@phdthesis{BJHTUP11_1997__0466__A1_0,
author = {Bardet, Jean-Marc},
title = {Tests d'autosimilarit\'e des processus gaussiens : dimension fractale et dimension de corr\'elation},
series = {Th\`eses d'Orsay},
year = {1997},
publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
number = {466},
language = {fr},
url = {https://www.numdam.org/item/BJHTUP11_1997__0466__A1_0/}
}
TY - BOOK AU - Bardet, Jean-Marc TI - Tests d'autosimilarité des processus gaussiens : dimension fractale et dimension de corrélation T3 - Thèses d'Orsay PY - 1997 IS - 466 PB - Université de Paris-Sud U.F.R. Scientifique d'Orsay UR - https://www.numdam.org/item/BJHTUP11_1997__0466__A1_0/ LA - fr ID - BJHTUP11_1997__0466__A1_0 ER -
%0 Book %A Bardet, Jean-Marc %T Tests d'autosimilarité des processus gaussiens : dimension fractale et dimension de corrélation %S Thèses d'Orsay %D 1997 %N 466 %I Université de Paris-Sud U.F.R. Scientifique d'Orsay %U https://www.numdam.org/item/BJHTUP11_1997__0466__A1_0/ %G fr %F BJHTUP11_1997__0466__A1_0
Bardet, Jean-Marc. Tests d'autosimilarité des processus gaussiens : dimension fractale et dimension de corrélation. Thèses d'Orsay, no. 466 (1997), 116 p. https://www.numdam.org/item/BJHTUP11_1997__0466__A1_0/
[1] (1981). Geometry of random fields. Wiley, New York. | MR | Zbl
[2] et (1967). Problèmes ergodiques de la mécanique classique.. Gauthier-Villars, Paris. | MR | Zbl
[3] , et (1985). Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Letters 111 152-156. | DOI
[4] , et (1997). Chaos with confidence : asymptotics and applications of local Lyapunov expnonents. In Fields Institute Communications 11 115-133 | MR | Zbl
[5] (1990). Chance or chaos ? J. R. Statist. Soc. A 153 321-347. | DOI
[6] and (1991). The dynamics of the Hénon map. Ann. Math. 133 73-169. | MR | Zbl | DOI
[7] , , et (1984). L'ordre dans le chaos. Herman, Paris.
[8] (1995). Optimal asymptotic quadratic error of density estimators for strong mixing or chaotic data. J. Stat. Probab. Lett. 22 339-347. | MR | Zbl | DOI
[9] et (1995). Non parametric estimation of the chaotic function and the invariant measure of a dynamical system. J. Stat. Probab. Lett. 25 201-212. | MR | Zbl | DOI
[10] (1992). Chaos and deterministic versus stochastic non-linear modelling. J. R. Statist. Soc. B 54 303-328. | MR
[11] et (1992). On consistent nonparametric order determination and chaos. J. R. Statist. Soc. B 54 427-449. | MR | Zbl
[12] (1991). Some results on the behavior and estimation of the fractal dimensions of distributions on attractors. J. Statist. Phys. 62 651-708. | MR | Zbl | DOI
[13] (1994). A theory of correlation dimension for stationary time series. Philos. Trans. R. Soc. Lond. A 348 343-355. | MR | Zbl | DOI
[14] , et (1992). Chaos et déterminisme. Seuil : Points sciences.
[15] et (1986). Rigorous statistical procedure for data from dynamical systems. J. Statist. Phys. 49 67-93. | MR | Zbl | DOI
[16] , , , , and (1993). Estimating correlation dimension from a chaotic time series : when does plateau onset occur ? Physica D 69 404-424. | MR | Zbl
[17] and (1985). Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 617-656. | MR | Zbl | DOI
[18] (1990). Fractal geometry. Chichester : Wiley. | MR
[19] (1980). The transition to aperiodic behavior in turbulent systems. Comm. Math. Phys. 77 65-86. | MR | Zbl | DOI
[20] , and (1982). Quasiperiodicity in dissipative systems: a renormalizion group analysis. Physica D 5 370-386. | MR
[21] and (1993). Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding. Physica D 65 373-398 | MR | Zbl
[22] (1991). La théoris du chaos. Flammarion : Champs.
