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Etude d'une question relative au mouvement d'un point
sur une surface de révolution; par M. G. DARBOUX.

(Séance du 21 mars 1877.)

I.

Dans un article inséré aux Comptes rendus, t. LXXVII, p. 84?^
M. Bertrand s'est proposé de rechercher, parmi toutes les lois
d'attraction émanant d'un centre fixe, celles pour lesquelles la tra-
jectoire d'un point libre sera toujours fermée. Je me propose
d'étendre la même recherche au mouvement d'un point sur une
surface de révolution, en admettant que le point est soumis à la
seule action de forces émanant de différents points de l'axe ou bien
de forces parallèles à l'axe et fonctions de la distance du point sur
lequel elles agissent à un plan fixe parallèle à l'axe. Ces hypo-
thèses se résument en une seule : il y a une fonction des forces qui
conserve la même valeur en tous les points d'un parallèle de la
surface.

Prenons pour l'axe des z Faxe de la surface. Désignons par r la
distance d'un point quelconque à cet axe, et soit

z=9(r )

l'équation de la surface. La fonction des forces sera, par hypothèse,
une fonction de r, que je désignerai par

f[r}.
En désignant par (x) l'angle que fait le plan méridien contenant le
mobile avec un méridien fixe, l'équation différentielle de la tra-
jectoire sera, comme on sait,

(•+^=0^)4-A——,r^co2 J \ i - ^

C2 et h désignant deux constantes arbitraires.
Si la courbe est fermée, les valeurs de r seront comprises entre

deux limites a, &, et la trajectoire sera comprise tout entière entre
les deux parallèles de rayons a et &. Pour ces deux parallèles cx-
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drtrêmes, -7- doit s'annuler, r étant maximum ou minimum. On adu
donc

CV(a)+A-^=o, ,

C'/(&)+A-F=O.

Ces équations nous permettent d'exprimer C' et h en fonction de a
et de b. Si l'on pose

/('•) • ;,

(2) A= /(a) , - ,A ===

/('•)
fW

m

i
1 7-

' 02

î

' F

l'équation de la trajectoire devient ainsi

. , dr2 A(î + y"

et l'on a par conséquent

r<rf^ -^b)-f(a)

'dr^+^^f^-fia)

»•' ̂ A

En employant le mode de raisonnement proposé par M. Bertrand,
on reconnaît qu'il est nécessaire et suffisant, pour que la courbe soit
fermée, que l'on ait

T^.f(b )-f(a)

/t/a dr= ^.71,3) r^'A

y. étant un nombre commensurable constant. Ainsi il y a à déter-
miner les deux fonctions arbitraires jf(r), y ( ^ ) ^ de manière à satis-
faire à l'égalité précédente. Dans le problème traité par M. Ber-
trand, il y avait, au contraire, une seule fonction inconnue.

Je commencerai par réserver le cas où l'on suppose la fonction
f{r} co' stante, ce qui revient à chercher les surfaces de révolution
pour 1 ^quelles les lignes géodésiques sont fermées. Alors on pourra
effectaer le changement de notations suivant.
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Posons

(4.) /(/•)== ̂ , f[a}=. ̂  f(b)^ (3, ^=^(.r), ^-y^F^).

L'équation (3') se transformera dans la suivante :

(5) iî= ^ V^F^) y^ -a^
x i îi7(.r)
a i OT(a)
(3 i ^((3)

:^7:.

Posons (3 === a -4- e, .r === a + en, et supposons 6 suffisamment petit.
Nous allons chercher les trois premiers termes du développement
de l'intégrale précédente suivant les puissances de e.

