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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS
VIA RICCI FLOW

by

Bruce Kleiner & John Lott

Abstract. — A three-dimensional closed orientable orbifold (with no bad suborbifolds)
is known to have a geometric decomposition from work of Perelman in the manifold
case, along with earlier work of Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-
Porti, Cooper-Hodgson-Kerckhoff and Thurston. We give a new, logically indepen-
dent, unified proof of the geometrization of orbifolds, using Ricci flow. Along the
way we develop some tools for the geometry of orbifolds that may be of independent
interest.

Résumé. — Un orbifold fermé orientable de dimension 3 (sans mauvais sous-orbifolds)
admet, une décomposition géométrique d’apres le travail de Perelman dans le cas des
variétés, et d’apres les travaux de Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-
Porti, Cooper-Hodgson-Kerckhoff et Thurston. Nous donnons une démonstration nou-
velle et unique de la géometrisation des orbifolds, via le flot de Ricci. Nous dévelop-
pons au passage des outils pour la géométrie des orbifolds qui présentent leur propre
intéret.

1. Introduction

1.1. Orbifolds and geometrization. — Thurston’s geometrization conjecture for
3-manifolds states that every closed orientable 3-manifold has a canonical decompo-
sition into geometric pieces. In the early 1980’s Thurston announced a proof of the
conjecture for Haken manifolds [56], with written proofs appearing much later [36,
41, 47, 48]. The conjecture was settled completely a few years ago by Perelman in
his spectacular work using Hamilton’s Ricci flow [49, 50].
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102 B. KLEINER & J. LOTT

Thurston also formulated a geometrization conjecture for orbifolds. We recall that
orbifolds are similar to manifolds, except that they are locally modelled on quo-
tients of the form R"/G, where G C O(n) is a finite subgroup of the orthogonal
group. Although the terminology is relatively recent, orbifolds have a long history in
mathematics, going back to the classification of crystallographic groups and Fuchsian
groups. In this paper, using Ricci flow, we will give a new proof of the geometrization
conjecture for orbifolds:

Theorem 1.1. Let O be a closed connected orientable three-dimensional orbifold
which does not contain any bad embedded 2-dimensional suborbifolds. Then O has a
geometric decomposition.

The existing proof of Theorem 1.1 is based on a canonical splitting of O along
spherical and Euclidean 2-dimensional suborbifolds, which is analogous to the prime
and JSJ decomposition of 3-manifolds. This splitting reduces Theorem 1.1 to two
separate cases — when O is a manifold, and when O has a nonempty singular locus
and satisfies an irreducibility condition. The first case is Perelman’s theorem for
manifolds. Thurston announced a proof of the latter case in [57] and gave an outline.
A detailed proof of the latter case was given by Boileau-Leeb-Porti [4], after work
of Boileau-Maillot-Porti [5], Boileau-Porti [6], Cooper-Hodgson-Kerckhoff [19] and
Thurston [57]. The monographs [5, 19] give excellent expositions of 3-orbifolds and
their geometrization.

1.2. Discussion of the proof. — The main purpose of this paper is to provide
a new proof of Theorem 1.1. Our proof is an extension of Perelman’s proof of ge-
ometrization for 3-manifolds to orbifolds, bypassing [4-6, 19, 57]. The motivation
for this alternate approach is twofold. First, anyone interested in the geometrization
of general orbifolds as in Theorem 1.1 will necessarily have to go through Perelman’s
Ricci flow proof in the manifold case, and also absorb foundational results about orb-
ifolds. At that point, the additional effort required to deal with general orbifolds is
relatively minor in comparison to the proof in [4]. This latter proof involves a number
of ingredients, including Thurston’s geometrization of Haken manifolds, the deforma-
tion and collapsing theory of hyperbolic cone manifolds, and some Alexandrov space
theory. Also, in contrast to the existing proof of Theorem 1.1, the Ricci flow argument
gives a unified approach to geometrization for both manifolds and orbifolds.

Many of the steps in Perelman’s proof have evident orbifold generalizations,
whereas some do not. It would be unwieldy to rewrite all the details of Perelman’s
proof, on the level of [38], while making notational changes from manifolds to
orbifolds. Consequently, we focus on the steps in Perelman’s proof where an orbifold
extension is not immediate. For a step where the orbifold extension is routine, we
make the precise orbifold statement and indicate where the analogous manifold proof
occurs in [38].
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 103

In the course of proving Theorem 1.1, we needed to develop a number of founda-
tional results about the geometry of orbifolds. Some of these may be of independent
interest, or of use for subsequent work in this area, such as the compactness theorem
for Riemannian orbifolds, critical point theory, and the soul theorem.

Let us mention one of the steps where the orbifold extension could a priori be
an issue. This is where one characterizes the topology of the thin part of the large-
time orbifold. To do this, one first needs a sufficiently flexible proof in the manifold
case. We provided such a proof in [37]. The proof in [37] uses some basic techniques
from Alexandrov geometry, combined with smoothness results in appropriate places.
It provides a decomposition of the thin part into various pieces which together give
an explicit realization of the thin part as a graph manifold. When combined with
preliminary results that are proved in this paper, we can extend the techniques of [37]
to orbifolds. We get a decomposition of the thin part of the large-time orbifold into
various pieces, similar to those in [37]. We show that these pieces give an explicit
realization of each component of the thin part as either a graph orbifold or one of a
few exceptional cases. This is more involved to prove in the orbifold case than in the
manifold case but the basic strategy is the same.

1.3. Organization of the paper. — The structure of this paper is as follows. One
of our tasks is to provide a framework for the topology and Riemannian geometry of
orbifolds, so that results about Ricci flow on manifolds extend as easily as possible
to orbifolds. In Section 2 we recall the relevant notions that we need from orbifold
topology. We then introduce Riemannian orbifolds and prove the orbifold versions of
some basic results from Riemannian geometry, such as the de Rham decomposition
and critical point theory.

Section 3 is concerned with noncompact nonnegatively curved orbifolds. We prove
the orbifold version of the Cheeger-Gromoll soul theorem. We list the diffeomorphism
types of noncompact nonnegatively curved orbifolds with dimension at most three.

In Section 4 we prove a compactness theorem for Riemannian orbifolds. Section 5
contains some preliminary information about Ricci flow on orbifolds, along with the
classification of the diffeomorphism types of compact nonnegatively curved three-
dimensional orbifolds. We also show how to extend Perelman’s no local collapsing
theorem to orbifolds.

Section 6 is devoted to k-solutions. Starting in Section 7, we specialize to three-
dimensional orientable orbifolds with no bad 2-dimensional suborbifolds. We show
how to extend Perelman’s results in order to construct a Ricci flow with surgery.

In Section 8 we show that the thick part of the large-time geometry approaches a
finite-volume orbifold of constant negative curvature. Section 9 contains the topolog-
ical characterization of the thin part of the large-time geometry.

Section 10 concerns the incompressibility of hyperbolic cross-sections. Rather than
using minimal disk techniques as initiated by Hamilton [33], we follow an approach
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104 B. KLEINER & J. LOTT

introduced by Perelman [50, Section 8] that uses a monotonic quantity, as modified
in [38, Section 93.4].

The appendix contains topological facts about graph orbifolds. We show that a
“weak” graph orbifold is the result of performing 0-surgeries (i.e., connected sums) on
a “strong” graph orbifold. This material is probably known to some experts but we
were unable to find references in the literature, so we include complete proofs.

After writing this paper we learned that Daniel Faessler independently proved
Proposition 9.7, which is the orbifold version of the collapsing theorem [24].

Acknowledgements. — We thank Misha Kapovich and Sylvain Maillot for orbidis-
cussions. We thank the referee for a careful reading of the paper and for corrections.

2. Orbifold topology and geometry

In this section we first review the differential topology of orbifolds. Subsections
2.1 and 2.2 contain information about orbifolds in any dimension. In some cases we
give precise definitions and in other cases we just recall salient properties, referring
to the monographs [5, 19] for more detailed information. Subsections 2.3 and 2.4 are
concerned with low-dimensional orbifolds.

We then give a short exposition of aspects of the differential geometry of orbifolds,
in Subsection 2.5. It is hard to find a comprehensive reference for this material
and so we flag the relevant notions; see [8] for further discussion of some points.
Subsection 2.6 shows how to do critical point theory on orbifolds. Subsection 2.7
discusses the smoothing of functions on orbifolds.

For notation, B™ is the open unit n-ball, D™ is the closed unit n-ball and I = [—1, 1].
We let Dy denote the dihedral group of order 2k.

2.1. Differential topology of orbifolds. — An orbivector space is a triple
(V. G, p), where

— V is a vector space,

~ (@ is a finite group and

~ p: G — Aut(V) is a faithful linear representation.
A (closed/ open/ convex/...) subset of (V,G,p) is a G-invariant subset of V' which
is (closed/ open/ convex/...) A linear map from (V,G,p) to (V',G’,p’) consists of
a linear map T : V — V' and a homomorphism h : G — G’ so that for all g €
G, p'(h(g))oT = T o p(g). The linear map is injective (resp. surjective) if T' is
injective (resp. surjective) and h is injective (resp. surjective). An action of a group
K on (V,G,p) is given by a short exact sequence 1 - G - L — K — 1 and a
homomorphism L — Aut(V) that extends p.

A local model is a pair ((7' ,G), where U is a connected open subset of a Euclidean
space and G is a finite group that acts smoothly and effectively on U , on the right.
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 105

(Effectiveness means that the homomorphism G — Diff (U) is injective.) We will
sometimes write U for U /G, endowed with the quotient topOIOgy

A smooth map_ between local models (U1, Gy) and (Ug,Gg) is given by a smooth
map f U, — UQ and a homomorphism p : G; — G3 so that f is p-equivariant,
i.e., f(xgl) = f( )p(g1). We do not assume that p is injective or surjective. The
map between local models is an embedding if f is an embedding; it follows from
effectiveness that p is injective in this case.

Definition 2.1. — An atlas for an n-dimensional orbifold O consists of

1. A Hausdorff paracompact topological space |0,

2. An open covering {Ua} of |O],

3. Local models {(Ua, G4 )} with each Ua a connected open subset of R™ and

4. Homeomorphisms ¢, : U, — Ua /G4 so that
If p € Uy NU; then there is a local model ((73,6'3) with p € Us along with
embeddings ([73,03) — (ﬁl,Gl) and ([73,6‘3) - ([72,6’2)‘

ot

An orbifold O is an equivalence class of such atlases, where two atlases are equiv-
alent if they are both included in a third atlas. With a given atlas, the orbifold O
is oriented if each Ua is oriented, the action of G, is orientation-preserving, and the
embeddings Ud — U, and U3 — U, are orientation- preserving. We say that O is
connected (resp. compact) if |O| is connected (resp. compact).

An orbifold-with-boundary O is defined similarly, with l?a being a connected open
subset of [0,00) x R"™L. The boundary OO is a boundaryless (n — 1)-dimensional
orbifold, with [0O| consisting of points in O] whose local lifts lie in {0} x R"~!. Note
that it is possible that 00 = @ while |O| is a topological manifold with a nonempty
boundary.

Remark 2.2. — 1In this paper we only deal with effective orbifolds, meaning that in
a local model ((/j7 (), the group G always acts effectively. It would be more natural
in some ways to remove this effectiveness assumption. However, doing so would hurt
the readability of the paper, so we will stick to effective orbifolds.

Given a point p € |O] and a local model ((7, G) around p, let p € U project to p.
The local group G, is the stabilizer group {g € G : pg = p }. Its isomorphism class
is independent of the choices made. We can always find a local model with G = G),.

The regular part |O|,eq C |O] consists of the points with G, = {e}. It is a smooth
manifold that forms an open dense subset of |O].

Given an open subset X C |O], there is an induced orbifold O’X with |O’x’ =X
In some cases we will have a subset X C |O|, possibly not open, for which (’)’ 18
an orbifold-with-boundary.

The ends of O are the ends of |O).
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106 B. KLEINER & J. LOTT

A smooth map f : O — Oy between orbifolds is given by a continuous map
If] : 1O1] = |O2| with the property that for each p € |0, |, there are

— Local models (ﬁl,Gl) and (172, G4) for p and f(p), respectively, and

~ A smooth map f : (LAH7 Gy) — ([72, G2) between local models
so that the diagram

~

[7] L)ﬁz

|

Uy —— U;
/1
comimutes.

There is an induced homomorphism from G/, to G ¢(,,). We emphasize that to define
a smooth map f between two orbifolds, one must first define a map | f| between their
underlying spaces.

We write C°°(O) for the space of smooth maps f: O — R.

A smooth map f: O — Oy is proper it |f| : |O1] — |O2| is a proper map.

A diffeomorphism f : Oy — Oz is a smooth map with a smooth inverse. Then G},
is isomorphic to G ().

If a discrete group I' acts properly discontinuously on a manifold M then there is a
quotient orbifold, which we denote by M //T. It has |M //T| = M/T. Hence if O is an
orbifold and ((7 ,G) is a local model for O then we can say that (’)|U is diffeomorphic
to U//G. An orbifold O is good if © = M J/T' for some manifold M and some discrete
group I'. It is very good if I' can be taken to be finite. A bad orbifold is one that is
not good.

Similarly, suppose that a discrete group I' acts by diffeomorphisms on an orbifold
O. We say that it acts properly discontinuously if the action of T on || is properly
discontinuous. Then there is a quotient orbifold O//T', with |O//T| = |O|/T; see
Remark 2.15.

An orbifiber bundle consists of a smooth map 7 : O; — Oz between two orbifolds,
along with a third orbifold O3 such that

— || is surjective, and

— For each p € |Os], there is a local model (U,Gp) around p, where G}, is the

local group at p, along with an action of G, on O3 and a diffeomorphism
(O3 x 0)//Gp — O ‘I?rl" 17y so that the diagram

(03 x U)))Gp — O,

24 l l

U/))G, —— O,

commutes.

ASTERISQUE 365



GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 107

(Note that if Oz is a manifold then the orbifiber bundle 7 : O; — O3 has a local
product structure.) The fiber of the orbifiber bundle is O3. Note that for p; € |O4],
the homomorphism G, — G|x(p,) is surjective.

A section of an orbifiber bundle 7 : Oy — O3 is a smooth map s : Oy — O; such
that 7 o s is the identity on Os.

A covering map 7 : O; — O is a orbifiber bundle with a zero-dimensional fiber.
Given py € O] and p; € ||~ (ps), there are a local model (U, Gs) around py and
a subgroup G C G2 so that (ﬁ,Gl) is a local model around p; and the map 7 is
locally (U, Gy) = (U, G2).

A rank-m orbivector bundle V — O over O is locally isomorphic to (V x U)/ Gp,
where V is an m-dimensional orbivector space on which G, acts linearly.

The tangent bundle TO of an orbifold O is an orbivector bundle which is locally
diffeomorphic to TU,//Gs. Given p € |O|, if p € U covers p then the tangent
space T,O is isomorphic to the orbivector space (T5 U, Gyp). The tangent cone at p is
CplO] = I,U/Gp.

A smooth wvector field V is a smooth section of TO. In terms of a local model
((7, (), the vector field V restricts to a vector field on U which is G-invariant.

A smooth map f : O — Os gives rise to the differential, an orbivector bundle map
df : TO; — TOs. At a point p € |0, in terms of local models we have a map f
(ﬁl,Gl) — ((72, G2) which gives rise to a G,-equivariant map dfp : T;,(,Af] — T 75 Ug
and hence to a linear map df, : T,01 — Tjf|(;)Oa.

Given a smooth map f : O3 — Oy and a point p € |O;], we say that f is a
submersion at p (vesp. immersion at p) if the map df, : T,01 — Ty, Oz is surjective
(resp. injective).

Lemma2.5. — If f is a submersion at p then there is an orbifold O3 on which G|y
acts, along with a local model ((72, Gri(p)) around | f(p), so that f is equivalent near

p to the projection map (O3 X Ug)//Gm(p) — Uz//Gm(p)

Proof. — Let p : G, — G|, be the surjective homomorphism associated to df),.
Let f (A Gp) — ([JQ G\f(p)) be a local model for f near p: it is necessarily
p-equivariant. Let p € U1 be a hft of p e U;. Put W= f Lf (A)) Since f is a submer-
51011 at p7 after reducing U1 and U2 if necessary, there is a p-equivariant diffeomcrphism
W X Uz — U1 so that the diagram

WX[?Q—)ﬁl

|

(72—)(72

commutes and is Gp-equivariant. Now Ker(p) acts on W. Put O3 = W// Ker(p).
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108 B. KLEINER & J. LOTT

Then there is a commuting diagram of orbifold maps

O3 x Uy — Uy J/ Ker(p)

[

Uy ————— Us.
Further quotienting by G|y, gives a commutative diagram

(03 X ﬁg)//Glﬂ(p) _— ﬁl//Gp

L

Ua /G f1(p) —— U2//Gip1p)
whose top horizontal line is an orbifold diffeomorphism. |

We say that f: O = Os is a submersion (resp. immersion) if it is a submersion
(resp. immersion) at p for all p € |Oy].

Lemma2.9. — A proper surjective submersion f : O1 — Oa, with Oy connected,
defines an orbifiber bundle with compact fibers.

We will sketch a proof of Lemma 2.9 in Remark 2.17.

In particular, a proper surjective local diffeomorphism to a connected orbifold is a
covering map with finite fibers.

An immersion f : O — O3 has a normal bundle NO; — O; whose fibers have
the following local description. Given p € |0y, let f be described in terms of local
models ((71,Gp) and ((72,G|f|(p)) by a p-equivariant immersion f U — U Let
Fy C Gyyi(p) be the subgroup which fixes Im(d_}?,,). Then the normal space N,O; is
the orbivector space ( Coker(df,), Fy).

A suborbifold of O is given by an orbifold @" and an immersion f : O" — O for
which | f| maps |O'| homeomorphically to its image in |O|. From effectiveness, for each
p € |O’|, the homomorphism p, : G, = G|y is injective. Note that p, need not be
an isomorphism. We will identify O" with its image in O. There is a neighborhood
of O which is diffeomorphic to the normal bundle NO'. We say that the suborbifold
O’ is embedded if O‘IO’I = @'. Then for each p € ||, the homomorphism p, is an
isomorphism.

If O is an embedded codimension-1 suborbifold of O then we say that O’ is two-
sided if the normal bundle NO’ has a nowhere-zero section. If O and O are both
orientable then O’ is two-sided. We say that O is separating if |O'| is separating
in |O|.
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 109

We can talk about two suborbifolds meeting transversely, as defined using local
models.

Let O be an oriented orbifold (possibly disconnected). Let Dy and D2 be disjoint
codimension-zero embedded suborbifolds-with-boundary, both oriented-diffeomorphic
to D™//T. Then the operation of performing 0-surgery along D1, D2 produces the
new oriented orbifold O" = (O — int(D1) — int(D2)) Uyp, Lop, (I X (D"//T')). In the
manifold case, a connected sum is the same thing as a 0-surgery along a pair {D, D2}
which lie in different connected components of 0. Note that unlike in the manifold
case, O is generally not uniquely determined up to diffeomorphism by knowing the
connected components containing Dy and Dy. For example, even if O is connected,
D, and Dy may or may not lie on the same connected component of the singular set.

If Oy and Os are oriented orbifolds, with Dy C O and Dy C O3 both oriented
diffeomorphic to D" //T', then we may write O14 gn-1,rO2 for the connected sum.
This notation is slightly ambiguous since the location of D; and Dy is implicit. We
will write O# gn-1 1 to denote a 0-surgery on a single orbifold O. Again the notation
is slightly ambiguous, since the location of D1, Dy C O is implicit.

An involutive distribution on O is a subbundle E C T'O with the property that for
any two sections Vi, V, of E, the Lie bracket [V7, V3] is also a section of E.

Lemma 2.10. — Given an involutive distribution E on O, for any p € |O| there is a
unique maximal suborbifold passing through p which is tangent to E.

Orbifolds have partitions of unity.

Lemma 2.11. — Given an open cover {Uy}aca of |O|, there is a collection of functions
Pa € C(0O) such that
0<pa<1.

- supp(pa) C Uy for some o/ = o/ (a) € A.
For allp € |O|, 3~ capalp) =1.

Proof. — The proof is similar to the manifold case, using local models (17 , G) consist-
ing of coordinate neighborhoods, along with compactly supported G-invariant smooth
functions on U. O

A curve in an orbifold is a smooth map v : I — O defined on an interval I C R.
A loop is a curve v with |v|(0) = |y](1) € |O|.

2.2. Universal cover and fundamental group. — We follow the presentation
in [5, Chapter 2.2.1]. Choose a regular point p € |O]. A special curve from p is a
curve v : [0,1] — O such that

- |7/(0) = p and
= |7[(¢) lies in |O|e, for all but a finite number of .
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110 B. KLEINER & J. LOTT

Suppose that (U, G) is a local model and that 7 : [a,b] — Uis a lifting of 4y}, for
some [a,b] C [0,1]. An elementary homotopy between two special curves is a smooth
homotopy of 7 in U, relative to ~(a) and 7(b). A homotopy of v is what’s generated
by elementary homotopies.

If O is connected then the universal cover O of O can be constructed as the set
of special curves starting at p, modulo homotopy. It has a natural orbifold structure.
The fundamental group 71(O,p) is given by special loops (i.e., special curves vy with
[v1(1) = p) modulo homotopy. Up to isomorphism, m;(O,p) is independent of the
choice of p.

If O is connected and a discrete group I' acts properly discontinuously on O then
there is a short exact sequence

(2.12) 1 — m(0,p) — m((O)T,pI') — T — 1.

Remark 2.13. — A more enlightening way to think of an orbifold is to consider it as a
smooth effective proper étale groupoid G, as explained in [1, 12, 44]. We recall that
a Lie groupoid G essentially consists of a smooth manifold G(®) (the space of units),
another smooth manifold G(*) and submersions s,7 : G — GO (the source and
range maps), along with a partially defined multiplication GV x G — G which
satisfies certain compatibility conditions. A Lie groupoid is étale if s and r are local
diffeomorphisms. It is proper if (s,r) : ¢ — GO »x GO is a proper map. There is
also a notion of an étale groupoid being effective.

