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II. 1 

QUELQUES REMARQUES 

SUR LES COURBES ALGEBRIQUES PLANES REELLES 

Alexis MARIN 

I. - INTRODUCTION 

Harnack nous a appris qu1 une courbe algébrique plane réelle de degré m 

n 1 a pas plus de M = ( m ~ 1 M m ~ 2 ) + <| composantes, des courbes ayant ce nombre maximal 

de composantes existent en tous degrés et sont nommées M courbes. Les composantes 

d'une courbe séparent le plan, et sont nommées ovales, sauf dans le cas m impair où 

une seule composante ne sépare pas, on la nomme pseudo-droite On note p le nombre 

d'ovales paire ( i . e . inclus dans un nombre pair d'ovales) et n le nombre d'ovales 

impairs (les autres). 

Après avoir résolu directement, dans le cas des courbes de degré six, le 

16e problème de Hilbert sur la topologie des M-courbes, Gudkov formule la conjecture 

2 
p - n = k modulo 8 pour une M-courbe de degré pair 2k . 

En 1971, Rohlin ([R-j ] ) publie une preuve de cette conjecture s'appuyant 

sur une formule reliant la signature d'une variété de dimension quatre, l'autointer­

section d'une surface caractéristique orientable et l'invariant de Arf d'une forme 

quadratique définie sur l'homologie de cette surface. Plus tard, il donne une nouvelle 

preuve s'appuyant sur le théorème d'Atiy ah-Singer et valable en toutes dimensions 
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( [ R 2 D > Gudkov et Krakhnov s'inspireront de cette méthode pour donner en toutes 

dimensions la généralisation d fune nouvelle congruence pour les (M-l)-courbes : 

p - n s k 2 ± 1 modulo 8 ([GK ] ) . 

Dans cet article, utilisant une généralisation de la formule de Rohlin au cas 

où la surface caractéristique n'est plus orientable ([GM]) , nous donnons une preuve 

unifiée de ces deux congruences ; l'utilisation de surfaces caractéristiques non 

orientables semble nécessaire : nous présenterons des contre-exemples à la première 

preuve de Rohlin au § IV. L ' exposition de ces contre-exemples nécessitera une étude 

de l'orientation des courbes séparant leurs complexifiées• Nous la ferons au § III, 

paragraphe essentiellement botanique, où nous donnerons aussi toutes les configurations 

possibles en degré cinq et six : dès le degré cinq, il y a des configurations qui peuvent 

être séparantes ou non, dès le degré sept, il y a des configurations séparantes qui ont 

des orientations distinctes. Nous terminerons ce paragraphe en remarquant que la 

méthode de Hilbert permet de construire deux M-courbes de degré sept ayant même 

configuration orientée, mais qui sont dans des composantes distinctes du complémentaire 

du discriminant. Enfin nous remarquerons au § V que la méthode exposée par Arnold 

( [A ] ) pour établir les inégalités de Petrovski pour les courbes de degré pair fonctionne 

aussi pour les courbes à singularités de degré pair et donne en particulier l'inégalité 

de Petrovski pour les courbes de degré impair. 

II. - PREUVE DES CONGRUENCES 

Soit C une courbe algébrique plane réelle de degré pair 2 k , ayant 

N < M ovales. On choisit une équation F de C qui est négative sur la composante 

non orientable de 1RP 2 - C . On note ] R P + = {x € ] R P 2 | F(x) 2! 0} . 
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Soit c la conjugaison complexe du plan projectif complexe CP , le 

2 4 
quotient C P / c est difféomorphe à la sphère S (considérer une décomposition en 

2 

anses de C P ayant une seule anse d'indice 2 dont l'âme est formée d 1 une droite 

réelle) . Soit D e s 4 11 image de la complexifiée de la courbe C , c 1 est une 

surface connexe de caractéristique d'Euler x{C^)/2 = 2 - M (rappelons que M = g + 1) 

et ayant un bord à N composantes ; elle est orientable si et seulement si la courbe C 

sépare sa complexifiée • 
Considérons dans la sphère S la surface F = D U P P + ; elle est carac­

téristique puisque H 2 ( S 4 ) = 0 et est en général non orientable (même si D l 'est !) ; 

on a : 
a ( S 4 ) = 0 

F ' F = 2 C C ' C C + 2 ( - X ( l R P + ) ( + Î = 2 ( k 2 - (p-n)) . 