On a
X \ T 3 [ X ]

A == a i G î (a )
P i ^.((3)

i ( { \ — H } r ,, xs"1
-£ ' ' CT"-4- — — ( £ •

1 v
£ ^ ) . L7?- (,+^+^

12 '
....],

n", TÎ^, 77^ désignant les dérivées dé u pour .r == a. Par suite

A- •
/ H ( 1 - U ) ,

V 2(6)
[•î I T O - - ^^4-^)

6^ £ !+// 24^

+^£2(I+^+•••]•

On a de même
F' F" i F'2

( 7 ) ^^)==^/î(^^+^eu+^E2u2-^^ e'u7

On trouve ainsi sans peine d'abord le premier terme de Q

du_ /2F(o) r1

"V^HJo0
^ / /(a) Jo \/u(l— U)

Pour e == O,JQ se réduit à son premier terme. En effectuant l'inté-
grale qui y est indiquée, on obtiendra l'équation

•t/2^V^
2Jb(a:)
ro"(ai î̂:,
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et par conséquent

(8) F^)-^^).

Ainsi tout se réduit a calculer la fonction us(x). Pour obtenir cette
fonction, nous allons compléter le développement de Q. En met-
tant à la place de F (a") sa valeur dans la formule (7) et substituant

i
les développements de F(.r) et A 2 dans l'expression de Q, nous
obtenons le résultat suivant :

,, f1 du V ns'" , , ^ I y .û=^ T^^L'"^^-^-'^^-"-162

+^e^-^+'••]•
Or on a

r1 du __ Ç l H du _ TT Ç ' _u^du _ 3
^ v^i-")'"'71' Jo ^(i-^)"2 ' J^ v^t'-^)'^87 ' '

Substituons ces valeurs dans Q, et nous aurons

n / ^ïv ^"l'î \i2 === ^7T 4- 7:£2 ( ,7-r—; — TQ—T- -+-• . . ;t \64îx? 4°^ /

iî devant être égal a /AÎT, il faut que le coefficient de toutes les puis-
sances de s et, en particulier, celui de e2, soient nuls, ce qui donne
l'équation

(9) S^OT^-^CT^^O,

qui fera connaitrc CT.
Cette équation admet deux espèces de solutions. La première

s'obtiendra en supposant vs'^x) constant. On a ainsi

(10) ïs[x} ̂ C^+B^r+A.

Toutes les autres seront comprises dans la formule

( 1 1 ) rs[x) == —v— -h B.r -{- C.

Il est aisé de voir d'ailleurs que ces deux formes sont acceptables
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et donnent toutes les deux, jointes à l'équation

(12 ) F^)^^),

des solutions du problème posé.
Il nous reste à les discuter et à reconnaître la nature des sur-

faces et des forces auxquelles elles correspondent. Rappelons d^ a--
bord les notations primitives.

Nous avons posé

(.3) f(r)=x;

x est donc la fonction des forces, et l'on pourra sans inconvénient
lui ajouter ou lui retrancher une constante.

Nous avons d'ailleurs

(i4) ^=^M.

et, en résolvant cette équation par rapport à x^ nous aurons la
fonction des forces exprimée en /'. Enfin, d'après la définition de
F(.z*), nous pouvons écrire

W ^=F(.)=^.'(.).

Les équations (i3), ( i4)? (i5) nous feront connaître f{r}^ î^)?
et, par conséquent, à la fois la nature de la surface et celle des
forces.

II.

Appliquons d^abord ces formules à la première hypothèse, celle
pour laquelle on a

rs[x} ==A^-4-B^4-C.

En augmentant la fonction des forces x d'une constante arbitraire
et remarquant que A ne peut être nulle [sans quoi F (a:) serait
nulle], on peut écrire

, , ï x2 C
^WT^A-A 9

ou

(16) ^=^,-C.
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De l'équation (i5) on tire

(i7) •4-9- Aa2r2
A — C r 2

Commençons par supposer p. === i, nous aurons

^'=\/-A^VA^Crï'-

et 5 en intégrant,

c'est-à-dire

p'+r'=^,

^r^.
L<

La surface est donc une sphère.
Quant à la force, on peut en donner différentes expressions. Voici

la plus élégante. En vertu de l'équation de la surface, la fonction
des forces x peut s'écrire

^=v/c^

et, en différentiant cette expression, on obtiendra les deux compo-
santes R, Z de la force, l'une perpendiculaire à l'axe des ^, l'autre
parallèle a cet axe. On trouve

R: . / p^ y-N/C ./7T^-»i ^• -V^TT ^ — V » V Z ^ + K 2 ^ - .
^z_

1 r2' "~ r ' v" • " — ^

Ces expressions nous montrent : i° que la force est tangente au
méridien: 2° qu'elle est en raison inverse du carré de r, c'est-à-dire
du carré du sinus de l'arc de cercle 0 compris entre le point attiré
et le pôle.

