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EXTENSION DE LA METHODE DE LAPLACE AUX EQUATIdNS LINEAIRES-
AUX DERIVEES PARTIELLES D'ORDRE SUPERIEUR AU SECOND;

Par M. J. Le Roux.

PREMIERE PARTIE.

1. La méthode de Laplace constitue pour les équations linéaires
du second ordre une méthode générale d’'intégration, en ce sens
qu’elle permet de déterminer toutes les intégrales explicites dépen-
dant d’une fonction arbitraire. On peut I'étendre facilement aux
équations d’ordre supérieur. Considérons en effet I'équation du
second ordre

02z 0z 0z

W—i—a%—&-b@—l—cz:o

admettant une intégrale particuliére de la forme d’Euler (1)
(1) 3= up X - gy X(n—0 | 4+ u;X,

ou X désigne une fonction arbitraire de x. En appliquant a
I'expression (1) la premiére transformation de Laplace, on a

3 du Jdu
=y, +az = (—0_70 -+ auo)X‘")+ <—‘?' -+ aul) Xt .

~+ .d—uf+au,, X.
9%y
Or, on sait que u, satisfait a I’équation
5 q 0 q

ouy

r 4+ auy=o0;
3, estdonc une expression de méme forme que 3, mais contenant
un terme de moins. La transformation de Laplace se présente
donc a nous comme destinée a faire disparaitre le premier terme
dans les intégrales de la forme d’Euler, et c’est & ce point de vue
que nous la considérerons dans les équations d’ordre supérieur.

La répétition de cette transformation conduira i une équation

admettant une intégrale a un seul terme, qui se calculera par une
équation du premier ordre.

(') Dans le Mémoire de 'auteur sur les équations lindaives ( Journal de Math.:
18g8), la forme considérée est appelée la forme d’Euler.
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2. Prenons maintenant une équation d’ordre n pour laquelle «
soit une variable caractéristique

n! d“‘*‘?z
(2) D(z)=2a!Ql(n—a—?’)!A“’Bdl‘“")’p=o.

Supposons que le plus haut indice de dérivation par rapport a x
figurant dans 'équation (2) soit égal & n — p. L’ensemble des
term=s contenant les dérivées de cet indice sera de la forme

on—p+izg on—p+i—1z on—rz
a oxh—p d),i oxnh—pr dyi-—l cee 8 oxn—r )

Nous dirons que l'expression

o oi—1

QW -+ bd_—_}’t—l

ey

est le multiplicateur différentiel de %, et nous supposerons

on—p
oz n=p
toujours le premier coefficient @ égal & 'unité.

Si I'équation (2) admet une intégrale particuliére de la forme

d’Euler
(3) 3= ug XM 4= g, Xn—1) | 4+ u,, X,

les coefficients u,, u,,..., un satisfont & une loi de récurrence
que nous avons donnée dans un précédent Mémoire (*). Nous la
rappelons ici rapidement.

Regardons D (z) comme un polyndéme dont les variables soient

'd%: et %’ et désignons par D47 (z) expression différentielle obte-

g ., 0 .
nue en prenant la dérivée, par rapport a 5, p fois et, par rapport
) - o i
A5 fois; cette dérivée (p + ¢ )™ du terme

9%+Bz
B oz%oyh
sera égale a

0%—p+B—
a(a—1)...( -—p-f—l)p(@-—l)...(ﬂ—q-i—l)Aa‘pE;_f‘;—J;%,

(') Journal de Mathematiques pures et appliquees; 1898.
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de sorte que I'on aura
DT (5) =n(n—1)...(n—p—q +1)

4) ' (n—p—q)! 0%—p+8—¢
Xz(“_ﬁ)'(p ) (n—a—B)! “pdz'a—lﬂdyﬂ 7"

Cela posé, nous aurons, pour définir les coefficients (u), les
équations suivantes :

=y PR = o
! n—p—
(”__P_)' DTn—r(ua)-'-z—__;—_T DR (uo) = o,
Dt"-)(u)-.-—-_'-_D‘"—"—.’(u‘ )+...=0
(n—P)' P ) ( _"P_'—l) axn—p i—1 . ]

.........................................................

Nous voyons immédiatement que, pour faire disparaitre le
premier terme de l’expression (3), il suffira d’effectuer sur sz
Vopération D%, Nous prendrons donc dans le cas des caracté-
ristiques simples, comme définition de notre transformation
asymptotique,

/)
(5) Z‘=ﬁDT;—")(3)= Q—:,+RA,1_|’03.

Nous examinerons plus loin le cas des caractéristiques mul-
tiples.

3. Pour obtenir plus facilement 1’équation transformée en z,,
posons d’abord

= zef"An——I".Y =9,

dv
= 3 eSndnydy — V= <

oy

(6) ‘
&

i sl

L’équation en ¢ sera de méme forme que celle qui définit z;
mais le coefficient de étant nul, la transformation asympto-

tique s’obtiendra en posanl simplement

o
- = i,

oy
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D’aprés cela, écrivons I'équation en ¢ en faisant passer dans le
second membre tous les termes qui ne contiennent aucun symbole

de dérivation par rapport a y. On trouve un résultat de la
forme

orP—typ op—2p

(7) A("l)—)\oo p+)\ld o 1+)\gax—p:-z+ ..+)\p0,

A(v,) désignant une expression différentielle d’ordre (n — 1) dans
laquelle le coefficient de ———1— est égal a 'unité.

