only if
they differ by a linear change of variable (e.g., t → at + b). Thus, the moduli
space has dimension m+ 1− 2 = m− 1.

4. The hyperelliptic d-osculating covers as divisors of a surface

4.1. — The next step concerns studying the τ⊥-invariant irreducible curve
Γ⊥ ⊂ S⊥ associated in Section 3 to any hyperelliptic cover π. We calculate
its linear equivalence class in terms of the numerical invariants of π, and dress
the basic relations between them. We also prove, whenever p := char(K) ≥ 3,
the supplementary bound 2g + 1 ≤ p(2d − 1) (Theorem 4.3 (1) & (6)). We
end up giving a numerical characterization for π to be minimal-hyperelliptic
(Corollary 4.5).

Definition 4.1. — For any i = 0, . . . , 3, the intersection number between the
divisors ι⊥∗(Γ) and r⊥i will be denoted by γi, and the corresponding vector
γ = (γi) ∈ N4 called the type of π. Furthermore, for any µ = (µi) ∈ N4, µ(1)

and µ(2) will denote, respectively:

µ(1) :=

3∑
i=0

µi and µ(2) :=

3∑
i=0

µ2
i .

Lemma 4.2. — Let (Γ, p)
π→ (X, q) be a degree-n hyperelliptic d-osculating

cover, of type γ and ramification index ρ at p. Consider its unique equivariant
factorization through S⊥, ι⊥ : Γ → Γ⊥, and let m denote its degree and ι :=

e ◦ ι⊥ its composition with the blowing up S⊥ e→ S. Then:
1. ι∗(Γ) is equal to m.ι(Γ) and linearly equivalent to nCo + (2d− 1)So;
2. ι(Γ) is unibranch, and transverse to the fiber So := π∗S(q), at so = ι(p);
3. ρ is odd, bounded by 2d− 1 and equal to the multiplicity of ι∗(Γ) at so;
4. the degree m divides n, 2d−1 and ρ, as well as γi, for any i ∈ {0, . . . , 3};
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5. γo + 1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2);
6. ι⊥∗(Γ) is linearly equivalent to e∗

(
nCo + (2d− 1)So

)
− ρs⊥o -

∑3
i=0 γir

⊥
i .

Proof. — (1) Checking that ι∗(Γ) is numerically equivalent to nCo+(2d−1)So
amounts to proving that the intersections numbers ι∗(Γ) · So and ι∗(Γ) · Co
are equal to n and 2d − 1. The latter numbers are equal, respectively, to the
degree of π : Γ → X and the degree of ι∗(Co) = (2d − 1)p, hence the result.
Finally, since ι∗(Γ) and Co only intersect at so ∈ So, we also obtain their linear
equivalence.

(2) & (3) Let κ : Γ→ P1 be the hyperelliptic d-osculating function associated
to π, uniquely characterized by properties (1), (2) & (3) of Theorem 2.5, and
U ⊂ X a symmetric neighborhood of q := π(p). Recall that κ + π∗(z−1) is
τΓ-anti-invariant and well defined over π−1(U), where it has a (unique) pole of
order 2d − 1 at p. Studying its trace with respect to π we can deduce that ρ
must be odd and bounded by 2d− 1.

On the other hand, let
(
ι∗(Γ), So

)
so

and
(
ι∗(Γ), Co

)
so

denote the intersec-
tion multiplicities at so, between ι∗(Γ) and the curves So and Co. They are
respectively equal, via the projection formula for ι, to ρ and 2d − 1. At last,
since ι(Γ) is unibranch at so and

(
ι∗(Γ), So

)
so

= ρ ≤ 2d−1 =
(
ι∗(Γ), Co

)
so
, we

immediately deduce that ρ
m is the multiplicity of ι(Γ) at so (and So is transverse

to ι(Γ) at so).

(4) By definition of m, we clearly have ι∗(Γ) = m.ι(Γ), while {ρ, γi, i =

0, . . . , 3} are the multiplicities of ι∗(Γ) at different points of S. Hence,m divides
n and 2d− 1, as well as all integers {ρ, γi, i = 0, . . . , 3}.

(5) For any i = 0, . . . , 3, the strict transform of the fiber Si := π−1
S (ωi),

by the monoidal transformation e : S⊥ → S, is a τ⊥-invariant curve, equal
to S⊥i := e∗(Si) − s⊥i − r⊥i , but also to ϕ∗(S̃i), where S̃i := ϕ(S⊥i ). Hence,
the intersection number ι⊥∗(Γ) · S⊥i is equal to the even integer ι⊥∗(Γ) · S⊥i =

ι⊥∗(Γ) ·ϕ∗(S̃i) = ϕ∗(ι
⊥
∗
(
Γ)
)
· S̃i = 2Γ̃ · S̃i, implying that n = ι⊥∗(Γ) · e∗(Si) is

congruent mod.2 to ι⊥∗(Γ)·S⊥i +ι⊥∗(Γ)·(s⊥i +r⊥i ) ≡ ι⊥∗(Γ)·(s⊥i +r⊥i )(mod .2).

We also know, by definition, that γi := ι⊥∗(Γ) · r⊥i , while ι⊥∗(Γ) · s⊥o = ρ,
the multiplicity of ι∗(Γ) at so, and ι⊥∗(Γ) · s⊥i = 0 if i 6= 0, because si /∈ ι(Γ).
Hence, n is congruent mod.2, to ρ + γo ≡ 1 + γo(mod .2), as well as to γi, if
i 6= 0.

(6) The Picard group Pic(S⊥) is the direct sum of e∗(Pic(S)) and the rank-8
lattice generated by the exceptional curves {s⊥i , r⊥i , i = 0, . . . , 3}. In particular,
knowing that ι∗(Γ) is linearly equivalent to nCo+(2d−1)So, and having already
calculated ι⊥∗(Γ) · s⊥i and ι⊥∗(Γ) · r⊥i , for any i = 0, . . . , 3, we can finally check
that ι⊥∗(Γ) is linearly equivalent to e∗

(
nCo+(2d−1)So

)
−ρs⊥o −

∑3
0 γir

⊥
i .
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Theorem 4.3. — Consider any hyperelliptic d-osculating cover π : (Γ, p) →
(X, q), of degree n, type γ, arithmetic genus g and ramification index ρ at p.
Let m denote the degree of its canonical equivariant factorization ι⊥ : Γ →
Γ⊥ ⊂ S⊥, and g̃ the arithmetic genus of the rational irreducible curve Γ̃ :=

ϕ(Γ⊥). Then, the numerical invariants {n, d, g, g̃, ρ,m, γ} satisfy the following
inequalities:

1. 2g + 1 ≤ γ(1) ;
2. 4m2g̃ = (2d − 1)(2n − 2m) + 4m2 − ρ2 − γ(2) and γ(2) ≤ 2(2d − 1)(n −
m) + 4m2 − ρ2;

3. (2g + 1)2 ≤ 8(2d− 1)(n−m) + 13m2 − 4ρ2 ≤ 8(2d− 1)n+ (2d− 1)2 ;
4. ρ = 1 implies m = 1, as well as (2g + 1)2 ≤ 8(2d− 1)(n− 1) + 9 ;
5. if p ≥ 3, we must also have γ(1) ≤ p(2d− 1) .

