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UN PROBLÊME DE PROBABILITÉS DÉNOMBRABLES ;

PAR M. NORBERT WIENER (1).

L/étude des lois de probabilité concernant les systèmes d^une
infinité dénombrable de variables est due principalement à
M. E. Borel (2) . M. H. Steinhaus (3) a obtenu des résultats très
intéressants sur cette question, particulièrement au sujet de la
convergence des séries telles que

oo

^±1-^ n
- . ^ 1 . , • . ^

où chaque signe est choisi indépendammeut des autres, les
signes 4- et — ayant à chaque choix des probabilités égales. »Tai
également écrit sur ce sujet (4) . En outre la partie des Leçons
d}Analyse fonctionnelle de M. PaulLévy, qui traite de la mesure
dans Pespace fonctionnel du point de vue d/une infinité dénom-
brable de coordonnées, se rattache au même ordre d^idées.

Dans plusieurs articles (5) j'ai développé la théorie d^un type
d'espace fonctionnel qui diffère par plusieurs points essentiels du
type classique, et que j^appelle espace différentiel. Cet espace est
caractérisé par le fait que Fon considère comme des variables
indépendantes, non les différentes valeurs de la fonction/(rr)

(1) J'adresse ici mes remerciements à M. Paul Lévy, qui a bien voulu m'aider
dans la rédaction de ce Mémoire en français.

( 2 ) E. BOREL, Les probabilités dénomb râblés et leurs applications arithmé-
tiques ( Bendiconti del Cire. Mat. di Palermo, t. XXVII, Ier semestre 1909,
p. 247 à 271).

( 3 ) H. STEINHAUS, Les probabilités dénombrables et leur rapport à la théorie
de la mesure {Fund. Math., t. IV, 1923).

< 4 ) NORBERT WIENEB, Notes on thé Séries 'L±Ï- {Bulletin de l'Académie des

Sciences de Pologne, 1923).
(5 ) Thé Average of an Analytic functional {Proc. Nat. Acad. Se.,

Washington, t. VII, p. 253-26o); Thé Average of an Analytic functional and
thé Brownian Movement {Jbid., p. 294-298); Differential-Space {Journ. Math.
and Phys., Mass. Inst. Techn., t. II, p. i3i-i74); Thé Average Value of a
functional {Proc. London Math. Soc., 2e série, t. XXII, Part 6, p. 454-46?)-
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que représente un point de cet espace, pour des valeurs de ± très
nombreuses et en progression arithmétique, mais les accroisse-
ments def(x) entre deux valeurs consécutives de x. Comme dans
l'espace fonctionnel ordinaire, on peut remplacer l'infinité con-
tinue de coordonnées qui détermine un point de cet espace par
une infinité dénombrable de coordonnées indépendantes. Pour
préciser, si

(1 ) f(^) ̂  €IQ-\- ai ^/2cos7T;r4-. ..-+- an \/ï cosmtv-{-... (i)

est une fonction de l'espace différentiel définie dans l'intervalle (o, i ),
les quantités

(2) TCOi, 2-ïTâ?2, . .., nv.an. ...

constituent une infinité dénombrable de coordonnées ayant toutes
des poids égaux. Si

<p(<»i, ..., an)

est une fonction bornée uniformément continue de a< , ..., a^
j'ai démontré (2) que sa valeur moyenne dans un domaine que
j'appelle sphère de rayon /' est

>̂,..,̂ .-..̂ ,....s)
et l'on obtient la même moyenne, si toutefois elle existe, lorsque y,
quoique non borné, est uniformément continu dans tout domaine
où les a,n sont bornés.

