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I.1

UNE EXTENSION D'UN THEOREME DE ROHLIN SUR LA SIGNATURE

Lucien GUILLOU et Alexis MARIN

I. - ENONCE DU RESULTAT

On se place dans la catégorie des variétés différentiables compactes.
. n s 7 Vd . Ve . s L4 7’
Si M est une variété close orientée de dimension n , une sous-variété

n-2

\ de dimension n - 2 sera dite caractéristique si 1'élément de H M ; Z/2Z)

2
qu'elle représente est duale (par la dualité de Poincaré) a la deuxiéme classe de
Stiefel-Whitney w2(M) . Onnote i: Vo3 M llinclusionde V dans M .

Soit M4 une variété close orientée de dimension quatre et soit F2 une

surface close (non nécessairement orientable), caractéristique pour M, vérifiant :
1*(141(172 } Z/22)) = {0} < H,(M ; Z/2Z) .

Il existe alors, relativement a la forme d'intersection homologique sur F ,
une forme quadratique naturelle q : H1(F ; Z/2Z) » Z/4Z telle que la généra-

lisation suivante de la formule de Rohlin [R2] ait lieu

THEOREME. On a la formule : o(M) - F-F = 2a(M,F) mod 16 ,
ou F.F désigne l'autointersection de la surface F dans M (cf. [W]), o(M) la
signature de la variété orientée M et «a(M,F) l'invariant de Brown relatif a la

forme quadratique q associée au couple (M,F) (voir [B] et le paragraphe suivant).
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Remarque. Si la surface F est orientable, la forme quadratique q est a valeurs
dans Z/22Z = 2Z/4Z , et a(M,F) qui vaut alors 0 ou 4 s'identifie au quadruple
de l'invariant de Arf de q : On retrouve la formule connue de Rohlin ([R,]).
Rappelons que le cas F =@ est trés célébre, il date de 1952 et est du aussi a

Rohlin ([R¢]) .

II. - LES FORMES QUADRATIQUES SUR LES Z/2Z ESPACES

VECTORIELS ET L'INVARIANT DE BROWN

(ct. [B], [BLLV] appendices)

Soit V un espace vectoriel sur Z/2Z de dimension finie n , muni
d'une forme bilindaire (x,y) = x.y symétrique, non dégénérée a valeurs dans

z/2z .

DEFINITION 1. Une forme quadratique sur V a valeurs dans Z/4Z est une

application q: V » Z/4Z vérifiant :

qx +y) = qx) +a(y) +2x.y

ol 2: Z/2Z » Z/AZ représente 1'unique homomorphisme non nul.

Remarques et exemples.

1) Ona q(0) = q(0+ 0) =q(0) +q(0) + 2 0-0=q(0) +q(0) , d'ou q(0)=0.

2) Soit q: V » Z/2Z une forme quadratique au sens usuel, alors q = 2q

est une forme quadratique a valeurs dans Z/4Z .

3) Sur V =2Z/2Z il n'y a qu'une forme bilinéaire symétrique non dégé-
nérée : le produit du corps Z/2Z . On a
0=q(1+1)=q(1)+q(1)+21.1=2qg(1)+2, donc q(1)=%1.

11 y a deux formes quadratiques q n et q_ sur un espace de dimension un.
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DEFINITION 2. Une forme quadratique q: V » Z/4Z est neutre s'il existe

un sous-espace H < V de dimension moitié sur lequel q est nulle (on remarquera
que H est égal a son orthogonal pour la forme bilinéaire).

On définit de la maniere .usuelle la somme orthogonale de deux formes quadra-
tiques ; remarquons que si V=V 1 @ V2 est une décomposition orthogonale pour
la forme bilinéaire, alors q = q|v1 ® q|V2 .

En quotientant le semi-groupe des formes quadratiques ainsi obtenu par le
semi-groupe des formes neutres, on obtient le groupe de Witt WQ(Z/2Z ; Z/4Z)
des formes quadratiques sur les Z/2Z espaces vectoriels a valeurs dans Z/4Z
(ctf. [BLLV] Appendices).

Soit q: V » Z/4Z une forme quadratique ; pour tout x dans V, on pose

$(x) = exp (L () = 19 .