Proof. — (1) For any i = 0, . . . , 3, the fiber of πS⊥ := πS ◦e : S⊥ → X over the
half-period ωi, decomposes as s⊥i +r⊥i +S⊥i , where S⊥i is a τ⊥-invariant divisor
and s⊥i is disjoint with ι⊥∗(Γ), if i 6= 0, while ι⊥∗(s⊥i ) = ρp, by Lemma 4.2 (2).
Hence, the divisor Ri := ι⊥

∗
(r⊥i ) of Γ is linearly equivalent to Ri ≡ π−1(ωi)−

(n − γi)p (and also 2Ri ≡ 2γip). Recalling at last, that
∑3
j=1 ωj ≡ 3ωo, and

taking inverse image by π, we finally obtain that
∑3
i=0Ri ≡ γ(1)p. In other

words, there exists a well defined meromorphic function, (i.e., a morphism),
from Γ to P1, with a pole of (odd!) degree γ(1) at the Weierstrass point p. The
latter can only happen (by the Riemann-Roch Theorem) if 2g + 1 ≤ γ(1), as
asserted.

(2) The curve Γ⊥ is τ⊥-invariant and linearly equivalent (Lemma 4.2 (4) &
(6)) to:

Γ⊥ ∼ 1

m

(
e∗
(
nCo + (2d− 1)So

)
− ρs⊥o −

3∑
i=0

γir
⊥
i

)
.

Recall also that g̃ ≥ 0 and K̃, the canonical divisor of S̃, is linearly equivalent
to ϕ∗

(
e∗(−C0)

)
([16, § 4.2. (3)]). Applying the projection formula for S⊥ ϕ→ S̃,

to Γ⊥ = ϕ∗(Γ̃), we obtain 0 ≤ g̃ = 1
4m2

(
(2d−1)(2n−2m)+4m2−ρ2−γ(2)

)
,

implying γ(2) ≤ (2d− 1)(2n− 2m) + 4m2 − ρ2, as claimed.

(3) & (4) We start remarking that, for any j = 1, 2, 3, (γo−γj) is a non-zero
multiple of m. Hence,

∑
i<j(γi−γj)2 ≥ 3m2, and replacing in Theorem 4.3 (1)

we get:

(2g+1)2 ≤ (γ(1))2 = 4γ(2) −
∑
i<j

(γi − γj)2 ≤ 4γ(2) − 3m2.

Taking into account Theorem 4.3 (3), we obtain the inequality (4). At last, since
m divides ρ (Lemma 4.2 (4)), ρ = 1 impliesm = 1. Replacing in Theorem 4.3 (3)
gives us (4).
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(5) Finally, let us assume p ≥ 3 and denote by C⊥p ⊂ S⊥ the unique τ⊥-in-
variant irreducible curve, linearly equivalent to e∗(pCo) −

∑3
i=0 r

⊥
i . In partic-

ular, it can not be equal to Γ⊥, hence C⊥p · Γ⊥ = p(2d − 1) − γ(1) must be
non-negative.

Corollary 4.4. — Let π : Γ → X be a degree-n separable projection of
a hyperelliptic curve onto the elliptic curve X, and let g denote its arith-
metic genus. Then, there exists a smooth Weierstrass point p ∈ Γ such that
π : (Γ, p) →

(
X,π(p)

)
is a hyperelliptic d-osculating cover, non ramified at p,

with d satisfying: (2d− 1)(2n− 2) ≥ g2 + g − 2.

Proof. — Consider the global desingularization morphism j : Γ → Γ, com-
posed, either with π, or with the degree-2 cover Γ→ Γ/τΓ ∼= P1. As a ramified
cover of X and P1, we deduce from the Hurwitz formula that Γ is a smooth
hyperelliptic curve of positive genus, say g, with 2g+2 Weierstrass points, while
π := π ◦ j : Γ → X has, at most, 2g − 2 ramifications points. We can choose,
therefore, a Weierstrass point p ∈ Γ, at which π is not ramified. In particular,
its image p := j(p) ∈ Γ must be a unibranch point. On the other hand, since π
is not ramified at p and factors through π : Γ → X, we see that π restricts to
a local isomorphism between neighborhoods of p ∈ Γ and q := π(p) ∈ X:

π : p ∈ Γ
j→ p ∈ Γ

π→ q ∈ X.

Hence, p is a smooth Weierstrass point of Γ, at which π is not ramified, and
π : (Γ, p)→ (X, q) is a hyperelliptic d-osculating cover (Definition 2.3 (2)), for
some integer d ≤ g. Applying Theorem 4.3 (4), we obtain (2d − 1)(2n − 2) ≥
(g + 2)(g − 1) as claimed.

Corollary 4.5. — Let π : (Γ, p) → (X, q) be a hyperelliptic d-osculating
cover of type γ and arithmetic genus g. Then 2g+1 ≤ γ(1), with equality if and
only if π is minimal-hyperelliptic.

Proof. — Recall that π dominates a unique minimal-hyperelliptic d-osculating
(Corollary 3.8), say π?, factoring through the same curve Γ⊥ ⊂ S⊥. Therefore,
π? has same type γ as π, but a bigger arithmetic genus, say g?, satisfying
2g + 1 ≤ 2g? + 1 ≤ γ(1) (Theorem 4.3 (1)). Hence, it is certainly enough to
assume π is minimal-hyperelliptic and prove that 2g + 1 ≥ γ(1).

