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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS 

VIA RICCI FLOW 

by 

Bruce Kleiner & John Lott 

Abstract. — A three-dimensional closed orientable orbifold (with no bad suborbifolds) 

is known to have a geometric decomposition from work of Perelman in the manifold 

case, along with earlier work of Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-

Porti, Cooper-Hodgson-Kerckhoff and Thurston. We give a new, logically indepen­

dent, unified proof of the geometrization of orbifolds, using Ricci flow. Along the 

way we develop some tools for the geometry of orbifolds that may be of independent 

interest. 

Résumé. — Un orbifold fermé orientable de dimension 3 (sans mauvais sous-orbifolds) 

admet une décomposition géométrique d'après le travail de Perelman dans le cas des 

variétés, et d'après les travaux de Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-

Porti, Cooper-Hodgson-Kerckhoff et Thurston. Nous donnons une démonstration nou­

velle et unique de la géométrisation des orbifolds, via le flot de Ricci. Nous dévelop­

pons au passage des outils pour la géométrie des orbifolds qui présentent leur propre 

intérêt. 

1. Introduction 

1.1. Orbifolds and geometrization. — Thurston's geometrization conjecture for 

3-manifolds states that every closed orientable 3-manifold has a canonical decompo­

sition into geometric pieces. In the early 1980's Thurston announced a proof of the 

conjecture for Haken manifolds [56], with written proofs appearing much later [36, 

4 1 , 47 , 48]. The conjecture was settled completely a few years ago by Perelman in 

his spectacular work using Hamilton's Ricci flow [49, 50]. 

2000 Mathematics Subject Classification. — 53C20, 53C21, 53C23, 53C44, 57M50. 
Key words and phrases. — Collapsing, Ricci flow, geometrization, orbifold. 

Research supported by NSF grants DMS-0903076 and DMS-1007508. 

© Astérisque 365, SMF 2014 



102 B. KLEINER &r J. LOTT 

Thurston also formulated a geometrization conjecture for orbifolds. We recall that 
orbifolds are similar to manifolds, except that they are locally modelled on quo­
tients of the form R n / G , where G C 0(n) is a finite subgroup of the orthogonal 
group. Although the terminology is relatively recent, orbifolds have a long history in 
mathematics, going back to the classification of crystallographic groups and Fuchsian 
groups. In this paper, using Ricci flow, we will give a new proof of the geometrization 
conjecture for orbifolds: 

Theorem 1.1. — Let O be a closed connected orientable three-dimensional orbifold 
which does not contain any bad embedded 2-dimensional suborbifolds. Then O has a 
geometric decomposition. 

The existing proof of Theorem 1.1 is based on a canonical splitting of O along 
spherical and Euclidean 2-dimensional suborbifolds, which is analogous to the prime 
and JSJ decomposition of 3-manifolds. This splitting reduces Theorem 1.1 to two 
separate cases - when O is a manifold, and when O has a nonempty singular locus 
and satisfies an irreducibility condition. The first case is Perelman's theorem for 
manifolds. Thurston announced a proof of the latter case in [57] and gave an outline. 
A detailed proof of the latter case was given by Boileau-Leeb-Porti [4], after work 
of Boileau-Maillot-Porti [5], Boileau-Porti [6], Cooper-Hodgson-Kerckhoff [19] and 
Thurston [57] . The monographs [5, 19] give excellent expositions of 3-orbifolds and 
their geometrization. 

1 . 2 . Discussion of the proof. — The main purpose of this paper is to provide 
a new proof of Theorem 1.1. Our proof is an extension of Perelman's proof of ge­
ometrization for 3-manifolds to orbifolds, bypassing [ 4 - 6 , 1 9 , 5 7 ] . The motivation 
for this alternate approach is twofold. First, anyone interested in the geometrization 
of general orbifolds as in Theorem 1.1 will necessarily have to go through Perelman's 
Ricci flow proof in the manifold case, and also absorb foundational results about orb­
ifolds. At that point, the additional effort required to deal with general orbifolds is 
relatively minor in comparison to the proof in [4]. This latter proof involves a number 
of ingredients, including Thurston's geometrization of Haken manifolds, the deforma­
tion and collapsing theory of hyperbolic cone manifolds, and some Alexandrov space 
theory. Also, in contrast to the existing proof of Theorem 1.1, the Ricci flow argument 
gives a unified approach to geometrization for both manifolds and orbifolds. 

Many of the steps in Perelman's proof have evident orbifold generalizations, 
whereas some do not. It would be unwieldy to rewrite all the details of Perelman's 
proof, on the level of [38], while making notational changes from manifolds to 
orbifolds. Consequently, we focus on the steps in Perelman's proof where an orbifold 
extension is not immediate. For a step where the orbifold extension is routine, we 
make the precise orbifold statement and indicate where the analogous manifold proof 
occurs in [38]. 
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 103 

In the course of proving Theorem 1.1, we needed to develop a number of founda­
tional results about the geometry of orbifolds. Some of these may be of independent 
interest, or of use for subsequent work in this area, such as the compactness theorem 
for Riemannian orbifolds, critical point theory, and the soul theorem. 

Let us mention one of the steps where the orbifold extension could a priori be 

an issue. This is where one characterizes the topology of the thin part of the large-

time orbifold. To do this, one first needs a sufficiently flexible proof in the manifold 

case. We provided such a proof in [37]. The proof in [37] uses some basic techniques 

from Alexandrov geometry, combined with smoothness results in appropriate places. 

It provides a decomposition of the thin part into various pieces which together give 

an explicit realization of the thin part as a graph manifold. When combined with 

preliminary results that are proved in this paper, we can extend the techniques of [37] 
to orbifolds. We get a decomposition of the thin part of the large-time orbifold into 

various pieces, similar to those in [37]. We show that these pieces give an explicit 

realization of each component of the thin part as either a graph orbifold or one of a 

few exceptional cases. This is more involved to prove in the orbifold case than in the 

manifold case but the basic strategy is the same. 

1.3. Organization of the paper. — The structure of this paper is as follows. One 

of our tasks is to provide a framework for the topology and Riemannian geometry of 

orbifolds, so that results about Ricci flow on manifolds extend as easily as possible 

to orbifolds. In Section 2 we recall the relevant notions that we need from orbifold 

topology. We then introduce Riemannian orbifolds and prove the orbifold versions of 

some basic results from Riemannian geometry, such as the de Rham decomposition 

and critical point theory. 

Section 3 is concerned with noncompact nonnegatively curved orbifolds. We prove 

the orbifold version of the Cheeger-Gromoll soul theorem. We list the diffeomorphism 

types of noncompact nonnegatively curved orbifolds with dimension at most three. 

In Section 4 we prove a compactness theorem for Riemannian orbifolds. Section 5 

contains some preliminary information about Ricci flow on orbifolds, along with the 

classification of the diffeomorphism types of compact nonnegatively curved three-

dimensional orbifolds. We also show how to extend Perelman's no local collapsing 

theorem to orbifolds. 

Section 6 is devoted to /^-solutions. Starting in Section 7, we specialize to three-

dimensional orientable orbifolds with no bad 2-dimensional suborbifolds. We show 

how to extend Perelman's results in order to construct a Ricci flow with surgery. 

In Section 8 we show that the thick part of the large-time geometry approaches a 

finite-volume orbifold of constant negative curvature. Section 9 contains the topolog­

ical characterization of the thin part of the large-time geometry. 

Section 10 concerns the incompressibility of hyperbolic cross-sections. Rather than 

using minimal disk techniques as initiated by Hamilton [33], we follow an approach 
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104 B. KLEINER & J. LOTT 

introduced by Perelman [50, Section 8] that uses a monotonic quantity, as modified 
in [38, Section 93.4]. 

The appendix contains topological facts about graph orbifolds. We show that a 
"weak" graph orbifold is the result of performing O-surgeries (i.e., connected sums) on 
a "strong" graph orbifold. This material is probably known to some experts but we 
were unable to find references in the literature, so we include complete proofs. 

After writing this paper we learned that Daniel Faessler independently proved 
Proposition 9.7, which is the orbifold version of the collapsing theorem [24]. 

Acknowledgements. — We thank Misha Kapovich and Sylvain Maillot for orbidis-
cussions. We thank the referee for a careful reading of the paper and for corrections. 

2. Orbifold topology and geometry 

In this section we first review the differential topology of orbifolds. Subsections 
2.1 and 2.2 contain information about orbifolds in any dimension. In some cases we 
give precise definitions and in other cases we just recall salient properties, referring 
to the monographs [5, 19] for more detailed information. Subsections 2.3 and 2.4 are 
concerned with low-dimensional orbifolds. 

We then give a short exposition of aspects of the differential geometry of orbifolds, 
in Subsection 2.5. It is hard to find a comprehensive reference for this material 
and so we flag the relevant notions; see [8] for further discussion of some points. 
Subsection 2.6 shows how to do critical point theory on orbifolds. Subsection 2.7 
discusses the smoothing of functions on orbifolds. 

For notation, Bn is the open unit n-ball, Dn is the closed unit n-ball and / = [ — 1 , 1 ] . 
We let Dk denote the dihedral group of order 2k. 

2.1 . Differential topology of orbifolds. — An orbivector space is a triple 
(V, G, p) , where 

- V is a vector space, 
- G is a finite group and 
- p : G —>• Aut(Vr) is a faithful linear representation. 

A (closed/ open / convex/ . . . ) subset of (V, G, p) is a G-invariant subset of V which 
is (closed/ open / convex/ . . . ) A linear map from (V, G, p) to (y',G',p') consists of 
a linear map T : V -> V and a homomorphism h : G —» G' so that for all g G 
G, p'(h(g)) o T = T o p(g). The linear map is injective (resp. surjective) if T is 
infective (resp. surjective) and h is injective (resp. surjective). An action of a group 
K on (F, G, p) is given by a short exact sequence 1 — ^ G — ^ L — ^ K — ^ 1 and a 
homomorphism L —>> A u t ( V ) that extends p. 

A local model is a pair (U, G ) , where U is a connected open subset of a Euclidean 
space and G is a finite group that acts smoothly and effectively on C7, on the right. 
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 105 

(Effectiveness means that the homomorphism G —» Diff(17) is injective.) We will 

sometimes write U for U/G, endowed with the quotient topology. 

A smooth map between local models ( £ / i , G i ) and (£ /2^2) is given by a smooth 

map / : U\ —> U2 and a homomorphism p : Gi —> G2 so that / is p-equi variant, 

i.e.j f(xgi) = f(x)p(gi). We do not assume that p is injective or surjective. The 

map between local models is an embedding if / is an embedding; it follows from 

effectiveness that p is injective in this case. 

Definition 2.1. — An atlas for an n-dimensional orbifold O consists of 

1. A HausdorfT paracompact topological space |(9|, 

2. An open covering {Ua} of \0\, 

3. Local models {(Ua,Ga)} with each Ua a connected open subset of IRn and 

4. Homeomorphisms (j)a : Ua —> Ua/Ga so that 

5. If p G Ui fl U2 then there is a local model (Us,Gs) with p E Us along with 

embeddings (£/3,G3) -> ( # i , G i ) and (U3,G3) - » (t/2,G2). 

An orbifold O is an equivalence class of such atlases, where two atlases are equiv­

alent if they are both included in a third atlas. With a given atlas, the orbifold O 

is oriented if each Ua is oriented, the action of Ga is orientation-preserving, and the 

embeddings U3 U\ and Us —> U2 are orientation-preserving. We say that O is 

connected (resp. compact) if \0\ is connected (resp. compact) . 

An orbifold-with-boundary O is defined similarly, with Ua being a connected open 

subset of [0,oo) x R n _ 1 . The boundary dO is a boundary less (n — l)-dimensional 

orbifold, with \dO\ consisting of points in \0\ whose local lifts lie in { 0 } x Rn_1 . Note 

that it is possible that dO = 0 while \0\ is a topological manifold with a nonempty 

boundary. 

Remark 2.2. — In this paper we only deal with effective orbifolds, meaning that in 

a local model (C/, G ) , the group G always acts effectively. It would be more natural 

in some ways to remove this effectiveness assumption. However, doing so would hurt 

the readability of the paper, so we will stick to effective orbifolds. 

Given a point p G \0\ and a local model ( [ / , G) around p, let p G U project to p. 

The local group Gp is the stabilizer group {g G G : pg = p}. Its isomorphism class 

is independent of the choices made. We can always find a local model with G = Gp. 

The regular part \0\reg C \0\ consists of the points with Gp = { e } . It is a smooth 

manifold that forms an open dense subset of \0\. 

Given an open subset X C \0\, there is an induced orbifold 0\x with \ 0\x \ = X. 

In some cases we will have a subset X C possibly not open, for which O \x is 

an orbifold-with-boundary. 

The ends of O are the ends of \0\. 
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106 B. KLEINER & J. LOTT 

A smooth map f : 0\ O2 between orbifolds is given by a continuous map 

l/l : I O i | —» 1 0 2 1 with the property that for each p G | O i | , there are 

Local models (U\,G\) and (£/2,62) for p and / ( p ) , respectively, and 

A smooth map / : (Ui,G\) —>• (U21G2) between local models 

so that the diagram 

Ux ——+U2 

(2.3) 

[Л у Uo 
\î\ 

commutes. 
There is an induced homomorphism from Gp to Gf(py We emphasize that to define 

a smooth map / between two orbifolds, one must first define a map | / | between their 
underlying spaces. 

We write C°°(0) for the space of smooth maps / : O —> R. 
A smooth map / : G\ —>- O2 is proper if | / | : | 0 i | —>> | 0 2 | is a proper map. 
A diffeomorphism f : 0\ —> O2 is a smooth map with a smooth inverse. Then Gv 

is isomorphic to Gf(py 
If a discrete group Y acts properly discontinuously on a manifold M then there is a 

quotient orbifold, which we denote by M//Y. It has \M//Y\ — M/Y. Hence if O is an 
orbifold and (U,G) is a local model for O then we can say that 0\v is diffeomorphic 
to U//G. An orbifold O is good if O = M//Y for some manifold M and some discrete 
group T. It is very good if Y can be taken to be finite. A bad orbifold is one that is 
not good . 

Similarly, suppose that a discrete group Y acts by diffeomorphisms on an orbifold 
O. We say that it acts properly discontinuously if the action of Y on | 0 | is properly 
discontinuous. Then there is a quotient orbifold O//Y, with \0//Y\ = | 0 | / R ; see 
Remark 2.15. 

An orbifiber bundle consists of a smooth map TT : 0\ —» 02 between two orbifolds, 
along with a third orbifold O3 such that 

- I-7TI is surjective, and 
- For each p G I O 2 I , there is a local model (U,GP) around p, where Gp is the 

local group at p, along with an action of Gp on O3 and a diffeomorphism 
( O 3 x U)//Gp —>• 0\ 1 - I ( c / ) so that the diagram 

( 0 3 x U)//Gp > Ox 

(2.4) 

U//Gp > 02 

commutes. 
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GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 107 

(Note that if O2 is a manifold then the orbifiber bundle TT : 0\ —>• O2 has a local 

product structure.) The fiber of the orbifiber bundle is O3. Note that for pi G | 0 i | , 

the homomorphism GPl —» G ^ ^ ) is surjective. 

A section of an orbifiber bundle 7R : 0 i —> O2 is a smooth map s : O2 ^ 0\ such 

that 7R o s is the identity on 0 2 • 

A covering map TT : Oi —)• C>2 is a orbifiber bundle with a zero-dimensional fiber. 

Given £>2 £ 1 0 2 1 and Pi £ 1 ^ 1 — 1 (P2), there are a local model ( £ / , 6 2 ) around P2 and 

a subgroup Gi C G2 so that ( [ / , G i ) is a local model around p\ and the map TT is 

locally ( t / , G i ) -> (£>,G2). 

A rank-m orbivector bundle V - > 0 over (9 is locally isomorphic to ( F x U)/Gp, 

where 1/ is an ra-dimensional orbivector space on which Gp acts linearly. 

The tangent bundle TO of an orbifold O is an orbivector bundle which is locally 

diffeomorphic to TUa//Ga. Given p G \0\, if p G U covers p then the tangent 

space TpO is isomorphic to the orbivector space (TpU, Gp). The tangent cone at p is 

CP|C?| ^TpU/Gp. 

A smooth vector field V is a smooth section of TO. In terms of a local model 

(£/, G ) , the vector field ] / restricts to a vector field on U which is G-invariant. 

A smooth map / : 0\ —» O2 gives rise to the differential^ an orbivector bundle map 

df : TO\ —> T02- At a point p G | 0 | , in terms of local models we have a map / : 

( t / i ,G i ) —>• (C/25G2) which gives rise to a Gp-equivariant map d/p : TpUi —» T j ^ C / 2 

and hence to a linear map d/p : TpO\ —>> Xjy|(p)02. 

Given a smooth map f : Oi —> O2 and a point p G we say that / is a 

submersion at p (resp. immersion at p) if the map dfp : TpO\ —> T\f\(p}02 is surjective 

(resp. injective). 

Lemma 2.5. — If f is a submersion at p then there is an orbifold O3 on which G\f\^ 

acts, along with a local model ( [ /2 , G|/ |(p)) around \ f\(p), so that f is equivalent near 

p to the projection map (O3 x U2)//G\f\^ —> U2//G\f\(py 

Proof. — Let p : Gp —> G|/ |(p) be the surjective homomorphism associated to dfp. 

Let / : (Ui,Gp) —> (£/2, G|/ | (p)) be a local model for / near p; it is necessarily 

p-equivariant. Let p G U\ be a lift of p G £/1. Put = f~1{f{p))- S ince / is a submer­

sion at p, after reducing U\ and £/2 if necessary, there is a p-equivariant diffeomorphism 

W x U2 —> £/1 so that the diagram 

W x U2 > Ui 

(2.6) 

U2 >U2 

commutes and is Gp-equivariant. Now Ker(p) acts on W. Put O3 = W//Ker(p). 
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108 B. KLEINER & J. LOTT 

Then there is a commuting diagram of orbifold maps 

03 x U2 »CV/Ker(/=>) 

u2 >u2. 

(2.7) 

Further quotienting by Glfi (p) gives a commutative diagram 

(OsxU2)//Gimp) >Ul//Gp 

(2.8) 

U2//G\f\{p) > U2//G\f\{p) 

whose top horizontal line is an orbifold diffeomorphism. • 
We say that / : 0\ —> G2 is a submersion (resp. immersion) if it is a submersion 

(resp. immersion) at p for all p G \Oi\. 

Lemma 2.9. — A proper surjective submersion f : 0\ —> 02, with 02 connected, 
defines an orbifiber bundle with compact fibers. 

We will sketch a proof of Lemma 2.9 in Remark 2.17. 
In particular, a proper surjective local diffeomorphism to a connected orbifold is a 

covering map with finite fibers. 
An immersion / : 0\ —>• G2 has a normal bundle NO\ —>• G\ whose fibers have 

the following local description. Given p G \G\ |, let / be described in terms of local 
models (U\,GP) and (U2,G\f\^) by a p-equivariant immersion f : U\ —> U2. Let 
Fp C C|/ |(p) be the subgroup which fixes lm(dfp). Then the normal space NpO\ is 
the orbivector space ( Coker(d/p) , Fp). 

A suborbifold of (9 is given by an orbifold O' and an immersion / : O' —» O for 
which l / l maps JO'I homeomorphically to its image in \0\. From effectiveness, for each 
p G I ( 9 ' | , the homomorphism pp : Gp —>> G|/|(p) is injective. Note that pp need not be 
an isomorphism. We will identify O' with its image in O. There is a neighborhood 
of Or which is diffeomorphic to the normal bundle NO'. We say that the suborbifold 
O' is embedded if = O'. Then for each p G the homomorphism pp is an 
isomorphism. 

If O' is an embedded codimension-1 suborbifold of O then we say that O' is two-
sided if the normal bundle NO' has a nowhere-zero section. If O and (9; are both 
orientable then O' is two-sided. We say that O' is separating if | (9 ' | is separating 

in \0\. 
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We can talk about two suborbifolds meeting transversely, as defined using local 

models. 

Let O be an oriented orbifold (possibly disconnected). Let D\ and D2 be disjoint 

codimension-zero embedded suborbifolds-with-boundary, both oriented-diffeomorphic 

to Dn//T. Then the operation of performing 0-surgery along D\, D2 produces the 

new oriented orbifold O' = (O - in t (Di) - int(D2)) \JdD1udD2(I x (^n//r))- In the 

manifold case, a connected sum is the same thing as a 0-surgery along a pair {D\, D2} 

which lie in different connected components of O. Note that unlike in the manifold 

case, O' is generally not uniquely determined up to diffeomorphism by knowing the 

connected components containing D\ and D2. For example, even if O is connected, 

D\ and D2 may or may not lie on the same connected component of the singular set. 

If 0\ and G2 are oriented orbifolds, with D\ C 0\ and D2 C 02 both oriented 

diffeomorphic to D n / / r , then we may write Oi^s^-i //r02 f°r the connected sum. 

This notation is slightly ambiguous since the location of D\ and D2 is implicit. We 

will write G^Sn-i to denote a 0-surgery on a single orbifold O. Again the notation 

is slightly ambiguous, since the location of D\,D2 C O is implicit. 

An involutive distribution on O is a subbundle E C TO with the property that for 

any two sections Vi, V2 of E, the Lie bracket [Vi, V2] is also a section of E. 

Lemma 2.10. — Given an involutive distribution E on O, for any p G \0\ there is a 

unique maximal suborbifold passing through p which is tangent to E. 

Orbifolds have partitions of unity. 

Lemma 2.11. — Given an open cover {UA}AEA of\0\, there is a collection of functions 

pa G C°°(0) such that 

- 0 < pa < 1. 

- supp(pa) C Uaf for some a' — a''(a) G A. 

- For allpe\0\, YlaeAPoip) = 1-

Proof. — The proof is similar to the manifold case, using local models (U, G) consist­

ing of coordinate neighborhoods, along with compactly supported G-invariant smooth 

functions on U. • 

A curve in an orbifold is a smooth map 7 : / —> O defined on an interval I c l . 

A loop is a curve 7 with |7 | (0) = |7 | (1) G \0\. 

2.2. Universal cover and fundamental group. — We follow the presentation 

in [5, Chapter 2.2.1]. Choose a regular point p G \0\. A special curve from p is a 

curve 7 : [0,1] —>• O such that 

- |7 | (0) = p and 

- |7|(£) lies in \0\reg for all but a finite number of t. 
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110 B. KLEINER & J. LOTT 

Suppose that (17, G) is a local model and that 7 : [a, b] —» U is a lifting of 7 ^ 5 ] , for 

some [a, 6] C [0,1]. An elementary homotopy between two special curves is a smooth 

homotopy of 7 in U, relative to 7 ( a ) and 7(6). A homotopy of 7 is what's generated 

by elementary homotopies. 

If O is connected then the universal cover O of O can be constructed as the set 

of special curves starting at p, modulo homotopy. It has a natural orbifold structure. 

The fundamental group iri(0,p) is given by special loops {i.e., special curves 7 with 

|7 | (1) = p) modulo homotopy. Up to isomorphism, 7Ti((9,p) is independent of the 

choice of p. 

If O is connected and a discrete group T acts properly discontinuously on O then 

there is a short exact sequence 

(2.12) 1 —> 7 n ( 0 , p ) — • 7 n ( 0 / / r , p r ) —> r — » 1. 

