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Etude d’une question relative au mouvement d'un point
sur une surface de révolution; par M. G. Darsoux.

(Séance du 21 mars 1877.)

I.

Dans un article inséré aux Comptes rendus, t. LXXVII, p. 849,
M. Bertrand s’est proposé de rechercher, parmi toutes les lois
d’attraction émanant d’un centre fixe, celles pour lesquelles la tra-
jectoire d'un point libre sera toujours fermée. Je me propose
d’étendre la méme recherche au mouvement d’un point sur une
surface de révolution, en admettant que le point est soumis a la
seule action de forces émanant de différents points de 1'axe ou bien
de forces paralléles a I'axe et fonctions de la distance du point sur
lequel elles agissent a un plan fixe paralléle 4 I'axe. Ces hypo-
théses se résument en une seule : il y a une fonction des forces qui
conserve la méme valeur en tous les points d’un paralléle de la
surface.

Prenons pour ’'axe des z I'axe de la surface. Désignons par r la
distance d’un point quelconque a cet axe, et soit

z=¢(r)

I’équation de la surface. La fonction des forces sera, par hypothése,
une fonction de r, que je désignerai par

f(r).

En désignant par w I’angle que fait le plan méridien contenant le
mobile avec un méridien fixe, I'équation différenticlle de la tra-
jectoire sera, comme on sait,

(1 g")dr’

(1) T :0ﬂﬂ+h—%,

C? ct I désignant deux constantes arbitraires.

Si la courbe est fermée, les valeurs de » seront comprises entre
deux limites a, &, et la trajectoire sera comprise tout entiére entrc
les deux paralléles de rayons a et &. Pour ces deux paralléles ex-



— 101 —

R dr . . , , . -
trémes, -~ doit s’annuler, » étant maximum ou minimum. On a
donc
1
N2 —
Cfla)=+h— =0

I
Cf(b)+h— g =o.
Ces équations nous permettent d’exprimer C? et /2 en fonction de a
et de 5. Si I'on pose
1
2

~

(2) A=|fla) v =]

I’équation de la trajectoire devient ainsi

' dr? _ A
1+ 9" i = FO —f1a)’

et l'on a par conséquent

w:fdrv‘rwz Vf(b)=f(a)

ri/A

En employant le mode de raisonnement proposé par M. Bertrand,
on reconnait qu’il est nécessaire et suffisant, pour que la courbe soit
fermée, que I'on ait

b B =)
3) 1; m/&

dr=pn,

¢ étant un nombre commensurable constant. Ainsi il y a & déter-
miner les deux fonctions arbitraires f(r), ¢(7), de maniére a satis-
faire a 'égalité précédente. Dans le probléme traité par M. Ber-
trand, il y avait, au contraire, une seule fonction inconnue.

Je commencerai par réserver le cas ou 'on suppose la fonction
f(r) co stante, ce qui revient & chercher les surfaces de révolution
pour 1 squelles les lignes géodésiques sont fermées. Alors on pourra
effectuer le changement de notations suivant.
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Posons
- + 9
(4) S ==, flaj=a fO)=B, S=wlz), —mi=F)
L’équation () se transformera dans la suivante :

(5) Q_\/‘ VF(z) \/|3——rxdx
Vi

Posons = o + ¢, £ = a + eu, et supposons ¢ suffisamment petit.
Nous allons chercher les trois premiers termes du développement
de Vintégrale précédente suivant les puissances de ¢.

On a

A=

o
51 wl(p) 4
Z
"{l: “) ‘[m”—l— %ﬂ(e+eu) -+ 5—-1—:-;2 (14 u+w2) —I—...],
&, 6", ©'" désignant les dérivées de & pour x = a. Par suite

-1 v
3 I

L " R
A = [l—- g —7 €(I+ll)— ——,4—7 Cz(l +u+u’)
m/II)
‘ +2—4-m,,,)e’(x+ u)’+...].

