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Annals of Mathematies, 106 (1977), 269-293

La transversalité topologique
Par A. MARIN

Hudson a noté en [Hu-1] une différence essentielle entre la catégorie des
variétés différentiables d’une part et celles des variétés linéaires par morce-
aux ou topologiques d’autre part; dans ces deux derniéres catégories, on ne
peut pas rendre localement transverses, de facon relative, deux sous-variétés
d’une variété ambiante donnée. Pour donner une théorie satisfaisante de la
transversalité dans le domaine linéaire par morceaux, Rourke et Sanderson
avaient déja introduit leurs désormais célébres fibrés en blocs ([RS-4]) qui
leur ont permis plus tard ([RS-1]) de construire une machine semi-simpliciale
éclairant ’exemple d’Hudson et prouvant que la théorie qu’ils avaient
dévoilée est essentiellement “la seule possible.”

Dans le domaine topologique, Kirby et Siebenmann établissent un
théoréme de transversalité relatif pour la notion de transversalité vis-a-vis
d’un microfibré normal & 'une des deux sous-variétés ([KS-1, §1]); mal-
heureusement les microfibrés normaux n’existent souvent que stablement.

Ici nous proposons, dans le cas de deux sous-variétés topologiques de
codimension strictement supérieure a deux, la notion de transversalité vis-
a-vis d’un microfibré normal stable 4 l'une des deux sous-variétés. Cette
notion semble plus maniable que celle de “neighborhood transversality”
suggérée par Rourke et Sanderson en [RS-2] (bien qu’elle lui soit en fait
équivalente) et permet de prouver un théoréme de transversalité relatif.
Un théoréme de transversalité i la Thom, pour les applications continues,
découle ensuite par un procédé connu.

Nous relions notre notion de transversalité a celle de Kirby et Sieben-
mann: si deux variétés sont transverses en notre sens et si la variété inter-
section admet un microfibré normal dans 1’une des deux sous-variétés, alors
cette derniére est transverse vis-d-vis d’un microfibré normal & 'autre.*
Ce théoréme du microfibré normal ambiant permet d’établir (et ce de facon
relative) la symétrie (pour les deux sous-variétés) de la notion de transver-
salité vis-ad-vis d’un microfibré normal stable.

Dans un appendice, nous étudions les obstructions 4 ce qu’une situation

* Défini seulement prés de l'intersection, ce fibré prolonge le fibré normal donné.



270 A. MARIN

de transversalité locale soit transverse vis-a-vis d’un microfibré normal
stable. Nous obtenons des réponses analogues i celles données par Rourke
et Sanderson en [RS-1] dans le cas linéaire par morceaux ol, bien entendu,
G/PL est remplacé par G/TOP.

En codimension inférieure ou égale 3 deux (avec peut-étre des exceptions
en dimension quatre), il y a existence et unicité des microfibrés normaux
selon [KS-2], donc le théoréme de Kirby et Siebenmann peut étre utilisé. Un
complément 3 [KS-2] (donné dans I’Appendice E) fournira un théoréme de
symétrie dans le cas ou l'une des sous-variétés est de codimension < 2, et
I’autre sous-variété est de codimension =8. (Transversalité a la sous-variété
de codimension <2 doit étre entendu au sens de Kirby et Siebenmann.)

On sait done répondre aux problémes de transversalité topologique sauf
pour quelques cas ou intervient la dimension quatre, a savoir les valeurs
suivantes de

(w; m, n; m + n — w): (w; m, n,; 4),
4;m,nmym+n—w) (w;4,w—2;2), (w; 4, w—1;3)

et bien siir les valeurs obtenues en permuttant m et n (ici on envisage deux
sous-variétés de dimensions m et n respectivement dans une variété de
dimension w; voir les conventions ci-aprés).

Les ingrédients essentiels de ce travail comprennent bien sfir le théoréme
de transversalité de Kirby et Siebenmann (et done le théoréme de structure
en produit). En plus interviennent le théoréme de triangulation de R.T.
Miller pour les plongements de polyédres en codimension =3 ([E-2] et [KS-1,
IIT App. B]), le théoréme de Casson-Sullivan sur les plongements des équi-
valences d’homotopie en codimension =3 ([W-1, § 11]), et le théoréme de
Lickorisch-Siebenmann topologique dont nous donnons une nouvelle preuve
s’appuyant surla théorie des voisinages réguliers topologiques de R. Edwards.

Je remercie mon ami L. Guillou pour ses critiques pertinentes ainsi que
L.C. Siebenmann de m’avoir suggéré le probléme, d’avoir notablement
simplifié la solution originale et surtout d’avoir accompagné 1’élaboration
de la forme définitive de ce travail d’un zéle et d’une obstination auxquels
on doit la parution de cet article.
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0. Quelques conventions

M™ et N*sont des sous-variétés localement plates d’une variété topologi-
que sans bord W* dotée d’une métrique. Les sous-variétés M et N sont
localement transverses si le triple (W; M, N) est, prés de tout point de
I’intersection M N N, homéomorphe au triple linéaire (R“; R* X R® x 0,
0 x R? X RY); en ce cas on note P 'intersection M N N.

Les stabilisées , W, W, et ,W, sont respectivement B* x W, W X R’ et
R* ¥ W x R’ au moyen des inclusions des tranches zéro, la variété W est
sous-variété de ses stabilisées. Les entiers w et v sont choisis suffisament
grands pour qu’il y ait existence et unicité de microfibrés normaux a M
dans W, et 4 N dans ,W.

Les lettres g et v désignent des germes prés de P de microfibrés
normaux 3 Ndans W et & M dans W respectivement. Quant aux lettres &
et 7 elles seront réservées a des germes prés de P de microfibrés normaux
stables & N dans ,W et & M dans W, respectivement. L’expression un
microfibré défini prés de C signifie un germe prés de C de microfibré.

Rappelons qu’un microfibré ¢ normal 4 N dans W est une rétraction sur
la variété N d’un voisinage de N dans la variété ambiante W qui soit une
submersion (topologique) dont les fibres sont des sous-variétés. On le notera
par abus de langage p: W— N,

La figure et le tableau suivant aideront & fixer ces notations:

n
N,=NxR" AN n=pvy

7 stable, v non stable €stable, p non stable

uM = R®xM parallele & M: m, x, u, & L.
paralléle & N: n,y, v, 7, v.

"%

Mrn m= X+p

FicuRre 1
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1. La transversalite stable

Définition 1.1. La variété N est stablement transverse @ la variété M
en P pour 1, noté N\ M pour 7, st:

(i) Les variétés M et N sont localement transverses et P = M N N.

(ii) Présde Pona N, = p7'(P).

La variété N est stablement transverse d la variété M s’il existe un
microfibré normal stable 7 tel que N M pour 7; auquel cas nous dirons que
le microfibré 1) cale stablement la variété N.