Remark 2.13. — A more enlightening way to think of an orbifold is to consider it as a 

smooth effective proper étale groupoid Q, as explained in [1, 12, 44]. We recall that 

a Lie groupoid Q essentially consists of a smooth manifold G^ (the space of units), 

another smooth manifold G^ and submersions s,r : G^ —» G^ (the source and 

range maps), along with a partially defined multiplication G^ x G^ —> G^ which 

satisfies certain compatibility conditions. A Lie groupoid is étale if s and r are local 

diffeomorphisms. It is proper if (s, r) : G^1 ) 0(0) x 0(0) is a proper map. There is 

also a notion of an étale groupoid being effective. 

To an orbifold one can associate an effective proper étale groupoid as follows. 

Given an orbifold (9, a local model {UaiGa) and some pa G Ua, let p G \0\ be the 

corresponding point. There is a quotient map APn : TP(xUa —>• C p | 0 | . The unit space 

G^ is the disjoint union of the f/a's. And G^ consists of the triples {pa,P(3, Bpa^f3) 

where 

1. pn G Ua and p(3 G Up, 

2. pa and p/3 map to the same point p G | 0 | and 

3. Bpn^ : Tp(yUa —» Tp/3U(3 is an invertible linear map so that 4̂P(v = oBp.^p^. 

There is an obvious way to compose triples {pa,Pp, an<^ (PfiiPji ^P0,p-y)- One 

can show that this gives rise to a smooth effective proper étale groupoid. 

Conversely, given a smooth effective proper étale groupoid G, for any p G G^ the 

isotropy group G- is a finite group. To get an orbifold, one can take local models of 

the form (¿7, G~) where U is a (^-invariant neighborhood of p. 

Speaking hereafter just of smooth effective proper étale groupoids, Morita-

equivalent groupoids give equivalent orbifolds. 

A groupoid morphism gives rise to an orbifold map. Taking into account Morita 

equivalence, from the groupoid viewpoint the right notion of an orbifold map would 

be a Hilsum-Skandalis map between groupoids. These turn out to correspond to good 

maps between orbifolds, as later defined by Chen-Ruan [1]. This is a more restricted 

class of maps between orbifolds than what we consider. The distinction is that one can 
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pull back orbivector bundles under good maps, but not always under smooth maps in 
our sense. Orbifold diffeomorphisms in our sense are automatically good maps. For 
some purposes it would be preferable to only deal with good maps, but for simplicity 
we will stick with our orbifold definitions. 

A Lie groupoid Q has a classifying space BQ. In the orbifold case, if Q is the 
etale groupoid associated to an orbifold O then n\(0) = TT\{BQ). The definition of 
the latter can be made explicit in terms of paths and homotopies; see [12, 29]. In 
the case of effective orbifolds, the definition is equivalent to the one of the present 
paper. 

More information is in [1, 44] and references therein. 

2.3. Low-dimensional orbifolds. — We list the connected compact boundaryless 
orbifolds of low dimension. We mostly restrict here to the orientable case. (The 
nonorientable ones also arise; even if the total space of an orbifiber bundle is orientable, 
the base may fail to be orientable.) 

2.3.1. Zero dimensions. — The only possibility is a point. 

2.3.2. One dimension. — There are two possibilities : S1 and S1 //Z2. For the latter, 
the nonzero element of Z2 acts by complex conjugation on 51, and \S1//Z2\ is an 
interval. Note that Sl//Z2 is not orientable. 

2.3.3. Two dimensions. — For notation, if S is a connected oriented surface then 
5 ( f c i , . . . , kr) denotes the oriented orbifold O with \0\ — S, having singular points of 
order fci,..., kr > 1. Any connected oriented 2-orbifold can be written in this way. 
An orbifold of the form 52(p, q,r) is called a turnover. 

The bad orientable 2-orbifolds are S2(k) and S2(k, k'),k ^ k'. The latter is simply-
connected if and only if gcd(/c, k') = 1. 

The spherical 2-orbifolds are of the form 52//r , where T is a finite subgroup of 
Isom+(S'2). The orientable ones are S2, S2(k,k), S2(2, 2, 52(2, 3 ,3) , 5 2 ( 2 , 3 , 4 ) , 
52(2, 3, 5) . (If S2(l, 1) arises in this paper then it means S2.) 

The Euclidean 2-orbifolds are of the form T2//r , where T is a finite subgroup 
of I som+(T2) . The orientable ones are T2, 52(2,3,6), 5 2 ( 2 , 4 , 4 ) , S2 (3 ,3 ,3 ) , 
52(2, 2, 2, 2) . The latter is called a pillowcase and can be identified with the quotient 
of T2 = C / Z 2 by Z2, where the action of the nontrivial element of Z2 comes from the 
map z — z on C. 

The other closed orientable 2-orbifolds are hyperbolic. 
We will also need some 2-orbifolds with boundary, namely 

- The discal 2-orbifolds D2{k) = D2//Zk. 
- The half-pillowcase D2(2, 2) = / x^2 S1. Here the nontrivial element of 7L2 acts 

by involution on / and by complex conjugation on 51 . We can also write D2(2, 2) 
as the quotient {z e C : ^ < \z\ < 2}//Z2, where the nontrivial element of Z2 
sends z to z~x. 
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D2//1*21 where Z2 acts by complex conjugation on D2. Then d\D2//Z2\ is a 
circle with one orbifold boundary component and one reflector component. See 
Figure 1, where the dark line indicates the reflector component. 

FIGURE 1. 

- D2//Dk = D2(k)//Z2, for k > 1, where Dk is the dihedral group and Z2 acts 
by complex conjugation on D2(k). Then d\D2//Dk\ is a circle with one orbifold 
boundary component, one corner reflector point of order k and two reflector 
components. See Figure 2. 

к 

FIGURE 2. 

2.3.4- Three dimensions. — If O is an orientable three-dimensional orbifold then \0\ 
is an orientable topological 3-manifold. If O is boundaryless then \0\ is boundary less. 
Each component of the singular locus in \0\ is either 

1. a knot or arc (with endpoints on <9|(9|), labelled by an integer greater than 
one, or 

2. a trivalent graph with each edge labelled by an integer greater than one, under 
the constraint that if edges with labels p, q, r meet at a vertex then ^ + ^ + 7 > 1. 

ASTÉRISQUE 365 



GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW 113 

That is, there is a neighborhood of the vertex which is a cone over an orientable 

spherical 2-orbifold. 

Specifying such a topological 3-manifold and such a labelled graph is equivalent to 

specifying an orientable three-dimensional orbifold. 

We write D3 //V for a discal 3-orbifold whose boundary is S2 //V. They are 

- D3. There is no singular locus. 

- D3(k, k). The singular locus is a line segment through D3. See Figure 3. 

к 

FIGURE 3. 

- L>3(2, 2, fc), L>3(2, 3, 3 ) , L>3(2, 3, 4 ) and L>3(2, 3, 5 ) . The singular locus is a tripod 

in D3. See Figure 4. 

к 

2 2 

FIGURE 4. 
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The solid-toric 3-orbifolds are 

- Sl x D2. There is no singular locus. 

- S1 x D2(k). The singular locus is a core curve in a solid torus. See Figure 5 

к 

FIGURE 5. 

- S1 Xz2 D2. The singular locus consists of two arcs in a 3-disk, each labelled by 

2. The boundary is S2(2, 2, 2, 2) . See Figure 6. 

2 2 

FIGURE 6. 

- S1 x z2 D2(k). The singular locus consists of two arcs in a 3-disk, each labelled by 

2, joined in their middles by an arc labelled by k. The boundary is S2(2, 2, 2, 2) . 

See Figure 7. 

Given T G Isom+(S2) , we can consider the quotient S3//T where T acts on S3 by 

the suspension of its action on S2. That is, we are identifying Isom+(S'2) with SO(3) 

and using the embedding SO(3) —>> SO(4) to let T act on S3. 
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.2 2 , 

к 

FIGURE 7. 

An orientable three-dimensional orbifold O is irreducible if it contains no embedded 

bad 2-dimensional suborbifolds, and any embedded orientable spherical 2-orbifold 

S2//T bounds a discal 3-orbifold D3//T in O. Figure 8 shows an embedded bad 

2-dimensional suborbifold E. Figure 9 shows an embedded spherical 2-suborbifold 

S2(k,k) that does not bound a discal 3-orbifold; the shaded regions are meant to 

indicate some complicated orbifold regions. 

2 

M 

k 

2 

FIGURE 8. 
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S2{k,k) 

к 

к 

FIGURE 9. An essential spherical suborbifold 

If 5 is an orientable embedded 2-orbifold in O then S is compressible if there is 
an embedded discal 2-orbifold D c O s o that 3D lies in S, but does not bound 
a discal 2-orbifold in S. (We call D a compressing discal orbifold.) Otherwise, S is 
incompressible. Note that any embedded copy of a turnover S2(p, q, r) is automatically 
incompressible, since any embedded circle in S (p, q, r) bounds a discal 2-orbifold 
in S2(p, q, r). 

If O is a compact orientable 3-orbifold then there is a compact orientable irreducible 
3-orbifold O' so that O is the result of performing O-surgeries on 0'\ see [5, Chap­
ter 3]. The orbifold O' can be obtained by taking an appropriate spherical system 
on O, cutting along the spherical 2-orbifolds and adding discal 3-orbifolds to the en­
suing boundary components. If we take a minimal such spherical system then O' is 
canonical. 

Note that if O = S1 x S2 then O' = S3. This shows that if O is a 3-manifold then 
O' is not just the disjoint components in the prime decomposition. That is, we are not 
dealing with a direct generalization of the Kneser-Milnor prime decomposition from 
3-manifold theory. Because the notion of connected sum is more involved for orbifolds 
than for manifolds, the notion of a prime decomposition is also more involved; see [35, 
53]. It is not needed for the present paper. 

We assume now that O is irreducible. The geometrization conjecture says that if 
dO = 0 and O does not have any embedded bad 2-dimensional snborbifolds then 
there is a finite collection {Si} of incompressible orientable Euclidean 2-dimensional 
suborbifolds of O so that each connected component of O' — \Jt Si is diffeomorphic to 
a quotient of one of the eight Thurston geometries. Taking a minimal such collection 
of Euclidean 2-dimensional suborbifolds, the ensuing geometric pieces are canonical. 
References for the statement of the orbifold geometrization conjecture are [5, Chap­
ter 3.7]. [19, Chapter 2.13]. 
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Our statement of the orbifold geometrization conjecture is a generalization of the 

manifold geometrization conjecture, as stated in [54, Section 6] and [56, Conjec­

ture 1.1]. The cutting of the orientable three-manifold is along two-spheres and two-

tori. An alternative version of the geometrization conjecture requires the pieces to 

have finite volume [45, Conjecture 2.2.1]. In this version one must also allow cutting 

along one-sided Klein bottles. A relevant example to illustrate this point is when the 

three-manifold is the result of gluing I x%2T2 to a cuspidal truncation of a one-cusped 

complete noncompact finite-volume hyperbolic 3-manifold. 

2.4. Seifert 3-orbifolds. — A Seifert orbifold is the orbifold version of the total 

space of a circle bundle. We refer to [5, Chapters 2.4 and 2.5] for information about 

Seifert 3-orbifolds. We just recall a few relevant facts. 

A Seifert 3-orbifold fibers 7r : O -> B over a 2-dimensional orbifold £>, with circle 

fiber. If (U,GP) is a local model around p G \B\ then there is a neighborhood V of 

|7r|_1(p) C \0\ SO that O|v is diffeomorphic to (S1 x U)//Gp, where Gp acts on S1 

via a representation Gp 0 ( 2 ) . We will only consider orientable Seifert 3-orbifolds. 

so the elements of Gp that preserve orientation on U will act on S1 via SO(2) , while 

the elements of Gp that reverse orientation on U will act on S1 via O(2) — SO(2) . In 

particular, if p G \B\reg then \f\~1(p) is a circle, while if p £ \B\reg then \f\~1(p) may 

be an interval. We may loosely talk about the circle fibration of O. 

As dO is an orientable 2-orbifold which fibers over a 1-dimensional orbifold, with 

circle fibers, any connected component of dO must be T2 or *S2(2, 2, 2, 2) . In the case 

of a boundary component 52(2, 2, 2, 2) , the generic fiber is a circle on |#2(2, 2, 2, 2) | 

which separates it into two 2-disks, each containing two singular points. That is, the 

pillowcase is divided into two half-pillowcases. 

A solid-toric orbifold Sl x D2 or S1 x D2(k) has an obvious Seifert fibering over 

D2 or D2(k). Similarly, a solid-toric orbifold S1 x%2 D2 or S1 x%2 D2(k) fibers over 

D2//Z2 or D2(k)//Z2. 

2.5. Riemannian geometry of orbifolds 

Definition 2.14. — A Riemannian metric on an orbifold O is given by an atlas for O 

along with a collection of Riemannian metrics on the U^s so that 

- Ga acts isometrically on Ua and 

- The embeddings (U3lG3) -> (£A ,Gi ) and (*73,G3) -> {U2,G2) from part 5 of 

Definition 2.1 are isometric. 

We say that the Riemannian orbifold O has sectional curvature bounded below by 

K G M if the Riemannian metric on each Ua has sectional curvature bounded below 

by and similarly for other curvature bounds. 

A Riemannian orbifold has an orthonormal frame bundle FO, a smooth manifold 

with a locally free (left) 0 (7i ) -act ion whose quotient space is homeomorphic to \0\. 
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Local charts for FO are given by 0(n) X Q U. Fixing a bi-invariant Riemannian metric 
on O ( n ) , there is a canonical 0(n)-invariant Riemannian metric on FO. 

Conversely, if Y is a smooth connected manifold with a locally free 0(n) -ac t ion then 
the slice theorem [11, Corollary VI.2.4] implies that for each y G Y, the 0(n) -ac t ion 
near the orbit 0(n) • y is modeled by the left 0 (n) -ac t ion on 0(n) M ^ , where 
the finite stabilizer group Gy C 0(n) acts linearly on RN. There is a corresponding 
iV-dimensional orbifold O with local models given by the pairs (№N,Gy). If Y\ and 
Y2 are two such manifolds and F : Y\ —» Y2 is an 0(n)-equivariant diffeomorphism 
then there is an induced quotient diffeomorphism / : 0\ —» O2, as can be seen by 
applying the slice theorem. 

If Y has an 0(n)-invariant Riemannian metric then O obtains a quotient Rieman­
nian metric. 

Remark 2.15. — Suppose that a discrete group T acts properly discontinuously on an 
orbifold O. Then there is a T-invariant Riemannian metric on O. Furthermore, T 
acts freely on FO, commuting with the 0(n)-ac t ion. Hence there is a locally free 
0(n) -ac t ion on the manifold FO/V and a corresponding orbifold 0//T. 

There is a horizontal distribution THFO on FO coming from the Levi-Civita 
connection on U. If 7 is a loop at p G \0\ then a horizontal lift of 7 allows one to 
define the holonomy H7, a linear map from TpO to itself. 

If 7 : [a, b] —» O is a smooth map to a Riemannian orbifold then its length is 
L ( 7 ) = Ja \j'(t) \ dt, where \j'(t)\ can be defined by a local lifting of 7 to a local 
model. This induces a length structure on \0\. The diameter of O is the diameter of 
\0\. We say that O is complete if \0\ is a complete metric space. If O has sectional 
curvature bounded below by K G №. then \0\ has Alexandrov curvature bounded 
below by K, as can be seen from the fact that the Alexandrov condition is preserved 
upon quotienting by a finite group acting isometrically [13, Proposition 10.2.4]. 

It is useful to think of O as consisting of an Alexandrov space equipped with an 
additional structure that allows one to make sense of smooth functions. 

We write dvol for the n-dimensional Hausdorff measure on \0\. Using the above-
mentioned relationship between the sectional curvature of O and the Alexandrov cur­
vature of \0\, we can use [13, Chapter 10.6.2] to extend the Bishop-Gromov inequality 
from Riemannian manifolds with a lower sectional curvature bound, to Riemannian 
orbifolds with a lower sectional curvature bound. We remark that a Bishop-Gromov 
inequality for an orbifold with a lower Ricci curvature bound appears in [9]. 

A geodesic is a smooth curve 7 which, in local charts, satisfies the geodesic equation. 
Any length-minimizing curve 7 between two points is a geodesic, as can be seen by 
looking in a local model around 7 ( t ) . 

Lemma 2.16. — If O is a complete Riemannian orbifold then for any p G \0\ and any 
v G Cp\0\, there is a unique geodesic 7 : R —>• O such that |7 | (0) = p and 77(0) = v. 
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Proof. — The proof is similar to the proof of the corresponding part of the Hopf-

Rinow theorem, as in [39, Theorem 4.1]. • 

The exponential map of a complete orbifold O is defined as follows. Given p G \0\ 

and v G CP\G\, let 7 : [0,1] —>> O be the unique geodesic with |7 | (0) = p and 

|7 ' | (0) = v. Put | exp | (p , i ; ) = ( p , | 7 | ( l ) ) G \0\ x \0\. This has the local lifting 

property to define a smooth orbifold map exp : TO —> O x O. 

Given p G the restriction of exp to TpO gives an orbifold map expp : TpO —>> O 

so that I exp (p,v) = ( p , | expp \ (v)). 

Similarly, if O' is a suborbifold of (9 then there is a normal exponential map exp : 

NO' —>• 0 . If 0 ' is compact then for small e > 0, the restriction of exp to the open 

e-disk bundle in NO' is a diffeomorphism to ^ | ^ ( l o ' l ) -

Remark 2.17. — To prove Lemma 2.9, we can give the proper surjective 

submersion / : 0\ —> O2 a Riemannian submersion metric in the orbifold 

sense. Given p G | 0 2 | , let C/ be a small e-ball around p and let (U,GP) be a 

local model with U/Gp = U. Pulling back f\f-i{u)^ f-\U) -> U to ¿7, we 

obtain a Gp-equivariant Riemannian submersion / to U. If p G U covers p then 

f -1 (p)is a compact orbifold on which Gp acts. Using the submersion structure, 

its normal bundle Nf~l(p) is Gp-diffeomorphic to f~l(p) x T^C/. If e is sufficiently 

small then the normal exponential map on the e-disk bundle in Nf~l(p) 

provides a Gp-equivariant product neighborhood f -1 (p) x U of f -1 (p); cf. [3, 

Proof of Theorem 9.42]. This passes to a diffeomorphism between f~l(U) and 

(f-Hp) x U)//Gp. 

If / : 0\ -» O2 is a local diffeomorphism and #2 is a Riemannian metric on O2 

then there is a pullback Riemannian metric / * ^ 2 on 0\, which makes / into a local 

isometry. 

We now give a useful criterion for a local isometry to be a covering map. 

Lemma 2.18. — / / / : 0\ —>• O2 is a local isometry, 0\ is complete and O2 is 

connected then f is a covering map. 

Proof. — The proof is along the lines of the corresponding manifold statement, as 

in [39, Theorem 4.6]. • 

There is an orbifold version of the de Rham decomposition theorem. 

Lemma 2.19. — Let O be connected, simply-connected and complete. Given p G 

\0\reg, suppose that there is an orthogonal splitting TpO = E\ (B E2 which is in­

variant under holonomy around loops based at p. Then there is an isometric splitting 

O — 0\ x 02 so that if we write p — ( ^ 1 , ^ 2 ) then TpxO\ — E\ and TP202 = E2. 
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Proof. — The parallel transport of E\ and E2 defines involutive distributions D\ and 

D2, respectively, on 0 . Let 0\ and 02 be maximal integrable suborbifolds through 

p for D\ and D2, respectively. 

Given a smooth curve 7 : [a, b] —>> (9 starting at p, there is a development C : 

[a, 6] TpO of 7 , as in [39, Section 111.4]. Let d : [a, b] - » £ 1 and C2 : [a, 6] - > E2 

be the orthogonal projections of C. Then there are undevelopments 71 : [a, 6] —> 0 i 

and 72 : [a, 6] —>> 0 2 of C\ and C2, respectively. 

As in [39, Lemma IV.6.6], one shows that ( |7 i | (6 ) , |T21(^)) only depends on | 7 | (6 ) . 

In this way, one defines a map / : 0 —> 0\ x 02. As in [39, p. 192], one shows that / is 

a local isometry. As in [39, p. 188], one shows that 0\ and G2 are simply-connected. 

The lemma now follows from Lemma 2.18. • 

The regular part |0|re# inherits a Riemannian metric. The corresponding vol­

ume form equals the n-dimensional Hausdorff measure on \0\reg. We define vol((9), 

or v o l ( | 0 | ) , to be the volume of the Riemannian manifold \0\reg, which equals the 

n-dimensional Hausdorff mass of the metric space | 0 | . 

If / : 0\ —>• G2 is a diffeomorphism between Riemannian orbifolds ( 0 i , # i ) and 

( 0 2 , #2) then we can define the (7K-distance between g\ and f*g2, using local models 

for d . 

A pointed orbifold ( 0 , p ) consists of an orbifold 0 and a basepoint p G | 0 | . Given 

r > 0, we can consider the pointed suborbifold B(p,r) = 0\B^p^ry 

Definition 2.20. — Let (C?i,pi) and (02,p2) be pointed connected orbifolds with com­

plete Riemannian metrics g\ and g2 that are CK-smooth. (That is, the orbifold tran­

sition maps are CK^1 and the metric tensor in a local model is CK.) Given e > 0, 

we say that the CK-distance between ( ( 9 i , p i ) and ( 0 2 , P 2 ) is bounded above by e if 

there is a CK+1-smooth map / : B(pi, e-1) —>• Q2 that is a diffeomorphism onto its 

image, such that 

- The CK-distance between g\ and f*g2 on J3(pi,e_1) is at most e, and 

~ d | o 2 | ( | / | ( p i ) , p 2 ) < e. 

Taking the infimum of all such possible e's defines the CK-distance between [0\, p i ) 

and (02lp2). 

Remark 2.21. — It may seem more natural to require | / | to be basepoint-preserving. 

However, this would cause problems. For example, given k > 2, take O — 1R2//ZA;. 

Let 7T : R2 \0\ be the quotient map. We would like to say that if i is large 

then the pointed orbifold ( 0 , T T ( Z _ 1 , 0 ) ) is close to (0 ,7r(O,O)). However, there is no 

basepoint-preserving map / : B(TT(í~11 0) , 1) —> ( 0 , TT(0, 0)) which is a diffeomorphism 

onto its image, due to the difference between the local groups at the two basepoints. 

2.6. Critical point theory for distance functions. — Let 0 be a complete 

Riemannian orbifold and let Y be a closed subset of | 0 | . A point p G | 0 | — Y is 

noncritical if there is a nonzero Gp-invariant vector v G TpO = TpU making an angle 
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strictly larger than ^ with any lift to TpU of the initial velocity of any minimizing 

geodesic segment from p to Y. 

In the next lemma we give an equivalent formulation in terms of noncriticality 

on \<D\. 

Lemma 222. — A point p G \0\ — Y is noncritical if and only if there is some w G 

Cp\0\ = TpU/Gp so that the comparison angle between w and any minimizing geodesic 

from p to Y is strictly greater than ^. 

Proof — Suppose that p is noncritical. Given v as in the definition of noncriticality, 

put w — vGp. 

Conversely, suppose that w G Cp\0\ = TpTJ/Gp is such that the comparison angle 

between w and any minimizing geodesic from p to Y is strictly greater than \ . Let 

vo be a preimage of w in TpU. Then vo makes an angle greater than ^ with any lift 

to TpU of the initial velocity of any minimizing geodesic from p to Y. As the set of 

such initial velocities is Cp-invariant, for any g G Gp the vector vog also makes an 

angle greater than J with any lift to TpU of the initial velocity of any minimizing 

geodesic from p to Y. As {vog}geGp lies in an open half-plane, we can take v to be 

the nonzero vector j ^ - j J2gecp vo9- D 

We now prove the main topological implications of noncriticality. 