On a de méme

) \/F(x):\/m(h«i— eu+4€;ezu’—%¥eu’+ >

On trouve ainsi sans peine d’abord le premier terme de Q

2[1
Q= f o)t
\/ul—u +ele

Pour ¢ = 0, Q se réduit a son premier terme. En effectuant I'inté-
grale qui y cst indiquée, on obtiendra I’équation

7T\/zl“(o&)__ _
m"(a} ——{J'I-)
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ct par conséquent

8) (2)= Lo’ ().

Ainsi tout se réduit a calculer la fonction @ (x). Pour obtenir cette
fonction, nous allons compléter le développement de Q. En met-
tant a la place de F'(x) sa valeur dans la formule (7) et substituant

1
les développements de F(x) et A * dans I'expression de Q, nous
obtenons le résultat suivant :

3 184
Py (bwr—u—1)e
my

+I'm72 s’(l—/;u’)+...].

Q=np ——_d—IL:_[l—i—éa—m,,(zu—l)e—l-
Jy Vai—a L' bo

Or on a

! du - "' udu T f' wdu 3
pr———— | Y —_——————— T —) —_— =T,
j(: Vu(i—u) , Vu(i—u) 2 b Vu(l—u) 8

Substituons ces valeurs dans £, et nous aurons

v mlll-x
Q= um + mwe? —m—,——~———— -+
& 64w~ 8w

Q devant étre égal a um, il faut que le coeflicient de toutes les puis-
sances de ¢ ct, en particulier, celui de €*, soient nuls, ce qui donne
I'équation

(9) Jn’w"— 4w =o,

qui fera connaitre @.
Cette équation admet deux espéces de solutions. La premijére
s’obtiendra en supposant o”(x) constant. On a ainsi

(10) w(x) =02+ Bx + A.
Toutes les autres seront comprises dans la formule

(11) m(x}:;—i—o}—f—Bx-{-—C.

Il est aisé de voir d'ailleurs que ces deux formes sont acceptables
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ct donnent toutes les deux, jointes a I'équation
2
(12) F(x):%m”(x),

des solutions du probléme posé.

Il nous reste a les discuter et a reconnaitre la nature des sur-
faces et des forces auxquelles elles correspondent. Rappelons d’a-
bord les notations primitives.

Nous avons posé

(13) Sflr)==;

x est donc la fonction des forces, et I'on pourra sans inconvénient
lui ajouter ou lui retrancher une constante.
Nous avons d’ailleurs

(14) = =w(a),

et, en résolvant cette équation par rapport 4 x, nous aurons la
fonction des forces exprimée en . Enfin, d’aprés la définition de
I’ (x), nous pouvons écrire

1+ ¢" T
15 = F(z) = — =" (x).
( ) flz(r)ro ( ) 2 © ( )
Les équations (13), (14), (15) nous feront connaitre f(r), ¢(r),
et, par conséquent, a la fois la nature de la surface et celle des
forces.

1L

Appliquons d’abord ces formules a la premiére hypothése, celle
pour laquelle on a
w(z) = Az’+ Bz + C.

En augmentant la fonction des forces & d’une constante arbitraire
et remarquant que A ne peut étre nulle [sans quoi F'(x) serait
nulle], on peut écrire

ou

(16) at==—C.
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De P'équation (15) on tire

Au2p?

(17) 1+cp2=m.

Commengons par supposer p == 1, nous aurons

¢ —\/A cr”

Q4 r= %7

. rd
et; en 1ntegrant,

c’est-a-dire

72_*_ ’,1 —_—

cl:»

La surface est donc une sphére.

Quant a la force, on peut en donner différentes expressions. Voici
la plus élégante. En vertu de 'équation de la surface, la fonction
des forces x peut s’écrire

-2
x::\/b;’

et, en différentiant cette expression, on obtiendra les deux compo-
santes R, Z de la force, I'une perpendiculaire a I’axe des z, l'autre
paralléle a cet axe. On trouve

ik C VG
R:_\/LF’ Z-—_—g’ VZ+ R = h

Ces expressions nous montrent : 1° que la force est tangente au
méridien; 2° qu’elle est en raison inverse du carré de r, ¢’est-a-dire
du carré du sinus de I'arc de cercle 6 compris entre le point attiré
et le pole.