Soit q : H^F ; Z / 2 Z ) *• Z / 4 Z la forme de Rohlin de la surface F 

( [GM]) , les composantes de C engendrent un sous-espace L de H^(F ; Z / 2 Z ) . 

PROPOSITION 1, La forme de Rohlin q est nulle sur L . 

Démonstration. Il suffit de remarquer que L est engendré par les bords des compo-

santés orientables de F P " ( = {x € 1RP | F(x) < 0 } ) • Ces composantes B^ sont 

des membranes (cf. [GM]) qui ne recoupent pas F et dont les bords bB^ ont des 

voisinages orientables dans F ; la valeur q(Bj) est donc le double de l'obstruction 

à étendre à B.. une section du fibre normal à d B^ dans F , soit 2 (-2x {B^)) qui 

est congrue à zéro modulo quatre. • 

( t ) Soit v un champ de vecteur tangent à 1RP et transverse à ô P P + , soit n un 
champ normal à F étendant i v ;les sommes des indices des zéros de n sur D et P P + 
sont 1/2 C C ' C C et 2(-x(lRF' f)) respectivement. 
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COROLLAIRE. 

9 

3) Si C est une M-2 courbe qui ne sépare pas sa complexifiée, 

p - n - k 2 = 0 , î 2 mod 8 ; 

4) Si C est une courbe qui sépare sa complexifiée, p - n - k = 0 mod 4 

(Arnold [ A ] ) . 

Démonstration. D'après la formule de Rohlin ([GM]) , p - n - k modulo 8 est 

l 1 invariant de Brown de la forme q . Si C est une M-i courbe, l 1 orthogonal d'un 

facteur hyperbolique contenant L dans H^F ; Z / 2 Z ) est de rang i et représenté 

par des classes d'homologie de D ; la conclusion résulte alors de la classification 

des formes quadratiques sur les Z / 2 Z espaces vectoriels ([GM]) . • 

HI. - ORIENTATION DES COURBES SEPARANT LEUR COMPLEXIFIEE 

PROPOSITION 2 . Soit C une courbe algébrique plane réelle de degré d dont les 

seules singularités réelles sont des points doubles ordinaires et des cusps. Soit C 

une courbe réelle de degré d proche de C . Pour que C sépare sa complexifiée C ^ , 

il faut et il suffit que : 

i) C sépare sa complexifiée C ^ ; 

ii) On puisse choisir une moitié de C ^ ^ de façon à ce que si on oriente C 

comme bord de cette moitié, les singularités de C qui disparaissent le fassent suivant 

les modèles : 

( t ) Unemoitiéede C £ est D c tel que D f l c ( D ) = àD = C , D U C(D) = C c 

où c est la conjugaison complexe• Si C est réductible, il peut y avoir plusieurs 
moitiés (voir plus loin). 

1) Si C est une M-courbe, p - n - k = 0 mod 8 (Rohlin [R^ ] [ R 2 ] ) ; 

2) Si C est une M-1 courbe, p - n - k = ± 1 mod 8 (Gudkov et Krakhnov 

[GK] ) ; 
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pour les points doubles 

ordinaires 

pour les cusps 

De plus, l'orientation ainsi obtenue pour C est bord de l'orientation d'une 

moitié de . 

La démonstration résulte de l'observation de la courbe près du plan pro-

jectif réel . 

RAPPELS (voirRohlin [ R 3 1 et Mishachev [ M ] ) . 