Lemma 2.23. — IfYis compact and there are no critical points in the set d y 1 ( a , 6 ) 

then there is a smooth vector field £ on 0\d-i^ab^ so that dy has uniformly positive 

directional derivative in the £ direction. 

Proof. — The proof is similar to that of [14, Lemma 1.4]. For any p G \0\ — Y, there 

are a precompact neighborhood Up of p in \0\ — Y and a smooth vector field Vp on 

Up so that dy has positive directional derivative in the Vp direction, on Up. Let {UPi} 

be a finite collection that covers dy1(a, b). From Lemma 2.11, there is a subordinate 

partition of unity {pi}. Put £ = J2i PiVi- ^ 

Lemma 2.24. — IfYis compact and there are no critical points in the set dY1(a,b) 

then 0\d-i(a^ is diffeomorphic to a product orbifold M x O ' . 

Proof. — Construct £ as in Lemma 2.23. Choose c G (a, b). Then 0\d-i^ is a 

Lipschitz-regular suborbifold of O which is transversal to £, as can be seen in local 

models. Working in local models, inductively from lower-dimensional strata of \0\ to 

higher-dimensional strata, we can slightly smooth 0\d-\^ to form a smooth suborb­

ifold Of of O which is transverse to £. Flowing (which is defined using local models) in 

the direction of £ gives an orbifold diffeomorphism between 0\d-i,ab\ and R x O'. • 
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2.7. Smoothing functions. — Let O be a Riemannian orbifold. Let F be a Lips-

chitz function on \0\. Givenp G | 0 | , we define the generalized gradient V | e n F C TpO 

as follows. Let (£/, G) be a local model around p. Let F be the lift of F to U. Choose 

p G U covering p. Let e > 0 be small enough so that exp~ : B(0,e) —>• U is a dif-

feomorphism onto its image. If x G B(p,e) is a point of differentiability of F then 

compute V ^ F and parallel transport it along the minimizing geodesic to p. Take the 

closed convex hull of the vectors so obtained and then take the intersection as e —> 0. 

This gives a closed convex Gp-invariant subset of TpU. or equivalently a closed convex 

subset of TpO; we denote this set by V9penF. The union U P G | O | V f n F c TO will be 

denoted VgenF. 

Lemma 2.25. — Let O be a complete Riemannian orbifold and let \TT\ : \TO\ —>> \0\ be 

the projection map. Suppose that U C \0\ is an open set, C C U is a compact subset 

and S is an open fiberwise-convex subset ofTO\^-i^Uy (That is, S is an open subset 

of\n\~l(U) and for eachpe\0\, the preimage of (S H |7r |_1(p)) C Cp\0\ in TpO is 

convex.) 

Then for any e > 0 and any Lipschitz function F : \0\ —> R whose generalized 

gradient over U lies in S, there is a Lipschitz function F' : \0\ —>• R such that : 

1. There is an open subset of \0\ containing C on which F1 is a smooth orbifold 

function. 

2. The generalized gradient of F', over U, lies in S. 

3. I F ' - F U < € . 

4- F'\\o\-u = F\\o\-u-

Proof. — The proof proceeds by mollifying the Lipschitz function F as in [28, Sec­

tion 2]. The mollification there is clearly (7-equivariant in a local model ( { / , G). • 

Corollary 2.26. — For all e > 0 there is a 0 > 0 with the following property. 

Let O be a complete Riemannian orbifold, let Y C \0\ be a closed subset and let 

dy : \0\ —> R be the distance function from Y. Given p G \0\ — Y, let Vp C Cp\0\ 

be the set of initial velocities of minimizing geodesies from p to Y. Suppose that 

U C \0\ — Y is an open subset such that for all p G U, one has diam(Vp) < 6. Let 

C be a compact subset of U. Then for every t\ > 0, there is a Lipschitz function 

F' : \0\ - » R such that 

- Ff is smooth on a neighborhood of C. 

~ || F'-dY | | O O < e i . 

F'\M-U dy\M-u 
- For every p G C, the angle between —VPF' and Vp is at most e. 

- F' — dy is e-Lipschitz. 
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3. Noncompact nonnegatively curved orbifolds 

In this section we extend the splitting theorem and the soul theorem from Rieman­

nian manifolds to Riemannian orbifolds. We give an argument to rule out tight necks 

in a noncompact nonnegatively curved orbifold. We give the topological description 

of noncompact nonnegatively curved orbifolds of dimension two and three. 

Assumption 3.1. — In this section, O will be a complete nonnegatively curved Rie­

mannian orbifold. 

We may emphasize in some places that O is nonnegatively curved. 

3 .1 . Splitting theorem 

Proposition 3.2. — If \G\ contains a line then O is an isometric product M x O' for 

some complete Riemannian orbifold O'. 

Proof. — As | O| contains a line, the splitting theorem for nonnegatively curved 

Alexandrov spaces [13, Chapter 10.5] implies that \0\ is an isometric product 1 x 7 

for some complete nonnegatively curved Alexandrov space Y. The isometric splitting 

lifts to local models, showing that 0\Y is an Riemannian orbifold O' and that the 

isometry \G\ -> IR x Y is a smooth orbifold splitting O —» R x Of. • 

Corollary 3.3. — If O has more than one end then it has two ends and O is an iso­

metric product I x O ' for some compact Riemannian orbifold O'. 

Remark 3.4. — A splitting theorem for orbifolds with nonnegative Ricci curvature 

appears in [10]. As the present paper deals with lower sectional curvature bounds, 

the more elementary Proposition 3.2 is sufficient for our purposes. 

3.2 . Cheeger-Gromoll-type theorem. — A subset Z c \0\ is totally convex if 

any geodesic segment (possibly not minimizing) with endpoints in Z lies entirely in Z. 

Lemma 3.5. — Let Z C \0\ be totally convex and let (U,G) be a local model. Put 

U — U/G and let q : U —» U be the quotient map. If 7 is a geodesic segment in U 

with endpoints in q~l(U PI Z) then 7 lies in q~l(U HZ). 

Proof. — Suppose that j(t) ^ q~l{U D Z) for some t. Then q o 7 is a geodesic in O 

with endpoints in Z , but q(^{t)) £ Z. This is a contradiction. • 

Lemma 3.6. — Let Z C \0\ be a closed totally convex set. Let k be the Hausdorff 

dimension of Z. Let J\f be the union of the k-dimensional suborbifolds S of O with 

\S\ C Z. Then N is a totally geodesic k-dimensional suborbifold of \0\ and Z = |7V|. 

Furthermore, ifY is a closed subset of |7V| and p G Z — \Al'\ then there is a v G Cp\0\ 

so that the initial velocity of any minimizing geodesic from p to Y makes an angle 

greater than ^ with v. 

Proof. — Using Lemma 3.5, the proof is along the lines of that in [27, Chapter 3.1]. • 
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We put dZ = Z-\M\. Note that in the definition o f M we are dealing with orbifolds 
as opposed to manifolds. For example, if 0\z is a boundaryless /с-dimensional orbifold 
then dZ = 0 . 

A function / : \0\ —>• R is concave if for any geodesic segment 7 : [a, 6] —>> O, for all 
с G [a, 6] one has 

(3-7) / ( |7 | (c ) ) > ^ / ( l 7 l ( a ) ) + ^ Д Ы ( Ь ) ) . 

Lemma 3.8. — Л i s equivalent to require (3.7) for all geodesic segments or just for 
minimizing geodesic segments. 

Proof. — Suppose that (3.7) holds for all minimizing geodesic segments. Let 7 : 
[a, b] —» О be a geodesic segment, maybe not minimizing. For any t G [a, 6], we can 
find a neighborhood of t in [a, 6] so that the restriction of 7 to It is minimizing. 
Then (3.7) holds on It. It follows that (3.7) holds on [a, b]. • 

Any superlevel set / _ 1 [ c , 00) of a concave function is closed and totally convex. 
Let / be a proper concave function on \0\ which is bounded above. Then there is a 

maximal с G R so that the superlevel set / _ 1 [ c , 00) is nonempty, and so / _ 1 [ c , 00) = 
f~l{c] is a closed totally convex set. 

Suppose for the rest of this subsection that О is noncompact. 

Lemma 3.9. — Let Z С \0\ be a closed totally convex set with dZ ф 0 . Then doz 
is a concave function on Z. Furthermore, suppose that for a minimizing geodesic 
7 : [a,b] —>- Z in Z, the restriction of ddz 0 Ы is a constant positive function on [a, b]. 
Let t —> exp1(a)tX(a) be a minimizing unit-speed geodesic from \~f\(a) to dZ', defined 
for t G [0,d]. Let {X(s)}se[a^] be the parallel transport of X(a) along 7 . Then for 
any s G [a, b\, the curve t —>> exp^^tX(s) is a minimal geodesic from | 7 | ( s ) to dZ, of 
length d. Also, the rectangle V : [a, b] x [0,d] —>• Z given by V(s,t) = ехр7^^ tX(s) is 
flat and totally geodesic. 

Proof. — The proof is similar to that of [27, Theorem 3.2.5]. • 

Fix a basepoint • G \0\. Let 77 be a unit-speed ray in \0\ starting from *; note 
that г] is automatically a geodesic. Let b^ : \0\ —>• R be the Busemann function; 

(3.10) b11(p)= lim (d(p,V(t))-t). 
t—+oo 

Lemma 3.11. — The Busemann function b^ is concave. 

Proof. — The proof is similar to that of [27, Theorem 3.2.4]. • 

Lemma 3.12. — Putting f = inf^ b7], where n runs over unit speed rays starting at 
gives a proper concave function on \0\ which is bounded above. 

Proof. — The proof is similar to that of [27, Proposition 3.2.1]. • 
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We now construct the soul of 0 , following Cheeger-Gromoll [17]. Let Co be the 
minimal nonempty super level set of / . For i > 0, if dCi / 0 then let C^+i be the 
minimal nonempty superlevel set of ddd on d- Let S be the nonempty d so that 
dd = 0 . Define the soul to be <S = 0 |5 . Then 5 is a totally geodesic suborbifold of 0 . 

Proposition 3.13. — O is diffeomorphic to the normal bundle NS of S. 

Proof. — Following [27, Lemma 3.3.1], we claim that ds has no critical points on 
1 0 1 - 5 . To see this, choose p G | 0 | - S. There is a totally convex set Z C | 0 | for 
which p G dZ] either a superlevel set of / or one of the sets d . Defining N as in 
Lemma 3.6, we also know that S C \M\. By Lemma 3.6, p is noncritical for ds> 

From Lemma 2.24, for small e > 0, we know that 0 is diffeomorphic to 0\N^sy 
However, if e is small then the normal exponential map gives a diffeomorphism between 
ATS and 0\Ne(s). • 

Remark 3.14. — One can define a soul for a general complete nonnegatively curved 
Alexandrov space X. The soul will be homotopy equivalent to X. However, X need 
not be homeomorphic to a fiber bundle over the soul, as shown by an example of 
Perelman [13, Example 10.10.9]. 

We include a result that we will need later about orbifolds with locally convex 
boundary. 

Lemma 3.15. — Let 0 be a compact connected orbifold-with-boundary with nonnega-
tive sectional curvature. Suppose that dO is nonempty and has positive-definite second 
fundamental form. Then there is some p G | 0 | so that dO is diffeomorphic to the 
unit distance sphere from the vertex in TpO. 

Proof. — Let p G | 0 | be a point of maximal distance from \dO\. We claim that p 
is unique. If not, let p' be another such point and let 7 be a minimizing geodesic 
between them. Applying Lemma 3.9 with Z = | 0 | , there is a nontrivial geodesic 
s —» V(s, d) of 0 that lies in \dO\. This contradicts the assumption on dO. Thus p is 
unique. The lemma now follows from the proof of Lemma 3.13, as we are effectively 
in a situation where the soul is a point. • 

3.3. Ruling out tight necks in nonnegatively curved orbifolds 

Lemma 3.16. — Suppose that 0 is a complete connected Riemannian orbifold with 
nonnegative sectional curvature. If X is a compact connected 2-sided codimension-1 
suborbifold of 0 then precisely one of the following occurs : 

~ X is the boundary of a compact suborbifold of O. 

- X is nonseparating, 0 is compact and X lifts to a Z-cover Of —>• 07 where 
O' = R x O" with O" compact. 

- X separates 0 into two unbounded connected components and 0 = R x O' 
with O' compact. 
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Proof. — Suppose that X separates O. If both components of \0\ — \X\ are un­
bounded then O contains a line. From Proposition 3.2, O — R x C for some & . As 
X is compact, O' must be compact. 

The remaining case is when X does not separate O. If 7 is a smooth closed curve 
in O which is transversal to X (as defined in local models) then there is a well-defined 
intersection number 7 • X G Z . This gives a homomorphism p : ni(0,p) —>> Z . Since 
X is nonseparating, there is a 7 so that 7 - 1 / 0 ; hence the image of p is an infinite 
cyclic group. Put O' — O/ Ker(p); it is an infinite cyclic cover of O. As O' contains 
a line, the lemma follows from Proposition 3.2. • 

Lemma 3.17. — Suppose that R n / / G is a Euclidean orbifold with G a finite subgroup 
of 0(n). If X C R n / / G is a connected compact 2-sided codimension-1 suborbifold, 
then X bounds some D C W1 //G with d i a m o ( D ) < 4 |G| diamx(AT), where d iam^^D) 
denote the extrinsic diameter of D in \0\ while d i a m x ( X ) denotes the intrinsic di­
ameter of X. 

Proof. — Let X be the preimage of X in Rn. Let A be any number greater than 
diamx(AT). Let x be a point in \X\. Let {xi}i^j be the preimages of x in X. Here the 
cardinality of / is bounded above by \G\. We claim that X = B(xl: A ) , where 
B(xi, A ) denotes a distance ball in X with respect to its intrinsic metric. To see this, 
let y be an arbitrary point in X. Let y be its image in X. Join y to x by a minimizing 
geodesic 7 in X , which is necessarily of length at most A . Then a horizontal lift of 
7 , starting at y, joins y to some xi and also has length at most A . 

Let C be a connected component of X. Since C is connected, it has a covering 
by a subset of {B(xl, 2 d i amx(A^) )} i e / with connected nerve, and so C has diameter 
at most 4 |G | diamx ( X ) . Furthermore, from the Jordan separation theorem, C is 
the boundary of a domain D G Rn with extrinsic diameter at most 4 |G| d\am.x{X). 
Letting D G O be the projection of D , the lemma follows. • 

Proposition 3.18. — Suppose that O is a complete connected noncompact Riemannian 
n-orbifold with nonnegative sectional curvature. Then there is a number S > 0 (de­
pending on O) so that the following holds. Let X be a connected compact 2-sided 
codimension-1 suborbifold of O. Then either 

- X bounds a connected suborbifold D of O with diame>(.D) < 8(suppG|C>| \GP\) • 
d i a m ( X ) ; or 

- d i a m ( X ) > S. 

Proof. — Suppose that the proposition is not true. Then there is a sequence 
{A" ;} Jt, of connected compact 2-sided codimension-1 suborbifokls of O so that 
l i r n ^ O O d iam(Xf) = 0 but each Xi fails to bound a connected suborbifold wrhose 
extrinsic diameter is at most 8suppG|C,| \GP\ times as much. 

If all of the \Xi\'s lie in a compact subset of \0\ then a subsequence converges 
in the Hausdorff topology to a point p G \0\. As a sufficiently small neighborhood 
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of p can be well approximated metrically by a neighborhood of 0 G \Rn//Gp\ after 

rescaling, Lemma 3.17 implies that for large i we can find Di C O with Xi = dDi 

and dmmo^Di) < 8(suppG|C,| |GP|) -diam(A^). This is a contradiction. Hence we can 

assume that the sets \Xi\ tend to infinity. 

If some Xi does not bound a compact suborbifold of O then by Lemma 3.16, there 

is an isometric splitting O = R x O' with O' compact. This contradicts the assumed 

existence of the sequence {Xi}(Qzl with l i m ^ o o diam(A^) = 0. Thus we can assume 

that Xi = dDi for some compact suborbifold Di of O. If O had more than one end 

then it would split off an R-factor and as before, the sequence {Xi}c*Ll would not 

exist. Hence O is one-ended and after passing to a subsequence, we can assume that 

D\ C D2 C . . . Fix a basepoint • G Let n be a unit-speed ray in \0\ starting 

from • and let be the Busemann function from (3.10). 

Suppose that p,p' G \0\ are such that b^p) — br](pf). For t large, consider a 

geodesic triangle with vertices p,p',r)(t). Given Xi with i large, if t is sufficiently 

large then pr](t) and pfrj(t) pass through Xi. Taking t —> 0 0 , triangle comparison 

implies that d(p,pr) < d iam(X^). Taking i — » 0 0 gives p — p'. Thus b^ is injective. 

This is a contradiction. • 

3.4. Nonnegatively curved 2-orbifolds 

Lemma 3.19. — Let O be a complete connected orientable 2-dimensional orbifold with 

nonnegative sectional curvature which is CK-smooth, K > 3. We have the following 

classification of the diffeomorphism type, based on the number of ends. For notation, 

T denotes a finite subgroup of the oriented isometry group of the relevant orbifold and 

Ti2 denotes a simply-connected bad 2-orbifold with some Riemannian metric. 

~ 0 ends : S2//T, T2//T, £ 2 / / T . 

- 1 end : R2//T, S1 x Z 2 R . 

- 2 ends : R x Sl. 

Proof. — If O has zero ends then it is compact and the classification follows from the 

orbifold Gauss-Bonnet theorem [5, Proposition 2.9]. If O has more than one end then 

Proposition 3.2 implies that O has two ends and isometrically splits off an R-factor. 

Hence it must be diffeomorphic to R x S1. Suppose that O has one end. The soul S 

has dimension 0 or 1. If S has dimension zero then S is a point and O is diffeomorphic 

to the normal bundle of 5 , which is R2/ /T. If S has dimension one then it is S1 or 

S1 / /Z2 and O is diffeomorphic to the normal bundle of S. As S1 x R has two ends, 

the only possibility is x^2 R. • 

3.5 . Noncompact nonnegatively curved 3-orbifolds 

Lemma 3.20. — Let O be a complete connected noncompact orientable 3-dimensional 

orbifold with nonnegative sectional curvature which is CK-smooth, K > 3. We have 

the following classification of the diffeomorphism type, based on the number of ends. 
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For notation, T denotes a finite subgroup of the oriented isometry group of the relevant 

orbifold and E2 denotes a simply-connected bad 2-orbifold with some Riemannian 

metric. 

- 1 end : R3//T, S1 x R2, S1 x R2(k), S1 xZ2 R2, S1 x%2 R2(k), R xZ2 (S2//T), 

RxZ2 (T2//r) orRxZ2 (E2//r). 

- 2 ends : R x (S2//T), R x {T2//T) orRx (E2//F). 

Proof. — Because O is noncompact, it has at least one end. If it has more than one 

end then Proposition 3.2 implies that O has two ends and isometrically splits off an 

M-factor. This gives rise to the possibilities listed for two ends. 

Suppose that O has one end. The soul S has dimension 0, 1 or 2. If S has dimension 

zero then S is a point and O is diffeomorphic to the normal bundle of 5, which is 

M3/ / r . If S has dimension one then it is Sl or S1 //Z2 and O is diffeomorphic to the 

normal bundle of S , which is S1 xR2, S1 x R2(k), S1 xZ2 R2 or S1 xZ2 R2(k). If S 

has dimension two then since it has nonnegative curvature, it is diffeomorphic to a 

quotient of 52, T2 or E2. Then O is diffeomorphic to the normal bundle of <S, which 

is R xZ2 (52//r) , R xZ2 (T2/ / r ) or R xZ2 (E2//r), since O has one end. • 

3.6. 2-dimensional nonnegatively curved orbifolds that are pointed 

Gromov-Hausdorff close to an interval. — We include a result that we 

will need later about 2-dimensional nonnegatively curved orbifolds that are pointed 

Gromov-Hausdorff close to an interval. 

Lemma 3.21. — There is some 0 > 0 so that the following holds. Suppose that O 

is a pointed nonnegatively curved complete orientable Riemannian 2-orbifold which is 

CK-smooth for some K > 3. Let * G \0\ be a basepoint and suppose that the pointed 

ball (£?(•, 10) ,*) C \0\ has pointed Gromov-Hausdorff distance at most /3 from the 

pointed interval ([0,10], 0 ) . Then for every r G [1,9], the orbifold 0\B^ r^ is a discal 

2-orbifold or is diffeomorphic to D2(2,2). 

Proof. — As in [37, Pf. of Lemma 3.12], the distance function : 1,9) ->> [1,9] 

defines a fibration with a circle fiber. 

The possible diffeomorphism types of O are listed in Lemma 3.19. Looking at 

them, if B(*, 1) is not a topological disk then O must be T2 and we obtain a contra­

diction as in [37, Pf. of Lemma 3.12]. Hence B(*, 1) is a topological disk. If 

O BU i ) is n°t a discal 2-orbifold then it has at least two singular points, 

say Pi,p2 £ \0\. Choose q G \0\ with d(*,q) = 2. By triangle comparison, 

the comparison angles satisfy ZPl(p2,q) < jiT^ ano- ^ 2 ( ^ 1 ^ ) — \G* \ • ^ P ^s 

small then ZPl(p2,q) + ZP2(pi,q) is close to TT. It follows that |GPl| = |GP2| = 2. 

Suppose that there are three distinct singular points pi,P2,Ps ^ \0\. We know 

that they lie in 1). Let piq and ptp] denote minimal geodesies. If ¡3 is small then 

the angle at p\ between p\q and p\P2 is close to ^ , and similarly for the angle at p\ 

between p]lj and pTps. As dirn((9) = 2, and p\ has total cone angle TT, it follows that 
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if (3 is small then the angle at p\ between pip2 and pip2 is small. The same reasoning 

applies at p2 and £>3, so we have a geodesic triangle in \G\ with small total interior 

angle, which violates the fact that \0\ has nonnegative Alexandrov curvature. 

Thus 0\B£^j is diffeomorphic to L>2(2, 2) . • 

4. Riemannian compactness theorem for orbifolds 

In this section we prove a compactness result for Riemannian orbifolds. 

The statement of the compactness result is slightly different from the usual state­

ment for Riemannian manifolds, which involves a lower injectivity radius bound. The 

standard notion of injectivity radius is not a useful notion for orbifolds. For example, 

if O is an orientable 2-orbifold with a singular point p then a geodesic from a regular 

point q in \0\ to p cannot minimize beyond p. As q could be arbitrarily close to 

p, we conclude that the injectivity radius of O would vanish. (We note, however, 

that there is a modified version of the injectivity radius that does makes sense for 

constant-curvature cone manifolds [5, Section 9.2.3], [19, Section 6.4].) 

Instead, our compactness result is phrased in terms of local volumes. This fits well 

with Perelman's work on Ricci flow, where local volume estimates arise naturally. 

If one tried to prove a compactness result for Riemannian orbifolds directly, follow­

ing the proofs in the case of Riemannian manifolds, then one would have to show that 

orbifold singularities do not coalesce when taking limits. We avoid this issue by pass­

ing to orbifold frame bundles, which are manifolds, and using equivariant compactness 

results there. 

Compactness theorems for Riemannian metrics and Ricci flows for orbifolds with 

isolated singularities were proved in [40]. Compactness results for general orbifolds 

were stated in [18, Chapter 3.3] with a short sketch of a proof. 

