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UN PROBLEME DE PROBABILITES DENOMBRABLES ;

Par M. Norserr Wiener (').

L’étude des lois de probabilité concernant les systémes d’une
infinité dénombrable de variables est due principalement a
M. E. Borel (2). M. H. Steinhaus (3) a obtenu des résultats trés
intéressants sur cette question, particuliérement au sujet de la
convergence des séries telles que

Zi )
1 .

ou chaque signe est choisi indépendammeut des autres, les

signes + et — ayant a chaque choix des probabilités égales. J'ai

également écrit sur ce sujet (*). En outre la partie des Legons

d’ Analyse fonctionnelle de M. Paul Lévy, qui traite de la mesure

dans I'espace fonctionnel du point de vue d’une infinité dénom-
brable de coordonnées, se ratiache au méme ordre d’idées.

Dans plusieurs articles (*) j’ai développé la théorie d’un type

d’espace fonctionnel qui différe par plusieurs points essentiels du

type classique, et que j'appelle espace différentiel. Cet espace est

caractérisé par le fait que 'on considére comme des variables
indépendantes, non les différentes valeurs de la fonction f(x)

S|~

(') Jadresse ici mes remerciements a4 M. Paul Lévy, qui a bien voulu m’aider
dans la rédaction de ce Mémoire en francais.

(?) E. BoreL, Les probabilites denombrables et leurs applications arithmeé-
tiques (Rendiconti del Circ. Mat. di Palermo, t. XXVII, 1°* semestre 19og,
p. 247 & 271).

(3) H. STEINHAUS, Les probabilités dénombrables et leur rapport a la théorie
de la mesure (Fund. Math., t. IV, 1923).

(*) NorsBERT WIENER, Notes on the Series T == ;L (Bulletin de I’Academie des

Sciences de Pologne, 1923).

(%) The Average of an Analytic functional (Proc. Nat. Acad. Sc.,
Washinogton, t. V1I, p. 253-260); The Average of an Analytic functional and
the Brownian Movement (1bid., p. 294-298); Differential-Space (Journ. Math.
and Phys., Mass. Inst. Techn., t. 11, p. 131-174); The Average Value of a
JSunctional (Proc. London Math. Soc., 2° série, t. XXII, Part 6, p. 454-467).
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que représente un point de cet espace, pour des valeurs de 2 trés
nombreuses et en progression arithmétique, mais les accroisse-
ments de f(z) entre deux valeurs consécutives de 2. Comme dans
I'espace fonctionnel ordinaire, on peut remplacer I'infinité con-
tinue de coordonnées qui détermine un point de cet espace par
une infinité dénombrable de coordonnées indépendantes. Pour
préciser, si

(1) f(z)~ay+ ay y/;cos'rm‘—%...—i—a,,ﬁcosm-:x—t—... (1)

est une fonction de’espace différentiel définie dans'intervalle (o, 1),
les quantités

(2) Tay, 2TAy, ..., NTAp,

constituent une infinité dénombrable de coordonnées ayant toutes
des poids égaux. Si
?(ah ceey a,,)

est une fonction bornée uniformément continue de a,, ..., an,
j’ai démontré (2) que sa valeur moyenne dans un domaine que
j'appelle sphére de rayon r est

-+ o -+ 1 .2
1 —_—— Yy x4 x
—_— dxl-“ dxne 2;"214 o (—> ...,———n
—w - T ™n

(:z'ttr’);—l ®

et 'on obtient la méme moyenne, si toutefois elle existe, lorsque ¢,
quoique non borné, est uniformément continu dans tout domaine
ou les a, sont bornés.