[23] and (1983). Measuring the strangeness of strange attractors. Physica D 9 189-208. | MR | Zbl
[24] and (1986). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. | MR | Zbl
[25] (1976). A two dimensional mapping with a strange attractor. Comm. Math. Phys. 50 69-77. | MR | Zbl | DOI
[26] (1993). Statistical aspects of chaos: a review. Networks and Chaos - Statistical and probabilistic aspects - Chapman and Hall, London, 124-200. | MR | Zbl
[27] . (1993). Chaotic dynamical systems with a view towards statistics : a review. Networks and Chaos- Statistical and probabilistic aspects Chapman and Hall, London, 201-250. | MR | Zbl
[28] (1983). La structure des révolutions scientifiques. Flammarion : Champs.
[29] et (1997). Estimating local Lyapunov exponents. In Fields Institute Communications 11 135-151 | MR | Zbl
[30] , , et (1992). Estimating the Lyapunov exponent of a chaotic system with non-parametric regression. J. Am. Statist. Ass. 86 682-695 | MR | Zbl | DOI
[31] (1995). Les objects fractals. Flammarion : Champs.
[32] , , et (1984). Dimension of strange attractors: an experimental determination for the chaotic regime of two convective systems. J. Phys. Lett. 44 L-897. | DOI
[33] and (1991). Noise reduction in chaotic time series using scaled probabilistic methods. J. Nonlinear Sci. 1 313-343. | MR | Zbl | DOI
[34] (1986). Dimensions and entropies in chaotic systems. New-York : Springer-Verlag. | MR | Zbl | DOI
[35] , , and (1992). Finding chaos in noisy systems. J. R. Stat. Soc. B 54 399-426. | MR
[36] and (1991). Maximum likelihood estimates of the fractal dimension for random spatial patterns. Biometrika 78 463-474. | MR | Zbl | DOI
[37] and (1991). Statistical properties of chaotic systems. Bull. Am. Math. Soc. 24 11-116. | MR | Zbl | DOI
[38] and (1989). Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35 357-381. | MR | Zbl
[39] (1993). On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Statist. Phys. 71 529-547. | MR | Zbl | DOI
[40] et (1986). La nouvelle alliance. Gallimard : Folio essais..
[41] and (1991). Deterministic chaos versus random noise : finite correlation dimension for colored noises with power-law power spectra. 260-275. | MR
[42] (1970). Probability theory.. | MR | Zbl
[43] et , (1971).. Comm. Math. Phys. 82 137-151. | MR | Zbl | DOI
[44] (1981). Small random perturbations of dynamical systems and the definition of attractors. Comm. Math. Phys. 82 137-151. | MR | Zbl | DOI
[45] (1989a). Chaotic evolution and strange attractors. Cambridge : Cambridge University Press. | MR | Zbl
[46] (1989b). Elements of differentiable dynamics and bifurcation theory. New-York : Academic Press. | MR | Zbl
[47] (1990). Deterministic chaos : the science and the fiction. Proc. R. Soc. Lond. B 427 241-248. | Zbl | MR
[48] (1991). Hasard et chaos Odile Jacob : Points.
[49] (1994). Nonlinear dynamics in economics and finance. Philos. Trans. R. Soc. Lond. A 346 235-250. | MR | Zbl | DOI
[50] (1994). A consistent approach to least squares estimation of correlation dimension in weak Bernoulli dynamical systems. Annals Appl. Probab. 4 1234-1254. | MR | Zbl | DOI
[51] (1992). Optimal estimation of fractal dimension. In Nonlinear modeling and forecasting, Proc. Vol. XII, Eds. M. Casdagli and S. Eubank, Addison-Wesley.
