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1.1 

UNE EXTENSION D'UN THEOREME DE ROHLIN SUR LA SIGNATURE 

Lucien GUILLOU et Alexis MARIN 

I . - ENONCE DU R E S U L T A T 

On se p lace dans la ca tégor ie des variétés diff érentiables compactes . 

Si M n est une variété c l o s e or ientée de dimension n , une sous-var ié té 

n-2 
V de dimension n - 2 sera dite caractéris t ique si l 'é lément de H n î Z / 2 Z ) 

qu 1 e l le représente est duale (par la dualité de Poincaré) à la deuxième c la s se de 

Stiefel-Whitney w 2 (M) . On note i : V c ^ M l ' inc lus ion de V dans M . 

4 2 
Soit M une variété c l o s e orientée de dimension quatre et soit F une 

surface c l o s e (non nécessairement or ientable) , caractéris t ique pour M , vérifiant : 

i ^ H ^ F 2 ; Z / 2 Z ) ) = { 0 } c H ^ M ; Z / 2 Z ) . 

Il exis te a l o r s , relativement à la forme d ' in tersect ion homologique sur F , 

une forme quadratique naturelle q : HAF ; Z / 2 Z ) + Z / 4 Z tel le que la généra­

lisation suivante de la formule de Rohlin [ R ^ ] ait lieu . 

THEOREME. On a la formule : a(M) - F - F = 2a (M,F) mod 16 , 

où F . F désigne l 'autointersect ion de la surface F dans M (cf . [w]) , a (M) la 

signature de la variété or ientée M et a (M,F) 1 'invariant de Brown relatif à la 

forme quadratique q a s soc i ée au couple (M,F) (voir [ B ] et le paragraphe suivant). 
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Remarque. Si la surface F est or ientable , la forme quadratique q est à valeurs 

dans Z / 2 Z = 2 Z / 4 Z , et a (M,F) qui vaut a lors 0 ou 4 s ' identifie au quadruple 

de l ' invariant de Arf de q : On retrouve la formule connue de Rohlin ( [ R 2 ] ) « 

Rappelons que l e ca s F = 0 est t rès c é l è b r e , i l date de 1952 et est du aussi à 

Rohlin ( [ R ^ ) . 

I I . - L E S FORMES QUADRATIQUES SUR L E S Z / 2 Z E S P A C E S  

VECTORIELS ET L ' INVARIANT DE BROWN 

(cf . [ B ] , [ B L L V ] appendices) 

Soit V un espace vec tor ie l sur Z / 2 Z de dimension finie n , muni 

d 'une forme bi l inéaire ( x , y ) x - y symétrique, non dégénérée à valeurs dans 

Z / 2 Z . 

DEFINITION 1. Une forme quadratique sur V à valeurs dans Z / 4 Z est une 

application q : V *• Z / 4 Z vérifiant : 

q(x + y) = q(x) + q(y) + 2 x . y 

où 2 : Z / 2 Z -> Z / 4 Z représente l 'unique homomorphisme non nul. 

Remarques et exemples . 

1) On a q(0) = q(0 + 0) = q(0) + q(0) + 2 0 - 0 = q(0) + q(0) , d ' où q(0) = 0 . 

2) Soit q : V * Z / 2 Z une forme quadratique au sens usuel, a lors q = 2q 

est une forme quadratique à valeurs dans Z / 4 Z . 

3) Sur V = Z / 2 Z i l n ' y a qu ' une forme bil inéaire symétrique non dégé ­

nérée : l e produit du c o r p s Z / 2 Z . On a 

0 = q(i + 1) = q ( l ) + q ( l ) + 2 1 - 1 = 2 q ( l ) + 2 , donc q ( l ) = ± 1 . 

Il y a deux formes quadratiques q + et q_ sur un espace de dimension un. 
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DEFINITION 2 . Une forme quadratique q : V ^ Z / 4 Z est neutre s ' i l existe 

un sous -espace H c V de dimension moitié sur lequel q est nulle (on remarquera 

que H est égal à son orthogonal pour la forme b i l inéa i re ) . 