Les coefficients i du second membre sont donnés par la for-
mule
1

oAy dy
S =)

D=2 (ue) = — ———= D% (uo).

U (P =0

Il en résulte que ces coefficients, comme aussi ceux de A(¢,),
dépendent de la détermination particuliére qu’on choisira pour u,.
Les diverses valeurs possibles de u, s’obtiennent en multipliant
I'une quelconque d’entre elles par une fonction arbitraire X de x.
Cette opération transforme D7 (u,) en

"

D (uoX) = X D (u) + ?—(—Djrﬂ) uy) + — X &’:t%’(u +.
9 )

En désignant par A; la nouvelle valeur de };, on a donc

r I (p=i)
(10) ‘ T ¢ (p—z)' Dir=s (4 X)
( :)\[-+- C},?l_ix—)\i_l—l-(:},_‘_n_ix )\_2+....

L’ordre p de la plus haute dérivée figurant dans le premier
membre de I'équation (7) est, en général, égal a n — 2; il peut
étre moindre st I'on a

D(n 2)(u )__ o.

Mais, quelle que soit la détermination choisie pour u,, U'ordre p
restera inaltéré. C’est en quelque sorte un invariant de ’équation
proposée.

On voil que les valeurs générales des A dépendent d'une fonc-
uop arbitraire X ; mais on peut, en ayant égard a I'équation (10),
former avec ces quantités d’autres expressions qui ne contiennent
plus aucune indéterminée ct qui s’exprimeront par suite directe-
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ment i I’aide des coefficients de D(z) et de leurs dérivées. Ce sont
les déterminants de la forme

hoo A .. N
Ohe . 0N o
= 5 e 5t
(1) =% ¥ y
l)i)\o 0"7‘, ()i)i
o A

qui sont au nombre de p + 1, en y comprenant ko= ),.

Si les A, regardés comme fonctions de y, ne sont pas linéaire-
ment indépendants, les déterminants 4; sont tous nuls a partir
d’un certain ordre. Nous dirons dans ce cas que la chaine des A est
brisée; si, de plus, on a

p<n—z2,

nous dirons que la chaine est raccourcie. Dans ces conditions, il
faut modifier un peu ’expression des déterminants ;. Désignons
par ), le premier A linéairement indépendant de Ao, par A, le
premier aprés A, qui soit linéairement indépendant de A, et de

Ay, etc. Les déterminants (11) seront alors remplacés par les sui-
vants :

R Ax, ... Ay

AN Ay |
(1) hy = » o L

(_)29 61)1, dl)\zi

oy o

Nous aurons fréquemment a considérer dans la suite des chaines
limitées ou illimitées de fonctions. Nous appellerons é/éments
principauz de la chaine les éléments tels que chacun d’eux soit
linéairement indépendant de ceux qui le précédent : tels sont A,

Aayy Aays -+ pour la chaine des A, ces éléments étant regardés
comme des fonctions de y.

4. Nous avons trouvé les transformations que subissent les quan-
tités A quand on change la détermination de u,. Nous allons main-
tenant étudier les transformations qu’elles éprouvent quand on
effectue un changement de fonction et de variables indépendantes
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conservant a la fois la forme linéaire de I'équation et les caracté-
ristiques x = const.,

5 s = z'f(d‘,}’),
(12) r=o(z'),
Ly =4, p).

La premiére de ces transformations est manifestement sans in-
fluence sur la valeur de ¢, car elle change «, en

Uo

Uy = ————-
f(z,y)
On a donc
3 3
u:, - Uy

Occupons-nous donc seulement des transformations de variables
indépendantes.
Les deux termes suivants de I'équation en 5

onzg nA on—1z
dzn-tdy A0 G

donnent dans la transformée

ox'\ n—1 ,)“y’ onz A 0_}’ on—1z
9z) oy \d@migy ARGy G ) e
les termes non écrits ne contenant les dérivées de 5 par rapport
a z qu’aux ordres inférieursa n —r.

Les intégrales de I'équation

20

d
F-I—nA,,_,,o d—:}}:,e =0

sont les mémes que celles de

% -+ nA,._1,00 = o0,
et comme ¢ s'obtient en divisant z par une intégrale quelconque
de cette équation, il en résulte que les valeurs de ¢ relatives a
’équation (2) sont les mémes que les valeurs de la fonction ana-
logue relatives & la transformée. Nous pourrons donc effectuer le
changement de variables sur 1’équation en ¢, pourvu que nous
joignions a la transformation effectuée I'une des substitutions

(]3) l Ug, uoX l.
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En désignant par T, et T, les transformations (12) effectuées
respectivement sur 5 et sur ¢, et par S les substitutions (13), nous

avons 'équivalence
T,=T,S.

Effectuons le changement de variables indépendantes dans

'équation (7), aprés y avoir remplacé ¢, par sa valeur %,
q 7) y Y oy

Tout terme qui contient un symbole de dérivation par rapport
a y donnera dans la transformée des termes contenant un symbole
de dérivation par rapport a . Les dérivées prises par rapport a
z seul donneront deux sortes de termes d’aprés I'identité

0 _0x 0y 9
oz~ oz oz’ - ox 9y

Mais on voit que les dérivées prises par rapport a la seule va-
riable 2’ se déduiront des dérivées par rapport & z en négligeant

- Donc, si nous faisons passer

dans le premier membre de la transformée tous les termes ou figure
une dérivation par rapport a »’, on trouvera un résultat de la forme
suivante:

, dx"\ n—1 dy’ do\ _ oro opP—1ip
@ (F)T () e m i e

A, ( 5 > désignantune expressmn de méme forme que A (¢,), dans

laquelle le coefficient de 57— est égal 4 I'unité. Les quantités

Indy/
Wy Wiy « .. sontdes fonctions linéaires et homogénes des X, de la

forme
ox'\ p—i
v = )\;’ (-;l‘—) +91)\i_| +pg)\i_2 +.ve,

21y P2y - -+ désignant des fonctions de x.
Enfin, pour ramener la transformée (7') a la forme normale de
I’équation {7), il faut multiplier ses deux membres par

Jz \"=t o
o' oy”
oo
9’

et poser en outre

_vlzvlw.
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On trouve ainsi
, 0P¢ , op—1yp

(14) B1(91) =Xy 5 + M oy o

Les nouveaux coefficients )’ sont liés aux A par des relations de
la forme suivante :

[ A= x.,(ﬁ)"“”’:‘i’

o' d_y”
, d}f ox \ n—1—p+1
(15) kl“b;:(ﬁ) (A 011 )0),
, 0 0. n—1—p-+2
Ay= %(ﬁ) (A2 03121+ B3910),

les coefficients § dépendant seulement de z. On voit immédiate-
ment que la forme de ces relations n’est pas altérée par les substi-
tutions dérivées de (13).

5. Le simple examen des formules (15) conduit aux conclusions
suivantes :

1° Les indices des éléments principaux de la chaine des A ne
sont pas altérés par la transformation (15);
2° Les déterminants %; n’éprouvent d’autre modification que la

oy

multiplication par des puissances de gg, el e

Pour démontrer la seconde proposition, nous nous appuierons
sur cette propriété bien connue des déterminants wronskiens : Si
I'on multiplie, dans le déterminant

1

wq Wa e Wy,
dw, dw, d(l.),;
dt dt dt
dn—1 Wy dn—1 w3 dr—w,

din—1 dim—1 "0 Tdpm—1

les fonctions w par une méme fonction arbitraire v (¢), le détermi-
nant est multiplié par o(¢)".
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On a donc, dans le cas de la chaine non brisée,

v 0N 0N,
0 W e d)/,i
v M 9
L T N
v 0N I,
YT e
N oo R
(16) oot T gy
(i+1) ({427 —2—2p) < .
oy \i+! / oz 2 A % 0[)_1__)"1
= ()" (5%) < 7
N, M 9h;
i 9y .. oyt
i+ (i+2)
2 \ (n—2—p)(i+1)
()T e,
dy' ox ox

En général, ona p = n — 2 et larelation précédente se réduit a

9 9 (i+1) (I +2)
hy = <l‘7 . _z'_’_) ? hi,
dy' oxr
en désignant par h; la nouvelle valeur de 4;. Donc le détermi-

. . . [+ 1) (£ + 9
nant h; se reproduit multiplié par la puissance (—L—'—);L—o—l

du déterminant fonctionnel de la transformation.
Dans le cas de la chaine raccourcie ou brisée, il faut joindre
a cette puissance du déterminant fonctionnel une puissance

de (dﬁ\ .
d.r')

Ces propriétés justifient le nom d’invariants que nous donne-
rons aux déterminants /;.

On voit que, dans une équation d’ordre n, a chaque systéme
de caractéristiques simples correspondent, en général, n — 1 inva-
riants &;. Pour que I'équation (2) admelte une intégrale a un
seul terme 5= u,X, il faut et il suffit que tous ces invariants
soient nuls.

Nos invariants /; constituent donc une premiére généralisation
des invariants de M. Darboux. Mais la suite de nos calculs nous
conduira & en introduire d’autres.

XXVIIL. 17
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6. Nous allons maintenant former le systéme transformé en ¢,.
Nous obtiendrons ce systéme en cherchant les conditions de com-
patibilité des deux équations en ¢ :

—1
s il )\ or -+ +XI)V—A(91),

Ao dxl'+ ozP—1

' w0 _
. d‘}/—‘)1.

(17)

Soit ¢ +1 le nombre des éléments principaux de la chaine
des A: Aoy Agyy o v ey )*a,,- Prenons les dérivées de (7) par rapport
a y, jusqu’a 'ordre (g + 1).

En désignant par ¢(0) 'expression

oro or—1

)odxl’+ vy Saakl X, 0,

et par ¢,;(8) Iexpression analogue obtenue en remplagant les )

s %
par leurs dérivées d’ordre z, — nous aurons
ayi

[ ? (0) = A(()‘).': FO(V‘),
<pn(v)=£, A(o1)— 9 (91) = Fy (9),

0? 9
(18) 03 (9) = ?}’: A(er)— 5; 9 (91) — @1(v1) = Fa(01),

0
Faes(9) = i Ao — 728 () = .. = 2y () = Fyra(en.

Entre ces équations, nous pouvons éliminer ¢ et ses dérivées
par rapport & z, ce qui donne pour ¢, I’équation

N Ny, Fo
oo Ohg, Ohy, F
PI% oy o dy !
(19) e =o.
gr+id, 07+ )y 07 +1 %y,
dyq+l d),q—f-l M ()‘)/I]-*—l q+1

Cette équation est d'ordre n + ¢ et admet les mémes caracté-
ristiques que la proposée, mais I'ordre de multiplicité de la carac-
téristique x se trouve augmenté de g. Nous l'appellerons la
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transformée principale. En général, ¢ étant égal a n — 2,
I'ordre de la transformée principale est égal & n + n — 2, 'ordre
de multiplicité de la caractéristique z pour cette équation
étant n — 1. Mais la nouvelle inconnue ¢, doit satisfaire encore
a un certain nombre d’autres conditions que nous obtiendrons de
la maniére suivante :

Résolvons par rapport aux dérivées de v les ¢ + 1 premiéres
équations (17). On pourra résoudre le systéme par rapport aux
dérivées dont les coefficients sont les éléments principaux de la
chaine des A. Désignons par ¢;x le déterminant obtenu en rem-
placant dans /g I'élément principal Ay, par M.