On sait en effet qu’avec cette nature de forces la trajectoire sera
une conique sphérique dont le pole sera un des foyers.

Supposons maintenant que p. ne soit plus égal a I'unité; alors la
formule (17) nous montre que, pour la surface de révolution cher-

chée, on aura

. pAridr \
ds m ~+ r? dw
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Or, sil'on posc '

0= pw,
ona

dst = p? (% -+ r’dco"),

expression qui ne différe de celle qui est relative au cas de p=1
que par la présence d’un facteur constant p.. L’hypothése actuelle
conduit donc simplement & des surfaces de révolution applicables
sur la sphére.

Ce résultat pouvait se prévoir a priori, car on sait que les équa-
tions du mouvement d'un point sur une surfacc demeurent les
mémes quand on déforme la surface en conservant a la fonction
des forces la méme expression en fonction des coordonnées curvi-
lignes d’un point sur la surface.

Ainsi le cas ou . est quelconque ne donne rien d’essentiellement
nouveau.

L’analyse précédente exclut le cas ot C = o. Examinons cette
hypothese.

On a alors

Supposons d’abord p. =1, on a

¢'=o0, z=—const.
C’est le cas ou le mouvement a licu dans un plan ct on la force est
en raison inverse du carré de la distance a un point fixe ct dirigée
vers ce point.

Si i est quelconque, on a

z=ypr—1r,

équation qui convicnt 2 un conc de révolution, la force étant une
attraction dirigée vers le sommet du cone ct en raison inverse du
carré de la distance.
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II1.

Examinons maintenant la seconde hypothése, celle pour laquelle
on a

+ Bx + C,

f.z'_—_-
w (%) xr— a

expression qu’en changeant x en x + « on peut toujours ramencr
ala forme
A
m(x)=;+ Bx + C.
On aura ici

1 A
(18) —==+Bz+(,

Tz
et, pour n’avoir pas i tirer x de cette équation, nous conserverons x
comme variable indépendante. Nous trouverons ainsi

(qf_ * Auw*A(A+Bz*+ Cx) — (A —Ba?)?
dx) — 4x(A+Bx*+ Cx)?

(19)

Il faudra effectuer la quadrature qui donne z, puis éliminer x entre
Iéquation obtcnue et 'équation (18). Pour avoir la fonction des
forces, on exprimera x en fenction der en résolvant I'équation (18).
Les résultats sont, on le voit, assez compliqués.

Traitons d’abord le cas ou B = o, et prenons 2u = 1. Nous sa-
vons que toute autre hypothése sur  nous conduirait a des surfaces
applicables sur celle que nous allons trouver. Nous pouvons donc
nous borner 4 considérer tette valeur particuliére de p.

On a alors

___ VA b %
== I T
VC VA +Cx A+ Cx

et, par conséquent,

Ainsi la surface correspondant & ce cas est encore une sphére. La
fonction des forces x peut s’écrire
— A r2-
T
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sous cette forme, clle donne naissance aux deux composantes

R=;—y Z=—5 —-
¢ 2z C 2z
%
On voit que la force est encore dirigée suivant la tangente au méri-
dien. Quant a sa grandeur, elle est

T 2A _r:__z._{\_ sinf
VR +Z 20¢C 2 C cos'f’

6 désignant la distance au péle, du point considéré.

On trouve, en effet, dans cette hypothése, comme trajectoire, une
conique sphérique ayant le pdle pour centre.