On verra que nous supposons essentiellement que irai, 27^02,
..., /îTca/,, .. . sont des variables indépendantes, obéissant à la
loi de Gauss avec le même paramètre. C'est dans cette hypothèse
que nous trouvons pour la moyenne d'une fonctionnelle la valeur
obtenue d'autre part dans l'espace différentiel. Nous sommes ainsi
concTuits à la question : est-il possible d'appliquer cette transfor-
mation de coordonnées à une classe plus étendue de fonctionnelles?
En d'autres termes, est-il possible de développer toute la théorie

(1) Le signe r>u est mis à la place du signe = parce que la série considérée
peut n'être que convergente en moyenne.

( 3 ) Differential Space, p, 171.
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de l'espace différentiel en se plaçant au point de vue d'une infinité
dénombrable de variables?

L'objet du présent travail est de donner à cette question une
réponse affirmative. Dans ce but, il est nécessaire de rappeler
brièvement quelques points de mon précédent Mémoire; le pro-
cédé d'intégration développé dans ce Mémoire était un cas parti-
culier' de l'intégration dans les ensembles abstraits au sens de
Daniel! ( < ) . M. Daniell considère un ensemble To de fonctions
bornées f{p) d'éléments quelconques/?. Cet ensemble est fermé
relativement aux opérations suivantes : multiplier par une con-
stante; ajouter deux fonctions; et prendre les modules. M. Daniell
appelle « intégrale » une fonctionnelle U(/) ayant les propriétés
suivantes :
(G) V(cf)=cV(f),
( A ) U( / i+ /2 )=U( / i )+U( /2 ) ,
( L ) Si /i^/^.-.^o et \ïmfn=o alors lim U (/,»)== o,
( P ) U( / )^o si / est toujours ^o.

Il étend autant que possible le domaine dans lequel il définit
cette opération, comme M. Lebesgue l'a fait en partant de l'inté-
gration au sens de Riemann. Il prouve d'abord que, si/i ^/a ^ . ..
est une suite de fonctions appartenant à T(), la suite des U(/i) est
non décroissante, et par suite devient infinie par valeurs positives
ou a une limite. Si alors/„ a une limite/, M. Daniell définit U(/)
comme limite de U(/^), et désigne par Ti l'ensemble des fonc-
tions telles que/. Il définit ensuite pour toute fonction/ la semi-
intégrale supérieure U(/) comme la borne inférieure de U(^)
pour toute fonction g appartenant à Ti et ^/. II définit U(/)
comme—U(—/) . Si U(/)==U(/), ces quantités étant finies,
il les désigne par U(/), et la fonction / est dite sommable. Un
des principaux théorèmes de Daniell est le suivant : si /i, . . .,
fni • . . est une suite de fonctions sommables ayant pour limite /,
et s'il existe une fonction 9 sommable telle que |/i|^y pour
toutes les valeurs de ^, alors / est sommable et ^J(fn) a pour
limite U(/). Il faut aussi, pour la suite, rappeler les résultats

( 1 ) P. J. DANIELL, A Général Form of Intégral {Annals of Mathematics,
a* série, t. XIX, p. 279-294).
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suivants : si / est sommable, cf et )/[ sont sommables et
1-[(c/)=c1-J(/)î de plus, si / et g sont sommables f ~\-g est
sommable et U(/+^) == U(/) +U(^), etsi/^, U(/)SU(^).

Enfin, si f(x)ïg{x)th{x), f(x) et h{x) étant sommables et
ayant même intégrale U, g{x) est également sommable.

Dans mon précédent article, les éléments p de l'espace auquel
j'appliquais la théorie de l'intégration ou de la moyenne étaient
les fonctions continues f(x) s'annulant avec x et définies dans
l'intervalle (0,1). L'ensemble To était celui des fonctionnelles
bornées et telles qu'il existe une fonction y (a*), s'annulant pour
x == o, pour laquelle

IF[/1-F[/+^]|«p(max|^|).