DEFINITION 3. L'invariant multiplicatif de Brown de la forme quadratique q

est le nombre complexe :

y(@) = 22

Z Yvx) (nh=dimV) .
XevV

PROPOSITION 1. L'application y établit un isomorphisme entre le groupe de

Witt WQ(Z/2Z ; Z/4Z) et le groupe des racines huitiémes de 1'unité.
En notations additives, on écrira :
o : WQZ/2Z ; Z/4Z) » Z/8Z ou y =¢c o0

1+i

¥}

avec ¢ : Z/82Z === {racines huitidmes de 1'unité} et e (1) = exp(al) =

Remarque. Si la forme bilinéaire est isotrope, L.e. vérifie x-x =0 pour tout x
de V, laforme quadratique q ne prend que des valeurs paires : q= 2q (car
0 = g(2x) = q(x) + q(x)) , q est une forme quadratique classique, ¥ ne prend que

les valeurs + 1 et - 1 et l'invariant de Brown y de q estle classique invariant
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de Arf de q qui vaut + 1 si la forme représente plus souvent 0 que 1 et -1 dans

le cas contraire.

Démonstration de la proposition.

AFFIRMATION 1. 7(q,®q,) = 7 (q,) ® 7 (q,)

_nq+np _nq _np
Démonstration. y(q1 & q2) = 2 z Ylx+y) = 2 77 3 p(x) ¥(y)
x+y€V1€BV2 xEV1
Ly _n2
-[2% suw]x[2 7% z 4] = rla)rla)
XEV yev

1 2

g

AFFIRMATION 2. Si la forme quadratique q est neutre, y(q) = O .

Démonstration. Soit Hc V de dimension moitié tel que q(H) =0 ; soit V=H® L

une décomposition en somme directe.

n n n

~ 2 , 2 e. 2 e.
y@ =22z yme) =22 ¢ pme@EDTT =22 £ oz ¥y
h+2€V h+e€Vv €L h€H
n _n
=22[>: T 0"y +un] = 2%xpH = 1
‘ e€L-0 h€H
car, pour € # 0, ¢.h prend autant de fois les valeurs O et 1 . O

AFFIRMATION 3. Si la forme bilinéaire n'est pas isotrope, V est somme ortho-

gonale d'espaces de dimension un.

Démonstration. Soit ¢ € V le vecteur caractéristique (tel que, pour tout x dans V,

c.x=x.X); si dimV= 2, il existe y distinctde c telque y.y=1; V se
décompose en Z/2Z y © y"‘ et puisque y est distinct de ¢, la forme bilinéaire

restreinte a 1'orthogonal y de y est non isotrope ; on termine par induction

sur dimV . O
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AFFIRMATION 4. Soit q une forme quadratique a valeurs dans Z/4Z -. Alors

4q est isométrique a -4q (et donc 8q est neutre).

Démonstration. Soit W=V&® V& V& V . Soit qoi: VW, i=1,2, 3,4.

¢1(x) = (O,X7X9X) H ‘PZ(X) = (X’()’X:X) ’ ‘PB(X) = (X,X,O,X) ’ ¢4(X) = (X,X,X,O).

On a q(qoi(x)) = 3q(x) = -q(x) et <pi(V) est orthogonal a <pj(V) pour i #£j 1'iso-

4
morphisme cherché est & @ - [
i=1
Considérant q @ qQ, ® q_, l'affirmation 3 et 1'exemple 3 nous assurent

que WQ (Z/2Z ; Z/4Z) est cyclique, d'ordre un diviseur de huit par 1'affirmation 4.

Les affirmations 1 et 2 assurent que y est un homomorphisme, dans les racines

1

e exp (i w/4) est

huitiemes de 1'unité ; on conclut en vérifiant que 7(q+) =

primitive. D

Remargue. Le lecteur pourra établir que 1'invariant de Brown, d'une forme quadra-
tique q, le rang et 1'isotropie ou 1'anisotropie de la forme bilinéaire déterminent

la classe d'isométrie de la forme quadratique q .

IlI. - DEFINITION GEOMETRIQUE DE LA FORME QUADRATIQUE :

q: H(F; Z/2Z)— Z/AZ

On est dans la situation du paragraphe I .