Tout déterminant 6% pour lequel on a & << «; est nul, car les
éléments de la ({ 4 1)° colonne y sont des combinaisons linéaires
de ceux des précédentes; tout déterminant d; pour lequel on
a k> «; est égal au produit de A, par une fonction de z. Soit,

en effet,
Me = Xopho + Xlk)\u, oo+ Xpp hg, (2, < k)3

on a évidemment
(20) Cik = Xirhg.

Cette formule est générale, pourvu que I'on pose
( 0 pour A < %,
A\

Désignons aussi par R; le quotient par %, du déterminant
obtenu en remplagant dans /i, les éléments de la (i + 1)¢ colonne
par Fy, Fy, .... Nous trouvons :

X = I pour L = a;,

quelconque pour & > a;.

ory or—typ .
awi X 0t G +Xo,p0 = R,
oP—0p oP—4—1¢p R

(21) d.z'l'-a.'+ x"“"“ OxrP—% -1 + .o+ Xy po =Ry,
........................................ NN
oP-0Oq¢ . OP—%-1 ¢ X R
0zr—9 T%+1 Gpp—oym, +Rg,p9 =Ry

Ces équations ont une forme trés remarquable : les premiers
membres ne contiennent que des dérivées prises par rapport i x
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et les coefficients dépendent de x seulement. La recherche des
conditions de compatibilité de ces équations rentre donc dans le
cadre de la théorie des équations différentielles ordinaires.

Supposons que les premiers membres des équations (21) égalés
a zéro n’admettent d’autre solution commune que ¢ = o. Dans ce
cas, le systéme (21), auquel on aura joint les dérivées prises par
rapport a z des équations qui y figurent, pourra étre remplacé par
un systéme de la forme

ov are

U:To, a; =T|, .oy (-’Z'—I’z )

et les nouvelles équations en ¢, seront

oT
=Th —d_.;iz'Tg, ey

oy
Jxr

dT/)- 1

(») or

=T,
Supposons, au conlraire, que les équations obtenues en égalant

a4 zéro les premiers membres de (21) aient en commun toules les

intégrales d’une équation linéaire ®(¢v) =o0. On pourra donner

alors au systéme la forme suivante :

or

rtb(v):Tl‘y

0
‘b(v):-_-To, 554’(0):'1‘“ .o (g

et les conditions de compatibilité prendront encore la forme

aT;

'(';; = Ti+1~

Il est d’ailleurs évident que ces conditions ne sont pas néces-
sairement toutes distinctes.

7. Dans le cas général ou la chaine des A n’est pas brisée, le
systéme (21) se réduit a

ory or—1yp
oxr — 0 oxpr—1

(21') = Ry, ceey v =Ry,

et les conditions de compatibilité a

, JR
(22") -_(’._Z'ﬁz Rp—h

dR,,-.i
ox

Ry

= R,.
ox 0

= Rp-.g, veey

Aucune de ces équations n’est une conséquence de (19g), car
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cetle derniére conlient une dérivation par rapport a 3 d’un ordre
plus élevé que celles qui figurent dans (22').
Nous allons montrer qu’elles sont aussi toutes distinctes.
Soit h,lY le coefficient de I'élément %’—;‘Ji dans le détermi-
nant A,. On a
Ri=ULiFg+ l,F +.. .+ IVF,.

L.es équations (22') sont donc de la forme

ol )N g
L )F,+zi%;9

(23) ) T( oz i—1 +li

()Fl a2l ‘)Fp .
?‘; ""_'_li or =0

(i=1,2,...,p).

Désignons par Z; le premier membre de (23) et supposons qu'il
existe entre Z,, Z, ..., 7Z,, une relation linéaire et homogene
a coelficients non tous nuls

mZy+ myly~+...+~mpl,=o.
En égalant & zéro successivement les coefficients des dérivées

on+pp,  gr+p-1p, o,

dxndyr’ oxndyr—t A oy’

on trouve les relations
m,l‘,‘”—i— mzl;j’—i—...—{— m,,l},”: o J=1,2,..,p)

qui ne peuvent étre vérifiées par des valeurs non toules nulles
de my, my, ..., mp, puisque le déterminant

[P 8P | = Nk

est différent de zéro.

Nous appellerons systéme auzxiliaire le systéme (22) ou (22').

Contrairement & ce qui a lieu pour le second ordre, pour lequel
la transformation de Laplace fait correspondre a une équation
donnée une équation unique, nous trouvons ici un systéme de
plusieurs équations, comprenant la transformée principale et le
systéme auxiliaire.