Nous désignions par F(^,, x^ . . . , Xn) la valeur de F[/,,], où

f.,.,^., [^<^],
et nous l'appelions /î16"1® section de F[/]. Nous avons établi que
pour toute fonctionnelle de l'ensemble To, la moyenne de la

n

n1^6 section dans la sphère V*y,2 = r2 a, pour n infini, une limite
i

que nous appelons moyenne de F [/] dans la sphère de rayon r et
désignons par A.r j F j . Nous avons montré que les résultats de
Daniell s'appliquent dans ces conditions, et comme cas particulier
nousavons considéré la moyenne de fonctionnelles telles que ©(ai ,
02, ..., a,^), les cfn ayant la même signification que plus haut.
formule (2).

Nous allons maintenant, indépendamment de la théorie précé-
dente, définir une intégrale de Daniell représentant la moyenne
d'une fonction des dn. Nous considérerons des éléments p d'une
nature plus générale : toute suite de nombres réels Oi, ^2, ...,
ânf ... constitue un argument pour nos fonctionnelles, que la
série (i) converge en moyenne ou non. Notre ensemble T() sera
celui des fonctions y (a,, a^ ..., an) (n étant fini), bornées, uni-
formément continues, et nulles pour les valeurs suffisamment
grandes des variables, et notre opération U sera définie par la
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formule

Ur j<p(ai , . . . ,a^)!,r..,...f^-^^....,^.— Fd^.. r^.--1?^^, ...,̂
70 T^n}

(2^2)2

II est évident que To vérifie les conditions de Daniell, et que
l'opération (U) vérifie les conditions (C), (A) et(P). Elle vérifie
aussi la condition (L). On peut l'établir par la méthode employée
par Daniell dans un autre Mémoire, en utilisant le fait que Ur,
qui est une moyenne, ne peut pas dépasser le module maximum
de son argument. La méthode de Daniell supplique donc pour
généraliser l'opération U,..

L'opération Ur, appliquée à y considéré comme fonction des a^,
coïncide avec l'opération A,., appliquée à CD considéré comme
fonctionnelle de /, la fonction / et les coefficients dn étant liés
par la relation (i). Alors, d'après le théorème de Daniell rappelé
plus haut, pour toute fonction de l'ensemble T< liée à l'opé-
ration Ur, l'opération A.r s'applique et conduit à la même valeur.
11 en résulte, d'après un autre théorème de Daniell également
rappelé plus haut, que les extensions dé ces deux opérations
coïncident; en ce sens que dans tout domaine où Vr peut être
défini, A.r peut être défini et Ur et A.y ont la même signification.

L'objet du présent travail est de montrer que le domaine où Ur
est défini coïncide avec celui où A.r est défini, et que presque tous
les systèmes de coefficients On (dans le sens qui résulte de la loi
de probabilité indiquée plus haut), correspondent à des fonc-
tions f(x) continues. Dans mon précédent article ( f ), j'ai démontré
un théorème revenant à dire que la fonction égale à l'unité si
a2^ -+-...+ a\ 4- ... > û2 et nulle dans le cas contraire a une
semi-intégrale supérieure tendant vers zéro pour m infini. J'ai
montré ensuite que, si F (Y) est une fonctionnelle bornée et uni-
formément continue au sens restreint, c'est-à-dire si à tout^ positif
correspond un 9 positif tel que

f [fW-^Wdt<^
•^0

(1) Differential-Space^ p. 171-172.
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|F[/]-F[^]|<^

F est sommable A,., et la méthode employée permet de voir
que F, considéré comme fonction des dm est sommable U/..

Etablissons maintenant la sommabilité U» de fonctionnelles
d'un type particulier. Si f(x) est la fonction de carré sommable
correspondant à la série des cosinus

Û?0 -+• a! \/'2 cos TT ̂  -h . . . -+- <ï/t ^2 COS n n X -+- .

la fonction
y1 i _ p2 ______

JQ J { ' R y ) i - -2pcosTc(a7—y)-+-p2 y'

qui correspond à la série

OQ -+- Oi ^/2 p COS Tt X •+-. . . -4- dn \/2 ?" COS 71 îl .T 4- . . .,

est continue par rapport à x pour tout p <^ i . Choisissons main-
tenant pour <2o une fonction de p telle que notre nouvelle fonc-
tion s^annule pour x == o, c'est-à-dire que cette fonction sera

