@phdthesis{BJHTUP11_2008__0745__A1_0,
author = {Adamy, Karine},
title = {Contribution \`a l'\'etude th\'eorique et num\'erique de certains syst\`emes de m\'ecanique des fluides},
series = {Th\`eses d'Orsay},
year = {2008},
publisher = {Universite Paris-Sud Facult\'e des Sciences d'Orsay},
number = {745},
language = {fr},
url = {https://www.numdam.org/item/BJHTUP11_2008__0745__A1_0/}
}
TY - BOOK AU - Adamy, Karine TI - Contribution à l'étude théorique et numérique de certains systèmes de mécanique des fluides T3 - Thèses d'Orsay PY - 2008 IS - 745 PB - Universite Paris-Sud Faculté des Sciences d'Orsay UR - https://www.numdam.org/item/BJHTUP11_2008__0745__A1_0/ LA - fr ID - BJHTUP11_2008__0745__A1_0 ER -
Adamy, Karine. Contribution à l'étude théorique et numérique de certains systèmes de mécanique des fluides. Thèses d'Orsay, no. 745 (2008), 118 p. https://www.numdam.org/item/BJHTUP11_2008__0745__A1_0/
[1] , Regularity and uniqueness of solutions to the boussinesq system of equations, J. Diff. Eq., 54, 1984. | MR | Zbl | DOI
[2] , , Transport of pollutant in shallow water, a two time steps kinetic method, M2 AN Math. Model. Num. Anal., 37, no. 2, 2003. | MR | Zbl | Numdam
[3] , , , Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media I : Derivation and Linear Theory, J. Nonlinear Sci. 12, no. 4, 2002. | MR | Zbl | DOI
[4] , , , Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media II : The nonlinear theory, Nonlinearity 17,, 2004. | MR | Zbl | DOI
[5] , Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris 73, 1871. | JFM
[6] , , , Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization Appl. Numer. Math. 23 (4), 1997. | MR | Zbl | DOI
[7] , Incremental unknowns method and compact schemes RAIRO Model. Math. Anal. Num. 32 (1), 1998. | MR | Zbl | Numdam
[8] , , Incremental unknowns for solving partial differential equations Numer. Math. 59, 1991. | MR | Zbl | DOI
[9] , , Incremental unknowns in finite differences : condition number of the matrix SIAM J. Matrix Anal. Appl. 14 (2), 1993. | MR | Zbl | DOI
[10] , , , A dynamical multi-level scheme for the Burgers equation : wavelet and hierarchical finite element J. Sci. Comput. 25 (3), 2005. | MR | Zbl | DOI
[11] , , , Dynamic multilevel methods and the numerical simulation of turbulence Cambridge University Press, Cambridge, 1999. | MR | Zbl
[12] , , , Incremental unknowns, multilevel methods and the numerical simulation of turbulence Comput. Methods Appl. Mech. Engrg. 159 (1-2), 1998. | MR | Zbl
[13] , , , , Multilevel schemes for the shallow water equations J. Comput. Phys. 207, 2005. | MR | Zbl | DOI
[14] , , , Finite volume discretization and multilevel methods in flow problems, J. Sci. Comput., 25 (1-2), 2005. | MR | Zbl | DOI
[15] , Méthodes de volumes finis et multiniveaux pour les équations de Navier-Stokes, de Burgers et de la chaleur, Thèse de Doctorat.
[16] , , Boundary Value Problems for Boussinesq Type Systems, Math. Phys., Anal. Geom. 8, 2005. | MR | Zbl | DOI
[17] , , New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160, 2000. | MR | Zbl
[18] , , A third-order semi-discrete genuinely multidimensionnal central scheme for hyperbolic conservation laws and related problems Numer. Math. 88, 2001. | MR | Zbl | DOI
[19] , , , Semidiscrete central upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23, no3, 2001. | MR | Zbl | DOI
[20] , , Central-upwind schemes for the Saint-Venant system, M2AN, Vol.36, no 3, 2002. | MR | Zbl | Numdam | DOI
[21] , Modélisation des ondes de surface et justification mathématique, Ecole d'été Théorie mathématique des ondes non linéaires dispersives, 2005.
[22] . A step toward transparent boundary conditions for meteorological models. Monthly Weather Review, 130 :140-151, 2001. | DOI
[23] . Transparent boundary conditions for the shallow-water equations : testing in a nested environment. Monthly Weather Review, 131 :698-705, 2002. | DOI
[24] , Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit, C. R. Acad. Sci. Paris, 73, 1871. | JFM
[25] , Existence of solutions for the Boussinesq system of equations, J. Differential Equations, 42, 1981, no. 3, 325-352. | MR | Zbl | DOI
[26] , Systèmes hyperboliques de lois de conservation, I et II, Diderot, Paris, 1996. | MR | Zbl
[27] , Water waves, the mathematical theory with applications, Wiley, 1985. | Zbl | MR
[28] , Inertial manifolds and multigrid methods SIAM J. Math. Anal., 21 (1), 1990. | MR | Zbl | DOI
[29] , Multilevel methods for the simulation of turbulence. A simple model J. Comput. Phys., 127 (2), 1996. | MR | Zbl | DOI
[30] , Linear and non linear waves, Wiley and Sons Inc., New York, 1999. | MR | Zbl
[1] , Regularity and uniqueness of solutions to the boussinesq system of equations, J. Diff. Eq., 54, 1984. | MR | Zbl | DOI
[2] , Lectures on nonlinear wave motion, Lectures in Applied Mathematics, Vol. 15, Amer. Math. Soc., Providence, R.I., 1974. | MR
[3] , , A model for the two-way propagation of water waves in a channel, Math. Proc.Cambridge Philos., Soc. 79, 1976. | MR | Zbl | DOI
[4] , , An initial and boundary-value problem for a model equation for propagation of long waves, J. Math. Anal Appl., 75, 1980. | MR | Zbl | DOI
[5] , , , Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media I : Derivation and Linear Theory, J. Nonlinear Sci. 12, no. 4, 2002. | MR | Zbl | DOI
[6] , , , Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media II : The nonlinear theory, Non-linearity 17, 2004.