On sait en effet qu'avec cette nature de forces la trajectoire sera
une conique spliérique dont le pôle sera un des foyers.

Supposons maintenant que y, ne soit plus égal à l'unité ; alors la
formule (17) nous montre que, pour la surface de révolution cher-
chée, on aura

, u'Ar2^2 -ds2 == c-———— + r^co2.
A 4-Cr2
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Or, si l'on pose
0) == y.u),

on a <fe•^•(^.-^)•
expression qui ne diflère de celle qui est relative au cas de u. == i
que par la présence d'un facteur constant p.. L'hypothèse actuelle
conduit donc simplement à des surfaces de révolution applicables
sur la sphère.

Ce résultat pouvait se prévoir a priori, car on sait que les équa-
tions du mouvement d'un point sur une surface demeurent les
mêmes quand on déforme la surface en conservant à la fonction
des forces la même expression en fonction des coordonnées curvi-
lignes d'un point sur la surface.

Ainsi le cas où y. est quelconque ne donne rien d'essentiellement
nouveau.

L'analyse précédente exclut le cas où C == o. Examinons cette
hypothèse.

On a alors
x=-^ i-+-<p'2^^

Supposons d'abord p. === i, on a

9'==o, z == const.

C'est le cas où le mouvement a lieu dans un plan et où la force est
en raison inverse du carré de la distance à un point fixe et dirigée
vers ce point.

Si ^ est quelconque, on a

z _— y/^-i /•,

équation qui convient à un cône de révolution, la force étant une
attraction dirigée vers le sommet du cône et en raison inverse du
carré do la distance.
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III.

Examinons maintenant la seconde hypothèse, celle pour laquelle
on a

^
rs[x\ == ———— -4- B.T 4- C,' ' x — a

expression qu'en changeant x en x 4- a on peut toujours ramener
à la forme

^(x}==:A-+ B^4-C.' / x
On aura ici

( 1 8 ) ^^+B^C,

et, pour n'avoir pas à tirer x de cette équation, nous conserverons x
comme variable indépendante. Nous trouverons ainsi

( dl\î— if^^A "h B^+ C.r) — (A — B^2)2
( 19 ) ^ ̂  ~" ^^(A+B^+'C ïc)3 ~^ '

II faudra effectuer la quadrature qui donne ^, puis éliminer x entre
l'équation obtenue et l'équation (18). Pour avoir la fonction des
forces, on exprimera x en fonction de r en résolvant l'équation ( 18).
Les résultats sont, on le voit, assez compliqués.

Traitons d'abord le cas où B == o, et prenons 2 u = = i . Nous sa-
vons que toute autre hypothèse sur y. nous conduirait à des surfaces
applicables sur celle qxie nous allons trouver. Nous pouvons donc
nous borner à considérer tette valeur particulière de p..

On a alors
V/A r^——î—,

V/C^A-r-C.r A4-C.T

et, par conséquent,

Ainsi la surface correspondant à ce cas est encore une sphère. La
fonction des forces x peut s'écrire

A r2
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sous cette forme, elle donne naissance aux deux composantes

_A ar _ A î».r2

~"(I ^Tî ~~~ C ~z3"

On volt que la force est encore dirigée suivant la tangente au méri-
dien. Quant à sa grandeur, elle est

9. A r 9. A sîn0
^Ka+z2 = c7c ̂  "(r cosr0î

6 désignant la distance au pôle, du point considéré.
On trouve, en eflet, dans cette hypothèse, comme trajectoire, une

conique sphérique ayant le pôle pour centre.
Si B et C sont nuls en même temps, on a

/ ^ V ( 4 ^ - i )
\dx) """ 4A.y

et, en prenant ^p. == i,
dz— == o, z == const. ;

on obtient ainsi un plan. La fonction des forces est alors

^==:Ar 2 :

c'est le cas où il y a une attraction proportionnelle à la distance.
Si y. était quelconque, on obtiendrait un cône de révolution, et

la force serait une attraction émanant du sommet et proportionnelle
à la distance,

Les autres suppositions sur A, B, C conduisent à des résultats
compliqués, je ne les examinerai pas.

