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SUR LES GROUPES LINEAIRES, REELS ET ORTHOGONAUX;

Par M Lton AuToNnNE.

Considérons un groupe G, de substitutions linéaires n-aires,
de déterminant ur [j, k=1, 2, ..., n],

A= ‘ z'jzajkz'k
k

Supposons que les substitutions A soient : 1° réelles, les coeffi-

=lz; Alz;]| = |z A[z]].

cients aj; étant réels; 2° orthogonales, admettant pour invariant
absolu la somme des carrés des variables. On dira que G, est un
groupe linéaire réel et orthogonal. .

Changeons de variables, en posant symboliquement z = r[¢],
c’est-a-dire, en notation ordinaire,

Zj = Zl‘jktk.
k

Le nouveau groupe I';, qui est d'ailleurs 7~! G r, n’est, en géné-
ral, plus ni réel, ni orthogonal. T, n’est cependant pas quelconque,
car, pour un changement convenable de variables, t = r—*[z], il
redevient réel et orthogonal. J’exprimerai plus briévement cette
propriété en disant que T, est réalisable et admet la substitu-
tion r pour réalisante.
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Quelles sont les conditions nécessaires et suffisantes pour qu’un
groupe n-aire I'; soit réalisable?
La présente Note fournit la réponse compléte & la question..

Mon Mémoire Sur I’Hermitien (Rendiconti du Cercle Ma-
thématique de Palerme, 19o2) contient, sur les substitutions
linéaires, des considérations d'ou la solution de notre probléme
se déduit assez simplement. Je vais me référer trés fréquemment
a ce travail; j’y renverrai pour la notation (loc. cit., n° T), par
exemple. l

Rappelons bri¢vement les principales théories dont on va faire
usage.

Soit une matrice ou Tableau de n? coefficients,

[/, k=12 ..., n},

ay . Ain
A=[ap]={ -+ -+ - de déterminant |[A| =1.

Qipn .. Qpp .

La matrice A'=[ay,] est la transposée de A. g étant la conju-
guée de I'imaginaire g, on pose A = [a;x] (loc. cit., n° 1).
La matrice A'définit, sans ambiguité (loc. cit., n°2), une forme
bilinéaire
Az, 7) = DAy on
o ik
et une substitution

oA (w, y
A=|wj , ———a—%ﬂ|=]x Alz]l. .

La matrice
| )

0 1

=
]

définit. la forme bilinéaire E(z, y) = zxy et la substitution
unité. - » : u ‘

* La méme lettre A peut désigner la matrice, la forme bilinéaire et
la substitution. Les formules:du calcul symbolique (Frosentus,
J.f.r.u. a.m., t. 84, p. 1) sont ainsi susceptibles (loc. cit.,
n° 4) d’une triple interprétation. :
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Sil'on pose x = L[E], ¥ =M[n], les [ormes bilinéaires
A(z,y) et Az, z)
deviennent respectivement (loc. cit., n° 5)
WAL(,m) et IZAL(SE).
- Une matrice, forme bilinéaire ou substitution, A est
symétrique, si  A'=A;
réelle, si A =A;
orthogonale,  si A'A=E;
dnitqi}'e, si K'A =E;
enfin hermitienne, si A=A,
I'expression A(x, ;) devant étre, de plus, dans ce dernier cas,
un hermitien, c’est-a-dire toujours positive.
Les matrices réelles, orthogonales ou unitaires forment évi-

demment un groupe réel, orthogonal ou unitaire.
Si Aest hermmenne il existe (loc. cit., n° 25) une, et une seule,

hermitienne @ = A‘ telle que a2 = A Si un groupe G admelt pour

invariant absolu un hermitien H(x, x), le groupe transformé

wient ;

par 'hermitienne H™ ? est unitaire (loc. cit., n®31).

Tout cela rappelé; voici la proposition qui résout le probléme :

Tutorkme. — Pour qu'un groupe n-aire T, puisse, par un
choiz convenable de variables, étre rendu réel et orthogonal,
les conditions suivantes sont nécessaires et suffisantes :

I. T, posséde deux invariants absolus, un hermitien
H(t, t) et une forme quadratique n-aire
(Pik=pr;]  P= Emk tjtk
de déterminant un.

II. T, ayant été rendu unitaire (en le transformant par
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1
Uhermitienne H 2), dans U’ expression transformée P la ma-
trice P =[pjx] symétrique est unitaire.

Si T, posséde plus d’une réalisante, les divers groupes G,
@,, ... réels et orthogonaux, auxquels on raméne T, sont les
transformés 'un de 'autre par des substitutions réelles et ortho-
gonales. On peut donc ne pas considérer G, ®,, ... comme
distincts. Il suffira de se procurer, d’'une maniére quelconque,
une seule réalisante.’