QEEENIT,I_QN 4. Une membrane m2 pour la surface caractéristique F est une
surface (non nécessairement orientable), immergée dans M, plongée et normale
a F prés de son bord am? (cF) et dont 1'intérieur soit transverse a F .

Le bord d'une membrane M consiste en des courbes simples fermées de F ;

notons 6 le nombre d'obstruction a étendr‘e‘le fibré normal a ces courbes dans F
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en un sous-fibré de rang un du fibré normal a M dans M ; c'est l'entier obtenu
en évaluant sur la classe fondamentale de M ladite obstruction qui habite
Hz(m , oM rr1(]R]P1)t) les coefficients étant tordus par 1'orientation normale de h .

On pose alors :
q'(h) = 6 +2M-F (mod 4)

ou M-F désigne le nombre de points d'intersection transverse de 1'intérieur de

mh avec F .

Remarque. Si les composantes du bord de M ont pour voisinage dans F des
anneaux, alors 6 =26, ou 6, estle nombre d'obstruction a étendre un champ de
vecteurs normaux au bord de la membrane m dans F en un champ normal a toute la

membrane dans M (le facteur 2 vient de ce que 81‘)-) ]R]P1

est une application
de degré 2) .

En particulier, si la surface caractéristique F est orientable, on a toujours :
q'(m) =26, +2Mm .F =2(6, + n.F) mod 4 qui habite Z/2Z = 2Z/4Z ; on retrouve

la définition de Rohlin ({R,]) .

Des deux lemmes qui suivent, nous apprenons, par le premier appliqué a
MxI,FxI), que q'(h) ne dépend que de la classe d'homologie modulo 2 du bord
de W dans F, ce qui permet de définir une fonction q: H1(F ; Z/2Z) » Z/4Z
(puisque i *(H1(F ; Z/2Z)) = 0) ; et par le second, que cette fonction est une forme
quadratique associée a la forme bilinéaire d'intersection de la surface.

5

LEMME 1. Supposons que (M*,F?) soit bord de (V°,G%), avec V°

variété
compacte orientée de dimension cinq et G3 sous-variété caractéristique (non néces-
sairement orientable). Soit Az‘ < 03 une surface (non nécessairement orientable)

telleque A NF =03A et soit M une membrane pour F (dans M) debord 3m = 34.
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Alors q'(m) =0 .

LEMME 2. L'application q: H1(F ; Z/2Z) » Z/4Z est quadratique pour la
forme bilinéaire d'intersection de la surface F :

qla+B) = qla) +q(B) +2a-8

Démonstration du lemme 1.

Par diverses opérations de sommes connexes plongées, on se rameéne au cas
ot M, F et dA sont connexes.

Le voisinage du bord de A dans F est alors un anneau (%) et si Gy
désigne le nombre d'obstruction a étendre un champ de vecteur normal a m dans M,
il suffira d'établir 6, + M .F = O mod 2 .

5

Désignons par v et y les fibrés normaux a G3 dans V~ eta A2 dans

G2 . Un voisinage tubulaire de A% dans (V5,G3) est (W,U) = (E(lez & u),E(u)) .
Soit N4 le bord de la variété V - %V, alors H=F - \X/U oU=NNG est une surface
caractéristique pour N .
Soient s, s' et t des sections de v | A2 et u en position générale, ou
s | aA2 est un collier de oM dans M ; elles nous permettent de pousser Az dans
oW et de former le 2 cycle :
£2 - (m-wuUset@d?) ©nh

Appliquons-lui la formule de Wu : 22-22 + EZ.H = 0.

Soit u une section du fibré normal a m coincidant avec s' sur amh .

0 2 o 2 20 (A2
M-WUs&t(A)) - (um-WUs'@ (") = M .u) + s(a%) - s'(&%)
6 +s(29) . s'(a?)
est égale a la classe d'Euler de son fibré normal.

L3
t4
Il

car modulo 2 1'autointersection d'un cycle immergé

(%) car 1'auto intersection 3A dans F est bord de 1'autointersection de A
dans G, donc nulle.
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O A2 o 2\ A2
Z.H=M-WUs&t(&)) - (F-WUIU) = I .F + s(&).A
. 2, .2 N N . _
mais s(&°).A° = s(A%).s'(&%) , d'ou en additionnant :

0=2.Z2+2Z.H=6, +h - -F O

Démonstration du lemme 2.

