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Annals of Mathematics, 106 (1977), 269-293 

La transversalité topologique 

Par A . MARIN 

Hudson a noté en [Hu-1] une différence essentielle entre la catégorie des 
variétés différentiables d'une part et celles des variétés linéaires par morce­
aux ou topologiques d'autre part; dans ces deux dernières catégories, on ne 
peut pas rendre localement transverses, de façon relative, deux sous-variétés 
d'une variété ambiante donnée. Pour donner une théorie satisfaisante de la 
transversalité dans le domaine linéaire par morceaux, Rourke et Sanderson 
avaient déjà introduit leurs désormais célèbres fibres en blocs ([RS-4]) qui 
leur ont permis plus tard ([RS-1]) de construire une machine semi-simpliciale 
éclairant l'exemple d'Hudson et prouvant que la théorie qu'ils avaient 
dévoilée est essentiellement "la seule possible." 

Dans le domaine topologique, Kirby et Siebenmann établissent un 
théorème de transversalité relatif pour la notion de transversalité vis-à-vis 
d'un microfibré normal à l'une des deux sous-variétés ([KS-1, § 1]); mal­
heureusement les microfibrés normaux n'existent souvent que stablement. 

Ici nous proposons, dans le cas de deux sous-variétés topologiques de 
codimension strictement supérieure à deux, la notion de transversalité vis-
à-vis d'un microfibré normal stable à l'une des deux sous-variétés. Cette 
notion semble plus maniable que celle de "neighborhood transversality" 
suggérée par Rourke et Sanderson en [RS-2] (bien qu'elle lui soit en fait 
équivalente) et permet de prouver un théorème de transversalité relatif. 
Un théorème de transversalité à la Thom, pour les applications continues, 
découle ensuite par un procédé connu. 

Nous relions notre notion de transversalité à celle de Kirby et Sieben­
mann: si deux variétés sont transverses en notre sens et si la variété inter­
section admet un microfibré normal dans l'une des deux sous-variétés, alors 
cette dernière est transverse vis-à-vis d'un microfibré normal à l'autre.* 
Ce théorème du microfibré normal ambiant permet d'établir (et ce de façon 
relative) la symétrie (pour les deux sous-variétés) de la notion de transver­
salité vis-à-vis d'un microfibré normal stable. 

Dans un appendice, nous étudions les obstructions à ce qu'une situation 

* Défini seulement prés de l'intersection, ce fibre prolonge le fibre normal donné. 
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de transversalité locale soit tr ans verse vis-à-vis d'un microfibré normal 
stable. Nous obtenons des réponses analogues à celles données par Rourke 
et Sanderson en [RS-1] dans le cas linéaire par morceaux où, bien entendu, 
G/PL est remplacé par G/TOP. 

En codimension inférieure ou égale à deux (avec peut-être des exceptions 
en dimension quatre), il y a existence et unicité des microfibrés normaux 
selon [KS-2], donc le théorème de Kirby et Siebenmann peut être utilisé. Un 
complément à [KS-2] (donné dans l'Appendice E) fournira un théorème de 
symétrie dans le cas où Tune des sous-variétés est de codimension <; 2, et 
l'autre sous-variété est de codimension ^ 3 . (Transversalité à la sous-variété 
de codimension <;2 doit être entendu au sens de Kirby et Siebenmann.) 

On sait donc répondre aux problèmes de transversalité topologique sauf 
pour quelques cas où intervient la dimension quatre, à savoir les valeurs 
suivantes de 

(w; m, n; m + n — w): (w; m, n,; 4), 

(4; m, n; m + n — w) (w; 4, w — 2; 2), (w; 4, w — 1; 3) 

et bien sûr les valeurs obtenues en permuttant m et n (ici on envisage deux 
sous-variétés de dimensions m et n respectivement dans une variété de 
dimension w; voir les conventions ci-après). 

Les ingrédients essentiels de ce travail comprennent bien sûr le théorème 
de transversalité de Kirby et Siebenmann (et donc le théorème de structure 
en produit). En plus interviennent le théorème de triangulation de R.T. 
Miller pour les plongements de polyèdres en codimension ^ 3 ([E-2] et [KS-1, 
III App. B]), le théorème de Casson-Sullivan sur les plongements des équi­
valences d'homotopie en codimension ^ 3 ([W-l, §11]), et le théorème de 
Lickorisch-Siebenmann topologique dont nous donnons une nouvelle preuve 
s'appuyant sur la théorie des voisinages réguliers topologiques de R. Edwards. 

Je remercie mon ami L. Guillou pour ses critiques pertinentes ainsi que 
L.C. Siebenmann de m'avoir suggéré le problème, d'avoir notablement 
simplifié la solution originale et surtout d'avoir accompagné l'élaboration 
de la forme définitive de ce travail d'un zèle et d'une obstination auxquels 
on doit la parution de cet article. 
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Références 

0. Quelques conventions 

Mm et Nn sont des sous-variétés localement plates d'une variété topologi­
que sans bord Ww dotée d'une métrique. Les sous-variétés M et N sont 
localement transverses si le triple (W; M, N) est, près de tout point de 
l'intersection M f] N, homéomorphe au triple linéaire (Rw; Rx x Rp x 0, 
0 x Rp x Rv); en ce cas on note P l'intersection M n N. 

Les stabilisées UW, Wv et UWV sont respectivement Ru x W, W x R° et 
Ru x W x Rv; au moyen des inclusions des tranches zéro, la variété W est 
sous-varié té de ses stabilisées. Les entiers u et v sont choisis sufïisament 
grands pour qu'il y ait existence et unicité de microfibrés normaux à M 
dans Wv et à N dans UW. 

Les lettres fi et v désignent des germes près de P de microfibrés 
normaux à iVdans W et à M dans W respectivement. Quant aux lettres £ 
et 7] elles seront réservées à des germes près de P de microfibrés normaux 
stables à N dans UW et à M dans Wv respectivement. L'expression un 
microfibré défini près de C signifie un germe près de C de microfibré. 

Rappelons qu'un microfibré fi normal à iNTdans W est une rétraction sur 
la variété N d'un voisinage de N dans la variété ambiante W qui soit une 
submersion (topologique) dont les fibres sont des sous-varié tés. On le notera 
par abus de langage fi: 

La figure et le tableau suivant aideront à fixer ces notations: 

Nv = NxRv VN" n = P + y 

V stable, v non s tab le^"—^stab le , ^ non stable 

J V T ^ ^ N . uM = Ru x M parallèle à M: m, x, u, £, p.. 
I \ p P v 

Ww J Mm m = x + p parallèle à N: n,y,v, rj,v. 

FIGURE 1 
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1. La transversalité stable 

Définition 1 . 1 . La variété N est stablement transverse à la variété M 

en P pour r], noté N ffi M pour 7], si: 

(i) Les variétés M et N sont localement transverses et P = M f] N. 

(ii) Près de P on a Nv = ^ ( P ) . 
La variété N est stablement transverse à la variété M s'il existe un 

microfibré normal stable r] tel que N(\\M pour rj\ auquel cas nous dirons que 
le microfibré rj cale stablement la variété N. 

La variété N est transverse à la variété M pour v, noté N ffl M pour v 

si près de P on a 

N = v~\P) . 