Si B et C sont nuls en méme temps, on a

() ="

et, en prenant g =1,

dz
2 — % #=const;

on obtient ainsi un plan. La fonction des forces est alors

x=Ar?:

c’est le cas ou il y a une attraction proportionnelle 4 la distance.
Si p était quelconque, on obtiendrait un cone de révolution, et
la force serait une attraction émanant du sommet et proportionnelle
a la distance,
Les autres suppositions sur A, B, C conduisent & des résultats
compliqués ; je ne les examinerai pas.

IvV.

Dans ce qui précéde, nous avons pris d’abord le rayon r du pa-
ralléle comme une variable arbitraire. Mais il n’arrive pas toujours
que, sur une surface de révolution, cette variable puisse prendre
toutes les valeurs possibles. Par exemple, dans la sphére, le rayon
du paralléle doit étre inférieur a celui dela sphére; par conséquent,
si la trajectoire du mobile est située dans les deux hémispheéres,
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r pourra croitre d’une limite inférieure @ a R, puis décroitre de R
a une autre limite. Or les intégrations que nous avons faites pour
obtenir  supposent que r soit réellementin dépendante et nc
s’appliquent pas a cette hypothése. La méthode que nous avons
suivie est donc sujette a une objection qu’il est d’ailleurs facile de
lever.

En effet, si la courbe est fermée, comme nous le supposons, on
pourra toujours déterminer les constantes C et  qui figurent dans

>, . . dr
Téquation (1), de telle maniére que Ta s’annule pour deux valeurs a

et b aussi rapprochées qu’on le voudra et que la courbe soit, par
conséquent, comprise entre deux paralléles ne comprenant pas un
équateur ou paralltle de rayon maximum  alors notre méthode
deviendra applicable et nous voyons qu’elle nous donne bien toutes
les surfaces et toutes les lois de la force pour lesquelles la trajec-
toire sera toujours fermée. Mais nous allons voir que cet examen
des paralléles de rayon maximum joue un réle prépondérant dans
la discussion de ce cas particulier de notre probléme que nous avons
réservé, celui ou ’on cherche les surfaces de révolution dont toutes
les lignes géodésiques sont fermées. ,

En effet, considérons une surface de révolution et une ligne géo-
désique quelconque tracée sur cette surface. Si ¢ désigne I'angle
que fait la ligne géodésique en un point quelconque avec le paral-
léle qui passe en ce point, I'équation différentielle de la ligne géo-
désique sera

rcost—=a.

Partons du paralléle de rayon a. La ligne géodésique lui est tan-
gente et elle se dirige du c6té ou le rayon du paralléle augmente.
Si ce rayon croit toujours, la ligne géodésique s’éloignera indéfini-
ment en coupant les paralléles sous un angle qui s’approchera de
plus en plus d’étre droit. S'il n’y a pas de paralléle de rayon égal
A a, on partira d'un paralléle quelconque et 'on obtiendra les
mémes conclusions.

Supposons, an contraire, qu’il y ait un paralléle de rayon maxi-
mum que j'appellerai ur équateur de rayon R. Si je prends a un
peu inférieur a R, il y aura deux parall¢les de rayon a voisins I'un
de I'autre, 'un au-dessus, 'autre au-dessous de 1’équateur, et une
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ligne géodésique définic par I'équation

rcosi =a,
comprise entre ces deux paralléles et tout enti¢re a distance finic.
Je vais chercher la condition pour qu'unc telle ligne soit toujours
fermée.

‘Reprenons I’équation différenticlle (1) ot nous supposerons nulle
la fonction des forces

(7o) SR

. . . s 4. dr
ct qui conviendra alors a une ligne géodésique;; . s’annulant pour
)
7= a, on aura
I

b:E’

ct 'équation de la surface sera, nous I'avons vu,
[21) z=o(r).
On déduit de I'équation (20)

r p——— —— —
o= [T

9
1
r’\/lz —_——
r'l
a

ct si nous désignons par w; I'angle dont le plan méridien passant
parle point décrivant aura tourné quand on arrivera sur I'équateur,
on aura

