@phdthesis{BJHTUP11_1990__0275__P0_0,
author = {Rio, Emmanuel},
title = {Approximation forte de processus de sommes partielles index\'es par des ensembles},
series = {Th\`eses d'Orsay},
year = {1990},
publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
number = {275},
language = {fr},
url = {https://www.numdam.org/item/BJHTUP11_1990__0275__P0_0/}
}
TY - BOOK AU - Rio, Emmanuel TI - Approximation forte de processus de sommes partielles indexés par des ensembles T3 - Thèses d'Orsay PY - 1990 IS - 275 PB - Université de Paris-Sud Centre d'Orsay UR - https://www.numdam.org/item/BJHTUP11_1990__0275__P0_0/ LA - fr ID - BJHTUP11_1990__0275__P0_0 ER -
Rio, Emmanuel. Approximation forte de processus de sommes partielles indexés par des ensembles. Thèses d'Orsay, no. 275 (1990), 126 p. https://www.numdam.org/item/BJHTUP11_1990__0275__P0_0/
(1987). Central limit theorems for stochastic processes under random entropy conditions. Probab. Theory Related Fields 75 351-378. | MR | Zbl
and (1986). A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14 582-597. | MR | Zbl
(1985). Law of the iterated logarithm for partial-sum processes with finite variance. Z. Wahrsch. verw. Gebiete 70 591-608. | MR | Zbl | DOI
and (1984). Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets. Ann. Probab. 12 13-34. | MR | Zbl
(1985). Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. verw. Gebiete 70 289-306. | MR | Zbl | DOI
(1987). Irregularities of distribution I. Acta Math. 159 1-49. | MR | Zbl
(1967). On the tail behavior of sums of independent random variables. Z. Wahrsch. verw. Gebiete 9 20-25. | MR | Zbl | DOI
and (1981). Strong Approximations in Probabilities and Statistics. Academic, New York. | MR | Zbl
(1973). Sample functions of the Gaussian process. Ann. Probab. 1 66-103. | MR | Zbl
(1974). Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory 10 227-236. | MR | Zbl | DOI
(1978). Central limit theorems for empirical measures. Ann. Probab. 7 899-929. | MR | Zbl
(1987). Strong invariance principle for partial sums of independent random vectors. Ann. Probab. 15 1419-1440. | MR | Zbl
(1989). Extensions of results of Komlós, Major and Tusnády to the multivariate case. J. Multivariate Analysis 28 20-68. | MR | Zbl | DOI
(1989). The Darling-Erdös Theorem for Sums of I.I.D. Random Variables. Probab. Th. Rel. Fields. 82 241-247. | MR | Zbl
and (1983). Some Results on the Wiener Process with Applications to LAG Sums of I.I.D. Random Variables. Ann. Probab. 11 609-623. | MR | Zbl
and (1989). Some Liminf Results for Increments of a Wiener Process. Ann. Probab. 17 1063-1082. | MR | Zbl
, and (1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch. verw. Gebiete 32 111-6131. | MR | Zbl | DOI
, and (1976). An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrsch. verw. Gebiete 34 35-58. | MR | Zbl | DOI
(1976). Approximation of partial sums of i.i.d.r.v.'s when the summands have only two moments. Z. Wahrsch. verw. Gebiete 35 221-229. | MR | Zbl | DOI
(1989). Strong approximation for multivariate empirical and related processese, via K.M.T. constructions. Ann. Probab. 17 266-291. | MR | Zbl
(1987). Quelques problèmes de vitesse de convergence pour des processus empiriques. Thèse de doctorat d'Etat, Université de Paris-Sud, Orsay.