Nous dirons en ce cas que le microfibré v cale la variété N. 

THÉORÈME DE TRANSVERSALITÉ POUR LES SOUS-VARIÉTÉS 1 . 2 . Soit C un 

fermé de W tel que, près de C la variété N soit stablement transverse à M; 

soit D un autre fermé de W, soit V un voisinage de D dans W et soit 

s: W—> [0, o o ] une fonction continue, positive sur D. 

Alors dès que p = m + n — w^£, w — m^Zetw — n^Z il existe une 

e-isotopie ht, 0 ̂  t ^ 1 , rel C U (W — V)* de Videntité de W à un tel que 

hx{N) soit stablement transverse à M près de C U D. 

Plus précisément si N ffi M pour rf près de C il existe un rj égal à rf 

près de C tel que h^N) ffi M pour f] près de C U D. 

La preuve sera donnée au Paragraphe 3 . 

PREMIER THÉORÈME DU MICROFIBRÉ NORMAL AMBIANT 1 . 3 . Supposons 

N ffi M pour rj\ soit C un fermé de W et un microfibré normal à N dans 

W défini près de C, tel que: près de C on ait M (\\ N pour et de plus les 

fibres stables rj et fi' x (id | Rv) commutent en tant que rétractions. Soit fjt0 un 

microfibré normal à P dans M qui étende la restriction de [J! à P. 
Alors dès que w — m ^ 3 et w — n^Zil existe un microfibré normal fi 

à N dans étendant et fjt0 tel que Von ait M (\\ N pour fi et le fibre 

normal stable 7) est concordant relativement à C à un fibre rf qui commute 

avec fi x (id\Rv). 

La preuve occupera le Paragraphe 5, on en tirera aussi comme corol­
laire le 

THÉORÈME DE SYMÉTRIE 1 . 4 . Dès que w — m^Setw — n^Sla variété 

* "rel" signifie fixant un voisinage de. 
** défini seulement près de Mf)N. 
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N est stablement transverse à M si et seulement si: 
( 1 ) Les variétés M et N sont localement transverses, et 
( 2 ) Il existe près de P deux micro fibres normaux stables j]\ u Wv —* UM 

et fv: v Wv —* Nv qui commutent en tant que rétractions et vérifient: 

UM ffi Nv pour £v et Nv fjl UM pour urj . 

Plus précisément: 

a) Si N ffl M pour r] posons j] = (id | Ru) x r]. Supposons qu'un & soit 

défini près d'un fermé C et y jouit avec ur] des propritétês (2). Alors £i 

s'étend en un défini près de tout Nv et jouissant avec j] des propriétés 

(2). 
. b) Soit C un fermé de W près duquel Çv = £' x (id | R°) où Ç' est un 

micro fibre normal stable à N dans UW, défini près de C. Alors il existe une 

concordance stable relative à C de f v à £ x (id\Rv) où f étend £' et M(\]Npour f. 

Le lecteur pourra en déduire le: 

SECOND THÉORÈME DU MICROFIBRÉ NORMAL AMBIANT 1 . 5 . Supposons 

N ffl M pour 7]) soit C un fermé de W et v' un microfibré normal à M dans 

W, défini près de G et tel que: près de C on ait N ffl M pour v'ety] — p°vf 

où p:Wv~+W est la projection; soit v0 un microfibré normal à P dans N 

qui étende la restriction près de Cdev'à P. 

Alors dès que w — m^S et w — n^3 il existe un microfibré normal v 

à M dans W défini près de P, étendant vf et v0, tel que M ffl N pour v et il 

existe de plus une concordance stable relative à C de 7] à p o v. 

Définition 1.6. Soit M une sous-varié té localement plate d'une variété 
topologique W. Une application / d'une variété topologique N dans W est 
dite stablement transverse à M si: 

(i) f~\M) est une sous-variété localement plate de N. 

(ii) L'application stabilisée fx (id\Rv): Nv —> Wv est homotope, à travers 
des applications Ft telles que Fr\M) = f~~\M), à un morphisme FY d'un 
microfibré normal stable à f~\M) dans Nv vers un microfibré normal stable 
à M dans Wv. Remarquons que grâce à l'unicité à isotopie près des micro-
firés normaux stables (voir [Hi] et [KS-1, IV App. A]) cette définition est 
indépendante des microfibrés choisis. On peut bien sûr donner une définition 
plus "précise" (analogue à 1 . 1 ) où les microfibrés sont explicitement mention­
nés. Le lecteur établira alors (s'il en éprouve le besoin) la forme "précise" 
du 

THÉORÈME DE TRANSVERSALITÉ DES APPLICATIONS 1 . 7 . Soit C un fermé 
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de W au-dessus* duquel l'application f: N—+W soit stablement transverse 

à M. Soit D un autre fermé de W, soit V un voisinage de D et soit 

s: ^—»[0, o o ] une fonction continue, positive sur D. 

Alors dés que m + n — w^Aetw — m^Sil existe une e-homotopie fu 

0 t <j i 1, fixe au dessus de C U ( W — V), de f à un f qui soit stablement 

transverse à M au dessus de C U D. 

La preuve est reportée au Paragraphe 6. 

2 . Les théorèmes auxiliaires 

Dans ce paragraphe nous énonçons les résultats nécessaires à la preuve, 
donnée au paragraphe suivant, du théorème de transversalité. Un des points 
de cette preuve est une "astuce d'échange" qui va nous faire inverser les 
rôles de M et N. 

Afin de réduire au minimum les risques de torticolis dans les situations 
"inverties" les figures associées aux théorèmes auxiliaires satisferont toujours 
aux conventions de la Figure 1. 

Le lemme suivant suffirait à prouver un théorème de transversalité si 
"P admettait un microfibré normal unique dans N." Nous rappliquerons 
dans la variété stabilisée Wv. On peut le considérer comme un substitut de 
l'unicité des voisinages tubulaires DIFF. 

LEMME D'UNICITÉ 2.1. Pour i = 0 et i — 1 soit Mt une sous-variété de 
W avec fibre normal vt tel que N soit transverse à Mi pour v{ en P et 
v 0 1 P — Vi | P = v. Soit C un fermé de P près duquel (M0, v0) et (Mlf soient 
égaux, soit D un autre fermé de P et V un voisinage de D dans W. 

Alors dès que m ^ 5 il existe une isotopie ht rel C\J (W — V) et fixant 
N de Videntité de W à un hY tel que, près de CDD le transporté** de vQ par 
hx soit égal à vt (et donc M1 = hj{M0))m 

FIGURE 2 

La preuve, qui consiste en une application répétée du théorème de 
Lickorisch-Siebenmann topologique sera donnée au Paragraphe 4. 

* "au dessus de C" signifie près de 
** Par définition h^v^hrl\ on le note désormais hi(v0). 
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Remarques 2.2. ( 1 ) Le lemme d'unicité ne sera utilisé, au Paragraphe 

3, que sous sa forme absolue (on a énoncé la forme relative pour permettre 

une démonstration locale). 

( 2 ) L'intérêt du lemme d'unicité est de passer à côté du "théorème 

faux" suivant (voir Appendice C): 

Si N0 et Nx sont stablement transverses à M en P et N0 = iS^ près d'un 

fermé C il existe une isotopie ht relative à C et fixant M telle que h1(N0) = Nl. 