IV.

Dans ce qui précède, nous avons pris d'abord le rayon r du pa-
rallèle comme une variable arbitraire. Mais il n^arrive pas toujours
que, sur une surface de révolution, cette variable puisse prendre
toutes les valeurs possibles. Par exemple, dans la sphère, le rayon
du parallèle doit être inférieur à celui delà sphère, par conséquent,
si la trajectoire du mobile est située dans les deux hémisphères,
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y pourra croître d'une limite inférieure a à R, puis décroître de R
à une autre limite. Or les intégrations que nous avons faites pour
obtenir Q. supposent que r soit réellement in dépendante et ne
s'appliquent pas à cette hypothèse. La méthode que nous avons
suivie est donc sujette à une objection qu'il est d'ailleurs facile de
lever.

En effet, si la courbe est fermée, comme nous le supposons, on
pourra toujours déterminer les constantes C et h qui figurent dans

drl'équation (i), de telle manière que -,- s'annule pour deux valeurs a

et b aussi rapprochées qu'on le voudra et que la courbe soit, par
conséquente comprise entre deux parallèles ne comprenant pas un'
équateur ou parallèle de rayon maximum ; alors notre méthode
deviendra applicable et nous voyons qu'elle nous donne bien toutes
les surfaces et toutes les lois de la force pour lesquelles la trajec-
toire sera toujours fermée. Mais nous allons voir que cet examen
des parallèles de rayon maximum joue un rôle prépondérant dans
la discussion de ce cas particulier de notre problème que nous avons
réservé, celui où l'on cherche les surfaces de révolution dont toutes
les lignes géodésiques sont fermées,

En effet, considérons une surface de révolution et une ligne géo-
désique quelconque tracée sur cette surface. Si i désigne l'angle
que fait la ligne géodésique en un point quelconque avec le paral-
lèle qui passe en ce point, l'équation différentielle de la ligne géo-
désique sera

rcosi==a.

Partons du parallèle de rayon a. La ligne géodésique lui est tan-
gente et elle se dirige du côté où le rayon du parallèle augmente.
Si ce rayon croît toujours, la ligne géodésique s'éloignera indéfini-
ment en coupant les parallèles sous un angle qui s'approchera do
plus en plus d'être droit. S'il n'y a pas de parallèle de rayon égal
à a, on partira d'un parallèle quelconque et l'on obtiendra les
mêmes conclusions.

Supposons, au contraire, qu'il y ait un parallèle de rayon maxi-
mum que j'appellerai un équateur de rayon R. Si je prends a un
peu inférieur à R, il y aura deux parallèles de rayon a voisins l'un
de l'autre, l'un au-dessus, l'autre au-dessous de l'équateur, et une
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ligne géodésiquc définie par l'équation

rcosi'==â,

comprise entre ces deux parallèles et tout entière à distance finie.
Je vais chercher la condition pour qu'une telle ligne soit toujours
fermée.

Reprenons l'équation différentielle (i) où nous supposerons nulle
la fonction des forces

(.0) (r+9;')^^,_.L,
r'd(f)' r2

et qui conviendra alors à une ligne géodésîque ; .- s'annulant pour

/• == a, ou aura

A=-L 'a^

et l'équation de la surface sera, nous l'avons vu,

(21) z = = o ( r ) .