Le nombre total de ces équations ne dépasse d’ailleurs pas n —1,
par conséquent il n'y a pas contradiction.
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8. Soit ¢ une intégrale du systéme transformé. En transpor-
tant cette valeur dans les équations (21) et celles qui en dérivent
on aura un systéme compatible. Il existera donc une ou plu-
sieurs fonctions ¢ satisfaisant a ces équations et, par conséquent,
aussi a la premiére des équations (17). Cette fonction est, en
général, unique, parce que I'équation ®(v)=o considérée au
n® 6 se réduit & ¢ = o. Il reste & examiner si elle satisfait a la
seconde des équations (17). En posant

a}“""l:oa

et lenant compte des équations (18), on trouve

ore or—16
)\07)_17+ \l(m:—' “+ .. 1 )\I,BZO,
Oho 0P Ohy OP—10 o, .
5}—’-6—1’—”4— —();-———dzp_l ~——+—d—}, 6 = o,
....................................... ;
01ky 00 07}y Or—-1H 0%,

W‘TJ'7+ U‘}/‘/().LTIT+ d)”l = 0.
Or, par hypothése, ces équations n’admettent d’autre solution
commune que § = o car elles sont équivalentes aux équations (21)
ou l'onaurait Ry=R,=...=Ry=o.

Dans les cas exceptionnels ou ®(¢) = o serait une véritable
équation différentielle, nous trouverions seulement

Q)(O) = 0,

ce qui montre que le systéme (21), tout en éltant compatible, est
encore plus général que le systeme (17).

Supposons que ®(¢) soit d’ordre i. Dans ce cas toute intégrale
de I'équation ®(§)=o0 sera déterminée quand on connaitra les

valeurs de
J0 020 0i—10

T =t
pour & =ux,. Si ces valeurs initiales sont nulles il en sera de
méme de 6, quel que soit x, puisque I'équation ®(6) = o est li-
néaire et homogeéne.

D’autre part, pour intégrer P'équation

P(v) = TU(vl )s
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on pourra se donner arbitrairement les valeurs de

oo 0i—1p

en fonction de y pour x = z,; mais si I'on doit avoir en méme

temps
dv

5-)7 = 1,
les dérivées de ces valeurs initiales par rapport 4 y sont égales aux

valeurs de
()()l 0i—1 V1

(I A e

)
pour £ = x,, et chacune d’elles ne dépend plus que d’une con-
stante arbitraire : ces constantes sont, par exemple, les valeurs de

dy 0i-1yp

(4 ¥ ey TR
' ox dzi—1

en un point z,, ¥,. Si nous assujettissons les fonctions initiales
de ¢ a ces conditions, les valeurs initiales de

00 29—1§

sont nulles, et I'on a par conséquent § = o.
Il en résulte que le systéme

®D(v)=Ty(v1), — =

est compatible et admet une intégrale dépendant de ¢ constantes
arbitraires, quand la fonction ¢, est une solution quelconque du
systéme transformé. En particulier, si 'on prend ¢, = o, on trouve
pour ¢ une intégrale quelconque de I’équation ®(¢) = o. Cette
intégrale ne dépend que de x, car les arbitraires introduites par
'intégration sont de véritables constantes, et non pas des fonc-
tions de y.

Les résultals précédents auraient pu s’établir par I'application
des méthodes générales de MM. Bourlet, Delassus, Riquier, etc.
Mais la nature particuliére de la question en rendait’’étude directe
plus simple et plus commode.
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En résumé, nous sommes arrivés aux conclusions suivantes :
Quand tous les coefficients \ ne sont pas nuls, la nouvelle in-
connue v, est définie, en général, non pas par une équation
unique, mais par un systéme de plusieurs équations linéaires.
A toute intégrale de ce systéme correspond, en général, une
seule valeur .de v. S’il en existe plusieurs, la différence de
deux quelconques d’entre elles est une fonction de la seule
variable x satisfaisant a l’équation ®(v) = o.

9. Pour que l'équation considérée (2) admetle une intégrale
a un seul terme w, X, il faut et il suffit que tous les X soient nuls.

Ce dernier résultat était presque évident a priori.

En effet, ncus avons

X' , X" ., X(rn—1) .

D(uyX)= XD (1) + T D’y (uo) + P Dis (o) ..+ =) D2 (wy) = 0.

Pour que le second membre de cette identité s'annule, quelle
que soit la fonction arbitraire X, il faut et il suflit que l'on ait

D(uy) = Di(uy) = Dia(uy)=...= o,
ce qui établit notre proposition.

10. Avant de continuer cette étude, il est indispensable de dé-
finir la transformation de Laplace pour les caractéristiques mul-
tiples. Remarquons cependant que nous aurons a transformer
toutes les équations du systéme obtenu, que chacune d’elles con-
duira vraisemblablement 4 un nouveau systéme d’ordre plus élevé
el que par suile le nombre des équations a considérer augmentera
trés rapidement en méme temps que leur ordre. Nous serions donc
conduits, dans la moindre application, a d’inextricables difficuliés,
si I’étude de ces systémes était indispensable.

Mais il suffit de se reporter aux équations du second ordre pour
s'apercevoir que le réle des transformées est a peu prés nul, quand
on a en vue seulement la détermination des intégrales explicites.
11 sultit que Pon puisse définir la suite des transformations, et ce
probléme, M. Darboux I'a complétement résolu par l'introduction
des invariants. Un fait unalogue se présente pour les équations
d’ordre supérieur. C'est pourquoi nous n’insisterons pas sur
Fétude compléte du systeme transformé.
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DEUXIEME PARTIE.