On verra que nous supposons essentiellement que ©a,, 2na,,
.e.y NT@,, ... sont des variables indépendantes, obéissant a la
loi de Gauss avec le méme paramétre. C’est dans cette hypothése
que nous trouvons pour la moyenne d’une fonctionnelle la valeur
obtenue d’autre part dans I’espace différentiel. Nous sommes ainsi
conduits a la question : est-il possible d’appliquer cette transfor-
mation de coordonnées & une classe plus étendue de fonctionnelles?
En d’autres termes, est-il possible de développer toute la théorie

(1) Le signe ~u est mis & la place du signe = parce que la série considérée
peut n’étre que convergente en moyenne.
(?) Differential Space, p, 171.



— 31—

de I'espace différentiel en se plagant au point de vue d’une infinité
dénombrable de variables?

L’objet du présent travail est de donner a cette question une
réponse affirmative. Dans ce but, il est nécessaire de rappeler
briévement quelques points de mon précédent Mémoire; le pro-
cédé d’intégration développé dans ce Mémoire était un cas parti-
culier’ de l'intégration dans les ensembles abstraits au sens de
Daniell (*). M. Daniell considére un ensemble T, de fonctions
bornées f(p) d’éléments quelconques p. Cet ensemble est fermé
relativement aux opérations suivantes : multiplier par une con-
stante ; ajouter deux fonctions; et prendre les modules. M. Daniell
appelle « intégrale » une fonctionnelle U(f) ayant les propriétés
suivantes :

(G) U(ef)=cU(f),

(A) U(f|+f2)=U(f1)+U(f2),

(L) Si f,2/f:2...20 et lim fr,=o0 alors limU(f,) = o,
(P) U(f)zo si f est toujours 2 0.

Il étend autant que possible le domaine dans lequel il deéfinit
cette opération, comme M. Lebesgue I'a fait en partant de I'inté-
gration au sens de Riemann. Il prouve d’abord que, si f, Sf,<...
est une suite de fonctions appartenant a T, la suite des U(f,) est
non décroissante, et par suite devientinfinie par valeurs positives
ou a une limite. Si alors f, a une limite f, M. Daniell définit U (f)
comme limite de U(f,), et désigne par T, I'ensemble des fonc-
tions telles que f. 11 définit ensuite pour toute fonction f la semi-

intégrale supérieure U(f) comme la borne inférieure de U(g)
pour toute fonction g appartenant 3 T, et 2f. Il définit U(f)
comme — U(—f). Si U(f)="U(f), ces quantités étant finies,
il les désigne par U( /), et la fonction f est dite sommable. Un
des principaux théorémes de Daniell est le suivant : si f,, ...,
fny « . est une suite de fonctions sommables ayant pour limite f,
et s’il existe une fonction ¢ sommable telle que |f,|Se pour
toutes les valeurs de n, alors f est sommable et U(f,) a pour
limite U(f). Il faut aussi, pour la suite, rappeler les résultats

(') P.J. Danierr, A General Form of Integral (Annals of Mathematics,
2¢ série, t. XIX, p. 279-294).
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suivants : si f est sommable, cf et |f| sont sommables et
U(cf)=cU(f); de plus, si f et g sont sommables [+ g est
sommable et U(f + 2) =U(f) + U(g), etsi 2, 0(f)2U(g).

Enfin, si f(z)2 g(z)2h(z), f(z) et h(x) étant sommables et
ayant méme intégrale U, g(z) est également sommable.

Dans mon précédent article, les éléments p de I'espace auquel
Jappliquais la théorie de l'intégration ou de la moyenne étaient
les fonctions continues f(z) s'annulant avec z et définies dans
Iintervalle (o,1). L’ensemble T, était celui des fonctionnelles
bornées et telles qu’il existe une fonction ¢(z), s’annulant pour
z = o, pour laquelle

|FIf1—F[f+g]ll<e¢(max|g]).

