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COMPTES RENDUS DES SEANCES.

SEANCE DU 3 MARS 1897.
PRESIDENCE DE M. PICARD.
Communications :

M. Desaint : Sur les fonctions entiéres.

M. Touche : Sur la vitesse de transmission du mouvement.

M. Lecornu : Sur un probléme de minimum.

M. Le Roux adresse un Mémoire Sur I’équation linéaire aux
dérivées partielles du premier ordre.

M. Demoulin adresse un Mémoire Sur les surfaces qui pré-
sentent un réseau conjugué formé par des courbes dont les
tangentes appartiennent & un complexe tétraédral.

M. Picarp fait une Communication Sur la théorie des sur-
Saces algébriques, au point de vue de la.Géométrie de situation,
et les intégrales de différentielles totales. Il énonce le théoréme
suivant : Si p, désigne l’ordre de connexion linéaire d’une
surface algébrique, celle-ci possédera p,— 1 intégrales dis-
tinctes de différentielles totales de seconde espéce.

M. Anprape adresse la Note suivante :

Sur la stabilité.

Lorsque des corps, soumis a des liaisons, demeurent en équi-
libre sous I'action de forces données, on sait que I'équilibre sub-
siste @ fortiori quand aux liaisons déja existantes on ajoute des
liaisons nouvelles, en d’autres termes quand on renforce les
liaisons. Ce principe intervient dans la démonstration du principe
des vitesses virtuelles, dont il est d’ailleurs une conséquence né-
cessaire. De plus ce principe est évident.

Mais on tomberait dans une singuliére méprise, si, se fiant &
Pévidence du principe, on voulait, dans I’énoncé précédent, asso-
cier a I'idée de P'équilibre I'idée de stabilité. Et pourtant I'évi-
dence apparente n’est-elle pas la méme dans les deux cas? J'ai

longtemps cru moi-méme a la possibilité de généraliser ainsi le
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principe du renforcement des liaisons. Je me propose, dans cette
Note, de démontrer par un exemple simple 'impossibilité de
celte généralisation.

Un cas trés particulier du principe dont il s’agit, étendu de
I'équilibre a la stabilité, serait en effet le suivant :

St deux forces laissent chacune un méme corps en une méme
position d’équilibre staBLE, leur résultante laissera le corps
en la méme position d’équilibre stasLe. Or celte proposition est
fausse.

En effet, je vais définir deux forces (fonctions de point) qui,
agissant séparément sur un méme point matériel, s’annulent cha-
cune en une méme position d’équilibre stable, et dont la résul-
tante ne jouit pas de la méme propriété.

Jenvisage a cet effet deux formes quadratiques ¢ et ¢ des coor-
données cartésiennes rectangles z, y, z du mobile. Je suppose de
plus que chacune de ces formes est définie et négative. Je désigne
par «, B,v; A, 4, v six constanles positives dont les trois derniéres
ne soient pas proportionnelles aux premiéres, et je considére les
forces F et G définies par leurs composantes

0 0 0
(F) 2[“;;:!1%9 2Fy=§£, 2F;=Yd—z’
Yy _, 9 _ 9%
(G) ZGI_)\LTI—" 2Gy—p.d._}_” 2G;——-V-0—z,

envisageons les mouvements d'un méme point matériel sous les
actions séparées de ces deux forces. Le premier équilibre est
stable autour de l'origine, car en faisant dans les équations de ce
mouvement les changements de fonctions

wlays,  ylyVE  alavy,

on est ramené au cas d’une fonclion des forces maxima au point
(z =0, y = 0, 5 = 0). Pour une raison analogue le second équi-
libre est encore stable.

Je dis maintenant qu'on peut choisir les formes f et ¢, confor-
mément aux hypothéses déja faites sur elles, de maniére a assurer
Iinstabilité de I'équilibre autour de I'origine du méme point ma-
tériel sous 'action simultanée des forces F et G.
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Si, par exemple, ap. — BA £ o, je ferai

o =—[axr?+20xy +cy?l—ds* (a,c,d>o0, b2 —ac <o),
b=—[a2?+ 20y +c'y2]—d'z2 (a,c,d>o0, b?2—a'c'<o).

Les équations différentielles linéaires du mouvement estimé
dans le plan des zy auront pour intégrales fondamentales di-
verses fonctions du temps ¢

xr = gert, y = hert,
et 'équation caractéristique en r sera

rerri(ar+a'l+ceB-cp)+ (ax+a'd)(ef+c'p)
—(ba+bN)(bB+b'p)=o.

Et la stabilité, au sens habituel du mot, ezige que cette équation
en r? n’ait que des racines négatives.