To an orbifold one can associate an effective proper étale groupoid as follows.
Given an orbifold O, a local model (UQ,GQ) and some p, € ﬁm let p € |O] be the
corresponding point. There is a quotient map Ap, : 15, Us — Cp|O|. The unit space
G is the disjoint union of the U,’s. And GV consists of the triples (pa, P, Bs. 55)
where

1. pa € ﬁa and ps € (7/3,

2. Ppa and pg map to the same point p € |O| and

3. Bp. 5, 1 15, Uy — T3, lA]/j is an invertible linear map so that A5, = Az, 0 Bj, ;-
There is an obvious way to compose triples (pa.Dg. Bp, 5,) and (pg, Py, Bp,.5,). One
can show that this gives rise to a smooth effective proper étale groupoid.

Conversely, given a smooth effective proper étale groupoid G, for any p € G the
isotropy group gg is a finite group. To get an orbifold, one can take local models of
the form ([7 , gg) where U is a gg—invariant neighborhood of p.

Speaking hereafter just of smooth effective proper ¢tale groupoids, Morita-
equivalent groupoids give equivalent orbifolds.

A groupoid morphism gives rise to an orbifold map. Taking into account Morita
equivalence, from the groupoid viewpoint the right notion of an orbifold map would
be a Hilsum-Skandalis map between groupoids. These turn out to correspond to good
maps between orbifolds, as later defined by Chen-Ruan [1]. This is a more restricted
class of maps between orbifolds than what we consider. The distinction is that one can
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 111

pull back orbivector bundles under good maps, but not always under smooth maps in
our sense. Orbifold diffeomorphisms in our sense are automatically good maps. For
some purposes it would be preferable to only deal with good maps, but for simplicity
we will stick with our orbifold definitions.

A Lie groupoid G has a classifying space BG. In the orbifold case, if G is the
étale groupoid associated to an orbifold O then 7 (O) = m(BG). The definition of
the latter can be made explicit in terms of paths and homotopies; see [12, 29]. In
the case of effective orbifolds, the definition is equivalent to the one of the present
paper.

More information is in [1, 44] and references therein.

2.3. Low-dimensional orbifolds. — We list the connected compact boundaryless
orbifolds of low dimension. We mostly restrict here to the orientable case. (The
nonorientable ones also arise; even if the total space of an orbifiber bundle is orientable,
the base may fail to be orientable.)

2.3.1. Zero dimensions. — The only possibility is a point.

2.5.2. One dimension. — There are two possibilities : S! and S!//Zs. For the latter,
the nonzero element of Zy acts by complex conjugation on S!, and |S!//Zs| is an
interval. Note that S!//Z, is not orientable.

2.3.8. Two dimensions. — For notation, if S is a connected oriented surface then
S(k1, ..., k) denotes the oriented orbifold O with || = S, having singular points of
order ki,...,k. > 1. Any connected oriented 2-orbifold can be written in this way.
An orbifold of the form S?(p, q,r) is called a turnover.

The bad orientable 2-orbifolds are S?(k) and S?(k, k'), k # k’. The latter is simply-
connected if and only if ged(k, k') = 1.

The spherical 2-orbifolds are of the form S?//T', where I' is a finite subgroup of
Isom™(S?). The orientable ones are S?, S%(k,k), S%(2,2,k), S?(2,3,3), S?(2,3,4),
S2(2,3,5). (If S?(1,1) arises in this paper then it means S2.)

The Euclidean 2-orbifolds are of the form T?//T', where I' is a finite subgroup
of Isom™*(T?). The orientable ones are T2, S2%(2,3,6), S%(2,4,4), S?(3,3,3),
S52(2,2,2,2). The latter is called a pillowcase and can be identified with the quotient
of T? = C/7Z? by Zz, where the action of the nontrivial element of Zy comes from the
map z — —z on C.

The other closed orientable 2-orbifolds are hyperbolic.

We will also need some 2-orbifolds with boundary, namely

~ The discal 2-orbifolds D?(k) = D?//Zy.

~ The half-pillowcase D?(2,2) = I xz, S'. Here the nontrivial element of Zy acts

by involution on I and by complex conjugation on S'. We can also write D?(2, 2)
as the quotient {z € C : § < |z| < 2}//Z,, where the nontrivial element of Z,

sends z to z7 1.
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~ D?//Zy, where Zy acts by complex conjugation on D?. Then 0|D?//Zs| is a
circle with one orbifold boundary component and one reflector component. See
Figure 1, where the dark line indicates the reflector component.

FIGURE 1.

D?)/Dy = D*(k)//Zs, for k > 1, where Dy, is the dihedral group and Zs acts
by complex conjugation on D?(k). Then 9|D?//Dy| is a circle with one orbifold
boundary component, one corner reflector point of order k£ and two reflector

components. See Figure 2.

FIGURE 2.

2.3.4. Three dimensions. — If O is an orientable three-dimensional orbifold then |O|
is an orientable topological 3-manifold. If O is boundaryless then |O] is boundaryless.
Each component of the singular locus in |O] is either
1. a knot or arc (with endpoints on 9|0|), labelled by an integer greater than
one, or
2. a trivalent graph with each edge labelled by an integer greater than one, under
the constraint that if edges with labels p, ¢, 7 meet at a vertex then i + é +% > 1.
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That is, there is a neighborhood of the vertex which is a cone over an orientable
spherical 2-orbifold.
Specifying such a topological 3-manifold and such a labelled graph is equivalent to
specifying an orientable three-dimensional orbifold.
We write D?//T" for a discal 3-orbifold whose boundary is S?//T'. They are
— D3. There is no singular locus.
~ D3(k, k). The singular locus is a line segment through D3. See Figure 3.

FI1GURE 3.

- D3(2,2,k), D3(2,3,3), D3(2,3,4) and D?(2,3,5). The singular locus is a tripod
in D3. See Figure 4.

FIGURE 4.
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The solid-toric 3-orbifolds are
~ 81 x D?. There is no singular locus.
St x D?(k). The singular locus is a core curve in a solid torus. See Figure 5

FIGURE 5.

- St x Zs D2, The singular locus consists of two arcs in a 3-disk, each labelled by
2. The boundary is S?(2,2,2,2). See Figure 6.

FIGURE 6.

St x 7, D?(k). The singular locus consists of two arcs in a 3-disk, each labelled by
2, joined in their middles by an arc labelled by k. The boundary is S?(2,2,2,2).
See Figure 7.
Given I' € Isom™(S5?), we can consider the quotient S®//T" where I' acts on S* by
the suspension of its action on S2. That is, we are identifying Isom™ (S2) with SO(3)
and using the embedding SO(3) — SO(4) to let I" act on S.
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FIGURE 7.

An orientable three-dimensional orbifold O is irreducible if it contains no embedded
bad 2-dimensional suborbifolds, and any embedded orientable spherical 2-orbifold
S2//T bounds a discal 3-orbifold D?//T" in O. Figure 8 shows an embedded bad
2-dimensional suborbifold ¥. Figure 9 shows an embedded spherical 2-suborbifold
S2(k, k) that does not bound a discal 3-orbifold; the shaded regions are meant to

indicate some complicated orbifold regions.

—————
. ~

FIGURE 8.
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FIGURE 9. An essential spherical suborbifold

If S is an orientable embedded 2-orbifold in O then S is compressible if there is
an embedded discal 2-orbifold D € O so that 9D lies in S, but 9D does not bound
a discal 2-orbifold in S. (We call D a compressing discal orbifold.) Otherwise, S is
incompressible. Note that any embedded copy of a turnover S?(p, ¢, r) is automatically
incompressible, since any embedded circle in S?(p,q,r) bounds a discal 2-orbifold
in S2(p,q,7).

If O is a compact orientable 3-orbifold then there is a compact orientable irreducible
3-orbifold O’ so that O is the result of performing O-surgeries on O'; see [5, Chap-
ter 3]. The orbifold @ can be obtained by taking an appropriate spherical system
on O, cutting along the spherical 2-orbifolds and adding discal 3-orbifolds to the en-
suing boundary components. If we take a minimal such spherical system then O’ is
canonical.

Note that if O = S! x S? then O’ = S3. This shows that if O is a 3-manifold then
@’ is not just the disjoint components in the prime decomposition. That is, we are not
dealing with a direct generalization of the Kneser-Milnor prime decomposition from
3-manifold theory. Because the notion of connected sum is more involved for orbifolds
than for manifolds, the notion of a prime decomposition is also more involved; see [35,
53]. It is not needed for the present paper.

We assume now that O is irreducible. The geometrization conjecture says that if
00 = @ and O does not have any embedded bad 2-dimensional suborbifolds then
there is a finite collection {.5;} of incompressible orientable Euclidean 2-dimensional
suborbifolds of O so that each connected component of O’ — [ J ;Si is diffeomorphic to
a quotient of one of the eight Thurston geometries. Taking a minimal such collection
of Euclidean 2-dimensional suborbifolds, the ensuing geometric pieces are canonical.
References for the statement of the orbifold geometrization conjecture are [5, Chap-
ter 3.7], [19, Chapter 2.13].
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Our statement of the orbifold geometrization conjecture is a generalization of the
manifold geometrization conjecture, as stated in [54, Section 6] and [56, Conjec-
ture 1.1]. The cutting of the orientable three-manifold is along two-spheres and two-
tori. An alternative version of the geometrization conjecture requires the pieces to
have finite volume [45, Conjecture 2.2.1]. In this version one must also allow cutting
along one-sided Klein bottles. A relevant example to illustrate this point is when the
three-manifold is the result of gluing I xz, T to a cuspidal truncation of a one-cusped
complete noncompact finite-volume hyperbolic 3-manifold.

2.4. Seifert 3-orbifolds. — A Seifert orbifold is the orbifold version of the total
space of a circle bundle. We refer to [5, Chapters 2.4 and 2.5] for information about
Seifert 3-orbifolds. We just recall a few relevant facts.

A Seifert 3-orbifold fibers m : O — B over a 2-dimensional orbifold B, with circle
fiber. If (U, Gp) is a local model around p € |B| then there is a neighborhood V' of
|7|=1(p) C |O] so that Ol is diffeomorphic to (S* x ﬁ)//GP, where G, acts on S*
via a representation G, — O(2). We will only consider orientable Seifert 3-orbifolds.
so the elements of GG, that preserve orientation on U will act on S! via SO(2), while
the elements of ), that reverse orientation on U will act on S via 0(2) —SO(2). In
particular, if p € [B|,e, then |f|7!(p) is a circle, while if p ¢ | B¢, then |f|~*(p) may
be an interval. We may loosely talk about the circle fibration of O.

As 90 is an orientable 2-orbifold which fibers over a 1-dimensional orbifold, with
circle fibers, any connected component of O must be T2 or $%(2,2,2,2). In the case
of a boundary component S?(2,2,2,2), the generic fiber is a circle on [5%(2,2,2,2)
which separates it into two 2-disks, each containing two singular points. That is, the
pillowcase is divided into two half-pillowcases.

A solid-toric orbifold S* x D? or S' x D?(k) has an obvious Seifert fibering over
D? or D%(k). Similarly, a solid-toric orbifold S xz, D? or S! xz, D?(k) fibers over
DQ//ZQ or DQ(k)//ZQ

2.5. Riemannian geometry of orbifolds

Definition 2.14. — A Riemannian metric on an orbifold O is given by an atlas for O
along with a collection of Riemannian metrics on the (?a’s so that
- G, acts isometrically on [/]\a and
— The embeddings ((73,6’3) — (ﬁl,Gl) and (173,G3) — ((72,6’2) from part 5 of
Definition 2.1 are isometric.

We say that the Riemannian orbifold O has sectional curvature bounded below by
K € R if the Riemannian metric on each (A]a has sectional curvature bounded below
by K, and similarly for other curvature bounds.

A Riemannian orbifold has an orthonormal frame bundle FO, a smooth manifold
with a locally free (left) O(n)-action whose quotient space is homeomorphic to |O).
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Local charts for F'OQ are given by O(n) x ¢ U. Fixing a bi-invariant Riemannian metric
on O(n), there is a canonical O(n)-invariant Riemannian metric on FO.

Conversely, if Y is a smooth connected manifold with a locally free O(n)-action then
the slice theorem [11, Corollary VI.2.4] implies that for each y € Y, the O(n)-action
near the orbit O(n) -y is modeled by the left O(n)-action on O(n) x¢, RY, where
the finite stabilizer group G, C O(n) acts linearly on RY. There is a corresponding
N-dimensional orbifold O with local models given by the pairs (RY,G,). If ¥} and
Y, are two such manifolds and F' : Y] — Y5 is an O(n)-equivariant diffeomorphism
then there is an induced quotient diffeomorphism f : O; — O,, as can be seen by
applying the slice theorem.

If Y has an O(n)-invariant Riemannian metric then O obtains a quotient Rieman-
nian metric.

Remark 2.15. - Suppose that a discrete group I' acts properly discontinuously on an
orbifold @. Then there is a I'-invariant Riemannian metric on . Furthermore, I
acts freely on FO, commuting with the O(n)-action. Hence there is a locally free
O(n)-action on the manifold FO/T and a corresponding orbifold O //T.

There is a horizontal distribution TH#FO on FO coming from the Levi-Civita
connection on U. If v is a loop at p € |O] then a horizontal lift of v allows one to
define the holonomy H., a linear map from 7,0 to itself.

If v : [a,b] — O is a smooth map to a Riemannian orbifold then its length is
L(v) = f: |v/(t)] dt, where |¥'(t)] can be defined by a local lifting of v to a local
model. This induces a length structure on |O|. The diameter of O is the diameter of
|O]. We say that O is complete if |O] is a complete metric space. If O has sectional
curvature bounded below by K € R then |O] has Alexandrov curvature bounded
below by K, as can be seen from the fact that the Alexandrov condition is preserved
upon quotienting by a finite group acting isometrically [13, Proposition 10.2.4].

It is useful to think of O as consisting of an Alexandrov space equipped with an
additional structure that allows one to make sense of smooth functions.

We write dvol for the n-dimensional Hausdorff measure on |O|. Using the above-
mentioned relationship between the sectional curvature of O and the Alexandrov cur-
vature of |O]. we can use [13, Chapter 10.6.2] to extend the Bishop-Gromov inequality
from Riemannian manifolds with a lower sectional curvature bound, to Riemannian
orbifolds with a lower sectional curvature bound. We remark that a Bishop-Gromov
inequality for an orbifold with a lower Ricci curvature bound appears in [9].

A geodesic is a smooth curve v which, in local charts, satisfies the geodesic equation.
Any length-minimizing curve v between two points is a geodesic, as can be seen by
looking in a local model around ~(t).

Lemma 2.16. — If O is a complete Riemannian orbifold then for any p € |O] and any
v € CplO|, there is a unique geodesic v : R — O such that |v](0) = p and v'(0) = v.
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Proof. — The proof is similar to the proof of the corresponding part of the Hopf-
Rinow theorem, as in [39, Theorem 4.1]. O

The exponential map of a complete orbifold O is defined as follows. Given p € |0
and v € Cp|O|, let v : [0,1] — O be the unique geodesic with [y[(0) = p and
[v1(0) = v. Put |exp|(p,v) = (p,|7](1)) € |O] x |O]. This has the local lifting
property to define a smooth orbifold map exp : TO — O x O.

Given p € |O|, the restriction of exp to 7,0 gives an orbifold map exp,, : 7,0 — O
so that |exp|(p,v) = (p,|exp, [(v)).

Similarly, if @' is a suborbifold of O then there is a normal ezponential map exp :
NO' — O. If O is compact then for small € > 0, the restriction of exp to the open
e-disk bundle in NO' is a diffeomorphism to OI N.(O'])

Remark 2.17. To prove Lemma 2.9, we can give the proper surjective
submersion f : O; — @2 a Riemannian submersion metric in the orbifold
sense. Given p € |Oz], let U be a small e-ball around p and let (U,Gp) be a
local model with ﬁ/Gp = U. Pulling back f|f;1(U)A: FHU) — U to U, we
obtain a Gp-equivariant Riemannian submersion f to U. If p € U covers p then
f’l(ﬁ) is a compact orbifold on which G, acts. Using the submersion structure,
its normal bundle N f~1(p) is G,-diffeomorphic to F4p) x T,;(A] . If € is sufficiently
small then the normal exponential map on the e-disk bundle in Nf’l(f))
provides a Gp-equivariant product neighborhood FYp) x U of f~1p); cf. [3,
Proof of Theorem 9.42]. This passes to a diffeomorphism between f~!(U) and

(f~1(B) x U)//G,.

If f: O = O is a local diffeomorphism and g, is a Riemannian metric on O
then there is a pullback Riemannian metric f*g, on O;, which makes f into a local
isometry.

We now give a useful criterion for a local isometry to be a covering map.

Lemma2.18. — If f : O1 — O is a local isometry, Oy is complete and Oz is
connected then f is a covering map.

Proof. — The proof is along the lines of the corresponding manifold statement, as
in [39, Theorem 4.6]. O

There is an orbifold version of the de Rham decomposition theorem.
Lemma 2.19. — Let O be connected, simply-connected and complete. Given p €
|Olreg, suppose that there is an orthogonal splitting T,0 = E; © Ey which is in-

variant under holonomy around loops based at p. Then there is an isometric splitting
O = 01 x Oy so that if we write p = (p1,p2) then Tp, 01 = Ey and Tp,02 = Ey.
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Proof. — The parallel transport of F; and Es defines involutive distributions D; and
D5, respectively, on O. Let O; and Oy be maximal integrable suborbifolds through
p for Dy and Ds, respectively.

Given a smooth curve v : [a,b] — O starting at p, there is a development C' :
[a,b] — T,0 of v, as in [39, Section IIL.4]. Let Cy : [a,b] — E; and Cy : [a,b] — E>
be the orthogonal projections of C. Then there are undevelopments ~; : [a,b] — O
and 9 : [a,b] = O3 of Cy and Cy, respectively.

As in [39, Lemma IV.6.6], one shows that (|y1|(b), |y2|(b)) only depends on |v|(b).
In this way, one defines a map f : O — O x Oz. As in [39, p. 192], one shows that f is
a local isometry. As in [39, p. 188], one shows that O; and O3 are simply-connected.
The lemma now follows from Lemma 2.18. O

The regular part |O|., inherits a Riemannian metric. The corresponding vol-
ume form equals the n-dimensional Hausdorff measure on |O|,¢,. We define vol(O),
or vol(]O]), to be the volume of the Riemannian manifold |04, which equals the
n-dimensional Hausdorff mass of the metric space |O)|.

If f : O = O is a diffeomorphism between Riemannian orbifolds (O, g1) and
(O, g2) then we can define the C'*-distance between g; and f*go, using local models
for O;.

A pointed orbifold (O, p) consists of an orbifold O and a basepoint p € |O|. Given

r > 0, we can consider the pointed suborbifold B(p,r) = (’)‘B(W‘).

Definition 2.20. — Let (Oq,p1) and (O, p2) be pointed connected orbifolds with com-
plete Riemannian metrics g; and go that are C¥-smooth. (That is, the orbifold tran-
sition maps are C*1 and the metric tensor in a local model is C¥.) Given € > 0,
we say that the C¥-distance between (Oy,p1) and (Og, p2) is bounded above by € if
there is a C*'-smooth map f : B(p1,e ') — Oy that is a diffeomorphism onto its
image, such that

- The C¥-distance between g; and f*go on B(py,e ') is at most ¢, and

= dioy|(If1(p1).p2) < €

Taking the infimum of all such possible ¢’s defines the C¥-distance between (O1, p1)
and (Oq, p2).

f] to be basepoint-preserving.
However, this would cause problems. For example, given k > 2, take O = R?//Zy.
Let 7 : R? — |O| be the quotient map. We would like to say that if i is large
then the pointed orbifold (O, 7(i~1,0)) is close to (O, 7(0,0)). However, there is no
basepoint-preserving map f : B(rw(i~1,0),1) — (O, 7(0,0)) which is a diffeomorphism
onto its image, due to the difference between the local groups at the two basepoints.

Remark 2.21. — Tt may seem more natural to require

2.6. Critical point theory for distance functions. — Let O be a complete
Riemannian orbifold and let Y be a closed subset of |O]. A point p € |O] =Y is
noncritical if there is a nonzero Gp-invariant vector v € T,0 = T5U making an angle
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strictly larger than 7 with any lift to Tﬁff of the initial velocity of any minimizing
geodesic segment from p to Y.
In the next lemma we give an equivalent formulation in terms of noncriticality

on |O|.

Lemma 2.22. — A point p € |O] =Y is noncritical if and only if there is some w €
CplO| = T5U /Gy, so that the comparison angle between w and any minimizing geodesic
from p to'Y is strictly greater than 3.

Proof. — Suppose that p is noncritical. Given v as in the definition of noncriticality,
put w = vG,.

Conversely, suppose that w € Cp|O| = Tﬁﬁ /Gp is such that the comparison angle
between w and any minimizing geodesic from p to Y is strictly greater than 7. Let
vp be a preimage of w in T,;[? . Then vy makes an angle greater than 5 with any lift
to Tﬁ(/j of the initial velocity of any minimizing geodesic from p to Y. As the set of
such initial velocities is Gp-invariant, for any g € G, the vector vgg also makes an
angle greater than 3 with any lift to T;,(A] of the initial velocity of any minimizing
geodesic from p to Y. As {vog}geq, lies in an open half-plane, we can take v to be

1
the nonzero vector 7 >gec, Vog- O
We now prove the main topological implications of noncriticality.

Lemma 2.23. — If Y is compact and there are no critical points in the set d;l(a,b)
then there is a smooth vector field & on O
directional derivative in the & direction.

5 (asb) SO that dy has uniformly positive

Proof. — The proof is similar to that of [14, Lemma 1.4]. For any p € |O| —Y, there
are a precompact neighborhood U, of p in |O] — Y and a smooth vector field V,, on
U, so that dy has positive directional derivative in the V}, direction, on U,. Let {Up, }
be a finite collection that covers dy'(a,b). From Lemma 2.11, there is a subordinate
partition of unity {p;}. Put £ =", p;Vi. a

Lemma 2.24. — If Y is compact and there are no critical points in the set d;l(a,b)
then Old;l(a.b) is diffeomorphic to a product orbifold R x O'.