/p(^)== f /(^r)d-p2)
^o

>< [^______!_____ _ ___J___ 1^.
[ i — 2 p c o s 7 ! : ( . r — y ) + P 2 I — < 2 F C O s y 4 - p 2 J

Considérons alors une fonctionnelle de la forme

yL/p^i), •.^/p(^)L
où cî est une fonction bornée et continue de ses arguments. On
voit aisément que co sera une fonctionnelle bornée deoi, 03, . . . ,
continue au sens restreint indiqué touFà l'heure. Elle sera som-
mable A, et sommable Ui , et les deux opérations conduiront à la
même valeur.

11 n'y a aucune difficulté à étendre un peu cette classe de fonc-
tionnelles; es peut être une fonction de n variables ne prenant que
les valeurs i et o, prenant la première de ces valeurs dans un
ensemble mesurable borné. Une telle fonction peut en effet être
considérée comme limite d'une suite décroissante de fonctions
continues, et différentes de zéro seulement dans un domaine
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borné. D'ailleurs, d'après un autre théorème de Daniel!, s; deux
fonctionnelles sont sommables, la fonctionnelle toujours égale à la
plus grande des deux (ou à la plus petite) est sommable. On en
conclut que, si une fonctionnelle de / est égale à i ou o suivant
que des inégalités en nombre fini entre un nombre fini d'expres-
sions /p(^) (les p et les x ayant des valeurs comprises entre
o et i) sont vérifiées ou non, cette fonctionnelle est sommable,
pourvu que ces inégalités permettent de borner supérieurement
les /p(.r). Comme d'ailleurs la limite d'une suite décroissante de
fonctionnelles sommables est elle-même sommable, on peut
augmenter indéfiniment le nombre des valeurs considérées des o
et des x^ et obtenir par exemple pour les ̂ l'ensemble des nombres
rationnels de l'intervalle (o, i), limites comprises, et pour Fes o un
ensemble de nombres inférieurs à i mais approchant indéfiniment
de cette valeur. Ainsi la fonctionnelle égale à i quand les f.(x}
(pour les valeurs de p considérées) vérifient une condition de
Lipschitz donnée pour toutes les valeurs rationnelles de x, et à o
dans le cas contraire, est sommable U, et sommable A,, les deux
opérations donnant la même valeur; bien entendu, les fonc-
tions /p(.r) étant continues, la restriction que l'on ne considère
que les valeurs rationnelles de x est sans importance, et peut être
supprimée.

On peut remarquer que, si f(x) vérifie une condition de
Lipschitz, Ies/p(.r) la vérifient également, car/p(.r + h) —fç(x)
est une moyenne des valeurs de/(.c + h) —f(x), calculée avec des
poids convenables. Par suite la probabilité ( f ) que tous les/p(^)
vérifient une condition de Lipschitz est au moins égale à la pro-
babilité que/(.c) la vérifie; et cela est vrai aussi bien en définis-
sant la probabilité par les moyennes U, ou A,.. Or j'ai démontré (2)
que la probabilité qu'il existe deux nombres / /et t^ compris entre
o et i tels que

( 3 ) \fW-fW\^ar\t,-t,\î~s

tend vers i quand a augmente indéfiniment, la probabilité étant

( * ) La probabilité ou mesiire d'un ensemble de fonctions est par définition la
moyenne d'une fonctionnelle égale à i pour ces fonctions et o pour les autres

( 2 ) Differential-Space, p»,i66.
LU. 3^
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liée à la moyenne A,.. Donc, qu'il s^agisse de moyenne A,, ou 11,,
Ja probabilité que, pour tous les o considérés,