La variété N est transverse & la variété M pour v, noté N O\ M pour v
siprésde Pona '

N=yY(P).
Nous dirons en ce cas que le microfibré v cale la variété N.

THEOREME DE TRANSVERSALITE POUR LES SOUS-VARIETES 1.2. Soit Cun
Jermé de W tel que, prés de C la variété N soit stablement transverse a M;
sott D un autre fermé de W, soit V un voisinage de D dans W et soit
e: W — [0, ] une fonction continue, positive sur D.

Alorsdésquen =m +n — w4, w — m =3 et w — n = 3 il existe une
e-isotopie h,, 0 <t <1, rel CU(W — V)* de D’identité de W a un h, tel que
h(N) soit stablement transverse M prés de C U D,

Plus précisément si N\ M pour 0 prés de C il existe un n égal @ 7
prés de C tel que h,(N) N M pour 7 prés de C U D.

La preuve sera donnée au Paragraphe 3.

PrREMIER THEOREME DU MICROFIBRE NORMAL AMBIANT 1.3. Supposons
N O M pour 5; soit C un fermé de W et ¢ un microfibré normal @ N dans
W défini prés de C, tel que: prés de C on ait M\ N pour pt' et de plus les
Jibrés stables ) et p' x (id | R*) commutent en tant que rétractions. Soit (1, un
microfibré normal & P dans M qui étende la restriction de i’ @ P.

Alors dés quew — m =3 et w — n = 3 1l existe un microfibré normal
d N dans W** étendant p' et p, tel que Uon ait M Y N pour p et le fibré
normal stable 7 est concordant relativement @ C @ un fibré 7’ qui commute
avec p X (id| R").

La preuve occupera le Paragraphe 5, on en tirera aussi comme corol-
laire le

THEOREME DE SYMETRIE 1.4, Désquew — m = 8 et w — n = 3 la variété

* “rel” gignifie fixant un voisinage de.
** défini seulement prés de MNN.
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N est stablement transverse & M si et seulement si:

(1) Les variétés M et N sont localement transverses, et

(2) Il existe prés de P deux microfibrés normaoux stables . p: ,W,— M
et &,: W, — N, qui commutent en tant que rétractions et vérifient:

MM N, pour &, et N, ) M pour ,7 .

Plus précisément:

a) St N M pour 0 posons .7 = (id|R*) x 0. Supposons qu’un &, soit
défint pres d’un fermé C et y jouit avec ,n des propritétés (2). Alors &,
s’étend en un &, défini prés de tout N, et jouissant avec ,n) des propriétés
2).

- b) Soit C un fermé de W prés duquel &, = & x (id|R°) oid & est un
microfibré normal stable @ N dans , W, défini prés de C. Alors il existe une
concordance stable relative d C de &, d £ X (id|R*) ou & étend &' et MM N pour &.

Le lecteur pourra en déduire le:

SECOND THEOREME DU MICROFIBRE NORMAL AMBIANT 1.5. Supposons
N M pour u; soit C un fermé de W et V' un microfibré normal @ M dans
W, défint prés de C et tel que: prés de C on ait N\ M pour V' et ) = poy’
ou p: W, — W est la projection; soit v, un microfibré normal @ P dans N
qui étende la restriction prés de C de v’ d P.

Alors désque w — m = 3 et w — n = 8 ¢l existe un microfibré normal v
a M dans W défini prés de P, étendant V' et v,, tel que M ) N pour v et il
existe de plus une concordance stable relative d C de @ pov.

Définition 1.6. Soit M une sous-variété localement plate d’une variété
topologique W. Une application f d’une variété topologique N dans W est
dite stablement transverse d M si:

(i) f~YM) est une sous-variété localement plate de N.

(ii) L’application stabilisée fx (id|R*): N, — W, est homotope, i travers
des applications F', telles que F;yY (M) = f~*(M), 4 un morphisme F, d’un
microfibré normal stable 4 /(M) dans N, vers un microfibré normal stable
a4 M dans W,. Remarquons que grace a ’unicité 4 isotopie prés des micro-
firés normaux stables (voir [Hi] et [KS-1, IV App. A]) cette définition est
indépendante des microfibrés choisis. On peut bien siir donner une définition
plus “précise” (analogue a 1.1) ot les microfibrés sont explicitement mention-
nés. Le lecteur établira alors (s’il en éprouve le besoin) la forme “précise”
du

THEOREME DE TRANSVERSALITE DES APPLICATIONS 1.7. Soit C un fermé
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de W au-dessus® duquel U’application f: N— W soit stablement transverse
a M. Soit D un autre fermé de W, soit V un voisinage de D et soit
e: W— |0, =] une fonction continue, positive sur D.

Alorsdésquem + n — w # 4 et w — m = 3 il existe une e-homotopie [,
0=t<1, fize au dessus de CU (W — V), de f d un f, qui soit stablement
transverse & M au dessus de C U D.

La preuve est reportée au Paragraphe 6.

2. Les théorémes auxiliaires

Dans ce paragraphe nous énoncons les résultats nécessaires a la preuve,
donnée au paragraphe suivant, du théoréme de transversalité. Un des points
de cette preuve est une “astuce d’échange” qui va nous faire inverser les
roles de M et N.

Afin de réduire au minimum les risques de torticolis dans les situations
“inverties” les figures associées aux théorémes auxiliaires satisferont toujours
aux conventions de la Figure 1.

Le lemme suivant suffirait 4 prouver un théoréme de transversalité si
“P admettait un microfibré normal unique dans N.” Nous l’appliquerons
dans la variété stabilisée W,. On peut le considérer comme un substitut de
Punicité des voisinages tubulaires DIFF,

LEMME D’UNICITE 2.1. Pour @ = 0 et © = 1 soit M, une sous-variété de
W awvec fibré normal v, tel que N soit transverse d M, pour v, en P et
Y|P =y, |P=v. Soit C un fermé de P prés duquel (M,, v,) et (M,, v,) soient
égaux, soit D un autre fermé de P et V un voisinage de D dans W.

Alors dés que m = 5 il existe une 1sotopie h,rel CU(W — V) et fixant
N de Uidentité de W a un h, tel que, prés de CU D le transporté** de v, par
k, soit égal d v, (et done M, = h,(M,)).

Ficure 2

La preuve, qui consiste en une application répétée du théoréme de
Lickorisch-Siebenmann topologique sera donnée au Paragraphe 4.

* “au dessus de C” signifie prés de fYC).
** Par définition h ovoohi?; on le note désormais hy(vy).
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Remarques 2.2. (1) Le lemme d’unicité ne sera utilisé, au Paragraphe
3, que sous sa forme absolue (on a énoncé la forme relative pour permettre
une démonstration locale).