Proposition 4.1. — Fix K G Z + U { o o } . Let be a sequence of pointed 

complete connected CK+3-smooth Riemannian n-dimensional orbifolds. Suppose that 

for each j G Z - ° with j < K, there is a function Aj : (0, oo) —̂  oo so that for all i, 

|VJ R m | < Aj(r) on B(pi, r) C \Oi\. Suppose that for some r0 > 0, there is a vq > 0 

so that for alii, vol(B(pi,ro)) > vq. Then there is a subsequence of {{Oi,pi)}^=1 that 

converges in the pointed CK~X-topology to a pointed complete connected Riemannian 

n-dimensional orbifold (OocPoo)-

Proof. — Let FOi be the orthonormal frame bundle of 0{. Pick a basepoint pi G FOi 

that projects to pi G \Oi\. As in [26, Section 6], after taking a subsequence we may as­

sume that the frame bundles {(FOi1pi)}c*L1 converge in the pointed 0(n)-equivariant 

Gromov-Hausdorff topology to a CK~l-smooth Riemannian manifold X with an iso­

metric 0(n)-ac t ion and a basepoint p^. (We lose one derivative because we are 

working on the frame bundle.) Furthermore, we may assume that the convergence is 
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realized as follows : Given any 0(n)-invariant compact codimension-zero submanifold-
with-boundary K C X , for large i there is an 0(n)-invariant compact codimension-
zero submanifold-with-boundary K% C FOi and a smooth 0(n)-equfvariant fiber bun­
dle Ki —> K with nilmanifold fiber whose diameter goes to zero as i —>> co [15, 
Section 3 ] , [26, Section 9 ] . 

Quotienting by 0 ( n ) , the underlying spaces {{\Oi\,pi)}(^zl converge in the pointed 
Gromov-Hausdorff topology to (0(ri)\X,Poo)- Because of the lower volume bound 
vo\(B(pi,ro)) > vo1 a pointed Gromov-Hausdorff limit of the Alexandrov spaces 
{(\Oi\iPi)}i^i is an ^-dimensional Alexandrov space [13, Corollary 1 0 . 1 0 . 1 1 ] . Thus 
there is no collapsing and so for large i the submersion Ki —> K is an 0(n)-equivariant 
(7K_1-smooth diffeomorphism. In particular, the 0 (n ) -ac t ion on X is locally free. 
There is a corresponding quotient orbifold Ooo with | 0 o o | = 0(n)\X. As the mani­
folds {(FOi,pi)}<^=1 converge in a CK~l-smooth pointed equivariant sense to ( X , p o o ) 
we can take 0(n)-quot ients to conclude that the orbifolds {(Oi,pi)}<^1 converge in 
the pointed CK_1-smooth topology to ( 0 o o , P o o ) - D 

Remark 4.2. — As a consequence of Proposition 4.1, if there is a number N so \Gqt \ < 
N for all q% G \0\i and all i then \Gqoc \ < N for all G | 0 | o o . That is, under the 
hypotheses of Proposition 4.1, the orders of the isotropy groups cannot increase in 
the limit. 

Remark 4.3. — In the proof of Proposition 4.1, the submersions Ki -> K may not be 
basepoint-preserving. This is where one has to leave the world of basepoint-preserving 
maps. 

5. Ricci flow on orbifolds 

In this section we first make some preliminary remarks about Ricci flow on orbifolds 
and we give the orbifold version of Hamilton's compactness theorem. We then give 
the topological classification of compact nonnegatively curved 3-orbifolds. Finally, we 
extend Perelman's no local collapsing theorem to orbifolds. 

5.1 . Function spaces on orbifolds. — Let p : 0(n) —>• RN be a representation. 

Given a local model (Uaj Ga) and a Ga-invariant Riemannian metric on Uai let Va — 
^ N x o ( n ) FUa be the associated vector bundle. If O is a n-dimensional Riemannian 

orbifold then there is an associated orbivector bundle V with local models (Va,Ga)-
Its underlying space is\V\ = RN ><o(n) FO. By construction, V has an inner product 

coming from the standard inner product on RN. A section s of V is given by an 

0(n)-equivariant map s : FO —» RN. In terms of local models, s is described by 

Ga-invariant sections sa of Va that satisfy compatibility conditions with respect to 

part 5 of Definition 2 . 1 . 
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The C K - n o r m of s is defined to be the supremum of the C x - n o r m s of the s a ' s . 

Similarly, the square of the i f K - n o r m of s is defined to be the integral over | 0 | R E £ of 

the local square i J^-norm, the latter being defined using local models. (Note that 

\G\reg has full Hausdorff n-measure in \0\.) Then H~K can be defined by duality. 

One has the rough Laplacian mapping HK-sections of V to HK~2-sections of V. 

One can define differential operators and pseudodifferential operators acting on 

H^-sections of V. Standard elliptic and parabolic regularity theory extends to the 

orbifold setting, as can be seen by working equivariantly in local models. 

5.2. Short-time existence for Ricci flow on orbifolds. — Suppose that 

{g{t)}te[A,B] is a smooth 1-parameter family of Riemannian metrics on O. We 

will call g a flow of metrics on O. The Ricci flow equation | | = — 2 Ric makes 

sense in terms of local models. Using the DeTurck trick [20], which is based on 

local differential analysis, one can reduce the short-time existence problem for the 

Ricci flow to the short-time existence problem for a parabolic PDE. Then any 

short-time existence proof for parabolic PDEs on compact manifolds, such as that 

of [55, Proposition 15.8.2], will extend from the manifold setting to the orbifold 

setting. 

Remark 5.1. — Even in the manifold case, one needs a slight additional argument to 

reduce the short-time existence of the Ricci-DeTurck equation to that of a standard 

quasilinear parabolic PDE. In local coordinates the Ricci-DeTurck equation takes the 

form 

(52) 
ogij 

dt 
kl 

gkldkdigtl + ... 

There is a slight issue since (5.2) is not uniformly parabolic, in that gkl could de­

generate with respect to, say, the initial metric go. This issue does not seem to have 

been addressed in the literature. However, it is easily circumvented. Let M. be the 

space of smooth Riemannian metrics on a compact manifold M. Let F : M. —> M. 

be a smooth map so that for some e > 0, we have F(g) — g if || g — go \\go< e, and 

in addition ego < F(g) < e~xgo for all g. (Such a map F is easily constructed using 

the fact that the inner products on TpM, relative to go(p), can be identified with 

GL(n, R ) / ( 3 ( n ) , along with the fact that GL(n, M)/0(n) deformation retracts onto a 

small ball around its basepoint.) By [55, Proposition 15.8.2], there is a short-time 

solution to 

(5.3) 
dgij 

dt 
kl 

F(g)kidkdigiJ + ... 

with g(Q) = go- Given this solution, there is some S > 0 so that || g(t) — go \\go< £ 

whenever t G [0,6]. Then {g(t)}te[o,5} also solves the Ricci-DeTurck equation (5.2). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 

file:///G/reg


132 B. KLEINER & J. LOTT 

We remark that any Ricci flow results based on the maximum principle will have 
evident extensions from manifolds to orbifolds. Such results include 

- The lower bound on scalar curvature 
- The Hamilton-Ivey pinching results for three-dimensional scalar curvature 
- Hamilton's differential Harnack inequality for Ricci flow solutions with nonneg-

ative curvature operator 
- Perelman's differential Harnack inequality. 

5.3. Ricci flow compactness theorem for orbifolds. — Let G\ and O2 be 
two connected pointed n-dimensional orbifolds, with flows of metrics g\ and If 
/ : 0\ —> O2 is a (time-independent) diffeomorphism then we can construct the 
pullback flow f*g2 and define the CK-distance between g\ and f*g2, using local 
models for G\. 

Definition 5.4. — Let 0\ and O2 be connected pointed n-dimensional orbifolds. Given 
numbers A, B with — o c < ^ 4 < 0 < 5 < o o , suppose that gi is a flow of metrics on 
Oi that exists for the time interval [^4,5]. Suppose that gi(t) is complete for each t. 
Given e > 0, suppose that / : J5(pi ,e-1) —>• O2 is a smooth map from the time-zero 
ball that is a diffeomorphism onto its image. Let | / | : B(pi,e~1) — ) - | 1 be the 
underlying map. We say that the CK-distance between the flows and 
(02^2^2) is bounded above by e if 

1. The CK-distance between g1 and /*#2 on ([A, B] D ( - e _ 1 , e - 1 ) ) x Bip^e'1) is 
at most e and 

2. The time-zero distance d\o2\(\f\(pi),P2) is at most e. 

Taking the infimum of all such possible e's defines the CK-distance between the 

flows and ( 0 2 , P 2 , ^ 2 ) -

Note that time derivatives appear in the definition of the (7x-distance between g\ 
and f*g2. 

Proposition 5.5. — Let {gi}^1 be a sequence of Ricci flow solutions on pointed con­
nected n-dimensional orbifolds {(OiiPi)}^!, defined for t G (A, B) and complete for 
each t, with — 00 < A < 0 < B < 00. Suppose that the following two conditions 
are satisfied : 

1. For every compact interval I C (A, B), there is some Kj < 0 0 so that for all i, 
we have swp\Q.\XI | Rm9i (p, t)\ < Kj, and 

2. For some ro,^o > 0 and all i, the time-zero volume vol(B(pi,ro)) is bounded 
below by VQ. 

Then a subsequence of the solutions converges in the sense of Definition 5.4 to a 
Ricci flow solution goo{t) on a pointed connected n-dimensional orbifold (0oo,;Poo)? 
defined for all t G (A , B). 
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Proof. — Using Proposition 4.1, the proof is essentially the same as that in [32, 
p. 548-551] and [40, p . 1116-1117]. • 

Remark 5.6. — There are variants of Proposition 5.5 that hold, for example, if one 
just assumes a uniform curvature bound on r-balls, for each r > 0. These variants 
are orbifold versions of the results in [38, Appendix E], to which we refer for details. 
The proofs of these orbifold extensions use, among other things, the orbifold version 
of the Shi estimates; the proof of the latter goes through to the orbifold setting with 
no real change. 

5.4. Compact nonnegatively curved 3-orbifolds 

Proposition 5.7. — Any compact nonnegatively curved 3-orbifold O is diffeomorphic 
to one of 

1. S3//Y for some finite group Y C Isom+(6'3). 

2. T 3 / / r for some finite group Y C I som+(T3) . 

3. S1 x {S2//Y) or S1 xZ2 {S2//Y) for some finite group Y c Isom(S'2). 

4. S1x(T,2 //Y) or SlXi2{Y? //Y) for some finite group Y C Isom(E2), whereY? is a 
simply-connected bad 2-orbifold equipped with its unique (up to diffeomorphism) 
Ricci soliton metric [58, Theorem J^.l\. 

Proof. — Let k be the largest number so that the universal cover O isometrically 
splits off an Rfc-factor. Write O = Rk x C. 

If O' is noncompact then by the Cheeger-Gromoll argument [16, Pf. of Theorem 3], 
\0'\ contains a line. Proposition 3.2 implies that O' splits off an R-factor, which is a 
contradiction. Thus O' is simply-connected and compact with nonnegative sectional 
curvature. 

If k = 3 then O = R3 and O is a quotient of T3. 
If k — 2 then there is a contradiction, as there is no simply-connected compact 

1-orbifold. 
If k = 1 then O' is diffeomorphic to S2 or E2. The Ricci flow on 6 = R x O' splits 

isometrically. After rescaling, the Ricci flow on O' converges to a constant curvature 
metric on S*2 or to the unique Ricci soliton metric on E2 [58]. Hence ni{G) is a 
subgroup of Isom(R x S2) or Isom(R x E2), where the isometry groups are in terms 
of standard metrics. As TTI(O) acts properly discontinuously and cocompactly on 0 , 
there is a short exact sequence 

(5.8) i _ > n — • T T I ( 0 ) — » T2 — • 1, 

where Yi C Isom((9/) and Y2 is an infinite cyclic group or an infinite dihedral group. 
It follows that O is finitely covered by S1 x S2 or S1 x E2. 

Suppose that k = 0. If O is positively curved then any proof of Hamilton's theorem 
about 3-manifolds with positive Ricci curvature [30] extends to the orbifold case, to 
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show that О admits a metric of constant positive curvature; c.f. [34]. Hence we 
can reduce to the case when О does not have positive curvature and the Ricci flow 
does not immediately give it positive curvature. From the strong maximum principle 
as in [31, Section 8], for any p G |0 | re^ there is a nontrivial orthogonal splitting 
TpO = Ei 0 E2 which is invariant under holonomy around loops based at p. The 
same will be true on O. Lemma 2.19 implies that О splits off an R-factor, which is a 
contradiction. • 

5 . 5 . C-geodesies and noncollapsing. — Let О be an n-dimensional orbifold and 
let {g(t)}te[o,T) be a Ricci flow solution on О so that 

- The time slices (0,g(t)) are complete. 
- There is bounded curvature on compact subintervals of [ 0 , T ) . 

Given to G [0 ,T) and p G \(D\, put r — to — t. Let 7 : [0,r] —>> О be a piecewise 
smooth curve with |7 | (0) = p and т < to- Put 

(5.9) £ ( 7 ) = Г V ? (Д(7 (т ) ) + |7(r) |2) dr, 
Jo 

where the scalar curvature R and the norm | 7 ( r ) | are evaluated using the metric at 
time to — т. With X — the C-geodesic equation is 

(5.10) VXX- ]-VR + ^X + 2 R i c ( X , •) = 0. 
2 2r 

Given an C-geodesic 7 , its initial velocity is defined to be v = limr_^o л А " ^ ^ C p | 0 | . 
Given q G \0\, put 

(5.11) L ( g , r ) = i n f { £ ( 7 ) : | 7 | ( r ) = q}, 

where the infimum runs over piecewise smooth curves 7 with |7 | (0) = p and |7 | ( r ) = q. 
Then any piecewise smooth curve 7 which is a minimizer for L is a smooth ^-geodesic. 

Lemma 5.12. — There is a minimizer 7 for L. 

Proof. — The proof is similar to that in [38, p. 2631]. We outline the steps. Given 
p and g, one considers piecewise smooth curves 7 as above. Fixing e > 0, one shows 
that the curves 7 with £ ( 7 ) < L(q,r) + e are uniformly continuous. In particular, 
there is an R < 00 so that any such 7 lies in B(p,R). Next, one shows that there 
is some p G (0, R) so that for any x G B(p,R), there is a local model (U,GX) with 
U/Gx = B(x, p) such that for any p', q' G B(x,p) and any subinterval [ T I , Г 2 ] С [0, r ] , 

- There is a unique minimizer for the functional J_T2 у/т ( i ? ( 7 ( r ) ) + |7(T)|2) <̂ T 

among piecewise smooth curves 7 : [ r i , T 2 ] —> О with | 7 | ( T I ) — p' and I7KT2) = 

q'-
- The minimizing 7 is smooth and the image of I7I lies in B(x, p). 
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This is shown by working in the local models. Now cover B(p,R) by a finite number 

of p-balls {B(xil p)}f=l. Using the uniform continuity, let A £ Z + be such that for 

any 7 : [0,r] - » O with |(0) = _p, | 7 | ( r ) = q and £ ( 7 ) < L(q,r) + e, and any 

[^1,^2] C [0,r] of length at most the distance between | 7 | ( r i ) and 1 7 1 (^2) is less 

than the Lebesgue number of the covering. We can effectively reduce the problem 

of finding a minimizer for L to the problem of minimizing a continuous function 

defined on tuples (po, • • • ,PA) £ B{p,R) with po = p and PA — q- This shows that 

the minimizer exists. • 

Define the C-exponential map : TpO —> O by saying that for v £ C p | 0 | , we put 

CexpT(v) — | 7 | ( r ) , where 7 is the unique £-geodesic from p whose initial velocity is 

v. Then CexpT is a smooth orbifold map. 

Let Br C \0\ be the set of points q which are either endpoints of more than one 

minimizing ^-geodesic 7 : [0,r] —> 0 , or are the endpoint of a minimizing geodesic 

7^ : [0,r] - » 0 where v £ Cp\0\ is a critical point of £ e x p ^ . We call the time-r 

C-cut locus of p. It is a closed subset of \0\. Let QY C | 0 | be the complement of 

BY and let Í V C C p | 0 | be the corresponding set of initial conditions for minimizing 

£-geodesics. Then VtT is an open set, and the restriction of CexpT to TpO\Q_ is an 

orbifold diffeomorphism to 0\g_. 

Lemma 5.13. — Br has measure zero in \0\. 

Proof. — The proof is similar to that in [38, p. 2632]. By Sard's theorem, it suffices 

to show that the subset B'T C Bf~, consisting of regular values of C exp^, has measure 

zero in \G\. One shows that B'T is contained in the underlying spaces of a countable 

union of codimension-1 suborbifolds of 0 , which implies the lemma. • 

Therefore one may compute the integral of any integrable function on \G\ by pulling 

it back to QT C Cp\0\ and using the change of variable formula. 

For q £ | 0 | , put l(q,T) = L^^}= • Define the reduced volume by 

(5.14) V(T) = г' 2 
\o\ 

e~l^r) dvol(g). 

Lemma 5.15. — The reduced volume is monotonically nonincreasing in r. 

Proof. — The proof is similar to that in [38, Section 23]. In the proof, one pulls back 
the integrand to C p | 0 | . 

Lemma 5.16. — For each r > 0, there is some q £ \ö\ so that l(q,r) < f. 

Proof. — The proof is similar to that in [38, Section 24]. It uses the maximum 

principle, which is valid for orbifolds. 
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Definition 5.17. — Given p > 0, a Ricci flow solution #(•) defined on a time interval 

[0 ,T) is K-noncollapsed on the scale p if for each r < p and all (xo,£o) ^ 1^1 x 

with to > r 2 , whenever it is true that | R m ( x , £ ) | < r ~ 2 for every x G Bto{xo,r) and 

t E [to — r2,to], then we also have vol(Bto(xo,r)) > nrn. 

Lemma 5.18. — If a Ricci flow solution is K-noncollapsed on some scale then there is 

a uniform upper bound \GP\ < N(n,K) on the orders of the isotropy groups at points 

Pe\0\. 

Proof — Given p G let Bto(p,r) be a ball such that | R m ( x , £ o ) | < r~2 for all 

x G Bto(p,r). By assumption r~n vol(Bto(xo1r)) > K. Let cn denote the area of the 

unit (n — l)-sphere in Rn. Applying the Bishop-Gromov inequality to Bt0(p,r) gives 

(5.19) 
l 

\GJ 

r~n vol(Btn(xo,r)) 

Cn 
•1 

0 sinh71-1^) ds Cn 
-I 

0 sinh"-1 s ds 

The lemma follows. 

Proposition 5.20. — Given numbers n G Z + ; T < oo and p,K,c > 0, there is a 

number K — n(n, K, c, p,T) > 0 with the following property. Let (On,g(-)) be a Ricci 

flow solution defined on the time interval [ 0 , T ) ; with complete time slices, such that 

the curvature | R m | is bounded on every compact subinterval [0 ,T ' ] C [ 0 , T ) . Suppose 

that (O,g(0)) has \ R m | < K and v o l ( £ ( p , 1)) > c > 0 for every p G \0\. Then the 

Ricci flow solution is K-noncollapsed on the scale p. 

Proof. — The proof is similar to that in [38, Section 26]. As in the proof there, we 

use the fact that the initial conditions give uniformly bounded geometry in a small 

time interval [0 , t /2] , as follows from Proposition 5.5 and derivative estimates. • 

Proposition 5.21. — For any A G ( 0 , o o ) , there is some K, = K(A) > 0 with the fol­

lowing property. Let (0,g(-)) be an n-dimensional Ricci flow solution defined for 

t G [0,7"o] having complete time slices and uniformly bounded curvature. Suppose that 

vol(£0Oo,r0)) > A'1^ and that \ R m \(q, t)\ < -K for all (q,t) G B0(po,r0) x [ 0 , r g ] . 
til Q 

Then the solution cannot be n-collapsed on a scale less than r o at any point r ^ ) 

with q G BR2(po, Aro). 

Proof — The proof is similar to that in [38, Section 28]. • 

6 . ^-solutions 

In this section we extend results about ^-solutions from manifolds to orbifolds. 

Definition 6.1. — Given K > 0, a K-solution is a Ricci flow solution (0,g(t)) that is 

defined on a time interval of the form ( — oo, C) (or ( — oo, C]) such that : 

1. The curvature | R m | is bounded on each compact time interval [ t i , ^ ] C 

(—oo,C) (or (—oo,C]) , and each time slice (0,g{t)) is complete. 
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2. The curvature operator is nonnegative and the scalar curvature is everywhere 
positive. 

3. The Ricci flow is ft-noncollapsed at all scales. 

Lemma 5.18 gives an upper bound on the orders of the isotropy groups. In the rest 
of this section we will use this upper bound without explicitly restating it. 

6.1 . Asymptot ic solitons. — Let (p, to) be a point in a /^-solution ( 0 , g ( - ) ) so 
that Gp has maximal order. Define the reduced volume V(r) and the reduced length 
l(q,r) as in Subsection 5.5, by means of curves starting from (p, to), with r = to — t. 
From Lemma 5.16, for each r > 0 there is some q(r) G | 0 | such that l(q{f),r) < ^. 
(Note that I > 0 from the curvature assumption.) 

Proposition 6.2. — There is a sequence T{ —> oo so that if we consider the solution 
g(-) on the time interval [to — T^,to — \fi\ and parabolically rescale it at the point 
(q(ri),to — Ti) by the factor r^1 then as i —> oo, the reseated solutions converge to a 
nonflat gradient shrinking soliton (restricted to [—1, — \ \ ) . 

Proof. — The proof is similar to that in [38, Section 39] . Using estimates on the 
reduced length as defined with the basepoint (p, to), one constructs a limit Ricci flow 
solution (Goo? <7oo(')) defined for t G [ — 1 , — ^ ] , which is a gradient shrinking soliton. 
The only new issue is to show that it is nonflat. 

As in [38, Section 39] , there is a limiting reduced length function / 0 o ( , ? / 7 " ) £ 

C ° ° ( (9oo)7 and a reduced volume which is a constant c, strictly less than the 
t to limit of the reduced volume of ( 0 , #( • ) ) . The latter equals ^ f y - If the 
limit solution were flat then IOO{',T) would have a constant positive-definite Hessian. 
It would then have a unique critical point q. Using the gradient flow of / O O ( - , T ) , one 
deduces that Ooo is diffeomorphic to TqOoo- As in [38, Section 39] , one concludes 
that 

(63) с = 
CqlOool^RK/Gq 

т 2 e 
\x¿ 4т dvol — 

(47r)t 

\GQ\ 

As \Gq\ < \Gp\j we obtain a contradiction. 

6.2. Two-dimensional ^-solutions 

Lemma 6.4. — Any two-dimensional n-solution (0,g(-)) is an isometric quotient of 
the round shrinking 2-sphere or is a Ricci soliton metric on a bad 2-orbifold. 

Proof. — The proof is similar to that in [59, Theorem 4.1] . One considers the asymp­
totic soliton and shows that it has strictly positive scalar curvature outside of a com­
pact region (as in [50, Lemma 1.2]). Using standard Jacobi field estimates, the asymp­
totic soliton must be compact. The lemma then follows from convergence results for 
2-dimensional compact Ricci flow (using [58] in the case of bad 2-orbifolds). • 
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Remark 6.5. — One can alternatively prove Lemma 6.4 using the fact that if ( 0 , #(•)) 

is a /^-solution then so is the pullback solution ( 0 , #(•)) on the universal cover. If 0 

is a bad 2-orbifold then 0 is compact and the result follows from [58]. If 0 is a good 

2-orbifold then ( 0 , g ( - ) ) is a round shrinking S2 from [38, Section 40]. 

