@phdthesis{BJHTUP11_1987__0213__P0_0,
author = {Mokkadem, Abdelkader},
title = {Crit\`eres de m\'elange pour des processus stationnaires : estimation sous des hypoth\`eses de m\'elange : entropie des processus lin\'eaires},
series = {Th\`eses d'Orsay},
year = {1987},
publisher = {Universit\'e Paris-Sud Centre d'Orsay},
number = {213},
language = {fr},
url = {https://www.numdam.org/item/BJHTUP11_1987__0213__P0_0/}
}
TY - BOOK AU - Mokkadem, Abdelkader TI - Critères de mélange pour des processus stationnaires : estimation sous des hypothèses de mélange : entropie des processus linéaires T3 - Thèses d'Orsay PY - 1987 IS - 213 PB - Université Paris-Sud Centre d'Orsay UR - https://www.numdam.org/item/BJHTUP11_1987__0213__P0_0/ LA - fr ID - BJHTUP11_1987__0213__P0_0 ER -
%0 Book %A Mokkadem, Abdelkader %T Critères de mélange pour des processus stationnaires : estimation sous des hypothèses de mélange : entropie des processus linéaires %S Thèses d'Orsay %D 1987 %N 213 %I Université Paris-Sud Centre d'Orsay %U https://www.numdam.org/item/BJHTUP11_1987__0213__P0_0/ %G fr %F BJHTUP11_1987__0213__P0_0
Mokkadem, Abdelkader. Critères de mélange pour des processus stationnaires : estimation sous des hypothèses de mélange : entropie des processus linéaires. Thèses d'Orsay, no. 213 (1987), 230 p. https://www.numdam.org/item/BJHTUP11_1987__0213__P0_0/
[1] - Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique. J.T.S.A., vol.8, n°2, 1987, 195-204. | MR | Zbl
[2] - Le modèle non Linéaire AR(1) général. Ergodicité et ergodicité géométrique. C.R.A.S., t.301, série I, 1985, 889-892. | MR | Zbl
[3] - Conditions suffisantes d'existence et d'engodicité géométrique des modèles bilinéaires. C.R.A.S., t.301, sèrie I, 1985, 375-377. | MR | Zbl
[4] - Mixing properties of ARMA processes. submitted to Stoch. Proc. Appl. | MR | Zbl | DOI
[5] - Sur le mélange d'un processus ARMA vectoriel. C.R.A.S., t.303, série I, 1986, 519-521. | MR | Zbl
[6] - Propriétés de mélange des processus autorégressifs polynomiaux. Prépublication. Soumis aux Annales de l'I.H.P. | MR | Zbl | Numdam
[7] - Study of risks of kernel estimators. To appear | Zbl | MR | DOI
[8] - Etude des risques du estimateurs à noyaux. C.R.A.S., t.301, série I, 1985, 447-450. | MR | Zbl
[9] - Estimation of the entropy and information of absolutely continuous random variables. To appear in I.E.E.E. Trans. Inf. Theory. | MR | Zbl | DOI
[10] - Entropie des processus linéaires. Prépublication. Soumis à Prob. and Math. Stat. | MR | Zbl
[11] - Entropie de processus et erreur de prédiction. C.R.A.S., t.298, série I, 1984, 493-496. | MR | Zbl
[12] , - Geometric ergodicity of Harris-recurrent Markov chains. Stoch. Proc. Appl., 3, 1982, 187-202. | MR | Zbl
[13] - Sufficient conditiom for ergodicity and recurrence of Markov chains. Stoch. Proc. Appl., 3, 1975, 385-403. | MR | Zbl
[14] - Mixing conditions for Markov chains. Th. Prob. Appl., 28, 1973, 313-328. | MR | Zbl
[15] , - Some limit theorems for random functions, part II. Th. Prob. Appl., 6, 1961, 186-198. | Zbl