Or il est aisé de voir qu’on peut satisfaire & cette équation par
des valeurs imaginaires de 72, car le discriminant est ici

A=(aa+al—cB—c'p)2+4(ba—bA)b3+b'p).
Or que I'on fasse d’abord
ax+a'l=cf+c'y,

ensuite, que l'on choisisse b et &' assez petits en valeur absolue
pour salisfaire aux conditions

b2— ac <o, b2—a'c' <o,

. . .. b . ..
mais que 'on choisisse le rapport - intermédiaire entre les nom-

b
B

bres — 2 et — £ et 'on aura A < o : donc instabilité.
A M

On voit nettement par cet exemple que, hormis le cas ou les
forces dérivent chacune d'une fonction des forces, on ne peut pas
conclure des stabilités partielles & une stabilité résultante.

M. Lémeray adresse la Communication suivante :

Sur la dérivée des fonctions itératives au point limite.

1. Dans les Annales de Clebsch, 1870, Schreeder donne un
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procédé qui permet, étant donnée une fonction itérable, de former
d’autres fonctions itérables. Ce moyen revient, en somme, au sui-
vant : soient Y et z deux fonctions définies par les relations

(1) Y =¢X,
(2) 93 =199T;

si 'on sait itérer la premiére, c’est-a-dire éerire une relation dela

forme
n= ?nx = ¢(n.X),

on saura itérer la seconde, et méme l'itérer explicitement, si 'on
saitinverser la fonction ¢; car, éliminant X et Y entre les équations

Yzqz, Y=cPX, X=q.z',
on aura

z=g7'9gz et zZa=gq-le"gxr =g '{(n,q2).

2. Soit a un point limite de la substitution z, ¢z ou plus gé-
néralement un point racine de I'équation
(1) 9T —x =o,
le point racine correspondant de I'équation
(2") 9qr —qTr =0
sera donné par I'équation gz =« et I'on aura la racine (ou les
racines)

r=q-1a=f.
Dérivons I’équation (2); il vient
q'(3).3'(z) =9'(¢9).9'(»).

Au point racine de I'équation (2’), on a 2=z et, par suite,
q'(3) =q'(z); de plus, ¢/(g) n’est autre que ¢'(z), ol z est
remplacé par gz, et, comme au point racine de (2'), gz =a,
il reste

() =Y ().

Ainsi, aux points racines correspondants des équations (1')
et (2') (points distincts, en général), les dérivées des deux fonc-
tions zet Y, par rapport & x, sont égales.
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Supposons maintenant que, pour z =a, Y’ devienne égale a
Punité; dérivons une seconde fois la relation (2). On a

9" (3)[&'(#)] + q'(3).2" () =9"(g)[¢'(2)]* +¢'(q)-9" (=)

au point racine 3, et, dans notre hypothése, on a

g5 =¢@), ¢EF=¢(), ¢@)=Y(a),
F(B)=9'(¢B)=9'(a)=1.
Il reste donc

3"(B)=QY'(a),

Q désignant la valeur de la dérivée de ¢ par rapport & 2, au point
racine (3. :

D’une maniére générale, supposons qu’au point racine a« de
I'équation (1) la dérivée premiére Y’ soit égale a I'unité, et que
les dérivées d’indices 2, 3,..., p —1 soient nulles; autrement
dit, que les p — 1 premiéres dérivées de la fonction ¢z — z soient
nulles; on aura

3) zP(B) = Q1Y) (a).
En effet, dérivons p fois ’équation (2), on a
q'P(z)[ & (x)]P+R+q'(3).3P) (2)= 0P (q).[q'(x)]? + S + 9'(g).¢'» (=),

R et S désignant respectivement les ensembles de termes conte-
nant des facteurs 9 (g), 5 (z) avec 1< { < p. Au point racine 3,
le premier terme du premier membre et le dernier terme du se-
cond membre deviennent égaux ; S est nul par hypothése; quant
a R, il s’annule si le théoréme est démontré pour les valeurs
2,3,..., p—1 de p (or il est démontré pour p=12); il reste
donc la relation
9'(3).3"P(z) = (q).[¢'(#)]",

qui se réduil a (3), puisqu’au point racine 3 on a

() =g'(=) et ¢P(gf)=0"(a)



— 34 —

SEANCE DU 17 MARS 1897.
PRESIDENCE DE M. PICARD.
Elections :

Sont élus, & 'unanimité, membres de la Société : M. Mehmke,
présenté par MM. d’Ocagne et Humbert; M. Vitalis (Vassilas),
présenté par MM. Hermite et Picard; M. Bricard, présenté par
MM. Laisant et Mannheim.

Communications :

M. Touche : Sur le mouvement des solides dans les fluides.
MM. Borel et Picard présentent quelques observations sur ce
sujet.

M. S. Maxceor adresse la Note suivante :

Sur les conditions pour qu'une courbe plane algébrique
ait des axes en nombre donné.