On définit de la manière usuelle la somme orthogonale de deux formes quadra­

tiques ; remarquons que si V = © est une décomposition orthogonale pour 

la forme bi l inéai re , a lors q = q i v ® Q i v • 
1 1 1 2 

En quotientant l e semi-groupe des formes quadratiques ainsi obtenu par l e 

semi-groupe des formes neutres, on obtient l e groupe de Witt W Q ( Z / 2 Z ; Z / 4 Z ) 

des formes quadratiques sur l e s Z / 2 Z espaces vec tor ie l s à valeurs dans Z / 4 Z 

(c f . [ B L L V ] Appendices ) . 

Soit q : V Z / 4 Z une forme quadratique ; pour tout x dans V , on pose 

0(x) = exp ( Y q W ) = • 

DEFINITION 3 . L ' invariant multiplicatif de Brown de la forme quadratique q 

est l e nombre complexe : 

y ( q ) = 2 n / 2 S 0 ( x ) (n = d i m V ) . 
x € V 

PROPOSITION 1. L 'appl icat ion y établit un isomorphisme entre le groupe de 

Witt W Q ( Z / 2 Z ; Z / 4 Z ) et l e groupe des rac ines huitièmes de l 'un i té . 

En notations additives, on éc r i r a : 

a : W Q ( Z / 2 Z ; Z / 4 Z ) Z / 8 Z où y = e o oc 

avec € : Z / S Z - ^ - * { rac ines huitièmes de l ' un i t é} et e (1) = e x p ( ^ p ) = ^ r=r • 
4 V 2 

Remarque. Si la forme bi l inéaire est i so t rope , i . e . vér i f ie x - x = 0 pour tout x 

de V , la forme quadratique q ne prend que des valeurs pa i res : q = 2q (car 

0 = q(2x) = q(x) + q(x)) , q est une forme quadratique c lass ique , 0 ne prend que 

l e s valeurs + 1 et - 1 et l ' invariant de Brown y de q est le c lassique invariant 
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de Arf de q qui vaut + 1 si la forme représente plus souvent 0 que 1 et -1 dans 

le cas con t ra i re . 

Démonstration de la proposi t ion . 

AFFIRMATION 1. y (q-| © qj = y ( q ^ © y (qj . 

_n-|+n2 n-j n2 
~~ —'j """7" ~ T T " 

Démonstration. y (q © q ) = 2 S ^(x+y) = 2 S ty(x) (y) 
1 Z x + y € V 1 © V 2 x € V 

JM _ n 2 

= [ 2 L 0(x)l x [ 2 L tf>(y)l = y ( q 1 ) y ( q J 
L x € V 1

 J L y € V 2

 J 1 * 

• 

AFFIRMATION 2 . Si la forme quadratique q est neutre, y ( q ) = 0 . 

Démonstration. Soit H c V de dimension moitié tel que q(H) = 0 ; soit V = H © L 

une décomposition en somme d i r ec t e . 

_n _n n 

y ( q ) = 2 2 E <p(h+e) = 2 2 L 0(h) ' h = 2 2 S S ( - i ) e ' % ( £ ) 
h+£€V h+£€V « € L h € H 

n n 

= 2 2 T S S ( - 1 ) £ ' % ( € ) + * H ] = 2 2 x # H = 1 
L 8 € L - 0 h€H J 

c a r , pour M o , 8 .h prend autant de fois l e s valeurs 0 et 1 . • 

AFFIRMATION 3 . Si la forme bil inéaire n 1 est pas i so t rope , V est somme or tho­

gonale d 1 e spaces de dimension un. 

Démonstration. Soit c G V le vecteur caractér is t ique (tel que, pour tout x dans V , 

c . x = x . x ) ; si dim V > 2 , i l exis te y distinct de c tel que y . y = 1 ; V se 

décompose en Z / 2 Z y © y 1" et puisque y est distinct de c , la forme bil inéaire 

restreinte à l 'or thogonal y de y est non i so t rope ; on termine par induction 

sur dim V . • 



1.5 

AFFIRMATION 4 . Soit q une forme quadratique à valeurs dans Z / 4 Z . A l o r s 

4q est isométrique à - 4q (et donc 8q est neutre) . 