[16] - A central limit theorem and a strong mixing condition. Proc. Nat. Acad.Sci.,U.S.A., 42, 1956, 43-47. | MR | Zbl | DOI
[17] , - Independent and stationaly sequences of random variables. Walter-Noordhoof publishing, 1974. | MR | Zbl
[18] - bounds for asymptotic normality of weakly dependent summands using Stein's methods. Ann. Prob., 9, 1981, 676-683. | MR | Zbl
[19] - Limiting behavior of -statistics for stationaly absolutely regular processes. Z. Wahr. Verw. Gebiete, 35, 1976, 237-252. | MR | Zbl | DOI
[20] - Absolute regularity and functions of Markov chains, Stoch. Proc. Appl., 14, 1983, 67-77. | MR | Zbl
[21] - Random walks with stationaly increments and renewal theory. Mathematical Center Tract n°112, AMSTERDAM, 1979. | MR | Zbl
[22] , - Processus aléatoires gaussiens. MIR, Moscou, 1974. | Zbl
[23] - Strong mixing properties of linear stochastic processes. J.A.P., 11, 1974, 401-408. | MR | Zbl
[24] - On the strong mixing property for linear sequences. Th. Prob. Appl., 22, 1977, 411-413. | Zbl
[25] - Conditions for linear processes to be strong mixing. Z. Wahr. Verw. Gebiete, 1981, 477-480. | MR | Zbl | DOI
[26] , - Some mixing properties time series models. Stoch. Proc. Appl. 19, 1985, 297-303. | MR | Zbl
[27] - Stochastic processes. Wiley, New-York, 1953. | MR | Zbl
[28] - Markov processes. Structure and asymptotic behaviour. Springer, Berlin, 1971. | MR | Zbl
[29] - Markovian representation of stochastic processes. Ann. Inst. Stat. Math., 26, 1974, 363-387. | MR | Zbl
[30] - Remarks on some non parametric estimates of a density function. Ann. Math. Stat., 27, 1956, 832-835. | MR | Zbl
[31] , - Non parametric density estimation. The view. Wiley, New-York, 1985. | MR | Zbl
[32] , , - Principe d'invariance faible pour la mesure empirique d'une suite de variables aléatoires mélangeantes. Prépublication d'Orsay, 1985. | MR | Zbl
[33] , - A nonparametric estimation of the entropy for absolutely continuous distributions. I.E.E.E. Trans. Inf. Theory, vol. I, t.22, 1976, 372-375. | MR | Zbl
[34] - Non parametric functional, estimation. Academic Press, 1983. | MR | Zbl
[35] - A test for normality based on sample entropy. J.R.S.S., serie B, 38, 1976, 54-59. | MR | Zbl
[36] - Complex symetric stable variables and processes. In : Contribution to Statistics : Essays in Honor of Norman L. Johnson. ed. Sen, P.K., New-York, North-Holland, 1982, 63-79. | MR | Zbl
[37] - The mathematical theory of communications. Bell System Technical Journal, 1948. | MR | Zbl
[38] - Lower bound for non Linear prediction error in moving average processes. Ann. Prob., 7, 1979, 128-138. | MR | Zbl
[39] , , - On prediction of moving average Processes. Bell System Technical Journal, 59, 1980, 367-415. | MR | Zbl | DOI
[40] - A new analysis technique for time series data. In modern spectrum analysis. ed. D.G. Childer, Wiley, New-York, 1978.
, (1980 a), CRAS-Série I, T.290, 921-923. | Zbl
, (1980 b), CRAS-Série I, T.291, 81-83.
, (1980), Martingale limit theory and its application. Academic Press. | MR | Zbl
(1985 a), CRAS-Série I, T. 301, 375-377.