Soient my, my, ..., My, ..., my, A nombres entiers positifs quel-
conques; ds le plus grand commun diviseur de m, et m,, ds celui
de d, et m3, d, celui de d3 et my, ..., dy celui de dy_, et my;

Py, L2 Py .., PAot Jes avant-derniéres réduites des fractions
91 92 93 -

continues égales aux fractions irréductibles qui ont pour valeurs
my dy dy a1 '

et vy, Yo, V3, ..., Va_; les ordres respec-
m’: s "lb’ ’ m)’ 1y Y2, V3, ) Y- o pec

tifs de ces réduites. On peut démontrer ce résultat :
Pour que les A équations binémes en z
3Mn = COSY, + Lsiny, (R=1,2,..., A).
aient des racines communes, il faut et il suffit que 'on ait, pour
n=1,2, ..., A
Cm, m

(cos yy -+ isinyy Y = (cosyn + Esiny,)in;

et ces racines communes sont les racines de I'équation

d =H(cos Yo £siny, )on
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oul'on a
O = Pr-19nGn+1Gn+2 o « Pr=1 X (— 1)Va—r VatVnpibo Yy bna)

avec g =1, Yy == 0, ) = (——-)"‘A—ip)_, .
Cela étant, je me propose de résoudre la question suivante :

Calculer les conditions pour qu'une courbe C d’ordre m,
représentée, en coordonnées rectangulaires, par l'équation
entiére et a coefficients réels

Sz, y)=o,

ait u. azxes, p. étant un nombre donné, et former Uéquation de
ces axes (1).

Je représente par
EC% ayxm—tyh a, ym, mzcﬁl—l bl xm=h-1yh
(h=o0,1,2,...,m—1)

les groupes des termes de degrés m et m —1 du polyndéme

S(z, x)
Tout axe que peut avoir la courbe C doit étre aussi un axe de
la conique qui a pour équalion

om—t f(x,y)]?
1 . . —
2 C;;:—-I [dx/‘d_}’”‘_’h_’l =0

zcﬁt—l (apx + apvyy + bh)’ = 0.

ou

Si cette conique est différente d’un cercle, p ne peul étre que
I'un des deux nombres 1, 2; or, il est facile d’exprimer qu’un axe
de cette conique est axe de la courbe C.

Je suppose que celte conique soil un cercle, et soient z = a,
y = B les coordonnées de son centre.

Si 'on désigne par F(z,y) 'un quelconque des polynomes

(*) Il ne sagit ici que d’axes d’ordre pait, c’est-a-dire que de droites qui, prises
pour axe des abscisses, font disparattre de I’équation de la coufrbe les termes de
degré impair par rapport a 'ordonnée.

(Voir Annales de U’Ecole Normale supérieure, janvier 1897.)
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homogénes dont la somme est f(x + a, ) + B), et par Mu# 4 No#
les coefficients des diverses puissances de u¢ dans le développe-
ment de F[u—+ ¢, {(u—yv)], pour que la courbe C ait p axes,
et u seulement, il est nécessaire et suffisant que toutes celles des
équations bindmes Mu* — No*k = o, dans lesquelles & n’est pas
nul, équations qui sont de la forme

u\* . .
(-;) = cosy + Isiny,

alent p racines communes ’—:, et pas davantage. En remplaganl%
r—oa—1 -_
==
ces racines communes, on aura ’équation des . axes.
De ce qui précéde, je déduis la méthode suivante, pour ré-
soudre la question proposée lorsque la conique considérée plus
haut est un cercle.

dans I’équation bindme qui a pour racines

Posant
o (i
« ] C{:l—i ahbh’ p _ S Gy anvibn (h=o0,1,2 m—1)
- A 9 Y A T _ g by Lyeeey - "
2 Chya} SCh_yaky

je calcule 'expression

. 6 gk+2l e - o _
V(& 1) 325:—3' _gagdig‘;ﬁ)(cg-c; 1CL+CL?CE— G Clt.. )

(p+o=1k+21),

en prenant k successivement égal a 1, 2, 3, ..., m, et en donnant
a [ successivement les valeurs 1, 2, 3, ... dont la derniére sera
m—k m—k—1
ou .
2 2

Pour que la courbe C ait . axes sans en avoir davantage, il faut
et il suffit que les valeurs de I'expression ¢ (%, /), qui corres-
pondent a chaque valeur de & non divisible par p, soient toutes
nulles, sans que les autres le soient toutes, et que, en désignant
par pwmy, pma, ..., Mp, ..., wm toutes les valeurs de & mul-
tiples de . auxquelles correspondent pour ¢ (4, /) des valeurs V,
non nulles d’elles-mémes, et par.

Afn + iByn, Ay n+ iBany Ajn + tBan, e
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celles des valeurs V, rangées dans un ordre quelconque, qui
répondent & k.= p.m,, on ait

Al.u — Aa.n - A:' n

By, Bs,n

m, my
dn

(Al.l -+ iBl.l)”" _ (Al,n +ll}l_n>
Ai.l—iBl.l - Al,n_‘iBl,u
(n=1,2,3, ..., A).
L’équation des . axes est
[m—a—i—i(_y— p)—IF=H<A1.rz+’:Bl.n\)wn.
.Z'—G—L(_}’—p)_ Ai,u—l‘B(’n/

Les nombres d,, w.y pay ¢n, v sont définis comme plus haut,

en partant des nombres m,, m,, ,.., my, ..., my { les exposants
b b b 9 b

my m, .
3 —— sont enuers> .
dll dll