(2) L’intérét du lemme d’unicité est de passer a coté du “théoréme
faux” suivant (voir Appendice C):

Si N, et N, sont stablement transverses & M en P et N, = N, prés d’un
fermé C il existe une isotopie %, relative a C et fixant M telle que h,(N,)=N,.

(8) Le fait que dans ce lemme la variété N soit laissée fixe facilitera la
déstabilisation (voir § 3 et comparer avec I’Appendice C ou un théoréme de
déstabilisation “de 1’autre coté” devra étre utilisé).

Quelques définitions. Un plongement f: K X I — @ (K un espace topo-
logique) vers une variété Q est localement non-noué le long de I, si pour tout
point (x, t) de K x I il existe un voisinage U, x V, dans K x I, une variété P,
contenant U, et un plongement ouvert F: P, x V,— Q qui prolonge f| U, x V,
Remarquons qu’en ce cas f(0Q) est de la forme K x {0, 1} U L x I ou L est
un fermé de K. Nousdirons que f est une concordance entre les plongements
Fli Kx0—0Qet fl: Kx1—0Q.

Danslecasou Q@ = M x [ et K< M x 0, la concordance f est relative @
un fermé C de K si f restreinte a un voisinage de C x I est en produit avee
I

Soit P une sous-variété de N, un germe transversed N en P dans W est
un germe autour de P de sous-variété de W localement transverse 4 N en P.

Nous dirons que deux germes transverses M, et M, sont concordants s’il
existe une concordance f: (NUM,)XI— W x I telle que f|M,x0U N XI soit
I’inclusion et f(M, x 1) = M, x 1.

Le théoréme qui suit nous permettra de tirer dans la variété ambiante
des conclusions analogues a celles que nous donne le lemme d’unicité dans la
stabilisée W,.

THEOREME DE STABILITE 2.3. Soit M un germe transverse en P d la
sous-variété stabilisée N, dans W,. Soit C un fermé de W tel que, prés de
C, la variété M soit germe transverse & N en P dans W, soit D un autre
fermé de W et V un voisinage de D dans W,.

Alors, dés que w — m =8 et w — n = 3, il existe une concordance relative
d(CNM)UM — V)de M d un M’ qui, prés de CU D, soit germe transverse
d Nen Pdans W.

Il y a un deuxiéme théoréme de stabilité que l’on utilisera pour calculer
Iespace des germes transverses dans 1I’Appendice C (Théoréme B.3).

Le Théoréme 2.3 (ainsi que I’analogue B.3) est un corollaire du théoréme
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Figure 3

de Casson-Sullivan sur les plongements en codimension trois. Rourke et
Sanderson prouvent dans le cas PL un théoréme équivalent ([RS-1, § 3]).
Nous donnerons une démonstration calquée sur celle de Rourke et Sanderson
dans 1’Appendice B,

Nous désignerons par K, soit une variété topologique, soit la réunion
d’une variété et de 'un de ses germes transverses, soit plus généralement
un polyédre topologique non localement noué dans 9Q, ce qui, selon Edwards
[E-1], signifie que K est un fermé de 0Q tel que pour tout x de K, il existe
un voisinage (P,, U,) de z dans (0@, K) qui soit homéomorphe i (R, T') ou
T est un polyédre de R tel que pour tout z de 7T le groupe fondamental
7, (Lk(z, R*™") — Lk(x, T)) soit libre,

THEOREME DE LICKORISCH-SIEBENMANN TOPOLOGIQUE 2.4 (cf. [LS]). Soit
f: K x I— Q@ une concordance, soit C un fermé de K et soit U un voisinage
de C dans 0Q. Supposons donnée F: U X I — Q une concordance qui pro-
longe f restreinte a C X I.

Alors dés que dim Q@ =7 (ou 6 st codim K = 3 ou 81 K est une variété), il
existe U, un voisinage de K dans 0Q et F,: U, x I — Q une concordance qui
prolonge f et est égale d F prés de C x I.

FIGURE 4

Rourke et Sanderson ont prouvé ce théoréme si K est une variété [RS-2];
on peut, dans le cas codim K = 3, obtenir une preuve plus directe utilisant
la triangulation locale et le théoréme de Lickorisch-Siebenmann PL, une
preuve topologique du cas général s’appuyant sur la théorie des voisinages
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réguliers d’Edwards apparalt dans 1’Appendice A; cette preuve cependant
exige dim Q = 17.

On notera que ce résultat permet de donner une forme relative (4 un
K x I de codimension strictement supérieure a deux) du théoréme topologique
du s-cobordisme, et done un théoréme global d’extension des concordances
(dans le cas @ = V' x I).

Remarque 2.5. Tous les énoncés des Paragraphes 1 et 2 ont une forme
fortement relative, il suffit donc de les prouver localement. Ce que l'on
entendra par localement sera précisé au début de chaque démonstration
aprés les mots “on peut supposer.”

3. Preuve du théoreme de transversalite 1.2

Le cas m = 3 en codimension = 8 est immédiat car transversalité stable
n’est que transversalité locale; le théoréme est obtenu en triangulant locale-
ment et en mettant en position générale. Le méme argument prouve un
théoréme de transversalité dans le cas m = 4, il est cependant moins trivial
de reconnaitre que transversalité locale et transversalité stable sont la méme
chose (voir Appendice D). Nous ne traiterons donc ici que le cas m = 5.

Nous allons bouger M et non N pour obtenir une isotopie &, telle que
N k(M) pour 7 prés de C U D. Cette conclusion est cependant équivalente
i celle du théoréme (it suffit d’utiliser la version avec ¢ et de considérer
I’isotopie AY).

On peut supposer W = R* x N, M et N sont des cartes, D compact et
V = W, l'isotopie devant étre a support compact. Remarquons aussi que
grice 4 une excision préalable de C, on peut remplacer-la condition » = 7’
prés de C par 7 = 7’ hors d’un compact.

Le cas favorable 3.1 est celui ot ’on a de plus:

M=R"%XP
. , préesde CNDNN.
7 = (id|R*) X (7'| P)

i
Ry

P |,
/\‘q/ RY
WA —R*
M
N

FiGUrRE 5 (prés de CNDNN)
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Il suffit alors d’appliquer le théoréme de Kirby-Siebenmann au microfibré
trivial normal & N pour obtenir I’isotopie A,.

Reste 4 construire 7: par ’existence des microfibrés normaux stables
7| PN C s’étend en un microfibré normal . a P, = NN h(M)présde CU D
dans N,(voir [Hi] et [KS-1, IV App. A]). Nous définirons done % hors de C
par 7 = (id| R*) X 7,.

Remarque 3.2. Le cas favorable illustre 1’astuce d’échange qui consiste
3 se distancier du microfibré 7’ donné pour aller appliquer le théoréme de
Kirby et Siebenmann i un mierofibré “artificiel” de 1’autre coté.

Il s’agit maintenant de se ramener au cas favorable 3.1.