Démonstration. Soit W = V © V © V © V . Soit p. : V -> W , i = 1, 2 , 3 , 4 • 

( p ^ x ) = ( 0 , x , x , x ) ; <p2(x) = ( x , 0 , x , x ) ; ^ ( x ) = ( x , x , 0 , x ) ; ^ 4 ( x ) = ( x , x , x , 0 ) . 

On a qC^Cx)) = 3q(x) = -q(x) et ^ ( V ) est orthogonal à <p.(V) pour i ^ j l ' i s o -

4 J 

morphisme cherché est © ^ . • 

Considérant q © q + © q , l 'affirmation 3 et l ' exemple 3 nous assurent 

que WQ ( Z / 2 Z ; Z / 4 Z ) est cyc l ique , d ' o r d r e un diviseur de huit par l 'affirmation 4 . 

L e s affirmations 1 et 2 assurent que y est un homomorphisme, dans l e s rac ines 

huitièmes de l 'uni té ; on conclut en vérifiant que y ( q ) = ^j=- = exp( i ij/4) est 

+ v 2 
primit ive. • 

Remarque. L e lecteur pourra établir que l ' invariant de Brown, d 'une forme quadra­

tique q , l e rang et l ' i s o t r o p i e ou l ' an i so t rop ie de la forme bil inéaire déterminent 

la c l a s se d ' i somét r ie de la forme quadratique q . 

III. - DEFINITION GEOMETRIQUE DE LA FORME QUADRATIQUE : 

q : H (F ; Z / 2 Z ) Z / 4 Z 

On est dans la situation du paragraphe I . 

2 
pEFINITION 4 . Une membrane fo pour la surface caractéris t ique F est une 

surface (non nécessairement or ientable) , immergée dans M , plongée et normale 

2 
à F p rès de son bord ôto ( c F ) et dont l ' in tér ieur soit t ransverse à F . 

L e bord d 'une membrane fn consis te en des courbes simples fermées de F ; 

notons & le nombre d 'obstruct ion à étendre le fibre normal à c e s courbes dans F 
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en un sous- f ibré de rang un du fibre normal à m dans M ; c 1 est 1 1 entier obtenu 

en évaluant sur la c l a s se fondamentale de iïi ladite obstruction qui habite 

2 1 t 

H (to,ô№ ; rr^IRP ) ) l e s coefficients étant tordus par l 'orientat ion normale de fn . 

On pose a lors : q 1 (th) = (à + 2 m -F (mod 4) 

où rn -F désigne l e nombre de points d ' in tersect ion t ransverse de l ' in tér ieur de 

fo avec F . 

Remarque. Si l e s composantes du bord de tu ont pour voisinage dans F des 

anneaux, a lo r s & = 2 & v où est l e nombre d 'obstruct ion à étendre un champ de 

vecteurs normaux au bord de la membrane in dans F en un champ normal à toute la 

1 1 
membrane dans M (le facteur 2 vient de c e que S - H > ]R P est une application 

de degré 2) . 

En par t icul ier , si la surface caractér is t ique F est or ientable , on a toujours : 

q'(m) = 2 V + 2 r n - F = 2 ( & v + - F ) m o d 4 Qui habite Z / 2 Z s 2 Z / 4 Z ; on retrouve 

la définition de Rohlin ( [ R 2 ] ) • 

Des deux lemmes qui suivent, nous apprenons, par l e premier appliqué à 

(M x I , F x I) , que q'Oïv) ne dépend que de la c l a s se d 'homologie modulo 2 du bord 

de m dans F , c e qui permet de définir Line fonction q : H ^ F ; Z / 2 Z ) Z / 4 Z 

(puisque i ( H 1 ( F ; Z / 2 Z ) ) = 0) ; et par l e second , que cette fonction est une forme 

quadratique a s s o c i é e à la forme bil inéaire d ' in tersect ion de la sur face . 

LEMME 1. Supposons que (M , F ) soit bord de (V ,G^) , avec V variété 

compacte or ientée de dimension cinq et G sous -va r ié té caractér is t ique (non n é c e s -

2 3 
sairement or ien tab le) . Soit A c G une surf ace (non nécessairement orientable) 

te l le que A P l F = ô A e t soi t : ft une membrane pour F (dans M) de bord ôITi = ô A . 
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A l o r s q ' ( în) = 0 . 