Proof. — Construct £ as in Lemma 2.23. Choose ¢ € (a,b). Then (9|d;1(c) is a
Lipschitz-regular suborbifold of O which is transversal to £, as can be seen in local
models. Working in local models, inductively from lower-dimensional strata of |O] to
higher-dimensional strata, we can slightly smooth (’)‘ d;'(e) tO form a smooth suborb-
ifold O of O which is transverse to &. Flowing (which is defined using local models) in
the direction of & gives an orbifold diffeomorphism between O, dy (a,py 80d R x o. O
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2.7. Smoothing functions. — Let O be a Riemannian orbifold. Let F' be a Lips-
chitz function on |O|. Given p € |O|, we define the generalized gradient V" ' C T},0
as follows. Let (ﬁ, G) be alocal model around p. Let F be the lift of F to U. Choose
D e U covering p. Let € > 0 be small enough so that exp; : B(0,¢) — U is a dif-
feomorphism onto its image. If T € B(p,€) is a point of differentiability of F then
compute V;ﬁ and parallel transport it along the minimizing geodesic to p. Take the
closed convex hull of the vectors so obtained and then take the intersection as € — 0.
This gives a closed convex Gp,-invariant subset of Tﬁfj , or equivalently a closed convex
subset of T),0; we denote this set by V2" F'. The union Up€|o| Vi F C TO will be
denoted VI F

Lemma 2.25. — Let O be a complete Riemannian orbifold and let |x| : |TO| — |O| be
the projection map. Suppose that U C |O| is an open set, C C U is a compact subset
and S is an open fiberwise-convex subset of To}lﬂ,r—l(U). (That is, S is an open subset
of |x|"Y(U) and for each p € |O|, the preimage of (S N |x|~1(p)) C CplO] in T,O is
convez.)

Then for any € > 0 and any Lipschitz function F : |O] — R whose generalized
gradient over U lies in S, there is a Lipschitz function F' : |O] — R such that :

1. There is an open subset of |O| containing C on which F' is a smooth orbifold
function.

2. The generalized gradient of F', over U, lies in S.
3. [F' — Flx <e.
4 Flioj-v = Flioj-v-

Proof. — The proof proceeds by mollifying the Lipschitz function F' as in [28, Sec-
tion 2]. The mollification there is clearly G-equivariant in a local model (U, G). O

Corollary 2.26. — For all € > 0 there is a 0 > 0 with the following property.

Let O be a complete Riemannian orbifold, let Y C |O| be a closed subset and let
dy : |O| = R be the distance function from Y. Given p € |O| =Y, let V,, C C,|O)|
be the set of initial velocities of minimizing geodesics from p to Y. Suppose that
U C |O| =Y is an open subset such that for all p € U, one has diam(V,) < 6. Let
C be a compact subset of U. Then for every e; > 0, there is a Lipschitz function
F’ 10| — R such that

— F' is smooth on a neighborhood of C.

~ || F' —dy ||o< €.

F'ly_y =dy|yy
- For every p € C, the angle between —V ,F' and V), is at most €.
—- F' —dy is e-Lipschitz.
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3. Noncompact nonnegatively curved orbifolds

In this section we extend the splitting theorem and the soul theorem from Rieman-
nian manifolds to Riemannian orbifolds. We give an argument to rule out tight necks
in a noncompact nonnegatively curved orbifold. We give the topological description
of noncompact nonnegatively curved orbifolds of dimension two and three.

Assumption 3.1. In this section, O will be a complete nonnegatively curved Rie-
mannian orbifold.

We may emphasize in some places that O is nonnegatively curved.

3.1. Splitting theorem

Proposition 3.2. — If |O| contains a line then O is an isometric product R x O for
some complete Riemannian orbifold O'.

Proof. — As |O| contains a line, the splitting theorem for nonnegatively curved
Alexandrov spaces [13, Chapter 10.5] implies that |O] is an isometric product R x Y’
for some complete nonnegatively curved Alexandrov space Y. The isometric splitting
lifts to local models, showing that OIY is an Riemannian orbifold O’ and that the
isometry |O] = R x Y is a smooth orbifold splitting O — R x O'. O

Corollary 3.3. — If O has more than one end then it has two ends and O is an iso-
metric product R x O" for some compact Riemannian orbifold O'.

Remark 3.4. — A splitting theorem for orbifolds with nonnegative Ricci curvature
appears in [10]. As the present paper deals with lower sectional curvature bounds,
the more elementary Proposition 3.2 is sufficient for our purposes.

3.2. Cheeger-Gromoll-type theorem. — A subset Z C |O] is totally convex if
any geodesic segment (possibly not minimizing) with endpoints in Z lies entirely in Z.

Lemma3.5. — Let Z C |O| be totally convex and let (U,G) be a local model. Put
U=U/G and let q : U — U be the quotient map. If v is a geodesic segment in U
with endpoints in ¢~ (U N Z) then ~y lies in ¢~ Y (U N Z).

Proof. — Suppose that v(t) ¢ ¢ (U N Z) for some t. Then g o~ is a geodesic in O
with endpoints in Z, but ¢(v(t)) ¢ Z. This is a contradiction. O

Lemma 3.6. — Let Z C |O] be a closed totally convex set. Let k be the Hausdorff
dimension of Z. Let N be the union of the k-dimensional suborbifolds S of O with
|S| € Z. Then N is a totally geodesic k-dimensional suborbifold of |O| and Z = W—|
Furthermore, if Y is a closed subset of |[N'| and p € Z — |N'| then there is a v € C,|O|
so that the initial velocity of any minimizing geodesic from p to Y makes an angle

s

greater than 3 with v.

Proof. — Using Lemma 3.5, the proof is along the lines of that in [27, Chapter 3.1]. O
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We put 0Z = Z—|N|. Note that in the definition of N we are dealing with orbifolds
as opposed to manifolds. For example, if Ol » is a boundaryless k-dimensional orbifold
then 07 = @.

A function f : |O| — R is concave if for any geodesic segment v : [a, b] — O, for all
¢ € [a, b] one has

b—c c—a
7 ) > —— — .
3.) F(E) 2 7= f (@) + 5= F( o))
Lemma 3.8. — It is equivalent to require (3.7) for all geodesic segments or just for

minimizing geodesic segments.

Proof. — Suppose that (3.7) holds for all minimizing geodesic segments. Let v :
[a,b] — O be a geodesic segment, maybe not minimizing. For any ¢ € [a, b], we can
find a neighborhood I of ¢ in [a, ] so that the restriction of v to I; is minimizing.
Then (3.7) holds on I;. It follows that (3.7) holds on [a, b]. O

Any superlevel set f~![c,00) of a concave function is closed and totally convex.

Let f be a proper concave function on |O] which is bounded above. Then there is a
maximal ¢ € R so that the superlevel set f~![c,00) is nonempty, and so f~![e, 00) =
f~He} is a closed totally convex set.

Suppose for the rest of this subsection that O is noncompact.

Lemma 3.9. — Let Z C |O] be a closed totally convex set with 0Z # @. Then dyz
is a concave function on Z. Furthermore, suppose that for a minimizing geodesic
v :la,b] = Z in Z, the restriction of dpz o || is a constant positive function on [a,b].
Let t — expy o)t X (a) be a minimizing unit-speed geodesic from |y|(a) to 0Z, defined
for t € [0,d]. Let {X(5)}seap) be the parallel transport of X(a) along . Then for
any s € [a,b], the curve t — exp, ot X (s) is a minimal geodesic from |y|(s) to 0Z, of
length d. Also, the rectangle V : [a,b] x [0,d] — Z given by V (s,t) = exp. 5t X (s) is
flat and totally geodesic.

Proof. — The proof is similar to that of [27, Theorem 3.2.5]. O

Fix a basepoint x € |O|. Let 7 be a unit-speed ray in |O] starting from x; note
that 7 is automatically a geodesic. Let b, : |O] — R be the Busemann function;

(3.10) by(p) = lim (d(p,n(t)) - 1).
Lemma 3.11. — The Busemann function b, is concave.
Proof. — The proof is similar to that of [27, Theorem 3.2.4]. O
Lemma 3.12. — Putting f = inf, b,, where n runs over unit speed rays starting at *,

gives a proper concave function on |O| which is bounded above.

Proof. — The proof is similar to that of [27, Proposition 3.2.1]. ]
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We now construct the soul of O, following Cheeger-Gromoll [17]. Let Cj be the
minimal nonempty superlevel set of f. For ¢ > 0, if 0C; # @ then let C;;; be the
minimal nonempty superlevel set of dgc, on C;. Let S be the nonempty C; so that
0C; = &. Define the soultobe § = Ols Then S is a totally geodesic suborbifold of O.

Proposition 3.13. — O is diffeomorphic to the normal bundle NS of S.

Proof. — Following [27, Lemma 3.3.1], we claim that dg has no critical points on
|O] — S. To see this, choose p € |O] — S. There is a totally convex set Z C |O] for
which p € 0Z; either a superlevel set of f or one of the sets C;. Defining A as in
Lemma 3.6, we also know that S C |A|. By Lemma 3.6, p is noncritical for ds.
From Lemma 2.24, for small € > 0, we know that O is diffeomorphic to O} (S)"
However, if € is small then the normal exponential map gives a diffeomorphism between

NS and (’)|N‘(S). O

Remark 3.14. — One can define a soul for a general complete nonnegatively curved
Alexandrov space X. The soul will be homotopy equivalent to X. However, X need
not be homeomorphic to a fiber bundle over the soul, as shown by an example of
Perelman [13, Example 10.10.9].

We include a result that we will need later about orbifolds with locally convex
boundary.

Lemma 3.15. — Let O be a compact connected orbifold-with-boundary with nonnega-
tive sectional curvature. Suppose that 0O is nonempty and has positive-definite second
fundamental form. Then there is some p € |O] so that 0O is diffeomorphic to the
unit distance sphere from the vertex in T,0.

Proof. — Let p € |O] be a point of maximal distance from |00|. We claim that p
is unique. If not, let p’ be another such point and let v be a minimizing geodesic

between them. Applying Lemma 3.9 with Z = |O|, there is a nontrivial geodesic
s = V(s,d) of O that lies in |0O|. This contradicts the assumption on 00. Thus p is
unique. The lemma now follows from the proof of Lemma 3.13, as we are effectively
in a situation where the soul is a point. O

3.3. Ruling out tight necks in nonnegatively curved orbifolds

Lemma 3.16. — Suppose that O is a complete connected Riemannian orbifold with
nonnegative sectional curvature. If X is a compact connected 2-sided codimension-1
suborbifold of O then precisely one of the following occurs :
- X is the boundary of a compact suborbifold of O.

X is nonseparating, O is compact and X lifts to a Z-cover O' — O, where

O =R x O" with O" compact.

X separates O into two unbounded connected components and O = R x O’

with O compact.
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Proof. — Suppose that X separates O. If both components of |O] — | X| are un-
bounded then O contains a line. From Proposition 3.2, O = R x @’ for some O’. As
X is compact, @’ must be compact.

The remaining case is when X does not separate O. If v is a smooth closed curve
in O which is transversal to X (as defined in local models) then there is a well-defined
intersection number v - X € Z. This gives a homomorphism p : m1 (O, p) — Z. Since
X is nonseparating, there is a v so that v - X # 0; hence the image of p is an infinite
cyclic group. Put O’ = O/ Ker(p); it is an infinite cyclic cover of @. As O’ contains
a line, the lemma follows from Proposition 3.2. O

Lemma 3.17. Suppose that R™ /G is a Euclidean orbifold with G a finite subgroup
of O(n). If X C R"//G is a connected compact 2-sided codimension-1 suborbifold,
then X bounds some D C R™//G with diamep (D) < 4]|G|diamx (X)), where diame (D)
denote the extrinsic diameter of D in |O| while diamx (X)) denotes the intrinsic di-
ameter of X.

Proof. — Let X be the preimage of X in R™. Let A be any number greater than
diamx (X). Let 2 be a point in | X|. Let {Z;};es be the preimages of z in X. Here the
cardinality of I is bounded above by |G|. We claim that X = Uies B(@i. &), where
B(z;,A) denotes a distance ball in X with respect, to its intrinsic metric. To see this,
let ¥ be an arbitrary point in X. Let y be its image in X. Join y to # by a minimizing
geodesic v in X, which is necessarily of length at most A. Then a horizontal lift of
v, star Llng at ¥, joins 7 to some Z; and also has length at most A.

Let C' be a connected component of X. Since C is connected, it has a covering
by a subset of {B(Z;,2diamyx (X))};e; with connected nerve, and so C has diameter
at most 4|G|diamx(X). Furthermore, from the Jordan separation theorem, C is
the boundary of a domain D € R" with extrinsic diameter at most 4G diam x (X).
Letting D € O be the projection of 13, the lemma follows. O

Proposition 3.18. — Suppose that O is a complete connected noncompact Riemannian
n-orbifold with nonnegative sectional curvature. Then there is a number 6 > 0 (de-
pending on O) so that the following holds. Let X be a connected compact 2-sided
codimension-1 suborbifold of ©. Then either
X bounds a connected suborbifold D of O with diamo(D) < 8(sup,¢ o |Gpl) -
diam(X), or
- diam(X) > 0.

Proof. — Suppose that the proposition is not true. Then there is a sequence
{X;}2, of connected compact 2-sided codimension-1 suborbifolds of O so that
lim; 0o diam(X;) = 0 but each X; fails to bound a connected suborbifold whose

extrinsic diameter is at most 8sup,,¢ 0| |Gp| times as much.
If all of the
in the Hausdorft topology to a point p € |O]. As a sufficiently small neighborhood

X;|’s lie in a compact subset of |O] then a subsequence converges
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of p can be well approximated metrically by a neighborhood of 0 € |R"//G,| after
rescaling, Lemma 3.17 implies that for large ¢ we can find D; C O with X; = 0D,
and diamo, (D;) < 8(sup,¢|p| |Gpl) -diam(X;). This is a contradiction. Hence we can
assume that the sets | X;| tend to infinity.

If some X; does not bound a compact suborbifold of O then by Lemma 3.16, there
is an isometric splitting O = R x O’ with O’ compact. This contradicts the assumed
existence of the sequence {X;}22; with lim;_,. diam(X;) = 0. Thus we can assume
that X; = dD; for some compact suborbifold D; of O. If O had more than one end
then it would split off an R-factor and as before, the sequence {X;}2;, would not
exist. Hence O is one-ended and after passing to a subsequence, we can assume that
Dy C Dy C ... Fix a basepoint * € |D;|. Let n be a unit-speed ray in |O| starting
from x and let b, be the Busemann function from (3.10).

Suppose that p,p’ € |O| are such that b,(p) = b,(p’). For t large, consider a
geodesic triangle with vertices p,p’,n(t). Given X; with i large, if ¢ is sufficiently
large then ]T(t) and p'n(t) pass through X;. Taking ¢ — oo, triangle comparison
implies that d(p,p’) < diam(X;). Taking i — oo gives p = p’. Thus b, is injective.
This is a contradiction. |

3.4. Nonnegatively curved 2-orbifolds

Lemma 3.19. — Let O be a complete connected orientable 2-dimensional orbifold with
nonnegative sectional curvature which is C*-smooth, K > 3. We have the following
classification of the diffeomorphism type, based on the number of ends. For notation,
I' denotes a finite subgroup of the oriented isometry group of the relevant orbifold and
2 denotes a simply-connected bad 2-orbifold with some Riemannian metric.

-0 ends : S?)/T, T?)/T, 2 )/T.

1 end : R?)/T, St xz, R.
- 2 ends : R x St

Proof. — If O has zero ends then it is compact and the classification follows from the
orbifold Gauss-Bonnet theorem [5, Proposition 2.9]. If O has more than one end then
Proposition 3.2 implies that O has two ends and isometrically splits off an R-factor.
Hence it must be diffeomorphic to R x S!. Suppose that O has one end. The soul S
has dimension 0 or 1. If S has dimension zero then § is a point and O is diffeomorphic
to the normal bundle of S, which is R?//T. If S has dimension one then it is S or
S1))Zy and O is diffeomorphic to the normal bundle of S. As S! x R has two ends,
the only possibility is St xz, R. O

3.5. Noncompact nonnegatively curved 3-orbifolds

Lemma 3.20. — Let O be a complete connected noncompact orientable 3-dimensional
orbifold with nonnegative sectional curvature which is C* -smooth, K > 3. We have
the following classification of the diffeomorphism type, based on the number of ends.
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For notation, I' denotes a finite subgroup of the oriented isometry group of the relevant
orbifold and ¥? denotes a simply-connected bad 2-orbifold with some Riemannian
metric.
-~ Lend : R¥//T, S' x R?, S x R%(k), S xz, R?, S! xz, R%2(k), R xz, (S?//T),
R xz, (T?//T) or R xz, (¥2//T).
~ 2 ends : Rx (S%//T), R x (T?//T) or R x (£2//T).

Proof. — Because O is noncompact, it has at least one end. If it has more than one
end then Proposition 3.2 implies that O has two ends and isometrically splits off an
R-factor. This gives rise to the possibilities listed for two ends.

Suppose that O has one end. The soul § has dimension 0, 1 or 2. If § has dimension
zero then S is a point and O is diffeomorphic to the normal bundle of S, which is
R3//T. If S has dimension one then it is S or S'//Zy and O is diffeomorphic to the
normal bundle of S, which is S x R?, S x R?(k), St xz, R? or St xz, R?(k). If S
has dimension two then since it has nonnegative curvature, it is diffeomorphic to a
quotient of $2, T? or ¥2. Then O is diffeomorphic to the normal bundle of S, which
is R xz, (S?//T), R xz, (T?//T) or R x7, (£2//T), since O has one end. O

3.6. 2-dimensional nonnegatively curved orbifolds that are pointed
Gromov-Hausdorff close to an interval. — We include a result that we
will need later about 2-dimensional nonnegatively curved orbifolds that are pointed
Gromov-Hausdorff close to an interval.

Lemma 3.21. — There is some 8 > 0 so that the following holds. Suppose that O
1$ a pointed nonnegatively curved complete orientable Riemannian 2-orbifold which is
CK -smooth for some K > 3. Let « € |O] be a basepoint and suppose that the pointed
ball (B(*,10),%) C |O] has pointed Gromov-Hausdorff distance at most [ from the
pointed interval ([0,10],0). Then for every r € [1,9], the orbifold O‘m is a discal
2-orbifold or is diffeomorphic to D*(2,2).

Proof. — As in [37, Pf. of Lemma 3.12], the distance function d, : A(x,1,9) — [1,9]
defines a fibration with a circle fiber.

The possible diffeomorphism types of O are listed in Lemma 3.19. Looking at
them, if B(*, 1) is not a topological disk then O must be 7% and we obtain a contra-
diction as in [37, Pf. of Lemma 3.12]. Hence B(*,1) is a topological disk. If
O‘B—(m is not a discal 2-orbifold then it has at least two singular points,
say p1,p2 € |O]. Choose ¢ € |O| with d(*,q) = 2. By triangle comparison,

the comparison angles satisfy Z, (p2,q) < 1(2—’r| and Zm (p1,q) < 1(2,” T If 3 is
~ ~ Tpy Tpo
small then 2, (p2.q) + Zp,(p1,q) is close to 7. It follows that |G| = |G)p,| = 2.

Suppose that there are three distinct singular points pi,p2.p3 € |O]. We know

that they lie in B(x, 1). Let p;q and Pgp; denote minimal geodesics. If 8 is small then

the angle at p; between prq and prpz is close to 5. and similarly for the angle at p
between prq and prpz. As dim(O) = 2, and p; has total cone angle 7. it follows that
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if 4 is small then the angle at p; between p1pz and pips is small. The same reasoning
applies at ps and ps, so we have a geodesic triangle in |O| with small total interior
angle, which violates the fact that |O| has nonnegative Alexandrov curvature.

Thus O|z(73 is diffeomorphic to D?(2,2). O

4. Riemannian compactness theorem for orbifolds

In this section we prove a compactness result for Riemannian orbifolds.

The statement of the compactness result is slightly different from the usual state-
ment for Riemannian manifolds, which involves a lower injectivity radius bound. The
standard notion of injectivity radius is not a useful notion for orbifolds. For example,
if O is an orientable 2-orbifold with a singular point p then a geodesic from a regular
point ¢ in |O| to p cannot minimize beyond p. As ¢ could be arbitrarily close to
p, we conclude that the injectivity radius of O would vanish. (We note, however,
that there is a modified version of the injectivity radius that does makes sense for
constant-curvature cone manifolds [5, Section 9.2.3], [19, Section 6.4].)

Instead, our compactness result is phrased in terms of local volumes. This fits well
with Perelman’s work on Ricci flow, where local volume estimates arise naturally.

If one tried to prove a compactness result for Riemannian orbifolds directly, follow-
ing the proofs in the case of Riemannian manifolds, then one would have to show that
orbifold singularities do not coalesce when taking limits. We avoid this issue by pass-
ing to orbifold frame bundles, which are manifolds, and using equivariant compactness
results there.

Compactness theorems for Riemannian metrics and Ricci flows for orbifolds with
isolated singularities were proved in [40]. Compactness results for general orbifolds
were stated in [18, Chapter 3.3] with a short sketch of a proof.