AFFIRMATION 3.3. Il existe un homéomorphisme o de W fixant N tel que,
présde CN DN N:

(1) (M) = R* X P;

(2) 7' est concordant au transporté par ¢ x (id| R°) de (id| R*) X (9’| P)
par une concordance qui respecte N,.

Le théoréme d’extension des concordances (théoréme de Lickorisch-
Siebenman topologique 2.4) permet de supposer la concordance 4 support
compact (cette remarque sera systématiquement utilisée dans ce qui suit).
L’affirmation produit donc un 7” égal a4 7’ hors d’un compact et qui vérifie
les hypothéses du cas favorable.

Preuve del’ A firmation 3.3. Construisonsd’abord . Lelemmed’unicité
2.1 nous offre ®: I'x W, fixant I x N,, une isotopie de 1’identité de W, telle
que

@,((id|R*) x (7| P))=nprésdeCN DN N, ainsip,(R*x P)=MprésdeCNDNN .

Nous allons construire une concordance, de I’identité de W, ®": Ix W, <>
telle que:

(a) ' =@présdel x (CNDNN).

(b) ¥UIxM)CIxW(cIxW,)présde Ix(CNDNN)et®IxM)y
est germe transverse 4 I x N dans I x W.

Le théoréme de stabilité 2.8 nous donne un ®'|Ix M avec les propriétés
(a) et (b) et une concordance relative 4 1 x(CNDNN)de ®|Ix M a ce
@'|I x M. 1l suffit alors d’appliquer le théoréme de Lickorisch-Siebenmann
topologique 2.4 a cette concordance (dont on note ’intervalle JJ) relativement
a(I1x(CNDNN)XJ)UOx W,xJ). Le temps 1 de ’extension obtenue sera
I’epaississement @' cherché de @'|I x M.

Par le théoréme de Lickorisch-Siebenmann topologique, la fléche (définie
seulement prés de I x (C N DN N))
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¢ ’

//,
- 1
e
IxW, e J/
v ’TIXMXO 0
[ —1xCMDNNXO

FIGURE 6
Ol IXMUN)— IXW

se prolonge en une concordance de ’identité de W a support compact et fixant
IX N:
O IXW— IXW.

Nous définissons ¢ = @}’ et la propriété M = p(R*x P)présdeCNDNN
résulte de ce que, prés de CN DN N, on a ¢|(R* X P) = )| =0;|=®,].

La concordance de 7’ résultera d’une concordance de ¢ X (id | R*) 4 ®;=®,
prés de CNDN N et fixant M et N,; cette derniére découle du lemme suivant
qui achévera la démonstration du théoréme de transversalité 1.2,

LemMME D’UNICITE DES PROLONGEMENTS 3.4. Soit f: I X K— I X Q une
concordance de fo: K=Q et F', F'": IXQ— I X Q deux concordances de id | @
gut prolongent f. Alors F| et F)' sont concordants par une concordance
Sizant I x K que ’on peut de plus supposer relative d un fermé C si F' et
F" sont égales prés de C x I.

Preuve de 3.4. La concordance est (id|I X F))F'"* F'": I x Q>. [ |

Remarque sur “concordance implique isotopie”’ 8.5. Toutes les con-
cordances de la preuve précédente peuvent se remplacer par des isotopies
en vertu du théoréme d’extension des isotopies et du théoréme de “con-
cordance entraine isotopie” pour les germes transverses. Ce théoréme résulte
du théoréme d’Hudson ([Hu-2]) dés que I’on a noté que le lemme de triangu-
lation de I’Appendice B permet de trianguler la situation prés de I x D ou
D est dans une carte de P. (Le théoréme de concordance entraine isotopie
TOP est vrai pour polyédres et variétés de codimension = 8 (voir [Pe]) mais
plus difficile a prouver car on ne peut pas supposer f(Ixz)CIx Vou V admet
une structure PL.)

4. Preuve du lemme d’unicite 2.1

On peut supposer que v est trivial, trivialisé par ¢: P X BY — N.
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AFFIRMATION 4.1. Il existe des trivialisations @ M, X R' —W de v,
pour © = 0 et © = 1 qui prolongent @ et soient égales pres de C.

AFFIRMATION 4.2. Il suffit de montrer le lemme d’unicité dans le cas
y=1.

Les preuves seront données en fin de paragraphe. Placons-nous donc
dans le cas ¥y = 1, @, et o, étant les trivialisations de I’affirmation 4.1.

Introduisons les glissements 7! de M, x R pour % = 0 et 7 = 1 définis par:
Tz, 8) = (2, s + ).

Dans le cas absolu I’isotopie 2, fera commuter le diagramme suivant*

MyXx B — M,x R —"> M,x R - M,x B

%l _ ‘t%
L]
w > W
ol h est un plongement ouvert qui reste a définir. Dans le cas relatif, il
suffit d’atténuer ce h, absolu par une fonction continue v: Wx [0, 1] —[0, 1]:
Y(z, t) = 0 pour 2z hors de V.
Y(z, t) = t pour z prés de D.

Construction de h. Soit @ le germe de variété autour de Px[1/4, 3/4]
comprise entre @ (M, X 1/4) et @,(M, % 3/4) (ces germes sont disjoints car
@, = @, sur P X R).

ol \j\wmmxsm
Q
Px1/4
/‘*Q_/"’o (Mg x 1/4)

—Px0

FIGURE 7
@, étend la concordance Px[1/4, 8/4] prés de Cx[1/4, 3/4]; soit F définie
pres de Px[1/4, 3/4] une extension de @,, définissons h sur trois morceaux:

h = @flozposurMOX]—oo,%],

_ 1
h =¢1‘oFsurMo><[—4— , _Z’_]

h:fPflo s/AXid’[%,OO[SurMOXl:%,oo[. .

* L’isotopie h; est définie par ce diagramme sur (M XR), le théoréme d’extension des
isotopies produit une isotopie h; définie sur tout W.
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Preuve de I’ Affirmation 4.2. Appliquons une premiére fois le lemme
d’unicité (cas ¥y = 1) a (p (M, X R'™), p(p,)), ol p, est la projection: M, x R'—
M, x R*, et soit g, I'isotopie obtenue. Dans la variété g,(p(M, x R'™)=
@.(M, x R*"*) appliquons le lemme d’unicité (supposé vrai par induction sur
y) et soit %k, 'isotopie produite. Il suffit de poser: k, = (k, X id|R)og, (ol
I’expression k,x (id|R) correspond a la décomposition en produit déterminée
par @,). [

Preuve de I’ Affirmation 4.1. Une trivialisation pouvant s’interpréter
comme un morphisme dans un fibré trivial, ’affirmation découlera du lemme
suivant:

LEMME 4.8. Supposons N transverse & M en P pour v et soit r: M— P
une rétraction (définie seulement prés de P). Alors il existe prés de P un
morphisme de microfibré p: v—v|P au dessus de la rétraction r. De plus,
st un tel o, est domné prés d’un fermé C on peut imposer p = p, pres de C.