Je construis effectivement cette derniére dans le cas particulier,
assez étendu du reste, oii, dans le groupe T, une substitution A
au moins a toutes les racines de son équation caractéristique

[pE—A]=o0
distinctles. :
Un résumé des présentes recherches a été inséré aux Comptes
rendus de I’ Académie des Sciences du 17 mars 1go2.
Je passe maintenant a la démonstration du théoréme.

1. Je ne considére pas comme distincts deux groupes réels et
orthogonaux, transformés I'un de 'autre par une substitution
réelle et orthogonale.

Je nomme réalisable tout groupe n-aire qui devient réel et
orthogonal aprés transformation par une substitution réalisante
convenablement choisie. Je vais poursuivre la construction des
groupes réalisables.

2. Lemme 1. — Des trois propriétés, réalité, unitarité, ortho-
gonalité, que posséde éventuellement une matrice A, deux
quelconques assurent toujours la troisiéme.

En effet, des trois relations

A=A, réalits,
A'A = E, orthogonalité,

A'A =E, unitarité,
deux quelconques assurent toujours la troisi¢me.

Lemse 1. — Toute matrice est le produit d’une unitaire
par une hermitienne.
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Soit la matrice A. La matrice A’A est hermitienne (loc. cit.,
n°® 27) et saracine carrée k (loc. cit., n°25) aussi est hermitiennc.

Ona
AA=h* e A 1AAR'=E ou (AA1)Ah1=E.
La matrice AA~! = u est donc unitaire et il vient

. A = uh. C. Q. F. D.
On a du reste aussi
A-1= h-ty-1,

h—! est hermitienne (loc. cit., n° 24) et «~* est unitaire. On peut
donc dire aussi que toute matrice est le produit d’une hermi-
tienne par une unilaire.

3. Considérons maintenant un groupe T';, exprimé en' n va-
riables ¢y, £3, ..., f,. Par hypothése, T, est réalisable et, posant
t=r-t{z],
on a un groupe Gz, exprimé en n variables zy, ..., z,, lequel G,
est réel et orthogonal. La substitution r~1 sera dite réalisante.

G, étant réel et orthogonal, admet deux invariants absolus,
savoir :

I. L'hermitien E (z, z) =2 xz (car toute substitution de
Gy, étant réelle et orthogonale, est aussi unitaire, par le lemme 1
du 2°);

II. Le polynome quadratique E(z, z) =Zx‘*.

En vertu-de la relation précédente

t=r"1fx] ou 2=r[¢,
I’hermitien E (z, z) devient I'hermitien 7/ r (¢,¢) et le polynome
quadratique E(z, z) devient le polynome quadratique
r'r(tt) =2ijtjlk =P(s, ),
jk
ou P désigne la matrice symétrique

:k,j::,z,...,n‘ P=[P1k]=[p’d]'
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4. Nous pouvons donc énoncer le résultat suivant : Tout groupe
réalisable T, posséde deux invariants absolus, un hermitien
et une forme quadratique.

Cherchons si la réciproque est vraie.

5. Je dis que 'on peut, sans restreindre la généralité, n’enviz
sager que des groupes réalisables T'; unitaires.

r étant une réalisante, posons, conformément au lemme II du

n° 2,
r = uh.

L’invariant absolu hermitien, qui est, d’apréslen® 3, ;’r(t, £),

devient

h2 (¢, 7).
Transformons T, par hermitienne 2~'. L'hermitien A2(¢, ¢) de-
vient hermitien E(¢, -t) et, par conséquent, I'; devient unitaire,

C’est ce que je supposerai toujours dorénavant.

Cela revient & supposer unitaires la réalisante r, pour que ' r
puisse étre identique a E, et aussi la matrice symétrique P = r'r
(n° 3).

6. Nous allons montrer que tout groupe unitaire Ty qui admet
pour invariant absolu une forme quadratique

Epjk Liths  Pik = Pkj
jk

ot la matrice symétrique
P =[pj]

est unitaire, est réalisable.

1l suffira évidemment de construire une réalisante.

Cette proposition est bien la réciproque de celle du n° 4, car
le second invariant absolu est déja, par unitarité, I’hermitien

E(¢1).
7. La matrice unitaire symétrique P admet une canonisante
(loc. cit., n° 22 unitaire A et a pour forme canonique P,,
P =21P,),
Po=¢;, eyl

ol |¢j| =1 (loc. cit., n° 20, in fine).
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Mettons en évidence les ¢; égaux; on écrira, [ =

CI=C=C3=...=Cp, = €9,
Cmit=Cm+2=+.. = Cprm’ = etq’,
Contm/+1= + v+ = Cmrm'm» = €',

¢, §, ©, ... élant des arcs réels, tous distincts, compris entrr o
et am,

On vérifiera sans peine la proposition suivante :

Lemme. — Pour gqu'une substitution n-aire A soit échan-
geable a Py, il faut et il suffit que l'on ait

A=Lp Lm’Lm” LRRE]
ot Ly, Ly, L, ... sont respectivement une m-aire, une

m/-aire, une m'-aire, ... quelconques, eflectuées, savoir, res-
pectivement,

L,, sur ¢, ¢, ey tmy
Ln sur &my, ooy tmmty
Lmr sur tmam+1s  -oo5  Emtmtmr;

“ee “ee ceceteny ee oy ss e et enne

Ce lemme résulte immédiatement de théories, bien connues,

de M. Jordan.

