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QUELQUES REMARQUES

SUR LES COURBES ALGEBRIQUES PLANES REELLES

Alexis MARIN

I. - INTRODUCTION

Harnack nous a appris qu'une courbe algébrique plane réelle de degré m
n'a pas plus de M= gm_-mzm_-z) + 1 composantes, des courbes ayant ce nombre maximal
de composantes existent en tous degrés et sont nommées M courbes. Les composantes
d'une courbe séparent le plan, et sont nommées ovales, sauf dans le cas m impair ol
une seule composante ne sépare pas, on la nomme ps_eUdo-droite On note p le nombre
d'ovales pairs (i.e. inclus dans un nombre pair d'ovales) et n le nombre d'ovales
impairs (les autres).

Apres avoir résolu directement, dans le cas des courbes de degré six, le
16e probleme de Hilbert sur la topologie des M-courbes, Gudkov formule la conjecture
p-n= k2 modulo 8 pour une M-courbe de degré pair 2k .

En 1971, Rohlin ([R4]) publie une preuve de cette conjecture s'appuyant
sur une formule reliant la signature d'une variété de dimension quatre, 1'autointer-
section d'une surface caractéristique orientable et 1'invariant de Arf d'une forme
quadratique définie sur 1'homologie de cette surface. Plus tard, il donne une nouvelle

preuve s'appuyant sur le théoreme d'Atiyah-Singer et valable en toutes dimensions
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([sz) , Gudkov et Krakhnov s'inspireront de cetté méthode pour donner en toutes
dimensions la généralisation d'une nouvelle congruence pour les (M-1)-courbes :
p-n= k2 % 1 modulo 8 (lck]).

Dans cet article, utilisaht une généralisation de la formule de Rohlin au cas
ol la surface caractéristique n'est plus orientable ([GM]) , nous donnons une preuve
unifiée de ces deux congruences ; l'utilisation de surfaces caractéristiques non
orientables semble nécessaire : nous présenterons des contre-exemples a la premiére
preuve de Rohlin au § IV. L'exposition de ces contre-exemples nécessitera une étude
de 1'orientation des courbes séparént leurs complexifiées. Nous la ferons au § III,
paragraphe essentiellement botanique, ou nous donnerons aussi toutes les configurations
possibles en degré cinq et six : des le degré cinq, il y a des configurations qui peuvent
&tre séparantes ou non, dés le degré sept, il y a des configurations séparantes qui ont
des orientations distinctes. Nous terminerons ce paragraphe en remarquant que la
méthode de Hilbert permet de construire deux M-courbes de degré sept ayant méme
configuration orientée, mais qui sont dans des composantes distinctes du complémentaire
du discriminant. Enfin nous remarquerons au § V que la méthode exposée par Arnold
([A]) pour établir les inégalités de Petrovski pour les courbes de degré pair fonctionne
aussi pour les courbes a singularités de degré pair et donne en particulier 1'inégalité

de Petrovski pour les courbes de degré impair.

II. - PREUVE DES CONGRUENCES

Soit C une courbe algébrique plane réelle de degré pair 2k , ayant
N < M ovales. On choisit une équation F de C qui est négative sur la composante

non orientable de RIP% - C . On note RPT = {x € RIP?|F(x) 20} .
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Soit ¢ la conjugaison complexe du plan projectif complexe C]P2 , le
quotient C1P2/ c est difféomorphe a la spheére S4 (considérer une décomposition en
anses de C]P2 ayant une seule anse d'indice 2 dont 1'ame est formée d'une droite
réelle). Soit D c S4 1'image de CC la complexifiée de la courbe C , c'est une
surface connexe de caractéristique d'Euler X(CC)/ 2=2-M (rappelons que M=g + 1)
et ayant un bord a N composantes ; elle est orientable si et seulement si la courbe C
sépare sa complexifiée CC .

Considérons dans la sphere S4 la surface F=D U ]R]P+ ; elle est carac-

téristique puisque H2(S4) =0 et est en général non orientable (méme si D 1'est!) ;

ona .
a(sth - o

()

F.F = %CC-CC + 2(-x(RP) = 2% - (p-n)) .

Soit q: H1(F ; Z/2Z) » Z/4Z la forme de Rohlin de la surface F

({IGM]), les composantes de C engendrent un sous-espace L de H1(F s Z/2Z) .