Preuve de 4.3. Remarquons qu’il existe un voisinage V de P dans M et
une homotopie 7,: V— M telle que 7, = id|M et r, = 7 (cette construction peut
se relativiser). Il suffit alors d’appliquer le théoréme d’homotopie des micro-
fibrés (qui est relatif). [ ]

Nous aurons besoin au paragraphe suivant du:

Complément 4.4. Sila rétraction » est la projection d’un microfibré ,,
le morphisme o de 4.3 est la projection d’un microfibré g normal a N qui
étend p,-et commute avec v. |

Remarque 4.5. Soit W’ une sous-variété de W localement transverse 3
N en l’espace total de v|P’, o P’ est une sous-variété de P. La preuve
donnée offre un lemme d’unicité respectant W’ dés que v, et v, respectent
Wem+p —p=5.

wv i w;
1
' N /‘
N —— P
A
Pl PL ]
H
|
Mo
|
/) M1

I\

FIGURE 8
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5. Preuves du premier theoreme du microfibre ambiant 1.3
et du theoréeme de symetrie 1.4

A. Le premier théoréme du microfibré ambiant 1.3. Le complément
4.4 nous offre un microfibré ¢, normal 4 N, dans W,, qui étend ' x (id|R")
et y, et pour lequel M est transverse 4 N,. Toujours par ce méme complé-
ment g¢;(N) admet un microfibré normal trivial étendant p: CX R"UN X R*—
CUN. Le lemme d’unicité fournit alors une isotopie A, relative 4 C et fixant
N,quipousse ¢, (N)sur W. Nousn’avonspasnécessairement h,|p¢;(P)=id| M,
mais ceci peut étre corrigé au moyen d’une concordance G (relative a C et
fixant N,): il suffit de remarquer que h, | ¢£;*(P) et id | M sont isotopes, et donc
concordants, dans W,, le théoréme de stabilité 2.8 produit alors une con-
cordance g dans W entre ces deux plongements, on 1’étend par le théoréme
de Lickorisch-Siebenmann topologique 2.3 en une concordance g, définie
prés de P. 1l suffit de poser G = g, xid|R’. Le microfibré pest g,(x,/N). W

B. Le théoréme de symétrie 1.4, La partie (a) découle du complément
4.4 une fois remarqué qu'il existe un mierofibré £, normal a Pdans , M étendant
&IPnC.

Quant 3 la partie (b), ce n’est que le premier théoréme du microfibré
normal ambiant ol 1’on a fait les substitutions:

(M, N’ 7, ﬂ’, Fos C) hatttand (uM’ Ny /8 E'y o C)

ol &, est obtenu (comme pour la partie (a)) par unicité des microfibrés normaux
stables. ]

6. Preuve du theoreme de transversalite des applications 1.7

Il s’agit de se ramener au théoréme de transversalité des sous-variétés
1.2.

Pour cela, soit p un plongement localement plat de N dans R*; I’appli-
cation p x f: N—,W est un plongement. Vérifions qu’il y a équivalence entre:

(1) f stablement transverse @ M,

(2) »x f(N) stablement transverse a M.

Soit pour ceci & un microfibré normal a f(M) dans N, et soit F, le
morphisme du ii) de la définition. Le plongement (pog&) X F;: N, — W, est,
prés de f~(M), homotope au plongement p X fx (id| R*), ’homotopie H, fixant
(M) et vérifiant H;'(,M) = f~(M); comme u est grand, nous pouvons
transformer cette homotopie en une isotopie K, jouissant des mémes pro-
priétés. La variété p x f(N) est alors transverse a ,M pour le microfibré
K((id| B*) x 1) (ot 7 désigne le microfibré normal 4 M dans W,).

Réciproquement ’unicité des microfibrés normaux stables (on se permet
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d’augmenter v) fournit une isotopie de tout fibré normal 3 ,M dans ,W, a
un fibré de la forme (id|R*) X 7; I’homotopie F, cherchée est la projetée sur

W de cette isotopie.
On laissera au lecteur le soin de relativiser la discussion précédente. Le

théoréme de transversalité des applications 1.7 découle alors du théoréme
de transversalité des sous-variétés 1.2 appliqué dans ,W. [ |

f-ﬂM)/‘\/_ /fr l

M \
L_/-\/\JJ

FIGURE 9

Appendices
A. Preuve du théoreme de Lickorisch-Siebenmann topologique 2.4

Premiére preuve par triangulation locale (K variété ou codim K = 3).
Si K est une variété de codimension inférieure ou égale i deux, il existe par
[KS-2] un microfibré normal; le théoréme d’homotopie des microfibrés permet
alors de conclure.

Le théoréme étant local, on peut supposer que K est un vrai polyédre
contractile. Le germe de voisinage de K x I dans @ se trouve ainsi muni
d’une structure PL unique; le théoréme de structure en produit permet de
supposer que la concordance F est PL. Il ne reste plus qu’a appliquer le
théoréme de triangulation des plongements en codimension 3 pour se ramener
au classique théoréme de Lickorisch-Siebenmann PL.

Preuve topologique alternative avec la restriction @ = 7. Soit R une
variété topologique a bord, dont le bord dR est décomposé en sous-variétés
de codimension zéro S,, S, et T telles que 0T = 8S,UaS,. Soit X un polyédre
topologique non localement noué dans S, et soit g: X x I—> R une concordance.
On suppose de plus que ¥ = 48,N X est un polyédre topologique colleté dans
X que g(Y < I) est dans T et que g(X X 1) est dans S,.

Ficure 10
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AFFIRMATION A.l. Dés que dim R = 8 il y a un homéomorphisme du
germe de S, autour de X X 0 sur le germe de S, autour de g(X X 1) qui
prolonge g, g;".

Preuve de A.1. Rappelons d’abord qu’Edwards construit en [E-1] des
voisinages réguliers d’un polyédre topologique X non localement noué dans
une variété topologique V de dimension strictement supérieure 3 cinq (six
dans le cas 4 bord ou il faut supposer de plusque ¥ = XN 9V est un polyédre
topologique colleté dans X). Ce sont des sous-variétés ‘U de V de codimension
zéro munies d’une rétraction propre 7 “cone-like” sur X, on dit alors que X
est ame du tube (0, r); un tube V a un bord formel noté 6V analogue au
fibré en sphéres bord d’un voisinage tubulaire. (Dans le cas codim X = 3
“cone like” signifie seulement que pour tout x de X la préimage »(x) est
UV=et r(z)No0 est UV')

Soit done (R, ) un tel tube autour de g(X x I) qui se restreigne en §,, r)
et (7, 7) des tubes autour de g(X x {¢}) dans S, pour ¢ = Oet ¢ = 1 et autour
de g(YxI)dans T. (On utilise ici dim 4S, = dim R — 2 = 6.)