Recall also, that ι⊥ : Γ → Γ⊥ has odd degree m and factors through the
cover π[ : (Γ[, p[) → (X, q), of type γ[ and arithmetic genus g[, such that
γ(1) = mγ[(1) and 2g + 1 = m(2g[ + 1) (Corollary 3.10 & Lemma 4.2 (4)).
Hence 2g + 1 = m(2g[ + 1) ≤ mγ[(1) = γ(1), with equality if and only if
2g[ + 1 = γ[(1). We have thus reduced the problem, from π to the minimal-
hyperelliptic π[. So let us suppose in the sequel that m = 1, or in other words,
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that (Γ, p) = (Γ[, p[). Let (Γ♦, p♦) denote the fiber product of the marked
morphisms

(
Γ⊥, ι⊥(p)

) ϕ−→ (Γ̃, p̃) and (P1,∞)
j−→ (Γ̃, p̃) (Corollary 3.10). The

marked curve (Γ, p) = (Γ[, p[), is in fact the desingularization of Γ♦ at its
unibranch point p♦ (Corollary 3.10), and fits in the following diagram:

p ∈ Γ

ι⊥

��

1:1
&&

π

��

2:1

**
p♦ ∈ Γ♦

f♦ //

1:1

��

∞ ∈ P1

j

��

ι⊥(p) ∈ Γ⊥

π
S⊥

yy

ϕ
// p̃ ∈ Γ̃

q ∈ X

Let g̃, g⊥, g♦ and g denote the arithmetic geni of Γ̃,Γ⊥,Γ♦ and Γ, respectively.
Knowing the numerical equivalence class of Γ⊥ we easily obtain (e.g., Theo-
rem 4.3 (2)):

g̃ =
1

4

(
(2d− 1)(2n− 2) + 4− ρ2 − γ(2)

)
and g⊥ = 2g̃ +

1

2
(ρ− 2 + γ(1)).

We can then deduce g♦, arguing as follows (like in the proof of [16, § 5.8 (2)]):
since Γ⊥

ϕ−→ Γ̃ is a flat degree-2 morphism, and P1 has arithmetic genus = 0,
we must have the relation g⊥−g♦ = 2(g̃−0) = 2g̃. Hence, g♦ = 1

2 (ρ−2+γ(1)).

We might as well argue that the desingularization morphism P1 j→ Γ̃ is obtained
by monoidal transformation S̃ (i.e., j is the restriction of a finite sequence of
monoidal transformations S̃′

j−→ S̃ such that the strict transform of Γ̃ ⊂ S̃ is
isomorphic to P1), implying that Γ♦ is contained in the fiber product of S⊥ ϕ−→
S̃ and S̃′ j−→ S̃, for which we can calculate its canonical divisor. Applying the
adjunction formula gives the above value of g♦.

At last, composing (Γ, p)
1:1→ (Γ♦, p♦) with (Γ♦, p♦)

f♦

−→ (P1,∞), we get the
degree 2 cover f : Γ

f→ P1, and a morphism (f, π) : Γ → Γf,π ⊂ P1 ×X as in
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Proposition 2.4, fitting in:

∞ ∈ P1

p ∈ Γ 1:1 //

f

44

π

**

p♦ ∈ Γ♦
f♦

77

// (∞, q) ∈ Γf,π

2:1

OO

n:1

��

� � // P1 ×X

q ∈ X

We have shown in the proof of Proposition 2.4 (3), that 1
2 (ρ−1) consecutive

monoidal transformations are necessary to desingularize Γf,π at its unibranch
point (∞, q), and each monoidal transformation lowers its arithmetic genus
by 1. On the other hand, since (Γ, p) dominates (Γ♦, p♦) and is smooth over
(∞, q), we easily deduce that g♦ − g ≤ 1

2 (ρ − 1). Hence g♦ − 1
2 (ρ − 1) =

1
2 (−1+γ(1)) ≤ g.

5. On hyperelliptic d-osculating covers of arbitrary high genus

5.1. — We will let C⊥o and C⊥p denote, hereafter, the strict transforms of Co
and Cp by e : S⊥ → S and C̃o := ϕ(C⊥o ). Recall that to any hyperelliptic cover
π : (Γ, p)→ (X, q) we have uniquely associated a morphism ι⊥ : Γ→ Γ⊥ ⊂ S⊥,
a rational irreducible curve Γ̃ := ϕ(Γ⊥) ⊂ S̃ and a vector (n, d, ρ, γ) ∈ N∗3×N4,
satisfying the following restrictions (Lemma 4.2 & Theorem 4.3):

1. ρ is odd, bounded by 2d− 1, and γo + 1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod .2);
2. if p ≥ 3, we must have γ(1) ≤ p(2d− 1).

Furthermore, π can be canonically recovered from Γ̃ := ϕ(Γ⊥) if, and
only if, Γ is birational to Γ⊥, in which case:

3. Γ̃ has arithmetic genus g̃ := 1
4

(
(2d− 1)(2n− 2) + 4− ρ2 − γ(2)

)
≥ 0;

4. Γ⊥ = ϕ∗(Γ̃) is linearly equivalent to e∗
(
nCo + (2d − 1)So

)
− ρso

⊥ −∑3
i=0 γiri

⊥;
5. Γ̃ intersects s̃o := ϕ(so

⊥), at a unique unibranch point, with multiplicity
ρ;

6. Γ⊥ and Γ̃ intersect C⊥o and C̃o, (at most) at p⊥o := C⊥o ∩ s⊥o and ϕ(p⊥o ),
respectively, with multiplicities 2d− 1− ρ and 1

2 (2d− 1− ρ).

Definition 5.1. — For any (n, d, ρ, γ) ∈ N∗3 × N4 satisfying 5.1 (1), (2)
& (3), we let Λ(n, d, ρ, γ) denote the unique element of Pic(S̃) such that
ϕ∗
(
Λ(n, d, ρ, γ)

)
is linearly equivalent to e∗

(
nCo + (2d − 1)So

)
− ρso

⊥ −

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



398 A. TREIBICH

∑3
i=0 γiri

⊥, andMHX(n, d, ρ, γ) denote the moduli space of degree-n minimal-
hyperelliptic d-osculating covers of type γ, ramification index ρ at their marked
point, and birational to their canonical images in S⊥.

Proposition 5.2. — Any π ∈ MHX(n, d, ρ, γ) can be canonically recov-
ered from Γ̃ ⊂ S̃ (Corollary 3.10 (2)). Conversely, any rational irreducible
curve Γ̃ ⊂ S̃ satisfying properties 5.1 (1)–(6), gives rise to a unique element
of MHX(n, d, ρ, γ).