( 3 ) Le fait que dans ce lemme la variété N soit laissée fixe facilitera la 

déstabilisation (voir § 3 et comparer avec l'Appendice C où un théorème de 

déstabilisation "de l'autre côté" devra être utilisé). 

Quelques définitions. Un plongement / : K x I—* Q (K un espace topo­

logique) vers une variété Q est localement non-noué le long de I, si pour tout 

point (x, t) de K x I il existe un voisinage Ux x Vt dans Kxl, une variété Px 

contenant Ux et un plongement ouvert F: Px x Vt —> Q qui prolonge f\UxxVt 

Remarquons qu'en ce cas f~\dQ) est de la forme K x {0,1} U L x I où L est 

un fermé de K. Nous dirons que / est une concordance entre les plongements 

f\: K x 0 — dQ et f\: K x 1 -> dQ. 

Dans le cas où Q — M x I et K c M x 0, la concordance f est relative à 

un fermé C de Ksif restreinte à un voisinage d e C x / est en produit avec 

/ . 

Soit P une sous-variété de N, un germe transverse à N en P dans W est 

un germe autour de P de sous-variété de W localement transverse à N en P. 

Nous dirons que deux germes transverses M0 et Mt sont concordants s'il 

existe une concordance / : (NUM0)xI —• W x I telle que / I M o X O U i N T x I s o i t 

l'inclusion et f(M0 x 1) = Ml x 1. 

Le théorème qui suit nous permettra de tirer dans la variété ambiante 

des conclusions analogues à celles que nous donne le lemme d'unicité dans la 

stabilisée Wv. 

THÉORÈME DE STABILITÉ 2.3. Soit M un germe transverse en P à la 

sous-variété stabilisée Nv dans Wv. Soit C un fermé de W tel que, près de 

C, la variété M soit germe transverse à N en P dans W, soit D un autre 

fermé de W et V un voisinage de D dans Wv. 

Alors, dès que w — m ^ 3 et w — w2:3 , il existe une concordance relative 

à (CÇ]M)\J(M — V) de M à un Mf qui, près deCUD, soit germe transverse 

à N en P dans W. 

Il y a un deuxième théorème de stabilité que l'on utilisera pour calculer 

l'espace des germes transverses dans l'Appendice C (Théorème B.3). 

Le Théorème 2.3 (ainsi que l'analogue B.3) est un corollaire du théorème 
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j ^ K f*v 

FIGURE 3 

de Casson-Sullivan sur les plongements en codimension trois. Rourke et 
Sanderson prouvent dans le cas PL un théorème équivalent ([RS-1, § 3]). 
Nous donnerons une démonstration calquée sur celle de Rourke et Sanderson 
dans l'Appendice B. 

Nous désignerons par K, soit une variété topologique, soit la réunion 
d'une variété et de l'un de ses germes transverses, soit plus généralement 
un polyèdre topologique non localement noué dans dQ, ce qui, selon Edwards 
[E-l] , signifie que K est un fermé de dQ tel que pour tout x de K, il existe 
un voisinage (Px, Ux) de x dans (dQ, K) qui soit homéomorphe à (Rq~\ T) où 
T est un polyèdre de Rq~l tel que pour tout x de T le groupe fondamental 
nx(Lk(x9 Rq~l) - Lk(x, T)) soit libre. 

THÉORÈME DE LICKORISCH-SIEBENMANN TOPOLOGIQUE 2 . 4 (cf. [LS]). Soit 
f: Kx I—+Q une concordance, soit G un fermé de K et soit U un voisinage 
de C dans dQ. Supposons donnée F: Ux I—>Q une concordance qui pro­
longe f restreinte à C x I. 

Alors dès que dim Q ^ 7 (ou 6 si codim i f ^ 3 ou si K est une variété), il 
existe Ul un voisinage de K dans dQ et Fx: U1x I' Q une concordance qui 
prolonge f et est égale à F près de C x I. 

FIGURE 4 

Rourke et Sanderson ont prouvé ce théorème si K est une variété [RS-2]; 

on peut, dans le cas codim K ^ 3, obtenir une preuve plus directe utilisant 

la triangulation locale et le théorème de Lickorisch-Siebenmann PL, une 

preuve topologique du cas général s'appuyant sur la théorie des voisinages 
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réguliers d'Edwards apparaît dans l'Appendice A; cette preuve cependant 

exige dim Q ^ 7. 

On notera que ce résultat permet de donner une forme relative (à un 

Kx I de codimension strictement supérieure à deux) du théorème topologique 

du s-cobordisme, et donc un théorème global d'extension des concordances 

(dans le cas Q = Vx I). 

Remarque 2.5. Tous les énoncés des Paragraphes 1 et 2 ont une forme 

fortement relative, il suffit donc de les prouver localement. Ce que l'on 

entendra par localement sera précisé au début de chaque démonstration 

après les mots "on peut supposer." 

3. Preuve du théorème de transversalité 1.2 

Le cas m = 3 en codimension ^ 3 est immédiat car transversalité stable 

n'est que transversalité locale; le théorème est obtenu en triangulant locale­

ment et en mettant en position générale. Le même argument prouve un 

théorème de transversalité dans le cas m = 4, il est cependant moins trivial 

de reconnaître que transversalité locale et transversalité stable sont la même 

chose (voir Appendice D). Nous ne traiterons donc ici que le cas m ^ 5. 

Nous allons bouger M et non N pour obtenir une isotopie ht telle que 

N (îi h^M) pour 7] près de C U D. Cette conclusion est cependant équivalente 

à celle du théorème (it suffit d'utiliser la version avec s et de considérer 

l'isotopie fer1). 

On peut supposer W = Rx x N, M et N sont des cartes, D compact et 

V — W, l'isotopie devant être à support compact. Remarquons aussi que 

grâce à une excision préalable de C, on peut remplacer-la condition rj = rf 

près de C par tj = rf hors d'un compact. 

Le cas favorable 3.1 est celui où l'on a de plus: 

M = Rx x P v , „ ^ A r 

près de C n D n N . 
7/ = ( i d | i 2 * ) x O / P ) T 

[W 

^ / V ^ V \ — - R x 

M 

N 

FIGURE 5 (près de Cf)DnN) 
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Il suffit alors d'appliquer le théorème de Kirby-Siebenmann au microfibré 

trivial normal à N pour obtenir l'isotopie ht. 

Reste à construire rj\ par l'existence des microfibrés normaux stables 

7]'\PnC s'étend en un microfibré normal rj+ à P+ = N n K(M) près de C U D 

dans Nv(voir [Hi] et [KS-1, IV App. A]). Nous définirons donc rj hors de G 

par 7] = (id|i2*) x yj+. 

Remarque 3.2. Le cas favorable illustre l'astuce d'échange qui consiste 

à se distancier du microfibré rf donné pour aller appliquer le théorème de 

Kirby et Siebenmann à un microfibré "artificiel" de l'autre côté. 

Il s'agit maintenant de se ramener au cas favorable 3.1. 