11. Dans le cas ot z est une variable caractéristique multiple,
le multiplicateur différentiel de la plus haute dérivée par rapport
a z peut étre d’ordre o; mais alors il n’y a pas d’intégrales expli-
cites dépendant d’une fonction de z. Pour que ces intégrales
existent, il faut nécessairement que ce multiplicateur soit au moins

du premier ordre par rapport a ?— S'il est du premier ordre, il
0}
n’y a rien de changé aux calculs des numéros précédents. Nous
allons nous occuper du cas ou il est d’ordre supérieur.
Lcrivons I'équation sous la forme

on—mz on—m—1t z
(1) D(z) = %o dxn—m + P dapt—m—1 +...=0

®oy ¢1.-. désignant des multiplicateurs différentiels

or or—t or—2
Q= — +a

7 % 15F+02W+-.. (r<m).

Toute intégrale principale par rapport a z de I’équation consi-
dérée admet comme premier terme de son développement une so-
lution particuliére de I'équation

I _ oru or-tu
(2) (TTIL)!D(‘{E"—W(“)=%(1L)=d.y_"+a"djy—7'?‘+"'=()'
Il en est de méme de toute intégrale explicite
(3) = Uo XMW 4 1) XD g0, XW@=2 -+ 1wy X,

Si 'on connait P'intégrale particuliére de (2) par laquelle com-
mence le développement (3), on fera disparaitre le premier terme
en posant

() ~
4 3y =Ug— —*
(4) 1 ody W
A toute intégrale de I'équation (2) on fera ainsi correspondre
une transformation de Laplace.
Mais si rien n’indique I'intégrale particuliére u,, nous scrons
obligés, pour faire disparaitre avee certitude le premier terme, de
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prendre pour transformation, & un facteur prés,
(5) 31=9¢(3).
Nous dirons que cctte trans(ormation

0"z or—1z
W “+ a, _dy’_1

3= L
est d’ordre 7.

Supposons que 'on ait décomposé ¢, en facteurs différentiels
symboliques

Jd 1 0 1 01 0 3

(6) CPo(z) = Ay A3e e Xp—q uo;‘y Ay 5‘—},— Ap—g vt d}/ oy d}’ Uy

Il est évident que I'on obtiendra la transformation (3) par la
répétition des transformations du premier ordre

=uyl 2,

Jdy U
P N . R
dy a4 dy ug dy ay iy

Pour que cette décomposition en transformations du premier
ordre soit complétement justifiée, il suffira de faire voir que les
facteurs symboliques de v, non utilisés dans la transformation
appartiennent aussi aux multiplicateurs différentiels de la plus
haute dérivée par rapport a 2 dans les équations du systéme trans-
formé.

C’est ce qui va résulter de la suite de notre étude. La transfor-
mation du premier ordre constitue donc le type essentiel et élé-
mentaire des transformations asymplotiques les plus générales.

12. L’étude que nous avens faite de la transformation du pre-
mier ordre dans le cas des caractéristiques simples s’applique sans
modificalion importante aux caractéristiques multiples.

Nous poserons d’abord

3 3 dy

(7) VZ?L;’ Viz;;;:d7.

L’équation (1) prend alors la forme

, ore or—ty
(8) -\{V|):)\om'l )\lm

4t Ape = 7.(6).
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L'ordre p de 7 (v) est au plus égal & n — m —1; A(v,) est une

expression différentielle d’ordre n — 1 :

on—my, gn—m—tgp,
(9) A(v.)_% dzxn—m Lh dgph—m—1 ARy

le multiplicateur différentiel ¢, se déduisant de v, par la suppres-
sion du premier facteur a droite. Sil'on a

20 (0) = 23, . .2p_q & 9 1 0 1 01 0 0O
Po = A % Apmy °0y P d), P o %oy e’
on trouve
Jd 1 0 1 0 6
Go(0) = 9.0 pg e e = —— e —.

oy dp—y Oy ap_q a9y
A P’aide des coefficients Xg, Ay, ..., A, du second membre de (8)

on peut encore former des invariants A, Ay, ..., analogues a ceux
que nous avons déja considérés. La propriété d’invariance de ces
expressions se démontre exactement de la méme fagon en remar-
quant : 1° que tout changement de variables indépendantes de la

forme
z=9(2'), y=4=,y")

conserve les intégrales de I'équation p,(#) =0 (ou les multiplie
par une fonction de z);

2° Que lorsqu’on multiplie z par une fonction k(x,y), ces
intégrales se trouvent multipliées par la méme fonction.

Il importe d’observer que les invariants ainsi formés dépendent
de I'intégrale particuliére u, quia défini la transformation ; cepen-
dant, ils restent inaltérés quand on multiplie u, par une fonction
de z.

Moyennant ces remarques, on voit immédiatement que la trans-
formée principale et le systéme auxiliaire conservent la méme
forme qu’au Chapitre précédent. Il arrive seulement que dans A(v))
on—mo,
dzn—m
lieu d’avoir un coefficient numérique, est aflectée d’un multipli-
cateur difiérentiel ¢,; mais ce fait n’altére en aucune fagon la

la dérivée de l'ordre le plus élevé par rapport a z, » au

forme extérieure de nos équations.

13. Cherchons maintenant le multiplicateur différentiel de la
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plus haute dérivée par rapport & z dans les équations du systéme
transformé.
Dans la transformée principale

Ao Ao, e Ao, F,
o Mg, g,
- - . 5 F,
(“’) 4 4 o4 = 0,
01+ )y 09+ hy, 07+1 kg,

Gt gparl T Tapai Foii

les dérivées d'ordre le plus élevé se trouvent évidemment dans le
dernier élément de la derniére colonne, auquel correspond le
terme ii,Fg .. Il en résulte que les caractéristiques sont les mémes
que dans 'équation proposée mais que 'ordre de multiplicité de
la variable caractéristique z se trouve augmenté de q.