Proof. — Given Γ̃ ⊂ S̃ satisfying 5.1 (1)–(6), we denote Γ⊥ := ϕ∗(Γ̃) ⊂ S⊥ and
consider the fiber product of (Γ⊥, p⊥)

ϕ→
(
Γ̃, ϕ(p⊥)

)
with the desingularization

morphism (P1,∞)
j→
(
Γ̃, ϕ(p⊥)

)
, say (Γ, p). Proceeding as in the proof of

Corollary 3.10, for the construction of π[, we can easily prove that the natural
domination (Γ, p)→ (Γ⊥, p⊥), composed with π⊥ : (Γ⊥, p⊥)→ (X, q) is indeed
the announced minimal-hyperelliptic d-osculating cover.

Studying MHX(n, d, ρ, γ) for a general vector (n, d, ρ, γ), is a difficult and
elusive problem. We will henceforth restrict to the simpler case where ρ = 1

and Γ̃ is isomorphic to P1. In other words, we will focus on degree-n minimal-
hyperelliptic d-osculating covers with ρ = m = 1, and type γ satisfying γ(2) =

(2d− 1)(2n− 2) + 3 (as well as γ(1) ≤ p(2d− 1), if p ≥ 3).

Proposition 5.3 ([14, § 3.4]). — Any curve Γ ⊂ S intersecting Co at a
unique smooth point p ∈ Γ is irreducible, unless p ≥ 3 and Cp is a component
of Γ.

Proposition 5.4. — Let Γ⊥ ⊂ S⊥ be a curve with no irreducible component
in {r⊥i , i = 0, . . . , 3}, and intersecting C⊥o (at most) at a unique smooth point
p⊥ ∈ Γ⊥. Then, Γ⊥ is an irreducible curve, unless p ≥ 3 and C⊥p is a component
of Γ⊥.

Proof. — The properties satisfied by Γ⊥ assure us that Γ := e∗(Γ
⊥), its direct

image by e : S⊥ → S, does not contain Co, and that Γ⊥ is the strict transform
of Γ. We can also check, that Γ is smooth at p := e(p⊥) and Γ ∩ Co = {p}. It
follows, by Proposition 5.3, that (Γ, as well as its strict transform) Γ⊥ is, either
an irreducible curve, or p ≥ 3 and C⊥p is a component of Γ⊥.

Proposition 5.5 ([16, § 6.2] & [12]). — Any α = (αi) ∈ N4 such that α(2) =

2a+1 is odd (and α(1) ≤ p, whenever p ≥ 3), gives rise to an exceptional curve
of the first kind Γ̃α ⊂ S̃. More precisely, let k ∈ {0, 1, 2, 3} denote the index
satisfying αk + 1 ≡ αj(mod.2), for any j 6= k, and Sk := π−1

S (ωk), then Γ̃α
is a (−1)-curve and ϕ∗(Γ̃α) ⊂ S⊥ is the unique τ⊥-invariant irreducible curve
linearly equivalent to e∗(aCo + Sk)− s⊥k −

∑3
i=0 αir

⊥
i .
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Proof. — Let Λ denote the unique numerical equivalence class of S̃ satisfying
ϕ∗(Λ) = e∗(aCo + Sk) − s⊥k −

∑3
i=0 αir

⊥
i . It has self-intersection Λ · Λ = −1,

and Λ ·K̃ = −1 as well, hence, ho
(
S̃, OS̃(Λ)

)
≥ χ

(
OS̃(Λ)

)
= 1, and there exists

an effective divisor Γ̃ ∈
∣∣Λ∣∣. If p = 0, such a divisor Γ̃ is known to be unique

and irreducible ([16, § 6.2]). Its proof takes in account that for any m > 1 there
is no irreducible curve in S, numerically equivalent to mCo. However, when
p ≥ 3 the latter property fails, due to the existence of Cp ⊂ S, implying that
the intersection number Cp ·Λ = p −α(1) must be non-negative. Conversely, if
α(1) ≤ p, Λ intersects non-negatively C̃p := ϕ(Cp

⊥), (as well as all other (-1)
and (-2)-curves in S̃), and M.Lahyane’s irreducibility criterion for (-1)-classes
applies to Λ ([12]).

According to Proposition 5.5, any α ∈ N4 such that α(2) is odd (and α(1) ≤ p,
if p ≥ 3), gives rise to an exceptional curve of the first kind Γ̃α ⊂ S̃. Conversely,
we have the

Corollary 5.6. — Any irreducible curve in S̃, with negative self-intersection,
is either equal to some Γ̃α as above (Proposition 5.5), to C̃p if p ≥ 3, or belongs
to the set

{
C̃o, s̃i, r̃i, i = 0, . . . , 3

}
.

Proof. — The arithmetic genus of an arbitrary irreducible curve Γ̃ ⊂ S̃ is non-
negative and equal to g̃ := 1+ 1

2

(
Γ̃·Γ̃+Γ̃·K̃

)
≥ 0, where K̃ denotes the canonical

divisor of S̃. In particular Γ̃·Γ̃+Γ̃·K̃ ≥ −2. Moreover, since ϕ∗(K̃) = e∗(−2Co)

(cf. [16]) and Co is nef, we immediately deduce that Γ̃ · K̃ ≤ 0. Hence, Γ̃ · Γ̃ < 0

implies, either Γ̃ · Γ̃ = −2 and Γ̃ ·K̃ = 0, or Γ̃ · Γ̃ = −1 = Γ̃ ·K̃. It follows, in any
case, that g̃ = 0, hence Γ̃ is isomorphic to P1. If Γ̃·Γ̃ = −1 = Γ̃·K̃, one can easily
check, via the projection formulae for S⊥ ϕ→ S̃ and S⊥ e→ S, that Γ⊥ := ϕ∗(Γ̃)

is a τ⊥-invariant divisor in S⊥ and its projection in S, Γ := e∗(Γ
⊥), satisfies:

Γ · Co = e∗(Γ
⊥) · Co = Γ⊥ · e∗(Co) = − 1

2Γ⊥ · e∗(−2Co) = − 1
2Γ⊥ · ϕ∗(K̃) =

−Γ̃ · K̃ = 1.
It immediately follows that Γ (as well as Γ⊥) is irreducible. Otherwise it

would break as a sum of two divisors exchanged by τ : S → S, in which
case the above intersection number Γ · Co should have been even. In other
words, Γ is an irreducible τ -invariant curve, intersecting Co at sk, for a unique
k ∈ {0, 1, 2, 3}. Hence, Γ is linearly equivalent to aCo + Sk, for some a ∈ N.