PROPOSITION 1. La forme de Rohlin q est nulle sur L .

Démonstration. Il suffit de remarquer que L est engendré par les bords des compo-

santes orientables de RIP~ (= {x € RIP? | F(x) < 0}) . Ces composantes B, sont
des membranes (cf. [GM 1) qui ne recoupent pas F et dont les bords aBi ont des
voisinages orientables dans F ; ‘la valeur q(Bi) est donc le double de 1'obstruction
a étendre a B; une section du fibré normal a 0B, dans F, soit 2(-2x (Bi)) qui

est congrue a zéro modulo quatre. O

(1) Soit v un champ de vecteur tangent a RIP" et transverse 3 dRPH , soit n un
champ normal a F étendant iv ;les sommes des indices des zéros de n sur D et RIP*
sont 1/2 CC-CC et 2(-x (RIP+)) respectivement.
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COROLLAIRE.

1) Si C estune M-courbe, p-n - k% = 0 mod 8 (Rohlin [R4J[R2)) ;

2) Si C estune M-1 courbe, p-n- k2 =+ 1 mod 8 (Gudkov et Krakhnov
[GK]);
3) Si C estune M-2 courbe qui ne sépare pas sa complexifiée,

p—n—kZEO,i'ZmodS ;

4) Si C est une courbe qui sépare sa complexifiée, p -~ n - k2 = O mod 4

(Arnold [A)) .

Démonstration. D'apres la formule de Rohlin ([GM ]) , P-n-=- k2 modulo 8 est

1'invariant de Brown de la forme q . Si C est une M-i courbe, 1'orthogonal d'un
facteur hyperbolique contenant L dans H1(F ; Z/2Z) est derang i et représenté
par des classes d'homologie de D ; la conclusion résulte alors de la classification

des formes quadratiques sur les Z/2Z espaces vectoriels ([GM]) . O

II. - ORIENTATION DES COURBES SEPARANT LEUR COMPLEXIFIEE

PROPOSITION 2. Soit C une courbe algébrique plane réelle de degré d dont les

seules singulafités réelles sont des points doubles ordinaires et des cusps. Soit c
une courbe réelle de degré d proche de C . Pour que c sépare sa complexifiée EC ,
il faut et il suffit que :

i) C sépare sa complexifiée C c

ii) On puisse choisir une moitié de C(i‘, (1) de facon a ce que si on oriente C
comme bord de cette moitié, les singularités de C qui disparaissent le fassent suivant

les modéles :

(t) Une moitiée de Cg est Dc Cg telque DNc(D)=3D=C, DU c(D) =C¢
ou ¢ estla conjugaison complexe. Si C est réductible, il peut y avoir plusieurs
moitiés (voir plus loin).
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~—~> pour les points doubles

/\ ordinaires

~> ou 'O pour les cusps

De plus, 1'orientation ainsi obtenue pour E est bord de 1'orientation d'une
moitié de EC .
La démonstration résulte de 1'observation de la courbe preés du plan pro-

jectif réel.

RAPPELS (voir Rohlin [R3] et Mishachev [M]) .

Soit C une courbe de »degré d séparant sa complexifiée ; on oriente la
courbe C comme bord d'une de ses moitiés. Une paire d'ovales emboités est dite
positive si son orientation est bord d'une orientation de 1'anneau qu'elle délimite,
négative dans le cas contraire ; un ovale est désorienté s'il est impair et forme une
paire négative avec le premier ovale dans lequel il est inclus. On note d le nombre
d'ovales désorientés, D" (respectivement D) le nombre de paires positives (res-
pectivement négatives) dont 1'ovale extérieur est désorienté. Si le degré d est impair,
on peut assigner un signe a chaque ovale : 1'homologie du plan privée de 1'intérieur

de 1'ovale est libre, de rang un, engendrée par la pseudo-droite ; 1l'ovale vaut
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¥ 2 fois ce générateur, il est dit positif s'il vaut - 2 fois le générateur, négatif
sinon. On note p- le nombre d'ovales pairs négatifs et nt le nombre d'ovales
impairs positifs.
Bien qu'ils ne les énoncent que pour les M-courbes, Rohlin et Mishachev
prouvent ([R3], [M]) :
Soit C une courbe de degré d séparant sa complexifide :
si d=2k estpair, k% - (p=n) =4(d+D" - DY) ;

si d=2k + 1 estimpair, k(é<+1 -p-n"=2(d+D -D"

Remarquons que jusqu'au degré 6, ces relations fixent 1 'orientation d'une

disposition donnée. Les dispositions possibles sont déterminées par les conditions
d'intersection avec une droite plus le fait que le nombre de composantes d'une courbe
séparante est congru au nombre maximal M modulo deux. Dans les tableaux suivants,

nous construisons toutes les possiblités non maximales en degré cinqg et six.