Le polyédre topologique X se trouve muni de deux tubes: (§,U R, por)
ou p est la projection p: X x I — X et (§,, 7); ces deux tubes ont méme bord
formel 35, et méme rétraction restreinte au bord, ils sont donc homéomorphes
par le théoréme du cylindre d’Edwards ([E-1]) qui affirme qu’un tube est
homéomorphe (par un homéomorphisme fixant le bord formel et 1’Ame) au
cylindre d’application de la restriction de sa rétraction au bord formel (la
preuve se trouve essentiellement dans [EG]). |

Ficure 11

Le cas absolu du théoréme de Lickorisch-Siebenmann TOP. Désignons
par V; pour v = 1 et ¢ = 2 des voisinages disjoints de f(K X 1) dans le bord
de Q et soit ¢: (V,, fIK X 0)) x [0, 2¢[) — (@, f(K x I)) un collier étendant f.

Soit h: I x I< un homéomorphisme du carré, fixant Ix0U 0 x I qui
envoie I x 1 sur [0, e] X 1.

FIGURE 12
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Appliquons D’affirmation a la situation R=QxI, S,=@x0,
S, =¢(V,x[0, e])x1, X=KxI, Y=Kx{0, 1} et g = (fx{d|]))o(id| K) X h).
Nous obtenons un homéomorphisme entre le germe de @ en f(Kx I) et celui
de V,%x [0, €] en K x [0, €].

Le cas relatif s’obtient de méme en faisant toutes les constructions en
produit le long de I prés de C x I, ce qui est possible car les théorémes
d’Edwards sont relatifs. |

B. Preuve du theoreme de stabilite 2.3

On peut supposer que P est une carte, que M et N sont des cartes de
platitude locale de P=> M et de P= N, que W est une carte de platitude
locale de N=> W, et que V = W, le théoréme d’extension des concordances
(théoréme de Lickorisch-Siebenmann topologique 2.4) nous permet de sup-
poser la concordance i support compact.

Il suffira de prouver le théoréme de stabilité dans le cas PL* en vertu du:

LEMME DE TRIANGULATION B.1. Il existe une structure w sur W dont
N soit une sous-variété PL et une isotopie h, relative d CU(W—V) et fizant
N, de Uidentité de W, @ un h, qui rende, prés de CU D le germe h (M) sous-
variété PL de W, munie de la structure w X R” et PL localement transverse
a N,.

Preuve de B.1. Munissons tout d’abord P de la structure PL donnée par
la carte et M, N, W des structures en produit fournies par les cartes de
platitude locale.

Prés du fermé C I’inclusion M U N= W est un plongement non locale-
ment noué de polyédres qui est PL sur le sous-polyédre N. Le théoréme de
triangulation des plongements en codimension =3 de Miller (voir [E-2] et
[KS-1, III App. B]) donne une structure @ sur W dont N soit sous-variété
PL et telle que, prés du fermé C, la variété M soit sous-variété PL, PL
localement transverse a N.

Munissons N, et W, des structures Nx R’ et ®w x R’. L’inclusion
MUN,=W, est un plongement non localement noué, PL sur N, et prés de
C. Le théoréme de triangulation des plongements produit l’isotopie h,
cherchée. |

Preuve du théoréme de stabilité PL (cf. [RS-1, § 8]). Triangulons W,
avec W, N,, M et P triangulés comme sous-complexes. Les cellules duales
dans la seconde subdivision barycentrique de W,, W, N,, N et M des sim-
plexes de la premiére subdivision barycentrique de P forment cing fibrés en

* Toutes les données et conclusions de 2.3 sont dans la catégorie PL.
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blocs sur P: EW,, EW, EN,, EN et EM tels que, si la variété S est sous-
variété de R, le fibré en bloc ES est sous-fibré en bloc de ER et, si les
variétés S et T sont localement transverses dans R, les fibrés en blocs ES
et ET forment une décomposition de ER (voir [RS-3] et [RS-4]).

Construisons par récurrence sur les blocs de EW, une homotopie.respec-
tant les blocs f: EW, x I — EW, x I qui vérifie:

(0) fIEW,x0=idet f EW,x1) =EW,Xipours=0et7=1.

(1) f YEN,xI)= EN,x1I.

(2) fest'identité sur EW x I.

(8) f, est une rétraction de EW, sur EW.

Nous allons maintenant construire un plongement ¢: EM X I—EW,.x I
ayant les propriétés (0), (1), (2) et (8) (restreintes & EM x I) ci-dessus.

Supposons construite une application g, homotope par bloes 4 f 4 travers
des applications vérifiant (0), (1), (2) et (3) et telle que g, restreinte A EM*x I
soit un plongement ¢, (ici EM* désigne la restriction du fibré en bloc EM
au k-squelette de P).

Construisons @, ,: EM**' X I — EW,x I un plongement prolongeant ¢,
et homotope par blocs 4 g,| EM*"x I; g,., s’obtient alors par extension des
homotopies par blocs.

Il suffit bien siir de traiter le cas ot P est un simplexe A*** de barycentre
b. Notons E le bloc fibré en sphéres, bord du bloc fibré E.

Remarquons que g,|: EM x I — (EW, — EN,) x I est une équivalence
d’homotopie qui est l’identité au temps zéro et le plongement ¢, au-dessus
de A**'x I. Le théoréme de Casson-Sullivan (voir [W-1, Ch. 11]) produit un
plongement homotope 4 g,|, qui prolonge ¢, et ’inclusion de la tranche zéro.
On étendra successivement ce plongement 3 EM x 1 et EM x I en prenant

les cones sur b x 1 et sur b x 1/2. B
8, (EMx1)

1EM v Y/
i H \ \: /

; \\\\\‘I,b )
- | bx1/2 “ghx
. U N [ g == S
Ew, |~ LN A
¥ .

Ficure 13

Définition B.2. Soit Q*** un germe de voisinage de P. Un morphisme
(homotopique) de (@, P) dans (N, P) est un germe autour de P d’application
f: @ — N, tel que:

(1) f/YP) = Pet f|P=1id.

(2) fl:@ —P— N — P est, au voisinage de tout point de P de degré un.
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En utilisant la forme de Wall du théoréme de Casson-Sullivan pour les
plongements de Poincaré (Th. 11.3 de [W-1]) le lecteur adaptera la preuve
du théoréme de stabilité pour établir la forme géométrique suivante de la
stabilité de G/TOP (voir Appendice C et [RS-2]):

THEOREME B.3. Soit P une sous-variété de N et f: (Q, P)— (N,, P) un
morphisme (homotopique). Des que n — p = 3, [ est homotope en tant que
morphisme @ un morphisme f, tel que f7'(P,) soit une sous-variété locale-
ment plate de @ homéomorphe a P, par un homéomorphisme @ tel que:

Jiep = (d|P) x (id| R") .
Indication: Enoncer une forme relative et remarquer qu’une fois la

situation locale triangulée et organisée en fibrés en blocs, alors f~*|(EN,, EP,)
est un plongement de Poincaré. [

C. L’espace des germes transverses (cf. [RS-1] et [RS-2])

Considérons M une sous-variété localement plate de W et P une sous-
variété localement plate de M. Nous allons introduire quelques espaces
semi-simpliciaux) dont nous ne présenterons que les zéro-simplexes pour ne
pas alourdir ’exposé.*

P, M; W) sera l’espace des germes transverses & M en P dans W.