On déduit de l'équation (20)

\/i -+-~9 f̂7r

r^/fi

û) : C y' •+- ^"'dr

1 -7 '̂
et si nous désignons par 0)1 l'angle dont le plan méridk'n'passaiil
par le point décrivant aura tourné quand on arrivera sur l'équatcur,
on aura
/ ^ F v/i + (p^rfr(22) &).== 1 --—————

/ -'vA-^V4-?•^a

Le point, après avoir décrit cette portion de la ligne géodésiquc
que nous supposerons placée dans la région inférieure à l'equateur,
passera dans la région opposée, et si

(23) z = ^ [ r )

est l'équation de cette nouvelle région de la surface, l'angle (^ doni
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le plan méridien aura tourné quand le point décrivant arrivera au
parallèle supérieur de rayon a sera donné par la formule

(24)- w,:
R _____

\/i4- ^^dry111 /—- / v7^

1 -v
L'angle^tofcal dont le plan méridien aura tourné quand on passera
du parallèle inférieur de rayon a au parallèle supérieur de même
rayon sera donc

^»R ,————— _____
/ y \ f\ / V 1 -4- V)12 -+- V I -4- d/2( î?5 ) 12 == &)i -+- w, == | v • T_'..y_^i_y_ ̂

et, pour quc^la ligne géodésiquc soit fermée, il faudra que l'on ail

Q==2^7T,

p. étant un nombre commensurable constant. Ainsi l'intégrale Q
doit être constante.

Il suffit d'un peu d'attention pour reconnaître que cette inté-
grale est, aux notations près, celle qu'on rencontre dans la recherche
des courbes tautoclironcs pour un point matériel pesant et l'on est
ainsi conduit a la solution du problème donnée par la formule

-( 26 ) v/7+ y'2 + v/i-i-^'2 4^.R

On voit que l'on pourra choisir arbitrairement l'une des fonctions c&
ou^, l'autre sera déterminée par une quadrature.

Traitons le cas où la surface est symétrique par rapport à Féqua-
teur. On aura alors

^==^,

et l'équation précédente deviendra

(27) v/rTT^-^L.
V/R'-/-

Étudions d'abord le cas où l'on a

2^=1,
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on trouve alors

, rdr ,ay == -—-— == rf^
V/l^-r2

et, en intégrant,
^-l-r^R2.

C'est Inéquation de la sphère.
On peut rattacher à cette solution celles pour lesquelles a est un

nombre commensurable quelconque.
En effet, il résulte de la formule (26) que la distance de deux

points infiniment voisins sur la surface est donnée par la formule

, , 4a2R2</r2 ,
ds = K^^> -^ r2d(ûî9

Si l'on remplace Q) par 2/xc«/, on a

^=4^(^^4-r2^2),

et l'on voit que la surface est applicable sur une sphère de rayon
2fAR.

On peut même donner les formules qui établissent la correspon-
dance entre les points des deux surfaces. En posant

W ip.r=r\ 2^R===R',

l'équation précédente devient

,, R'2^'2 , -
^^R^r-Fi+^A)'2,

et elle convient à une sphère de rayon R'pour laquelle /•', (</ seraient
les coordonnées polaires d'un point quelconque.

On a, entre les coordonnées des points correspondants des deux
surfaces, les relations

2^r==r',
G() === 2^(x)',

p. étant commensurable; posons ly. == ^, on aura

Cj(ù ===/?&/.
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On voit donc que, pour établir d'une manière complète la corres-
pondance entre les deux surfaces, il faudra considérer la sphère
comme composée de y feuillets superposés et la surface comme
composée de même de p feuillets.

Nous avons donc le théorème suivant :

Les seules surfaces de résolution ayant leurs lignes géodésiques
fermées et admettant un de leurs parallèles pour plan de symé-
trie. sont la sphère et les surfaces applicables sur une sphère^ de
telle manière que le rapport de leur aire à celle de la sphère de
même courbure soit un nombre commensurable.

On sait que, parmi les surfaces de révolution applicables sur la
sphère, les unes ne rencontrent pas leur axe, les autres ont un
point saillant sur cet axe. Pour les premières, il y aura des lignes
géodésiques non fermées, toutes celles qui couperont sous un angle
fini le parallèle minimum; pour les autres, toutes les lignes géodé-
siques seront fermées.