L'orientabilité et les orientations sont déterminées par la proposition 2.
Dans le tableau concernant le degré 6, les constructions sont indiquées de maniere
beaucoup plus schématique. Pour plus de détails sur la construction des courbes par
les méthodes de Hilbert, de Harnack et de Gudkov, le lecteur pourra consulter

1'article d'A'Campo [A'] .



im.7

Degré 5

Construction d'une courbe non

p'_n+d D D~ Notation Construction d'une courbe séparante séparante ayant fh configuration

30000 13 1

A

~ C de degré 4 6

)
& alo| ol
({7 6 Uroite Q 0

L droite
CL = ¢ CL=¢#
’I—
10100 I-—
1 deux cercles N'existe pas : prendre une
concentriques

droite D qui a un point a 1'inté-

rieur du plus petit ovale, trans-

=C
// former C U D en une courbe de
¥ degré 6 formée de trois ovales
( ’ : emboités qui sépare (voir p. 10) .

N

L droite CL =¢




Degré 6

pndD' D Notation

Construction d'une courbe séparante

I1.8

Construction d'une courbe non

séparante ayant méme configuration

9000 O 9 O
Y, DOO
D
72100 6 -1-%—1: N'existe pas car c'est une M-2
courbe pour laquelle
p—n-k254mod8
(3e partie du corollaire du § 2)
2,2"
14
54200 4 1 Faire dégénérer une courbe
1 % de Gudkov
3,3
36300 2 1 N'existe pas car c'est une M-2
courbe pour laquelle
p-n-k=4mod8
(3e partie du corollaire du § 2)
18400 144




pndD D~ Notation

Construction d'une courbe séparante

1L.9

Construction d'une courbe non
séparante ayant méme configuration

61100 5 =—
1 o)
g» 9
a D
:/& \&’%
’:3 \\‘*\Q’W &
\i\,fgm ‘?*{\?
43200 3L

1

» «iE

25400 1%1
8
B
32200 1% ‘ll;;
14300 1%1
N\ _ O
21110 %
1 trois cercles N'existe pas : voir page 10

concentriques
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Une courbe de degré six formée de trois ovales emboités sépare sa complexifide :

Soit Y le revétement double de OIZ]P2 ramifié sur C

¢’ ona:
x(Y) = 2x(CP2) - x(CC): 6 + 18 = 24 ; donc, puisque Y est simplement connexe, le
C..C
second nombre de Betti de Y est b2(Y) = 22, la signature est o(Y) = ZO(C]PZ) - CTC =

=2 - 18 =~ 16 . La forme quadratique est donc de type (3,19) . Soient A, B, C les
images réciproques des composantes de ]RP2 - C de caractéristique d'Euler 0 et

D 1'image réciproque de la droite tl:]P1 ; la forme quadratique est positive sur le
sous-espace engendré par A, B, C et D ; ces classes sont donc liées, ce qui est

équivalent au fait que C est nul en homologie dans CC , donc que C sépare CC .

Remarque. Les formules de Rohlin et de Mishachev assurent qu'une courbe séparante
de degré 2k (respectivement 2k+1) a au moins k composantes (respectivement k+1
composantes), que tous les ovales sont emboités les uns dans les autres et que toutes
les orientations sont les mémes : d =n dans le cas pair (respectivement d=n= n-
dans le cas impair). Est-ce qu'une courbe ayant cette disposition sépare sa

complexifiée ?

Dés le degré sept, les formules ci-dessus ne déterminent plus 1'orientation
d'une configuration donnée et 1'exemple suivant, basé sur la méthode de Harnack,

fournit deux courbes séparantes ayant des orientations distinctes :

a

- - -
——
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En désingularisant les orientations I et II de la droite, on obtient les

configurations :
® s o & °_°
&)
& < —
5> ) © @
(R 3

qui ont des orientations distinctes.