and (1986). Invariance principles for partial sum processes and empirical processes indexed by sets. Probab. Theory Related Fields 73 11-42. | MR | Zbl
(1984). Asymptotic results for empirical and partial-sum processes : A review. Canad. J. Statist. 12 241-264. | MR | Zbl | DOI
(1984). Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed. In Limit Theorems for Sums of Random Variables 4-49. Trudy Inst. Mat. Vol. 3, "Nauka" Sibirsk.Otdel, Novosibirsk [Russian]. | MR
(1989). On a Problem of Csörgó et Révész. Ann. of Probab. 17 809-812. | MR | Zbl
(1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Geb. 3 211-226. | MR | Zbl | DOI
(1978). A remark on the approximation of the sample DF in the multidimensional case. Period. Math. Hung. 8. 53-55. | MR | Zbl
(1987). Central limit theorems for stochastic processes under random entropy conditions. Probab. Theory Related Fields 75 351-378. | MR | Zbl
and (1986). A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14 582-597. | MR | Zbl
(1983). Densité et dimension. Ann. Inst. Fourier (Grenoble) 33 (3) 233-282. | MR | Zbl | Numdam
(1985). Law of the iterated logarithm for partial-sum processes with finite variance. Z. Wahrsch. verw. Gebiete 70 591-608. | MR | Zbl | DOI
and (1984). Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets. Ann. Probab. 12 13-34. | MR | Zbl
(1985). Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. verw. Gebiete 70 289-306. | MR | Zbl | DOI
(1967). On the tail behavior of sums of independent random variables. Z. Wahrsch. verw. Gebiete 9 20-25. | MR | Zbl | DOI
and (1981). Strong Approximations in Probabilities and Statistics. Academic, New York. | MR | Zbl
(1978). Central limit theorems for empirical measures. Ann. Probab. 7 899-929. | MR | Zbl
(1987). Strong invariance principle for partial sums of independent random vectors. Ann. Probab. 15 1419-1440. | MR | Zbl
(1989). Extensions of results of Komlós, Major and Tusnády to the multivariate case. J. Multivariate Analysis 28 20-68. | MR | Zbl | DOI
, and (1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch. verw. Gebiete 32 111-6131. | MR | Zbl | DOI
, and (1976). An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrsch. verw. Gebiete 34 35-58. | MR | Zbl | DOI
(1976). Approximation of partial sums of i.i.d.r.v.'s when the summands have only two moments. Z. Wahrsch. verw. Gebiete 35 221-229. | MR | Zbl | DOI
(1978). On the Invariance Principle for Sums of Independent Identically Distributed Random Variables. J. Multivariate Analysis 8 487-517. | MR | Zbl | DOI
(1989). Strong approximation for multivariate empirical and related processese, via K.M.T. constructions. Ann. Probab. 17 266-291. | MR | Zbl
(1987). Quelques problèmes de vitesse de convergence pour des processus empiriques. Thèse de doctorat d'Etat, Université de Paris-Sud, Orsay.
and (1986). Invariance principles for partial sum processes and empirical processes indexed by sets. Probab. Theory Related Fields 73 11-42. | MR | Zbl
(1980). Weak and -invariance principles for sums of -valued random variables. Ann. Probab. 8 68-82. | MR | Zbl
(1984). Convergence of Stochastic Processes. Springer Series in Statistics. | MR | Zbl | DOI
(1984). Asymptotic results for empirical and partial-sum processes : A review. Canad. J. Statist. 12 241-264. | MR | Zbl | DOI
(1984). Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed. In Limit Theorems for Sums of Random Variables 4-49. Trudy Inst. Mat. Vol. 3, "Nauka" Sibirsk.Otdel, Novosibirsk [Russian]. | MR
(1976). On a representation of random variables. Theory Probab. Appl. 21 628-632. | Zbl
(1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Geb. 3 211-226. | MR | Zbl | DOI
(1983). Probability metrics. Theory Probab. Appl. 28 278-302. | Zbl
and (1986). A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14 582-597. | MR | Zbl
(1985). Law of the iterated logarithm for partial-sum processes with finite variance. Z. Wahrsch. verw. Gebiete 70 591-608. | MR | Zbl | DOI
and (1984). Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets. Ann. Probab. 12 13-34. | MR | Zbl
(1985). Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. verw. Gebiete 70 289-306. | MR | Zbl | DOI
(1987). Irregularities of distribution I. Acta Math. 159 1-49. | MR | Zbl
