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EXPOSE VII

DEMONSTRATION DU THEOREME
D’UNIFORMISATION LOCALE (FAIBLE)

Fabrice Orgogozo

1. Enoncé

L’objet de cet exposé est de démontrer le théoréme I1-4.3.1 (voir aussi Intro.-4),
dont nous rappelons 1’énoncé ci-dessous :

1.1. Théoréme. — Soient X un schéma neethérien quasi-excellent et Z un fermé rare
de X. Il existe une famille finie de morphismes (X; — X);cr, couvrante pour la
topologie des altérations et telle que pour tout i € I on ait :

(i) le schéma X; est régulier et intégre;

(ii) l’image inverse de Z dans X; est le support d’un diviseur & croisements normauz

strict.

2. Réductions : rappel des résultats antérieurs

2.1. Réduction au cas local, normal de dimension finie. — Nous avons vu en 11-4.3.3
qu’il suffit de démontrer le théoréme lorsque le schéma X est local ncethérien normal
hensélien excellent. Faisons cette hypothése supplémentaire. Un tel schéma est néces-
sairement de dimension finie, que nous noterons ici d. De plus, on a vu en loc. cit. que
si le théoréme est établi pour chaque schéma local noethérien hensélien excellent de
dimension au plus d, il en est de méme pour les schémas ncethériens quasi-excellents
de dimension au plus d.

2.2. Réduction au cas complet. — Il résulte de la proposition III-6.2 qu’il suffit de
démontrer le théoréme pour le schéma local ncethérien complet X, ce dernier étant
de méme dimension que X et également normal.
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2.3. Récurrence. — Il résulte de ce qui précéde que I'on peut supposer le schéma X
local noethérien complet normal de dimension d et le théoréme connu pour chaque
schéma ncethérien quasi-excellent de dimension au plus d — 1. Lorsque d = 1, le
théoréme est bien connu; nous supposerons dorénavant d > 2.

3. Fibration en courbes et application d’un théoréme de A. J. de Jong

3.1. — Soient X = Spec(A) un schéma local ncethérien complet normal comme en 2.3
et Z un fermé rare. Quitte a remplacer X (resp. Z) par un X-schéma fini également
local noethérien normal excellent de dimension d (resp. par son image inverse), on
peut supposer d’aprés V-3.1.3, qu’il existe un schéma local ncethérien régulier S de
dimension d — 1, un S-schéma de type fini dominant X’ intégre et affine, un point
fermé z’' de la fibre spéciale de f : X’ — S, un fermé rare Z’' de X', et enfin un
morphisme ¢ : X — X’ satisfaisant les conditions suivantes :

— le morphisme ¢ induit un isomorphisme X = Spec(ﬁ/'XTz/) ;

— T'image inverse ¢~!(Z’) de Z’ coincide avec Z.

C
X — X

J

3.2. — Supposons 'existence d’une famille (X — X’) couvrante pour la topologie
des altérations (II-2.3) telle que chaque X soit régulier et chaque image inverse Z;
de Z' dans X soit le support d’un diviseur & croisements normaux strict. Il résulte
de I1-4.1.2 que la famille (X; — X) obtenue par changement de base (plat) X — X' est
également alt-couvrante. D’autre part, 'hypothése d’excellence faite sur les schémas
garantit que le morphisme de complétion c¢ est régulier (I-2.10). La régularité d’un
morphisme étant stable par changement de base localement de type fini ([EGA 1v,
6.8.3]), et préservant la régularité des schémas ([EGA 1v3 6.5.2 (ii)]) il en résulte que
chaque X; est régulier. De méme, 'image inverse Z; de Z] dans X; — qui coincide
avec I'image inverse de Z dans X; par le morphisme évident — est le support d’un
diviseur & croisements normaux strict pour chaque indice 3.

3.3. — Quitte & remplacer X par X', ce qui est licite d’aprés ce qui précéde, nous
pouvons supposer le schéma X intégre de dimension d, équipé d’un morphisme do-
minant de type fini f : X — S, de fibre générique de dimension 1, oit S est local
ncethérien régulier de dimension d — 1. Quitte & compactifier f, on peut le supposer
propre ; quitte & éclater, on peut supposer que le fermé Z est un diviseur (c’est-a-dire
le support d’un diviseur de Cartier effectif).
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3.4. — Nous sommes dans les conditions d’application du théoréme [de Jong, 1997,
2.4], d’aprés lequel, quitte & altérer S et X, on peut supposer les faits suivants :

— le morphisme f est une courbe nodale;

— le diviseur Z est contenu dans la réunion d’un diviseur D étale sur S, contenu
dans le lieu lisse de f, et de 'image inverse f~1(T) d’un fermé rare T de S.

4. Résolution des singularités

4.1. Résolution des singularités de la base. — Les altérations précédentes conduisent &
une situation ou les schémas X et S ne sont pas nécessairement locaux (ni méme
affines) et S n’est plus nécessairement régulier. Il est cependant excellent de dimen-
sion d — 1 donc justiciable de ’hypothése de récurrence 2.3. Ainsi, on peut supposer
que la paire (S, T') est réguliére, c’est-a-dire que le schéma S est régulier et que T est
un diviseur & croisements normaux. Il en est en effet ainsi localement pour la topologie
des altérations.

4.2. — D’aprés VI-1.9, la paire (X, D U f~1(T)) est log réguliére au sens de VI-1.2.
Qu’un diviseur contenu dans un diviseur & croisements normaux strict soit éga-
lement un diviseur & croisements normaux strict nous permet de supposer que
Z = DU f~Y(T). La conclusion résulte alors du théoréme suivant de Katé K.
([Kato, 1994, 10.3, 10.4]), complété par W. Niziot (|Niziol, 2006, 5.7]). (Voir aussi

|Gabber & Ramero, 2013, 9.6.32 & 53] et VIII-3.4.)

4.3. Théoréme. — Soit (X, Z) une paire log réguliere, on X est un schéma neethérien.
Il eziste un schéma noethérien régulier Y et un morphisme projectif birationnel 7 :
Y — X tels que l’image inverse ensembliste 1= 1(Z) soit le support d’un diviseur d
croisements normaux strict.

(On utilise le procédé [de Jong, 1996, 7.2] permettant de rendre strict un diviseur
a croisements normaux.)
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