Nous ne savons pas construire de tels exemples avec des M-courbes ; remar-
quons cependant que pour la courbe I 13 % par exemple, la relation de Mishachev
donne deux possibilités d'orientation, mais en appliquant la relation de Rohlin a des
courbes séparantes de degré huit dégénérant sur la réunion de la courbe et d'une droite
joignant 1'ovale impair et un ovale pair extérieur, on en élimine une et il ne reste plus
que 1'orientation I 5+ 7” 1—; (cette courbe est obtenue par la méthode de Harnack) :

les restrictions que 1'on peut tirer de ces deux formules ne sont pas claires.

Pour conclure ce paragraphe de résultats expérimentaux, construisons par
172

TF qui sont

la méthode de Hilbert, deux M-courbes de degré sept de type I 6" 5"
dans des composantes distinctes du complémentaire du discriminant.
La distinction des deux courbes se fait en étudiant la position des ovales
extérieurs par rapport aux droites joignant les ovales impairs. Il serait intéressant
de savoir s'il y a une isotopie équivariante (pour la conjugaison complexe de C]Pz)

joignant ces deux courbes.
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en faisant vibrer dans la région A , on obtient cette disposition

I5.12

6Q
Q a 503

en faisant vibrer dans la région B , on obtient cette disposition
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IV. - CONTRE-EXEMPLES A LA PREMIERE PREUVE DE ROHLIN

Rappelons briévement cette preuve : Rohlin considére Y le revétement
double de &i:]F'2 ramifié sur la courbe CC de degré 2k Si
k est impair, 1'image réciproque I1_ de RIP est une surface caractéristique pour
Y et la congruence est équivalente a ce que 1l'invariant de Arf de cette surface est nul.

1
les images réciproques de p sections bi de RIP qui transforment IRIP~ en une

Rohlin donne la base suivante de H1(H_) HE SR ap les ovales pairs et By --- Bp
collection de cercles ; il affirme que q(Bi) =0 . Il spécifie que les bi joignent les
ovales pairs aux ovales impairs ne précisant pas le choix des bi pour la composante
non orientable de RIP~ . Quoi qu'il en soit, les ‘Bi restent dans chaque composante
de 'I'._l_ . Nous allons construire une M-courbe de degré 10 pour laquelle I a sept
composantes, cing sont une sphere et les invariants de Arf de la forme de Rohlin q
restreinte a 1'homologie de chacune des autres composantes vaut 1 .

Avant de donner 1'exemple, calculons q(ozi) et q(Bi) ol B, est 1'image

réciproque d'un segment de RIP~ joignant deux ovales (ils peuvent &tre indifférem-

ment pairs ou impairs).

1) Soit o, une composante paire de la courbe C et Di le disque bordé par o, ;
il se releve en un disque Ai qui est une membrane pour ai ; ona: Ai - T =
==-x(RP N Di) =n, mod 2 ou n, est le nombre d'ovales intérieurs a o, et 1'obs-
truction a étendre un collier de «, dans I en un champ de vecteur normal a A, est

-x(Di) =-1. Onadonc :

q(ai) = 1+n,

2) Soit bi un segment de RIP™ joignant deux ovales et di un arc dans une
moitié A de la complexifiée CC joignant les deux extrémités de bi . Soit mi une
surface dont le bord est bi U di , normalea RIP_UA presde bi U di et transverse

a RIP° . L'image réciproque Hy de mi est une membrane pour Bi qui coupe T en
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un nombre pair de points (le double de # (r?m ; NRP)) . Comme b, Ud, n'apas
nécessairement un voisinage orientable dans IRIP U A , considérons 1'obstruction 6
a étendre le fibré normal a bi U di dans RIP° U A en un sous-fibré de rang un du
fibré normal a mi ; elle est pairé si et seulement si bi U di a un voisinage orientable
dans RIP- UA . L'obstruction 6 & étendre le fibré normal a B; dans IT enun

sous-fibré de rang un du fibré normal a My est 26 ; elle est congrue a zéro modulo 4

si et seulement si bi U di a un voisinage orientable dans IRIP- U A . Nous avons donc :