Recall also that Γ⊥ · (C⊥o +
∑3
i=0 s

⊥
i ) = Γ⊥ · e∗(Co) = 1, and let α = (αi)

denote the vector of intersection numbers (Γ⊥ ·r⊥i ). Then, Γ⊥ is linearly equiv-
alent to e∗(aCo +Sk)− s⊥k −

∑3
i=0 αir

⊥
i , and intersecting with the numerically

equivalent curves
{
S⊥i := e∗(Si) − s⊥i − r⊥i , i = 0, 1, 2, 3

}
one easily finds out
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that αk + 1 ≡ αi(mod.2), for any i 6= k. Moreover, its self-intersection is equal
to 2a− 1− α(2) = Γ⊥ · Γ⊥ = ϕ∗(Γ̃) · Γ⊥ = Γ̃ · ϕ∗(Γ⊥) = 2Γ̃ · Γ̃ = −2.

In other words, 2a+ 1 = α(2) and Γ̃ = Γ̃α (Proposition 5.5).
At last, let us suppose that Γ̃ · Γ̃ = −2 and Γ̃ · K̃ = 0, but Γ̃ does not belong

to
{
s̃i, r̃i, i = 0, . . . , 3

}
. It then follows that Γ⊥ := ϕ∗(Γ̃) is a τ⊥-invariant

divisor of S⊥, of self-intersection Γ⊥ · Γ⊥ = −4, equal to the strict transform
of Γ := e(Γ⊥) ⊂ S. Therefore, it must be, either an irreducible degree-2 cover
of Γ̃, or break as the sum of two copies of Γ̃ ' P1, interchanged by τ⊥. In the
latter case, Γ⊥ should be the strict transform of the divisor πS−1(q′ + [−1]q′),
for some q′ ∈ X, in which case Γ⊥ · Γ⊥ 6= −4. Hence, Γ⊥ is indeed irreducible
(and Γ = e∗(Γ

⊥) as well). On the other hand, recalling that ϕ∗(K̃) = e∗(−2Co)

and ϕ∗(Γ⊥) = 2Γ̃, we obtain Γ · (−2Co) = e∗(Γ
⊥) · (−2Co) = Γ⊥ · e∗(−2Co) =

Γ⊥ · ϕ∗(K̃) = 2Γ̃ · K̃ = 0, implying Γ is numerically equivalent to a multiple
of Co According to Lemma 3.4 this can only happen if Γ = Co and Γ⊥ = C⊥o ,
or p ≥ 3, Γ = Cp and Γ⊥ = C⊥p .

Lemma 5.7. — Let Λ := Λ(n, d, 1, γ) be as in Definition 5.1, Γ̃ an arbitrary
exceptional curve of the first kind on S̃ and α ∈ N4 the unique vector as in
Proposition 5.5 such that Γ̃ = Γ̃α (Corollary 5.6). Then:

4(2d−1)Γ̃α·Λ =


(
γ − (2d− 1)α

)(2) − (2d− 1)2 − 3 , if Γα · s̃o = 1

(
γ − (2d− 1)α

)(2)
+ 2(2d− 1)− (2d− 1)2 − 3 otherwise.

Proof. — Straightforward verification.

For Λ(n, d, 1, γ) to be nef, we must have Λ(n, d, 1, γ) · Γ̃α ≥ 0, for any α as
above. On the other hand, minimizing their value is tantamount (Lemma 5.7)
to minimizing the norm of γ−(2d−1)α. In order to do it we make the following
definitions.

Definition 5.8. — 1. Given (n, d, γ) ∈ N∗ × N∗ × N4 satisfying γo + 1 ≡
γj(mod.2),∀j = 1, 2, 3, as well as γ(2) = (2d− 1)(2n− 2) + 3, we let γ =

(2d − 1)µ + 2ε be the unique decomposition, with µ ∈ N4 having same
parity as γ, and ε ∈ Z4 such that max{|εi|} ≤ d−1. We will also assume,
here and henceforth, that γ(1) = (2d−1)µ(1)+2ε(1) ≤ p(2d−1), whenever
p ≥ 3.

2. We define \µ = (\µi) ∈ N4 in order to have (\µi − µi)εi = |εi|,∀i =

0, · · · , 3:
\µi = µi + 1 if εi ≥ 0 or \µi = µi − 1 if εi < 0.
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3. At last, we choose two indices io 6= jo, where |εi| attains its two maximal
values, and let [µ = ([µi) ∈ N4 be such that for all i ∈ {0, 1, 2, 3} :

[µi =\ µi if i ∈ {io, jo} or [µi = µi if i /∈ {io, jo}

Remark 5.9. — The vector [µ may not be uniquely defined by Defini-
tion 5.8 (3). It should also be clear that µ ≡ γ(mod.2), and 4ε(2) ≡
3
(
mod.(2d− 1)

)
. Conversely, we have the

Proposition 5.10. — Given any n ∈ N∗ and γ = (2d-1)µ+ 2ε, with µ ∈ N4

and ε ∈ Z4, such that:

µo + 1 ≡ µ1 ≡ µ2 ≡ µ3(mod.2)

4ε(2) ≡ 3
(
mod.(2d− 1)

)
and |εi| ≤ d-1, i = 0, · · · , 3,

γ(2) = (2d-1)(2n-2) + 3,

(as well as γ(1) ≤ p(2d-1), ifp ≥ 3),

the minimal value of Λ(n, d, 1, γ) · Γ̃α, taken amongst all α ∈ N4 with α(2) odd,
is attained at α equal, either to µ, to \µ, or to [µ.

Corollary 5.11. — The divisor Λ(n, d, 1, γ) is nef if and only if the vector
2ε = γ − (2d − 1)µ ∈ Z4 (Definition 5.8), such that 4ε(2) ≡ 3

(
mod .(2d − 1)

)
and max{|εi|} ≤ d− 1, satisfies the supplementary conditions:

1. ε(2) ≥ d2 − d+ 1;
2. (2d− 1)(\µ− µ) · ε = (2d− 1)

(∑3
i=0 |εi|

)
≤ 3d2 − 3d+ ε(2);

3. (2d− 1)([µ− µ) · ε = max
{
|εi|+ |εj |,∀i 6= j,

}
≤ d2 − 1 + ε(2).

As we shall see, given any n, d ∈ N∗, there exist types γ = (2d−1)µ+2ε ∈ N4,
such that γo + 1 ≡ γ1 ≡ γ2 ≡ γ3(mod.2) and γ(2) = (2n − 2)(2d − 1) + 3, for
which Λ := Λ(n, d, 1, γ) is, either nef or not. We will actually construct in
Propositions 5.12 and 5.13, explicit examples where, either ε satisfies Corol-
lary 5.11 (1), (2) & (3), hence Λ is nef, or it does not satisfy Corollary 5.11 (1),
hence Λ is not nef. We actually conjecture that Proposition 5.12 exhausts all
types such that γ(2) = (2d− 1)(2n− 2) + 3 and Λ(n, d, 1, γ) is nef.