Proposition4.1. — Fiz K € Z* U {oo}. Let {(O;,p;)}52, be a sequence of pointed
complete connected CK+3-smooth Riemannian n-dimensional orbifolds. Suppose that
for each j € Z=° with j < K, there is a function A; : (0,00) — 0o so that for all i,
VI Rm| < Aj(r) on B(pi,r) C |O;|. Suppose that for some ro > 0, there is a vy > 0
s0 that for all i, vol(B(pi,m0)) > vo. Then there is a subsequence of {(O;,p;)}52, that
converges in the pointed CX~1-topology to a pointed complete connected Riemannian
n-dimensional orbifold (Ouo, Poo)-

Proof. — Let FO; be the orthonormal frame bundle of O;. Pick a basepoint p; € FO;
that projects to p; € |0;|. As in [26, Section 6}, after taking a subsequence we may as-
sume that the frame bundles {(FO;,p;)}52, converge in the pointed O(n)-equivariant
Gromov-Hausdorff topology to a C¥~!-smooth Riemannian manifold X with an iso-
metric O(n)-action and a basepoint Poo. (We lose one derivative because we are
working on the frame bundle.) Furthermore, we may assume that the convergence is
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realized as follows : Given any O(n)-invariant compact codimension-zero submanifold-
with-boundary K C X, for large ¢ there is an O(n)-invariant compact codimension-
zero submanifold-with-boundary K; C FO; and a smooth O(n)-equivariant fiber bun-
dle K; — K with nilmanifold fiber whose diameter goes to zero as i — oo (15,
Section 3], [26, Section 9].

Quotienting by O(n), the underlying spaces {(|O;|, p;)}32; converge in the pointed
Gromov-Hausdorff topology to (O(n)\X,p). Because of the lower volume bound
vol(B(pi,m0)) > wvo, a pointed Gromov-Hausdorff limit of the Alexandrov spaces
{(10;],p:)}52, is an n-dimensional Alexandrov space [13, Corollary 10.10.11]. Thus
there is no collapsing and so for large ¢ the submersion K; — K is an O(n)-equivariant
CHK-lsmooth diffeomorphism. In particular, the O(n)-action on X is locally free.
= O(n)\X. As the mani-
folds {(FO;,p;)}32, converge in a C¥ ~1-smooth pointed equivariant sense to (X, Poo)
we can take O(n)-quotients to conclude that the orbifolds {(O;,p;)}52, converge in
the pointed CX~1-smooth topology to (Ou, Poc)- O

There is a corresponding quotient orbifold O, with |O

Remark 4.2. — As a consequence of Proposition 4.1, if there is a number N so |Gy, | <
N for all ¢; € |O|; and all i then |G, _| < N for all g € |O]s. That is, under the
hypotheses of Proposition 4.1, the orders of the isotropy groups cannot increase in

the limit.

Remark 4.3. — 1In the proof of Proposition 4.1, the submersions I?z- — K may not be
basepoint-preserving. This is where one has to leave the world of basepoint-preserving
maps.

5. Ricci flow on orbifolds

In this section we first make some preliminary remarks about Ricci flow on orbifolds
and we give the orbifold version of Hamilton’s compactness theorem. We then give
the topological classification of compact nonnegatively curved 3-orbifolds. Finally, we
extend Perelman’s no local collapsing theorem to orbifolds.

5.1. Function spaces on orbifolds. — Let p : O(n) — R be a representation.
Given a local model ((7&, G.) and a G,-invariant Riemannian metric on [7@, let ‘A/a =
RN Xom) F ﬁa be the associated vector bundle. If O is a n-dimensional Riemannian
orbifold then there is an associated orbivector bundle V' with local models (17(1, Ga)-
Its underlying space is |V| = RY Xo(n) F'O. By construction, V has an inner product
coming from the standard inner product on RY. A section s of V is given by an
O(n)-equivariant map s : FO — RY. In terms of local models, s is described by
G-invariant sections s, of \70 that satisfy compatibility conditions with respect to
part 5 of Definition 2.1.
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The C¥-norm of s is defined to be the supremum of the C*¥-norms of the s.’s.
Similarly, the square of the H®-norm of s is defined to be the integral over |O|reg of
the local square H¥ -norm, the latter being defined using local models. (Note that
|O|eg has full Hausdorff n-measure in |O].) Then H % can be defined by duality.
One has the rough Laplacian mapping H%-sections of V to H¥ ~2-sections of V.

One can define differential operators and pseudodifferential operators acting on
H*%_sections of V. Standard elliptic and parabolic regularity theory extends to the
orbifold setting, as can be seen by working equivariantly in local models.

5.2. Short-time existence for Ricci flow on orbifolds. — Suppose that
{9(t)}tea,p) 18 a smooth 1-parameter family of Riemannian metrics on O. We
will call g a flow of metrics on O. The Ricci flow equation % = — 2 Ric makes

sense in terms of local models. Using the DeTurck trick [20], which is based on
local differential analysis, one can reduce the short-time existence problem for the
Ricci flow to the short-time existence problem for a parabolic PDE. Then any
short-time existence proof for parabolic PDEs on compact manifolds, such as that
of [55, Proposition 15.8.2], will extend from the manifold setting to the orbifold
setting.

Remark 5.1. — Even in the manifold case, one needs a slight additional argument to
reduce the short-time existence of the Ricci-DeTurck equation to that of a standard
quasilinear parabolic PDE. In local coordinates the Ricci-DeTurck equation takes the
form

9gi; Kl
(5.2) o :%g nOgij + ...

There is a slight issue since (5.2) is not uniformly parabolic, in that g*' could de-
generate with respect to, say, the initial metric go. This issue does not seem to have
been addressed in the literature. However, it is easily circumvented. Let M be the
space of smooth Riemannian metrics on a compact manifold M. Let F' : M — M
be a smooth map so that for some € > 0, we have F(g) = g if || g — go |lgo< €, and
in addition egy < F(g) < e 'gp for all g. (Such a map F is easily constructed using
the fact that the inner products on T,M, relative to go(p), can be identified with
GL(n,R)/O(n), along with the fact that GL(n,R)/O(n) deformation retracts onto a
small ball around its basepoint.) By [55, Proposition 15.8.2], there is a short-time
solution to

99i; kl
(5.3) —f = %:F(g) OOigij + ...

with ¢(0) = go. Given this solution, there is some § > 0 so that || g(t) — go |40 < €
whenever t € [0,5]. Then {g(t)}+c(0,5 also solves the Ricci-DeTurck equation (5.2).
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We remark that any Ricci flow results based on the maximum principle will have
evident extensions from manifolds to orbifolds. Such results include
— The lower bound on scalar curvature
— The Hamilton-Ivey pinching results for three-dimensional scalar curvature
— Hamilton’s differential Harnack inequality for Ricci flow solutions with nonneg-
ative curvature operator

Perelman’s differential Harnack inequality.

5.3. Ricci flow compactness theorem for orbifolds. — Let O; and O; be
two connected pointed n-dimensional orbifolds, with flows of metrics ¢g; and go. If
f : O1 — Os is a (time-independent) diffeomorphism then we can construct the

pullback flow f*go and define the C¥-distance between g, and f*go, using local
models for O;.

Definition 5.4. — Let O; and O3 be connected pointed n-dimensional orbifolds. Given
numbers A, B with —co < A < 0 < B < o0, suppose that g; is a flow of metrics on
O; that exists for the time interval [A, B]. Suppose that g;(t) is complete for each t¢.
Given € > 0, suppose that f : B(pl, € 1) — O is a smooth map from the time-zero
ball that is a diffeomorphism onto its image. Let |f| : B(pi,e ') — |O2] be the
underlying map. We say that the C*-distance between the flows (Oy,p;,g1) and
(O3, p2,g2) is bounded above by ¢ if

1. The CK-distance between g; and f*gs on ([A, B] N (—e 1, e ) x B(py, e 1) is
at most € and
2. The time-zero distance d|o,|(|f[(p1),p2) is at most e.

Taking the infimum of all such possible €’s defines the C¥-distance between the
flows (017p17g1) and (027p2792)*

Note that time derivatives appear in the definition of the C¥-distance between g,
and f*gs.

Proposition 5.5. — Let {g;}5°, be a sequence of Ricci flow solutions on pointed con-
nected n-dimensional orbifolds {(O;,p;)}52,, defined for t € (A, B) and complete for
each t, with —oo < A < 0 < B < oo. Suppose that the following two conditions
are satisfied :

1. For every compact interval I C (A, B), there is some K < oo so that for all i,
we have sup|p, |/ | Rmg, (p, )] < Ki, and
2. For some 19,v9 > 0 and all i, the time-zero volume vol(B(pi, o)) is bounded

below by vy.

Then a subsequence of the solutions converges in the sense of Definition 5.4 to a

Ricci flow solution goo(t) on a pointed connected n-dimensional orbifold (Ouc,Doo),
defined for all t € (A, B).
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Proof. — Using Proposition 4.1, the proof is essentially the same as that in [32,
p. 548-551] and [40, p. 1116-1117]. O

Remark 5.6. — There are variants of Proposition 5.5 that hold, for example, if one
just assumes a uniform curvature bound on r-balls, for each » > 0. These variants
are orbifold versions of the results in [38, Appendix E], to which we refer for details.
The proofs of these orbifold extensions use, among other things, the orbifold version
of the Shi estimates; the proof of the latter goes through to the orbifold setting with
no real change.

5.4. Compact nonnegatively curved 3-orbifolds

Proposition 5.7. — Any compact nonnegatively curved 3-orbifold O is diffeomorphic
to one of

1. S3//T for some finite group T' C Isom™ (S3).

2. T3/IT for some finite group T' C Isom™ (T3).

3. S x (S?//)T) or S xz, (S%//T') for some finite group T' C Isom(S?).

4. S'x(22)/T') or S'xz,(X2//T) for some finite group T' C Isom(%?), where ¥2 is a
simply-connected bad 2-orbifold equipped with its unique (up to diffeomorphism)
Ricci soliton metric [58, Theorem 4.1].

Proof. — Let k be the largest number so that the universal cover O isometrically
splits off an R¥-factor. Write O=RFx0O.

If O is noncompact then by the Cheeger-Gromoll argument [16, Pf. of Theorem 3],
|O’| contains a line. Proposition 3.2 implies that O’ splits off an R-factor, which is a
contradiction. Thus @’ is simply-connected and compact with nonnegative sectional
curvature.

If k =3 then O = R® and O is a quotient of T73.

If £ = 2 then there is a contradiction, as there is no simply-connected compact
1-orbifold.

If k = 1 then @' is diffeomorphic to S2 or £2. The Ricci flow on O = R x @’ splits
isometrically. After rescaling, the Ricci flow on O’ converges to a constant curvature
metric on S? or to the unique Ricci soliton metric on £? [58]. Hence 71(O) is a
subgroup of Isom(R x S?) or Isom(R x %2), where the isometry groups are in terms
of standard metrics. As m(O) acts properly discontinuously and cocompactly on (5,
there is a short exact sequence

(5.8) 1—T —m0) —Ts —1,

where I'y C Isom(Q’) and I'; is an infinite cyclic group or an infinite dihedral group.
It follows that O is finitely covered by S! x §% or S! x ¥2.

Suppose that k£ = 0. If O is positively curved then any proof of Hamilton’s theorem
about 3-manifolds with positive Ricci curvature [30] extends to the orbifold case, to
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show that O admits a metric of constant positive curvature; c.f. [34]. Hence we
can reduce to the case when O does not have positive curvature and the Ricci flow
does not immediately give it positive curvature. From the strong maximum principle
as in [31, Section 8], for any p € |O|e, there is a nontrivial orthogonal splitting
1,0 = E, & E, which is invariant under holonomy around loops based at p. The
same will be true on O. Lemma 2.19 implies that 4] splits off an R-factor, which is a
contradiction. O

5.5. L-geodesics and noncollapsing. — Let O be an n-dimensional orbifold and
let {g(t)}tejo, ) be a Ricci flow solution on O so that

— The time slices (O, g(t)) are complete.

— There is bounded curvature on compact subintervals of [0,T).

Given to € [0,T) and p € |O|, put 7 = to —¢t. Let v : [0,7] = O be a piecewise
smooth curve with |y][(0) = p and 7 < t5. Put

(5.9 Liy) = / VR (RO + FP) dr,

where the scalar curvature R and the norm |¥(7)| are evaluated using the metric at

time ty — 7. With X = %}, the L-geodesic equation is

(.10) VX - %VR + %X +2Ric(X, ) = 0.

Given an L-geodesic v, its initial velocity is defined to be v = lim,_,q \/F%} € C,|0].
Given g € |O|, put

(5.11) L(q,7) = inf{L(7) : [7|(T) = q},

where the infimum runs over piecewise smooth curves v with |y|(0) = p and |7|(T) = ¢.
Then any piecewise smooth curve v which is a minimizer for L is a smooth £-geodesic.

Lemma 5.12. — There is a minimizer v for L.

Proof. — The proof is similar to that in [38, p. 2631]. We outline the steps. Given
p and ¢, one considers piecewise smooth curves v as above. Fixing e > 0, one shows
that the curves v with £(y) < L(q,7) + € are uniformly continuous. In particular,
there is an R < oo so that any such v lies in B(p, R). Next, one shows that there
is some p € (0, R) so that for any z € B(p, R), there is a local model (U,G,) with
U/G, = B(z, p) such that for any p’,¢ € B(x, p) and any subinterval [7,72] C [0, 7],
— There is a unique minimizer for the functional f:f VT (R(y(7)) + |3(7)[?) dr
among piecewise smooth curves v : [T1,72] — O with |y|(71) = p’ and |7|(T2) =
q.
— The minimizing 7 is smooth and the image of || lies in B(x, p).
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This is shown by working in the local models. Now cover B(p, R) by a finite number
of p-balls {B(z;,p)}Y,. Using the uniform continuity, let A € Z* be such that for
any v : [0,7] — O with |y][(0) = p, |7|(T) = ¢ and L(v) < L(gq,7) + €, and any
[71,72] C [0,7] of length at most %, the distance between ||(71) and |y|(T2) is less
than the Lebesgue number of the covering. We can effectively reduce the problem
of finding a minimizer for L to the problem of minimizing a continuous function

1. )
defined on tuples (po, ...,pa) € B(p, R) with pg = p and pa = ¢. This shows that
the minimizer exists. O

Define the L-exponential map : T,0 — O by saying that for v € Cp|O|, we put
L exp=(v) = |7|(T), where 7 is the unique £-geodesic from p whose initial velocity is
v. Then Lexp= is a smooth orbifold map.

Let B+ C |O] be the set of points ¢ which are either endpoints of more than one
minimizing L-geodesic v : [0,7] — O, or are the endpoint of a minimizing geodesic
v 1 [0,7] = O where v € Cp|O] is a critical point of Lexp-. We call B the time-T
L-cut locus of p. Tt is a closed subset of |O|. Let Gz C |O| be the complement of
B and let Q= C C,|O| be the corresponding set of initial conditions for minimizing
L-geodesics. Then Q= is an open set, and the restriction of £exp= to TpO’Q? is an
orbifold diffeormorphism to Olg;'

Lemma 5.13. — Bz has measure zero in |O|.

Proof. — The proof is similar to that in [38, p. 2632]. By Sard’s theorem, it suffices
to show that the subset BL C Bz, consisting of regular values of £ exp=, has measure
zero in |O|. One shows that BL is contained in the underlying spaces of a countable
union of codimension-1 suborbifolds of @, which implies the lemma. O

Therefore one may compute the integral of any integrable function on |O| by pulling
it back to Q7 C C,|O| and using the change of variable formula.

For g € |O], put l(q,T) = L2(\q/’?. Define the reduced volume by
(5.14) VE) =7 % / e U9 dvol(q).
10|
Lemma 5.15. — The reduced volume is monotonically nonincreasing in 7.

Proof. — The proof is similar to that in [38, Section 23]. In the proof, one pulls back
the integrand to C,|O|. O

Lemma 5.16. — For each 7 > 0, there is some q € |O| so that I(q,7) < 5.

Proof. — The proof is similar to that in [38, Section 24]. It uses the maximum
principle, which is valid for orbifolds. O
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Definition 5.17. — Given &, p > 0, a Ricci flow solution g(-) defined on a time interval
[0,T) is k-noncollapsed on the scale p if for each r < p and all (zg,%0) € |O| x [0,T)
with tg > r?, whenever it is true that | Rm(x,t)| < r=2 for every x € By, (xo,7) and
t € [to — 72, o], then we also have vol(By, (zo,7)) > kr.

Lemma 5.18. If a Ricci flow solution is k-noncollapsed on some scale then there is
a uniform upper bound |Gp| < N(n, k) on the orders of the isotropy groups at points

pe O]

Proof. — Given p € |0|, let By, (p,7) be a ball such that | Rm(z,ty)| < r~2 for all
z € By, (p, 7). By assumption 7™ vol(By,(xo,7)) > k. Let ¢, denote the area of the
unit (n — 1)-sphere in R™. Applying the Bishop-Gromov inequality to By, (p,r) gives

(5.19) 1 > T 1Vol(]?t0 (1370,7’)) > _ K : .
|Gl Cn Jo sinh™ ™ (s) ds Cn [y sinh™ " (s) ds
The lemma follows. O

Proposition 5.20. — Given numbers n € ZT, T < oo and p,K,c > 0, there is a
number k = k(n, K,c, p, T) > 0 with the following property. Let (O™, g(+)) be a Ricci
flow solution defined on the time interval [0,T), with complete time slices, such that
the curvature | Rm | is bounded on every compact subinterval [0,T'] C [0,T). Suppose
that (O, g(0)) has |Rm| < K and vol(B(p,1)) > ¢ > 0 for every p € |O|. Then the
Ricci flow solution is k-noncollapsed on the scale p.

Proof. The proof is similar to that in [38, Section 26]. As in the proof there, we
use the fact that the initial conditions give uniformly bounded geometry in a small
time interval [0,%/2], as follows from Proposition 5.5 and derivative estimates. |

Proposition 5.21. — For any A € (0,00), there is some k = k(A) > 0 with the fol-
lowing property. Let (O, g(-)) be an n-dimensional Ricci flow solution defined for
t € [0,73] having complete time slices and uniformly bounded curvature. Suppose that
vol(Bo(po,70)) > A7l and that | Rm|(g,t)| < n%g for all (q,t) € Bo(po, 7o) % [0,78].
Then the solution cannot be k-collapsed on a scale less than ro at any point (q,r3)
with q € Bz (po, Aro).

Proof. — The proof is similar to that in [38, Section 28]. O

6. k-solutions
In this section we extend results about k-solutions from manifolds to orbifolds.

Definition 6.1. — Given k > 0, a k-solution is a Ricci flow solution (O, g(t)) that is
defined on a time interval of the form (—oo,C) (or (—oo, C]) such that :

1. The curvature |Rm]| is bounded on each compact time interval [ti,f3] C
(=00,C) (or (=00, C]), and each time slice (O, g(t)) is complete.

ASTERISQUE 365



GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 137

2. The curvature operator is nonnegative and the scalar curvature is everywhere
positive.

3. The Ricci flow is k-noncollapsed at all scales.

Lemma 5.18 gives an upper bound on the orders of the isotropy groups. In the rest
of this section we will use this upper bound without explicitly restating it.

6.1. Asymptotic solitons. — Let (p,tg) be a point in a s-solution (O, ¢(-)) so
that G, has maximal order. Define the reduced volume V(F) and the reduced length
l(q,7) as in Subsection 5.5, by means of curves starting from (p, to), with 7 =ty — t.
From Lemma 5.16, for each 7 > 0 there is some ¢(7) € |O| such that I(¢(7),7) < 5.
(Note that [ > 0 from the curvature assumption.)

Proposition 6.2. — There is a sequence T; — 0o so that if we consider the solution
g(*) on the time interval [to — Ti,to — 575 and parabolically rescale it at the point
(q(F:),to — 7:) by the factor 7, ' then as i — oo, the rescaled solutions converge to a
nonflat gradient shrinking soliton (restricted to [-1,—1]).

Proof. — The proof is similar to that in [38, Section 39]. Using estimates on the
reduced length as defined with the basepoint (p, to), one constructs a limit Ricci flow
solution (Ouo, goo(+)) defined for ¢ € [~1,—3], which is a gradient shrinking soliton.
The only new issue is to show that it is nonflat.

As in [38, Section 39|, there is a limiting reduced length function {(-,7) €
C*®(0x), and a reduced volume which is a constant ¢, strictly less than the
t — to limit of the reduced volume of (O, g(-)). The latter equals %. If the
limit solution were flat then I (-, 7) would have a constant positive-definite Hessian.
It would then have a unique critical point ¢q. Using the gradient flow of I (,7), one
deduces that O is diffeomorphic to T;Os. As in [38, Section 39], one concludes
that

0 _ Lol )=
(6.3) c = / r3e T dvol = ( 7T)2.
Je,jo.=rmc, |Gyl
As |G4| < |Gp|, we obtain a contradiction. O
6.2. Two-dimensional x-solutions
Lemma 6.4. — Any two-dimensional k-solution (O, g(+)) is an isometric quotient of

the round shrinking 2-sphere or is a Ricci soliton metric on a bad 2-orbifold.

Proof. — The proof is similar to that in [59, Theorem 4.1]. One considers the asymp-
totic soliton and shows that it has strictly positive scalar curvature outside of a com-
pact region (as in [50, Lemma 1.2]). Using standard Jacobi field estimates, the asymp-
totic soliton must be compact. The lemma then follows from convergence results for
2-dimensional compact Ricci flow (using [58] in the case of bad 2-orbifolds). O
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Remark 6.5. — One can alternatively prove Lemma 6.4 using the fact that if (O, g(+))
is a k-solution then so is the pullback solution (O, §(-)) on the universal cover. If O
is a bad 2-orbifold then O is compact and the result follows from [58]. If O is a good
2-orbifold then (O, §(+)) is a round shrinking $? from [38, Section 40].

6.3. Asymptotic scalar curvature and asymptotic volume ratio

Definition 6.6. — 1If O is a complete connected Riemannian orbifold then its asymp-
totic scalar curvature ratio is R = limsup,_, R(q)d(x,p)?. Tt is independent of the
basepoint p € |O).

Lemma 6.7. — Let (O,g(-)) be a noncompact k-solution. Then the asymptotic scalar
curvature ratio is infinite for each time slice.

Proof. — The proof is similar to that in [38, Section 41]. Choose a time to. If
R € (0,00) then after rescaling (O, g(tg)), one obtains convergence to a smooth
annular region in the Tits cone C7O at time to. (Here CrO denotes a smooth orbifold
structure on the complement of the vertex in the Tits cone Cr|O].) Working on the
regular part of the annular region, one obtains a contradiction from the curvature
evolution equation.