Nous désignions par F(x,, z,, ..., z,) la valeur de F[ f,], ou

k
. ~ k—1 k
Jalt) =Y [ n é?z]’
1

et nous l'appelions r*"® section de F[f]. Nous avons établi que
pour toute fonctionnelle de I'ensemble T,, la moyenne de la

ni®me soction dans la Sphérez‘ 2 = r? a, pour n infini, une limite

que nous appelons moyenne de F[f] dans la sphére de rayon r et
désignons par A, | F]. Nous avons montré que les résultats de
Daniell s appllquent dans ces conditions, et comme cas particulier
nousavons considéré la moyenne de fonctionnelles telles que o (a,,
dy, .., @), les a, ayant la méme signification que plus haut,
formule (2).

Nous allons maintenant, indépendamment de la théorie précé-
dente, définir une intégrale de Daniell représentant la moyenne
d’une fonction des a,. Nous considérerons des éléments p d’une
nature plus générale : toute suite de nombres réels a,, a,, ...,
@n, ... constitue un argument pour nos fonctionnelles, que la
série (1) converge en moyenne ou non. Notre ensemble T, sera
celui des fonctions ¢(ay, @s, ..., a,) (n étant fini), bornées, uni-
formément continues, et nulles pour les valeurs suffisamment
grandes des variables, et notre opération U sera définie par la
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formule
U, gcp(a‘, vy @p) ;

[ e, A (2 ﬁ)

dz;... dz,e &k .
(‘21:?2); - L"’ ' AL
Il est évident que T, vérifie les conditions de Daniell, et que
I'opération (U) vérifie les conditions (C), (A) et (P). Elle vérifie
aussi la condition (L). On peut I'établir par la méthode employée
par Daniell dans un autre Mémoire, en utilisant le fait que U,,
qui est uhe moyenne, ne peut pas dépasser le module maximum
de son argument. La méthode de Daniell s’applique donc pour
généraliser 'opération U,.

Llopération U,, appliquée a © considéré comme fonction des a,,
coincide avec l'opération A,, appliquée a ¢ considéré comme
fonctionnelle de f, la fonction f et les coefficients a, étant liés
par la relation (1). Alors, d’aprés le théoréme de Daniell rappelé
plus haut, pour toute fonction de l’ensemble T, liée a I'opé-
ration U,, 'opération A, s’applique et conduit a la méme valeur.
11 en résulte, d’aprés un autre théoréme de Daniell également
rappelé plus haut, que les extensions de ces deux -opérations
coincident; en ce sens que dans tout domaine ou U, peut étre
défini, A, peut étre défini et U, et A, ont la méme signification.

L’objet du présent travail est de montrer que le domaine ou U,
est défini coincide avec celui ou A, est défini, et que presque tous
les systémes de coefficients @, (dans le sens qui résulte de la loi
de probabilité indiquée plus haut), correspondent a des fonc-
tions f(z) continues. Dans mon précédent article ('), j’ai démontré
un théoréme revenant a dire que la fonction égale & l'unité si
a®, +...4+al+...>a* et nulle dans le cas contraire a une
semi-intégrale supérieure tendant vers zéro pour m infini. Jai
montré ensuite que, si F(f) est une fonctionnelle bornée et uni-
formément continue au sens restreint, ¢’est-a-dire sia toutn positif
correspond un 0 positif tel que

f [f(t)— g(t)]dt <6
Jo

(') Differential-Space, p. 171-172.
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entraine
[FIAf1—=F[g]l <nm,

F est sommable A,; et la méthode employée permet de voir
que F, considéré comme fonction des a,, est sommable U,.
Etablissons maintenant la sommabilité U, de fonctionnelles

d’un type particulier. Si f(x) est la fonction de carré sommable
correspondant a la série des cosinus

Ay+ Ay \/2COSTX +...+ Ap \/2COSNTTT +...
H

la fouction

1
fo f(ny)+ il . dy,

—a2pcosn(z —y)+p
qui correspond a la série
ay+ay J2pcosnz +...+ap\/2p"cosnrz+...,

est continue par rapport a z pour tout p <_ 1. Choisissons main-
tenant pour @, une fonction de p telle que notre nouvelle fonc-
tion s’annule pour z = o, c’est-a-dire que cette fonction sera