Proposition 5.12. — Let us fix d ≥ 2, k ∈ {0, 1, 2, 3}, and µ ∈ N4 such
that µo + 1 ≡ µj(mod.2) (for j = 1, 2, 3). Pick any vector 2ε = (2εi) ∈ 2Z4,
satisfying (∀i = 0, . . . , 3):

either |2εi| = (2d− 2)(1− δi,k), or

{
|2εi| = d− (−1)δi,k if d is odd,
|2εi| = d− 2δi,k if d is even.
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Then, for n satisfying γ(2) = (2d − 1)(2n − 2) + 3, and assuming γ := (2d −
1)µ + 2ε belongs to N4 (as well as γ(1) ≤ p(2d − 1), if p ≥ 3), the divisor
Λ(n, d, 1, γ) is nef.

Proof. — One only needs to check (straightforward verification!), that any
such ε satisfies Corollary 5.11 (1), (2) & (3).

Proposition 5.13. — Let us fix d ≥ 3 and µ ∈ N4 such that µo + 1 ≡
µj(mod.2) (for j = 1, 2, 3), and let k denote the residue (mod.4) of d + 1.
Choose any integer vector ε ∈ Z4 subject to the conditions

4ε(2) = 3 + (2d-1)(d-2 + k) and γ := (2d-1)µ+ 2ε ∈ N4,

and let n satisfy γ(2) = (2d− 1)(2n− 2) + 3. Then Λ(n, d, 1, γ) is not nef.

Proof. — Take any vector ε ∈ Z4 satisfying ε(2) = 8h2+3(2k−3)h+k2−3k+3.
A straightforward verification shows that ε2

i ≤ ε(2) < (2d − 1)2,∀i = 0, . . . , 3

and 4ε(2) = 3 + (2d − 1)(d − 2 + k). In particular, 4ε(2) < 3 + (2d − 1)2 =

4d2 − 4d + 4, hence ε does not satisfy property Corollary 5.11 (1). Therefore,
choosing any µ ∈ N4 such that µo+1 ≡ µj(mod.2) (for j = 1, 2, 3), and defining
γ ∈ N4 and n ∈ N by γ := (2d − 1)µ + 2ε and γ(2) = (2d − 1)(2n − 2) + 3,
respectively, the corresponding divisor Λ(n, d, 1, γ) is not nef.

Lemma 5.14. — Let (n, d, γ) ∈ N∗×N∗×N4 be such that d ≥ 2, γ(2) = (2d−
1)(2n− 2) + 3 and Λ(n, d, 1, γ) is nef. Then, for any j = 1, 2, 3, there exists at
most one exceptional curve of the first kind Γ̃ ⊂ S̃, such that Γ̃ ·Λ(n, d, 1, γ) = 0

and Γ̃ · s̃j = 1. In particular, the sum of the latter exceptional curves, denoted
by Z̃(n, d, 1, γ), is a reduced divisor with (at most) three irreducible components.

Proof. — Straightforward verification again!

Remark 5.15. — According to Brian Harbourne’s results on anticanonical
rational surfaces (cf. [6]), for any nef divisor D ∈ Pic(S̃), such that -K̃ ·D ≥ 2,
the complete linear system |D| is base point free and dim|D| = 1

2D · (D − K̃).
The following result is in order.

Lemma 5.16. — Let (n, d, γ) ∈ N∗ × N∗ × N4 be such that d ≥ 2, γ(2) =

(2d − 1)(2n − 2) + 3, and let Λ and Z̃ denote, respectively, Λ(n, d, 1, γ) and
Z̃(n, d, 1, γ), the divisors defined in Lemma 5.14. Then, Λ nef implies:

1. Λ− C̃o −
∑3
j=1 s̃j − Z̃ is nef;

2.
∣∣Λ− C̃o −∑3

j=1 s̃j − Z̃
∣∣ is base point free;

3.
∣∣Λ− C̃o∣∣ =

∑3
j=1 s̃j + Z̃ +

∣∣Λ− C̃o −∑3
j=1 s̃j − Z̃

∣∣;
4. dim

∣∣Λ∣∣ = 2d−2, dim
∣∣Λ− C̃o∣∣ = d−2 and h1

(
S̃, OS̃(Λ− C̃o)

)
= 0.

tome 142 – 2014 – no 3



HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES 403

Definition 5.17. — Let p̃o ∈ S̃ denote the unique point of intersection
{p̃o} := C̃o ∩ s̃o and consider any divisor Λ := Λ(n, d, 1, γ) as in Lemma 5.14.
We define the following subsets of

∣∣Λ∣∣:∣∣Λ∣∣
C̃o,p̃o

: =
{
D ∈

∣∣Λ∣∣, D ∩ C̃o = {p̃o} or C̃o ⊂ D
}

;(1) ∣∣Λ∣∣s̃o

C̃o,p̃o
: =

∣∣Λ∣∣
C̃o,p̃o

⋂(
s̃o +

∣∣Λ-s̃o
∣∣).(2)

Proposition 5.18. — If Λ := Λ(n, d, 1, γ) is nef, then:
1.
∣∣Λ∣∣

C̃o,p̃o
is a (d− 1)-dimensional subspace of

∣∣Λ∣∣;
2. C̃o +

∣∣Λ− C̃o∣∣ and ∣∣Λ∣∣s̃o

C̃o,p̃o
are two different hyperplanes of

∣∣Λ∣∣
C̃o,p̃o

;

3. any element Γ̃ ∈
∣∣Λ∣∣

C̃o,p̃o
, in the complement of the latter hyperplanes, is

a smooth integral divisor isomorphic to P1.

Proof. — (1) According to Lemma 5.16 (4), we have h1
(
S̃, OS̃(Λ − C̃o)

)
= 0.

Hence, the exact sequence of OS̃-modules:

0→ OS̃(Λ-Co)→ OS̃(Λ)→ OC̃o
(Λ)→ 0,

gives rise to the exact sequence

0→ H0
(
S̃, OS̃(Λ-C̃o)

)
→ H0

(
S̃, OS̃(Λ)

)
→ H0

(
C̃o, OC̃o

(Λ)
)
→ 0.

