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Note sur une classe d’équations différentielles; par M. Haac.

(Séance du 20 février 1880.)

Soit I’équation différentielle

dm"a 2 dm—l]- 2 d’j e (lf 2

ou A, B, ...,L,M, N, P sont des constantes.

Posons
y =2sin(«z + C),

2, a, G étant trois constantes; nous en déduirons

dy

(d_x) = )& cos(ex + C),
d?y .
(Q—E):—)a’sm(ax+C).

et, par conséquent,

(d])ezl’a’[l—sin‘(a.z +C)] = (X — y?)

drx
d! 2
(_d._z:{> = a"y’.
On voit aisément qu’on trouvera, en général,
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(d Py) — iryt

d.’t’l'

et
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et

drir+t

2Ap4+1 Q
(d P+ ]) = ) (32— y2),

Substituant dans l’équation proposée, et groupant ensemble les
termes qui renferment )2 et ceux qui en sont indépendants, on
trouve (supposons, par exemple, m pair)

[ — Aa?("V 4, 4+ Lu*— M2+ N]y?
+[Al2(m=DR . .+ Ma?)2+P]=o,

(2)

et I'équation sera satisfaite si I’on a simultanément

(3) w2 — A1 4 La*— Ma«2+ N=o,
(4) Ac2(m=13 4 + Me2)2 4+ P=o.

L’équation (3), qui est du degré m en a2, donnera m valeurs de «*.

L’équation (4), ou I'on portera I'une quelconque de ces valeurs
de o2, donnera alors

(5) = s

T A L Ma?

et, si I'on adopte pour o« et A des valeurs satistaisant aux rela-
tions (3) et (4),
¥y =1sin(«x + C)

sera une solution de I'équation différentielle proposée et renfer-
mera une constante arbitraire C.

On trouvera ainsi 2m solutions de I'équation (1) (car les combi-
naisons obtenues en changeant simultanément les signes de « et
de A ne donnent pas de solutions distinctes) (*).

(*) I est facile de reconnaitre d’ailleurs que V’analyse précédente s’applique a toute

équation de la forme
d”‘_?‘ dn‘.r _
EA(E) (2;;;)—{—1’—0,

ou m et n peuvent étre égaux, pourvu que dans chaque terme la somme m + n soit
paire.
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