AFFIRMATION 3.3. Il existe un homéomorphisme p de W fixant N tel que, 

près deCf]Df]N: 

( 1 ) <p-\M) = RxxP; 

( 2 ) rf est concordant au transporté par cp x (id | Rv) de (id | Rx) x 0 / | P ) 

par une concordance qui respecte Nv. 

Le théorème d'extension des concordances (théorème de Lickorisch-

Siebenman topologique 2.4) permet de supposer la concordance à support 

compact (cette remarque sera systématiquement utilisée dans ce qui suit). 

L'affirmation produit donc un rf' égal à rf hors d'un compact et qui vérifie 

les hypothèses du cas favorable. 

Preuve de l'Affirmation 3.3. Construisons d'abord cp. Le lemme d'unicité 
2.1 nous offre O: Ix Wv^ fixant IxNv, une isotopie de l'identité de Wv telle 
que 

O^idl Rx) x (î/ |P)) = 7] près deCf)Dp\N, ainsi cp^R* x P) = M près deCf)Dp\N. 

Nous allons construire une concordance, de l'identité de Wv, <D': I x Wv*^> 

telle que: 

(a) <P' = O près de 1 x ( C n D f] N). 

(b) <D'(I x M)al x W{cl x Wv) près de I x (C n D n N) et <D'(J x M) y 

est germe transverse à Ix N dans I x W. 

Le théorème de stabilité 2.3 nous donne un O'I IxM avec les propriétés 

(a) et (b) et une concordance relative à l x ( C r i j D n i V ) de 0 | 7 x i l f à ce 

0 ' | / x M. Il suffit alors d'appliquer le théorème de Lickorisch-Siebenmann 

topologique 2.4 à cette concordance (dont on note l'intervalle J) relativement 

à (1 x (C n D n N) x J) U (0 x Wv x J). Le temps 1 de l'extension obtenue sera 

l'epaississement ®' cherché de ®' 11 x M. 

Par le théorème de Lickorisch-Siebenmann topologique, la flèche (définie 

seulement près de I x (C D D n N)) 
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i 
i 

I x W v y / 

<J> - I x C n D H N x O 

FIGURE 6 

0 ' | : / x ( M U i V ) > IxW 

se prolonge en une concordance de l'identité de W à support compact et fixant 
IxN: 

<!>":IxW >IxW. 

Nous définissons <p = ®i' et la propriété M = CP(Rx x P) près de C f] D n N 

résulte de ce que, près de C n D n N, on a ç>\(R* x P) = ©['| ^ O H ^ O J . 

La concordance de rf résultera d'une concordance de q> x (id | R°) à 01=®! 

près de C D D n et fixant ikf et iV„; cette dernière découle du lemme suivant 

qui achèvera la démonstration du théorème de transversalité 1 . 2 . 

LEMME D'UNICITÉ DES PROLONGEMENTS 3.4. Soit f: Ix K-+IxQ une 

concordance de f0: Q et F', F": IxQ—*IxQ deux concordances de id|Q 

qui prolongent f. Alors F[ et F[f sont concordants par une concordance 

fixant Ix K que Von peut de plus supposer relative à un fermé C si Ff et 

F" sont égales près de C x I. 

Preuve de 3.4. La concordance est ( i d 1 1 x FDF''1 F": IxQ^. • 

Remarque sur "concordance implique isotopie" 3.5. Toutes les con­

cordances de la preuve précédente peuvent se remplacer par des isotopies 

en vertu du théorème d'extension des isotopies et du théorème de "con­

cordance entraîne isotopie" pour les germes transverses. Ce théorème résulte 

du théorème d'Hudson ([Hu-2]) dès que l'on a noté que le lemme de triangu­

lation de l'Appendice B permet de trianguler la situation près de Ix D où 

D est dans une carte de P. (Le théorème de concordance entraîne isotopie 

T O P est vrai pour polyèdres et variétés de codimension ^ 3 (voir [Pe]) mais 

plus difficile à prouver car on ne peut pas supposer f(I x x) c I x V où V admet 

une structure PL.) 

4 . Preuve du lemme d'unicité 2.1 

On peut supposer que v est trivial, trivialisé par <p: P x Rv —* N. 
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AFFIRMATION 4.1. Il existe des trivialisations <pt: Mtx Ry —>W de vt 

pour i — 0 et i = 1 qui prolongent cp et soient égales près de C. 

AFFIRMATION 4.2. Il suffit de montrer le lemme d'unicité dans le cas 

y = l. 

Les preuves seront données en fin de paragraphe. Plaçons-nous donc 

dans le cas y = 1, cpQ et <pt étant les trivialisations de l'affirmation 4.1. 

Introduisons les glissements z\ de MtxR pour i = 0 et i = 1 définis par: 

T*t(Z, s) = (z, s + t). 

Dans le cas absolu l'isotopie ht fera commuter le diagramme suivant* 

MQx R ^ M0x R M,x R -^L M,x R 

<Po <Pi 
1 ITETI 1 

W ! = i — > W 

où h est un plongement ouvert qui reste à définir. Dans le cas relatif, il 

suffit d'atténuer ce ht absolu par une fonction continue 7: Wx [0,1] —*[0,1]: 

7(z, t) = 0 pour z hors de V. 

7(z, t) = t pour z près de D. 

Construction de h. Soit Q le germe de variété autour de P x [ l / 4 , 3/4] 

comprise entre q>Q(M0 x 1/4) et cp1(Mi x 3/4) (ces germes sont disjoints car 

<p0 = <Pi sur P x R). 

Q / P x 1 / 4 

P x O 

FIGURE 7 

9>0 étend la concordance P x [1/4, 3/4] près de C x [1/4, 3/4]; soit F définie 

près de P x [ l / 4 , 3/4] une extension de cp0, définissons h sur trois morceaux: 

h = cp'1 o Ç>0 SUr M 0 X J - oo , i_J , 

fc = ^ r l Q sur M 0 x ^ - , i - J , 

/z, = o F m x i d | ^ , oo | ^ s u r I 0 x | , o o , g 

* L'isotopie ht est définie par ce diagramme sur <p0(MxR), le théorème d'extension des 
isotopies produit une isotopie h t définie sur tout W. 
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Preuve de VAffirmation 4.2. Appliquons une première fois le lemme 
d'unicité (cas y = 1) à (<Pi(Mi x Rv~x), q>i(pï))> où pt est la projection: Mt x Ry—* 

Mi x Ry~\ et soit ^ Tisotopie obtenue. Dans la variété gx(q>JiMi x Ry~1)) = 

cp^M^ Ry"1) appliquons le lemme d'unicité (supposé vrai par induction sur 
y) et soit kt Tisotopie produite. Il suffit de poser: ht = (kt x id\R)ogt (où 
l'expression ktx(id\R) correspond à la décomposition en produit déterminée 
par cp). • 

Preuve de VAffirmation 4.1. Une trivialisation pouvant s'interpréter 

comme un morphisme dans un fibre trivial, l'affirmation découlera du lemme 

suivant: 

LEMME 4.3. Supposons N transverse à M en P pour v et soit r: M-+ P 

une rétraction {définie seulement près de P ) . Alors il existe près de P un 

morphisme de microfibré p:v—+v\P au dessus de la rétraction r. De plus, 

si un tel p0 est donné près d9un fermé C on peut imposer p = p0 près de C. 