Le multiplicateur différentiel de la plus haute dérivée prise par

n—m [

. 9 . )
rapport a z, 'd—ziTn" est égal a

)\o )fal LR )\Ot,, ‘%
0k, Az, Ohz, I 4
90 Pa ., 2y,
(11) g o » » = hy®,.
I+ Ny 9T+ hg, 09+1 7%, 97+!

dya+1 ay e+ T dy1+l gyu+t 0

Les intégrales de I'équation @, () = o sont données par le sys-
teme d’ordre 7 — 1 :

 do(u) =o,
S"{o(u):—‘)\oxm
(12) '%(u)':)\x,xh

\ \;‘o(u) = lxr]X’I'

Leur détermination ne comporte d’autre difficulté que I'inté-
gration compléte de 'équation p,(u) = o.
Dans les transformées auxiliaires, les résultats sont semblables.

Les seules intégrales communes a tous les facteurs différentiels
analogues & D, sont données par les deux équations

Yy(w) =o, o(u) = 2o Xo.



ou par I'équation unique
0 1
)\03‘5/ )\; %(u) = 0.

14. Mais, daos le probléme qui nous occupe, ce n’est pas préci-
sément l'expression des inlégrales de ®,(u) qui importe, c’est
plutdt la décomposition da muliiplicateur différentiel ®, en fac-
teurs symboliques du premier ordre. Ce résuitat s’obtient faci-
lement par I'introduction des invariants.

Considérons une suite de fonctions 8, 8,, ..., 0,, telle que I'on
ait
00= p(h

6= Bo Bnd)’,

8= Bo ?1d)’fﬁzdfv

chaque signe d’inlégration portant sur tout ce qui suit.
Formons avec ces quantités les invariants

0. 9 020
6 9% Y 9y oyt

_— 0, 026,
03) hg= 0, hy= . 90, ) hy=1 6, o 9t |
‘ % 0 9, "_23%

oy o

....................................................

On a évidemment

ho=1Boy h1i=B}B1, ha=B3BIBs, ..., R=PR{BIBE... B

et par conséquent

-~

(3 hihi—s
Bo = ha, p,-_—.z_%, vies Br= ;z;‘__, .

Donc, toutes les opérations quilaissentinaltérées les fonctions A
jouissent de la méme propriété relativement aux fonctions 3. Si
I'on prend pour 8, 8;,. .. les termes principaux de la suite des X :
oy *g,5-+-, les invariants h sont précisément ceux que nous
avons déja considérés. Les équations différentielles qui admeltent
comme systémes fondamentaux de solutions les coefficients );
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seront donc
)\0= Bo pour Ao,

?‘0 d}’ {3 popl pour )\0, )\a.,

1
By ?’oyy B— Q—}" {—3‘ = BoB1 B2 pour Xo, Aa,, Aoy,
ou bien

Pour 'ensemble des A nous aurons

BOB‘ ﬁq@g‘?},mﬁ—la}—mzn

Le multiplicateur ®, défini par I’équation (12) prend donc la
forme

Po(u)=BoP1Bs-. ?’q““; e gttt E A A %(u)

Si ¢ a été décomposé préalablement en facteurs différentiels sym-
boliques, la décomposition de @, est elle-méme complétement
achevée. Ep particulier, quand le multiplicateur différentiel 3,
relatif 4 I'équation donnée est du premier ordre, on a pour la
transformée principale

Jd . d J
(15)  Polu)=BoBs... : -

I
oy B B BB

Quand ¢, est d’ordre supérieur, tous les facteurs symboliques
qu'il contient appartiennent également a ®,, sauf le premier
a droite, qui a été utilisé dans la transformation. C'est le résultat
que nous avions annoncé.

Les considérations précédentes sont encore applicables aux
équations du systéme auxiliaire. En effet, si nous prenons I'une
des expressions R définies au Chapitre précédent on voit qu’elle
est de méme forme que le premier membre de la transformée
principale, mais contient un X de moins. De plus, dans la dérivée

o'R . s . )
5o’ le multiplicateur différentiel de la plus haute dérivée prise

par rapport a x est le méme que dans R.

15. Revenons maintenant au cas des caractéristiques simples.
Nous avons déja dit que la considération des systémes transfor-
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més successifs n’est pas nécessaire pour définir la suite des trans-
formations. C’est ce point que nous allons étudier.
Considérons une intégrale explicite

(15) 2= up fr(x) + uy fr-1(x) +...+ um f(x).

Jf(z) désignant une fonction arbitraire.
Nous savons que les coefficients u sont déterminés par une
suite d’équations différentielles déja indiquées au n° 2.

Dy-1(uo) = o, Dy—1(uy) + Dp—s(ue) =o,

('6) Dn—-l(up) -+ Dn—z(“,:—x) -+ Dn—s(up—z) +...=0,
en posant pour abréger D,_; au lieu de (n_-l-_f)_‘ D=9, On a en
particulier

0
Dp1(u) = uy oy (%)'

Supposons qu’on ait déterminé un premier systéme d’intégrales
uo, uy, e

de ces équations et cherchons l'expression la plus générale des
autres intégrales U,, U,, ....
Il est évident que I'on a
Up = Xquy,

X, désignant une fonction arbitraire de 2. Nous avons ensuite,
pour déterminer U,, ’équation

Dy—1(Uy) +XoDn—a(tg) + Xy Dn—t(uo) = o,
ou, en tenant compte de la valeur de u,,
Dy—1(Uy) +XoDpa (1) = 0.
L’intégrale la plus générale de cette équation est
U, = Xpus+ X, u,,

X, désignant une nouvelle fonction arbitraire. On est donc con-
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duit a prendre
Uy,=Xoup+ Xsttpq+ Xolipo+... 4+ Xpup.