If R = 0 then the rescaling limit is a smooth flat metric on CrO, away from
the vertex. The unit sphere S, in CrO has principal curvatures one. It can be
approximated by a sequence of codimension-one compact suborbifolds Sy in O with
rescaled principal curvatures approaching one, which bound compact suborbifolds
O CO.

Suppose first that n > 3. By Lemma 3.15, for large k there is some py, € |O] so that
the suborbifold S}, is diffeomorphic to the unit sphere in T}, O. As Sy is diffeomorphic
to S for large k, we conclude that Su is isometric to S™~!//I" for some finite group
[ C Isom™(S"1). Let p € |O| be a point with G, = I'. As Cp|O| is isometric
to R" /T, lim, oo v~ ™ vol(B(p,r)) exists and equals the \_Il‘l times the volume of the
unit ball in R™. On the other hand, this equals lim,_o7r~" vol(B(p,r)). As we
have equality in the Bishop-Gromov inequality, we conclude that O is flat, which is a
contradiction.

If n = 2 then we can adapt the argument in [38, Section 41] to the orbifold
setting. O

Definition 6.8. — If O is a complete n-dimensional Riemannian orbifold with nonneg-
ative Ricci curvature then its asymptotic volume ratio is V = lim,_, o 77" vol(B(p, 7)).
It is independent of the choice of basepoint p € |O].

Lemma 6.9. — Let (O,g(:)) be a noncompact k-solution. Then the asymptotic vol-
ume ratio V vanishes for each time slice (O, g(to)). Moreover, there is a sequence of
points p € |O| going to infinity such that the pointed sequence {(O, (pk,to), 9(-))}%,
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converges, modulo rescaling by R(pk,to), to a k-solution which isometrically splits off
an R-factor.

Proof. — The proof is similar to that in [38, Section 41]. |

6.4. In a k-solution, the curvature and the normalized volume control each
other

Lemma 6.10. — Given n € ZT, we consider n-dimensional k-solutions.

1. If B(po,r0) is a ball in a time slice of a k-solution then the normalized volume
=" vol(B(po, ro)) is controlled (i.e., bounded away from zero) < the normalized
scalar curvature r3 R(po) is controlled (i.e., bounded above)

2. (Precompactness) If {(Ok, (Dk, tk), g&(-)) 122 is a sequence of pointed k-solutions
and for some r > 0, the r-balls B(pg,v) C (Ok,gr(tr)) have controlled
normalized volume, then a subsequence converges to an ancient solution
(Ocos (Poos0), goo(+)) which has monnegative curvature operator, and is k-
noncollapsed (though a priori the curvature may be unbounded on a given time
slice).

3. There is a constant n = n(n,k) so that for all p € |O|, we have |VR|(p,t) <

nR2 (p,t) and |Ry|(p,t) < nR%(p,t). More generally, there are scale invariant
bounds on all derivatives of the curvature tensor, that only depend on n and k.

4. There is a function a : [0,00) — [0,00) depending only on n and Kk such
that lims_, a(s) = oo, and for every p,p’ € |0, we have R(p')d*(p,p’) <
a (R(p)d(p.p'))-

Proof. — The proof is similar to that in [38, Section 42]. In the proof by contradiction
of the implication < of part (1), after passing to a subsequence we can assume that
|Gp, | is a constant C'. Then we use the argument in [38, Section 42] with ¢, equal to
% times the volume of the unit Euclidean n-ball. O

6.5. A volume bound

Lemma 6.11. — For every € > 0, there is an A < oo with the following property.
Suppose that we have a sequence of (not necessarily complete) Ricci flow solutions
gi(+) with nonnegative curvature operator, defined on O X [ty,0], such that:

- For each k, the time-zero ball B(py, ) has compact closure in |Ok|.

- For all (p,t) € B(pk,7k) X [t, 0], we have 3 R(p,t) < R(p,0) = Qy.

- limkﬂoo thk = —0Q.

- limg 00 riQk = 00.

Then for large k, we have vol(B(pk, AQ;%)) < €(AQ,;%)” at time zero.

Proof. — The proof is similar to that in [38, Section 44]. O
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6.6. Curvature bounds for Ricci flow solutions with nonnegative curvature
operator, assuming a lower volume bound

Lemma 6.12. — For every w > 0, there are B = B(w) < o0, C' = C(w) < o0 and
70 = 1o(w) > 0 with the following properties.

(a) Takety € [—rE,0). Suppose that we have a (not necessarily complete) Ricci flow
solution (O, g(+)), defined for t € [to,0], so that at time zero the metric ball B(pg,To)
has compact closure. Suppose that for each t € [to,0], g(t) has nonnegative curvature
operator and vol(Byi(po, 1)) > wrl. Then

(6.13) R(p,t) < Cry? + B(t —to) ™"

whenever dist; (p, po) < %7“0

(b) Suppose that we have a (not necessarily complete) Ricci flow solution (O, g(-)),
defined for t € [—1oré, 0], so that at time zero the metric ball B(po,ro) has compact
closure. Suppose that for each t € [—7or3,0], g(t) has nonnegative curvature operator.

If we assume a time-zero volume bound vol(By(po,70)) > wry then
(6.14) R(p,t) < Crg? + B(t +mord) ™"

whenever t € [—1org, 0] and dist:(p, po) < iro.
Proof. — The proof is similar to that in [38, Section 45]. |

Corollary 6.15. — For every w > 0, there are B = B(w) < o0, C' = C(w) < oo and
70 = 1o(w) > 0 with the following properties. Suppose that we have a (not necessarily
complete) Ricci flow solution (O, g(-)), defined for t € [—7or, 0], so that at time zero
the metric ball B(po,ro) has compact closure. Suppose that for each t € [—1or3, 0],
the curvature operator in the time-t ball B(po,ro) is bounded below by —7'62. If we
assume a time-zero volume bound vol(Boy(po, o)) > wry then

(6.16) R(p,t) < Cry? + B(t +mord) "

whenever t € [—7or¢, 0] and dist¢(p, po) < %’I‘o.

Proof. — The proof is similar to that in [38, Section 45]. O

6.7. Compactness of the space of three-dimensional k-solutions

Proposition 6.17. — Given k > 0, the set of oriented three-dimensional k-solutions
(O, 4g(+)) is compact modulo scaling.

Proof. — If {(Ok, (Pk,0), gx(-)) }32, is a sequence of such s-solutions with R(py, 0) = 1
then parts (1) and (2) of Lemma 6.10 imply that there is a subsequence that converges
to an ancient solution (O, (Poo, 0), goo(+)) which has nonnegative curvature operator
and is k-noncollapsed. The remaining issue is to show that it has bounded curvature.
Since R; > 0, it is enough to show that (Os, goo(0)) has bounded scalar curvature.
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If not then there is a sequence of points ¢; going to infinity in |O| such that
R(g;,0) — oo and R(q,0) < 2R(g:;,0) for ¢ € B(q;, AiR(g;,0)"2), where A; —
oo. Using the x-noncollapsing, a subsequence of the rescalings (Ooo, ¢i, R(gi,0)g00)
will converge to a limit orbifold N, that isometrically splits off an R-factor. By
Lemma 6.4, N, must be a standard solution on R x (S?//T') or R x (£2//I'). Thus
(O, goo) contains a sequence X; of neck regions, with their cross-sectional radii
tending to zero as i — oo. This contradicts Proposition 3.18. O

6.8. Necklike behavior at infinity of a three-dimensional k-solution

Definition 6.18. — Fix ¢ > 0. Let (O,g(-)) be an oriented three-dimensional
k-solution. We say that a point pg € |O| is the center of an e-neck if the solution
g(+) in the set {(p,t) : —(eQ)~! <t <0,disto(p, po)? < (eQ)~1}, where Q = R(po,0),
is, after scaling with the factor @, e-close in some fixed smooth topology to the
corresponding subset of a k-solution R x (O’ that splits off an R-factor. That is,
O’ is the standard evolving S?//I" or ¥2//T" with extinction time 1. Here ¥? is a
simply-connected bad 2-orbifold with a Ricci soliton metric.

We let |O]. denote the points in |O| which are not centers of e-necks.

Proposition 6.19. — For all k > 0, there exists an ¢y > 0 such that for all 0 < € < €
there exists an « = (e, k) with the property that for any oriented three dimensional
k-solution (O, g(+)), and at any time t, precisely one of the following holds :
(O,9(+)) splits off an R-factor and so every point at every time is the center of
an e-neck for all € > 0.
~ O is noncompact, |O|. # @, and for all x,y € |O|., we have R(x) d*(z,y) < a.
~ O is compact, and there is a pair of points x,y € |O|c such that R(x)d?(x,y) > a,

6 joLcn(narort)un uare?)

and there is a minimizing geodesic TY such that every z € |O| — |O|. satisfies
R(z) d*(z,7y) < «a.

~ O is compact and there exists a point x € |O|¢ such that R(x) d*(z,z) < « for
all z € 0.

Proof. — The proof is similar to that in [38, Section 48]. ]

6.9. Three-dimensional gradient shrinking k-solutions

Lemma 6.21. — Any three-dimensional gradient shrinking k-solution O is one of the
following:

- A finite isometric quotient of the round shrinking S3.

- R x (S?/JT) or R xz, (S?//T) for some finite group T C Isom(S?).

~ R x (22//T) or R xz, (£2//T) for some finite group ' C Isom(%2).
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Proof. — As O is a k-solution, we know that O has nonnegative sectional curvature.
If O has positive sectional curvature then the proofs of [46, Theorem 3.1] or [52,
Theorem 1.2] show that O is a finite isometric quotient of the round shrinking S3.
Suppose that O does not have positive sectional curvature. Let f € C*°(O) denote
the soliton potential function. Let O be the universal cover of @ and let f € C>(0)
be the pullback of f to O. The strong maximum principle, as in [31, Section 8],
implies that if p € |O|,e, then there is an orthogonal splitting 7,0 = E; & E; which
is invariant under holonomy around loops based at p. The same will be true on
O. Lemma 2.19 implies that O =R x O for some two-dimensional simply-connected
gradient shrinking s-solution @’. From Lemma 6.4, O’ is the round shrinking 2-sphere
or the Ricci soliton metric on a bad 2-orbifold ¥2. Now f must be 7‘343 + f', where
s is a coordinate on the R-factor and f’ is the soliton potential function on O’. As
71(O) preserves f, and acts properly discontinuously and isometrically on R x O, it
follows that 71 (Q) is a finite subgroup of Isom™ (R x O'). a

Remark 6.22. — In the manifold case, the nonexistence of noncompact positively-
curved three-dimensional x-noncollapsed gradient shrinkers was first proved by Perel-
man [50, Lemma 1.2]. Perelman’s argument applied the Gauss-Bonnet theorem to
level sets of the soliton function. This argument could be extended to orbifolds if one
assumes that there are no bad 2-suborbifolds, as in Theorem 1.1. However, it is not
so clear how it would extend without this assumption. Instead we use the arguments
of [46, Theorem 3.1] or [52, Theorem 1.2], which do extend to the general orbifold
setting.

6.10. Getting a uniform value of

Lemma 6.23. — Given N € ZT, there is a ko = ro(N) > 0 so that if (O, g(-)) is an
oriented three-dimensional k-solution for some r > 0, with |Gp| < N for all p € |0,
then it is a ko-solution or it is a quotient of the round shrinking S3.

Proof. — The proof is similar to that in [38, Section 50]. The bound on |G,| gives a
finite number of possible noncompact asymptotic solitons from Lemma 6.21, since a
given closed two-dimensional orbifold has a unique Ricci soliton metric up to scaling,
and the topological type of S?//T" (or £//T') is determined by the number of singular
points (which is at most three) and the isotropy groups of those points.. O

Lemma 6.24. — Given N € Zt, there is a universal constant n = n(N) > 0 such that
at each point of every three-dimensional ancient solution (O, g(+)) that is a k-solution
for some k> 0, and has |G,| < N for all p € |O|, we have estimates

(6.25) IVR| < nR?, |Ry < nR>

Proof. The proof is similar to that in [38, Section 59]. O
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7. Ricci flow with surgery for orbifolds

In this section we construct the Ricci-flow-with-surgery for three-dimensional
orbifolds.

Starting in Subsection 7.2, we will assume that there are no bad 2-dimensional
suborbifolds. Starting in Subsection 7.5, we will assume that the Ricci flows have
normalized initial conditions, as defined there.

7.1. Canonical neighborhood theorem

Definition 7.1. — Let ® € C*°(R) be a positive nondecreasing function such that for
positive s, ? is a decreasing function which tends to zero as s — co. A Ricci flow

solution is said to have ®-almost nonnegative curvature if for all (p,t), we have
(7.2) Rm(p.t) > —®(R(p.1)).

Our example of ®-almost nonnegative curvature comes from the Hamilton-Ivey
pinching condition [38, Appendix B], which is valid for any three-dimensional orbifold
Ricci flow solution which has complete time slices, bounded curvature on compact time
intervals, and initial curvature operator bounded below by —I.

Proposition 7.3. — Given €,k,0 > 0 and a function ® as above, one can find ro >
0 with the following property. Let (O,g(-)) be a Ricci flow solution on a three-
dimensional orbifold O, defined for 0 <t < T with T > 1. We suppose that for each
t, g(t) is complete, and the sectional curvature in bounded on compact time intervals.
Suppose that the Ricci flow has ®-almost nonnegative curvature and is k-noncollapsed
on scales less than o. Then for any point (po,to) withto > 1 and Q = R(po,to) > T527
the solution in {(p,t) : dist?o (pypo) < (eQ)71 g — (eQ)™! <t < iy} is, after scaling
by the factor Q, e-close to the corresponding subset of a k-solution.

Proof. — The proof is similar to that in [38, Section 52]. We have to allow for the
possibility of neck-like regions approximated by R x (S?//T') or R x (£2//T"). In the
proof of [38, Lemma 52.12], the “injectivity radius” can be replaced by the “local
volume”. O

7.2. Necks and horns

Assumption 7.4. — Hereafter, we only consider three-dimensional orbifolds that do
not contain embedded bad 2-dimensional suborbifolds.

In particular, neck regions will be modeled on R x (52 //T"), where S? //T is a quotient
of the round shrinking S2.

We let B(p,t,r) denote the open metric ball of radius r, with respect to the metric
at time ¢, centered at p € |O].
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We let P(p,t,r, At) denote a parabolic neighborhood, that is the set of all points
(»',t") with p’ € B(p,t,r) and t' € [t,t + At] or t' € [t + At, t], depending on the sign
of At.

Definition 7.5. - An open set U C |O| in a Riemannian 3-orbifold O is an e-neck if
modulo rescaling, it has distance less than ¢, in the C!'/<+1_topology, to a product
(—=L,L) x (S?//T"), where S?//T has constant scalar curvature 1 and L > ¢~ '. If a
point p € |O] and a neighborhood U of p are specified then we will understand that
“distance” refers to the pointed topology. With an e-approximation f : (—L,L) —
(S?//T) — U being understood, a cross-section of the neck is the image of {\} x
(S?//T) for some A € (—L, L).

Definition 7.6. - A subset of the form O|;, x [a,b] C O x [a, b] sitting in the spacetime
of a Ricci flow, where U C || is open, is a strong e-neck if after parabolic rescaling
and time shifting, it has distance less than € to the product Ricci flow defined on the
time interval [—1, 0] which, at its final time, is isometric to (=L, L) x (S?//T"), where
S?//T has constant scalar curvature 1 and L > ¢~ 1.

Definition 7.7. — A metric on (—1,1) x (S?//T") such that each point is contained in
an e-neck is called an e-tube, an e-horn or a double e-horn if the scalar curvature stays
bounded on both ends, stays bounded on one end and tends to infinity on the other,
or tends to infinity on both ends, respectively.

A metric on B3*//T" or (—1,1) xz, (S?//T"), such that each point outside some
compact subset is contained in an e-neck, is called an e-cap or a capped e-horn, if the
scalar curvature stays bounded or tends to infinity on the end, respectively.

Lemma7.8. — Let U be an e-neck in an e-tube (or horn) and let S = S?//T be a
cross-sectional 2-sphere quotient in U. Then S separates the two ends of the tube (or
horn).

Proof. — The proof is similar to that in [38, Section 58]. |

7.3. Structure of three-dimensional k-solutions. — Recall the definition of
|O|¢ from Subsection 6.8.

Lemma7.9. — If (O,g(t)) is a time slice of a noncompact three-dimensional k-
solution and |O|. # @ then there is a compact suborbifold-with-boundary X C O so
that |O|. € X, X is diffeomorphic to D3J/T or I xz, (S?*//T'), and O — int(X) is
diffeomorphic to [0,00) x (S%//T).

Proof. — The proof is similar to that in [38, Section 59]. O

Lemma 7.10. — 1If (O,qg(t)) is a time slice of a three-dimensional k-solution with
|O|c = @ then the Ricci flow is the evolving round cylinder R x (S?//T).

Proof. — The proof is similar to that in [38, Section 59]. |
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Lemma 7.11. — If a three-dimensional k-solution (O, g(+)) is compact and has a non-
compact asymptotic soliton then O is diffeomorphic to S3//Zy or S®//Dy for some
k>1.

Proof. — The proof is similar to that in [38, Section 59]. |

Lemma 7.12. — For every sufficiently small € > 0 one can find C; = Ci(e) and
Cy = Cy(€) such that for each point (p,t) in every k-solution, there is a radius r €
[R(p, t)‘%,C’lR(p, t)“%] and a neighborhood B, B(p,t,r) C B C B(p,t,2r), which
falls into one of the four categories :

(a) B is a strong e-neck, or

(b) B is an e-cap, or

(c) B is a closed orbifold diffeomorphic to S®//Zy or S3J/Dy for some k > 1.

(d) B is a closed orbifold of constant positive sectional curvature.
Furthermore:

~ The scalar curvature in B at time t is between Cy ' R(p,t) and C2R(p,t).

- The volume of B is cases (a), (b) and (c) is greater than Cy ' R(p, £,

— In case (b), there is an e-neck U C B with compact complement in B such that

the distance from p to U is at least 10000R(p,t)”%.
— In case (c) the sectional curvature in B is greater than Cy ' R(p,t).

Proof. — The proof is similar to that in [38, Section 59]. O

7.4. Standard solutions. — Put O = R3//T', where T' is a finite subgroup of
SO(3). We fix a smooth SO(3)-invariant metric go on R which is the result of gluing
a hemispherical-type cap to a half-infinite cylinder [0, 00) x S? of scalar curvature 1.
We also use gg to denote the quotient metric on O. Among other properties, go is
complete and has nonnegative curvature operator. We also assume that gy has scalar
curvature bounded below by 1.

Definition 7.13. — A Ricci flow (R3//T',g(-)) defined on a time interval [0,a) is a
standard solution if it has complete time slices, it has initial condition g, the curvature
| Rm | is bounded on compact time intervals [0, a’] C [0, a), and it cannot be extended
to a Ricci flow with the same properties on a strictly longer time interval.

Lemma 7.14. — Let (R3//T, g(-)) be a standard solution. Then:
1. The curvature operator of g is nonnegative.

2. All derivatives of curvature are bounded for small time, independent of the stan-
dard solution.

3. The blowup time is 1 and the infimal scalar curvature on the time-t slice tends
to infinity as t — 1~ uniformly for all standard solutions.
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4. (R3//T, g(*)) is k-noncollapsed at scales below 1 on any time interval contained
in [0,1), where k depends only on go and |T).

5. (R3//T, g(-)) satisfies the conclusion of Proposition 7.3.

6. Rmin(t) > const.(1 —t)~1, where the constant does not depend on the standard
solution.

7. The family ST of pointed standard solutions {(M, (p,0))} is compact with re-
spect to pointed smooth convergence.

Proof. — Working equivariantly, the proof is the same as that in [38, Sections 60-64].
O

7.5. Structure at the first singularity time

Definition 7.15. — Given vg > 0, a compact Riemannian three-dimensional orbifold O
is normalized if | Rm | < 1 everywhere and for every p € |O|, we have vol(B(p,1)) > wvg.

Here vg is a global parameter in the sense that it will be fixed throughout the
rest of the paper. If O is normalized then the Bishop-Gromov inequality implies that
there is a uniform upper bound N = N(vg) < oo on the order of the isotropy groups;
cf. the proof of Lemma 5.18. The next lemma says that by rescaling we can always
achieve a normalized metric.

Lemma 7.16. — Given N € Z, there is a v = vo(N) > 0 with the following property.
Let O be a compact orientable Riemannian three-dimensional orbifold, whose isotropy
groups have order at most N. Then a rescaling of O will have a normalized metric.

Proof. — Let c3 be the volume of the unit ball in R®. Consider a ball B, of radius
r > 0 with arbitrary center in a Euclidean orbifold R?//G, where G is a finite subgroup
of O(3) with order at most N. Applying the Bishop-Gromov inequality to compare
the volume of B, with the volume of a very large ball having the same center, we
see that vol(B,) > $r3. Put vy = 5%. We claim that this value of vy satisfies the
lemma.

To prove this by contradiction, suppose that there is an orbifold O which satisfies
the hypotheses of the lemma but for which the conclusion fails. Then there is a
sequence {r;}5°, of positive numbers with lim; , 7; = 0 along with points {p;}:2, in
|O| so that for each i, we have vol(B(p;,7;)) < vor;. After passing to a subsequence,
we can assume that lim;_, ., p; = p’ for some p’ € |O|. Using the inverse exponential
map, for large i the ball B(p;,r;) will, up to small distortion, correspond to a ball of
radius r; in the tangent space T,y O. In view of our choice of vy, this is a contradiction.

O

Assumption 7.17. — Hereafter we assume that our Ricci flows have normalized initial
condition.