Preuve de 4.3. Remarquons qu'il existe un voisinage F de P dans M e t 

une homotopie rt: V—>M telle que r 0 = ià\M et T\ = r (cette construction peut 

se relativiser). Il suffit alors d'appliquer le théorème d'homotopie des micro-

fibrés (qui est relatif). • 

Nous aurons besoin au paragraphe suivant du: 

Complément 4.4. Si la rétraction r est la projection d'un microfibré fi09 

le morphisme p de 4.3 est la projection d'un microfibré fi normal à JV qui 

étend fi0et commute avec v. • 

Remarque 4.5. Soit W une sous-variété de W localement transverse à 
N en l'espace total de v\P\ où P ' est une sous-variété de P. La preuve 
donnée offre un lemme d'unicité respectant W dès que v0 et vx respectent 
W et m + pf — p ^ 5. 

Y w' | / w 

N j _ f N ^ / ) 

FIGURE 8 
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5. Preuves du premier théorème du microfibré ambiant 1.3 

et du théorème de symétrie 1.4 

A. Le premier théorème du microfibré ambiant 1.3. Le complément 
4.4 nous offre un microfibré fiv normal à Nv dans Wv, qui étend fi' x (id|i2*) 
et fi0 et pour lequel M est transverse à Nv. Toujours par ce même complé­
ment fiv\N) admet un microfibré normal trivial étendant p: Gx R° U Nx R°—> 

C\JN. Le lemme d'unicité fournit alors une isotopie ht relative à C et fixant 
Nv qui pousse ft7l(N) sur W. Nous n'avons pas nécessairement fe1|^

1(P)=id|M, 
mais ceci peut être corrigé au moyen d'une concordance G (relative à C et 
fixant Nv): il suffit de remarquer que hx | fi7\P) et id | M sont isotopes, et donc 
concordants, dans Wv, le théorème de stabilité 2.3 produit alors une con­
cordance g dans W entre ces deux plongements, on l'étend par le théorème 
de Lickorisch-Siebenmann topologique 2.3 en une concordance gl définie 
près de P. Il suffit de poser G — gx x id | R\ Le microfibré ¡1 est g^p^N). M 

B. Le théorème de symétrie 1.4. La partie (a) découle du complément 
4.4 une fois remarqué qu'il existe un microfibré £0 normal à Pdans UMétendant 

Quant à la partie (b), ce n'est que le premier théorème du microfibré 
normal ambiant où l'on a fait les substitutions: 

(M, N, V, V\ t*» G) > (UM, N, y, f , f 0, G) 

où f o est obtenu (comme pour la partie (a)) par unicité des microfibrés normaux 
stables. • 

6. Preuve du théorème de trans ver salité des applications 1.7 

Il s'agit de se ramener au théorème de transversalité des sous-variétés 
1.2. 

Pour cela, soit p un plongement localement plat de N dans Ru; l'appli­
cation p xf: N—*UWest un plongement. Vérifions qu'il y a équivalence entre: 

( 1 ) / stablement transverse à M, 

( 2 ) p x f(N) stablement transverse à UM. 

Soit pour ceci £ un microfibré normal à f~\M) dans Nv et soit Fx le 
morphisme du ii) de la définition. Le plongement x Fx\ NV—+UWV est, 
près de f~\M), homotope au plongement pxfx (id | Rv), l'homotopie Ht fixant 
f~\M) et vérifiant Hï\uM) = f~\M); comme u est grand, nous pouvons 
transformer cette homotopie en une isotopie Kt jouissant des mêmes pro­
priétés. La variété p x f(N) est alors trans verse à UM pour le microfibré 
JST1((id | JBW) X rj) (où 7] désigne le microfibré normal à M dans Wv). 

Réciproquement l'unicité des microfibrés normaux stables (on se permet 
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d'augmenter v) fournit une isotopie de tout fibre normal à UM dans UWV à 
un fibre de la forme (id|jRM) x rj; l'homotopie Ft cherchée est la projetée sur 
W de cette isotopie. 

On laissera au lecteur le soin de relativiser la discussion précédente. Le 
théorème de transversalité des applications 1.7 découle alors du théorème 
de transversalité des sous-variétés 1.2 appliqué dans UW. • 

FIGURE 9 

Appendices 

A. Preuve du théorème de Lickorisch-Siebenmann topologique 2.4 

Première 'preuve par triangulation locale (K variété ou codim K ^ 3). 
Si K est une variété de codimension inférieure ou égale à deux, il existe par 
[KS-2] un microfibré normal; le théorème d'homotopie des microfibrés permet 
alors de conclure. 

Le théorème étant local, on peut supposer que K est un vrai polyèdre 
contractile. Le germe de voisinage de i f x I dans Q se trouve ainsi muni 
d'une structure PL unique; le théorème de structure en produit permet de 
supposer que la concordance F est PL. Il ne reste plus qu'à appliquer le 
théorème de triangulation des plongements en codimension 3 pour se ramener 
au classique théorème de Lickorisch-Siebenmann PL. 

Preuve topologique alternative avec la restriction Q ^ 7. Soit R une 
variété topologique à bord, dont le bord dR est décomposé en sous-variétés 
de codimension zéro S0f S1 et T telles que dT = dS0 U dSlu Soit X un polyèdre 
topologique non localement noué dans S0 et soit g: Xx I—+R une concordance. 
On suppose de plus que Y = 3 S 0 n X e s t un polyèdre topologique colleté dans 
X que g(Yx I) est dans T et que g(Xx 1) est dans S t . 

/So 

FIGURE 10 
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AFFIRMATION A . l . Dès que dim R ^ 8 il y a un homéomorphisme du 

germe de S0 autour de X x 0 sur le germe de S T autour de g(X x 1) qui 

prolonge gx ° gô1. 

Preuve de A . l . Rappelons d'abord qu'Edwards construit en [E-l] des 

voisinages réguliers d'un polyèdre topologique X non localement noué dans 

une variété topologique V de dimension strictement supérieure à cinq (six 

dans le cas à bord où il faut supposer de plus que Y = Xf\ d V est un polyèdre 

topologique colleté dans X). Ce sont des sous-variétés 13 de V de codimension 

zéro munies d'une rétraction propre r "cone-like" sur X, on dit alors que X 

est Vâme du tube (13, r); un tube 13 a un bord formel noté 313 analogue au 

fibre en sphères bord d'un voisinage tubulaire. (Dans le cas codim X ^ 3 

"cone like" signifie seulement que pour tout x de X la préimage r~\x) est 

UV°° et r-\x)f]813 est UV1.) 

Soit donc (% r) un tel tube autour de g(Xx I) qui se restreigne en §if r) 

et (3", r) des tubes autour de g(Xx {i}) dans S, pour i = 0 et i = 1 et autour 

de g(Yx I) dans T. (On utilise ici dim dSt = dim R - 2 ^ 6.) 