6.3. Asymptot ic scalar curvature and asymptotic volume ratio 

Definition 6.6. — If 0 is a complete connected Riemannian orbifold then its asymp­

totic scalar curvature ratio is 7Z = l i m s u p ^ ^ R(q)d(x,p)2. It is independent of the 

basepoint p G | 0 | . 

Lemma 6.7. — Let (0,g(-)) be a noncompact ^-solution. Then the asymptotic scalar 

curvature ratio is infinite for each time slice. 

Proof — The proof is similar to that in [38, Section 41]. Choose a time to- If 

71 G (0, oo) then after rescaling ( 0 , g ( £ o ) ) , one obtains convergence to a smooth 

annular region in the Tits cone CTO at time to. (Here CTO denotes a smooth orbifold 

structure on the complement of the vertex in the Tits cone CT\0\.) Working on the 

regular part of the annular region, one obtains a contradiction from the curvature 

evolution equation. 

If 7Z = 0 then the rescaling limit is a smooth flat metric on CTO, away from 

the vertex. The unit sphere S^ in CTO has principal curvatures one. It can be 

approximated by a sequence of codimension-one compact suborbifolds Sk in 0 with 

rescaled principal curvatures approaching one, which bound compact suborbifolds 

OK c 0 . 

Suppose first that n > 3. By Lemma 3.15, for large k there is some pk G | 0 | so that 

the suborbifold Sk is diffeomorphic to the unit sphere in TPKO. As Sk is difTeomorphic 

to Soo for large k, we conclude that Soo is isometric to Sn~l//T for some finite group 

T C Isom+(Sn_1) . Let p G | 0 | be a point with Gp = T. As CT\0\ is isometric 

to Mn/r, l inv^oo r~n \o\(B(p,r)) exists and equals the times the volume of the 

unit ball in IRn. On the other hand, this equals limr_^o r~n vo\(B(p,r)). As we 

have equality in the Bishop-Gromov inequality, we conclude that 0 is flat, which is a 

contradiction. 

If n = 2 then we can adapt the argument in [38, Section 41] to the orbifold 

setting. • 

Definition 6.8. — If 0 is a complete n-dimensional Riemannian orbifold with nonneg-

ative Ricci curvature then its asymptotic volume ratio is V = limr_^oo r~n vol(B(p, r ) ) . 

It is independent of the choice of basepoint p G | 0 | . 

Lemma 6.9. — Let (0,g(-)) be a noncompact n-solution. Then the asymptotic vol­

ume ratio V vanishes for each time slice (O,g(to))- Moreover, there is a sequence of 

points pk G | 0 | going to infinity such that the pointed sequence { ( 0 , (pk,to),g{'))}kLi 
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converges, modulo rescaling by R(pk,to), to a n-solution which isometrically splits off 
an R- fact or. 

Proof. — The proof is similar to that in [38, Section 41]. • 

6 . 4 . In a ^-solution, the curvature and the normalized volume control each 
other 

Lemma 6.10. — Given n G Z+? we consider n-dimensional ^-solutions. 

1. If B(po,ro) is a ball in a time slice of a ^-solution then the normalized volume 
r~n vo\(B(po1 ?"o)) is controlled (i.e., bounded away from zero) <^> the normalized 
scalar curvature r^R^po) is controlled (i.e., bounded above) 

2. (Precompactness) If {(Ok, (Pk,tk)i9k('))}kLi is a sequence of pointed k-solutions 
and for some r > 0, the r-balls B(pk,r) C (Ok,9k(tk)) have controlled 
normalized volume, then a subsequence converges to an ancient solution 
(Ooo, {Poo, 0)5 9oo(')) which has nonnegative curvature operator, and is k-
noncollapsed (though a priori the curvature may be unbounded on a given time 
slice). 

3. There is a constant n = rj(n,K) so that for all p G \0\, we have \VR\(p,t) < 
r)R*(p,i) and \Rt\(p,i) < nR2(p,t). More generally, there are scale invariant 
bounds on all derivatives of the curvature tensor, that only depend on n and k. 

4. There is a function a : [ 0 , 0 0 ) —>> [ 0 , 0 0 ) depending only on n and k such 
that limg^oo a(s) — 00, and for every p,p' G \0\, we have R(p')d2(p,p') < 
a(R(p)d2(p,p')). 

Proof. — The proof is similar to that in [38, Section 42]. In the proof by contradiction 
of the implication of part (1), after passing to a subsequence we can assume that 
\GPk I is a constant C. Then we use the argument in [38, Section 42] with cn equal to 
^ times the volume of the unit Euclidean n-ball. • 

6 . 5 . A volume bound 

Lemma 6.11. — For every e > 0, there is an A < 0 0 with the following property. 
Suppose that we have a sequence of (not necessarily complete) Ricci flow solutions 
9k(') wtth nonnegative curvature operator, defined on Ok x such that: 

~ For each k, the time-zero ball B(pk,rk) has compact closure in \Ok\-
- For all (p,t) G B(pk,rk) x [tk,0], we have \R(p,t) < R(pk,0) = Qk. 
- l i m ^ o o tkQk = -00. 
- l i m ^ o o r\Qk = OO. 

_ 1 _ 1 
Then for large k, we have vo\(B(pk, AQk 2)) < e(AQk 2 )n at time zero. 
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6.6. Curvature bounds for Ricci flow solutions with nonnegative curvature 

operator, assuming a lower volume bound 

Lemma 6.12. — For every w > 0, there are B = B(w) < oo, C = C(w) < oo and 

ro — TQ(W) > 0 with the following properties. 

(a) Take to G [—^,0). Suppose that we have a (not necessarily complete) Ricci flow 

solution (0, #(•)), defined for t G [to,0]; so that at time zero the metric ball B(po,ro) 

has compact closure. Suppose that for each t G [¿0,0], g(t) has nonnegative curvature 

operator and vol(Bt(po,ro)) > wr^ . Then 

(6.13) R{p, t) < Cr^2 + B{t - t0yl 

whenever distt(p,po) < \ro-

(b) Suppose that we have a (not necessarily complete) Ricci flow solution (0, #(•)), 

defined for t G [—Torg,0], so that at time zero the metric ball B(po,ro) has compact 

closure. Suppose that for each t G [—Tor^O], g(t) has nonnegative curvature operator. 

If we assume a time-zero volume bound vol(£?o(po> ^o)) > wr^ then 

(6.14) R(p, t) < Cr^2 + B(t + ror2)-1 

whenever t G [ — T O R ^ O ] and distt(p,Po) < \r$. 

Proof. — The proof is similar to that in [38, Section 45]. • 

Corollary 6.15. — For every w > 0, there are B — B(w) < oo, C — C(w) < oo and 

TO = TO(W) > 0 with the following properties. Suppose that we have a (not necessarily 

complete) Ricci flow solution (0,#(•)), defined for t G [—ror^O], so that at time zero 

the metric ball B(po,ro) has compact closure. Suppose that for each t G [—ror^O], 

the curvature operator in the time-t ball B(po1ro) is bounded below by —r^2. If we 

assume a time-zero volume bound vol(Bo(po1ro)) > WTQ then 

(6.16) R(p, t) < Cr^2 + B{t + ror2)"1 

whenever t G [—TORQ,0] and distt(p,po) < \r$. 

Proof. — The proof is similar to that in [38, Section 45]. • 

6.7. Compactness of the space of three-dimensional ^-solutions 

Proposition 6.17. — Given k, > 0, the set of oriented three-dimensional K-solutions 

(0, #(•)) is compact modulo scaling. 

Proof — If {(0^, (pk, 0), gk{'))}kLi is a sequence of such ^-solutions with R(pk, 0) = 1 

then parts (1) and (2) of Lemma 6.10 imply that there is a subsequence that converges 

to an ancient solution (0oc5 (Poo5 0)? #oo(*) ) which has nonnegative curvature operator 

and is ft-noncollapsed. The remaining issue is to show that it has bounded curvature. 

Since Rt > 0, it is enough to show that (0<x>5 $00(0)) has bounded scalar curvature. 
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If not then there is a sequence of points qi going to infinity in | 0 o o | such that 
R(qi,0) oo and R(q,0) < 2R(qi,0) for q G B(qu AiR(ql, Q)~i), where Al 
oo. Using the ft-noncollapsing, a subsequence of the rescalings {0oo,qi,R(qi,G)gO0) 
will converge to a limit orbifold Noo that isometrically splits off an R-factor. By 
Lemma 6.4, iV^ must be a standard solution on R x (S2//T) or R x (E2//r). Thus 
((9oo ,^oo) contains a sequence Xi of neck regions, with their cross-sectional radii 
tending to zero as i —>• oo. This contradicts Proposition 3.18. • 

6.8. Necklike behavior at infinity of a three-dimensional K-solution 

Definition 6.18. — Fix e > 0. Let (0,g(-)) be an oriented three-dimensional 
«-solution. We say that a point po G \0\ is the center of an e-neck if the solution 
g(-) in the set {(p,t) : -(eQ)'1 < t < 0, dist0(p,;po)2 < ( e Q ) - 1 } , where Q = R(po,0), 
is, after scaling with the factor Q, e-close in some fixed smooth topology to the 
corresponding subset of a «-solution R x O' that splits off an R-factor. That is, 
O' is the standard evolving S2//V or E2//r with extinction time 1. Here E2 is a 
simply-connected bad 2-orbifold with a Ricci soliton metric. 

We let \0\e denote the points in \0\ which are not centers of e-necks. 

Proposition 6.19. — For all k > 0, there exists an eo > 0 such that for all 0 < e < eo 
there exists an a — a ( e , k) with the property that for any oriented three dimensional 
n-solution ( 0 , # ( • ) ) , and at any time t, precisely one of the following holds : 

- (0,g(-)) splits off an ^-factor and so every point at every time is the center of 
an e-neck for all e > 0. 

- O is noncompact, \0\e ^ 0, and for all x,y G \0\€7 we have R(x)d2(x1y) < a. 
- O is compact, and there is a pair of points x, y G \0\e such that R(x)d2(x, y) > a, 

(6.20) lOL С В Ix, а Л ( х ) " 5 U В (у, аЩу)-* , 

and there is a minimizing geodesic xy such that every z G \0\ — \0\e satisfies 
R(z) d2(z,xy) < a. 

- O is compact and there exists a point x G \0\e such that R(x) d2(x, z) < a for 
all z G \G\. 

Proof. — The proof is similar to that in [38, Section 48]. 

6.9. Three-dimensional gradient shrinking ^-solutions 

Lemma 6.21. — Any three-dimensional gradient shrinking ^-solution O is one of the 
following: 

A finite isometric quotient of the round shrinking S3. 
R x (S2//Y) or R Xz2 (S2//T) for some finite group Y C Isom(52) . 
R x (E2//r) or R xZ2 (E2//r) for some finite group V C Isom(E2). 
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Proof. — As O is a ^-solution, we know that O has nonnegative sectional curvature. 
If O has positive sectional curvature then the proofs of [46, Theorem 3.1] or [52, 
Theorem 1.2] show that O is a finite isometric quotient of the round shrinking S3. 

Suppose that O does not have positive sectional curvature. Let / G C°°(0) denote 
the soliton potential function. Let O be the universal cover of O and let / G C°°(0) 
be the pullback of / to O. The strong maximum principle, as in [31, Section 8], 
implies that if p G \0\reg then there is an orthogonal splitting TpO = E\ 0 E2 which 
is invariant under holonomy around loops based at p. The same will be true on 
O. Lemma 2.19 implies that O — R x O' for some two-dimensional simply-connected 
gradient shrinking K-solution O'. From Lemma 6.4, Of is the round shrinking 2-sphere 
or the Ricci soliton metric on a bad 2-orbifold T?. Now / must be — ^- + where 
s is a coordinate on the M-factor and f is the soliton potential function on O'. As 
7 T i ( 0 ) preserves / , and acts properly discontinuously and isometrically on R x O', it 
follows that 7Ti((9) is a finite subgroup of Isom+(R x O'). • 

Remark 6.22. — In the manifold case, the nonexistence of noncompact positively-
curved three-dimensional /-c-noncollapsed gradient shrinkers was first proved by Perel-
man [50, Lemma 1.2]. Perelman's argument applied the Gauss-Bonnet theorem to 
level sets of the soliton function. This argument could be extended to orbifolds if one 
assumes that there are no bad 2-suborbifolds, as in Theorem 1.1. However, it is not 
so clear how it would extend without this assumption. Instead we use the arguments 
of [46, Theorem 3.1] or [52, Theorem 1.2], which do extend to the general orbifold 
setting. 

6.10. Getting a uniform value of K 

Lemma 6.23. — Given N G Z + ; there is a = KQ(N) > 0 so that if ( 0 , #(•)) is an 
oriented three-dimensional n-solution for some K > 0, with \GP\ < N for all p G \0\7 
then it is a n^-solution or it is a quotient of the round shrinking S3. 

Proof. — The proof is similar to that in [38, Section 50]. The bound on \GP\ gives a 
finite number of possible noncompact asymptotic solitons from Lemma 6.21, since a 
given closed two-dimensional orbifold has a unique Ricci soliton metric up to scaling, 
and the topological type of S2//V (or is determined by the number of singular 
points (which is at most three) and the isotropy groups of those points.. • 

Lemma 6.24. — Given N G Z + ; there is a universal constant n = r](N) > 0 such that 
at each point of every three-dimensional ancient solution (0,g(-)) that is a n-solution 
for some K > 0, and has \Gp\ < N for all p G \G\, we have estimates 

(6.25) \VR\ < rjR^, \Rt\ < riR2. 

Proof. — The proof is similar to that in [38, Section 59]. • 
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7. Ricci flow with surgery for orbifolds 

In this section we construct the Ricci-flow-with-surgery for three-dimensional 

orbifolds. 

Starting in Subsection 7.2, we will assume that there are no bad 2-dimensional 

suborbifolds. Starting in Subsection 7.5, we will assume that the Ricci flows have 

normalized initial conditions, as defined there. 

7.1. Canonical neighborhood theorem 

Definition 7.1. — Let 3> G C°°(M) be a positive nondecreasing function such that for 

positive s, is a decreasing function which tends to zero as s -> oo. A Ricci flow 

solution is said to have ^-almost nonnegative curvature if for all (p, £), we have 

(7.2) RmGM) > - $ ( i ? ( p , t ) ) . 

Our example of ^-almost nonnegative curvature comes from the Hamilton-Ivey 

pinching condition [38, Appendix B] , which is valid for any three-dimensional orbifold 

Ricci flow solution which has complete time slices, bounded curvature on compact time 

intervals, and initial curvature operator bounded below by —J. 

Proposition 7.3. — Given e , « , a > 0 and a function <I> as above, one can find ro > 

0 with the following property. Let (0,g(-)) be a Ricci flow solution on a three-

dimensional orbifold O, defined for 0 < t < T with T > 1. We suppose that for each 

t, g(t) is complete, and the sectional curvature in bounded on compact time intervals. 

Suppose that the Ricci flow has ^-almost nonnegative curvature and is K-noncollapsed 

on scales less than a. Then for any point (po, to) with to > 1 and Q = R(po, to) > r^2, 

the solution in {(p,t) : dist2Q(p,po) < (eQ)_1,£o — < t < to} is, after scaling 

by the factor Q, e-close to the corresponding subset of a hi-solution. 

Proof. — The proof is similar to that in [38, Section 52]. We have to allow for the 

possibility of neck-like regions approximated by R x (S2//T) or R x (E2//r). In the 

proof of [38, Lemma 52.12], the "injectivity radius" can be replaced by the "local 

volume". • 

7.2. Necks and horns 

Assumption 7.4. — Hereafter, we only consider three-dimensional orbifolds that do 

not contain embedded bad 2-dimensional suborbifolds. 

In particular, neck regions will be modeled on Rx (52//r), where S2//Y is a quotient 

of the round shrinking S2. 

We let B(p, t, r) denote the open metric ball of radius r, with respect to the metric 

at time t, centered at p G \G\. 
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We let P(p, t, r, A t ) denote a parabolic neighborhood, that is the set of all points 
(p', t') with p' G B(p, t, r) and t' G [t,t + At] or t' G [t + At, t], depending on the sign 
of At. 

Definition 7.5. — An open set U C \0\ in a Riemannian 3-orbifold O is an e-neck if 
modulo rescaling, it has distance less than e, in the C ^ / ^ ^ -topology, to a product 
(—L,L) x (S2//Y), where S2//Y has constant scalar curvature 1 and L > e-1 . If a 
point p G | 0 | and a neighborhood U of p are specified then we will understand that 
"distance" refers to the pointed topology. With an e-approximation / : (—L,L) —» 
(S2//T) —>- [/ being understood, a cross-section of the neck is the image of { A } x 
\s2//Y) for some A G (—L, L ) . 

Definition 7.6. — A subset of the form 0\v x [a, 6] C O x [ o , 6] sitting in the spacetime 
of a Ricci flow, where U C \0\ is open, is a strong e-neck if after parabolic rescaling 
and time shifting, it has distance less than e to the product Ricci flow defined on the 
time interval [—1,0] which, at its final time, is isometric to (—L,L) x (S2//Y), where 
S2//T has constant scalar curvature 1 and L > e-1 . 

Definition 7.7. — A metric on ( — 1,1) x (S2//T) such that each point is contained in 
an e-neck is called an e-tube, an e-horn or a double e-horn if the scalar curvature stays 
bounded on both ends, stays bounded on one end and tends to infinity on the other, 
or tends to infinity on both ends, respectively. 

A metric on B3//Y or ( — 1,1) x^2 (S2//Y), such that each point outside some 
compact subset is contained in an e-neck, is called an e-cap or a capped e-horn, if the 
scalar curvature stays bounded or tends to infinity on the end, respectively. 

Lemma 7.8. — Let U be an e-neck in an e-tube (or horn) and let S = S2//Y be a 
cross-sectional 2-sphere quotient in U. Then S separates the two ends of the tube (or 
horn). 

Proof — The proof is similar to that in [38, Section 58]. • 

7.3. Structure of three-dimensional ^-solutions. — Recall the definition of 
\0\e from Subsection 6.8. 

Lemma 7.9. — If {0,g(t)) is a time slice of a noncompact three-dimensional Re­
solution and \0\e ^ 0 then there is a compact suborbifold-with-boundary X C O so 
that \0\e C X, X is diffeomorphic to D3//Y or I xZ2 {S2//Y), and O - i n t ( X ) is 
diffeomorphic to [0, oo) x (S2//Y). 

Proof. — The proof is similar to that in [38, Section 59]. • 

Lemma 7.10. — If (0,g(t)) is a time slice of a three-dimensional n-solution with 
\0\e — 0 then the Ricci flow is the evolving round cylinder E x (S2//Y). 

Proof — The proof is similar to that in [38, Section 59]. • 
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Lemma 7.11. — If a three-dimensional K-solution (0,g(-)) is compact and has a non-
compact asymptotic soliton then O is diffeomorphic to S3//Zk or S3//Dk for some 
k > 1. 

Proof. — The proof is similar to that in [38, Section 59]. • 

Lemma 7.12. — For every sufficiently small e > 0 one can find C\ — C\(e) and 
C2 = C2(e) such that for each point (p,t) in every n-solution, there is a radius r G 
[R(p, t)~i ,C\R(p, t)~i] and a neighborhood B, B(p,t,r) C B C B(p,t,2r), which 
falls into one of the four categories : 

(a) B is a strong e-neck, or 

(b) B is an e-cap, or 

(c) B is a closed orbifold diffeomorphic to S3//Zk or S3//Dk for some k > 1. 

(d) B is a closed orbifold of constant positive sectional curvature. 

Furthermore: 

- The scalar curvature in B at time t is between C^1 R(p,t) and C2R(p,t). 
- The volume of B is cases (a), (b) and (c) is greater than C^1 R(p,t)~?. 
- In case (b), there is an e-neck U C B with compact complement in B such that 

the distance from p to U is at least 10000jR(p, t)~?. 
- In case (c) the sectional curvature in B is greater than C2~1R(p,t). 

Proof. — The proof is similar to that in [38, Section 59]. • 

7.4. Standard solutions. — Put O = M3//r, where T is a finite subgroup of 
SO(3) . We fix a smooth SO(3)-invariant metric go on E3 which is the result of gluing 
a hemispherical-type cap to a half-infinite cylinder [0, 0 0 ) x S2 of scalar curvature 1. 
We also use go to denote the quotient metric on O. Among other properties, go is 
complete and has nonnegative curvature operator. We also assume that go has scalar 
curvature bounded below by 1. 

Definition 7.13. — A Ricci flow (M3//r,#(-)) defined on a time interval [0,a) is a 
standard solution if it has complete time slices, it has initial condition go, the curvature 
I R m I is bounded on compact time intervals [0, a'] C [0, a) , and it cannot be extended 
to a Ricci flow with the same properties on a strictly longer time interval. 

Lemma 7.14. — Let (M3//r,#(-)) be a standard solution. Then: 

1. The curvature operator of g is nonnegative. 

2. All derivatives of curvature are bounded for small time, independent of the stan­
dard solution. 

3. The blowup time is 1 and the infimal scalar curvature on the time-t slice tends 
to infinity as t —> 1~ uniformly for all standard solutions. 
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4. (IR3//r, g(-)) is n-noncollapsed at scales below 1 on any time interval contained 

in [0,1); where K depends only on go and \T\. 

5. (IR3//r, #(•)) satisfies the conclusion of Proposition 7.3. 

6. i ? M I N ( £ ) > const.(1 — t)~l, where the constant does not depend on the standard 

solution. 

7. The family ST of pointed standard solutions {(A"i, (p, 0))} is compact with re­

spect to pointed smooth convergence. 

Proof. — Working equivariantly, the proof is the same as that in [38, Sections 60-64]. 

• 

7 . 5 . Structure at the first singularity t ime 

Definition 7.15. — Given vo > 0, a compact Riemannian three-dimensional orbifold O 

is normalized if | R m | < 1 everywhere and for every p G \0\, we have vo\(B(p, 1)) > vo-

Here vo is a global parameter in the sense that it will be fixed throughout the 

rest of the paper. If O is normalized then the Bishop-Gromov inequality implies that 

there is a uniform upper bound TV = N(vq) < oo on the order of the isotropy groups; 

cf. the proof of Lemma 5.18. The next lemma says that by rescaling we can always 

achieve a normalized metric. 

Lemma 7.16. — Given N G Z + , there is avo — vo(N) > 0 with the following property. 

Let O be a compact orientable Riemannian three-dimensional orbifold, whose isotropy 

groups have order at most N. Then a rescaling of O will have a normalized metric. 

Proof. — Let C3 be the volume of the unit ball in R3. Consider a ball Br of radius 

r > 0 with arbitrary center in a Euclidean orbifold M3//G, where G is a finite subgroup 

of 0 (3 ) with order at most N. Applying the Bishop-Gromov inequality to compare 

the volume of Br with the volume of a very large ball having the same center, we 

see that vo\(Br) > ^ r 3 . Put Vo = We claim that this value of vo satisfies the 

lemma. 