8. Sont symétriques : P par hypothése et P, comme cano-
nique. Il vient (n°7)

P o AtPoh = P'= MPoA=1,  Pom= AVPo(AN)t;
AN est échanéeahle a Py et I'on écrira
A=V,
A ayant I'expression qui figure au lemme du n° 7.
9. Considérons maintenant la canonique unitaiee

80=|t;, d;tl,



ou (voir n° T)
i
d|=d2= ,=dm=e’,
iy
dnri=dpz=...=dprm=e?,
i

Adnsmvr=-..=Bmpamrm=e?,

..............................

les arcs £ -?, ®, .+. sont tous inégaux.
2 2
On a évidemment O} = P, et A est échangeable 4 6,.

Posons
0 = A-189A, comme P = A-1Py};

on a aussi
8= P.

Je dis que O est symétrique.

Considérons, en effet,
0'6-1= N8, A1 A-1051 X = 1’8, A-1 851 A

et, comme A = A\’ est échangeable a ,,
C. Q. F. D.

80-1=ANA"1A=E et 0'=86.

10. On reprendra donc un groupe unitaire I'; ayant pour inva-
riant absolu quadratique I'expression
P(1,1),
ou la matrice unitaire symétrique P = 62.
Posons
t=06-1[xr] ou x=20[t];
T se transforme en un groupe unitaire G, lequel admet pour

invariant quadratique I'expression
0-1PO-1(z,x) = 6-1026-1 (2, ) = E(z, ») =E”"

G, est orthogonal; il est déja unitaire, donc (lemme I du n*2)
G est réel. T, est réalisable et ® est une réalisante.

11. Nous avons, au n° 5, rendu T, unitaire, en le transformant
par 'hermitienne A~', £ étant la racine carrée de son hermitien,
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invariant absolu,
H(t,t)=rr(¢1).

Nous pouvons donc résumer toute la discussion précédente dans
un théoréme qui est la proposition annoncée au commencement
du présent travail.

Tatorime. — Pour qu'un groupe n-aire T, puisse, par un
choiz convenable de variables, étre rendu orthogonal et réel,
les conditions suivantes sont nécessaires et suffisantes :

1° T, posséde deux invariants absolus, un hermitien H(t, ;)
et une forme quadratique n-aire, de déterminant un,

P =2ij Litks  Pjk=Pkij

2° T, ayant été rendu unitaire (en le transformant par

1
Uhermitienne H-i) dans Uexpression transformée, P, la ma-
trice n-aire symétrique
L =[pjk]
est unitaire.

12. T, satisfaisant aux conditions du théoréme, nous avons
construit la réalisante 8, laquelle est connue dés qu’on possede
la matrice P et une de ses canonisantes.

Existe-l-il pour T'; encore d’autres réalisantes?

Supposons qu’il en existe deux, r et s, de facon qu’en posant

z = r[t], y =slt],

on obtienne deux groupes G, et &, tous deux réels et orthogo-
naux.

On aura (n° 3)
P(t,t)=r'r(t,t)=ss(¢,t), r'is'sr1=(sr-1)'sr1=1;

la matrice u = sr~* est orthogonale. D'ailleurs, y = u[z].

Je dis que u est réelle. 1l suffira (lemme I du n° 2) de montrer
que u est unitaire. Or, cela est évident, car u, transformant I'un
dans I'autre les groupes réels et orthogonaux G, et ®,, transforme

Pun dans l'autre les deux hermitiens E(z, z), et E (y, 7).
XXX.



— 130 —.

u étant réelle et orthogonale, les groupes G et & ne sont pas
distincts (n° 1).

Il est donc inutile de chercher d’autres réalisantes que 6.

Il suffira méme de se procurer une réalisante » quelconque.

La maniére Ja plus simple d’avoir r est de poser z =r(¢) de

fagon que I’expression 2.1:2 s'identifie avec le polynome quadra-

tique Pen ¢, ..., ¢£,. r, bien entendu, doit étre unitaire.

Alors, en effet, en transformant I'; par 7!, on a un groupe G,
qui est unitaire, commeT,, et, de plus, orthogonal; donc, G, est
aussi réel.