Soit C une courbe de degré d séparant sa complexifiée ; on oriente la 

courbe C comme bord d'une de ses moitiés. Une paire d'ovales emboités est dite 

positive si son orientation est bord d'une orientation de l'anneau qu'elle délimite, 

négative dans le cas contraire ; un ovale est désorienté s ' i l est impair et forme une 

paire négative avec le premier ovale dans lequel il est inclus. On note d le nombre 

d'ovales désorientés, D + (respectivement D ) le nombre de paires positives (res­

pectivement négatives) dont l 'ovale extérieur est désorienté. Si le degré d est impair, 

on peut assigner un signe à chaque ovale : l'homologie du plan privée de l'intérieur 

de l 'ovale est libre, de rang un, engendrée par la pseudo-droite ; l 'ovale vaut 
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i 2 fois ce générateur, il est dit positif s ' i l vaut - 2 fois le générateur, négatif 

sinon. On note p " le nombre d 1 ovales pairs négatif s et n + le nombre d'ovales 

impairs positifs. 

Bien qu'i ls ne les énoncent que pour les M-courbes, Rohlin et Mishachev 

prouvent ( [ R 3 ] , [M]) : 

Soit C une courbe de degré d séparant sa complexifiée : 

2 — 4-
si d = 2k est pair, k - (p-n) = 4(d +D - D ) ; 

si d = 2k + 1 est impair, k f c+ l ) - (p"- n + ) = 2(d + D~ - D + ) . 

Remarquons que jusqu'au degré 6, ces relations fixent l'orientation d'une 

disposition donnée. Les dispositions possibles sont déterminées par les conditions 

d'intersection avec une droite plus le fait que le nombre de composantes d'une courbe 

séparante est congru au nombre maximal M modulo deux. Dans les tableaux suivants, 

nous construisons toutes les possiblités non maximales en degré cinq et six. 

L'orientabilité et les orientations sont déterminées par la proposition 2 . 

Dans le tableau concernant le degré 6, les constructions sont indiquées de manière 

beaucoup plus schématique. Pour plus de détails sur la construction des courbes par 

les méthodes de Hilbert, de Harnack et de Gudkov, le lecteur pourra consulter 

l 'art icle d ' A 1 Campo [ A ! ] . 
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Degré 5 

j j " n + d D + D " Notation Construction d'une courbe séparante 

Construction d'une courbe non 

séparante ayant m configuration 

3 0 0 0 0 I 3~ 1 + 

i i 

L droite I 

GL = e GL = e 6 

1 0 1 0 0 I — 
r deux cercles 

concentriques I 

A 

L droite CL = e 

N ' existe pas : prendre une 

droite D qui a un point à l ' inté­

rieur du plus petit ovale, trans­

former C U D en une courbe de 

degré 6 formée de trois ovales 

emboités qui sépare (voir p . 10) . 
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p n d D + D" Notation 
Construction d'une courbe séparante 

Construction d'une courbe non 

séparante ayant même configuration 

9 0 0 0 0 9 

\7 ^ 

7 2 1 0 0 6 ̂ j-î- es N'existe pas car c 'es t une M-2 

courbe pour laquelle 
2 

p - n - k = 4 mod 8 

(3e partie du corollaire du § 2) 

5 4 2 0 0 4 ^ j ^ -

v ^ 

Faire dégénérer une courbe 

5 
1 y de Gudkov 

3 6 3 0 0 2 N ' existe pas car c ' est une M-2 

courbe pour laquelle 

p - n - k = 4 mod 8 

(3e partie du corollaire du § 2) 

1 8 4 0 0 
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p n d D + D ~ Notation Construction d'une courbe séparante ? o n s t ™ c t i o n d'une courbe non 
_ séparante ayant même configuration 

6 1 1 0 0 5 y 

^ (A, J \ 
lUJv n-v-A lUJ? Q û 

4 3 2 0 0 3 ^ p ^ 

2 5 4 0 0 1 i à -
« 1 

3 2 2 0 0 1 y 

< f 1 > °Ur 43* V;/3 

1 4 3 0 0 1 1*2-

2 1 1 1 0 — 

r 
1 

trois cercles 
concentriques 

N'existe pas : voir page 10 
i 
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Une courbe de degré six formée de trois ovales emboités sépare sa complexifiée : 

A 2 
Soit Y le revêtement double de C P ramifié sur ; on a : 

2 

X(Y) = 2x(CP ) - X(C^= 6 + 18 = 24 ; donc, puisque Y est simplement connexe, le 

second nombre de Betti de Y est b 2 (Y) = 22, la signature est a (Y) = 2a ( C P 2 ) - - ~ - C = 

= 2 - 18 = - 1 6 . La forme quadratique est donc de type (3,19) . Soient A, B, C les 

2 
images réciproques des composantes de ]RP - C de caractéristique d 1 Euler 0 et 

1 

D l 1 image réciproque de la droite C P ; la forme quadratique est positive sur le 

sous-espace engendré par A , B, C et D ; ces classes sont donc liées , ce qui est 

équivalent au fait que C est nul en homologie dans , donc que C sépare . 