(1985 b), CRAS-Série I, T. 301, 447-450. | Zbl
, (1982), Geometric ergodicity of Harris recurrent Markov chains. Stoch. Proc. Appl. 12, 187-202. | MR | Zbl
(1971), Markov Processes. Structure and asymptotic behaviour. Springer Verlag. | MR | Zbl
, (1980), CRAS-Série I, T. 290, 335-338. | Zbl
(1975), Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stoch. Proc. Appl. 3, 385-403. | MR | Zbl
(1976), Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737-771. | MR | Zbl
(1983), The existence of moments for stationary Markov chains, J. Appl. Prob. 20, 191-196. | MR | Zbl | DOI
(1980), Moments bounds for stationary mixing sequences. Z. Wahr. verw. Gebiete 52, 45-57. | MR | Zbl | DOI
[1] et . Comptes rendus. 296. série I. 1983. p 859-862. | Zbl
[2] et . Comptes rendus. 290, série A. 1980. p 921-923. | MR | Zbl
[3] . Prépublication, 1985
[4] . Comptes rendus. 301. série I. 1985. p. 447-450 | Zbl
[5] et . Random coefficient autoregressive model: An introduction. Lectures Notes in Statisttes. 11. 1982. | MR | Zbl
[6] et Geometrie ergodicity of Harrris recurrent Markov chains. Stoch Proc. Appl. 12. 1982. P.187-202. | MR | Zbl
[7] . Limit theorems for Markov chain transition probabilities. Van Nostrand. London 1971. | MR | Zbl
[8] . Markov chains. North Holland. Amsterdam. 1984. | MR | Zbl
[9] . Markov processes. Structure and asymptotic Behaviour. Springer Verlag. 1971. | MR | Zbl
[10] et . Comptes rendus. 290. Series A. 1980. p. 335-338. | Zbl
[11] . R-theory for Markov chains on general state space I. Ann. Prob., 2, 1974. p. 840-864. | MR | Zbl
(12] , Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. stoch. Proc. Appl., 3, 1975, p. 385-403. | MR | Zbl
[13] , The existence of moments for stationary Markov chains. J. Appl. Prob., 20, 1983. p. 191-196. | MR | Zbl | DOI
[1] , et , On the existence of some bilinear time series models, J.T.S.A., 4, 1983, p. 95-110. | MR | Zbl
[2] , Limit theorems for Markov chains, New York.
[3], Bilinear markovian representation and bilinear models, Technical report n° 161 UMIST, 1983. | MR | Zbl
[4] et , Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stoch. Proc. Appl., 12, 1982, p. 187-202. | MR | Zbl
[5] , Sufficient conditions for ergodicity and recurrence of Markov chains, Stoch. Proc. Appl., 3, 1975. p. 385-403. | MR | Zbl
[6] , The existence of moments for stationary Markov chains, J. Appl. Prob. 20, 1983, p 191-196 | MR | Zbl | DOI
[1] - Markovian repersentation of stochastic processes. Ann. Inst. Stat. Math. 26 (1974) 363-387. | MR | Zbl
[2] , - Mixing conditions for Markov chains. Th. Prob. Appl. 18 (1973) 312-328. | Zbl | MR
[3] - On the strong mixing property for linear sequences. Th. Prob. Appl. 22 (1977) 411-413. | Zbl | MR
[4] , - Processus aléatoires gaussiens. MIR. Moscou | Zbl
[5] - Sur un modèle autorégressif non linéaire. Ergodicité et ergodicité géométrique. J.T.S.A., vol. 8, n° 2 (1987) 195-204. | MR | Zbl
[6] , - Geometrie ergodicity of Harris-recurrent Markov chains. Stoch. Proc. Appl. 12 (1982) 187-202. | MR | Zbl
[7] , - Some mixing properties of time series models. Stoch. Proc. Appl. 19 (1986) 297-303. | MR | Zbl
[8] - Sufficient conditions for ergodicity and recurrence of Markov chains. Stoch. Proc. Appl. 3 (1975) 385-403. | MR | Zbl
[9] - Criteria for classifying general Markov chains. Adv. Appl. Prob. 8 (1976) 737-771. | MR | Zbl
[10] - Conditions for linear processes to be strong mixing. Z. Wahr. Verw. Gebiete 57(1981) 481-494. | MR | Zbl | DOI