Since deg
(
OC̃o

(Λ)
)

= d − 1, we can pick a section f ∈ H0
(
C̃o, OC̃o

(Λ)
)

which only vanishes at p̃o
(
i.e., with zero divisor (f)o = (d − 1)p̃o

)
, as well

as a preimage of f , say v ∈ H0
(
S̃, OS̃(Λ)

)
, such that its zero divisor D̃ :=

(v)o ∈
∣∣Λ∣∣ only intersects C̃o at p̃o

(
i.e., D̃ ∩ C̃o = {p̃o}

)
. Any other section

of OS̃(Λ), satisfying the same property as v, is obtained by adding the image
of an arbitrary element of H0

(
S̃, OS̃(Λ-C̃o)

)
. In other words

∣∣Λ∣∣
C̃o,p̃o

⊂
∣∣Λ∣∣ is

the (d− 1)-dimensional subspace generated by D̃ and C̃o +
∣∣Λ-C̃o

∣∣.
(2) On the other hand, according to Lemma 5.16 (2) & (3), there exists

D̃′ ∈
∣∣Λ-C̃o

∣∣ avoiding p̃o, in which case C̃o + D̃′ ∈
∣∣Λ∣∣ is smooth at p̃o. Up

to replacing the former divisor D̃ ∈
∣∣Λ∣∣, by the generic element of the pencil

generated by D̃ and (C̃o+ D̃′), we can assume hereafter D̃ smooth and tangent
to C̃o at p̃o. In particular, for any D̃′′ ∈

∣∣Λ-C̃o
∣∣, either p̃o /∈ D̃′′ and C̃o + D̃′′

is also smooth and tangent to Co at p̃o, or p̃o ∈ D̃′′ and C̃o + D̃′′ is singular
at p̃o. In both cases, all but one element of the pencil generated by D̃ and
C̃o + D̃′′ is smooth and tangent to Co at p̃o. Therefore, such a generic element
is transverse at p̃o to s̃o, and can not contain s̃o as an irreducible component.
At last, since Λ · s̃o = 1, the unique singular element of the latter pencils must
belong to s̃o +

∣∣Λ− s̃o∣∣. Hence, ∣∣Λ∣∣s̃o

C̃o,p̃o
and C̃o +

∣∣Λ− C̃o∣∣ are indeed distinct
hyperplanes of

∣∣Λ∣∣
C̃o,p̃o

.
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(3) Any Γ̃ ∈
∣∣Λ∣∣

C̃o,p̃o
, in the complement of the latter hyperplanes, has arith-

metic genus 0. Let us also prove its irreducibility. We start remarking that Γ̃

can only intersect C̃o at p̃o, and does not contain C̃o nor s̃i, (i = 0, 1, 2, 3),
as an irreducible component. Hence, its inverse image Γ⊥ := ϕ∗(Γ̃) ⊂ S⊥ is
linearly equivalent to e∗(nCo + So) − s⊥o −

∑3
i=o γir

⊥
i , and neither C⊥o , nor

s⊥i (∀i = 0, . . . , 3), is an irreducible component of Γ⊥. In order to check that
Γ⊥ (hence Γ̃) is an irreducible curve, by means of Proposition 5.4, we still need
to show that r⊥i * Γ⊥,∀i = 0, . . . , 3. Otherwise Γ⊥ would have an irreducible
component Γ

⊥ ⊂ S⊥, linearly equivalent to e∗(nCo + So) − s⊥o −
∑3
i=o γir

⊥
i ,

for some type γ strictly bigger than γ, implying that ϕ(Γ
⊥

) ⊂ S̃ has a negative
arithmetic genus. Contradiction! In case p ≥ 3, an analogous line of reasoning
shows that Γ⊥ can not contain C⊥p as an irreducible component and Proposi-
tion 5.4 still applies.

Recalling thatMHX(n, d, 1, γ) is birationally isomorphic to |Λ(n, d, 1, γ)|C̃o,p̃o

(Proposition 5.2), we deduce the:

Corollary 5.19. — For any (n, µ) ∈ N∗ ×N4 satisfying µo + 1 ≡ µ1 ≡ µ2 ≡
µ3(mod.2) and µ(2) = 2n + 1, (and µ(1) ≤ p, if p ≥ 3), we let πµ denote
the minimal-hyperelliptic 1-osculating cover associated to the exceptional curve
Γ̃µ ⊂ S̃ (cf. Proposition 5.5 & [16, § 6.2]). Then,

∣∣Λ(n, d, 1, γ)
∣∣ = {Γ̃µ} and

MHX(n, 1, 1, µ) reduces to {πµ}.
More generally, for any (n, d, γ) ∈ N∗ × N∗ × N4 such that:
1. γo + 1 ≡ γ1 ≡ γ2 ≡ γ3(mod.2) (and γ(1) ≤ p, if p ≥ 3),
2. d ≥ 2 and γ(2) = (2d− 1)(2n− 2) + 3,
3. Λ(n, d, 1, γ) is nef,

the moduli space MHX(n, d, 1, γ) is birational to
∣∣Λ(n, d, 1, γ)

∣∣
C̃o,p̃o

.
In particular, dim

(
MHX(n, d, 1, γ)

)
= d − 1, for any (n, d, γ) as in Propo-

sition 5.12.

At last, we propose a less conceptual but more geometrical construc-
tion of MHX(n, d, 1, γ). We will construct d effective divisors

{
G⊥, F⊥j , j =

0, . . . , d−2
}
of S⊥, with birational models given by explicit equations in P1×X,

which generate all MHX(n, d, 1, γ). Hence, any element of MHX(n, d, 1, γ)

is birational to the zero set of a linear combination of d specific degree-n
polynomials with coefficients in K(X), the field of meromorphic functions
on X.

Theorem 5.20. — For any (n, d, γ) ∈ N∗ × N∗ × N4 as in Proposition 5.12,∣∣e∗(nCo+ (2d−1)So
)
− s⊥o −

∑
i γir

⊥
i

∣∣ contains a (d−1)-dimensional subspace
with a generic element, say Γ⊥, satisfying:

tome 142 – 2014 – no 3



HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES 405

1. Γ⊥ is a τ⊥-invariant smooth irreducible curve of genus g : = 1
2 (−1+γ(1));

2. Γ⊥ can only intersect C⊥o at p⊥o := C⊥o ∩ s⊥o ;
3. ϕ(Γ⊥) ⊂ S̃ is isomorphic to P1.

Corollary 5.21. — Given (n, d, γ) ∈ N∗×N∗×N4 as above, the moduli space
MHX(n, d, 1, γ) (Definition 5.1) has dimension d− 1, and its generic element
is smooth of genus g : = 1

2 (−1 + γ(1)).