Le polyèdre topologique X se trouve muni de deux tubes: (S0U<?9t, por) 

où p est la projection p: Xx I—» X et ( S w r); ces deux tubes ont même bord 

formel 8§x et même rétraction restreinte au bord, ils sont donc homéomorphes 

par le théorème du cylindre d'Edwards ([E-l]) qui affirme qu'un tube est 

homéomorphe (par un homéomorphisme fixant le bord formel et l'âme) au 

cylindre d'application de la restriction de sa rétraction au bord formel (la 

preuve se trouve essentiellement dans [EG]). • 

/ " 5 0 U 8 £ \ 

FIGURE 11 

Le cas absolu du théorème de Lickorisch-Siebenmann TOP. Désignons 

par Vi pour i = 1 et i = 2 des voisinages disjoints de f(K x i) dans le bord 

de Q et soit c: (V0, f(Kx 0)) x [0, 2s[) -> (Q, f(Kx I)) un collier étendant / . 

Soit h: I x I+=> un homéomorphisme du carré, fixant I x 0 U 0 x / qui 

envoie I x 1 sur [0, s] x 1. 

\> O v 

h 

à 1 • 1> 
FIGURE 12 



LA TRANSVERSALITÉ TOPOLOGIQUE 285 

Appliquons l'affirmation à la situation R = Qx I, SQ = Q x 0, 
S, = c ( V0 x [0, s]) x 1, X = K x I, Y = K x {0,1} et g = (fx (id | / ) ) o (id | K) x h). 
Nous obtenons un homéomorphisme entre le germe de Q en f(KxI) et celui 
de V0x [0, s] en Kx [0, s]. 

Le cas relatif s'obtient de même en faisant toutes les constructions en 
produit le long de I près de C x I, ce qui est possible car les théorèmes 
d'Edwards sont relatifs. • 

B. Preuve du théorème de stabilité 2.3 

On peut supposer que P est une carte, que M et N sont des cartes de 
platitude locale de P^M et de P^N, que 17 est une carte de platitude 
locale de W, et que V = W, le théorème d'extension des concordances 
(théorème de Lickorisch-Siebenmann topologique 2.4) nous permet de sup­
poser la concordance à support compact. 

Il suffira de prouver le théorème de stabilité dans le cas PL* en vertu du: 

LEMME DE TRIANGULATION B. l . Il existe une structure co sur W dont 

N soit une sous-variété PL et une isotopie ht relative à C U ( W— V) et fixant 

Nv de Videntité de Wv à un ht qui rende, près deCljD le germe h^M) sous-

variété PL de Wv munie de la structure a) x R° et PL localement transverse 

à Nv. 

Preuve de B. l . Munissons tout d'abord P de la structure PL donnée par 
la carte et M, N, W des structures en produit fournies par les cartes de 
platitude locale. 

Près du fermé C l'inclusion M U W est un plongement non locale­
ment noué de polyèdres qui est PL sur le sous-polyèdre N. Le théorème de 
triangulation des plongements en codimension ^ 3 de Miller (voir [E-2] et 
[KS-1, III App. B]) donne une structure co sur W dont N soit sous-variété 
PL et telle que, près du fermé C, la variété M soit sous-variété PL, PL 
localement transverse à N. 

Munissons Nv et WV des structures NxRv et CÛXRV. L'inclusion 
M \JNV

C^WV est un plongement non localement noué, PL sur Nv et près de 
C. Le théorème de triangulation des plongements produit l'isotopie ht 

cherchée. • 

Preuve du théorème de stabilité PL (cf. [RS-1, § 3]). Triangulons Wv 

avec W, Nv, M et P triangules comme sous-complexes. Les cellules duales 

dans la seconde subdivision barycentrique de Wv9 W, Nv, N et M des Sim­

plexes de la première subdivision barycentrique de P forment cinq fibres en 

* Toutes les données et conclusions de 2.3 sont dans la catégorie PL. 
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blocs sur P: EWV, EW, ENvf EN et EM tels que, si la variété S est sous-

variété de R, le fibre en bloc ES est sous-fibré en bloc de ER et, si les 

variétés S et T sont localement transverses dans R, les fibres en blocs ES 

et ET forment une décomposition de ER (voir [RS-3] et [RS-4]). 

Construisons par récurrence sur les blocs de EWV une homotopie. respec­

tant les blocs / : EWV x I—> EWV x I qui vérifie: 

( 0 ) f\EWvx 0 = id et f~\EWv x i) = EWV x î pour i = 0 et i = 1. 

( 1 ) f~\ENvxI) = I S t f . x I . 

( 2 ) / est l'identité sur £ W x I. 

( 3 ) ^ est une rétraction de J57 IF, sur 

Nous allons maintenant construire un plongement cp\ EMxI—+EWvxI 

ayant les propriétés (0), (1), (2) et (3) (restreintes à EM x I) ci-dessus. 

Supposons construite une application gk homotope par blocs à / à travers 

des applications vérifiant (0), (1), (2) et (3) et telle que gk restreinte à EMk x I 

soit un plongement cpk (ici EMk désigne la restriction du fibre en bloc EM 

au ^-squelette de P ) . 

Construisons ç>k+1: EMk+1x J —> EWV x I un plongement prolongeant cpk 

et homotope par blocs à gk \ EMk+1 x J; gk+1 s'obtient alors par extension des 

homotopies par blocs. 

Il suffit bien sûr de traiter le cas où P est un simplexe A f e + 1 de barycentre 

6. Notons È le bloc fibre en sphères, bord du bloc fibre E. 

Remarquons que gk\: ÊMx I—+(ÈWV — ÈNV) x I est une équivalence 

d'homotopie qui est l'identité au temps zéro et le plongement <pk au-dessus 

de A f c + 1 x J. Le théorème de Casson-Sullivan (voir [W-l, Ch. 11]) produit un 

plongement homotope à gk\, qui prolonge cpk et l'inclusion de la tranche zéro. 

On étendra successivement ce plongement à EM x 1 et EM x I en prenant 

les cônes sur 6 x 1 et sur 6 x 1 / 2 . • 

/ ! b x 1 / 2 i 

FIGURE 13 

Définition B.2. Soit Qp+V un germe de voisinage de P. Un morphisme 

(homotopiqué) de (Q, P) dans (N, P) est un germe autour de P d'application 

f:Q-+N, tel que: 

( 1 ) / - 1 ( P ) = P e t / | P = i d . 

( 2 ) f\:Q—P-+N — P est, au voisinage de tout point de P de degré un. 
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En utilisant la forme de Wall du théorème de Casson-Sullivan pour les 

plongements de Poincaré (Th. 1 1 . 3 de [W-l]) le lecteur adaptera la preuve 

du théorème de stabilité pour établir la forme géométrique suivante de la 

stabilité de G/TOP (voir Appendice C et [RS-2]): 

THÉORÈME B . 3 . Soit P une sous-variété de N et f: (Q, P ) —• (Nv, P ) un 

morphisme (homotopique). Dès que n — p ^ 3 , / est homotope en tant que 

morphisme à un morphisme fx tel que fr\Pv) soit une sous-variété locale­

ment plate de Q homéomorphe à Pv par un homéomorphisme cp tel que: 

/ l o 9 > = ( i d | P ) x ( i d | i f ) . 