(4) l/p(^)-/F(/l)|^|^--^|2~£,

tend vers i pour a infini.
Quel que soit a, si cette dernière égalité est vraie pour toutes

les valeurs considérées de p, les/p(a?) sont également continus. Il
est donc possible de choisir parmi ces fonctions une suite conver-
geant uniformément vers une limite. Les /p(^) convergent
d^ailleurs en moyenne vers f et ne peuvent converger uniformé-
ment vers une autre limite. La fonction/(a?) est donc la limite
d'une suite uniformément convergente de/p(j?), et vérifie toute
condition d'égale continuité que les fo(^) vérifient. Donc, non
seulement (4) résulte de (3), mais (3) résulte de (4). Donc
l'ensemble des fonctions vérifiant l'inégalité (3) a une mesure 1]»
aussi bien qu'une mesure A,, et ces mesures coïncident. En parti-
culier, la probabilité A, de l'inégalité (3) tendant vers i pour a
infini, sa probabilité U^ tend aussi vers i. De ce résultat, et des
théorèmes principaux de Daniell, nous pouvons conclure que
l'ensemble des suites a/i ne correspondant à aucune fonction f(x ),
ou correspondant à des fonctions pour lesquelles on ne puisse pas
trouver a tel que pour tout système de valeurs de ^ et ^.,

l/(^)-/(<l)l^•|^---^|2~£,

a une mesure nulle. Donc, à l'exception de suites constituant un
ensemble de mesure nulle, toute suite de a.n représente une
fonction continue.

Considérons maintenant les fonctionnelles définies, si/est con-
tinu, par la formule

F[/]=y[/(.ri),. . . ,/(^)],

où y est borné et continu, et si/ est discontinu (1 ) par la formule

F[/]==o

(') Nous comprenons aussi dans ce cas celui où /est une notation purement
symbolique représentant une suite de coefficients a«.



— 577 —

Nous considérons de même la fonctionnelle définie, si / est
continu, par la formule

Wl^L/p^i), ...,/p(^)]

et si/est discontinu par la formule

W]-0-

11 est évident que, si/est continu,

^Fp[/]=lim^[/p(^), ..., f^Xn)}

= y j lim/p(^), ..., lim/p(^)1

=9[/(^i)/...,/(^)]=F[/1,

et que, dans le cas contraire,

l imFp[/]=F[/].
p-^i

En outre l'ensemble des Fp est uniformément borné, et chaque Fp
est sommable comme étant toujours égal à la plus petite de deux
fonctionnelles sommables. Alors, d'après les théorèmes de Daniell,
F[/] est sommable U,.

On voit aisément que ce résultat subsiste si o est une fonction
simple (step-function), car une telle fonction peut être obtenue
à la limite en partant de fonctions continues.

Cet ensemble de fonctionnelles est précisément l'ensemble Tç
d'un de mes précédents Mémoires (1) , où j'étudiais la même opé-
ration A/que dans mon Mémoire sur l'espace différentiel. Il en
résulte que toute fonctionnelle sommable Ar au sens du présent
Mémoire est sommable L,, les deux opérations conduisant à la
même moyenne, pourvu qu'elle s'annule pour toute fonction
discontinue. Cette dernière restriction, qui ne s'applique qu'à des
fonctions formant un ensemble de mesure nulle, peut d'ailleurs
être omise. Les deux opérations U^ et A^ sont donc complètement
identiques, ayantia même extension et conduisant à la même valeur.

To.usies résultats de mon article sur l'espace différentiel peuvent

( 1 ) Thé Avéra ge Value o fa Functional.
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donc être considérés comme des résultats sur les probabilités
dénombrables ( < ).

( 1 ) Je rectifie ici quelques erreurs d'impression commises dans cel article.
Première formule non numérotée après la formule (78). page 16^, lire, pour

le champ d'intégration,

ff-f •^O ^/, •^v-.

Même correction pour la première formule de la page i65; dans cette formule.
remplacer aussi <„ par <v.

Même page, formule (C), lire

U(c/)=cU(/) .