Soient M et n des membranes pour « et 8 . Il s'agit de construire une
membrane pour « + 8 . Si les bords de 'm et de n sont disjoints, ona a«.g8=0
et P =M Un estune membrane pour «+ 8 pour laquelle q'(®) =q'(M) +q'(n) .

Si les bords de m et de h ne sont pas disjoints, nous pouvons supposer

qu'ils sont en position générale. Pres de chaque point x, de dm M an , soient

0

(x,y,z,t) des coordonnées telles que :
1) x et y sont des coordonnées de F preés de X
2) M estd'équation x+y=t=0 z20 ;

n est d'équation x-y=t=0 z=<0

Soient m1 et h1 les membranes M et h privées du voisinage tubulaire

de F derayon 1. Soit B labande paramétrée par :

(u,v) = (vu,=u,v,u(1-v?) , (u,v) € [-1,112
Posons P1 =M 1 U h1 UB ; lamembrane P estobtenue en prolongeant,

jusqu'a F, lasurface ® . le long de rayons du fibré normal a F . Notons que

1
le champ de vecteur (0,1,0,0) estnormala M , h et P et que :

.a
eyl
I

mM.F+nh.F+#(dhNd n)

et donc q'®) = q'M)+q'(h) +2 «. 8 -
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IV. - PREUVE DU THEOREME

- N\ . » 4 hY L4 rd . Ve
On considere ici des couples (M ,F2) ou M est une variété close orientée

de dimension quatre et F est une surface caractéristique.

DEFINITION 5. Deux couples (M,F) et M',F') sont cobordants s'il existe un
3

couple (VS,GB) tel que av5 =MU-M'"; 3G " =FUF' ou V5 est une variété

compacte orientée de dimension cing et G~ une sous-variété caractéristique. Le

groupe de cobordisme ainsi obtenu est le groupe de cobordisme caractéristique noté

4

a_ .
C

Par des chirurgies d'indice un sur des cercles disjoints de la surface carac-
téristique F , tout couple (M,F) est cobordant a un couple (M',F) avec
M'; 2/2Z) . si M,F)=2(V,G), lamoitié de

H(F;Z/2Z)) = {0} cH

RANLY 1

1'homologie de F est représentée par des bords de surfaces dans G . Du lemme 1,

on tire donc le corollaire suivant.

COROLLAIRE. Pour tout (M,F) , on peut définir «(M,F) qui ne dépend que de

la classe de cobordisme caractéristique de (M,F) et fournit un homomorphisme

a: 02-» Z/8Z

Remarque. La signature o et 1' autointersection de la surface caractéristique
F . F définissent deux homomorphismes de ﬂg dans Z . Pour établir que les
deux homomorphismes o - F.F et 2a de Qé dans Z/16Z sont égaux, il suffit

de 1'établir sur des générateurs de Qg .

LES EXEMPLES FONDAMENTAUX

EXEMPLE A. La droite CP1 est caractéristique dans le plan projectif complexe

cp? ; les invariants sont G(CPZ)

-1, epl.eP' -1, a@P?,eP-0.
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EXEMPLE B. Soit c: CIP? - CPP? la conjugaison complexe, CIP%/c est une

sphere d'homotopie 24 (elle est simplement connexe car une droite complexe coupe

]RIP2 transversalement en un point et sa caractéristique d'Euler est

S((CP?) + xRPD) =13+ 1) = 2). (%)
e 2 _ CIP2 s . -4
Le plan projectif réel RIP“ c —— est caractéristique (puisque Hz(u )=0).
2
On a cr(céL -0, RFF. RP? = 2(RP?. RP? =2(-x(RP?) =-2 et
CIP2/c cp2

a(C]P2/0 ,]R]Pz) =1 car q(]R]P1) = 1 ce qui se voit en prenant pour membrane une
moitié de C]P1 , elle ne recoupe pas ]R']P2 . L'obstruction vaut + 1: considérez
une conique réelle proche d'une conique dégénérant en deux droites réelles proches
de ]R]P1 ; une moitié de cette conique borde le bord du tube normal a ]R]P1 dans ]R]P2

tout en restant dans un voisinage de la membrane, la coupe en un point avec signe +1 (¥%)
t

AFFIRMATION 5. Les exemples A et B forment une base de ﬂ‘ct .