Indication: Enoncer une forme relative et remarquer qu'une fois la 

situation locale triangulée et organisée en fibres en blocs, alors f~%ÈNv, ÊPV) 

est un plongement de Poincaré. • 

C. L'espace des germes transverses (cf. [RS-1] et [RS-2]) 

Considérons M une sous-variété localement plate de W et P une sous-

variété localement plate de M. Nous allons introduire quelques espaces 

semi-simpliciaux) dont nous ne présenterons que les zéro-simplexes pour ne 

pas alourdir l'exposé.* 

9 l ( P , M) W) sera Vespace des germes transverses à M en P dans W. 

Il sera commode de se permettre à tout moment d'augmenter les entiers 

dest abilisationwet posons donc: W o o = lim TF,, O0W=^\imuWf «, Wœ^lim^TT,,, 

etc. 

L'espace des microfibrés normaux stables à M dans est noté 7{M, WJ). 

Le théorème d'unicité des microfibrés normaux stables exprime que cet 

espace est contractile. Il y a une projection 

p: 7{M, W„) > 9 l ( P , M; W„) 

qui, à tout fibre f, associe l'espace total de £ | P . Le théorème de Lickorisch-

Siebenmann topologique permet de vérifier que c'est une fibration; on note 

70(M; W o o ) la fibre: c'est l'espace des microfibrés stables calant une situation 

de transversalité donnée. 

Considérons l'inclusion 

i: 9 l ( P , M; W) > 9 l ( P , M; T T » ) 

qui, à tout N, associe Nœ. 

A(G/TOP) désigne l'espace des chemins de G/TOP et { P , G/TOP}, 

{ P , A(G/TOP)}, { P , Q(G/TOP)} désignent les espaces d'applications de P dans 

G/TOP, A(G/TOP) et Q(G/TOP) respectivement. Nous pouvons alors énoncer 

* Les 1-simplexes seront des concordances. 



288 A. MARIN 

le 

THÉORÈME C l . (a) Dès que w — m^Setm — p^Z, un inverse v0 du 

fibre normal stable 7]Q de M dans W*, détermine à homotopie fibrée près, une 

équivalence d'homotopie fibrée 

7 0 ( M ; W„) ^ 7{M, W o o ) > 9l(P, M; Wœ) 

po pi p 

{P, Q(G/TOP)} {P, A(G/TOP)} > {P, G/TOP} . 

(b) Si de plus n = p + w — m^£, l'inclusion i: 9l(P, M) W ) —>9l(P, M; W„) 
est une équivalence d'homotopie. 

Commentaire C 2 . Ceci signifie pour la pratique qu'étant donné une 

situation de transversalité locale (P; M, N; W ) il y a une obstruction dans 

[P, G/TOP] à ce que N soit stablement transverse à M et que s'il en est 

ainsi les classes d'isotopie de microfibrés normaux stables calant la situation 

sont en bijection avec [P, Q(G/TOP)] (ici [A, B] désigne les classes d'homotopie 

de A dans B). La partie (b) signifie que si n ^ 5 toutes les obstructions sont 

réalisées et que [P, G/TOP] est en bijection avec les classes d'isotopies de 

germes normaux à M en P dans W (cf. Remarque 3.5). Nous verrons dans 

l'appendice suivant que le cas n = 4 est équivalent à la conjecture de 

l'annulus. 

Nous établirons dans l'Appendice E que, si w — m ^ 2, m — p ^ 3, et si 

w — m = 2, p ^ 2 et m 2, l'espace 9l(P, M] W ) est contractile. 

Preuve de C l . (a) Comme 7 ( M , W o o ) est contractile, il suffit de con­
struire l'équivalence d'homotopie p. Elle rendra commutatif le diagramme 
suivant: 

9l(P, Jlf; o o W o o ) — 7 ( P , o o M ; . I f . ) 7 ( P , %) 

9l(P, ikT; W o o ) = > {P, G/TOP} . 
_p_ 

L'inclusion if provenant de W c o ^ o o W o o est une équivalence d'homotopie 

par le théorème de stabilité 2.3. 

7 ( P , o o M ; c o W o o ) est l'espace des fibres stables sur P dont l'espace total 

est un germe transverse à dans ^ W o o en P, l'application d'oubli e est une 

équivalence d'homotopie par l'unicité des microfibrés normaux stables. 

7 ( P , 7)Q) est l'espace des microfibrés munis d'une équivalence d'homotopie 

fibrée vers 7j09 l'application j est définie par j(rj) = (37 , rj (id | R°°) x Le 

théorème de plongements stables qui permet d'homotoper toute équivalence 
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d'homotopie fibrée f] —> TJ0 Woo <=* «, Wco à un plongement localement trans verse 
à ooikf nous assure que j est une équivalence d'homotopie. 

Quant à 0 v o olle associe à l'élément rj —> rj0 l'application classifiante du 
fibre homotopiquement trivialisé ^ © v0 —» % 0 v0 = s. 

(b) Remarquons que le lemme d'unicité 2.1 nous permet de construire 
un élément № de 9 l ( P , o o M ; o o T 7 ) . Soit r: « , 1 7 — u n e rétraction telle que 
r _ 1 ( P ) = .«M (M est stablement transverse à № pour £ et l'on peut prendre 
pour rétraction la projection de £). 

Par le théorème de stabilité 2.3 il nous suffit de montrer que 
ooi: 9 l ( P , ooM; ooW) — * 9 l ( P , coiW; coTFoo) est une équivalence d'homotopie. Con­
sidérons alors le diagramme commutatif : 

9l(P„, o o K » ; c o T T c ) — 9R(JSTi f P . ) — 9K( iV£ , P ) 

\ X o o 

9 l ( P , . M ; - ^ - > 9 l ( P , ooikf; 

où 9R(-Wi, P ) et 9K(N2,, P o o ) désignent les espaces de germes de voisinages de 
P et P o o munis de morphismes homotopiques dans ( i V £ , P ) et ( i V l , P * , ) . 

L'application m t associe à un germe transverse ce même germe muni du 
morphisme r*, = r x (id | i2°°), quant à m 2 elle associe le germe trans ver se muni 
de rop où p : ^Woo - > M W est la projection. Ce sont toutes deux des équival­
ences d'homotopie par le théorème des plongements stables. 

L'application d'oubli e est une équivalence d'homotopie par la forme 
relative du Théorème B.3. 

Quant à X o o qui à N associe elle est une équivalence d'homotopie 
pour 5 par la forme respectant une sous-variété (ici JVi. e 9l(P«„ o J f c L ; «> W o o ) ) 

du lemme d'unicité (Remarque 4.5). C'est ici que l'on utilise vraiment 
l'hypothèse n ^ 5 car on peut, dans tous les cas, construire le № et une 
rétraction r (qui ne sera pas nécessairement projection d'un microfibré). • 

Remarque C.3. Si 9 l r ( J k f ) désigne l'espace des germes de codimension r 
de voisinages de M le lemme d'unicité 2.1 assure que x oo : 9 i r ( M ) —• 9 l r ( J l f o o ) 

donnée par ( W , M ) —» (TT», M „ ) est une équivalence d'homotopie dès que 
w ^ 5 et r ^ 3: c'est le théorème de stabilité de [RS-2] (voir aussi [ E - l ] ) ; on 
retrouve ainsi la classification homotopique des germes de voisinages en se 
fondant sur le théorème de Lickorisch-Siebenmann topologique (qui apparaît 
comme ultime corollaire dans [RS-2]!). 