ASTERISQUE 365



GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 147

Consider the labels on the edges in the singular part of the orbifold. They clearly
do not change under a smooth Ricci flow. If some components of the orbifold are
discarded at a singularity time then the set of edge labels can only change by deletion
of some labels. Otherwise, the surgery procedure will be such that the set of edge la-
bels does not change, although the singular graphs will change. Hence the normalized
initial condition implies a uniform upper bound on the orders of the isotropy groups
for all time.

Let O be a connected closed oriented 3-dimensional orbifold. Let g(-) be a Ricci
flow on O defined on a maximal time interval [0,7T) with T" < oo. For any € > 0,
we know that there are numbers r = r(e) > 0 and k = k(e) > 0 so that for any
point (p,t) with Q = R(p,t) > r~2, the solution in P(p,t, (eQ)" 2, (eQ)™1) is (after
rescaling by the factor Q) e-close to the corresponding subset of a x-solution.

Definition 7.18. — Define a subset 2 of |O| by
(7.19) Q= {p €l0]: sup |Rm|(p,t) < oo}.
tel0,T)

Lemma 7.20. — We have
- Q is open in |O].
- Any connected component of () is noncompact.
~ If Q= @ then O is diffeomorphic to S*//T or (S x S%)//T.

Proof. — The proof is similar to that in [38, Section 67]. |

Definition 7.21. — Put g = lim,_, 7 g(t)‘Q, a smooth Riemannian metric on (9‘9. Let
R denote its scalar curvature.

Lemma 7.22. — (Q2,9) has finite volume.
Proof. — The proof is similar to that in [38, Section 67]. a
Definition 7.23. — For p < %, put Q, = {p € || : R(p) < p~?}.
Lemma 7.24. — We have
- Q, is a compact subset of |O].
- If C is a connected component of Q0 which does not intersect Q, then C is a
double e-horn or a capped e-horn.
~ There is a finite number of connected components of 2 that intersect Q,, each

such component having a finite number of ends, each of which is an e-horn.

Proof. — The proof is similar to that in [38, Section 67]. O
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7.6. 6-necks in e-horns. — We define a Ricci flow with surgery M to be the
obvious orbifold extension of [38, Section 68]. The objects defined there have evident
analogs in the orbifold setting.

The r-canonical neighborhood assumption is the obvious orbifold extension of what’s
in [38, Section 69], with condition (c) replaced by “O is a closed orbifold diffeomorphic
to an isometric quotient of S3”.

The ®-pinching assumption is the same as in [38, Section 69].

The a priort assumptions consist of the ®-pinching assumption and the r-canonical
neighborhood assumption.

Lemma 7.25. — Given the pinching function ®, a number T € (0,00), a positive
nonincreasing functionr : [0,7] — R and a number § € (0, 1), there is a nonincreasing
function h : [O,f] — R with 0 < h(t) < 6r(t) so that the following property is
satisfied. Let M be a Ricci flow with surgery defined on [0,T), with T < YA“, which
satisfies the a priori assumptions and which goes singular at time T'. Let (2,G) denote
the time-T limit. Put p = 6r(T) and

(7.26) Q,={(p,T)€Q:R(p,T) <p ?}.

Suppose  that (p,T) lies in an e-horn H C Q whose boundary is
contained in Q,. Suppose also that R(p,T) > h™*(T). Then the parabolic region
P(p,T,5 ' R(p, T)_%, —R(p,T)™') is contained in a strong 6-neck.

Proof. — The proof is similar to that in [38, Section 71]. O

7.7. Surgery and the pinching condition

Lemma 7.27. — There exists ' = §'(6) > 0 with lims_,0d'(6) = 0 and a constant
8o > 0 such that the following holds. Suppose that § < &g, p € {0} x (S2//T') and hy
is a Riemannian metric on (—A, ) x (5?//T') with A > 0 and R(p) > 0 such that:

- hg satisfies the time-t Hamilton-Ivey pinching condition.

~ R(p)ho is d-close to gey in the Cl31F1-topology.
Then there are a B = B(A) > 0 and a smooth metric h on R®//T = (D3//T") U
((=B,3) x (52//T)) such that

— h satisfies the time-t pinching condition.

- The restriction of h to [0,%) x (S?//T') is he.

~ The restriction of R(p)h to (—B,—A) x (S?//T) is go, the initial metric of a

standard solution.

Proof. — The proof is the same as that in [38, Section 72|, working equivariantly. O

We define a Ricci flow with (r,§)-cutoff by the obvious orbifold extension of the
definition in [38, Section 73].

In the surgery procedure, one first throws away all connected components of 2
which do not intersect ©,. For each connected component §2; of € that intersects
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Q, and for each e-horn of (2}, take a cross-sectional S2-quotient that lies far in the
e-horn. Let X be what’s left after cutting the e-horns at the 2-sphere quotients and
removing the tips. The (possibly disconnected) postsurgery orbifold O’ is the result
of capping off 90X by discal 3-orbifolds.

Lemma 7.28. — The presurgery orbifold can be obtained from the postsurgery orbifold
by applying the following operations finitely many times:
Taking the disjoint union with a finite isometric quotient of S* x S% or S3.
~ Performing a 0-surgery.

Proof. — The proof is similar to that in [38, Section 73]. O

7.8. Evolution of a surgery cap

Lemma 7.29. — For any A < oo, 8 € (0,1) and 7T > 0, one can find 5= S(A, 0,7)>0
with the following property. Suppose that we have a Ricci flow with (r,d)-cutoff defined
on a time interval [a,b] with minr = r(b) > 7. Suppose that there is a surgery
time Ty € (a,b) with §(Tp) < 5. Consider a given surgery at the surgery time and
let (p,Tp) € M3, be the center of the surgery cap. Let h = h(6(Ty), e,7(Tp), ®) be
the surgery scale given by Lemma 7.25 and put Ty = min(b, Ty + 0712). Then one of
the two following possibilities occurs:

1. The solution is unscathed on P(p, TO,AB,Tl — To). The pointed solution
there is, modulo parabolic rescaling, A='-close to the pointed flow on Uy x
[0, (Ty — Tg)}AL’Q], where Uy is an open subset of the initial time slice |So| of a
standard solution S and the basepoint is the center of the cap in |So|.

2. Assertion 1 holds with Ty replaced by some t+ € [Ty, Ty), where t1 is a surgery
time. Moreover, the entire ball B(p, To, A?L) becomes extinct at time tT.

Proof. — The proof is similar to that in [38, Section 74]. O

7.9. Existence of Ricci flow with surgery

Proposition 7.30. — There exist decreasing sequences 0 < 1; < €2, k; > 0,0 < §; < €
for 1 < j < oo, such that for any normalized initial data on an orbifold O and any
nonincreasing function 6 : [0,00) — (0,00) such that § < 4d; on [2771e,27¢], the Ricci
flow with (r,d)-cutoff is defined for all time and is k-noncollapsed at scales below e.
Here r and k are the functions on [0,00) so that T|[2j71€’2]€] =r; and H‘[2]~16’2j6] = Kj,
and € > 0 is a global constant.

Proof. — The proof is similar to that in [38, Sections 77-80]. O

Remark 7.31. — We restrict to 3-orbifolds without bad 2-suborbifolds in order to
perform surgery. Without this assumption, there could be a neckpinch whose cross-
section is a bad 2-orbifold ¥. In the case of a nondegenerate neckpinch, the blowup
limit would be the product of R with an evolving Ricci soliton metric on ¥. The
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problem in performing surgery is that after slicing at a bad cross-section, there is
no evident way to cap off the ensuing pieces with 3-dimensional orbifolds so as to
preserve the Hamilton-Ivey pinching condition.

8. Hyperbolic regions

In this section we show that the w-thick part of the evolving orbifold approaches

a finite-volume Riemannian orbifold with constant curvature — %.

As a standing assumption in this section, we suppose that we have a solution to
the Ricci flow with (r, §)-cutoff and with normalized initial data.

8.1. Double sided curvature bounds in the thick part

Proposition 8.1. — Given w > 0, one can find 7 = 7(w) > 0, K = K(w) < oo,
7 =T(w) >0 and 6 = O(w) > 0 with the following property. Let hpmaz(to) be the
mazximal surgery radius on [to/2,to]. Let ro satisfy

L. 07 Y hypae(to) < ro <TV1.
2. The ball B(po,to,m0) has sectional curvatures at least 77“62 at each point.
3. vol(B(po,to, o)) > wrg.
Then the solution is unscathed in P(po,to,70/4, —773) and satisfies R < Krgz there.

Proof. — The proof is similar to that in [38, Sections 81-86]. In particular, it uses
Proposition 5.21. O

8.2. Noncollapsed regions with a lower curvature bound are almost hyper-
bolic on a large scale

Proposition 8.2
(a) Given w,r,& > 0, one can find T =T (w,r,£) < 0o so that the following holds.
3
If the ball B(po.to,mv/To) C M. at some to > T has volume at least wrr§ and
sectional curvatures at least 47"21‘,61 then the curvature at (po,to) satisfies

8.3) 12tR;;(po, to) + gi|* < €2

(b) Given in addition A < oo and allowing T to depend on A, we can ensure (8.3)
for all points in B(po,to, Ar\/T0).

(¢c) The same is true for P(po,to, Ar\/to, Ar?tg).

Proof. — The proof is similar to that in [38, Sections 87 and 88]. O
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8.3. Hyperbolic rigidity and stabilization of the thick part

Definition 8.4. — Let O be a complete Riemannian orbifold. Define the curvature
scale as follows. Given p € ||, if the connected component of O containing p has
nonnegative sectional curvature then put R, = oo. Otherwise, let R, be the unique
number 7 € (0,00) such that infpg(, ,) Rm = —r~2.

Definition 8.5. — Let O be a complete Riemannian orbifold. Given w > 0, the w-thin
part O~ (w) C |O| is the set of points p € O so that either R, = oo or

(8.6) vol(B(p, Ry)) < wR;.
The w-thick part is O (w) = |0 — O~ (w).

In what follows, we take “hyperbolic” to mean “constant curvature —%”. When

applied to a hyperbolic orbifold, the definitions of the thick and thin parts are essen-
tially equivalent to those in [5, Chapter 6.2], to which we refer for more information
about hyperbolic 3-orbifolds.

Recall that a hyperbolic 3-orbifold can be written as H?//T" for some discrete group
I' C Isom™ (H?3) [19, Theorem 2.26].

Definition 8.7. — A Margulis tube is a compact quotient of a normal neighborhood of
a geodesic in H? by an elementary Kleinian group.

A rank-2 cusp neighborhood is the quotient of a horoball in H3 by an elementary
rank-2 parabolic group.

In either case, the boundary is a compact Euclidean 2-orbifold.

There is a Margulis constant po > 0 so that for any finite-volume hyperbolic
3-orbifold O, if p < pp then the connected components of the p-thin part of O are
Margulis tubes or rank-2 cusp neighborhoods.

Furthermore, given a finite-volume hyperbolic 3-orbifold O, if p > 0 is sufficiently
small then the connected components of the p-thin part are rank-2 cusp neighbor-
hoods.

Mostow-Prasad rigidity works just as well for finite-volume hyperbolic orbifolds as
for finite-volume hyperbolic manifolds. Indeed, the rigidity statements are statements
about lattices in Isom(H™).

Lemma8.8. — Let (O,p) be a pointed complete connected finite-volume three-
dimensional hyperbolic orbifold. Then for each ¢ > 0, there exists & > 0 such that if
O is a complete connected finite-volume three-dimensional hyperbolic orbifold with
at least as many cusps as O, and f: (O,p) = O is a &-approximation in the pointed
smooth topology as in [38, Definition 90.6], then there is an isometry f': (O, p) — O’
which is (-close to f in the pointed smooth topology.

Proof. — The proof is similar to that in [38, Section 90], replacing “injectivity radius”
by “local volume”. O

SOCIETE MATHEMATIQUE DE FRANCE 2014



152 B. KLEINER & J. LOTT

If M is a Ricci flow with surgery then we let O~ (w,t) C | M, | denote the w-thin
part of the orbifold at time ¢ (postsurgery if ¢ is a surgery time), and similarly for the
w-thick part OF (w, ).

Proposition 8.9. — Given a Ricci flow with surgery M, there exist a number Ty < oo,
a nonincreasing function « : [Tp,00) — (0,00) with lim_eo a(t) = 0, a (possi-
bly empty) collection {(Hy,x1),...,(Hn,zN)} of complete connected pointed finite-
volume three-dimensional hyperbolic orbifolds and a family of smooth maps

N
(8.10) Flt): B = L:J1 Hi'Bm,ua(m - M,
defined for t € [Ty, 00), such that
1. f(t) is close to an isometry:
(8.11) [t () grm, = 9B, lonraw < alt).

2. f(t) defines a smooth family of maps which changes smoothly with time:
(8.12) f@. D)l < ()
for all p € |By|, and
3. f(t) parametrizes more and more of the thick part: O (a(t),t) C Im(|f(t)]) for
allt > Ty.

Proof. — The proof is similar to that in [38, Section 90]. 0

9. Locally collapsed 3-orbifolds

In this section we consider compact Riemannian 3-orbifolds O that are locally
collapsed with respect to a local lower curvature bound. Under certain assumptions
about smoothness and boundary behavior, we show that O is either the result of
performing O-surgery on a strong graph orbifold or is one of a few special types. We
refer to Definition 11.8 for the definition of a strong graph orbifold.

We first consider the boundaryless case.

Proposition 9.1. — Let c3 be the volume of the unit ball in R3, let K > 10 be a fized
integer and let N be a positive integer. Fiz a function A : (0,00) — (0,00). Then
there is a wo € (0,c3/N) such that the following holds.

Suppose that (O, g) is a connected closed orientable Riemannian 3-orbifold. Assume
in addition that for all p € |O|,

1. |Gp| < N.
2. vol(B(p, R,)) < woR3, where R, is the curvature scale at p, Definition 8./.
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3. For every w' € [wo,c3/N), k € [0, K] and r < R, such that vol(B(p,r)) > w'r3,
the inequality

9.2) IVFRm | < A(w')r— *+2)
holds in the ball B(p,r).

Then O s the result of performing 0-surgeries on a strong graph orbifold or is
diffeomorphic to an isometric quotient of S® or T3.

Remark 9.3. — We recall that a strong graph orbifold is allowed to be disconnected.
By Proposition 11.12, a weak graph orbifold is the result of performing O-surgeries
on a strong graph orbifold. Because of this, to prove Proposition 9.1 it is enough to
show that O is the result of performing 0-surgeries on a weak graph orbifold or is
diffeomorphic to an isometric quotient of S? or 7.

Remark 94. A 3-manifold which is an isometric quotient of S2 or T® is a Seifert
3-manifold [54, Section 4]. The analogous statement for orbifolds is false [23].

Proof. — We follow the method of proof of [37]. The basic strategy is to construct a
partition of O into pieces whose topology can be recognized. Many of the arguments
in [37], such as the stratification, are based on the underlying Alexandrov space
structure. Such arguments will extend without change to the orbifold setting. Other
arguments involve smoothness, which also makes sense in the orbifold setting. We now
mention the relevant places in [37] where manifold smoothness needs to be replaced
by orbifold smoothness.

— The critical point theory in [37, Section 3.4] can be extended to the orbifold
setting using the results in Subsection 2.6.

— The results about the topology of nonnegatively curved manifolds in [37,
Lemma 3.11] can be extended to the orbifold setting using Lemma 3.20 and
Proposition 5.7.

The smoothing results of [37, Section 3.6] can be extended to the orbifold setting
using Lemma 2.25 and Corollary 2.26.

~ The C'*-precompactness result of [37, Lemma 6.10] can be proved in the orbifold
setting using Proposition 4.1.

~ The C'*-splitting result of [37, Lemma 6.16] can be proved in the orbifold setting
using Proposition 3.2.

The result about the topology of the edge region in [37, Lemma 9.21] can be
extended to the orbifold setting using Lemma 3.21.

The result about the topology of the slim stratum in [37, Lemma 10.3] can be
extended to the orbifold setting using Lemma 3.19.

The results about the topology and geometry of the 0-ball regions in [37, Sec-
tions 11.1 and 11.2] can be extended to the orbifold setting using Lemma 2.24
and Proposition 3.13.
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~ The adapted coordinates in [37, Lemmas 8.2, 9.12, 9.17, 10.1 and 11.3] and their
use in [37, Sections 12-14] extend without change to the orbifold setting.
The upshot is that we can extend the results of [37, Sections 1-14] to the orbifold
setting. This gives a partition of O into codimension-zero suborbifolds-with-boundary
OO-stratum - yskim - (yedge and O2-stratum with the following properties.

— Each connected component of Q0-stratum

is diffeomorphic either to a closed non-
negatively curved 3-dimensional orbifold, or to the unit disk bundle in the nor-
mal bundle of a soul in a complete connected noncompact nonnegatively curved
3-dimensional orbifold.

— Each connected component of @™ is the total space of an orbibundle whose
base is S! or I, and whose fiber is a spherical or Euclidean orientable compact
2-orbifold.

— Each connected component of 0¢%¢ is the total space of an orbibundle whose
base is S! or I, and whose fiber is D?(k) or D?(2,2).

— Each connected component of O2?-5r@um g the total space of a circle bundle over
a smooth compact 2-manifold.

~ Intersections of @QU-stratum —@slim —(yedge g O32-stratum are 2_dimensional orb-
ifolds, possibly with boundary. The fibration structures coming from two inter-
secting strata are compatible on intersections.

In order to prove the proposition, we now follow the method of proof of [37,

Section 15].

Each connected component of O°-5tr9¥¥m has houndary which is empty, a spherical
2-orbifold or a Euclidean 2-orbifold. By Proposition 5.7, if the boundary is empty
then the component is diffeomorphic to a finite isometric quotient of S* x 2, S or T3.
In the St x S? case, O is a Seifert orbifold [22, p. 70-71]. Hence we can assume that
the boundary is nonempty. By Lemma 3.20, if the boundary is a spherical 2-orbifold
then the component is diffeomorphic to D3 //T or I xz, (5%//T'). We group together
such components as Og}f,f"‘”'“m. By Lemma 3.20 again, if the boundary is a Euclidean
2-orbifold then the component is diffeomorphic to S* x D? S x D?(k), S* xz, D?,
St xz, D*(k) or I xz, (T?//T'). We group together such components as Q% s,

If a connected component of O™ fibers over S' then O is closed and has a
geometric structure based on R, R x S2, Nil or Sol [22, p. 72]. If the structure is
R x S? or Nil then O is a Seifert orbifold [22, Theorem 1]. If the structure is Sol
then O can be cut along a fiber to see that it is a weak graph orbifold. Hence we can
assume that each component of O fibers over I. We group these components into
Ogl;}? and O}}L’(” where the distinction is whether the fiber is a spherical 2-orbifold or
a Euclidean 2-orbifold.

Lemma 9.5. Let OV-stratum e g connected component of QU-stratum - [f QY-stratum
Ostim £ & then QOY-sretv™ gs q boundary component of a connected component
0 f Oslim
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If O9-stratum ry Oslim — g5 then we can write JOY-SmWm = A; U B; where

1. A; = QYstratum n edge g g disjoint union of discal 2-orbifolds and D?*(2,2)’s.

2. B; = OYstratum  (2=stratum s the total space of a circle bundle and

3. A; N B; = 0A; N OB; is a union of circle fibers.
Furthermore, if 0OY-stratum s Buclidean then A; = O wunless QQY-stratum  —
S2(2,2,2,2), in which case A; consists of two D?(2,2)’s. If 0O9-stratum s spherical
then the possibilities are

1. 9OP-stratum — G2 and A, consists of two disks D?.

2. 9O-stratum — G2(f k) and A; consists of two D?(k)’s.

3. 0OY-stratum — G2(9 9 k) and A; consists of D*(2,2) and D*(k).

Proof. — The proof is similar to that of [37, Lemma 15.1]. O

Lemma 9.6. — Let O™ be a connected component of O"™. Let Y; be one of the
connected components of O™, If Y; N QU-stratum oL o5 then Y; = 9OY-stratum for

some connected component QP-stratum of O0-stratum

If Y; N O0-stratum — o then we can write 0Y; = A; U B; where

1. A; = Y; N O is a disjoint union of discal 2-orbifolds and D*(2,2)’s,
2. B; =Y; N O%stratum s the total space of a circle bundle and

3. A;N B; = 0A; NOB; is a union of circle fibers.

Furthermore, if Y; is Euclidean then A; = @ unless Y; = S%(2,2,2,2), in which case
A; consists of two D?(2,2)’s. If Y; is spherical then the possibilities are

1. Y; = 8% and A; consists of two disks D?.

2. Y; = S%(k,k) and A; consists of two D*(k)’s.

3. Y; = 5%(2,2,k) and A; consists of D*(2,2) and D?*(k).

Proof. The proof is similar to that of [37, Lemma 15.2]. O

Let Of,, be the union of the connected components of O™ Ogin that
do not intersect 0¢%¢. Then ngh is either empty or is all of O, in which case O
is diffeomorphic to the gluing of two connected components of O™ along a
spherical 2-orbifold. As each connected component is diffeomorphic to some D?//T’
or I xz, (§%//T'), it then follows that O is diffeomorphic to S*//T, (83//T")//Zsy or
St xz, (8% //T), the latter of which is a Seifert 3-orbifold. Hence we can assume that
each connected component of O%;‘,f"‘“‘"" U Ogﬁ}’: intersects 0%, A component of
Ozlﬂ‘ which intersects (’)g;f}f"at“m can now only do so on one side, so we can collapse
such a component of Ogl;’h” without changing the diffeomorphism type. Thus we can
assume that each connected component of (’)g;fh’jm“‘m and each connected component
of (’)SJZZL intersects 0°%9¢, and that O%ﬁ”"”m’" N ng}f’,;l' = @. By Lemmas 9.5 and 9.6,
each of their boundary components is one of S?, S?(k, k) and S?(2,2, k).