[1] , Markovian representation of stochastic processes, Ann. Inst. Stat. Math., 26 (1974), 363-387. | MR | Zbl
[2] et , Séries d'observations irrégulières, Masson, Paris (1984). | MR | Zbl
[3] , , , On the strong law of large numbers for a class of stochastics processes, Z. Wahr. Verw. Gebiete, 2 (1963), 1-11. | MR | Zbl | DOI
[4] , Differentiable germs and catastrophes, Cambridge University Press (1975). | MR | Zbl | DOI
[5] , Mixing conditions for Markow chains, Th. Prob. Appl., 28 (1973), 313-328. | Zbl | MR
[6] and , Semi algebraic topology over a real closed fields I et II, Math. Zeit., n° 177, 107-129 et n° 178, 175-213 (1981). | MR | Zbl
[7] , Eléments d'analyse tome III, Gauthier-Villars, Paris (1970). | MR | Zbl
[8] , Stochastic processes, Wiley, New York (1953). | MR | Zbl
[9] , On the strong mixing property for linear sequences, Th. Prob. Appl., 22, 411-413 (1977). | Zbl
[10] and , Martingale limit theory and its application, London Academic (1980). | MR | Zbl
[11] , Semi algebraic local triviality in semi algebraic mappings, Ann. Journ. Math., 102, 291-302. | MR | Zbl | DOI
[12] , Resolution of singulariries of an algebraic variety, I-II, Ann. Math., 79, 109-326 (1964). | MR | Zbl
[13] and , Independant and stationary sequences of random variables, Walth-Noordhoof publishing Gröningen (1974). | MR | Zbl
[14] et , Processus aléatoires gaussiens, MIR, Moscou (1974). | Zbl
[15] and , Contributions to Doeblin's theory of Markov processes, Z. Wahr. verw. Gebiete, 8, 19-40 (1967). | MR | Zbl | DOI
[16] , An introduction to real algebra, Rocky Mountain Journ. Math., 14, 4 (1984). | MR | Zbl
[17] , Ensembles semi analytiques, multigraphie de l'I.H.E.S., Bures/Yvette (1965).
[18] , Sur le mélange d'un processus ARMA vectoriel, CRAS, série I, t. 303, 519-521 (1986). | MR | Zbl
[19] , Mixing properties of ARMA processes, soumis à Stoch.Proc.Appl. | MR | Zbl | DOI
[20] , Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique, J.T.S.A., 8, 195-204 (1987). | MR | Zbl
[21] , Conditions suffisantes d'existence et d'ergodicité géométrique des modèles bilinéaires, CRAS, série I, t. 301, 375-377 (1985). | MR | Zbl
[22] , Algebraic geometry I, Complex projective varieties, Springer Verlag, Berlin (1976). | MR | Zbl
[23] , Real algebraic manifolds, Ann. Math., 56, 405-421 (1952). | MR | Zbl
[24] and , Geometric ergodicity of Harris recurrent Markov chains, Stoch. Proc. Appl., 12, 187-202 (1982). | MR | Zbl
[25] , Limit theorems for Markov chain transition probabilities, Van Nostrand, London (1971). | MR | Zbl
[26] and , Some mixing properties of time series models, Stoch. Proc. Appl., 19, 297-303 (1986). | MR | Zbl
[27] , Bilinear markovian representation and bilinear models, Stoch. Proc. Appl., 20, 295-306 (1985). | MR | Zbl
[28] , Introduction à la géométrie des variétés différentiables, Dunod, Paris (1969). | MR | Zbl
[29] , Markov chains, North Holland, Amsterdam (1984). | MR | Zbl
[30] , Markov processes. Structure and asymptotic behaviour. Springer, Berlin (1971). | MR | Zbl
[31] , A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sc. U.S.A., 42, 43-47 (1956). | MR | Zbl | DOI
[32] , A new decision method for elementary algebra, Ann. Math., 2, 365-374 (1952). | MR | Zbl
[33] , bounds for asymptotic normality of weakly dependent summands using Stein's methods, Ann. Prob., 9, 676-683 (1981). | MR | Zbl
[34] , On the convergence rate in the central limit theorem for weakly dependent random variables, Th. Prob. Appl., 25, 790-809 (1980). | Zbl | MR