Démonstration. Qu'ils soient indépendants se voit en considérant les homomorphismes

signature et autointersection. L'exemple A permet de se ramener au cas de signa-
ture nulle ; 1'exemple B permet de se ramener au cas de signature et autointersection
nulle (1'autointersection de la surface caractéristique est congrue modulo deux au
rang et donc a la signature de M, car W(Z/2Z) le groupe de Witt des formes bi-
lindaires symétriques non dégénérées sur Z/2Z est isomorphe 3 Z/2Z). L'affir-
mation découle alors de la proposition suivante.

4 1:,2

PROPOSITION 2. Soit (M ,F“) un couple comme au paragraphe 1 tel que

oM)=F.F=0. Alors, (M,F) estnul dans 0: .

(*) En fait, 24 est difféomorphe a la sphere S4 : cela peut se voir en considérant
une décomposition en anses de CP<¢ , invariante par la conjugaison complexe, et
ayant une seule anse d'indice deux dont 1'ame est la moitié de la complexifiée d'une
droite réelle.

(%) puisque ce sont des courbes complexes.
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Démonstration. Puisque la signature réalise un isomorphisme du groupe de cobor-

disme 94 sur Z , M estbord d'une variété orientée de dimension cing V5 ]
Soit t une trivialisation au-dessus du deux squelette de M4 - F2 du fibré
tangent a M dont 1'obstruction soit F. Il y a alors dans V un trois cycle G de

bord F et une trivialisation E au-dessus du deux squelette de V - G qui étende

t et dont 1'obstruction soit G .

LEMME 3. Soit V une variété & bord de dimension cing ; soit G dans V un trois
cycle relatif dont le bord soit une surface d'autointersection nulle du bord de V .

Alors G est cohomologue modulo le bord a une sous-variété G de V .

Démonstration. Supposons G triangulé et que G soit une variété pres de 1'inté-

rieur des i simplexes pour i > i0 , c'est certainement vrai pour i, =2 . Soit

0
) 2-ip -
0’ le link L de 0 dans G est une
o .
4-i
sous-variété de codimension deux du link de o dans V5 qui est une sphére S(J
2-ig ' '

Le link L borde une variété M dans S : pour i
(o (o] g 0

un cycle, sinon le fibré normal E a L o dans S o aune section non nulle s

i -
=0 Oun simplexe de G de dimension i
=2 parceque G est

(trivial si iO =1 etsi iO =0, en ayant bien siir pris soin de connecter par un

arbre tous les sommets de G, parceque F.F =0). La sous-variété s(Ld_) de

3E  représente un élément de H1(a E,Z/2Z) ; considérant la suite exacte de

Mayer Vietoris H'(E ; Z/2Z) 6 H\(S - E; Z/2Z) » H'(3F ; Z/2Z) » HA(S ; 2/2Z) - o,
on voit que,quitte & modifier s(L) par un élément de H1(E ; ZZ/22Z) , on

peut supposer que s(L) provient de x € H1(S - g:; Z/2Z) . Représentons X par

3 et coincidant sur le bord avec

. (4]
une application S - E= ]R]P4 , transverse a RIP
la construction de Thom du fibré normal a s(L) dans 3E . On obtient ainsi une
sous-variété M o de S 0 de bord LO‘ . Pour éliminer la singularité de 9g - il

suffit de remplacer 1'étoile de ¢ dans G par le joint de M o et de o le bord

de o
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Il nous reste cependant a montrer comment changer la classe d'homologie
de s(L) par un élément y de H1(E ; Z/2Z) . Laclasse y est représentée par
une sous-variété Y de codimension un de Lo , la restriction a un voisinage de Y
du fibré normal a [, g dans S _ estisomorphe ae® V(Y’Lo ) et on peut supposer
que s est la section constante +1 du fibré trivial ¢ ; il suffit alors de prendre
s' la section qui est égale a s hors de Ev (Y’Lo) , a-1 au-dessus de Y et

telle que P, © s': v(Y,Lo)» v(Y,Lo) soit 1'identité. O
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