D. La transversalité dans le cas p = m + n — w w ^ 4: 

Supposons N localement transverse à M en P de dimension strictement 
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inférieure à deux; comme t t 0 ( G / T O P ) = ^ ( G / T O P ) = 0, on peut construire un 

microfibré stable rj qui cale la situation et ce de façon relative (Théorème C l ) 

(cependant comme ^ ( ^ ( G / T O P ) ) = 7 r 2 ( G / T O P ) = Z 2 il n'y a pas unicité de cet 

v). 

Il suffit donc de prouver un théorème de transversalité relatif pour la 

notion locale de transversalité. 

On peut supposer M, N et W des cartes et la situation triangulée de 

façon à ce que près de C, les variétés M et N soient PL et PL localement 

transverses (les plongements localement plats des variétés de dimension 

strictement inférieure à deux se triangulent, on a donc des structures sur 

M et N dont P soit sous-variété près de C, le reste de la preuve du lemme 

de triangulation B.l restant inchangé). 

Après une isotopie (en restant transverse près de C) on peut supposer 

que les triangulations de M et N sont en position générale près de D, auquel 

cas on est localement transverse près de C U D. 

Remarque D. l sur les microfibrês ambiants. Dès que la dimension de 

JV est différente de quatre toute situation localement transverse en une 

variété P de dimension un est transverse pour un microfibré normal ambiant 

car P admet un microfibré normal dans N et le second théorème du micro­

fibré normal ambiant 1.5 s'applique. 

AFFIRMATION D.2. Si la dimension de N est quatre la construction 

d'un microfibré ambiant est équivalente à la conjecture de Vannulus. 

Une forme de cette conjecture étant Lickorisch-Siebenmann TOP, avec 

K un point, et Q de dimension quatre, elle permet de construire des fibres 

normaux aux variétés de dimension un dans le variétés de dimension quatre. 

Réciproquement un contre-exemple est un arc dans Q qui n'admet pas de 

fibre normal; notons qu'en recollant deux voisinages VQ et Vx des extrémités 

de cet arc, on obtient un cercle dans une variété orientable N qui n'admet 

pas de fibre normal: 

S'il y avait un fibre normal, il serait trivial et donc le germe de N 

autour de S 1 serait le bouclage de son revêtement oo -cyclique iV(voir [S])* 

mais le revêtement oo-cyclique ayant une trivialisation où V0 = V1 est une 

fibre, le théorème d'unicité des bouclages fournit un fibre normal à Sx dans 

N dont VQ — V1 est une fibre et l'arc avait donc un fibre normal dans Q 

* Attention: il est essentiel de supposer ici que le voisinage Q4 de S1 est trivial. Q4 

n'est pas nécessairement un bouclage au sens de [S] (s'il Tétait on viendrait de prouver la 
conjecture de Tannulus!). 
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^ ^ ^ ^ ^ 

FIGURE 14 

contrairement à l'hypothèse. • 

L'homéomorphisme de bouclage est l'identité près de V0 = Vx et sur S 1 . 

E . Les microfibrés normaux respectant une sous variété en 
codimension inférieure ou égale à deux 

COMPLÉMENT AU THÉORÈME A DE [KS-2] E . l . Soit Np+y et Mp+X deux 

sous-variétés localement transverses en Pp dans Ww, la codimension y de 

M étant inférieure ou égale à deux, et la codimension x de N supérieure 

strictement à deux. Soit v0 et vx deux microfibrés normaux à M dans W 

dont les restrictions à P sont des microfibrés normaux à P dans N. Soit C 

un fermé de M près duquel vQ et vl coincident. Soit D un autre fermé de M 

et V un voisinage de D dans W. 

Alors dès que (n, p) ^ (4 , 2 ) et (w, m) ^ (4 , 2 ) il existe une isotopie ht de 

Videntité de W relative à C U ( W— V) et fixant M telle que h^) = vx. 

Preuve. Le cas y — 1 est le théorème du collier relatif qui est bien 

connu. 

Pour le cas y = 2 , il suffit de relire l'article de Kirby et Siebenmann en 

utilisant cependant la catégorie PL* et l'unicité des fibres normaux PL en 

codimension 2 (voir [RS-3], [W-2], le cas respectant une sous-variété décou­

lant de B PL^+2^,2 contractile pour x^Z [RS-1]). Le lemme de l'anse devient 

LEMME DE L ' A N S E E . 2 . Soit h: (Bk x Rq+Z+2, Bl x Rg+2, Bk x Rq+z)^(où 

l = k ou l <k et q = 0 ) un homéomorphisme identité sur Bk x Rq+Z et PL 

près de 3BkxRq+z+2. 

Alors sip = q + l=£2etm = k + q + z^2, il existe une isotopie ht à 

support compact, relative à dBk x Rq+Z+2, fixant Bk x Rq+Z et respectant 

* Car nous utiliserons les théorèmes de triangulation en codimension ^3 de Miller. 
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B1 x Rq+2 de h à un ht qui soit un plongement PL près de Bk x Rq+Z. 

Preuve de E . 2 . Comme Kirby et Siebenmann nous ne traiterons que le 

cas z ^ 0, le cas z — 0 se traitant par une construction analogue et plus 

simple. 

On construit le tour en partant de 

i' Bkx y ? + ( z - 1 ) + 2 X - K - > - B f e x - B 9 + Z + 2 

un plongement de Novikov tel que hoi\Blx Tq+2x0 soit un plongement PL. 

Ceci s'obtient par triangulation des plongements en codimension strictement 

supérieure à deux. 

Cet ajustement fait, la machine tourne en respectant B1 x Tq+2 x 0 et fait 

sortir à l'autre bout l'isotopie ht désirée. 

^ ^ ^ i ( B k x B q + z + 2 ) 

FIGURE 15 

Ce complément nous permet de corriger les hypothèses de dimension 

dans tous les théorèmes du Paragraphe 1 en autorisant pour N une codi­

mension <;2, mais en excluant les cas m = 4 et p = 2 ainsi que w = 4 et 

n = 2. 

Le seul endroit où l'hypothèse w — %^3a été utilisée est dans le lemme 

de triangulation B.l pour rendre les plongements M\JN—+W (près de C) et 

M U N9—* Wv plongements PL en fixant N et Nv. Pour ceci il suffit d'utiliser 

des microfibrés normaux triviaux à N dans W et à Nv dans Wv respectant 

M et de les isotoper de façon relative par unicité des microfibrés normaux 

(ne respectant rien du tout) à des microfibrés PL. • 

On obtient ainsi en particulier: 

COMPLÉMENT AU THÉORÈME DE SYMÉTRIE E . 3 . Siw - n<^2, w - m ^ 3 

et (m, p) (4, 2) la variété N est stablement transverse à M si et seulement 

si: 

( 1 ) Les variétés M et N sont localement transverses. 

( 2 ) Il existe près de P deux microfibrés normaux f}\ Wv—>M et [Jtv : Wv—>NV 

qui commutent en tant que rétractions et vérifient: 

M(\\ Nv pour fiv et NV(\\M pour 7] . 

De plus, dans ce cas, il existe un microfibré fi normal à N dans W tel 
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que M ffi N pour μ. 

Le lecteur pourra énoncer la forme relative plus précise. 
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