LEMME 2 . L 'appl icat ion q : H ^ F ; Z / 2 Z ) Z / 4 Z est quadratique pour la 

forme bil inéaire d 1 intersection de la surface F : 

q ( a + j8) = q ( a ) + q ( £ ) + 2 a . £ . 

Démonstration du lemme 1. 

Par d ive r ses opérations de sommes connexes p longées , on se ramène au cas 

où M , F et ô A sont connexes . 

L e voisinage du bord de A dans F est a lors un anneau (•*) et si & v 

désigne l e nombre d 'obstruct ion à étendre un champ de vecteur normal à fri dans M , 

i l suffira d 'é tabl i r ô v + № -F s 0 mod 2 . 

3 5 2 
Désignons par v et [i l e s fibres normaux à G dans V et à A dans 

G 3 . Un voisinage tubulaire de A 2 dans ( V 5 , G 3 ) est (W,U) = (E(v^ © J J ) , E ( / i ) ) . 

Soit N 4 l e bord de la variété V - W , a lors H = F - W U à U = N f l G est une surface 

caractér is t ique pour N . 

Soient s , s ' et t des sect ions de v | g et jLt en position générale , où 

i 2 2 
s I ô A est un c o l l i e r de ô ïn dans tu ; e l les nous permettent de pousser A dans 

ôW et de former l e 2 c y c l e : 

£ 2 = (m - W) U s ® t ( A 2 ) ( c N 4 ) . 

2 2 2 
Appliquons-lui la formule d e W u : S •£ + S .H = 0 . 

Soit u une section du fibre normal à lu coihcidant avec s 1 sur ô . 

2 . E = (Ift - W U s * t ( A 2 ) ) • (u(to - V ^ U s 1 © t ( A 2 ) = lm . u(Hn) + s (A 2 ) • s 1 (A 2 ) 

2 2 
= © + s(A ) • s 1 (A ) ca r modulo 2 1 1 autointersection d'un c y c l e immergé 

est égale à la c l a s se d 'Eu le r de son fibre normal. 

(•*) ca r 11 auto intersection SA dans F est bord de l 1 autointersection de A 
dans G , donc nulle. 
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I !L_ ..L. А... у 7<^> 

LEMME 1 

1 I ) ?1 % 

LEMME 2 
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S . H = ( î î i -W)Us&t(A 2 )) • (F -WU ôU) - rn . F + s ( A 2 ) . A 2 

2 2 2 2 
mais s (A ) . A = s(A ) . s ! ( A ) , d ' où en additionnant : 

0 = E . E + £ . H = & v + t o - F • 

Démonstration du lemme 2 . 

Soient Un et 11 des membranes pour a et fi . Il s 1 agit de construire une 

membrane pour a + fi . Si l e s bords de to et de h sont dis joints , on a a . fi = 0 

et P = tïï U h est une membrane pour a + fi pour laquelle q ! ( P ) = q ! ( ^ ) + q ! ( h ) • 

Si l e s bo rds de îïi et de W ne sont pas disjoints , nous pouvons supposer 

qu 1 i l s sont en position généra le . P r è s de chaque point de ô to fl ô , soient 

(x , y , z , t) des coordonnées tel les que : 

1) x et y sont des coordonnées de F p rès de x^ ; 

2) to est d 1 équation x + y = t = 0 z ^ : 0 ; 

h est d 1 équation x - y = t = 0 z < 0 . 

Soient m ^ et n 1 l e s membranes to et h pr ivées du voisinage tubulaire 

de F de rayon 1 . Soit B la bande paramétrée par : 

( u , v ) > - 4 ( v u , - u , v , u ( l - v 2 ) ) , (u ,v) € [ - 1 , 1 ] 2 . 

Posons P ^ t ï i ^ U I ^ U B ; la membrane P est obtenue en prolongeant, 

j u squ ' à F , la surface P ^ l e long de rayons du fibre normal à F . Notons que 

le champ de vecteur ( 0 , 1 , 0 , 0 ) est normal à m , h et P et que : 

P - F = m . F + n . F + # (ÔIH n a: n ) 

et donc q F ( P ) = q 1 (m) + q ' (h) + 2 a. fi • 
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I V . - PREUVE DU THEOREME 

On cons idère i c i des couples ( M 4 , F 2 ) où M est une variété c l o s e orientée 

de dimension quatre et F est une surface caractér is t ique . 