q(ﬁi) = 0, siles orientations sont

a(B.) = 1, si les orientations sont

1
114

1

Courbe 5 de degré 8
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La configuration de la M-courbe de degré 10 ainsi obtenue peut &tre
schématisée de la maniére suivante (on a dessiné les tangentes L1 L2 L3 dans les
étapes intermédiaires pour s'assurer de la position d'une tangente L a1l'un des

ovales extérieur et ne recoupant la courbe C¢ qu'en sa partie réelle) :
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Soit H un hémisphére de la tangente L dessinde. Son intérieur ne recoupe
pas la courbe complexifiée CC , il serelevedonca Y en H ; il en est de méme des
disques D1 et D2 en D1 et D2 ,
son bord BO . Cette membrane ne recoupe pas II , le champ de vecteur normal a L

la surface HUD 1 U 52 est une membrane pour

dessiné s'étend en un champ normal a H (penser L comme la droite d'équation X =0

et A comme le point a 1'infini de cette droite, ce champ est (1,0)) et les obstructions

a 1'étendre en un champ normal a D 1 et a ‘Dz sont égales ; on a donc : q(ﬁo) =0.
La partie l'lf’_‘3 de IT au-dessus de la partie non orientable de IRIP~ a pour

base symplectique O+ --- +a5 , ,30+,B1 , a1/31,...,a5/35 . Ona :
q(a0+ +a5) =6+31=1mod 2, q(30+51) = q(By +q(B1) =1,
qe) = 1, 1sis 5, alg,) = ) =
aB) = 0, 3=is<5

L'invariant de Arf vaut donc 1 .

Une base symplectique de I - Hie est (aiﬁi) , 6<i<30. Ona :
q(ai)=1,6SiS29, q(Bl)z()’ 6=< i< 18,
qlazy) = 0 q(;)

L'invariant de Arf vaut donc aussi 1 .

1, 19= i< 30

Remarque : Pour ce calcul, il nous a été essentiel de connaitre q(ﬁo) que 1'on a

pu calculer gridce a la géométrie particuliere de la courbe.

Lorsque k est pair, Rohlin considere une droite réelle qu'il déforme en E
de maniére équivariante (pour la conjugaison complexe) de fagon a ce qu'elle ne ren-
contre pas C . Soit E 1'image réciproque de E et I’I+ 1'image réciproque de RP' .
Il considére alors la surface caractéristique F = EU H+ . Nous allons montrer ici

que l'invariant de Arf de la forme quadratique q resteinte a E est nul.
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E est un revétement ramifié de CP1 dont les points de ramification
s'échangent par conjugaison. Soit & 1'image réciproque d'un segment joignant deux
points de ramification conjugués et 8 une des composantes de 1'image réciproque de
]R]P1 . Puisque les deux moitiés de E s'échangent par conjugaison, l'invariant de
Arf de la forme quadratique restreinte 3 E est q(a)-q(8) . Calculons gq(a): en
déplagant la pseudo-droite E jusqu'a ce qu'elle soit tangente a C, on engendre un
cycle évanescent pour « , il recoupe 1'1+ en un point et,par la théorie de Picard-
Lefschetz, 1'obstruction a étendre une section est -1 ; donc q(e) =0 .

Nous ne savons pas calculer, en général, 1'invariant de Arf de la forme q
restreinte a 1'1_‘_ . Bien siir, les o et les Bi forment une base symplectique, mais
on ne peut espérer q(ﬁi) =0 ; cela signifierait que A U RPT est orientable, guquel
cas on aurait une égalité p - n= k2 . L'égalité n'est pas vérifiée par exemple pour

114

les courbes 1 %— et 5 % en degré 6, ni pour la courbe 51 en degré 8, voir p. 15.