[35] , Sufficient conditions for ergodicity and recurrence of Markov chains, Stoch. Proc. Appl., 3, 385-403 (1975). | MR | Zbl
[36] , The existence of moments for stationnary Markov chains, J. Appl. Prob., 20, 191-196 (1983). | MR | Zbl
[37] , Foundations of differentiable manifolds and Lie groups, Singer, MIT (1971). | MR | Zbl
[38] , Elementary structure of real algebraic varieties, Ann. Math., 66, 545-556 (1957). | MR | Zbl
[39] , Conditions for linear processes to be strong mixing, Z. Wahr. verw. gebiete, 57, 481-494 (1981). | MR | Zbl | DOI
[40] , Moments bounds for stationnary mixing sequences, Z. Wahr. verw. gebiete, 52, 45-57 (1980). | MR | Zbl | DOI
[41] , Stationary random processes, Holden Day Series (1967). | MR | Zbl
[42] , On the real spectrum of a ring and its applications to semi algebraic geometry, Bull. A.M.S., 15, 19-60 (1986). | MR | Zbl | DOI
[1] (1980). Non parametric estimation of the Matusita's measure of affinity between absolutely continuous distributions. Ann. Inst. Stat. Math. 32, 241-245. | MR | Zbl
[2] (1983). Analyse fonctionnelle. Théorie et applications. Masson, Paris. | MR | Zbl
[3] and (1985). Non parametric density estimation. The L1 view. Wiley, New-York. | MR
[4] and (1984). Distribution-free lower bounds in density estimation. Ann. Stat. 12, 1250-1262. | MR | Zbl
[5] , Principe d'invariance faible pour la mesure empirique d'une suite de variables aléatoires mélangeantes. (To appear). | MR | Zbl | DOI
[6] (1977). On the strong mixing property for linear sequences. Theory Prob. Appl. 22, 411-413. | Zbl
[7] (1955). Decision rules based on the distance for the problem of fit, two samples and estimation. Ann. Math. Stat. 26, 631-640. | MR | Zbl
[8] (1985). Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique. C.R.A.S., t.301, 889-892. | MR | Zbl
[9] (1986). Sur le mélange d'un processus ARMA vectoriel. C.R.A.S., t. 303, 519-521. | MR | Zbl
[10] (1985). Etude des risques des estimateurs à noyaux. C.R.A.S., t. 301, 447-450. | MR | Zbl
[11] (1962). On estimation of a probability density function and the mode. Ann. Math. Stat. 33, 1065-1076. | MR | Zbl
[12] and (1986). Some mixing properties of time series models. Stoch. Proc. Appl. 19, 297-303. | MR | Zbl
[13] (1956). Remarks on some non parametric estimates of a density function. Ann. Math. Stat. 27, 832-835. | MR | Zbl
[14] (1956). A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci., U.S.A. 42, 43-47. | MR | Zbl | DOI
[15] (1979). Global measure of deviation of kernel and nearest neighbor density estimates. Lect. Notes Math. 757, 181-190. | MR | Zbl
[16] (1966). Real and Complex Analysis. Mc Graw-Hill, New-York. | MR | Zbl
[17] (1966). Théorie des distributions. Hermann, Paris. | MR | Zbl
[18] (1965). L'intégration dans les groupes topologiques et ses applications. Hermann, Paris. | MR | Zbl | JFM
[19] (1981). Conditions for linear processes to be strong mixing. Z. Wahr. verw. Gebiete, 57, 481-494. | MR | Zbl
[20] (1980). Moment bounds for stationary mixing sequences. Z. Wahr. verw. Gebiete, 52, 45-57. | MR | Zbl | DOI
[1] and , A nonparametric estimation of the entropy for absolutely continuous distributions, IEEE Trans. Inf. Theory, Vol.I , T.22, 372-375, 1976. | MR | Zbl
[2] , On statistical estimate for the entropy of a sequence of independent random variables, Theory Prob. Appl., Vol. 4, 333-336, 1956. | MR | Zbl
[3] , Estimation de l'entropie d'une densité, exposé du Séminaire d'Orsay, Paris 1985.