[52] (1992). Estimating dimension in noisy chaotic time series. J. R. Stat. Soc. B 54 329-351. | MR | Zbl
[53] (1988). Lacunarity in a best estimator of fractal dimension. Physics Letters A 133 195-200. | MR | DOI
[54] (1990). Statistical precision of dimension estimators. Physical Review A 41 3038-3051. | DOI
[55] (1991). Some comments on the correlation dimension of noise. Physics Letters A 155 480-493. | MR | DOI
[56] (1990). Nonlinear Times Series. Oxford, Oxford Univ. Press. | MR
[57] , , and (1985). Determining Lyapunov exponents from a time series. Physica D 16 285-315. | MR | Zbl
[58] (1992). Local Lyapunov exponents : looking closely at chaos. J. R. Stat. Soc. B 54 353-371. | MR
[59] (1982). Dimension, entropy and Lyapunov exponents. Ergod. Theory Dynam. Syst. 2 109-124. | MR | Zbl | DOI
[1] (1981). Geometry of random fields. Wiley, New York. | MR | Zbl
[2] (1973). Local non-determinism and local times of Gaussian processes. Indiana Math. J. 23 69-94. | MR | Zbl | DOI
[3] (1994). A theory of correlation dimension for stationary time series. Philos. Trans. R. Soc. Lond. A 348 343-355. | MR | Zbl | DOI
[4] (1978). Some local properties of Gaussian vector fields. Ann. Probab. 6 984-994. | MR | Zbl | DOI
[5] (1982). Multiple points of a Gaussian vector fields. Z. Warsch. Verw. Gebiete 61 431-436. | MR | Zbl | DOI
[6] , , , , and (1993). Estimating correlation dimension from a chaotic time series : when does plateau onset occur ? Physica D 69 404-424. | MR | Zbl
[7] (1988). Self-intersection gauge for random walks and for Brownian motion. Ann. Probab. 16 1-57. | MR | Zbl
[8] and (1985). Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 617-656. | MR | Zbl | DOI
[9] (1971). An introduction to probability theory and its applications. Vol. 2, Wiley. | MR
[10] (1935). Potemtiel d'équilibre et capacité des ensembles, avec quelques applications à la théorie des fonctions. Medd. Lunds. Univ. Mat. Semin. 3. | JFM
[11] and (1980). Occupation densities. Ann. Probab. 8 1-67. | MR | Zbl | DOI
[12] and (1983). Measuring the strangeness of strange attractors. Physica D 9 189-208. | MR | Zbl
[13] , and (1995). Chaos expansions of double intersection local time of Brownian motion in and renormalization. Stock. Pro. Appl. 56 1-34. | MR | Zbl | DOI
[14] (1944). On Hausdorff's measures and generalized capacities with some of their applications to the theory of functions. Japanese J. Math. 19 217-257. | MR | Zbl | DOI
[15] (1978). Double points of a Gaussian path. Z. Warsch. Verw. Gebiete 45 175-180. | MR | Zbl | DOI
[16] (1985). Sur le temps local d'intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. Séminaire de Probabilités XIX. Lecture Notes in Math. 1123 314-331. | MR | Zbl | Numdam
[17] (1978). Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 309-330. | MR | Zbl | DOI
[18] (1983). A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys. 88 327-338. | MR | Zbl | DOI
[19] (1984). Self-intersections of random fields. Ann. Probab. 12 108-119. | MR | Zbl | DOI
[20] (1987). The intersection local time of fractional Brownian motion in the plane. J. Mult. Anal. 23 37-46. | MR | Zbl | DOI
[21] (1988). Continuity and singularity of the intersection local time of stable processes in . Ann. Probab. 16 75-79. | MR | Zbl | DOI
[22] (1992). Estimating dimension in noisy chaotic time series. J. R. Stat. Soc. B 54 329-351. | MR | Zbl
[1] and (1996). The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer : remarks and fast implementation. Applied, and Computational Harmonic Analysis 3, 377-383. | MR | Zbl | DOI
[2] and (1984). Séries d'observations irrégulières. Masson, Paris. | MR | Zbl
[3] (1994). Statistics for long memory processes. Monographs on Statist, and Appl. Probab. 61. Chapman & Hall, 315 p. | MR | Zbl
[4] and (1983). Central limit theorem for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13, 425-441. | MR | Zbl | DOI