(1985). Upper and lower estimates of the convergence rate in the invariance principle. Proceedings of the fourth Vilnius conference I, VNU Science Press. 251-259. | MR | Zbl
(1967). On the tail behavior of sums of independent random variables. Z. Wahrsch. verw. Gebiete 9 20-25. | MR | Zbl | DOI
(1973). Sample functions of the Gaussian process. Ann. Probab. 1 66-103. | MR | Zbl
(1974). Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory 10 227-236. | MR | Zbl | DOI
(1978). Central limit theorems for empirical measures. Ann. Probab. 7 899-929. | MR | Zbl
(1987). Strong invariance principle for partial sums of independent random vectors. Ann. Probab. 15 1419-1440. | MR | Zbl
(1989). Extensions of results of Komlós, Major and Tusnády to the multivariate case. J. Multivariate Analysis 28 20-68. | MR | Zbl | DOI
, and (1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch. verw. Gebiete 32 111-6131. | MR | Zbl | DOI
, and (1976). An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrsch. verw. Gebiete 34 35-58. | MR | Zbl | DOI
(1976). Approximation of partial sums of i.i.d.r.v.'s when the summands have only two moments. Z. Wahrsch. verw. Gebiete 35 221-229. | MR | Zbl | DOI
(1978). On the Invariance Principle for Sums of Independent Identically Distributed Random Variables. J. Multivariate Analysis 8 487-517. | MR | Zbl | DOI
(1989). Strong approximation for multivariate empirical and related processese, via K.M.T. constructions. Ann. Probab. 17 266-291. | MR | Zbl
(1989). About the constant in the DKW inequality. To appear in Ann. of Probab.
(1987). Quelques problèmes de vitesse de convergence pour des processus empiriques. Thèse de doctorat d'Etat, Université de Paris-Sud, Orsay.
(1972). Martingales and stochastics intégrais I. Lecture Notes in Mathematics 284. | MR | Zbl
and (1986). Invariance principles for partial sum processes and empirical processes indexed by sets. Probab. Theory Related Fields 73 11-42. | MR | Zbl
(1980). Weak and -invariance principles for sums of -valued random variables. Ann. Probab. 8 68-82. | MR | Zbl
(1984). Convergence of Stochastic Processes. Springer Series in Statistics. | MR | Zbl | DOI
(1984). Asymptotic results for empirical and partial-sum processes : A review. Canad. J. Statist. 12 241-264. | MR | Zbl | DOI
(1984). Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed. In Limit Theorems for Sums of Random Variables 4-49. Trudy Lost. Mat. Vol. 3, "Nauka" Sibirsk. Otdel, Novosibirsk [Russian]. | MR
(1985). Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. verw. Gebiete 70 289-306. | MR | Zbl | DOI
(1962). Probability inequalities for sums of independent random variables. J. Amer. Statist. Assoc. 57 33-45. | Zbl | DOI
(1967). On the tail behavior of sums of independent random variables. Z. Wahrsch. verw. Gebiete 9 20-25. | MR | Zbl | DOI
(1987). Strong invariance principle for partial sums of independent random vectors. Ann. Probab. 15 1419-1440. | MR | Zbl
(1989). Extensions of results of Komlós, Major and Tusnády to the multivariate case. J. Multivariate Analysis 28 20-68. | MR | Zbl | DOI
, and (1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch. verw. Gebiete 32 111-6131. | MR | Zbl | DOI
, and (1976). An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrsch. verw. Gebiete 34 35-58. | MR | Zbl | DOI
(1976). Approximation of partial sums of i.i.d.r.v.'s when the summands have only two moments. Z. Wahrsch. verw. Gebiete 35 221-229. | MR | Zbl | DOI
(1989). Strong approximation for multivariate empirical and related processese, via K.M.T. constructions. Ann. Probab. 17 266-291. | MR | Zbl
(1987). Quelques problèmes de vitesse de convergence pour des processus empiriques. Thèse de doctorat d'Etat, Université de Paris-Sud, Orsay.
(1984). Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed. In Limit Theorems for Sums of Random Variables 4-49. Trudy Inst. Mat. Vol. 3, "Nauka" Sibirsk.Otdel, Novosibirsk [Russian]. | MR
(1976). On a representation of random variables. Theory Probab. Appl. 21 628-632. | Zbl | MR
(1978). A remark on the approximation of the sample DF in the multidimensional case. Period. Math. Hung. 8. 53-55. | MR | Zbl
(1973). Some Strassen type laws of the iterated logarithm for multiparameter stochastic processes. Ann. Probab. 1. 272-296. | MR | Zbl