[4] and , Nonparametric density estimation. The L1 view, Wiley, New-York, 1985. | MR | Zbl
[5] and , Entropy-base tests of Uniformity, J. Amer. Stat. Ass., Vol. 76, N° 376, 967-974, 1981 . | MR | Zbl | DOI
[6] , and , Inequalities, Cambridge University Press, 1967. | JFM | Zbl
[7] and , Some moments of an estimate of Shannon's measure of information, Comm. Stat., Vol. 3, 89-94, 1974. | MR | Zbl
[8] , Thèse doctorat d'état, Université Paris XI, Orsay, 1987
[9] , Nonparametric Functional Estimation, Academic Press, 1983. | MR | Zbl
[10] , A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sc., U. S. A., 42, 43-47, 1956. | MR | Zbl | DOI
[11] , Remark on some non parametric estimates of a density function, Ann. Math. Stat., 27, 832-835, 1956. | MR | Zbl
[12] , Theorie des Distributions, Hermann, Paris, 1966. | MR | Zbl
[13] , A test for normality based on sample entropy, J. Roy. Stat. Soc., Ser. B, 38, 54-59, 1976. | MR | Zbl
[1] (1967), Information theory. Intersciences publishers. | MR | Zbl
[2] (1978), Maximum entropy spectral analysis. In modern spectrum analysis, ed. D.G. Childers, Wiley, New York.
[3] (1978), A new analysis technique for time series data. In modern spectrum analysis, ed. D.G. Childers, Wiley, New York.
[4] (1982), Complex symmetric stable variables and processes. In : Contribution to Statistics : Essays in Honour of Norman L. Johnson, pp. 63-79. Sen, P.K., Ed New York, North Holland. | MR | Zbl
[5] and (1981), Linear problems in th order and stable processes. SIAM J. Appl. Math. 41, pp. 43-69. | MR | Zbl | DOI
[6] and (1984), Prediction of stable processes : spectral and moving average representations. Z. Wahr. verw. gebiete, 66, pp. 593-612. | MR | Zbl | DOI
[7] (1975), -divergence geometry of probability distributions and minimization problems. Ann. Prob., vol. 3, n° 1, pp. 146-158. | MR | Zbl
[8] (1982), Harmonizable stable processes. Z. Wahr. verw. gebiete 60, pp. 517-533. | MR | Zbl | DOI
[9] (1979), Lower bound for non linear prediction error in moving average processes, Ann. Prob., 7, pp. 128-138. | MR | Zbl
[10] (1964), Information and information stability of random variables and processes. Holden Day Series. | MR | Zbl
[11] (1967), Stationary random processes, Holden Day Series. | MR | Zbl
[12] (1974), Real and complex analysis, Mc Graw Hill. | MR | Zbl
[13] (1970), Some structure theorems for the symmetric stable laws, Ann. Math. Stat., 41, p. 412-421. | MR | Zbl
[14] (1948), The mathematical theory of communications, Bell System Technical Journal. | MR | Zbl
[15] , and (1980), On prediction of moving average processes, Bell system Technical Journal vol. 59, n° 3, pp. 367-415. | MR | Zbl | DOI
[16] and (1984), An introduction to bispectral analysis and bilinear time series models. Springer Verlag. | MR | Zbl