DEFINITION 5 . Deux couples (M,F) et M 1 , F 1 ) sont cobordants s 1 i l existe un 

couple ( V 5 , G 3 ) tel que Ô V 5 = M U - M ' ; Ô G 3 = F U F ' où V 5 est une variété 

3 

compacte or ientée de dimension cinq et G une sous-var ié té caractér is t ique. L e 

groupe de cobordisme ainsi obtenu est l e groupe de cobordisme caractéris t ique noté 

a4. 
c 

Par des chi rurgies d ' ind ice un sur des c e r c l e s disjoints de la surface c a r a c ­

térist ique F , tout couple (M,F) est cobordant à un couple (M' ,F) avec 

i ^ H ^ F ; Z / 2 Z ) ) = { 0 } c H ^ M ' ; Z / 2 Z ) . Si (M,F) = ô ( V , G ) , la moitié de 

l ' homologie de F est représentée par des bords de surfaces dans G . Du lemme 1, 

on t i re donc le co ro l l a i r e suivant. 

COROLLAIRE. Pour tout (M,F) , on peut définir a (M,F) qui ne dépend que de 

la c l a s se de cobordisme caractér is t ique de (M,F) et fournit un homomorphisme 

a : 0 4
 Z / 8 Z . 

c 

Remarque. La signature a et 1 ' autointersection de la surf ace caractéris t ique 

4 
F • F définissent deux homomorphismes de QQ dans Z . Pour établir que l es 

4 / 
deux homomorphismes a - F . F et 2a de Slc dans Z / 1 6 Z sont égaux, i l suffit 

4 
de 1 ' établir sur des générateurs de O c . 

L E S EXEMPLES FONDAMENTAUX 

1 
EXEMPLE A . La droite CP est caractér is t ique dans le plan projectif complexe 

C P 2 ; l e s invariants sont a ( C P 2 ) = 1 , C P 1 . C P 1 = 1 , a ( < C F 2 , C P 1 ) = 0 . 
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EXEMPLE B , Soit c : C P 2 C P 2 la conjugaison complexe, C P 2 / c est une 

4 
sphère d 'homotopie S (el le est simplement connexe ca r une droite complexe coupe 

2 
P P transversalement en un point et sa caractéris t ique d 1 Euler est 

i ( x ( c p 2 ) + X O R P 2 ) ) = * ( 3 + 1) = 2 ) . ( * ) 

2 C P 2 4 
L e plan project i f r ée l R P c — — est caractér is t ique (puisque H 9 ( E ) = 0 ) . 

On a 0 6 ^ - ) = 0 , F F 2 . F F 2 = 2 ( F P 2 . F F 2 ) = 2 ( - x ( F P 2 ) = - 2 et 
c C P 2 / c C F 2 

2 2 1 
a ( C P / a , P P ) = 1 ca r q ( P P ) = 1 c e qui se voit en prenant pour membrane une 

1 2 
moitié de C P , e l le ne recoupe pas P P . L 1 obstruction vaut + 1 : cons idérez 

une conique r ée l l e p roche d 'une conique dégénérant en deux droi tes r ée l l e s p roches 

1 1 2 
de P P ; une moitié de cette conique borde l e bord du tube normal à P P dans P P 

e t , tout en restant dans un voisinage de la membrane, la coupe en un point avec signe +1 (•**) 

• 

AFFIRMATION 5 . L e s exemples A et B forment une base de ft4 . 

Démonstration. Q u ' i l s soient indépendants se voit en considérant l e s homomorphismes 

signature et autointersection. L ' exemple A permet de se ramener au cas de signa­

ture nulle ; l ' exemple B permet de se ramener au ca s de signature et autointersection 

nulle ( l 'autointersect ion de la surface caractér is t ique est congrue modulo deux au 

rang et donc à la signature de M , ca r W ( Z / 2 Z ) l e groupe de Witt des formes b i -

l inéaires symétriques non dégénérées sur Z / 2 Z est isomorphe à Z / 2 Z ) . L ' a f f i r ­

mation découle a lors de la proposit ion suivante. 