1l sera commode de se permettre a tout moment d’augmenter les entiers
dest abilisation u et v; posons donc: W =lim W,, ,W=lim , W, . W.=1lim, W,,

—_ — R
ete.

L’espace desmicrofibrésnormaux stables a M dans W, est noté (M, W..).
Le théoréme d’unicité des microfibrés normaux stables exprime que cet
eépace est contractile. Il y a une projection

p: f}'(M, WOO) I gl(Py M; Woo)

qui, 3 tout fibré &, associe ’espace total de &/P. Le théoréme de Lickorisch-
Siebenmann topologique permet de vérifier que ¢’est une fibration; on note
F(M; W) la fibre: ¢’est I’espace des microfibrés stables calant une situation
de transversalité donnée.

Considérons ’inclusion

9P, M; W) — OUP, M; W)

qui, 4 tout N, associe N.. ,

A(G/TOP) désigne l’espace des chemins de G/TOP et {P, G/TOP},
{P, A(G/TOP)}, {P, Q(G/TOP)} désignent les espaces d’applications de P dans
G/TOP, A(G/TOP) et Q(G/TOP) respectivement. Nous pouvons alors énoncer

* Les l-simplexes seront des concordances.
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le

THEOREME C.1. (a) Désque w — m =3 et m — p = 3, un inverse v, du
Jibré mormal stable 1, de M dans W., détermine @ homotopie fibrée prés, une
équivalence d’homotopie fibrée

Fo(M; W) =— F(M, We) — OUP, M; W..)

)

(P, Q(G/TOP)} = {P, A(G/TOP)} — {P, G/TOP} .

(b) Sideplusn=p+w—m*4,'inclusion 1:9(P, M; W)—9UP, M; W..)
est une équivalence d’homotopie.

Commentaire C.2. Ceci signifie pour la pratique qu’étant donné une
situation de transversalité locale (P; M, N; W) il y a une obstruction dans
[P, G/TOP] 4 ce que N soit stablement transverse & M et que s’il en est
ainsi les classes d’isotopie de microfibrés normaux stables calant la situation
sont en bijection avec [P, Q(G/TOP)](ici [A, B] désigne les classes d’homotopie
de A dans B). La partie (b) signifie que si # =5 toutes les obstructions sont
réalisées et que [P, G/TOP] est en bijection avec les classes d’isotopies de
germes normaux 4 M en P dans W (cf. Remarque 3.5). Nous verrons dans
I’appendice suivant que le cas n = 4 est équivalent 4 la conjecture de
I’annulus.

Nous établirons dans 1’ Appendice E que, siw —m <2, m — p =8, et si
w—m =2, p*2et m==~2, I'espace 9P, M; W) est contractile.

Preuve de C.1. (a) Comme F(M, W.) est contractile, il suffit de con-

struire I’équivalence d’homotopie o. Elle rendra commutatif le diagramme
suivant:

NP, M; W) F(P, M; W)~ F(P, 1)

T’i’ l@vo
P, M; W) ‘_| » {P, G/TOP} .
4

L’inclusion 4’ provenant de W<, W., est une équivalence d’homotopie
par le théoréme de stabilité 2.3.

F(P, .M; .W.) est ’espace des fibrés stables sur P dont I’espace total
est un germe transverse a ..M dans ., W., en P, I’application d’oubli ¢ est une
équivalence d’homotopie par I’unicité des microfibrés normaux stables.

F(P, n,) est ’espace des microfibrés munis d’une équivalence d’homotopie
fibrée vers 7, I'application j est définie par j(n) = (7, 7= (1d|R~) X 7,). Le
théoréme de plongements stables qui permet d’homotoper toute équivalence
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d’homotopie fibrée p—n,=> W, <>, W.. 4 un plongement localement transverse
a ..M nous assure que j est une équivalence d’homotopie.

Quant a Py, elle associe a 1’élément n — 7, ’application classifiante du
fibré homotopiquement trivialisé PPy, — 3,Py, = €.

(b) Remarquons que le lemme d’unicité 2.1 nous permet de construire
un élément N° de 9UP, .M; .W). Soit r: ,W — N° une rétraction telle que
Y P) = .M (M est stablement transverse & N° pour & et ’on peut prendre
pour rétraction la projection de £).

Par le théoréme de stabilité 2.8 il nous suffit de montrer que
wb: OUP, M; W) — P, .M, W) est une équivalence d’homotopie. Con-
sidérons alors le diagramme commutatif:

(P, Me; W) —5 O(NS, P..) —— YN, P)
N x oo
N [
NP, M; W)— IUP, .M; W)

oll IMYNE, P) et M(NY, P.,) désignent les espaces de germes de voisinages de
P et P, munis de morphismes homotopiques dans (N2, P) et (N2, P..).

L’application m, associe 4 un germe transverse ce méme germe muni du
morphisme 7., = 7 X (id| R™), quant a m, elle associe le germe transverse muni"
de rop ou p: W, — .. W est la projection. Ce sont toutes deux des équival-
ences d’homotopie par le théoréme des plongements stables.

L’application d’oubli ¢ est une équivalence d’homotopie par la forme
relative du Théoréme B.3.

Quant 4 X oo qui 4 N associe N, elle est une équivalence d’homotopie
pour 7 =5 par la forme respectant une sous-variété (ici N, € 9U(Pn, M.} » W)
du lemme d’unicité (Remarque 4.5). C’est ici que ’on utilise vraiment
I’hypothése » = 5 car on peut, dans tous les cas, construire le N° et une
rétraction 7 (qui ne sera pas nécessairement projection d’un microfibré). W

Remargue C.3. Si 9 (M) désigne ’espace des germes de codimension »
de voisinages de M le lemme d’unicité 2.1 assure que X co: 9 (M)— 9, (M..)
donnée par (W, M) — (W., M.) est une équivalence d’homotopie dés que
w =5 et r = 3: c’est le théoréme de stabilité de [RS-2] (voir aussi [E-1]); on
retrouve ainsi la classification homotopique des germes de voisinages en se
fondant sur le théoréme de Lickorisch-Siebenmann topologique (qui apparait
comme ultime corollaire dans [RS-2]!).