SOCIETE MATHEMATIQUE DE FRANCE 2014



156 B. KLEINER & J. LOTT

Consider the connected components of O%siratum |y Oshim whose boundary compo-
nents are S?(2,3,6), S%(2,4,4) or S?(3,3,3). They cannot intersect any other strata,
so if there is one such connected component then O is formed entirely of such com-
ponents. In this case O is diffeomorphic to the result of gluing together two copies of
I xz, (T?//T). Hence O fibers over S!//Z, and has a geometric structure based on
R?, Nil or Sol [22, p. 72]. If the structure is Nil then O is a Seifert orbifold [22, The-
orem 1]. If the structure is Sol then we can cut O along a generic fiber to see that
it is a weak graph orbifold. Hence we can assume that there are no connected com-
ponents of O%stratum j Osim whose boundary components are S%(2,3,6), S%(2,4,4)
or $%(3,3,3). Next, consider the connected components of O%stratum j Ostim with
T?-boundary components. They are weak graph orbifolds that do not intersect any

O‘Z—strat,um

strata other than . If X is their complement in O then in order to show

that O is a weak graph orbifold, it suffices to show that X is a weak graph orb-

m

o has

ifold. Hence we can assume that each connected component of QY straturm (9}1
S2(2,2,2,2)-boundary components, in which case it necessarily intersects 0°49¢, As

slim
Euc:
slim

component of O%siratm and each connected component of O™ intersects 0°%¢, and
P 0-stratum slim __

tha’t OE'U(: n OEuc =d. )
A connected component of (’)gfﬁ" is now diffeomorphic to I x O', where O’ is

above, after collapsing some components of O we can assume that each connected

diffeomorphic to 52, S%(k, k) or S*(2, k, k). We cut each such component along {£} x
O’ and glue on two discal caps. If X5 is the ensuing orbifold then X is the result of
performing a O-surgery on X», so it suffices to prove that X, satisfies the conclusion
of the proposition. Therefore we assume henceforth that Ogl;"h” = .

A remaining connected component of O is diffeomorphic to I x O', where O’ =
S5%(2,2,2,2). It intersects 0°¥° in four copies of D?(2,2). We cut the connected

slim

m along {4} x O'. The result is two copies of I x O', each with one

component of O
free boundary component and another boundary component which intersects (¢49¢
in two copies of D?(2,2). If the result X3 of all such cuttings satisfies the conclusion
of the proposition then so does X5, it being the result of gluing Euclidean boundary
components of X3 together.

A connected component C' of ©0°%9°¢ fibers over I or S'. Suppose that it fibers over
St. Then it is diffeomorphic to S* x D?(k) or St x D?(2,2), or else is the total space
of a bundle over S! with holonomy that interchanges the two singular points in a
fiber D?(2,2); this is because the mapping class group of D?(2,2) is a copy of Zs, as
follows from [25, Proposition 2.3]. If C'is diffeomorphic to S* x D?(k) or S* x D?(2,2)
then it is clearly a weak graph orbifold. In the third case, |C] is a solid torus and
the singular locus consists of a circle labelled by 2 that wraps twice around the solid
torus. See Figure 10. We can decompose C as C' = (S! xz, D?) Usz2(2,2,2,2) C1, where
C, = St xz, (5% — 3B?%) with one B? being sent to itself by the Zs-action and the
other two B?’s being switched. See Figure 11. As C is a Seifert orbifold, in any case
C' is a weak graph orbifold. Put X4 = X3 —int(C). If we can show that X4 is a weak
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FiGUuRrE 10.

FiGURE 11. C}

graph orbifold then it follows that X3 is a weak graph orbifold. Hence we can assume
that each connected component of (0°49¢ fibers over I.

A connected component Z of X, — int(O?-$r*um) can be described by a graph,
t.e., a one-dimensional CW-complex, of degree 2. Its vertices correspond to copies of

— A connected component of Ogv;j?”t“m with boundary S? or S?(k, k),

~ A connected component of Q%57 ™ with boundary S?(2,2,2,2), or

- I x5%2,2,2,2).
Each edge corresponds to a copy of

-~ I x D?,

— I x D*(k) or

- I x D?(2,2).
If a vertex is of type I x S%(2,2,2,2) then the edge orbifolds only intersect the vertex
orbifold on a single one of its two boundary components. Note that |Z| is a solid torus
with a certain number of balls removed.
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A connected component of O™ is diffeomorphic to D?, D3(k, k), D*(2,2, k),
I xz, S% or I xz, S?(2,2,k). Now I xz, S? is diffeomorphic to RP3#D3, I xy,
S2(k. k) is diffeomorphic to (S*(k,k)//Zo)# s>k 4y D (k. k) and I xz, S*(2.2,k) is
diffeomorphic to (S%(2, 2, k)//ZQ)#SZ(Q_QJ\-)D:g(Q. 2. k), where Zs acts by the antipodal
action. Hence we can reduce to the case when each connected component of Ogv}jf;m“‘m
is diffeomorphic to D3, D3(k, k) or D3(2,2, k), modulo performing connected sums
with the Seifert orbifolds RP?, S3(k, k)//Zy and S*(2,2,k)//Z.

Any connected component of Q%5 with boundary S%(2,2,2,2) can be written
as the gluing of a weak graph orbifold with I x S2(2,2,2,2). Hence we may assume

stratum

o with

that there are no vertices corresponding to connected components of 0%
boundary S%(2,2,2,2).

Suppose that there are no edges of type I x D?(2,2). Then Z is I x D? or I x D?(k),
which is a weak graph orbifold.

Now suppose that there is an edge of type I x D?(2,2). We build up a skeleton
for Z. First, the orbifold corresponding to a graph with a single vertex of type
Ix8%(2,2,2,2), and a single edge of type I x D?(2,2), can be identified as the Seifert
orbifold C; = S xz, (5% — 3B?) of before. Let C,, be the orbifold corresponding to
a graph with m vertices of type I x S?(2,2,2,2) and m edges of type I x D?(2,2).
See Figure 12. Then C,, is an m-fold cover of C'; and is also a Seifert orbifold.

FiGure 12. Cy,, m =3

Returning to the orbifold Z, there is some m so that Z is diffeomorphic to the
7, D?(k;)’s onto some of the boundary

La2

52(2,2,2,2)’s, where k; > 1. See Figure 13 for an illustrated example.

result of starting with C,,, and gluing some S* x

Thus Z is a weak graph orbifold.
As X3 is the result of gluing Z to a circle bundle over a surface, X3 is a weak graph
orbifold. Along with Proposition 11.12, this proves the proposition. (]

Proposition 9.7. — Let ¢3 be the volume of the unit ball in R3, let K > 10 be a fived
integer and let N be a positive integer. Fiz a function A : (0,00) — (0,00). Then
there is a wy € (0,c¢3/N) such that the following holds.
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FIGURE 13.

Suppose that (O, g) is a compact connected orientable Riemannian 3-orbifold with

boundary. Assume in addition that
1. |Gp| £ N.
2. The diameters of the connected components of 0O are bounded above by wy.
3. For each component X of 0O, there is a hyperbolic orbifold cusp Hx with bound-

ary OHx, along with a CK+1-embedding of pairs e : (Nigo(OHx),0Hx) —
(O, X)) which is wy-close to an isometry.

4. For every p € |O| with d(p,d0) > 10, we have, vol(B(p, R,)) < woR3.

5. For every p € |0], w' € [wo,c3/N), k € [0,K] and v < R, such that
vol(B(p,7)) > w'r3, the inequality

9.8) V¥ Rm | < Aw)yr~*+2)

holds in the ball B(p,r).

Then O 1is diffeomorphic to

— The result of performing 0-surgeries on a strong graph orbifold,
~ A closed isometric quotient of S® or T3,

~ I x5%2,3,6), I x S%(2,4,4) or I x §%(3,3,3), or

- I xz, 8%(2,3,6), I xz, S*(2,4,4) or I xz, S*(3,3,3).

Proof. — We follow the method of proof of [38, Section 16]. The effective difference
from the proof of Proposition 9.1 is that we have additional components of (0-stratum
which are diffeomorphic to I x (72 //T). If such a component is diffeomorphic to I x T2
or I x S?(2,2,2,2) then we can incorporate it into the weak graph orbifold structure.
The other cases give rise to the additional possibilities listed in the conclusion of the

proposition. O
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10. Incompressibility of cuspidal cross-sections and proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1.
With reference to Proposition 8.9, given a sequence t* — oo, let Y be the trun-
cation of ]_[f\;l H; obtained by removing horoballs at distance approximately s—=

28(1%)
from the basepoints x;. Put O% = O — fia (Y¥).

Proposition 10.1. — For large «, the orbifold O satisfies the hypotheses of Proposi-
tion 9.7.

Proof. — The proof is similar to that of [37, Theorem 17.3]. a

So far we know that if « is large then the 3-orbifold O« has a (possibly empty)
hyperbolic piece whose complement satisfies the conclusion of Proposition 9.7. In this
section we show that there is such a decomposition of O« so that the hyperbolic
cusps, if any, are incompressible in Oya.

The corresponding manifold result was proved by Hamilton in [33] using mini-
mal disks. He used results of Meeks-Yau [43] to find embedded minimal disks with
boundary on an appropriate cross-section of the cusp. The Meeks-Yau proof in turn
used a tower construction [42] similar to that used in the proof of Dehn’s Lemma
in 3-manifold topology. It is not clear to us whether this line of proof extends to
three-dimensional orbifolds, or whether there are other methods using minimal disks
which do extend. To circumvent these issues, we use an alternative incompressibility
argument due to Perelman [50, Section 8.2] that exploits certain quantities which
change monotonically under the Ricci flow. Perelman’s monotonic quantity involved
the smallest eigenvalue of a certain Schrodinger-type operator. We will instead use
a variation of Perelman’s argument involving the minimal scalar curvature, follow-
ing (38, Section 93.4].

Before proceeding, we need two lemmas:

Lemma 10.2. Suppose € > 0, and O is a Riemannian 3-orbifold with scalar curva-
ture > —%. Then any orbifold O obtained from O’ by 0-surgeries admits a Riemannian

metric with scalar curvature > —3, such that vol(O) < vol(O') + €.

Proof. — 1If a O-surgery adds a neck (S2//T') x I then we can put a metric on the neck
which is an isometric quotient of a slight perturbation of the doubled Schwarzschild
metric [2, (1.23)] on S? x I. Hence we can perform the O-surgery so that the scalar
curvature is bounded below by v% + =& and the volume increases by at most =;

10 10°
see [2, p. 155] and [51] for the analogous result in the manifold case. The lemma now
follows from an overall rescaling to make R > — % O

Lemma 10.3. — Suppose that O is a strong graph orbifold with boundary components
C1,...,Cx. Let Hy, ..., Hy be truncated hyperbolic cusps, where OH; is diffeomorphic
to C; for all i € {1,...,k}. Then for all € > 0, there is a metric on O with scalar
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curvature > —% such that vol(O) < €, and C; has a collar which is isometric to one
side of a collar neighborhood of a cuspical 2-orbifold in H;.

Proof. — We first prove the case when O is a closed strong graph manifold. The
strong graph manifold structure gives a graph whose vertices {v,} correspond to the
Seifert blocks and whose edges {ep} correspond to 2-tori. For each vertex v, let
M, be the corresponding Seifert block. We give it a Riemannian metric g, which is
invariant under the local S'-actions and with the property that the quotient metric
on the orbifold base is a product near its boundary. Then g, has a product structure
near OM,. Given § > 0, we uniformly shrink the Riemannian metric on g, by ¢ in
the fiber directions. As § — 0, the volume of M, goes to zero while the curvature
stays bounded.

Let T1>2 be the torus corresponding to the edge e,. There are associated toral
boundary components { By, B2} of Seifert blocks. Given § > 0 and ¢ € {1, 2}, consider
the warped product metric ds? + e’QSgB,, on a product manifold Ps; = [0, Ls ;] x B;.
We attach this at B; to obtain a C%-metric, which we will smooth later. The sectional
curvatures of Ps; are —1 and the volume of Ps; is bounded above by the area of B;.
We choose Ls,; so that the areas of the cross-sections {Ls1} x By and {Ls2} x Ba
are both equal to some number A. Finally, consider R with the Sol-invariant metric
e ?*dx? + e?*dy® + dz?. Let I' be a Z2-subgroup of the normal R2-subgroup of Sol.
Note that the curvature of R?/T is independent of I'. The z-coordinate gives a fibering
z + R3/T — R with T%fibers. We can choose I' = I's and an interval [c1, 2] C R so
that 27!(c;) is isometric to {Ls1} x By and 2 !(cg) is isometric to {Ls2} x Ba. Note
that [c1, c2] can be taken independent of A. We attach 2~ ([e1, c2]) to the previously
described truncated cusps, at the boundary components {Ls1} x By and {Ls 2} X Ba.
See Figure 14.

FIGURE 14.
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Taking A sufficiently small we can ensure that
(104) vol(Ps.1) + vol(Ps.2) + vol(z ! ([c1, ca])) < area(B;) + arca(Bs) + 0.

We repeat this process for all of the tori {T72}, to obtain a piecewise-smooth C°-
metric g5 on O.

As § — 0, the sectional curvature stays uniformly bounded on the smooth pieces.
Furthermore, the volume of (O, gs) goes to zero. By slightly smoothing g5 and per-
forming an overall rescaling to ensure that the scalar curvature is bounded below by
- %, if ¢ is sufficiently small then we can ensure that vol(O, gs) < e. This proves the
lemma when O is a closed strong graph manifold.

If O is a strong graph manifold but has nonempty boundary components, as in the
hypotheses of the lemma, then we treat each boundary component C; analogously to
a factor By in the preceding construction. That is, given parameters 0 < ¢; ¢, < ¢2,¢;,
we start by putting a truncated hyperbolic metric ds?+e~?*gypy, on [c1,c,, c2.c,] X C;.
This will be the metric on the collar neighborhood of C;, where {¢1 ¢, } x C; will end up
becoming a boundary component of Q. We take ¢o ¢, so that the area of {c2,¢0,} x C;
matches the area of a relevant cross-section of the truncated cusp extending from a
boundary component Bs ; of a Seifert block. We then construct a metric g5 on O as
before. If we additionally take the parameters {c; ¢, } sufficiently large then we can
ensure that vol(O, gs) < e.

Finally, if O is a strong graph orbifold then we can go through the same steps.
The only additional point is to show that elements of the (orientation-preserving)
mapping class group of an oriented Fuclidean 2-orbifold T2 //T' are represented by
affine diffeomorphisms, in order to apply the preceding construction using the Sol
geometry. To see this fact, if I' is trivial then the mapping class group of T? is
isomorphic to SL(2,Z) and the claim is clear. To handle the case when T?//T is a
sphere with three singular points, we use the fact that the mapping class group of
a sphere with three marked points is isomorphic to the permutation group of the
three points [25, Proposition 2.3]. The mapping class group of the orbifold 72//T
will then be the subgroup of the permutation group that preserves the labels. If
T?//T is S?(2,3,6) then its mapping class group is trivial. If 72//T is S%(2,4,4)
then its mapping class group is isomorphic to Zy. Picturing S?%(2,4,4) as two right
triangles glued together, the nontrivial mapping class group element is represented
by the affine diffeomorphism which is a flip around the “2” vertex that interchanges
the two triangles. If T2//I" is S%(3,3,3) then its mapping class group is isomorphic
to S3. Picturing S?(3,3,3) as two equilateral triangles glued together, the nontrivial
mapping class group elements are represented by affine diffeomorphisms as rotations
and flips. Finally, if 72 //T" is S?(2,2,2,2) then its mapping class group is isomorphic
to PSL(2,Z) x (Z/2Z x Z/27) (25, Proposition 2.7]. These all lift to Zy-equivariant
affine diffeomorphisms of T2. Elements of PSL(2,Z) are represented by linear actions
of SL(2,Z) on T?. Generators of Z/2Z x 7./27 are represented by rotations of the
Sl-factors in T? = St x S! by =. |
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Let O be a closed connected orientable three-dimensional orbifold. If O admits a
metric of positive scalar curvature then by finite extinction time, O is diffeomorphic
to the result of performing 0-surgeries on a disjoint collection of isometric quotients
of $% and S! x S2.

Suppose that O does not admit a metric of positive scalar curvature. Put
(10.5) U(O) = sup Rmin(g)v(g)%'

g
Then o(0) < 0.

Suppose that we have a given representation of O as the result of performing 0-
surgeries on the disjoint union of an orbifold @’ and isometric quotients of S® and
S x 82, and that there exists a (possibly empty, possibly disconnected) finite-volume
complete hyperbolic orbifold N which can be embedded in @’ so that the connected
components of the complement (if nonempty) satisfy the conclusion of Proposition
9.7. Let Viyp denote the hyperbolic volume of V. We do not assume that the cusps
of N are incompressible in O'.

Let V denote the minimum of Vihyp over all such decompositions of O. (As the set
of volumes of complete finite-volume three-dimensional hyperbolic orbifolds is well-
ordered, there is a minimum. If there is a decomposition with N = & then V3, = 0.)

Lemma 10.6

(10.7) o(0) = -2Vi.

N W

Proof. — Using Lemmas 7.28, 10.2 and 10.3, the proof is similar to that of [38,
Proposition 93.10]. O

Proposition 10.8. Let N be a hyperbolic orbifold as above for which vol(N) = V.
Then the cuspidal cross-sections of N are incompressible in O’.

Proof. — As in [38, Section 93], it suffices to show that if a cuspidal cross-section
of N is compressible in O’ then there is a metric ¢ on O with R(g) > —% and
vol(O, g) < vol(N).

Put Y = @’ — N. Suppose that some connected component Cy of Y is compress-
ible, with compressing discal 2-orbifold Z C O’. We can make Z transverse to Y and
then count the number of connected components of the intersection ZN9JY. Minimiz-
ing this number among all such compressing disks for all compressible components of
dY, we may assume — after possibly replacing Cy with a different component of 9Y -
that Z intersects Y only along 0Z.

By assumption, the components of Y satisfy the conclusion of Proposition 9.7.
Hence Y has a decomposition into connected components Y = Yy U --- UY,,, where
Yp is the component containing Cjy, and Y, arises from a strong graph orbifold
by O-surgeries, as otherwise there would not be a compressing discal orbifold. By
Lemma 11.16, Y, comes from a disjoint union A U B wvia 0-surgeries, where A is one
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of the four solid-toric possibilities of that Lemma, and B is a strong graph orbifold.
By Lemmas 10.2 and 10.3, we may assume without loss of generality that B = @.

To construct the desired metric on @, we proceed as follows. Let Hy,..., H, be
the cusps of the hyperbolic orbifold N, where Hy corresponds to the component Cy
of Y. We first truncate N along totally umbilic cuspical 2-orbifolds Cy, ..., C,,. Pick
€ > 0. For each 7 > 1 such that the component Y; comes from O-surgeries on a strong
graph orbifold, we use Lemmas 10.2 and 10.3 to find a metric with R > f% on Y,
which glues isometrically along the corresponding cusps in C; U --- U C,,, and which
can be arranged to have volume < ¢ by taking the C;’s to be deep in their respective
cusps. For the components Y;, i > 1, which do not come from a strong graph orbifold
via O-surgery, we may also find metrics with R > —% and arbitrarily small volume,
which glue isometrically onto the corresponding truncated cusps of N (when they have
nonempty boundary). Our final step will be to find a metric on Yy = A with R > —%
which glues isometrically to Cp, and has volume strictly smaller than the portion of
the cusp Hy cut off by Cy. Since € is arbitrary, this will yield a contradiction.

Suppose first that A is S' x D? or S! x D?(k). In the S! x D? case, after going
far enough down the cusp, the desired metric g on S' x D? is constructed in [2, Pf.
of Theorem 2.9]. (The condition f3(0) = a > 0 in [2, (2.47)] should be changed to
f2(0) > 0.) In the S* x D?(k)-case, [2, (2.46)] gets changed to f](0)(1 —a?)"/? = 1/k.
One can then make the appropriate modifications to [2, (2.54)-(2.56)] to construct
the desired metric g on S' x D?(k).

If Ais S' xz, D? or S! xz, D?(k) we can perform the construction of the previous
paragraph equivariantly with respect to the Zs-action, to form the desired metric on
S %z, D? (or ST xz, D*(k)). O

10.1. Proof of Theorem 1.1. — As mentioned before, if O admits a metric of
positive scalar curvature then O is diffeomorphic to the result of performing O-surgeries
on a disjoint collection of isometric quotients of S* and S x S?, so the theorem is
true in that case. If O does not admit a metric of positive scalar curvature then by
Proposition 10.8,

1. O is the result of performing 0-surgeries on an orbifold O and a disjoint collec-
tion of isometric quotients of $% and S' x §2, such that

2. There is a finite-volume complete hyperbolic orbifold N which can be embedded
in O’ so that each connected component P of the complement (if nonempty)
has a metric completion P which satisfies the conclusion of Proposition 9.7, and

3. The cuspidal cross-sections of N are incompressible in O'.

Referring to Proposition 9.7, if P is an isometric quotient of S% or T then it already
has a geometric structure. If P is IxS?(p,q,r) with 11; + é + } = 1 then we can remove
it without losing any information. If P is I xz, S%(p. ¢,r) with % + 5 + 71 =1 then P
has a Euclidean structure.
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Finally, suppose that P is the result of performing O-surgeries on a collection of
strong graph orbifolds in the sense of Definition 11.8. A Seifert-fibered 3-orbifold
with no bad 2-dimensional suborbifolds is geometric in the sense of Thurston [5,
Proposition 2.13]. This completes the proof of Theorem 1.1. O

Remark 10.9. — The geometric decomposition of @ that we have produced, using
strong graph orbifolds, will not be minimal if O has Sol geometry. In such a case,
O fibers over a 1-dimensional orbifold. Cutting along a fiber and taking the metric
completion gives a product orbifold, which is a graph orbifold. Of course, the minimal
geometric decomposition of O would leave it with its Sol structure.

Remark 10.10. — Theorem 1.1 implies that O is very good, i.e., the quotient of a
manifold by a finite group action [4, Corollary 1.3]. Hence one could obtain the
geometric decomposition of O by running Perelman’s proof equivariantly, as is done
in detail for elliptic and hyperbolic manifolds in [21]. However, one cannot prove
the geometrization of orbifolds this way, as the reasoning would be circular; one only
knows that O is very good after proving Theorem 1.1.