1
fol2) =f., F(my)(1—p)

. , .
X [l—zpcosn(z'—y)+p2 - 1_29005},_‘_92]4}/.
Considérons alors une fonctionnelle de la forme
(P[fp(xl)) RS ] fp(‘”n)]a

ol ¢ est une fonction bornée et continue de ses arguments. On
voit aisément que ¢ sera une fonctionnelle bornée dea,, a,, ...,
continue au sens restreint indiqué tout'a I'heure. Elle sera som-
mable A, et sommable U,, et les deux opérations conduiront a la
méme valéur.

Il n’y a aucune difficulté a étendre un peu cette classe de fonc-
tionnelles ; © peut étre une fonction de n variables ne prenant que
les valeurs 1 et o, prenant la premiére de ces valeurs dans un
ensemble mesurable borné. Une telle fonction peut en effet étre
considérée comme limite d’une suite décroissante de fonctions
continues, et différentes de zéro seulement dans un domaine
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borné. D’ailleurs, d’aprés un autre théoréme de Daniell, si deux
fonctionnelles sont sommables, la fonctionnelle toujours égale a la
plus grande des deux (ou a la plus petite) est sommable. On en
conclut que, si une fonctionnelle de f est égale 4 1 ou o suivant
que des inégalités en nombre fini entre un nombre fini d’expres-
sions fo(x) (les p et les x ayant des valeurs comprises entre
o et 1) sont vérifiées ou non, cette fonctionnelle est sommable,
pourvu que ces inégalités permettent de borner supérieurement
les f,(x). Comme d’ailleurs la limite d’une suite décroissante de
fonctionnelles sommables est elle-méme sommable, on peut
augmenter indéfiniment le nombre des valeurs considérées des »
et des x, et obtenir par exemple pourles 2 ’ensemble des nombres
rationnels de Pintervalle (o, 1), limites comprises, et pour kes o un
ensemble de nombres inférieurs & 1 mais approchant indéfiniment
de cette valeur. Ainsi la fonctionnelle égale a 1 quand les Jo(x)
(pour les valeurs de o considérées) vérifient une condition de
Lipschitz donnée pour toutes les valeurs rationnelles de z, et a o
dans le cas coutraire, est sommable U, et sommable A,, les deux
opérations donnant la méme valeur; bien entendu, les fonc-
tions f,(x) étant continues, la restriction que I'on ne considére
que les valeurs rationnelles de z est sans importance, et peut étre
supprimée.

On peut remarquer que, si f(z) véritic une condition de
Lipschitz, lesfp(x) la vérifient également, car f,(x + &) — fo(x)
estune moyenne des valeurs de f(z + h) — f(x), calculée avec des
poids convenables. Par suite la probabilité (*) que tous les f,(x)
vérifient une condition de Lipschitz est au moins égale a la pro-
babilité que f(x) la vérifie; et cela est vrai aussi bien en définis-
sant la probabilité par les moyennes U, ou A,. Orj’ai démontré ()
que la probabilité qu’il existe deux nombres ¢, et t, compris entre
o ct 1 tels que

! 13
(3) | f(t) — f(t)|Sar|tea—ty

tend vers 1 quand a augmente indéfiniment, la probabilité étant

(1) La probabilité ou mesure d'un ensemble de fonctions est par définition la
moyenne d'une fonctionnelle égale & 1 pour ces fonctions et o pour les autres.
(®) Differential-Space, p.,166.

LII. 37
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liée a la moyenne A,. Donc, qu'il s’agisse d¢ moyenne A, ou U,,
la probabilité que, pour tous les o considérés,

1
(4) | folt) = fo(t) | Sar|s—ti F
tend vers 1 pour a infini.