[7] , The One-dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, 23, 1984. | MR | Zbl
[8] , , Linear Operators. Part 1. Pure and Applied Mathematics, Vol. VII, Interscience Publishers, New York
[9] , , Boundary Value Problems for Boussinesq Type Systems, Math. Phys., Anal. Geom. 8, 2005. | MR | Zbl | DOI
[10] , Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J., 1964. | MR | Zbl
[11] , Shock Waves and Entropy Contributions to Non-Linear Functionnal Analysis, Academic Press, New York, 1971. | MR | Zbl
[12] , , Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991. | MR | Zbl
[13] , Functionnal Analysis, McGraw-Hill, New York, 1973. | MR | Zbl
[14] , Existence of solutions for the Boussinesq system of equations, J. Differential Equations, 42, 1981, no. 3, 325-352. | MR | Zbl | DOI
[15] , Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience, New-York-London-Sydney 1974. | MR | Zbl
[1] . Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North Holland Publishing Company, 1973 | MR | Zbl
[2] , . Contrôle optimal des équations aux dérivées partielles, Ecole Polytechnique, Palaiseau, France. 2003
[3] , . Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math., 13, 1960, 427-455 | MR | Zbl | DOI
[4] , Problèmes aux limites non homogènes et applications, Dunod, 1968 | Zbl
[5] . A step toward transparent boundary conditions for meteorological models. Monthly Weather Review, 130 : 140-151, 2001. | DOI
[6] . Transparent boundary conditions for the shallow-water equations : testing in a nested environment. Monthly Weather Review, 131 : 698-705, 2002. | DOI
[7] . Semigroups of operators in Banach spaces. In Equadiff 82 (Würzburg, 1982), volume 1017 of Lecture Notes in Math., pages 508-524. Springer, Berlin, 1983. | MR | Zbl
[8] . Geophysical Fluid Dynamics, Springer, second edition, 1987. | Zbl
[9] . Functionnal Analysis, International series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, second ed., 1991. | MR | Zbl
[10] . Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reedition of the 1984 edition. | MR | Zbl
[11] . Functionnal Analysis, Springer-Verlag, reprint of the sisth edition, 1995 | MR
[1] , , , , , A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows SIAM J. Sci. Comput. 25, 2004. | MR | Zbl | DOI
[2] , , , , Kinetic schemes for Saint-Venant equations sith source terms on unstructured grids INRIA Report RR-3989, 2000.
[3] , , , Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization Appl. Numer. Math. 23 (4), 1997. | MR | Zbl | DOI
[4] , Incremental unknowns method and compact schemes RAIRO Model. Math. Anal. Num. 32 (1), 1998. | MR | Zbl | Numdam
[5] , , Incremental unknowns for solving partial differential equations Numer. Math. 59, 1991. | MR | Zbl | DOI
[6] , , Incremental unknowns in finite differences : condition number of the matrix SIAM J. Matrix Anal. Appl. 14 (2), 1993. | MR | Zbl | DOI
[7] , , , A dynamical multi-level scheme for the Burgers equation : wavelet and hierarchical finite element J. Sci. Comput. 25 (3), 2005. | MR | Zbl | DOI
[8] , , , Dynamic multilevel methods and the numerical simulation of turbulence Cambridge University Press, Cambridge, 1999. | MR | Zbl
[9] , , , Incremental unknowns, multilevel methods and the numerical simulation of turbulence Comput. Methods Appl. Mech. Engrg. 159 (1-2), 1998. | MR | Zbl
[10] , , , , Multilevel schemes for the shallow water equations J. Comput. Phys. 207, 2005. | MR | Zbl | DOI
[11] , , , Finite volume methods in Handbook of numerical analysis VII, p. 713-1020, North Holland, Amsterdam, 2000. | MR | Zbl
[12] , , , Finite volume discretization and multilevel methods in flow problems, J. Sci. Comput., 25 (1-2), 2005. | MR | Zbl | DOI
[13] , Méthodes de volumes finis et multiniveaux pour les équations de Navier-Stokes, de Burgers et de la chaleur, Thèse de Doctorat.
[14] , , , Some approximate Godunov schemes to compute shallow-water equations with topography Comput. Fluids 32 (4), 2003. | MR | Zbl | DOI
[15] , , New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160, 2000. | MR | Zbl
[16] , , A third-order semi-discrete genuinely multidimensionnal central scheme for hyperbolic conservation laws and related problems Numer. Math. 88, 2001. | MR | Zbl | DOI
[17] , , , Semidiscrete central upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23, no3, 2001. | MR | Zbl | DOI
[18] , , Central-upwind schemes for the Saint-Venant system, M2AN, Vol. 36, no 3, 2002. | MR | Zbl | Numdam | DOI
[19] , Inertial manifolds and multigrid methods SIAM J. Math. Anal., 21 (1), 1990. | MR | Zbl | DOI
[20] , Multilevel methods for the simulation of turbulence. A simple model J. Comput. Phys., 127 (2), 1996. | MR | Zbl | DOI