To prove this by contradiction, suppose that there is an orbifold O which satisfies 

the hypotheses of the lemma but for which the conclusion fails. Then there is a 

sequence {ri}c*Ll of positive numbers with l im^oo U = 0 along with points {pi}^ in 

\0\ so that for each i, we have vol(B(pi,ri)) < vorf. After passing to a subsequence, 

we can assume that l i m ^ o o ^ = v' f°r some p1 G \0\. Using the inverse exponential 

map, for large i the ball B(pi,Ti) will, up to small distortion, correspond to a ball of 

radius ri in the tangent space Tp>0. In view of our choice of vo, this is a contradiction. 

• 

Assumption 7.17. — Hereafter we assume that our Ricci flows have normalized initial 

condition. 
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Consider the labels on the edges in the singular part of the orbifold. They clearly 

do not change under a smooth Ricci flow. If some components of the orbifold are 

discarded at a singularity time then the set of edge labels can only change by deletion 

of some labels. Otherwise, the surgery procedure will be such that the set of edge la­

bels does not change, although the singular graphs will change. Hence the normalized 

initial condition implies a uniform upper bound on the orders of the isotropy groups 

for all time. 

Let O be a connected closed oriented 3-dimensional orbifold. Let g(-) be a Ricci 

flow on O defined on a maximal time interval [0 ,T) with T < oo. For any e > 0, 

we know that there are numbers r — r(e) > 0 and K = n(e) > 0 so that for any 

point (p,t) with Q = R(p,t) > r~2, the solution in P(p,t, (eQ)~?, (eQ)~l) is (after 

rescaling by the factor Q) e-close to the corresponding subset of a ^-solution. 

Definition 7.18. — Define a subset Q of \G\ by 

(7.19) 11 = pe\0\: sup 
te[o,T) 

Rm \ (p, t) < oo 

Lemma 7.20. — We have 

- Q is open in \0\. 

- Any connected component of Q is noncompact. 

- IfQ = 0 then O is diffeomorphic to S3//T or (S1 x S2)//T. 

Proof. — The proof is similar to that in [38, Section 67]. • 

Definition 7.21. — Put g = limt_>T- g(t)\n, a smooth Riemannian metric o n O | f i . Let 

R denote its scalar curvature. 

Lemma 7.22. — (Q,g) has finite volume. 

Proof. — The proof is similar to that in [38, Section 67]. • 

Definition 7.23. — For p < \ , put Qp = {pe : R(p) < p~2}. 

Lemma 7.24. — We have 

- Qp is a compact subset of \0\. 

- If C is a connected component of £1 which does not intersect Qp then C is a 

double e-horn or a capped e-horn. 

- There is a finite number of connected components of Vt that intersect Q,p, each 

such component having a finite number of ends, each of which is an e-horn. 

Proof. — The proof is similar to that in [38, Section 67]. • 
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7.6. J-necks in e-horns. —- We define a Ricci flow with surgery Ai to be the 
obvious orbifold extension of [38, Section 68]. The objects defined there have evident 
analogs in the orbifold setting. 

The r-canonical neighborhood assumption is the obvious orbifold extension of what's 
in [38, Section 69], with condition (c) replaced by uO is a closed orbifold diffeomorphic 
to an isometric quotient of S3". 

The &-pinching assumption is the same as in [38, Section 69]. 
The a priori assumptions consist of the ^-pinching assumption and the r-canonical 

neighborhood assumption. 

Lemma 7.25. — Given the pinching function a number T G (0, o o ) , a positive 
nonincreasing function r : [0,T] —> R and a number S G (0, there is a nonincreasing 
function h : [0,T] —>> R with 0 < h(t) < S2r(t) so that the following property is 
satisfied. Let Ai be a Ricci flow with surgery defined on [ 0 , T ) ; with T < T, which 
satisfies the a priori assumptions and which goes singular at time T. Let (ft,g) denote 
the time-T limit. Put p = Sr(T) and 

(726) np = { ( p , T) e n : R(p, T) < p-2}. 

Suppose that (p, T) lies in an e-horn % C ft whose boundary is 
contained in ftp. Suppose also that R(p,T) > h~2(T). Then the parabolic region 
P(p,T, S~1R(p,T)~i, —R(p1T)~1) is contained in a strong S-neck. 

Proof. — The proof is similar to that in [38, Section 71]. • 

7.7. Surgery and the pinching condition 

Lemma 7.27. — There exists 5f = S'(5) > 0 with l i m ^ o = 0 and a constant 
So > 0 such that the following holds. Suppose that S < So, p G { 0 } x (S2//Y) and ho 
is a Riemannian metric on (—A, | ) x (S2//Y) with A > 0 and R(p) > 0 such that: 

- ho satisfies the time-t Hamilton-Ivey pinching condition. 
- R(p)ho is S-close to gcyi in the C W + 1 -topology. 

Then there are a B = B(A) > 0 and a smooth metric h on R3//Y = (D3//Y) U 
( ( - 5 , 1 ) x (S2//Y)) such that 

- h satisfies the time-t pinching condition. 
- The restriction of h to [0, | ) x (S2//Y) is ho-
- The restriction of R(p)h to (—5, —A) x (S2//Y) is go, the initial metric of a 

standard solution. 

Proof. — The proof is the same as that in [38, Section 72], working equivariantly. • 

We define a Ricci flow with (r, 5)- cutoff by the obvious orbifold extension of the 
definition in [38, Section 73]. 

In the surgery procedure, one first throws away all connected components of ft 
which do not intersect ftp. For each connected component ftj of ft that intersects 
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Qp and for each e-horn of Q j , take a cross-sectional S^-quotient that lies far in the 
e-horn. Let X be what's left after cutting the e-horns at the 2-sphere quotients and 
removing the tips. The (possibly disconnected) post surgery orbifold O' is the result 
of capping off dX by discal 3-orbifolds. 

Lemma 7.28. — The presurgery orbifold can be obtained from the postsurgery orbifold 
by applying the following operations finitely many times: 

- Taking the disjoint union with a finite isometric quotient of S1 x S2 or S3. 
- Performing a 0-surgery. 

Proof. — The proof is similar to that in [38, Section 73]. • 

7.8. Evolution of a surgery cap 

Lemma 7.29. — For any A < oo; 0 G (0 ,1) and r>0, one can find 6 = 5(A, 0, f ) > 0 
with the following property. Suppose that we have a Ricci flow with (r, S)-cutoff defined 
on a time interval [a, b] with minr = r(b) > r. Suppose that there is a surgery 
time T0 G (a, b) with 5(To) < 6. Consider a given surgery at the surgery time and 
let (p, T0) G M^Q be the center of the surgery cap. Let h = h(5(To), e, r (To) , 3>) be 
the surgery scale given by Lemma 7.25 and put T\ = min(6,TQ + Oh2). Then one of 
the two following possibilities occurs: 

1. The solution is unscathed on P (p , To, Ah,T\ — To)- The pointed solution 
there is, modulo parabolic reseating, A-1-close to the pointed flow on Uo x 
[0, (Ti — To)h~2], where Uo is an open subset of the initial time slice \So\ of a 
standard solution S and the basepoint is the center of the cap in \So\. 

2. Assertion 1 holds with T\ replaced by some t+ G [To,Ti) ; where i+ is a surgery 
time. Moreover, the entire ball i?(p, To, Ah) becomes extinct at time t+. 

Proof. — The proof is similar to that in [38, Section 74]. • 

7.9. Existence of Ricci flow with surgery 

Proposition 7.30. — There exist decreasing sequences 0 < Tj < e2, k,j > 0, 0 < Sj < e2 
for 1 < j < o o , such that for any normalized initial data on an orbifold O and any 
nonincreasing function S : [0, oo) —> (0, oo) such that 5 < Sj on [2J_1e, 2Je], the Ricci 
flow with (r,S)-cutoff is defined for all time and is K-noncollapsed at scales below e. 
Here r and K, are the functions on [0, oo) so that r\^2J-ie 2je] = Tj and t^\^-1e 2Je] = Kj> 
and e > 0 is a global constant. 

Proof. — The proof is similar to that in [38, Sections 77-80]. • 

Remark 7.31. — We restrict to 3-orbifolds without bad 2-suborbifolds in order to 
perform surgery. Without this assumption, there could be a neckpinch whose cross-
section is a bad 2-orbifold E. In the case of a nondegenerate neckpinch, the blowup 
limit would be the product of R with an evolving Ricci soliton metric on E. The 
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problem in performing surgery is that after slicing at a bad cross-section, there is 
no evident way to cap off the ensuing pieces with 3-dimensional orbifolds so as to 
preserve the Hamilton-Ivey pinching condition. 

8. Hyperbolic regions 

In this section we show that the lu-thick part of the evolving orbifold approaches 
a finite-volume Riemannian orbifold with constant curvature — \ . 

As a standing assumption in this section, we suppose that we have a solution to 
the Ricci flow with (r, 5)-cutoff and with normalized initial data. 

8.1 . Double sided curvature bounds in the thick part 

Proposition 8.1. — Given w > 0, one can find r — r(w) > 0, K = K(w) < oo7 
r = f(w) > 0 and 0 = 6(w) > 0 with the following property. Let hmax(to) be the 
maximal surgery radius on [to/2, to]. Let ro satisfy 

1. 0~lhmax{to) <r0 < ry/to~. 

2. The ball B(po,to,ro) has sectional curvatures at least —r^2 at each point. 

3. Yo\(B(po,to,ro)) > wr§. 

Then the solution is unscathed in P(po,to,ro/4, —rr^) and satisfies R < Kr^2 there. 

Proof. — The proof is similar to that in [38, Sections 81-86]. In particular, it uses 
Proposition 5.21. • 

8.2. Noncollapsed regions with a lower curvature bound are almost hyper­
bolic on a large scale 

Proposition 8.2 
(a) Given w,r,£ > 0, one can find T = T(w,r,£) < oo so that the following holds. 

If the ball B(po,to,ry/to) C at some to > T has volume at least wr3ro and 
sectional curvatures at least — r~2t^1 then the curvature at (po.to) satisfies 

(83) \2tRlJ(poM) + gгJ\2 

(b) Given in addition A < oo and allowing T to depend on A, we can ensure (8.3) 
for all points in B(po1to1 Ary/to). 

(c) The same is true for P(po,to, Ar^/to, Ar2to). 
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8.3. Hyperbolic rigidity and stabilization of the thick part 

Definition 8.4. — Let O be a complete Riemannian orbifold. Define the curvature 

scale as follows. Given p G if the connected component of O containing p has 

nonnegative sectional curvature then put Rp = oo. Otherwise, let Rp be the unique 

number r G (0, oo) such that infB(p,r) ^m — —r~2. 

Definition 8.5. — Let O be a complete Riemannian orbifold. Given w > 0, the w-thin 

part 0~(w) C \0\ is the set of points p G O so that either Rp = oo or 

(8.6) vo\{B(p,Rp)) <wR3p. 

The w-thick part is 0+(w) = \0\ - 0~(w). 

In what follows, we take "hyperbolic" to mean "constant curvature — | " . When 

applied to a hyperbolic orbifold, the definitions of the thick and thin parts are essen­

tially equivalent to those in [5, Chapter 6.2], to which we refer for more information 

about hyperbolic 3-orbifolds. 

Recall that a hyperbolic 3-orbifold can be written as H3 //V for some discrete group 

T C I s o m + ( # 3 ) [19, Theorem 2.26]. 

Definition 8.7. — A Margulis tube is a compact quotient of a normal neighborhood of 

a geodesic in H3 by an elementary Kleinian group. 

A rank-2 cusp neighborhood is the quotient of a horoball in H3 by an elementary 

rank-2 parabolic group. 

In either case, the boundary is a compact Euclidean 2-orbifold. 

There is a Margulis constant /20 > 0 so that for any finite-volume hyperbolic 

3-orbifold 0 , if ¡1 < /¿0 then the connected components of the /i-thin part of O are 

Margulis tubes or rank-2 cusp neighborhoods. 

Furthermore, given a finite-volume hyperbolic 3-orbifold O, if p > 0 is sufficiently 

small then the connected components of the /i-thin part are rank-2 cusp neighbor­

hoods. 

Mostow-Prasad rigidity works just as well for finite-volume hyperbolic orbifolds as 

for finite-volume hyperbolic manifolds. Indeed, the rigidity statements are statements 

about lattices in I som( i /n ) . 

Lemma 8.8. — Let (0,p) be a pointed complete connected finite-volume three-

dimensional hyperbolic orbifold. Then for each ( > 0, there exists £ > 0 such that if 

O' is a complete connected finite-volume three-dimensional hyperbolic orbifold with 

at least as many cusps as O, and f : (0,p) —^ Of is a ^-approximation in the pointed 

smooth topology as in [387 Definition 90.6), then there is an isometry f : (0,p) —» O' 

which is (-close to f in the pointed smooth topology. 

Proof — The proof is similar to that in [38, Section 90], replacing "injectivity radius" 

by "local volume". • 
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If A4 is a Ricci flow with surgery then we let 0~(w,t) C \A4^\ denote the w-thin 

part of the orbifold at time t (postsurgery if Ms a surgery time), and similarly for the 

w-thick part (D+(w,t). 

Proposition 8.9. — Given a Ricci flow with surgery A4, there exist a number TQ < oc, 

a nonincreasing function a : [T0,oo) —>• (0, oo) with lim^oo Où{t) = 0, a (possi­

bly empty) collection {(Hi, x\),..., (i7jv? # T V ) } of complete connected pointed finite-

volume three-dimensional hyperbolic orbifolds and a family of smooth maps 

9. Locally collapsed 3-orbifolds 

In this section we consider compact Riemannian 3-orbifolds O that are locally 

collapsed with respect to a local lower curvature bound. Under certain assumptions 

about smoothness and boundary behavior, we show that O is either the result of 

performing 0-surgery on a strong graph orbifold or is one of a few special types. We 

refer to Definition 11.8 for the definition of a strong graph orbifold. 

We first consider the boundaryless case. 

Proposition 9.1. — Let C3 be the volume of the unit ball in R3, let K > 10 be a fixed 

integer and let N be a positive integer. Fix a function A : (0, 0 0 ) —> (0, 0 0 ) . Then 

there is a wo E (0,cs/N) such that the following holds. 

Suppose that (O, g) is a connected closed orientable Riemannian ^-orbifold. Assume 

in addition that for all p E \0\, 

1. \GP\ < N. 

2. vol(B(p, Rp)) < woRp, where Rp is the curvature scale at p, Definition 8.4-
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(8.10) № : Bt = 

N 

i=l 
Hi 

B(xi,l/a(t)) 
Mt, 

defined for t G [To, o o ) , such that 

1. f(t) is close to an isometry: 

(8.U) || t-lf(ty9Mt - gBt ||c[1/a(t)1 < a(t). 

2. f(t) defines a smooth family of maps which changes smoothly with time: 

(8.12) \f(p,t)\<a(t)t-i 

for all p G \Bt\, and 

3. f(t) parametrizes more and more of the thick part: G+ (a(t),t) C Im( | / (£ ) | ) for 
all t > To. 

Proof — The proof is similar to that in [38, Section 90]. • 
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3. For every w' e [WQ,CZ/N), k G [0, K] and r < Rp such that vol(B(p, r ) ) > w'r3, 
the inequality 

(9.2) \VkRm \ < A(w')r-^k^ 

holds in the ball B(p,r). 

Then O is the result of performing 0-surgeries on a strong graph orbifold or is 
diffeomorphic to an isometric quotient of S3 or T3. 

Remark 9.3. — We recall that a strong graph orbifold is allowed to be disconnected. 
By Proposition 11.12, a weak graph orbifold is the result of performing 0-surgeries 
on a strong graph orbifold. Because of this, to prove Proposition 9.1 it is enough to 
show that O is the result of performing 0-surgeries on a weak graph orbifold or is 
diffeomorphic to an isometric quotient of S3 or T3. 

Remark 9.4. — A 3-manifold which is an isometric quotient of S3 or T3 is a Seifert 
3-manifold [54, Section 4]. The analogous statement for orbifolds is false [23]. 

Proof. — We follow the method of proof of [37]. The basic strategy is to construct a 
partition of O into pieces whose topology can be recognized. Many of the arguments 
in [37], such as the stratification, are based on the underlying Alexandrov space 
structure. Such arguments will extend without change to the orbifold setting. Other 
arguments involve smoothness, which also makes sense in the orbifold setting. We now 
mention the relevant places in [37] where manifold smoothness needs to be replaced 
by orbifold smoothness. 

- The critical point theory in [37, Section 3.4] can be extended to the orbifold 
setting using the results in Subsection 2.6. 

- The results about the topology of nonnegatively curved manifolds in [37, 
Lemma 3.11] can be extended to the orbifold setting using Lemma 3.20 and 
Proposition 5.7. 
The smoothing results of [37, Section 3.6] can be extended to the orbifold setting 
using Lemma 2.25 and Corollary 2.26. 

- The CK-precompactness result of [37, Lemma 6.10] can be proved in the orbifold 
setting using Proposition 4.1. 

- The CK-splitting result of [37, Lemma 6.16] can be proved in the orbifold setting 
using Proposition 3.2. 

- The result about the topology of the edge region in [37, Lemma 9.21] can be 
extended to the orbifold setting using Lemma 3.21. 
The result about the topology of the slim stratum in [37, Lemma 10.3] can be 
extended to the orbifold setting using Lemma 3.19. 
The results about the topology and geometry of the 0-ball regions in [37, Sec­
tions 11.1 and 11.2] can be extended to the orbifold setting using Lemma 2.24 
and Proposition 3.13. 
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The adapted coordinates in [37, Lemmas 8.2, 9.12, 9.17, 10.1 and 11.3] and their 
use in [37, Sections 12-14] extend without change to the orbifold setting. 

The upshot is that we can extend the results of [37, Sections 1-14] to the orbifold 
setting. This gives a partition of O into codimension-zero suborbifolds-with-boundary 
QO-stratum^ Qslim ? Qedge an<j Q2 - stratum ^ with the following properties. 

- Each connected component of Q°-Stratum js diffeomorphic either to a closed non-
negatively curved 3-dimensional orbifold, or to the unit disk bundle in the nor­
mal bundle of a soul in a complete connected noncompact nonnegatively curved 
3-dimensional orbifold. 

- Each connected component of Oshrn is the total space of an orbibundle whose 
base is S1 or / , and whose fiber is a spherical or Euclidean orientable compact 
2-orbifold. 

- Each connected component of Oedge is the total space of an orbibundle whose 
base is S1 or / , and whose fiber is D2(k) or D2(2 , 2). 

- Each connected component of Q2-stratum js the total space of a circle bundle over 
a smooth compact 2-manifold. 

- Intersections of o°-stratum, Oslim, Oedge and 02-stratum are 2-dimensional orb-
ifolds, possibly with boundary. The fibration structures coming from two inter­
secting strata are compatible on intersections. 

In order to prove the proposition, we now follow the method of proof of [37, 
Section 15]. 

Each connected component of Q°-stratum has boundary which is empty, a spherical 
2-orbifold or a Euclidean 2-orbifold. By Proposition 5.7, if the boundary is empty 
then the component is diffeomorphic to a finite isometric quotient of S1 x 52, S3 or T3. 
In the S1 x S2 case, O is a Seifert orbifold [22, p. 70-71]. Hence we can assume that 
the boundary is nonempty. By Lemma 3.20, if the boundary is a spherical 2-orbifold 
then the component is diffeomorphic to D3//T or I x%2 (S2//T). We group together 
such components as Q^tratumm By Lemma 3.20 again, if the boundary is a Euclidean 
2-orbifold then the component is diffeomorphic to S1 x D2, S1 x D2(k), S1 x%2 D2, 
S1 xZ2 D2(k) or I xZ2 (T2 / /F ) . We group together such components as Q^atum^ 

If a connected component of Oshm fibers over S1 then O is closed and has a 
geometric structure based on M3, R x S2, Nil or Sol [22, p. 72]. If the structure is 
R x S2 or Nil then 0 is a Seifert orbifold [22, Theorem 1]. If the structure is Sol 
then O can be cut along a fiber to see that it is a weak graph orbifold. Hence we can 
assume that each component of Oslnn fibers over I. We group these components into 
Ogp™ and 0 f ^ , where the distinction is whether the fiber is a spherical 2-orbifold or 
a Euclidean 2-orbifold. 

Lemma 9.5. — Let OfstratU7n be a connected component of 0°-stratum. If Ofstratum n 
Qshm _^ 0 ^en QQO-stratum ^s fl ]j0Undary component of a connected component 

ofOshm. 
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JJ QO-stratum R Qslim = 0 then ^ Cfln write QQO-stratum = At U Bt where 

1. Ai = (92°-stratnm H 0e^e zs a dzsjom* umon 0 / dzsca/ 2-orbifolds and D2(2, 2) ;s. 

2. Bi = o9-stra*um H 02-STRATUM is the total space of a circle bundle and 

3. Aid Bi — dAi D dBi is a union of circle fibers. 

Furthermore, if dG^straturn is Euclidean then A% = 0 unless dOfstraturn = 

S 2 ( 2 , 2 , 2 , 2 ) , in which case A% consists of two D2{2,2)7s. if dOfsiratuni is spherical 

then the possibilities are 

1. dOfstraturn = S2 and A, consists of two disks D2. 

2. dOfstraturn = 52(fc , k) and A% consists of two D2(k) 's. 

3m QQO-stratum = s2(2,2,k) and A% consists ofD2(212) and D2(k). 

Proof — The proof is similar to that of [37, Lemma 15.1]. • 

Lemma 9.6. — Let Of1171 be a connected component of Oshm. Let Yi be one of the 

connected components of dOfm. If Yt n 0°-STRATUM ^ 0 then Y% = dOfstratum for 

some connected component Ofstratum of 0°-STRATUM. 

If Yl n O0-Stratum = 0 then we can write dY% = Ai U B{ where 

1. Ai = Yi n Oedge is a disjoint union of discal 2-orbifolds and D2(2 , 2) 's, 

2. Bi = YiC\ 02-STRATUM is the total space of a circle bundle and 

3. Ai n B{ — dAi n dBi is a union of circle fibers. 

Furthermore, if Yi is Euclidean then Ai = 0 unless Yi = 52(2, 2, 2, 2), in which case 

Ai consists of two D2(2,2)7s. IfYt is spherical then the possibilities are 

1. Yi = S2 and Ai consists of two disks D2. 

2. Yi = S2(k, k) and Ai consists of two D2(k) 's. 

3. Yi = £2(2, 2, k) and A% consists of D2 (2,2) and D2(k). 

Proof. — The proof is similar to that of [37, Lemma 15.2]. • 

Let OrSph be the union of the connected components of O0s'^atum U Os^ that 

do not intersect Oedge. Then OfSph is either empty or is all of 0 , in which case O 

is diffeomorphic to the gluing of two connected components of Q^tratum a|011g a 

spherical 2-orbifold. As each connected component is diffeomorphic to some D6//V 

or I xZ2 (52 / / r ) , it then follows that O is diffeomorphic to S3/ /T, (S3//T)//Z2 or 

S1 Xz2 (S2 / /T) , the latter of which is a Seifert 3-orbifold. Hence we can assume that 

each connected component of 0|p/*m*um U Osslp™ intersects Oedge. A component of 

Oljp™ which intersects Q^-^ratum can n0w only do so on one side, so we can collapse 

such a component of 0$^™ without changing the diffeomorphism type. Thus we can 

assume that each connected component of Q^-^ratum and each connected component 

of Gssl*m intersects Oedge, and that O0Spiratum fl O^f = 0. By Lemmas 9.5 and 9.6, 

each of their boundary components is one of S2, S2(k, k) and S2(2, 2, k). 
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Consider the connected components of Q^tratum \j Of™ whose boundary compo­

nents are S2(2, 3, 6) , S2(2, 4, 4) or S2(3, 3, 3) . They cannot intersect any other strata, 

so if there is one such connected component then O is formed entirely of such com­

ponents. In this case O is diffeomorphic to the result of gluing together two copies of 

I xz2 {T2//T). Hence O fibers over S1 / /Z2 and has a geometric structure based on 

R3, Nil or Sol [22, p. 72]. If the structure is Nil then O is a Seifert orbifold [22, The­

orem 1]. If the structure is Sol then we can cut O along a generic fiber to see that 

it is a weak graph orbifold. Hence we can assume that there are no connected com­

ponents of O0E^cratum U Of™ whose boundary components are S 2 ( 2 , 3 , 6 ) , S 2 ( 2 , 4 , 4 ) 

or S2(3,3,3). Next, consider the connected components of Q^stratum y Of™ w ^ h 

T2-boundary components. They are weak graph orbifolds that do not intersect any 

strata other than Q2-stratum, if X\ is their complement in O then in order to show 

that O is a weak graph orbifold, it suffices to show that X\ is a weak graph orb­

ifold. Hence we can assume that each connected component of O0E^cratu™ U Of™ has 

52(2, 2, 2, 2)-boundary components, in which case it necessarily intersects Oedge. As 

above, after collapsing some components of Of™, we can assume that each connected 

component of 0E~£t™tu™ and each connected component of Of™ intersects Oedge, and 

that O0E^cratu™ 0 Of™ = 0 . 