11. Appendix A : Weak and strong graph orbifolds

In this appendix we provide proofs of some needed facts about graph orbifolds. We
show that a weak graph orbifold is the result of performing 0-surgeries on a strong
graph orbifold. (Since we don’t require strong graph orbifolds to be connected, we
need only one.) A similar result appears in [24, Section 2.4].

In order to clarify the arguments, we prove the corresponding manifold results
before proving the orbifold results.

Definition 11.1. — A weak graph manifold is a compact orientable 3-manifold M for
which there is a collection {T;} of disjoint embedded tori in int(M) so that after
splitting M open along {7}, the result has connected components that are Seifert-
fibered 3-manifolds (possibly with boundary).

We do not assume that M is connected. Here “splitting M open along {7;}” means
taking the metric completion of M — (J, T; with respect to an arbitrary Riemannian
metric on M.

Remark 11.2. — 1In the definition of a weak graph manifold, we could have instead
required that the connected components of the metric completion of M — |J, T; are
circle bundles over surfaces. This would give an equivalent notion, since any Seifert-
fibered 3-manifold can be cut along tori into circle bundles over surfaces.

For notation, we will write S? — kB? for the complement of k disjoint separated
open 2-balls in S2.

SOCIETE MATHEMATIQUE DE FRANCE 2014



166 B. KLEINER & J. LOTT

Definition 11.3. — A strong graph manifold is a compact orientable 3-manifold M for
which there is a collection {T;} of disjoint embedded tori in int(M) such that

1. After splitting M open along {T;}, the result has connected components that
are Seifert manifolds (possibly with boundary).

2. For any T;, the two circle fibrations on T; coming from the adjacent Seifert
bundles are not isotopic.

3. Each T; is incompressible in M.

11.1. Appendix A.1: Weak graph manifolds are connected sums of strong
graph manifolds. — The next lemma states if we glue two solid tori (respecting
orientations) then the result is a Seifert manifold. The lemma itself is trivial, since
we know that the manifold is S' x 52, S? or a lens space, each of which is a Seifert
manifold. However, we give a proof of the lemma which will be useful in the orbifold
case.

Lemma 114. — Let U and V be two oriented solid tori. Let ¢ : OU — OV be an
orientation-reversing diffeomorphism. Then U Uy, V' admits a Seifert fibration.

Proof. We first note that the circle fiberings of T? are classified, up to isotopy,
by the image of the fiber in (H'(T2;Z) — {0})/{£1} ~ (Z* — {0})/{=£1}. There is
one circle fibering of OU (up to isotopy) whose fibers bound compressing disks in U.
Any other circle fibering of QU is the boundary fibration of a Seifert fibration of U.
Hence we can choose a circle fibering F of QU so that F is the boundary fibration of
a Seifert fibration of U, and ¢.F is the boundary fibration of a Seifert fibration of V.
The ensuing Seifert fibrations of U and V join together to give a Seifert fibration of
U Uy V. 4

Proposition 11.5. — If a connected strong graph manifold contains an essential em-
bedded 2-sphere then it is diffeomorphic to S' x S% or RP3#RP3.

Proof. — Suppose that a connected strong graph manifold M contains an essential
embedded 2-sphere S. We can assume that S is transverse to |J, T;. We choose
S among all such essential embedded 2-spheres so that the number of connected
components of SN J; T; is as small as possible.

If SN|Y, Ti = @ then S is an essential 2-sphere in one of the Seifert components.

If SNY; Ti # 2, let C be an innermost circle in SN Y, T;. Then C C Ty, for some
k and C' = 9D for some 2-disk D embedded in a Seifert component U with T}, C oU.
As Ty, is incompressible, C' = 9D’ for some 2-disk D' C T}.. If DU D’ bounds a 3-ball
in U then we can isotope S to remove the intersection with 7}, which contradicts the
choice of S. Thus DU D’ is an essential 2-sphere in U.

In any case, we found an essential 2-sphere in one of the Seifert pieces. It follows
that the Seifert piece, and hence all of M., is diffeomorphic to S* x 5% or RP3#RP3 [54,
p. 432]. O
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Proposition 11.6. — A weak graph manifold is the result of performing 0-surgeries on
a strong graph manifold.

Proof. — Suppose that Proposition 11.6 fails. Let n be the minimal number of de-
composing tori among weak graph manifolds which are counterexamples, and let M
be a counterexample with decomposing tori {7;}72,.

We first look for a torus T; for which the two induced circle fibrations (coming
from the adjacent Seifert bundles) are isotopic. If there is one then we extend the
Seifert fibration over 7). In this case, by removing T} from {7;}}_,, we get a weak
graph decomposition of M with (n — 1) tori, contradicting the definition of n.

Therefore there is no such torus. Since M is a counterexample to Proposition 11.6,
there must be a torus in {T;}7; which is compressible. Let D be a compressing disk,
which we can assume to be transversal to (J;_, 7;. We choose such a compressing
disk so that D NJ;_; 7; has the smallest possible number of connected components.
Let C be an innermost circle in D N Y[, T}, say lying in Ty. Then C' bounds a disk
D’ in a Seifert bundle V' which has T} as a boundary component.

If C also bounds a disk D” C Ty then D’ U D" is an embedded 2-sphere S in V.
If S is not essential in V then we can isotope D so that it does not intersect Ty,
which contradicts the choice of D. So S is essential in V. Then V is diffeomorphic to
St x 82 or RP3#RP3, which contradicts the assumption that it has T} as a boundary
component.

Thus we can assume that D’ is a compressing disk for V', which is necessarily a
solid torus [54, Corollary 3.3].

Let U be the Seifert bundle on the other side of T} from V. Let B be the orbifold
base of U, with projection 7w : U — B. There is a circle boundary component R C 0B
so that Ty = 7~ 1(R). That is, V is glued to U along 7~ *(R). Choose a D?-fibration
o :V — R that extends 7 : T, — R.

If C = 0D’ C T} is not isotopic to a fiber of 7r|Tk7 let v > 0 be their algebraic
intersection number in Tj. Then U Ur, V has a Seifert fibration over B Ug D?(u).
Removing T}, from {T;}7,, we again have a weak graph decomposition of M, now
with (n — 1) tori, which is a contradiction.

Therefore C = 9D’ C Ty, is isotopic to a fiber of WlTk‘

Step 1: If B is diffeomorphic to D?, D?(r) or S' x I then put M’ = M and B’ = B,
and go to Step 2. Otherwise, let {v; }JJ:1 be a maximal disjoint collection of smooth
embedded arcs v; : [0,1] = Bieg, with {v;(0),7;(1)} C R, which determine distinct
nontrivial homotopy classes for the pair (Byeg, R). (Note that 0B C Bje,.) If B’ is
the result of splitting B open along {~; }‘j]:h then the connected components of B’
are diffeomorphic to D?, D?(r) for some > 1, or S' x I. See Figure 15. Let R’ be
the result of splitting the 1-manifold R along the finite subset U;]:] {7,(0),~;(1)}.

Define a 2-sphere Sf C M by Sf = o7 1(v;(0)) UW~1(,“.((]))‘ T (v5) Ur=1(4, (1))

o '(7;(1)). Let Y be the result of splitting M open along {S7}7_,. It has 2.J
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i 1 Y with the annular parts of 4 spherical boundary components
U split open along 7~ (v; U~2)

indicated by dashes, and ' x D? indicated by shaded D*s

M’ with R’ x D? and 4 D*’s indicated by shaded D?'s

FIGURE 15.
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spherical boundary components corresponding to the spherical cuts. We glue on
2J 3-disks there, to obtain M’. By construction, M is the result of performing J
0-surgeries on M’.

We claim that M’ is a weak graph manifold. To see this, note that the union W of
the D?-bundle over R’ and the 2J 3-disks is a disjoint union of solid tori in M’; see
Figure 15. The metric completion of M’ — W inherits a weak graph structure from
M. This shows that M’ is a weak graph manifold.

Step 2: For each component P of B’ that is diffeomorphic to D? or D?(r), the
corresponding component of M’ is the result of gluing two solid tori: one being
7~ 1(P) and the other one being a connected component of W. By Lemma 11.4, this
component of M’ is Seifert-fibered and hence is a strong graph manifold. We discard
all such components of M’ and let M denote what’s left.

A component P of B’ diffeomorphic to S! x I has a boundary consisting of two
circles C7 and Cy, of which exactly one, say Cy, does not intersect R. In M , the
preimage 7~ !(C}) is attached to the union of 77 !(P) with a solid torus. This union
is itself a solid torus.

In this way, we see that M has a weak graph decomposition with (n — 1) tori, since
T, has disappeared. Since M was a counterexample to Proposition 11.6, it follows
that M is also a counterexample. This contradicts the definition of n and so proves
the proposition. O

11.2. Appendix A.2 : Weak graph orbifolds are connected sums of strong
graph orbifolds. — In this section we only consider 3-dimensional orbifolds that
do not admit embedded bad 2-dimensional suborbifolds.

Definition 11.7. — A weak graph orbifold is a compact orientable 3-orbifold O for
which there is a collection {E;} of disjoint embedded orientable Euclidean 2-orbifolds
in int(O) so that after splitting O open along {E;}, the result has connected compo-
nents that are Seifert-fibered orbifolds (possibly with boundary).

Definition 11.8. — A strong graph orbifold is a compact orientable 3-orbifold O for
which there is a collection {E;} of disjoint embedded orientable Euclidean 2-orbifolds
in int(O) such that

1. After splitting O open along {E;}, the result has connected components that
are Seifert orbifolds (possibly with boundary).

2. For any E;, the two circle fibrations on E; coming from the adjacent Seifert
bundles are not isotopic.

3. Each E; is incompressible in O.

From Subsection 2.4, each F; is diffeomorphic to T2 or §%(2,2,2,2).
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Lemma 11.9. — Let U andV be two oriented solid-toric 3-orbifolds with diffeomorphic
boundaries. Let ¢ : QU — 9OV be an orientation-reversing diffeomorphism. Then
U Uy V admits a Seifert orbifold structure.

Proof. — Suppose first that U is a 2-torus. Then U is diffeomorphic to S! x D? or
St x D?(k). The Seifert orbifold structures on U are in one-to-one correspondence
with the Seifert manifold structures on |U| [7, p. 36-37]. There is one circle fibering
of QU (up to isotopy) whose fibers bound compressing discal 2-orbifolds in U. Any
other circle fibering of U is the boundary fibration of a Seifert fibration of U. As in
the proof of Lemma 11.4, we can choose a circle fibering F of OU so that F is the
boundary fibration of a Seifert fibration of U, and ¢,F is the boundary fibration of a
Seifert fibration of V. The ensuing Seifert fibrations of U and V' join together to give
a Seifert fibration of U Uy V.

Now suppose that OU is diffeomorphic to S?(2,2,2,2). The orbifiberings of
S2(2,2,2,2) with one-dimensional fiber are the Zs-quotients of Zs-invariant circle
fiberings of T2. In particular, there is an infinite number of such orbifiberings up to
isotopy. (More concretely, given an orbifibering, there are two disjoint arc fibers con-
necting pairs of singular points. The complement of the two arcs in [S?%(2,2,2,2)] is
an open cylinder with an induced circle fibering. The isotopy class of the orbifibering
is specified by the isotopy class of the two disjoint arcs.)

From [7, p. 38-39], the Seifert fibrations of U are the Zs-quotients of Zy-invariant
Seifert fibrations of its solid-toric double cover. It follows that there is one orbifibering
of QU (up to isotopy) whose fibers bound compressing discal 2-orbifolds in U. Any
other orbifibering of QU is the boundary fibration of a Seifert fibration of U. Hence
we can choose an orbifibering F of QU so that F is the boundary fibration of a
Seifert fibration of U, and ¢.F is the boundary fibration of a Seifert fibration of V.
The ensuing Seifert fibrations of U and V join together to give a Seifert fibration
of U Uy V. O

Proposition 11.10. — If a connected strong graph orbifold contains an essential em-
bedded spherical 2-orbifold then it is diffeomorphic to a finite isometric quotient of
St x §2.

Proof. — Suppose that a connected strong graph orbifold O contains an essential
embedded spherical 2-orbifold S.

Lemma 11.11. — After an isotopy of S, we can assume that S N |J; E; is a disjoint
collection of closed curves in the reqular part of S.

Proof. — 1f E; is diffeomorphic to T? then a neighborhood of E; lies in |0, and after
isotopy, SN E; is a disjoint collection of closed curves in the regular part of S. Suppose
that E; is diffeomorphic to $%(2,2,2,2). A neighborhood of E; is diffeomorphic to
I x E;. Suppose that p € S is a singular point of E;. Then the local group of p
in S must be Zs. After pushing a neighborhood of p € S slightly in the I-direction
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of I x E;, we can remove the intersection of S with that particular singular point
of F;. In this way, we can arrange so that S intersects | J, E; transversely, with the
intersection lying in the regular part of S. O

We choose S among all such essential embedded spherical 2-orbifolds so that the
number of connected components of [S N, E;| is as small as possible.

If SN, Ei = @ then S is an essential embedded spherical 2-orbifold in one of the
Seifert pieces.

If SN, Ei # @, let C C |S| be an innermost circle in [SNJ; £;|. Then C' C |Ej| for
some k, and C' = 9D for some discal 2-orbifold D embedded in a Seifert component U
with B, C OU. As Ej, is incompressible, C' = 9D’ for some discal 2-orbifold D’ C Ej.
Then D U D' is an embedded 2-orbifold with underlying space S? and at most two
singular points. As O has no bad 2-suborbifolds, D U D’ must be diffeomorphic to
S2(r,r) for some r > 1. If DU D’ bounds some D3(r,r) in U then we can isotope S
to remove the intersection with Ej, which contradicts the choice of S. Thus D U D’
is an essential embedded spherical 2-orbifold in U.

In any case, we found an essential embedded spherical 2-orbifold in one of the Seifert
pieces. Then the universal cover of the Seifert piece contains an essential embedded S2.
It follows that the universal cover of the Seifert piece is R x S? [5, Proposition 2.13].
The Seifert piece, and hence all of O, must then be diffeomorphic to a finite isometric
quotient of S x S2. O

Proposition 11.12. — A weak graph orbifold is the result of performing 0-surgeries on
a strong graph orbifold.

Proof. — Suppose that Proposition 11.12 fails. Let n be the minimal number of de-
composing Euclidean 2-orbifolds among weak graph orbifolds which are counterexam-
ples, and let O be a counterexample with decomposing Euclidean 2-orbifolds {E; }7_,.

We first look for a 2-orbifold E; for which the two induced circle fibrations (coming
from the adjacent Seifert bundles) are isotopic, in the sense of [5, Chapter 2.5]. If
there is one then we extend the Seifert fibration over E;. In this case, by removing E;
from {E;}, we get a weak graph decomposition of O with (n—1) Euclidean 2-orbifolds,
contradicting the definition of n.

Therefore there is no such Euclidean 2-orbifold. Since O is a counterexample to
Proposition 11.12, there must be a Euclidean 2-orbifold in { £;} which is compressible.
Let D be a compressing discal 2-orbifold. As in Lemma 11.11, we can assume that
D intersects |, E; transversally, with the intersection lying in the regular part of D.
We choose such a compressing discal 2-orbifold so that D N J, E; has the smallest
possible number of connected components. Let C' be an innermost circle in DN, £;,
say lying in |Ey|. Then C bounds a discal 2-orbifold D’ lying in a Seifert bundle V'
which has Fj as a boundary component.

If C also bounds a discal 2-orbifold D" C E}, then D’ U D" is an embedded 2-
orbifold S in the Seifert bundle. As there are no bad 2-orbifolds in O, the suborbifold
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S must be diffeomorphic to S?(r,r) for some r > 1. If S is not essential in V then
it bounds a D3(r,r) in V and we can isotope D so that it does not intersect Ej,
which contradicts the choice of D. So S is essential in V. From Proposition 11.10,
the Seifert bundle V is diffeomorphic to a finite isometric quotient of S! x S?, which
contradicts the assumption that it has E} as a boundary component.

Thus we can assume that C' bounds a compressing discal 2-orbifold for V', which
is necessarily a solid-toric orbifold diffeomorphic to S* x D?(r) or St xz, D?(r) for
some r > 1 [19, Lemma 2.47].

Let U be the Seifert bundle on the other side of E}, from V. Let B be the orbifold
base of U, with projection 7 : U — B. There is a 1-orbifold boundary component
R C 9B, diffeomorphic to S* or S'//Z,, so that E, = 7~ (R). That is, V is glued to
U along 7~ '(R). Choose a discal orbifibration o : V' — R that extends 7 : Ej, — R.

We refer to [5, Chapter 2.5] for a discussion of Dehn fillings, i.e., gluings of V
to 7~ !(R). If the meridian curve of V is not isotopic to a fiber of 7r| B, letu >0
be the algebraic intersection number (computed using the maximal abelian subgroup
of m1(Ex)). Then the gluing of V to U, along 7~ !(R), has a Seifert fibration. Re-
moving Ej, from {F;}, we again have a weak graph orbifold decomposition of O, now
with (n — 1) Euclidean 2-orbifolds, which is a contradiction.

Therefore, the meridian curve of V is isotopic to a fiber of | o

Step 1: If one of the following possibilities holds then put O = O and B’ = B,
and go to Step 2:

1. B=D?

2. B = D?(s) for some s > 1.

3. B=D?//Z,.

4. B = D?*(s)//Zs for some s > 1.
5 B=S!x1.

6. B=(S')/Zs) x I.

Otherwise, we split B open along a disjoint collection of smooth embedded arcs
{'Yj}fj]:] U {vj }j,lzl of the following type. A curve ; : [0,1] — B lies in B,y and has
[v;1(0),]7;1(1) € int(|R]). A curve «; : [0,1] — B has |y;|(0) € int(|R|) and lies in
Byeg, except for its endpoint |v;|(1) which is in the interior of a reflector component
of 9|B| but is not a corner reflector point. We can find a collection of such curves so
that if B’ is the result of splitting B open along them, then each connected component
of B’ is of type (1)-(6) above. Put

J J
(11.13) R = R = [ J{11(0). 11} = U {0}

Jj=1
Associated to v, is a spherical 2-orbifold X, diffeomorphic to S?(r,r), given by

(11.14) Xj = 0'71(’7]'(0)) U.,r—l(,yj(o)) ! (’Yj) Uﬂ.—l(%(l)) 0‘_1(’)/3'(1)).
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Associated to 'y;, is a spherical 2-orbifold Xg,, diffeomorphic to S%(2,2,), given by
(11.15) X =0 (757(0)) Un—1(y, 00 7 (57)-

Let Y be the result of splitting O open along {X; }]J:] u{X 5],/:1. It has 2(J + J')
spherical boundary components corresponding to the spherical cuts. We glue on 2.J
copies of D3(r,r) and 2J' copies of D3(2,2,7), to obtain O’. By construction, O is
the result of performing 0-surgeries on O'.

We claim that O is a weak graph orbifold. To see this, note that the union W
of o7 Y(R') and the 2(J + J') discal 3-orbifolds is a disjoint union of solid-toric 3-
orbifolds in @’. The metric completion of |O'| — |W| in |O'] inherits a weak graph
orbifold structure from @. This shows that O’ is a weak graph orbifold.

Step 2: For each connected component of B’ of type (1)-(4) above, the correspond-
ing component of @’ is the result of gluing two solid-toric orbifolds: one being the
Seifert orbifold over that component of B’, and the other one being a connected com-
ponent of W. By Lemma 11.9, this component of O’ is Seifert-fibered and hence is a
strong graph orbifold. We discard all such components of @’ and let O denote what’s
left.

Turning to the remaining possibilities, an annular component P of B’ has a bound-
ary consisting of two circles C and Coq, of which exactly one, say C7, does not intersect
R. In O, the preimage 7 !(C}) is attached to the union of 7~1(P) with a solid-toric
orbifold diffeomorphic to S* x D?(r). This union is itself diffeomorphic to S* x D?(r),
since 771 (P) is diffeomorphic to St x St x I.

Finally, if a component P of B’ is diffeomorphic to (S'//Z2) x I then 9| P| consists
of a circle with two reflector components and two nonreflector components. Exactly
one of the nonreflector components, say C1, does not intersect R. In (5, the preimage
7~ 1(Cy) is attached to the union of #~!(P) with a solid-toric orbifold diffeomorphic
to S! xz, D?(r). This union is itself diffeomorphic to S xz, D?(r), since 7~ 1(P) is
diffeomorphic to (S xz, S') x I.

In this way, we see that O has a weak graph orbifold decomposition with (n — 1)
Euclidean 2-orbifolds, since Fj has disappeared. Since O was a counterexample to
Proposition 11.12, it follows that O is also a counterexample. This contradicts the
definition of n and so proves the proposition. O

11.3. Appendix A.3 : Weak graph orbifolds with a compressible boundary
component

Lemma 11.16. Suppose that O is a weak graph orbifold, and that C C 9O is a com-
pressible boundary component. Then O arises from 0-surgery on a disjoint collection
OgU---UQO,, where:

- O; 1s a strong graph manifold for all i.

- 00y =C.

- Oy is a solid-toric 3-orbifold.
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Proof. —— Let Z be a compressing discal orbifold for C.

By Proposition 11.12 we know that O comes from 0-surgery on a collection
Op, ..., 0, of strong graph orbifolds, where 00y contains C'. Consider a collection
S = {51,.... Sk} C O of spherical 2-suborbifolds associated with such a 0-surgery
description of O. We may assume that Z is transverse to §, and that the number of
connected components in the intersection Z NS is minimal among such compressing
discal orbifolds. Reasoning as in the proof of Lemma 11.11, we conclude that Z
is disjoint from S. Therefore after splitting O open along S and filling in the
boundary components to undo the 0-surgeries, we get that Z lies in Op. Similar
reasoning shows that Z must lie in a single Seifert component U of Opy. An orientable
Seifert 3-orbifold with a compressible boundary component must be a solid-toric
3-orbifold [19, Lemma 2.47]. The lemma follows. |
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