[5] and (1986). Large-sample properties of parameter estimates for strongly dependent Gaussian time series. Ann. Statist. 14, 517-532. | MR | Zbl
[6] and (1987). Central limits theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Related Fields 74, 213-240. | MR | Zbl | DOI
[7] and (1983). The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221-238. | MR | Zbl | DOI
[8] and (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate. Probab. Theory Related Fields 86, 87-104. | MR | Zbl | DOI
[9] and (1997). Quadratic variations and estimation of the local Holder index of a Gaussian process. Ann. Inst. Poincaré 33, 407-436. | MR | Zbl | Numdam | DOI
[10] (1983). The fractal geometry of nature. Freeman, San Francisco. | MR | Zbl
[11] and (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review 10, 422-437. | MR | Zbl | DOI
[12] and (1996). An estimate of the fractal index using multiscale aggregates. To appear in J. Time Ser. Anal. | MR | Zbl
[13] (1995). Log-periodogram regression of time series with long-range dependence. Ann. Statist. 23, 1048-1072. | MR | Zbl | DOI
[14] and (1994). Stable non-Gaussian random processes. Stochastic modeling. Chapman & Hall, 636 p. | MR | Zbl
[15] (1975). Weak Convergence to Fractional Brownian Motion and to Rosenblatt Process. Zeit. Wahr. verw. Geb. 31, 287-302. | MR | Zbl | DOI
[16] , and (1995). Estimators for long-range dependence: an empirical study. Fractals 3, 785-798. | Zbl | DOI
[17] (1989). Asymptotic properties of the LSE in a regression model with long-range stationary errors. Ann. Statist. 19, 158-177. | MR | Zbl
[1] and (1996). The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer : remarks and fast implementation. Applied and Computational Harmonic Analysis 3, 377-383. | MR | Zbl | DOI
[2] , and (1995). Wavelets, spectrum analysis and processes. Wavelets and Statistics, Lectures Note in Statistics, 103, 15-29. | Zbl
[3] and (1997). Wavelet analysis of long range dependent traffic. To appear in IEEE Trans, on Inform. Theory. | MR | Zbl
[4] , and (1997). Long-range dependence : revisiting aggregation with wavelets. To appear in J. Time Ser. Anal. | MR | Zbl
[5] (1997). Testing self-similarity of Gaussian processes with stationary increments. Preprint Orsay.
[6] (1994). Statistics for long memory processes. Monographs on Stat. and Appli. Prob. 61. Chapman & Hall, 315 p. | MR | Zbl
[7] (1992). Ten lectures on wavelets. CBMS, SIAM 61, Philadelphia. | MR | Zbl
[8] (1989). On the spectrum of fractional Brownian motions. IEEE Trans. on Info. Theory 35 197-199. | MR | DOI
[9] (1992). Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. on Inform. Theory 38 910-917. | MR | Zbl | DOI
[10] and (1983). The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221-238. | MR | Zbl | DOI
[11] and (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate. Probab. Theory Related Fields 86, 87-104. | MR | Zbl | DOI
[12] and (1997). Multiple-window wavelet transform and local scaling exponent estimation. Preprint INRIA.
[13] and (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Poincaré 33, 407-436. | MR | Zbl | Numdam | DOI
[14] (1983). The fractal geometry of nature. Freeman, San Francisco. | MR | Zbl | DOI
[15] and (1996). An estimate of the fractal index using multiscale aggregates. To appear in J. Time Ser. Anal. | MR | Zbl
[16] (1995). Log-periodogram regression of time series with long-range dependence. Ann. Statist. 23, 1048-1072. | MR | Zbl | DOI
[17] and (1994). Stable non-Gaussian random processes. Stochastic modeling. Chapman & Hall, 636 p. | MR | Zbl
[18] (1975). Weak Convergence to Fractional Brownian Motion and to Rosenblatt Process. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 287-302. | MR | Zbl | DOI
[19] , and (1995). Estimators for long-range dependence : an empirical study. Fractals 3, 785-798. | Zbl | DOI
[20] (1989). Asymptotic properties of the LSE in a regression model with long-range stationary errors. Ann. Statist. 19, 158-177. | MR | Zbl