La méthode ordinaire de P'induction générale permet de démon-
trer 'exactitude de cette loi. On aurait, en la supposant vérifiée
jusqu’a ordre p :

/ Drz—i(Ul)+i)+ Xo [Dn—ﬁ(up) -+ Du-3(up-—1) .. J

X

-+ _Io [D,,.q(lt,,) '+'D/;——2(up—1)'+‘...]
Xll

4 20 Doy (Upit) + Dps (Ups) +...]
1.2

(17)

“+ X, [Dn—ﬁ(up—~l) -+ Dn—3(ul)—2) .. ]

/

-+ %[Dn—-du,,_.)a— D _(u_)+...]

B S I PR = 0.

On voit immédiatement que les dérivées des fonctions arbi-

”

traires, Xy, X7,..., X},... ontleurs coefficients nuls. 1l reste donc

Dy—1(Ups1) + Xo[Dp—a(p) =+ Dpg(@p—1)+...]
+ Xy [Dp—o(up—1) + Dp—g(up—2) +...]

et cetle équation donne immédiatement, en introduisant une nou-
velle fonction arbitraire X, .,

(18) UI’+1 = XO Upq T+ X|up-+- Xg Up—q+...+ X,,ul—’f— XIH" Up.

La formule (17) définit en quelque sorte le groupe des transfor-
mations des fonctions «. Toute fonction des u et de leurs dérivées
qui reste inaltérée par les transformations du [groupe devra s’ex-
primer a P'aide des coefficients de I'équation et de leurs dérivées.

16. Soient u,, u,, u,,, ... les termes principaux de la suite

des u : les fonctions
oy

u —

" dug | ’ ay oy

0 =2

T J I du,, otu
/f1=—§- Y ’ /“2=—,; Up, Rl R Pyt ey

uy o, Oup, u d 9t

141 P
Y d 0?
wp, e LUps

oy oyt
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sont évidemment des invariants pour toutes les transformations du
groupe des fonctions u et s’expriment par conséquent, ration-
nellement, & I'aide des coefficients de I'équation et de leurs déri-
vées. Il est facile de voir qu’elles jouissent également de cette pro-
priété d’invariance relativement aux transformations ponctuelles,
définies au premier Chapitre, qui conservent a la fois les caracté-
ristiques z = const. et la forme linéaire de I'équation.

En effet, nous remarquons d’abord que, pour multiplier z par
une fonction A(z, y), il suffit de multiplier tous les coefficients
Uy Uy, - .. par d, ce qui ne modifie pas les invariants k. En second
lieu, si'on effectue un changement de variables indépendantes

z = q(2'),
y =¥y,
I'expression (15) se change en une autre de méme forme
uy fm (') + wy fim=0(2'y ...+ u), f(2'),

dans laquelle les coefficients u;, «, ... sont liés aux coefficients
o, Uy, ... par des relations linéaires de la forme

up=0Ogttp+01up_1-+...+ 0,u,,

les 0 désignant des fonctions de z seul, et §, étant essentiellement
. . . . . . 0.
différent de zéro, puisqu’il est égal a une puissance de 0—;- Il en

résulte que les fonctions &y, k,, ... n’éprouvent d’autre modifica-
tions par les transformations considérées que la multiplication par

. or 9 . .
des puissances de —— et de d—:;:,‘ Ce sont donc des invariants ana-

logues aux fonctions A déja définies.

17. A P’aide des invariants k& nous pouvons former les équations
successives qui admettent pour solutions les diverses valeurs des
coefficients u.

Posons

L’équation

XXVII. 18
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admet comme solutions les valeurs de u,, et de tous les coefti-
cients « d’indices inférieurs a p;.

Ccla posé, la suite des transformations est facile & définir. Nous
poserons

z wl Jd 1 0 <z> wl d( 34 )
(19) oy U oy \u, B dy \uely

Ces transformations sont entiérement rationnelles par rapport
aux coefficients de I’équation proposée et a leurs dérivées.

Lorsque la chaine des u« n’est pas brisée, la suite des invariants
sera définie par les équations

g Dp—o(ue) = liu,

l1 lto—tl -I— [Dn_Z(ul)—‘—' o Dn—:i( uo)] = l: l2u01
(20) ) 0}’ li Uy
I 0 1 0 1[Dpg(us)+ Dpg(u1)+Dny(u)]
l1lzu0§[—-'dy-—‘[ w —]—-lllzl;,ll,o.

Les quantités uy, u,, ... ne figurent qu’en apparence dans ces
équations; tous calculs faits, elles doivent disparaitre, les inva-
riants / s’exprimant directement a l’aide des coefficients de ’équa-
tion proposée.

On voit I'analogie qui existe entre les équations (19) et celles
que M. Darboux a données pour le second ordre. Lorsqu’il existe
une intégrale particuliére de la forme d’Euler, les invariants /
s’annulent tous & partir d’un certain rang. D’aprés les résultats
du n° 8, il en sera de méme dans d’autres cas, ou la solution sera
donnée par certaines équations différentielles linéaires ordinaires
dont 'ordre ne surpassera pas n — 2 et dont les coefficients dé-
pendront seulement de la variable caractéristique z.