1

V.- LES INEGALITES DE PETROWSKI

THEOREME. Soit C une courbe algébrique plane réelle de degré 2k ayant M
points doubles ordinaires réels et 2N points doubles ordianires complexes. On a
alors 1'inégalité :

|2x (RPT) = 1+ M| < 1+ 3k(k-1) - (M+2N)

COROLLAIRE. Soit C une courbe algébrique plane réelle de degré 2k+1 qui coupe

transversalement la droite de 1'infini en M points. On a l'inégalité :

l2x (RPY) - 1+ M| < 3k% + k

Démonstration du théoreme. On éclate tous les points doubles ordinaires pour obtenir
2

une courbe C dans S = 0M+2N CP Soit f=0 une équation affine de C et Ee
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la courbe lisse d'équation f=¢ . Soit o la conjugaison complexe de S . Le quotient
S/o est difféomorphe a la sphére S4 éclatée N fois . Considérons la surface

- = > ;
F = C€ /o U S]R‘*‘ (S]R+ {x € S]R |#(x) 2 €}) . La surface F est nulle en homologie

modulo deux dans S/o , on peut donc considérer X le revétement double de S ramifié

sur X .
La caractéristique d' Euler de X est :
X(X) = 4+2N=-x(F) = 4+2N- [X(zca + X(S]R*')]

4 + 2N + k(2k-3) - M+2N) ~ x (RIP +)

La variété X est le quotient par la conjugaison complexe de Y le revéte~
ment double de S ramifié sur Ee , donc X est simplement connexe,et le second nombre
de Betti est :

b,(X) = 2+ 2N +k(2k-3) - (M+2N) - x(RPY) .

ol

La signature de l'involution du revétement ramifié X est :

2 o~ 2 _
F_‘_ _ Ce _ _ 2 - _ -+
5 = = X(S]R+e) = k= = (M+2N) - x(RIP") .
FZ
De 1'inégalité - 5 = b2(M) , ontire :

2x (RPPT) - (1-M) < 1+ 3k(k-1) - (M+2N) .
On obtient bien siir aussi 1'inégalité :
2x(RIP7) - (1-M) = 1 + 3k(k-1) - (M+2N)

La conjonction de ces deux inégalités donné 1'inégalité de Petrowski puisque

1-M=X(SR) = X(Sg4) + X(SR-) = X(RP?) + X (RP)

Remarque. Le lecteur curieux établira une inégalité plus fine dans le cas de singula-
rités plus compliquées. Cette formule fait intervenir une résolution tronquée de la

singularité : on n'éclate que les points infiniment voisins de multiplicité paire.



[AT]

[A]

[GK]

[GM]

[M]

(Rq]

[Rz2]

(R3]

REFERENCES

N. A'CAMPO, Sur la 1ere partie du 16e probléme de Hilbert,
Séminaire Bourbaki, 31e année, 1978-79, n°® 537.

V.I. ARNOLD, The arrangement of the ovals of real plane algebraic curves,
involutions of four-dimensional manifolds and the arithmetic of integral
quadratic forms, Funkt. Analiz. iego Pril., 5:3 (1971), 1-9 ;
traduction angl. Funct. Anal. and its appl. 5 (1972), 169-175.

D.A. GUDKOV and A.D. KRAKHNOV, Periodicity of the Euler characteristic
of real algebraic M-1 varieties, Funkt. Analiz. i ego Pril., Z:2 (1973),
15-19 ; traduction angl. Funct. Anal. and its appl. 7 (1974), 98-102.

L. GUILLOU et A. MARIN, Une extension d'un théoréme de Rohlin sur la
signature, C.R. Acad. Sc. Paris, t. 285 (18 juillet 1977).

N.M. MISHACHEV, Complex orientations of plane M-curves of odd degree,
Funkt. Analiz. i ego Pril 9 (1975), 77-78 ; tranduction angl. Funct.
Anal. and its Appl. 9 (1975), 342-343.

V.A. ROHLIN, Proof of Gudkov's conjecture, Funkt. Analz. i ego Pril.
6 (1971), 62-64 ; tranduction angl. Funct. Anal. and its appl. 6
(1972), 136-138.

V.A. ROHLIN, Congruences modulo 16 in Hilbert's sixteenth problem,
Funkt. Analiz. i ego Pril. 6 (1971), 58-64 ; part I, ibid. 7 (1973),
91-92. Traduction angl. Funct. Anal. and its appl. 6 (1972), 301-306 ;
part II, ibid. 7 (1974), 163-164.

V.A. ROHLIN, Complex orientations of real algebraic curves,
Funkt. Analiz. i ego Pril. 8 (1974), 71-75 ; traduction angl. Funct.
Anal. and its appl. 8 (1974), 331-334.

Université de Paris-Sud
Centre d'Orsay
Béatiment 425

91405 ORSAY cedex - France