Remarque. Les formules de Rohlin et de Mishachev assurent qu'une courbe séparante 

de degré 2k (respectivement 2k+l) a au moins k composantes (respectivement k+1 

composantes), que tous les ovales sont emboités les uns dans les autres et que toutes 

les orientations sont les mêmes : d = n dans le cas pair (respectivement d = n = n" 

dans le cas impair). Est-ce qu'une courbe ayant cette disposition sépare sa 

complexifiée ? 

Dès le degré sept, les formules ci-dessus ne déterminent plus l'orientation 

d'une configuration donnée et l'exemple suivant, basé sur la méthode de Harnack, 

fournit deux courbes séparantes ayant des orientations distinctes : 

D ... H n 

ci 
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En désingularisant les orientations I et II de la droite, on obtient les 

configurations : 

5 * 
^ Q Q Q 

(!) % a 

qui ont des orientations distinctes. 

Nous ne savons pas construire de tels exemples avec des M-courbes ; remar-

i 

quons cependant que pour la courbe I 13 y par exemple, la relation de Mishachev 

donne deux possibilités d'orientation, mais en appliquant la relation de Rohlin à des 

courbes séparantes de degré huit dégénérant sur la réunion de la courbe et d'une droite 

joignant l 'ovale impair et un ovale pair extérieur, on en élimine une et il ne reste plus 

que 1 ' orientation 15 7~ — (cette courbe est obtenue par la méthode de Harnack) : 

1+ 
les restrictions que l 'on peut tirer de ces deux formules ne sont pas claires. 

Pour conclure ce paragraphe de résultats expérimentaux, construisons par 

+ - 1 + 2" 
la méthode de Hilbert, deux M-courbes de degré sept de type 16 5 — 7 — qui sont 

1+ 

dans des composantes distinctes du complémentaire du discriminant. 

La distinction des deux courbes se fait en étudiant la position des ovales 

extérieurs par rapport aux droites joignant les ovales impairs. Il serait intéressant 

de savoir s ' i l y a une isotopie èqui variante (pour la conjugaison complexe de C P ) 

joignant ces deux courbes. 
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/ ° \ 

en faisant vibrer dans la région A , on obtient cette disposition 

B: 

/ 5 Q \ 

en faisant vibrer dans la région B , on obtient cette disposition 
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IV. - CONTRE-EXEMPLES A LA PREMIERE PREUVE DE ROHLIN 

Rappelons brièvement cette preuve : Rohlin considère Y le revêtement 

2 

double de C P ramifié sur la courbe C ç de degré 2k Si 

k est impair, l'image réciproque Il_ de 1RP"" est une surface caractéristique pour 

Y et la congruence est équivalente à ce que l'invariant de Arf de cette surface est nul. 

Rohlin donne la base suivante de H AU) : CL. . . . a les ovales pairs et . . . B 

1 - 1 p * ï *p 

les images réciproques de p sections b^ de P P qui transforment 1RP en une 

collection de cercles ; il affirme que q()3 )̂ = 0 . Il spécifie que les b^ joignent les 

ovales pairs aux ovales impairs ne précisant pas le choix des b^ pour la composante 

non orientable de ]RP" . Quoi qu ' il en soit, les ¿3̂  restent dans chaque composante 

de II . Nous allons construire une M-courbe de degré 10 pour laquelle H a sept 

composantes, cinq sont une sphère et les invariants de Arf de la forme de Rohlin q 

restreinte à 1 ' homologie de chacune des autres composantes vaut 1 . Avant de donner l 'exemple, calculons qia^) et q(j3 )̂ où est l'image 

réciproque d'un segment de 1RP" joignant deux ovales (ils peuvent être indifférem­

ment pairs ou impairs). 