D. La transversalitedanslecas p=m +n —w <1, w+#4

Supposons N localement transverse & M en P de dimension strictement
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inférieure 4 deux; comme 7, (G/TOP) = 7,(G/TOP) = 0, on peut construire un
microfibré stable » qui cale la situation et ce de fagon relative (Théoréme C.1)
(cependant comme nl(Q(G/TOP)) = 7(G/TOP) = Z, il n’y a pas unicité de cet
7).

11 suffit donc de prouver un théoréme de transversalité relatif pour la
notion locale de transversalité.

On peut supposer M, N et W des cartes et la situation triangulée de
facon 4 ce que prés de C, les variétés M et N soient PL et PL localement
transverses (les plongements localement plats des variétés de dimension
strictement inférieure 4 deux se triangulent, on a done des structures sur
M et N dont P soit sous-variété pres de C, le reste de la preuve du lemme
de triangulation B.1 restant inchangé).

Aprés une isotopie (en restant transverse prés de C) on peut supposer
que les triangulations de M et N sont en position générale prés de D, auquel
cas on est localement transverse prés de CU D.

Remarque D.1 sur les microfibrés ambiants. Dés que la dimension de
N est différente de quatre toute situation localement transverse en une
variété P de dimension un est transverse pour un microfibré normal ambiant
car P admet un microfibré normal dans N et le second théoréme du micro-
fibré normal ambiant 1.5 s’applique.

AFFIRMATION D.2. St la dimension de N est quatre la construction
d’un microfibré ambiant est équivalente d la conjecture de I’ annulus.

Une forme de cette conjecture étant Lickorisch-Siebenmann TOP, avec
K un point, et @ de dimension quatre, elle permet de construire des fibrés
normaux aux variétés de dimension un dans le variétés de dimension quatre.
Réciproquement un contre-exemple est un arc dans @ qui n’admet pas de
fibré normal; notons qu’en recollant deux voisinages V, et V, des extrémités
de cet arc, on obtient un cercle dans une variété orientable N qui n’admet
pas de fibré normal:

S’il y avait un fibré normal, il serait trivial et donc le germe de N
autour de S' serait le bouclage de son revétement cc-cyclique N (voir [S])*
mais le revétement «-cyclique ayant une trivialisation ol V, = V, est une
fibre, le théoréme d’unicité des bouclages fournit un fibré normal a S, dans
N dont V, = V, est une fibre et ’arc avait donc un fibré normal dans @

* Attention: il est essentiel de supposer ici que le voisinage @* de S! est trivial. @*
n’est pas nécessairement un bouclage au sens de [8] (s’il ’était on viendrait de prouver la
conjecture de I’annulus!).
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pu—
Vo Q 2 J— —
I VorV, T
N\ —=
R bouclage
Ficure 14
contrairement & ’hypotheése. [ ]

L’homéomorphisme de bouclage est I’identité prés de V, = V, et sur S.

E. Les microfibrés normaux respectant une sous variété en
codimension inférieure ou égale a deux

COMPLEMENT AU THEOREME A DE [KS-2] E.1. Soit N*t¥ et M*** deux
sous-variétés localement transverses en P*? dans W®, la codimension y de
M étant inférieure ou égale d deux, et la codimension x de N supérieure
strictement & deux. Soit v, et v, deuxr microfibrés normaux & M dans W
dont les restrictions d P sont des microfibrés normaux ¢ P dans N. Soit C
un fermé de M prés duquel v, et v, coincident. Soit D un autre fermé de M
et V un voisinage de D dans W.

Alors dés que (;rb, p) # (4, 2) et (w, m) # (4, 2) il existe une isotopie h, de
Uidentité de W relative a CU(W—V) et fizant M telle que h,(v,) = x)l.

Preuve. Le cas y = 1 est le théoréme du collier relatif qui est bien
connu,

Pour le cas y = 2, il suffit de relire ’article de Kirby et Siebenmann en
utilisant cependant la catégorie PL* et 1’unicité des fibrés normaux PL en
codimension 2 (voir [RS-3], [W-2], le cas respectant une sous-variété décou-
lant de B PL,,, ., contractile pour =8 [RS-1]). Le lemme de I’anse devient

LEMME DE L’ANSE E.2. Soith: (B* x R*****, B' X R"**, B* X R***) <> (ou
l=koul<k et ¢q =0) un homéomorphisme identité sur B*¥ X R*** ¢t PL
prés de 0B* x R1H*2,

Alorssip=q+1#2etm =k + q + z+ 2, il existe une isotopie h, @
support compact, relative a dB*X R, fixant B* X R et respectant

* Car nous utiliserons les théorémes de triangulation en codimension =3 de Miller.
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B'x R de h @ un h, qut soit un plongement PL prés de B* x R,

Preuve de E.2. Comme Kirby et Siebenmann nous ne traiterons que le
cas 2% 0, le cas z = 0 se traitant par une construction analogue et plus
simple.

On construit le tour en partant de

. — Bk g+z+2
7 BkX Tq+(z 1)+2xXR—B*xR

un plongement de Novikov tel que hoi] B! X T x 0 soit un plongement PL.
Ceci s’obtient par triangulation des plongements en codimension strictement
supérieure 4 deux.

Cet ajustement fait, la machine tourne en respectant B x T""2x 0 et fait
sortir 4 ’autre bout 1’isotopie h, désirée.

i (Bt)(Tq‘2 x0)

”kaBq+z+2)

Ficure 15

Ce complément nous permet de corriger les hypothéses de dimension
dans tous les théorémes du Paragraphe 1 en autorisant pour N une codi-
mension <2, mais en excluant les cas m = 4 et p = 2 ainsi que w = 4 et
n =2,

Le seul endroit ot I’hypothése w — n=8 a été utilisée est dans le lemme
de triangulation B.1 pour rendre les plongements MU N —W (prés de C) et
MU N,— W, plongements PL en fixant N et N,. Pour ceci il suffit d’utiliser
des microfibrés normaux triviaux a N dans W et & N, dans W, respectant
M et de les isotoper de facon relative par unicité des microfibrés normaux
(ne respectant rien du tout) a des microfibrés PL. [ ]

On obtient ainsi en particulier:

COMPLEMENT AU THEOREME DE SYMETRIEE.3, Siw —n <2, w —m =3
et (m, p) #= (4, 2) la variété N est stablement transverse @ M si et seulement
si:

(1) Les variétés M et N sont localement transverses.

(2) Ilexisteprésde Pdeuxmicrofibrés normaux 9:W,—Met 1t,: W,—N,
qui commutent en tant que rétractions et vérifient:

MM N, pour p, et N, Y M pour 7 .

De plus, dans ce cas, il existe un microfibré 1 normal @ N dans W tel
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que M i N pour .
Le lecteur pourra énoncer la forme relative plus précise.

UnN1veERrSITE PAris XI, CENTRE d’ORrsay, FRANCE
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