PROPOSITION 2. Soit ( M 4 , F 2 ) un couple comme au paragraphe 1 tel que 

a(M) = F . F = 0 . A l o r s , (M,F) est nul dans O 4 . 

(#•) En fait, X est difféomorphe à la sphère S : ce la peut se vo i r en considérant 
une décomposition en anses de C P 2 , invariante par la conjugaison complexe, et 
ayant une seule anse d ' ind ice deux dont l ' âme est la moitié de la cornplexifiée d 'une 
droi te r é e l l e . 

( * * ) puisque c e sont des courbes complexes . 
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Démonstration. Puisque la signature réa l i se un isomorphisme du groupe de c o b o r -

4 5 
disme Q sur Z , M est bord d 1 une variété or ientée de dimension cinq V . 

Soit t une trivialisation au-dessus du deux squelette de M 4 - F 2 du fibre 

tangent à M dont l 'obs t ruct ion soit F . Il y a a lors dans V un t rois c y c l e G de 

bord F et une trivialisation E au-dessus du deux squelette de V - G qui étende 

t et dont l 'obs t ruc t ion soit G . 

LEMME 3 . Soit V une variété à bord de dimension cinq ; soit G dans V un t ro is 

c y c l e relatif dont l e bord soit une surface d 'autointersection nulle du bord de V . 

A l o r s G est cohomologue modulo le bord à une sous-var ié té G de V . 

Démonstration. Supposons G triangulé et que G soit une variété p rès de 1 ' inté­

r ieur des i Simplexes pour i > i Q , c ' est certainement vrai pour i Q = 2 . Soit 

10 - 2-in 
a =s cr un Simplexe de G de dimension i n , le link L de a dans G est une 

u a 
5 4 - i 0 

sous-var ié té de codimension deux du link de a dans V qui est une sphère S 
0" 

2-in 
L e link L borde une variété dans : pour i Q = 2 parceque G est 

un c y c l e , sinon l e f ibre normal E à L dans S a une section non nulle s 

(trivial si Í Q = 1 et si Í Q = 0 , en ayant bien sûr p r i s soin de connecter par un 

arbre tous l e s sommets de G , parceque F . F = 0 ) . La sous-var ié té s (L ) de 
cr 

ô E représente un élément de H ( ô E , Z / 2 Z ) ; considérant la suite exacte de 

Mayer Vie tor i s H 1 ( E ; Z / 2 Z ) © H 1 ( S - E ; Z / 2 Z ) H 1 ( ò E ; Z / 2 Z ) * H 2 ( S ; Z / 2 Z ) = 0, 

1 
on voit que,quitte à modifier s (L) par un élément de H (E ; 2Z/2Z) , on 

1 ° 
peut supposer que s(L) provient de x € H (S - E ; Z / 2 Z ) . Représentons x par 

0 4 3 
une application S - E -> ]RP , t ransverse a ]RP et coïncidant sur le bord avec 

la construction de Thom du fibre normal à s(L) dans ô E . On obtient ainsi une 

sous-var ié té M-ff de S f f de bord L f f . Pour éliminer la singularité de a Q , i l 

suffit de remplacer l ' é t o i l e de o dans G par l e joint de M Q et de cr l e bord 

de cr . 
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Il nous res te cependant à montrer comment changer la c l a s se d 1 homologie 

1 
de s(L) par un élément y de H (E ; Z / 2 Z ) . La c l a s se y est représentée par 

une sous-var ié té Y de codimension un de L Q , la restr ict ion à un voisinage de Y 

du fibre normal à L,^ dans S ^ est isomorphe à e © v ( Y , L^ ) et on peut supposer 

que s est la section constante +1 du fibre tr ivial e ; i l suffit a lors de prendre 

s 1 la section qui est égale à s hors de E ^ ( Y , L a ) , à - 1 au-dessus de Y et 

tel le que P 2 ° s l : v(Y9La) -> y ( Y , L a ) soit l ' ident i té . • 
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