1) Soit une composante paire de la courbe C et D i le disque bordé par ; 

il se relève en un disque qui est une membrane pour ; on a : Au • Iï_ = 

= -x(lRP~ H D^) s mod 2 où est le nombre d'ovales intérieurs à et l ' o b s ­

truction à étendre un collier de dans ÎI_ en un champ de vecteur normal à est 

-X(D.) = -1 . On a donc : 

q(a.) = 1 + n. . 

2) Soit un segment de R P " joignant deux ovales et d̂  un arc dans une 

moitié A de la complexifiée C r joignant les deux extrémités de b. . Soit lït. une 
x x 

surface dont le bord est U d i , normale à P P _ U A près de U et transverse 

à P P " . L'image réciproque de fïu est une membrane pour qui coupe 11 en 
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o _ 

un nombre pair de points (le double de # (Ih i fl PP"")) . Comme b. Ud. n'a pas 

nécessairement un voisinage orientable dans P P ~ U A , considérons l'obstruction & 

à étendre le fibre normal à b. Ud. dans IRP" U A en un sous-fibré de rang un du 

fibre normal à t ïu ; elle est paire si et seulement si b. Ud. a un voisinage orientable 

dans K P U A . L'obstruction & à étendre le fibre normal à fi^ dans H en un 

sous-fibré de rang un du fibre normal à ^ est 2& ; elle est congrue à zéro modulo 4 

si et seulement si b., U d̂  a un voisinage orientable dans P P " U A . Nous avons donc : 

Q(^) = 0 , si les orientations sont 
4 b. 

I  

q(£.) = 1 , si les orientations sont 

* b. A 
1 

Degré 4 

ï 

Degré 6 

j l 4 
Courbe 5 - d e degré 8 

1 
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La configuration de la M-courbe de degré 10 ainsi obtenue peut être 

schématisée de la manière suivante (on a dessiné les tangentes L^ L 2 L 3 ^ a n s * e s 

étapes intermédiaires pour s'assurer de la position d'une tangente L à l'un des 

ovales extérieur et ne recoupant la courbe C^, qu'en sa partie réelle) : 

4,ir 
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Soit H un hémisphère de la tangente L dessinée. Son intérieur ne recoupe 

pas la courbe complexifiée C^, , il se relève donc à Y en H ; il en est de même des 

disques et en et , la surface H U U est une membrane pour 

son bord j3q . Cette membrane ne recoupe pas IT_ , le champ de vecteur normal à L 

dessiné s'étend en un champ normal à H (penser L comme la droite d'équation X = 0 

et A comme le point à l'infini de cette droite, ce champ est (1,0)) et les obstructions 

à l'étendre en un champ normal à D 1 et à D 2 sont égales ; on a donc : q(j3Q) = 0 . 

La partie n°° de n_ au-dessus de la partie non orientable de P P ~ a pour 

base symplectique + . . . + , £ Q + ^ , , . . . , . On a : 

q ( a Q + . . . + a 5 ) = 6 + 31 s 1 mod 2 , q(j30 + fij = q{fi^ + qifij = 1 , 

q(a.) = 1 , 1 < i < 5 , qOS-,) = q(^ 2 ) = 1 

q03.) = 0 , 3 < i < 5 . 

L ' invariant de Arf vaut donc 1 . 

Une base symplectique de n_ - ïl^ est (a . /^) , 6 < i < 30 . On a : 

q(a.) = 1 , 6 < i < 29 , q(0.) = 0 , 6 < i < 18 , 

q ( a 3 0 ) = 0 q(j8.) = 1 , 19 < i < 30 . 

L ' invariant de Arf vaut donc aussi 1 . 

Remarque : Pour ce calcul, il nous a été essentiel de connaître qO?̂  que l 'on a 

pu calculer grâce à la géométrie particulière de la courbe. 

Lorsque k est pair, Rohlin considère une droite réelle qu'il déforme en E 

de manière équivariante (pour la conjugaison complexe) de façon à ce qu'elle ne ren­

contre pas C . Soit E l'image réciproque de E et 11̂  1 'image réciproque de JRP* . 