Proof of Theorem 5.20. — We will only work out the case γ := (2d−1)µ+ 2ε,
with ε = (0, d− 1, d− 1, d− 1).

For any other choice of ε, the corresponding proof runs along the same lines
and will be skipped. In our case, the arithmetic genus g and the degree n satisfy:

2g + 1 = (2d− 1)µ(1) + 6(d− 1) and 2n = (2d− 1)µ(2)+4(d− 1)(µ1+µ2+µ3)+6d− 7.

Consider µ : = µ + (1, 1, 1, 1), µ′ : = µ + (0, 2, 1, 1), µ′′ = µ + (0, 0, 1, 1),
and let Z

⊥
, Z ′
⊥
, Z ′′

⊥ ⊂ S⊥ denote the unique τ⊥-invariant curves linearly
equivalent to:

1) Z
⊥ ∼ e∗(mCo + So)− s⊥o −

∑
i µir

⊥
i , where 2m+ 1 = µ(2);

2) Z ′⊥ ∼ e∗(m′Co + S1)− s⊥1 −
∑
i µ
′
ir
⊥
i , where 2m′ + 1 = µ′

(2);

3) Z ′′⊥ ∼ e∗(m′′Co + S1)− s⊥1 −
∑
i µ
′′
i r
⊥
i , where 2m′′ + 1 = µ′′

(2).

Moreover, if µo 6= 0 we choose µ = µ+ (−1, 1, 1, 1) and 2m+ 1 = µ(2), and
let Z⊥ ⊂ S⊥ denote the unique τ⊥-invariant curve Z⊥ ∼ e∗(mCo +So)− s⊥o −∑
i µir

⊥
i .

However, if µo = 0 we will simply put Z⊥ : = Z
⊥

+ 2r⊥o , so that in both
cases, the divisors D⊥0 := Z

⊥
+Z⊥+ 2s⊥0 and D⊥1 := Z ′

⊥
+Z ′′

⊥
+ 2s⊥1 will be

linearly equivalent. Let us also define,

µ(1) := µ′′ = µ+ (0, 0, 1, 1),

µ(2) := µ+ (0, 1, 0, 1),

µ(3) := µ+ (0, 1, 1, 0),

and let Z⊥(k)(k = 1, 2, 3) be the τ⊥-invariant curve of S⊥, linearly equivalent
to e∗(m(k)Co + Sk)− s⊥k −

∑
i µ(k)ir

⊥
i , where 2m(k) + 1 =

∑
i µ

2
(k)i.

At last, consider Z⊥ ∼ e∗(mCo + So) − s⊥o −
∑
i µir

⊥
i , where 2m + 1 =∑

i µ
2
i (Definition 5.1). Let Λ ∈ Pic(S̃) denote the unique class such that∣∣e∗(nCo + (2d − 1)So

)
− s⊥o −

∑
i γir

⊥
i

∣∣ =
∣∣ϕ∗(Λ)

∣∣. The (d − 1)-dimensional
subspace of

∣∣ϕ∗(Λ)
∣∣ we are looking for, will be made of all above curves. We

first remark the following facts:
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a) we can check via the adjunction formula, that the divisors ϕ∗(Λ) and Λ

have arithmetic genus g : = 1
2 (−1 + γ(1)) and 0, respectively, and that ϕ∗

(∣∣Λ∣∣)
is equal to

∣∣ϕ∗(Λ)
∣∣τ⊥ , the sub-space of τ⊥-invariant elements of

∣∣ϕ∗(Λ)
∣∣;

b) the d− 1 divisors

F⊥j := C⊥o +
3∑
k=1

(Z⊥(k)+2s⊥k )+jD⊥o +(d− 2− j)D⊥1 , j = 0, ..., d− 2,

as well as
G⊥ := Z⊥+(d− 1)D⊥o ,

are τ⊥-invariant, belong to
∣∣ϕ∗(Λ)

∣∣ and have p⊥o := C⊥o ∩ s⊥o as their unique
common point;

c) the curve F⊥o is smooth at p⊥o , while any other F⊥j has multiplicity 1 <

2j + 1 < 2d at p⊥o . In particular, they span a (d − 2)-dimensional subspace
of
∣∣ϕ∗(Λ)

∣∣, having a generic element smooth and transverse to s⊥o at p⊥o ;

d) the curve G⊥ has multiplicity 2d at p⊥o , and no common irreducible com-
ponent with any F⊥j (∀j = 0, . . . , d−2), implying that 〈G⊥, F⊥j , j = 0, . . . , d−2〉,
the (d−1)-dimensional subspace they span in

∣∣ϕ∗(Λ)
∣∣, is fixed component-free;

e) any irreducible curve Γ⊥ ∈ 〈G⊥, F⊥j , j = 0, . . . , d − 2〉 projects onto a
smooth irreducible curve (isomorphic to P1). In particular Γ⊥ must be smooth
outside ∪3

i=0r
⊥
i .

f) the curves G⊥ and F⊥o have no common point on any r⊥i (i = 0, . . . , 3),
implying that Γ⊥, the generic element of 〈G⊥, F⊥j , j = 0, . . . , d− 2〉, is smooth
at any point of ∪3

i=0r
⊥
i and satisfies the announced properties, i.e.,

(1) Γ⊥ is τ⊥-invariant, smooth and satisfies the irreducibility criterion in
Proposition 5.4;

(2) p⊥o is the unique base point of the linear system and Γ⊥ ∩ C⊥o = {p⊥o };
(3) its image ϕ(Γ⊥) ⊂ S̃ is irreducible, linearly equivalent to Λ(n, d, 1, γ)

and of arithmetic genus 1
4

(
(2d− 1)(2n− 2) + 3− γ(2)

)
= 0; hence, isomorphic

to P1.

Proof of Corollary 5.21. — The degree-2 projection ϕ : Γ⊥ −→ ϕ(Γ⊥) is ram-
ified at p⊥o and ϕ(Γ⊥) is isomorphic to P1. Moreover, Γ⊥ is a smooth ir-
reducible curve linearly equivalent to ϕ∗

(
Λ(n, d, 1, γ)

)
, of arithmetic genus

g := 1
2 (γ(1) − 1).

In other words, the natural projection (Γ⊥, p⊥o ) ⊂ (S⊥, p⊥o )
π

S⊥−→ (X, q) is a
smooth degree-n minimal-hyperelliptic d-osculating cover of type γ, and genus
g, such that (2n− 2)(2d-1) + 3 = γ(2) and 2g + 1 = γ(1).
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