R —
(22) 0 = _\/_'_ﬂmdr.
r’\// ——1—2

/g r

Le point, aprés avoir décrit cette portion de Ia ligne géodésique

que nous supposcrons placée dans la région inféricure a I’équateur,
?

passera dans la région opposée, et si

(23) 5= (r)

cst I'équation de cette nouvelle région de la surface, I'angle 0, dont
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le plan méridien aura tourné quand le point décrivant arrivera an

paralléle supérieur de rayon a scra donné par la formule

O ——
(24)- oy = Vi ghdr

I
Vs
a

L’angle.total dont le plan méridien aura tourné quand on passera
du paralléle inférieur de rayon a au paralléle supéricur d¢ méme
rayon sera donc

R
' 12 1,2
(25) Q=0 +w,= Vite+yi+ ¢ dr,
I |
e VaTr

ct, pour que la ligne géodésique soit fermée, il faudra que I'on ait

Q= oapm,

p étant un nombre commensurable constant. Ainsi l'intégrale Q
doit étre constante.

Il suffit d’'un peu d’attention pour reconnaitre que cette inté-
grale est, aux notations prés, celle qu’on rencontre dansla recherche
des courbes tautochrones pour un point matériel pesant ct 'on est
ainsi conduit a la solution du probléme donnée par la formule

2 1+ "——————4#}{ .
,(26) \/I—Jr-CP -i—\/ Y —\/3—1:7_

On voit que 'on pourra choisir arbitrairement 'une des fonctions ¢
oud; autre sera déterminée par une quadrature.

Traitons le cas ou la surface est symétrique par rapport a l’équa—
teur. On aura alors

(?V,: LPI;’
ct Péquation précédente deviendra
2u.R
(27) et e
VRZ — 2

Etudions d’abord le cas oul’on a

2=,
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on trouve alors

o= rdr
VR:—r?
ct, en intégrant,
z2'+ r2=R2.

C’est I'équation de la sphere.
On peut rattacher a cette solution celles pour lesquelles p est un
nombre commensurable quelconque.
En effet, il résulte de la formule (26) que la distance de deux
points infiniment voisins sur la surface est donnée par la formule
ds'— 4[J_2R7d,.1

st—= 1 r:de’,
R‘A_ r:

Silon remplace  par 2po/, on a

R2dr?
dss=fp? <R_‘—_—r’ + ridw'?),
et I'on voit que la surface est applicable sur une sphére de rayon
2pR.
On peut méme donner les formules qui établissent la correspon-
dance entre les points des deux surfaces. En posant

(28) apr=r, 2uR=NR,
I’équation précédente devient

! ’
ds*= -—————lgz:hr’,z + r*dw',
et elle convient a une sphére de rayon R’ pour laquelle 7/, o seraient
les coordonnées polaires d’'un point quelconque.
On a, entre les coordonnées des points correspondants des deux
surfaces, les relations
apr=r,

»=2uw,
p étant commensurable; posons ap = P, on aura
q

qow=po'.
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On voit donc que, pour établir d'une manicre compléte la corres-
pondance entre les deux surfaces, il faudra considérer la sphére
comme composée de g feuillets superposés et la surface comme
composée de méme de p feuillets.
Nous avons donc le théoréme suivant :

Les seules surfaces de révolution ayant leurs lignes géodésiques
Jfermées et admettant un de leur: paralléles pour plan de syme-
trie sont la sphére et les surfaces applicables sur une sphére, de
telle maniére que le rapport de leur aire & celle de la sphére de
méme courbure soit un nombre commensurable.

On sait que, parmi les surfaces de révolution applicables sur la
sphére, les unes ne rencontrent pas leur axe, les autres ont un
point saillant sur cet axe. Pour les premiéres, il y aura des lignes
géodésiques non fermées, toutes celles qui couperont sous un angle
fini le paralléle minimum ; pour les autres, toutes les lignes géodé-
siques seront fermées.