13. Le calcul effectif d’une réalisante unitaire ne présente au-
cune difficulté dans un cas particulier, assez étendu du reste.
C’est lorsque le groupe réalisable unitaire I, posséde au moins
une substitution A, pour laquelle I'équation caractéristique

f(g) =1pE—A]=0

a ses n racines distinctes. Le polynome f(p) est évidemment a
coefficients réels.

Ces racines sont, par unitarité, de la forme e, A cause de la
réalité du polynome f(p), s'il y a une racine e, il y aura une
racine e, Tous les arcs réels « et —a sont distincts. Aucun
d’eux n'est égal a =, car l'équation caractéristique, en vertu
de |[A|=1, posstde la racine — 1 avec un degré pair de mului-
plicité.

Nous supposerons A mise sous forme canonique et nous distin-
guerons deux cas :

n=oam = pair,

n = 2m -+ 1= impair,

14. Prenons n = 2m. Eu égard a ee qui vient d’étre dit, on
peut écrire

},1 ylef“l
A= . l=1,2,...,m,
3 zZetu
ou
t|=}’1, g = Zy, tg:}’g, ty,: Zay ey

les arcs « sont tous distincts; aucun d’eux n’est ni o ni .
Le polynome quadratique P est un invariant absolu vis-a-vis



— 131 —
de A. On vérifie de suite que
P=2a Zplylz,
‘ !
et I'on a la matrice symétrique

o p1 o o
PrL O 0 o

P=§j)] 0 0o o p;
0 0 p, 0 . ...

Par hypothése,
1=|P|= (—')'”l_[pfe
!

w | ) EEIGR
1]

Par unitarité on a, par un calcul facile,

J Ak o
P'P= o |p:* .... ... )=E
e ceen [P;P e
1=|pil=|psl=...=|pm|,

(2) pi= €,

;= arc réel compris entre o et 27. Eu égard 4 (1), on a
22m,= mn=2aMmn, M = entier.
1

15. Introduisons maintenant une transformation

t=gqfz], lg|=1
€en posant
2+ i} iz;+ )
Y= [t -\/—;’ = W T

La condition |g| =1 donne

) IIw=-
1

et 'unitarité donne, par un calcul aisé,

1= =l  lwl=1, p=ecw



— 132 —

Le polynome P devient
Py= Y prpt(a}+ ).
l

q est une réalisante dés que P, est, 4 un facteur constant K prés,
la somme des carrés des variables z et z' (n° 42). Il faut donc
déterminer les paramétres . par la condition

(4) K =p/p}=el@+1o);

sous le bénéfice de (3), (4) donne

]:[PI = Kn,
4

et, eu égard a (1),
(5) Kim = (— 1)m.

Si m est pair, on prendra, pour avoir (4),

AN

La réalisante est construite.

16. Supposons enfin que n est impair, n =2m +1.
On écrira, eu égard aux explications du n° 13, et remarquant
que 1 est racine de I’équation caractéristique,

to &
A=\|y: yietn l=1,9,...,m,
% szie-tu

Yi=1t, 3y =103, Ya= 3, ...; les arcs réels a sont tous distincts,
compris entre o et 2w et 5% 0,27 ou .
Comme au n° 14, on voit que le polynome P est

P =pot} + 221’7‘)’1 w;



— 133 —

la matrice P est

Po O o
P— o o P
o p o ... .
=1 =po(—0ym ] |7,
' ' 1
(6) 11et=—vmps.
1

Par unitarité,

1=popo=|po|*=pip:i=pi1*,
[Pol = |pil =1, po=e®, p/=eim,

les arcs @ étant compris entre o et 27 Eu égard a (6),

wo+ zzm/= mz + 2Mm, M = entier.. ..
7 .

17. Introduisons maintenant une transformation

t=q[‘z'J' |‘I|=',
en posanl
ty= [0 Xy,
&+ Lx) iz, + )
y,:p.[ .l—‘/;_l, zl=""/—iﬁ—1'

La condition |¢| =1 donne

(7) 1=P01—IM, Hu?=us‘-
T ] )
L’unitarité donne

1= popo= ol = p/pr= |t
[o] = |l =1;  po=e®,  p/=e.

Le polynome P devient
Pi=popdal+i Y prul(at+ ).
: - :
q eslL une réalisante dés que

(8) Po P-a = ip[ P'; = ei(mo""Qo) = tellw+29),
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Eu égard 4 (6) et (1), il vient

24,2 Ja— - 1 —_
PY ™ = imugt | Ipz, ""I Ipz = pg g™,
! {

(9) (popd)tm+t = 1.
On prendra p,u; =1, et, pour satisfaire & (8),

0p =— 9 Wy
T =T
18. Si, dans toute substitution du groupe réalisable, 1’équation
caractéristique a des racines multiples, le calcul d’une réalisante
est analogue, mais heaucoup plus compliqué.