A connected component of Ofv™ is now diffeomorphic to / x O', where O' is 

diffeomorphic to S2, S2(k, k) or S2(2, k, k). We cut each such component along { ^ } x 

O' and glue on two discal caps. If X2 is the ensuing orbifold then X\ is the result of 

performing a 0-surgery on X 2 , so it suffices to prove that X2 satisfies the conclusion 

of the proposition. Therefore we assume henceforth that O^™ = 0 . 

A remaining connected component of Of™ is diffeomorphic to I x O', where O' = 

5 2 ( 2 , 2 , 2 , 2 ) . It intersects Oedge in four copies of D2(2,2). We cut the connected 

component of Of™ along { ^ } x O'. The result is two copies of / x O', each with one 

free boundary component and another boundary component which intersects Oedge 

in two copies of D2(2, 2) . If the result X3 of all such cuttings satisfies the conclusion 

of the proposition then so does X 2 , it being the result of gluing Euclidean boundary 

components of A 3 together. 

A connected component C of Oedge fibers over I or S1. Suppose that it fibers over 

S1. Then it is diffeomorphic to S1 x D2(k) or S1 x D2(2, 2), or else is the total space 

of a bundle over Sl with holonomy that interchanges the two singular points in a 

fiber D2(2, 2); this is because the mapping class group of D2(2, 2) is a copy of Z2, as 

follows from [25, Proposition 2.3]. If C is diffeomorphic to S1 x D2{k) or S1 x D2(2, 2) 

then it is clearly a weak graph orbifold. In the third case, \C\ is a solid torus and 

the singular locus consists of a circle labelled by 2 that wraps twice around the solid 

torus. See Figure 10. We can decompose C as C = (S1 Xz2 D2) U52(2,2,2,2) Ci> where 

C\ — S1 Xz2 (S2 — 3B2) with one B2 being sent to itself by the Z2-action and the 

other two £?2's being switched. See Figure 11. As C\ is a Seifert orbifold, in any case 

C is a weak graph orbifold. Put X4 = A 3 — int(C) . If we can show that X4 is a weak 
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2 ) 12 

FIGURE 10. 

2 

2 

2 2 

FIGURE 11. Ci 

graph orbifold then it follows that X3 is a weak graph orbifold. Hence we can assume 

that each connected component of Oedge fibers over I. 
A connected component Z of X4 — 'm\j{Q2-stratuni^ can be described by a graph, 

i.e., a one-dimensional CW-complex, of degree 2. Its vertices correspond to copies of 

- A connected component of Q^tratum w ^ n boundary S2 or S2(k, k), 

- A connected component of 0^T™TUM with boundary S2(2, 2, 2, 2), or 

- J x 5 2 ( 2 , 2 , 2 , 2 ) . 

Each edge corresponds to a copy of 

- / x Z)2, 
- I x D2(k) or 

- I x L>2(2,2). 

If a vertex is of type J x 5 2 ( 2 , 2 , 2 , 2 ) then the edge orbifolds only intersect the vertex 

orbifold on a single one of its two boundary components. Note that \Z\ is a solid torus 

with a certain number of balls removed. 
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A connected component of 0%$RATUM is diffeomorphic to Z>3, D3(k1 k), £>3(2, 2, k), 

I xZ2 S2, or I xz.2 S2(2,2,fc). Now I xZ2 S2 is diffeomorphic to RP3#L>3, / xz,2 
S2(k1k) is diffeomorphic to (S3(/c, k)//Z2)#S2{kM)D3(k, k) and J xz , S2(2,2,fc) is 
diffeomorphic to (S'3(2, 2, k)//Z2)#s2(2,2,k)D3(2, 2, fc), where Z2 acts by the antipodal 
action. Hence we can reduce to the case when each connected component of Q^-^raturn 

is diffeomorphic to D3, D3(k,k) or D3(2,2,A;), modulo performing connected sums 
with the Seifert orbifolds MP3, S3(k,k)//Z2 and S3(2, 2, fc)//Z2. 

Any connected component of Q^tratum w^fi boundary 5r2(2, 2, 2, 2) can be written 
as the gluing of a weak graph orbifold with / x 5*2(2,2,2,2). Hence we may assume 
that there are no vertices corresponding to connected components of Q^stratum wjth 
boundary 52(2,2,2,2). 

Suppose that there are no edges of type / x D2(2, 2). Then Z is I x D2 or / x D2(k), 

which is a weak graph orbifold. 

Now suppose that there is an edge of type / x D2(2,2). We build up a skeleton 
for Z. First, the orbifold corresponding to a graph with a single vertex of type 
/ x 5r2(2, 2, 2, 2), and a single edge of type / x D2(2, 2), can be identified as the Seifert 
orbifold C\ = S1 Xi2 (S2 — 3B2) of before. Let Cm be the orbifold corresponding to 
a graph with m vertices of type / x S2(21 2, 2, 2) and m edges of type / x D2(2, 2). 
See Figure 12. Then Crn is an m-fold cover of C\ and is also a Seifert orbifold. 

2 

2 

2 

2 

2 
2 

FIGURE 12. CM, m = 3 

Returning to the orbifold Z , there is some rn so that Z is diffeomorphic to the 

result of starting with Cm and gluing some Sl x%2 D2(kl)^ onto some of the boundary 

52(2, 2, 2, 2)'s, where ki > 1. See Figure 13 for an illustrated example. 

Thus Z is a weak graph orbifold. 

As A3 is the result of gluing Z to a circle bundle over a surface, X3 is a weak graph 

orbifold. Along with Proposition 11.12, this proves the proposition. • 

Proposition 9.7. — Let C3 be the volume of the unit ball in R3, let K > 10 be a fixed 

integer and let N be a positive integer. Fix a function A : (0, 0 0 ) —> ( 0 , o o ) . Then 

there is a WQ G (0, C3/7V) such that the following holds. 
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FIGURE 13. 

Suppose that (O, g) is a compact connected orientable Riemannian 3-orbifold with 
boundary. Assume in addition that 

1. \GP\ <N. 

2. The diameters of the connected components of dO are bounded above by WQ. 

3. For each component X ofdO, there is a hyperbolic orbifold cusp Hx with bound­
ary dTLx, along with a CK+l-embedding of pairs e : (Nioo(dHx), dTLx) —>• 
(O.X) which is WQ-close to an isometry. 

4. For every p G \0\ with d(p,dO) > 10, we have, vo\(B(p,Rp)) < w0R3. 

5. For every p G \0\, w' G [1^0,^3/^)^ k G [0,K] and r < Rp such that 
vol(B(p,r)) > wfr3, the inequality 

(9.8) \VhRm \ < A(w')r-(k+2) 

holds in the ball B(p,r). 

Then O is diffeomorphic to 

- The result of performing 0-surgeries on a strong graph orbifold, 
- A closed isometric quotient of S3 orT3, 
- I x S2(2,3 , 6), I x S2(2 ,4 ,4 ) or I x S2(3, 3, 3) , or 
- / xZ2 S2 (2 ,3 ,6 ) ; I xZ2 5 2 ( 2 , 4 , 4 ) or I xZ2 S 2 ( 3 , 3 , 3 ) . 

Proof. — We follow the method of proof of [38, Section 16]. The effective difference 
from the proof of Proposition 9.1 is that we have additional components of Q°-stratum^ 
which are diffeomorphic to I x (T2//T). If such a component is diffeomorphic to I x T2 
or I x S2(2, 2, 2, 2) then we can incorporate it into the weak graph orbifold structure. 
The other cases give rise to the additional possibilities listed in the conclusion of the 
proposition. • 
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10. Incompressibility of cuspidal cross-sections and proof of Theorem 1.1 

In this section we complete the proof of Theorem 1.1. 
With reference to Proposition 8.9, given a sequence ta —> oo, let Ya be the trun­

cation of Hi obtained by removing horoballs at distance approximately 2{3(t<*) 
from the basepoints x%. Put Oa = Ot<* - ft«(Ya)-

Proposition 10,1. — For large a, the orbifold Oa satisfies the hypotheses of Proposi­
tion 9.7. 

Proof. — The proof is similar to that of [37, Theorem 17.3]. • 

So far we know that if a is large then the 3-orbifold Ot<* has a (possibly empty) 
hyperbolic piece whose complement satisfies the conclusion of Proposition 9.7. In this 
section we show that there is such a decomposition of Ot<* so that the hyperbolic 
cusps, if any, are incompressible in Ot». 

The corresponding manifold result was proved by Hamilton in [33] using mini­
mal disks. He used results of Meeks-Yau [43] to find embedded minimal disks with 
boundary on an appropriate cross-section of the cusp. The Meeks-Yau proof in turn 
used a tower construction [42] similar to that used in the proof of Dehn's Lemma 
in 3-manifold topology. It is not clear to us whether this line of proof extends to 
three-dimensional orbifolds, or whether there are other methods using minimal disks 
which do extend. To circumvent these issues, we use an alternative incompressibility 
argument due to Perelman [50, Section 8.2] that exploits certain quantities which 
change monotonically under the Ricci flow. Perelman's monotonic quantity involved 
the smallest eigenvalue of a certain Schrodinger-type operator. We will instead use 
a variation of Perelman's argument involving the minimal scalar curvature, follow­
ing [38, Section 93.4]. 

Before proceeding, we need two lemmas: 

Lemma 10.2. — Suppose e > 0, and O' is a Riemannian 3-orbifold with scalar curva­
ture > — | . Then any orbifold O obtained from O' by O-surgeries admits a Riemannian 
metric with scalar curvature > —17 such that vo l (O) < \o\(Of) + e. 

Proof. — If a 0-surgery adds a neck (S2//T) x I then we can put a metric on the neck 
which is an isometric quotient of a slight perturbation of the doubled Schwarzschild 
metric [2, (1.23)] on S2 x I. Hence we can perform the 0-surgery so that the scalar 
curvature is bounded below by — | + and the volume increases by at most 
see [2, p. 155] and [51] for the analogous result in the manifold case. The lemma now 
follows from an overall rescaling to make R > — | . • 

Lemma 10.3. — Suppose that O is a strong graph orbifold with boundary components 
C\,..., Ck • Let Hi,..., Hk be truncated hyperbolic cusps, where dHi is diffeomorphic 
to Ci for all i G { ! , . . . , & } . Then for all e > 0, there is a metric on O with scalar 
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curvature > — | such that vol((9) < e, and Ci has a collar which is isometric to one 

side of a collar neighborhood of a cuspical 2-orbifold in Hi. 

Proof. — We first prove the case when O is a closed strong graph manifold. The 

strong graph manifold structure gives a graph whose vertices {va} correspond to the 

Seifert blocks and whose edges {e^} correspond to 2-tori. For each vertex vai let 

Ma be the corresponding Seifert block. We give it a Riemannian metric ga which is 

invariant under the local S1 -actions and with the property that the quotient metric 

on the orbifold base is a product near its boundary. Then ga has a product structure 

near dMa. Given 5 > 0, we uniformly shrink the Riemannian metric on ga by 6 in 

the fiber directions. A s S —> 0, the volume of Ma goes to zero while the curvature 

stays bounded. 

Let T2 be the torus corresponding to the edge e^. There are associated toral 

boundary components {B\, B2} of Seifert blocks. Given 5 > 0 and i G { 1 , 2 } , consider 

the warped product metric ds2 -f e~2sgBi on a product manifold = [0, L^J x Bi. 

We attach this at Bi to obtain a C7°-metric, which we will smooth later. The sectional 

curvatures of P$j are —1 and the volume of P$^ is bounded above by the area of Bi. 

We choose L$j so that the areas of the cross-sections {Ls,i} x B\ and {£¿,2} x B2 

are both equal to some number A. Finally, consider R3 with the Sol-invariant metric 

e~2zdx2 + e2zdy2 + dz2. Let T be a Z2-subgroup of the normal R2-subgroup of Sol. 

Note that the curvature of R3/r is independent of Y. The z-coordinate gives a fibering 

z : R 3 / r R with T2-fibers. We can choose r = T§ and an interval [ci, c2] C R so 

that z~l{c\) is isometric to {L$,i} x Bi and z~l(c2) is isometric to {Lsj2} x B2. Note 

that [ c i , C 2 ] can be taken independent of A. We attach z~l{[c\, c2}) to the previously 

described truncated cusps, at the boundary components {Ls,i} x B\ and {L§:2} x B2. 

See Figure 14. 

B1 в2 

z C i , C 2 

FIGURE 14. 
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Taking A sufficiently small we can ensure that 

(10.4) vol(P5,i) + vol(P5j2) + vol(z-1([cuc2])) < area(Pi) + area(P2) + 6. 

We repeat this process for all of the tori { T 2 } , to obtain a piecewise-smooth C°-
metric g§ on O. 

As 5 —» 0, the sectional curvature stays uniformly bounded on the smooth pieces. 
Furthermore, the volume of (0,gs) goes to zero. By slightly smoothing g$ and per­
forming an overall rescaling to ensure that the scalar curvature is bounded below by 
— | , if 5 is sufficiently small then we can ensure that vo\(0,gs) < e. This proves the 
lemma when O is a closed strong graph manifold. 

If O is a strong graph manifold but has nonempty boundary components, as in the 
hypotheses of the lemma, then we treat each boundary component Ci analogously to 
a factor B\ in the preceding construction. That is, given parameters 0 < c\icx < 02,C*? 
we start by putting a truncated hyperbolic metric ds2 + e~2sgdHl on \c\^c%, c 2 , c j x Ci. 
This will be the metric on the collar neighborhood of where {c\icl} x C% will end up 
becoming a boundary component of O. We take c2,cl so that the area of {c2:cL} x Ci 
matches the area of a relevant cross-section of the truncated cusp extending from a 
boundary component B2i of a Seifert block. We then construct a metric g$ on O as 
before. If we additionally take the parameters {c\^ct} sufficiently large then we can 
ensure that vol(0,gs) < e. 

Finally, if O is a strong graph orbifold then we can go through the same steps. 
The only additional point is to show that elements of the (orientation-preserving) 
mapping class group of an oriented Euclidean 2-orbifold T2 //V are represented by 
affine diffeomorphisms, in order to apply the preceding construction using the Sol 
geometry. To see this fact, if Y is trivial then the mapping class group of T2 is 
isomorphic to S L ( 2 , Z ) and the claim is clear. To handle the case when T2//r is a 
sphere with three singular points, we use the fact that the mapping class group of 
a sphere with three marked points is isomorphic to the permutation group of the 
three points [25, Proposition 2.3]. The mapping class group of the orbifold T2//Y 
will then be the subgroup of the permutation group that preserves the labels. If 
T2 / /T is 5 2 ( 2 , 3 , 6 ) then its mapping class group is trivial. If T2//r is 5 2 ( 2 , 4 , 4 ) 
then its mapping class group is isomorphic to Z2. Picturing S2 (2 ,4 ,4 ) as two right 
triangles glued together, the nontrivial mapping class group element is represented 
by the affine difTeomorphism which is a flip around the "2" vertex that interchanges 
the two triangles. If T2//Y is S2(3,3,3) then its mapping class group is isomorphic 
to 53. Picturing 5 2 ( 3 , 3 , 3 ) as two equilateral triangles glued together, the nontrivial 
mapping class group elements are represented by affine diffeomorphisms as rotations 
and flips. Finally, if T2//Y is 52(2, 2, 2, 2) then its mapping class group is isomorphic 
to P S L ( 2 , Z ) x ( Z / 2 Z x Z / 2 Z ) [25, Proposition 2.7]. These all lift to Z2-equivariant 
affine diffeomorphisms of T2. Elements of PSL(2, Z ) are represented by linear actions 
of S L ( 2 , Z ) on T2. Generators of Z / 2 Z x Z / 2 Z are represented by rotations of the 
^ - f a c t o r s in T2 — S1 x Sl by TT. • 
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Let O be a closed connected orientable three-dimensional orbifold. If O admits a 
metric of positive scalar curvature then by finite extinction time, O is diffeomorphic 
to the result of performing O-surgeries on a disjoint collection of isometric quotients 
of S3 and S1 x S2. 

Suppose that O does not admit a metric of positive scalar curvature. Put 

(10.5) a(0) = sup Rmin(g)V(g)i. 
9 

Then a(0) < 0. 
Suppose that we have a given representation of O as the result of performing 0-

surgeries on the disjoint union of an orbifold O' and isometric quotients of S3 and 
S1 x S2, and that there exists a (possibly empty, possibly disconnected) finite-volume 
complete hyperbolic orbifold N which can be embedded in O' so that the connected 
components of the complement (if nonempty) satisfy the conclusion of Proposition 
9.7. Let Vhyp denote the hyperbolic volume of TV. We do not assume that the cusps 
of N are incompressible in O'. 

Let V denote the minimum of Vhyp over all such decompositions of O. (As the set 
of volumes of complete finite-volume three-dimensional hyperbolic orbifolds is well-
ordered, there is a minimum. If there is a decomposition with N = 0 then Vhyp = 0.) 

Lemma 10.6 

(10.7) a(0) = ~V%. 

Proof. — Using Lemmas 7.28, 10.2 and 10.3, the proof is similar to that of [38, 
Proposition 93.10]. • 

Proposition 10.8. — Let N be a hyperbolic orbifold as above for which vol(N) = V. 
Then the cuspidal cross-sections of N are incompressible in O'. 

Proof. — As in [38, Section 93], it suffices to show that if a cuspidal cross-section 
of TV is compressible in O' then there is a metric g on O with R(g) > — | and 
vo\((D,g) < vol(TV). 

Put Y = O' — N. Suppose that some connected component Co of dY is compress­
ible, with compressing discal 2-orbifold Z d Of. We can make Z transverse to dY and 
then count the number of connected components of the intersection ZDdY. Minimiz­
ing this number among all such compressing disks for all compressible components of 
dY, we may assume - after possibly replacing Co with a different component of dY -
that Z intersects dY only along dZ. 

By assumption, the components of Y satisfy the conclusion of Proposition 9.7. 
Hence Y has a decomposition into connected components Y = Yq U • • • U Yn, where 
Yo is the component containing Co, and Y0 arises from a strong graph orbifold 
by 0-surgeries, as otherwise there would not be a compressing discal orbifold. By 
Lemma 11.16, YQ comes from a disjoint union A U B via 0-surgeries, where A is one 
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of the four solid-toric possibilities of that Lemma, and B is a strong graph orbifold. 
By Lemmas 10.2 and 10.3, we may assume without loss of generality that B = 0 . 

To construct the desired metric on O'we proceed as follows. Let # 0 , • • •, Hn be 
the cusps of the hyperbolic orbifold TV, where HQ corresponds to the component Co 
of Y. We first truncate TV along totally umbilic cuspical 2-orbifolds C o , . . . , Cn. Pick 
e > 0. For each i > 1 such that the component Y{ comes from 0-surgeries on a strong 
graph orbifold, we use Lemmas 10.2 and 10.3 to find a metric with R > — | on Y%, 
which glues isometrically along the corresponding cusps in C\ U • • • U Cn, and which 
can be arranged to have volume < e by taking the CVs to be deep in their respective 
cusps. For the components Y%, i > 1, which do not come from a strong graph orbifold 
via 0-surgery, we may also find metrics with R > — | and arbitrarily small volume, 
which glue isometrically onto the corresponding truncated cusps of TV (when they have 
nonempty boundary). Our final step will be to find a metric on YQ = A with R > — | 
which glues isometrically to Co, and has volume strictly smaller than the portion of 
the cusp Ho cut off by Co- Since e is arbitrary, this will yield a contradiction. 

Suppose first that A is S1 x D2 or S1 x D2(k). In the Sl x D2 case, after going 
far enough down the cusp, the desired metric g on S1 x D2 is constructed in [2, Pf. 
of Theorem 2.9]. (The condition /2(0) = a > 0 in [2, (2.47)] should be changed to 
/2(0) > 0.) In the S1 x D2(/c)-case, [2, (2.46)] gets changed to / { ( 0 ) ( 1 - a2)1/2 = 1/fc. 
One can then make the appropriate modifications to [2, (2.54)-(2.56)] to construct 
the desired metric g on S1 x D2(k). 

If A is S1 Xz2 D2 or S1 Xz2 D2(k) we can perform the construction of the previous 
paragraph equivariantly with respect to the Z2-action, to form the desired metric on 
S1 Xz2 D2 (or S1 xZ2D2(k)). • 

10 .1 . Proof of Theorem 1.1. — As mentioned before, if O admits a metric of 
positive scalar curvature then O is diffeomorphic to the result of performing 0-surgeries 
on a disjoint collection of isometric quotients of S3 and Sl x S2, so the theorem is 
true in that case. If O does not admit a metric of positive scalar curvature then by 
Proposition 10.8, 

1. O is the result of performing 0-surgeries on an orbifold O' and a disjoint collec­
tion of isometric quotients of S3 and S1 x S2, such that 

2. There is a finite-volume complete hyperbolic orbifold TV which can be embedded 
in O' so that each connected component V of the complement (if nonempty) 
has a metric completion V which satisfies the conclusion of Proposition 9.7, and 

3. The cuspidal cross-sections of TV are incompressible in O'. 

Referring to Proposition 9.7, if V is an isometric quotient of S3 or T3 then it already 
has a geometric structure. If V is IxS2(p, q, r) with ^ + ~ + 7 = 1 then we can remove 
it without losing any information. If V is / x^2 S2(p. q, r) with ~ + ~ + ~ = 1 then V 
has a Euclidean structure. 
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Finally, suppose that V is the result of performing O-surgeries on a collection of 

strong graph orbifolds in the sense of Definition 11.8. A Seifert-fibered 3-orbifold 

with no bad 2-dimensional suborbifolds is geometric in the sense of Thurston [5, 

Proposition 2.13]. This completes the proof of Theorem 1.1. • 

Remark 10.9. — The geometric decomposition of O that we have produced, using 

strong graph orbifolds, will not be minimal if O has Sol geometry. In such a case, 

O fibers over a 1-dimensional orbifold. Cutting along a fiber and taking the metric 

completion gives a product orbifold, which is a graph orbifold. Of course, the minimal 

geometric decomposition of O would leave it with its Sol structure. 