Il considère alors la surface caractéristique F = E U II . Nous allons montrer ici 

que l'invariant de Arf de la forme quadratique q resteinte à E est nul. 
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~ A 1 

E est un revêtement ramifié de CP dont les points de ramification 

s'échangent par conjugaison. Soit a l'image réciproque d'un segment joignant deux 

points de ramification conjugués et /3 une des composantes de 1 ' image réciproque de 
1 ~ 

]RP . Puisque les deux moitiés de E s'échangent par conjugaison, l'invariant de 

Arf de la forme quadratique restreinte à E est q(a)-q(jS) . Calculons q(a) : en 

déplaçant la pseudo-droite E jusqu'à ce qu'elle soit tangente à C, on engendre un 

cycle évanescent pour a , il recoupe n+ en un point et,par la théorie de Picard-

Lefschetz, l'obstruction à étendre une section est -1 ; donc q(a) = 0 . 

Nous ne savons pas calculer, en général, l'invariant de Arf de la forme q 

restreinte à Iï+ . Bien sûr, les et les ^ forment une base symplectique, mais 

on ne peut espérer q(£.) = 0 ; cela signifierait que A U F P + est orientable, auquel 

2 
cas on aurait une égalité p - n = k . L'égalité n'est pas vérifiée par exemple pour 

9 5 — 14 
les courbes 1 T et 5 T en degré 6, ni pour la courbe 5 J en degré 8, voir p . 15. 

1 1 1 

V . - LES INEGALITES DE PETROWSKI 

THEOREME. Soit C une courbe algébrique plane réelle de degré 2k ayant M 

points doubles ordinaires réels et 2N points doubles ordianires complexes. On a 

alors l'inégalité : 

| 2 x ( P P + ) - 1 + M| < 1 + 3k(k-l) - (M+2N) . 

COROLLAIRE. Soit C une courbe algébrique plane réelle de degré 2k+1 qui coupe 

transversalement la droite de l'infini en M points. On a l'inégalité : 

| 2 x ( P P + ) - 1 + M | < 3 k 2 + k . 

Démonstration du théorème. On éclate tous les points doubles ordinaires pour obtenir 

une courbe C dans S = a

M + 2 N * S o i t f = 0 u n e ^ u a t i o n a f û n e d e C et C^ 



II.18 

la courbe lisse d'équation f = e . Soit a la conjugaison complexe de S . Le quotient 

4 

S/cr est difféomorphe à la sphère S éclatée N fois . Considérons la surface 

F = U S-j^ ( S ] R ^ = {x Ç Sjp | f(x) ̂  e } ) . La surface F est nulle en homologie 

modulo deux dans S/a , on peut donc considérer X le revêtement double de S ramifié 

sur X . 
La caractéristique d'Euler de X est : 

X(X) = 4 + 2N - x(F) = 4 -h 2N - + xfSjp+j] 

= 4 + 2N + k(2k-3) - M+2N) - x ( R P + ) • 

La variété X est le quotient par la conjugaison complexe de Y le revête­

ment double de S ramifié sur C , donc X est simplement connexe,et le second nombre 

de Betti est : 

b (X) = 2 + 2N + k(2k-3) - (M+2N) - xQRP+) . 

La signature de 1'involution du revêtement ramifié X est : 

2 ~ 2 

T = X " x ( S ] R + e ) = k " ( M + 2 N ) " x ( l R P + ) • 

F 2 

De l'inégalité - — ^ b 2(M) , on tire : 

2 x ( № + ) - (1-M) < 1 + 3k(k-l) - (M+2N) . 

On obtient bien sûr aussi l'inégalité : 

2xORP~) - (1-M) < 1 + 3k(k-l) - (M+2N) . 

La conjonction de ces deux inégalités donné l'inégalité de Petrowski puisque 

1 - m = = x ( s K + ) + x fS jp - ) = X(1RP +) + X(RP") • 

Remarque. Le lecteur curieux établira une inégalité plus fine dans le cas de singula­

rités plus compliquées. Cette formule fait intervenir une résolution tronquée de la 

singularité : on n ' éclate que les points infiniment voisins de multiplicité paire. 
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