Quel que soit a, si cette derniére égalité cst vraie pour loutes
les valeurs considérées de p, les f, (x) sont également continus. 11
est donc possible de choisir parmi ces fonctions une suite conver-
geant uniformément vers une limite. Les f,(z) convergent
d’ailleurs en moyenne vers f et ne peuvent converger uniformé-
ment vers une autre limite. La fonction f(2) est donc la limite
d’une suite uniformément convergente de f,(x), et vérifie toute
condition d’égale continuité que les fy(z) vérifient. Donc, non
seculement (4) résulte de (3), mais (3) résulte de (4). Donc
I'ensemble des fonctions vérifiant I'inégalité (3) a une mesure U,
aussi bien qu’une mesure A,, et ces mesures coincident. En parti-
culier, la probabilité A, de I'inégalité (3) tendant vers 1 pour a
infini, sa probabilité U, tend aussi vers 1. De ce résultat, et des
théorémes principaux de Daniell, nous pouvons conclure que
'ensemble des suites a, ne correspondant a aucune fonction f(z ),
ou correspondant & des fonctions pour lesquelles on ne puisse pas
trouver a tel que pour tout systéme de valeurs de ¢, et ¢,

e
[ f(t) — f(t)|Sar|ts—ts P

a une mesure nulle. Donc, a 'exception de suites constituant un
ensemble de mesure nulle, toute suite de a, représente une

fonction continue.
Considérons maintenant les fonctionnelles définies, si.f est con-
tinu, par la formule

F[f] = ?[f('rl)y MRS ] f(xn)],
ou o est borné et continu, et si f est discontinu (') par la formule

Flfl=o0

(') Nous comprenons aussi dans ce cas celui ol f est une notation purement
symbolique représentant une suite de coefficients a..
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Nous considérons de méme la fonctionnelle définie, si f est
continu, par la formule

Folfl1=elfo(2r), ...y folan)]
et si f est discontinu par la formule

| Folfl=o0.
1l est évident que, si f est continu,

lim Fo[f]=lim el fo(21)y «ovy fo(ma)]
> p>1
= lim fe(@), -, lim fy(an)]
=e[f(@1), ..., f(@)] =F[f],

et que, dans le cas contraire,

lim Fo[f]=F[f].
6>1

En outre I'ensemble des F, est uniformément borné, et chaque F,
est sommable comme étant toujours égal a la plus petite de deux
fonctionnelles sommables. Alors, d’aprés les théorémes de Daniell,
F[/] est sommable U,.

On voit aisément que ce résultat subsiste si o est une fonction
simple (step-function), car une telle fonction peut étre obtenue
a lalimite en partant de fonctions continues.

Cet ensemble de fonctionnelles est précisément I'ensemble T,
d’un de mes précédents Mémoires ('), ou j'étudiais la méme opé-
ration A, que dans mon Mémoire sur I'espace différentiel. Il en
résulte que toute fonctionnelle sommable A, au sens du présent
Mémoire est sommable U,, les deux opérations conduisant a la
méme moyenne, pourvu qu’elle s’annule pour toute fonction
discoritinue. Cette derniére restriction, qui ne s’applique qu’a des
fonctions formant un ensemble de mesure nulle, peut d’ailleurs
étre omise. Les deux opérations U, et A; sont donc complétement
identiques, ayantla méme extension et conduisant 4 la méme valeur.

Tous les résultats de mon article surl’espace différentiel peuvent

(') The Average Value of a Functional.
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donc étre considérés comme des résultats sur les probabilités

dénombrables ().

(1) Je rectifie ici quelques erreurs d’impression commises dans cet article.
Premiére formule non numérotée aprés la formule (78). page 164, lire, pour

le champ d’intégration,
) 1 1 1

v—1

Méme correction pour la premiére formule de la page 165; dans cette formule,
remplacer aussi ¢, par fv.
Méme page, formule (C), lire

U(ef)=cU(Sf).