Remark 10.10. — Theorem 1.1 implies that O is very good, i.e., the quotient of a 

manifold by a finite group action [4, Corollary 1.3]. Hence one could obtain the 

geometric decomposition of O by running Perelman's proof equivariantly, as is done 

in detail for elliptic and hyperbolic manifolds in [21]. However, one cannot prove 

the geometrization of orbifolds this way, as the reasoning would be circular; one only 

knows that O is very good after proving Theorem 1.1. 

11. Appendix A : W e a k and strong graph orbifolds 

In this appendix we provide proofs of some needed facts about graph orbifolds. We 

show that a weak graph orbifold is the result of performing O-surgeries on a strong 

graph orbifold. (Since we don't require strong graph orbifolds to be connected, we 

need only one.) A similar result appears in [24, Section 2.4]. 

In order to clarify the arguments, we prove the corresponding manifold results 

before proving the orbifold results. 

Definition 11.1. — A weak graph manifold is a compact orientable 3-manifold M for 

which there is a collection { T ¿ } of disjoint embedded tori in in t (M) so that after 

splitting M open along { X ¿ } , the result has connected components that are Seifert-

fibered 3-manifolds (possibly with boundary). 

We do not assume that M is connected. Here "splitting M open along { T ¿ } " means 

taking the metric completion of M — (J¿ X¿ with respect to an arbitrary Riemannian 

metric on M. 

Remark 11.2. — In the definition of a weak graph manifold, we could have instead 

required that the connected components of the metric completion of M — [ji Ti are 

circle bundles over surfaces. This would give an equivalent notion, since any Seifert-

fibered 3-manifold can be cut along tori into circle bundles over surfaces. 

For notation, we will write S2 — kB2 for the complement of k disjoint separated 

open 2-balls in S2. 
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Definition 11.3. — A strong graph manifold is a compact orientable 3-manifold M for 
which there is a collection {Ti] of disjoint embedded tori in in t (M) such that 

1. After splitting M open along { T i } , the result has connected components that 
are Seifert manifolds (possibly with boundary). 

2. For any T2, the two circle fibrations on Ti coming from the adjacent Seifert 
bundles are not isotopic. 

3. Each T{ is incompressible in M. 

11 .1 . Appendix A . l : W e a k graph manifolds are connected sums of strong 
graph manifolds. — The next lemma states if we glue two solid tori (respecting 
orientations) then the result is a Seifert manifold. The lemma itself is trivial, since 
we know that the manifold is S1 x 52, S3 or a lens space, each of which is a Seifert 
manifold. However, we give a proof of the lemma which will be useful in the orbifold 
case. 

Lemma 11.4. — Let U and V be two oriented solid tori. Let (j) : dU —> dV be an 
orientation-reversing diffeomorphism. Then U V admits a Seifert fibration. 

Proof. — We first note that the circle fiberings of T2 are classified, up to isotopy, 
by the image of the fiber in ( H ^ T 2 ; Z ) - { 0 } ) / { ± l } ~ (Z2 - { 0 } ) / { ± l } . There is 
one circle fibering of dU (up to isotopy) whose fibers bound compressing disks in U. 
Any other circle fibering of dU is the boundary fibration of a Seifert fibration of U. 
Hence we can choose a circle fibering T of dU so that T is the boundary fibration of 
a Seifert fibration of (7, and (p* T is the boundary fibration of a Seifert fibration of V. 
The ensuing Seifert fibrations of U and V join together to give a Seifert fibration of 

uu^v. 
Proposition 11.5. — If a connected strong graph manifold contains an essential em­
bedded 2-sphere then it is diffeomorphic to S1 x S2 or MP3#KLP3. 

Proof. — Suppose that a connected strong graph manifold M contains an essential 
embedded 2-sphere S. We can assume that S is transverse to (J^T^. We choose 
S among all such essential embedded 2-spheres so that the number of connected 
components of S H [Ji Tt is as small as possible. 

If S D \Ji Ti = 0 then S is an essential 2-sphere in one of the Seifert components. 
If S fl {J{ Ti 0 , let C be an innermost circle in S D |J2 Ti. Then C C Tk for some 

k and C = 3D for some 2-disk D embedded in a Seifert component U with Tk C dU. 
As Tk is incompressible, C = 3D' for some 2-disk D' C Tk. If D U D' bounds a 3-ball 
in U then we can isotope S to remove the intersection with Tk, which contradicts the 
choice of S. Thus D U D' is an essential 2-sphere in U. 

In any case, we found an essential 2-sphere in one of the Seifert pieces. It follows 
that the Seifert piece, and hence all of M , is diffeomorphic to S1 x S2 or IRP3#RP3 [54, 
p. 432]. 
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Proposition 11.6. — A weak graph manifold is the result of performing O-surgeries on 

a strong graph manifold. 

Proof — Suppose that Proposition 11.6 fails. Let n be the minimal number of de­

composing tori among weak graph manifolds which are counterexamples, and let M 

be a counterexample with decomposing tori {Ti}^=1. 

We first look for a torus Tj for which the two induced circle fibrations (coming 

from the adjacent Seifert bundles) are isotopic. If there is one then we extend the 

Seifert fibration over Tj. In this case, by removing Tj from {Ti}™=1, we get a weak 

graph decomposition of M with (n — 1) tori, contradicting the definition of n. 

Therefore there is no such torus. Since M is a counterexample to Proposition 11.6, 

there must be a torus in {Ti}2=i which is compressible. Let D be a compressing disk, 

which we can assume to be transversal to UlLi We choose such a compressing 

disk so that D n (JILi nas ^ne smallest possible number of connected components. 

Let C be an innermost circle in D fi | jr=i sa^ m ^fc- Then C bounds a disk 

D' in a Seifert bundle V which has Tk as a boundary component. 

If C also bounds a disk D" C Tk then D' U D" is an embedded 2-sphere S in V. 

If S is not essential in V then we can isotope D so that it does not intersect Tk, 

which contradicts the choice of D. So S is essential in V. Then V is diffeomorphic to 

S1 x S2 or 1 L P 3 # R P 3 , which contradicts the assumption that it has Tk as a boundary 

component. 

Thus we can assume that D' is a compressing disk for V, which is necessarily a 

solid torus [54, Corollary 3.3]. 

Let U be the Seifert bundle on the other side of Tk from V. Let B be the orbifold 

base of U, with projection TT : U —> B. There is a circle boundary component R C dB 

so that Tk = TT~1(R). That is, V is glued to U along TT~1(R). Choose a D2-fibration 

a : V —> R that extends 7r : Tk —>• R. 

If C = dD' C is not isotopic to a fiber of 7r|Tfc, let u > 0 be their algebraic 

intersection number in Tk. Then [/ UTfc V has a Seifert fibration over B Ur D2(u). 

Removing Tk from {Ti}^=1 , we again have a weak graph decomposition of M , now 

with (n — 1) tori, which is a contradiction. 

Therefore C = dD' C Tk is isotopic to a fiber of vr|Tfc. 

Step 1: If B is diffeomorphic to L>2, £>2(r) or S1 x I then put Mf = M and Pr = P , 

and go to Step 2. Otherwise, let { 7 j } / = i be a maximal disjoint collection of smooth 

embedded arcs 7j : [0,1] —>> Pre^, with { 7 j ( 0 ) , 7 j ( l ) } C R, which determine distinct 

nontrivial homotopy classes for the pair (Breg,R). (Note that dB C Breg.) If B' is 

the result of splitting B open along { 7 j } ^ = 1 , then the connected components of B' 

are diffeomorphic to D2, D2(r) for some r > 1, or 51 x / . See Figure 15. Let R' be 

the result of splitting the 1-manifold R along the finite subset U/=i{7j (0)57j ( l )}-

Define a 2-sphere 5? C M by 52 = tr-1(7J-(0)) U ^ - i ^ o ) ) ^ { i j ) ^ - 1 ^ ( 1 ) ) 

cr~1(7J(l)). Let Y be the result of splitting M open along {iS^}^=1. It has 2J 
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R R'' 

B B'' 

U split open along n U 72) 
Y with the annular parts of 4 spherical boundary components 
indicated by dashes, and R' x D2 indicated by shaded D'2,s 

M' with R' x D2 and 4 L>3,s indicated by shaded L>2,s 

FIGURE 15. 
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spherical boundary components corresponding to the spherical cuts. We glue on 
2 J 3-disks there, to obtain M'. By construction, M is the result of performing J 
O-surgeries on M'. 

We claim that M' is a weak graph manifold. To see this, note that the union W of 
the D2-bundle over R' and the 2 J 3-disks is a disjoint union of solid tori in Mf; see 
Figure 15. The metric completion of M' — W inherits a weak graph structure from 
M. This shows that M' is a weak graph manifold. 

Step 2: For each component P of B' that is diffeomorphic to D2 or D2(r), the 
corresponding component of M' is the result of gluing two solid tori: one being 
n~1(P) and the other one being a connected component of W. By Lemma 11.4, this 
component of Mf is Seifert-fibered and hence is a strong graph manifold. We discard 
all such components of M' and let M denote what's left. 

A component P of B' diffeomorphic to S1 x I has a boundary consisting of two 
circles C\ and C2, of which exactly one, say C i , does not intersect R. In M , the 
preimage n~l(C\) is attached to the union of 7r_1(P) with a solid torus. This union 
is itself a solid torus. 

In this way, we see that M has a weak graph decomposition with (n — 1) tori, since 
Tk has disappeared. Since M was a counterexample to Proposition 11.6, it follows 
that M is also a counterexample. This contradicts the definition of n and so proves 
the proposition. • 

11.2 . Appendix A . 2 : W e a k graph orbifolds are connected sums of strong 
graph orbifolds. — In this section we only consider 3-dimensional orbifolds that 
do not admit embedded bad 2-dimensional suborbifolds. 

Definition 11.7. — A weak graph orbifold is a compact orientable 3-orbifold O for 
which there is a collection {Ei} of disjoint embedded orientable Euclidean 2-orbifolds 
in int((9) so that after splitting O open along {Ei}, the result has connected compo­
nents that are Seifert-fibered orbifolds (possibly with boundary). 

Definition 11.8. — A strong graph orbifold is a compact orientable 3-orbifold O for 
which there is a collection {Ei} of disjoint embedded orientable Euclidean 2-orbifolds 
in int((9) such that 

1. After splitting O open along {Ei}, the result has connected components that 
are Seifert orbifolds (possibly with boundary). 

2. For any Ei, the two circle fibrations on Ei coming from the adjacent Seifert 
bundles are not isotopic. 

3. Each Ei is incompressible in O. 

From Subsection 2.4, each Ei is diffeomorphic to T2 or 52(2, 2, 2, 2) . 
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Lemma 11.9. — Let U and V be two oriented solid-toric 3-orbifolds with diffeomorphic 
boundaries. Let <fi : dU —> dV be an orientation-reversing diffeomorphism. Then 
U Uff) V admits a Seifert orbifold structure. 

Proof. — Suppose first that dU is a 2-torus. Then U is diffeomorphic to S1 x D2 or 
S1 x D2(k). The Seifert orbifold structures on U are in one-to-one correspondence 
with the Seifert manifold structures on \U\ [7, p. 36-37]. There is one circle fibering 
of dU (up to isotopy) whose fibers bound compressing discal 2-orbifolds in U. Any 
other circle fibering of dU is the boundary fibration of a Seifert fibration of U. As in 
the proof of Lemma 11.4, we can choose a circle fibering T of dU so that T is the 
boundary fibration of a Seifert fibration of [/, and 0* J7 is the boundary fibration of a 
Seifert fibration of V. The ensuing Seifert fibrations of U and V join together to give 
a Seifert fibration of U V. 

Now suppose that dU is diffeomorphic to 5 2 ( 2 , 2 , 2 , 2 ) . The orbifiberings of 
52(2, 2, 2, 2) with one-dimensional fiber are the Z2-quotients of Z2-invariant circle 
fiberings of T2. In particular, there is an infinite number of such orbifiberings up to 
isotopy. (More concretely, given an orbifibering, there are two disjoint arc fibers con­
necting pairs of singular points. The complement of the two arcs in |#2(2, 2, 2, 2) | is 
an open cylinder with an induced circle fibering. The isotopy class of the orbifibering 
is specified by the isotopy class of the two disjoint arcs.) 

From [7, p. 38-39], the Seifert fibrations of U are the Z2-quotients of Z2-invariant 
Seifert fibrations of its solid-toric double cover. It follows that there is one orbifibering 
of dU (up to isotopy) whose fibers bound compressing discal 2-orbifolds in U. Any 
other orbifibering of dU is the boundary fibration of a Seifert fibration of U. Hence 
we can choose an orbifibering T of dU so that T is the boundary fibration of a 
Seifert fibration of [/, and </>* T is the boundary fibration of a Seifert fibration of V. 
The ensuing Seifert fibrations of U and V join together to give a Seifert fibration 
of UU^V. • 

Proposition 11.10. — / / a connected strong graph orbifold contains an essential em­
bedded spherical 2-orbifold then it is diffeomorphic to a finite isometric quotient of 
S1 xS2. 

Proof. — Suppose that a connected strong graph orbifold O contains an essential 
embedded spherical 2-orbifold S. 

Lemma 11.11. — After an isotopy of S, we can assume that S D [ji Ei is a disjoint 
collection of closed curves in the regular part of S. 

Proof. — If Ei is diffeomorphic to T2 then a neighborhood of E% lies in \0\reg and after 
isotopy, SnEi is a disjoint collection of closed curves in the regular part of S. Suppose 
that E% is diffeomorphic to 5'2(2, 2, 2, 2) . A neighborhood of Ei is diffeomorphic to 
I x Ei. Suppose that p e S is a singular point of Ei. Then the local group of p 
in S must be Z2. After pushing a neighborhood of p G S slightly in the /-direction 
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of / x Ei, we can remove the intersection of S with that particular singular point 

of Ei. In this way, we can arrange so that S intersects {Jx E% transversely, with the 

intersection lying in the regular part of S. • 

We choose S among all such essential embedded spherical 2-orbifolds so that the 

number of connected components of \S fl [Ji Ei\ is as small as possible. 

If S fl \Ji Ei = 0 then S is an essential embedded spherical 2-orbifold in one of the 

Seifert pieces. 

lfSn\JtEt ^ 0 , let C C \S\ be an innermost circle in |STlUi ^¿1- Then C C \Ek\for 

some k, and C = dD for some discal 2-orbifold D embedded in a Seifert component U 

with Ek C dU. As Ek is incompressible, C = dD' for some discal 2-orbifold D' C Ek-

Then D U D' is an embedded 2-orbifold with underlying space S2 and at most two 

singular points. As O has no bad 2-suborbifolds, D U D' must be diffeomorphic to 

S2(r, r) for some r > 1. If D U D ' bounds some D3(r, r) in U then we can isotope S 

to remove the intersection with Ek, which contradicts the choice of S. Thus D U D' 

is an essential embedded spherical 2-orbifold in U. 

In any case, we found an essential embedded spherical 2-orbifold in one of the Seifert 

pieces. Then the universal cover of the Seifert piece contains an essential embedded S2. 

It follows that the universal cover of the Seifert piece is R x S2 [5, Proposition 2.13]. 

The Seifert piece, and hence all of O, must then be diffeomorphic to a finite isometric 

quotient of S1 x S2. • 

Proposition 11.12. — A weak graph orbifold is the result of performing O-surgeries on 

a strong graph orbifold. 

Proof. — Suppose that Proposition 11.12 fails. Let n be the minimal number of de­

composing Euclidean 2-orbifolds among weak graph orbifolds which are counterexam­

ples, and let O be a counterexample with decomposing Euclidean 2-orbifolds {Ez}f=1. 

We first look for a 2-orbifold Ej for which the two induced circle fibrations (coming 

from the adjacent Seifert bundles) are isotopic, in the sense of [5, Chapter 2.5]. If 

there is one then we extend the Seifert fibration over Ej. In this case, by removing Ej 

from {Ei}, we get a weak graph decomposition of O with (n—1) Euclidean 2-orbifolds, 

contradicting the definition of n. 

Therefore there is no such Euclidean 2-orbifold. Since O is a counterexample to 

Proposition 11.12, there must be a Euclidean 2-orbifold in {Ei} which is compressible. 

Let D be a compressing discal 2-orbifold. As in Lemma 11.11, we can assume that 

D intersects (J^ Ei transversally, with the intersection lying in the regular part of D. 

We choose such a compressing discal 2-orbifold so that D D |J2 E% has the smallest 

possible number of connected components. Let C be an innermost circle in Dn[Ji Ei, 

say lying in \Ek\. Then C bounds a discal 2-orbifold D' lying in a Seifert bundle V 

which has Ek as a boundary component. 

If C also bounds a discal 2-orbifold D" C Ek then D' U D" is an embedded 2-

orbifold S in the Seifert bundle. As there are no bad 2-orbifolds in O, the suborbifold 
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S must be diffeomorphic to S2(r,r) for some r > 1. If S is not essential in V then 
it bounds a D3(r, r) in V and we can isotope D so that it does not intersect Ek, 
which contradicts the choice of D. So S is essential in V. From Proposition 11.10, 
the Seifert bundle V is diffeomorphic to a finite isometric quotient of S1 x S2, which 
contradicts the assumption that it has Ek as a boundary component. 

Thus we can assume that C bounds a compressing discal 2-orbifold for V, which 
is necessarily a solid-toric orbifold diffeomorphic to S1 x D2(r) or S1 x%2 D2(r) for 
some r > 1 [19, Lemma 2.47]. 

Let U be the Seifert bundle on the other side of Ek from V. Let B be the orbifold 
base of U, with projection TT : U —> B. There is a 1-orbifold boundary component 
R C dB, diffeomorphic to S1 or Sl //Z2, so that Ek = 7T~1(R). That is, V is glued to 
U along TT~1(R). Choose a discal orbifibration a : V —> R that extends TT : Ek —> R-

We refer to [5, Chapter 2.5] for a discussion of Dehn fillings, i.e., gluings of V 
to 7T~1(R). If the meridian curve of V is not isotopic to a fiber of n\Ek, let u > 0 
be the algebraic intersection number (computed using the maximal abelian subgroup 
of iri(Ek)). Then the gluing of V to U, along n~1(R): has a Seifert fibration. Re­
moving Ek from {Ei}, we again have a weak graph orbifold decomposition of 0 , now 
with (n — 1) Euclidean 2-orbifolds, which is a contradiction. 

Therefore, the meridian curve of V is isotopic to a fiber of ^\Ek-

Step 1: If one of the following possibilities holds then put O' = O and B' = B, 
and go to Step 2: 

1. B = D2. 

2. B = D2(s) for some s > 1. 

3. B = D2//Z2. 

4. B = D2(s)//Z2 for some s > 1. 

5. B = S1 x I. 

6. B = (S7/Z2) x /. 
Otherwise, we split B open along a disjoint collection of smooth embedded arcs 
{ 7 j } / = i U { 7J / }y=1 of the following type. A curve 7 j : [0,1] -± B lies in Pre^ and has 
|7j'I(0)> feK1) € mt ( |P | ) . A curve jr : [0,1] £ has | 7 ^ | ( 0 ) G int( | i? |) and lies in 
Pre^, except for its endpoint | 7 j ' | ( l ) which is in the interior of a reflector component 
of d\B\ but is not a corner reflector point. We can find a collection of such curves so 
that if B' is the result of splitting B open along them, then each connected component 
of B' is of type ( l ) - (6 ) above. Put 

(11.13) 
j J' 

Й, = Я - 7, О , Т? 1 } - { 7 , 4 ( 0 ) } . 
3 = 1 j = 1 

Associated to 7^ is a spherical 2-orbifold Xj, diffeomorphic to S2(r, r ) , given by 

(11.14) xj=(j 1 (7 j (0 ) ) 1^-1(^.(0)) TT 1(jj)u7r-iilj{1))o- 1 ( 7 j ( l ) ) -
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Associated to 7J, is a spherical 2-orbifold X j , , diffeomorphic to 52(2, 2 , r ) , given by 

(11.15) X'y = a-\7A0)) Uw-i(7./(o)) TT-1(7j-0-

Let y be the result of splitting O open along {Xj}l=1 U {X'jf}lf'=1. It has 2 ( J + Jf) 
spherical boundary components corresponding to the spherical cuts. We glue on 2 J 
copies of D3(r, r) and 2J7 copies of D 3 ( 2 , 2 , r ) , to obtain O'. By construction, O is 
the result of performing O-surgeries on O'. 

We claim that O' is a weak graph orbifold. To see this, note that the union W 
of cr~1(R') and the 2 (J + J') discal 3-orbifolds is a disjoint union of solid-toric 3-
orbifolds in O'. The metric completion of \G'\ — \W\ in \G'\ inherits a weak graph 
orbifold structure from O. This shows that O' is a weak graph orbifold. 

Step 2: For each connected component of B' of type ( l ) - (4 ) above, the correspond­
ing component of O' is the result of gluing two solid-toric orbifolds: one being the 
Seifert orbifold over that component of B'', and the other one being a connected com­
ponent oiW. By Lemma 11.9, this component of O' is Seifert-fibered and hence is a 
strong graph orbifold. We discard all such components of O' and let O denote what's 
left. 

Turning to the remaining possibilities, an annular component P of B' has a bound­
ary consisting of two circles C\ and C2, of which exactly one, say C\, does not intersect 
R. In 0 , the preimage 7r_1(Ci) is attached to the union of 7r_1(P) with a solid-toric 
orbifold diffeomorphic to S1 x D2(r). This union is itself diffeomorphic to S1 x D2(r), 
since 7r_1(P) is diffeomorphic to S1 x S1 x L 

Finally, if a component P of B' is diffeomorphic to ( 5 1 / / Z 2 ) x / then d\P\ consists 
of a circle with two reflector components and two nonreflector components. Exactly 
one of the nonreflector components, say C i , does not intersect R. In O, the preimage 
7r_1(Ci) is attached to the union of 7r_1(P) with a solid-toric orbifold diffeomorphic 
to S1 Xz2 D2(r). This union is itself diffeomorphic to S1 x%2 Z)2(r), since TT~1(P) is 
diffeomorphic to (S1 x%2 S1) x / . 

In this way, we see that O has a weak graph orbifold decomposition with (n — 1) 
Euclidean 2-orbifolds, since Ek has disappeared. Since O was a counterexample to 
Proposition 11.12, it follows that O is also a counterexample. This contradicts the 
definition of n and so proves the proposition. • 

11.3 . Appendix A . 3 : W e a k graph orbifolds with a compressible boundary 
component 

Lemma 11.16. — Suppose that O is a weak graph orbifold, and that C C dO is a com­
pressible boundary component. Then O arises from 0-surgery on a disjoint collection 
O0 U • • • U On, where: 

- Oi is a strong graph manifold for all i. 
- dO0 = C. 
- OQ is a solid-toric 3-orbifold. 
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Proof. — Let Z be a compressing discal orbifold for C. 

By Proposition 11.12 we know that O comes from 0-surgery on a collection 

Oq, ... ,On of strong graph orbifolds, where dOo contains C. Consider a collection 

S — { 5 i , . . . , Sk} C O of spherical 2-suborbifolds associated with such a 0-surgery 

description of O. We may assume that Z is transverse to <S, and that the number of 

connected components in the intersection Z D S is minimal among such compressing 

discal orbifolds. Reasoning as in the proof of Lemma 11.11, we conclude that Z 

is disjoint from S. Therefore after splitting O open along S and filling in the 

boundary components to undo the O-surgeries, we get that Z lies in Oq. Similar 

reasoning shows that Z must lie in a single Seifert component U of Go- An orientable 

Seifert 3-orbifold with a compressible boundary component must be a solid-toric 

3-orbifold [19, Lemma 2.47]. The lemma follows. • 
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