@phdthesis{BJHTUP11_2006__0707__P0_0,
author = {Engoulatov, Alexandre},
title = {Geometry and {Conformal} {Field} {Theory}},
series = {Th\`eses d'Orsay},
year = {2006},
publisher = {Universite Paris-Sud Facult\'e des Sciences d'Orsay},
number = {707},
language = {en},
url = {https://www.numdam.org/item/BJHTUP11_2006__0707__P0_0/}
}
Engoulatov, Alexandre. Geometry and Conformal Field Theory. Thèses d'Orsay, no. 707 (2006), 66 p. https://www.numdam.org/item/BJHTUP11_2006__0707__P0_0/
[1] , , , Harnack inequality and heat kernel estimates on manifolds with curvature unbounded from below, Bull. Sci. Math. 130 (2006) 223-233. | MR | Zbl | DOI
[2] , , Diffusions hypercontractives. Sém. de Probab. XIX. Lecture Notes in Math. 1123 (1985) 177-206. | MR | Zbl | Numdam
[3] , , , Logarithmic Sobolev inequalities, Poincaré inequalities and heat kernel bounds, preprint 1997.
[4] , , Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoamericana 15 (1999) 143-179. | MR | Zbl | DOI
[5] , , The mean Dehn function of abelian groups, math.GR/0606273 | Zbl | DOI
[6] , , Brownian bridge on hyperbolic spaces and on homogeneous trees, Probab. Theory Relat. Fields 115 (1999) 95-120. | MR | Zbl | DOI
[7] , Differentiability of Lipschitz functions on metric measure spaces, Geom. Fund. Anal. 9 (1999) 428-517. | MR | Zbl | DOI
[8] , , On the structure of spaces with Ricci curvature bounded below III. J. Diff. Geom. 52 (1999) 37-74. | MR | Zbl
[9] , , A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981) 465-480. | MR | Zbl | DOI
[10] , , Differential equations on Riemannian manifolds, Comm. Pure Appl. Math. XXVIII (1975) 333-354. | MR | Zbl | DOI
[11] , , On-diagonal lower bounds for heat kernels and Markov chains, Duke Univ. Math. J. 89, 1 (1997) 133-199. | MR | Zbl
[12] , , Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana, 9, 2 (1993) 293-314. | MR | Zbl | DOI
[13] , , , Théorèmes de comparaison en géométrie riemannienne, Publ. RIMS, Kyoto Univ. 12 (1976) 391-425. | MR | Zbl | DOI
[14] , A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature, J. Fund. Anal. 238 (2006) 518-529, http://www.math.u-psud.fr/~engoulat/liste-prepub.html | MR | Zbl | DOI
[15] , , , Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Diff. Equations 205 (2004) 329-353. | MR | Zbl | DOI
[16] , Lectures on conformal field theory, in Mathematical Aspects of String Theory, Amer. Math. Soc., 2000. | Zbl | MR
[17] , The heat equation on non-compact Riemannian manifolds, in Russian : Matem Sbornik 182, 1 (1991) 55-87. | MR
[18] , Heat kernel upper bounds on a complete non-compact manifold, Revista Matematica Iberoamericana, 10, 2 (1994) 395-452. | MR | Zbl | DOI
[19] , Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997), 33-52. | MR | Zbl
[20] , Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, 1999. | MR | Zbl
[21] , Stochastic analysis on manifolds. Graduate Studies in Mathematics, Vol. 38, Amer. Math. Soc., Providence, Rhode Island, 2002. | MR | Zbl
[22] , Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Amer. Math. Soc. 127 (1999) 3739-3744. | MR | Zbl | DOI
[23] , Gradient estimate of the heat kernel on modified graphs, preprint. | MR | Zbl | DOI
[24] , , Homological mirror symmetry and torus fibrations, math.SG/0011041 | Zbl | DOI
[25] , , A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, math.DG/0611298 | Zbl | DOI
[26] , , Estimates of Eigenvalues of a compact Riemannian Manifold, Proc. Sympos. Pure Math., Vol. 36 (1980), 205-239. | MR | Zbl | DOI
[27] , , On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153-201. | MR | Zbl | DOI
[28] , , Short time behavior of the heat kernel and its logarithmic derivatives. J. Diff. Geom. 44 (1996) 550-570. | MR | Zbl
[29] , Hypoelliptic heat kernel inequalities on Lie groups, math. AP/0508420 | Zbl | DOI
[30] , , U(2) Invariant four dimensional Einstein metrics, Indiana Univ. Math. J. 44 (1995) 451-465. | MR | Zbl | DOI
[31] , Gradient estimates for some diffusion semigroups, Probab. Theory Relat. Fields 122 (2002) 593-612. | MR | Zbl | DOI
[32] , , Limits and degenerations of unitary Conformal Field Theories, hep-th/0308143 | Zbl | DOI
[33] , Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992) 417-450. | MR | Zbl
[34] , , Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006) 1045-1053. | MR | Zbl | DOI
[35] , , Upper bounds on derivatives of the logarithm of the heat kernel, Comm. Anal. Geom. 6 (1998) 669-685. | MR | Zbl | DOI
[36] , An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, Vol. 74, Amer. Math. Soc. (2000). | MR | Zbl
[37] , , Transport Inequalities, Gradient Estimates, Entropy and Ricci Curvature Comm. Pure Appl. Math. 68 (2005) 923-940. | MR | Zbl
[38] , Logarithmic Sobolev inequalities for diffusion processes with application to path spaces. J. Appl. Probab. Stat. 12, 3 (1996) 255-264. | MR | Zbl
[39] , On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Relat. Fields 108 (1997) 87-101. | MR | Zbl | DOI
[40] , Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields 109 (1997) 417-424. | MR | Zbl | DOI





