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E X P O S É VII 

D É M O N S T R A T I O N D U T H É O R È M E 

D ' U N I F O R M I S A T I O N L O C A L E (FAIBLE) 

Fabrice Orgogozo 

1. Énoncé 

L'objet de cet exposé est de démontrer le théorème II-4.3.1 (voir aussi Intro.-4), 

dont nous rappelons l'énoncé ci-dessous : 

/./. Théorème. — Soient X un schéma nœthérien quasi-excellent et Z un fermé rare 

de X. Il existe une famille finie de morphismes (Xi —• X)iej, couvrante pour la 

topologie des altérations et telle que pour tout i e I on ait : 

(i) le schéma Xi est régulier et intègre ; 

(ii) l'image inverse de Z dans Xi est le support d'un diviseur à croisements normaux 

strict. 

2. Réductions : rappel des résultats antérieurs 

2.1. Réduction au cas local, normal de dimension finie. — Nous avons vu en II-4.3.3 

qu'il suffit de démontrer le théorème lorsque le schéma X est local nœthérien normal 

hensélien excellent. Faisons cette hypothèse supplémentaire. Un tel schéma est néces­

sairement de dimension finie, que nous noterons ici d. De plus, on a vu en loc. cit. que 

si le théorème est établi pour chaque schéma local nœthérien hensélien excellent de 

dimension au plus d, il en est de même pour les schémas nœthériens quasi-excellents 

de dimension au plus d. 

2.2. Réduction au cas complet. — Il résulte de la proposition III-6.2 qu'il suffit de 

démontrer le théorème pour le schéma local nœthérien complet X , ce dernier étant 

de même dimension que X et également normal. 
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2.3. Récurrence. — Il résulte de ce qui précède que l'on peut supposer le schéma X 

local nœthérien complet normal de dimension d et le théorème connu pour chaque 

schéma nœthérien quasi-excellent de dimension au plus d — 1. Lorsque d = 1, le 

théorème est bien connu ; nous supposerons dorénavant d > 2. 

3. Fibration en courbes et application d'un théorème de A. J. de Jong 

3.1. — Soient X = Spec (A) un schéma local nœthérien complet normal comme en 2.3 

et Z un fermé rare. Quitte à remplacer X (resp. Z) par un X-schéma fini également 

local nœthérien normal excellent de dimension d (resp. par son image inverse), on 

peut supposer d'après V-3.1.3, qu'il existe un schéma local nœthérien régulier S de 

dimension d — 1, un 5-schéma de type fini dominant X' intègre et affine, un point 

fermé x' de la fibre spéciale de / : X' —> 5, un fermé rare Z' de X ' , et enfin un 

morphisme c : X —> X' satisfaisant les conditions suivantes : 

— le morphisme c induit un isomorphisme X Spec(^x',z') ; 

— l'image inverse c~1(Zf) de Z' coïncide avec Z. 

X — ^ X ' 

S 

S. 

3.2. — Supposons l'existence d'une famille (X[ —» X') couvrante pour la topologie 

des altérations (II-2.3) telle que chaque X[ soit régulier et chaque image inverse Z[ 

de Z' dans X[ soit le support d'un diviseur à croisements normaux strict. Il résulte 

de II-4.1.2 que la famille (Xi —» X) obtenue par changement de base (plat) X —> X' est 

également alt-couvrante. D'autre part, l'hypothèse d'excellence faite sur les schémas 

garantit que le morphisme de complétion c est régulier (1-2.10). La régularité d'un 

morphisme étant stable par changement de base localement de type fini ([EGA IV2 

6.8.3]), et préservant la régularité des schémas ([EGA iv 2 6.5.2 (ii)]) il en résulte que 

chaque Xi est régulier. De même, l'image inverse Zi de Z[ dans Xi — qui coïncide 

avec l'image inverse de Z dans Xi par le morphisme évident — est le support d'un 

diviseur à croisements normaux strict pour chaque indice i. 

3.3. — Quitte à remplacer X par X ' , ce qui est licite d'après ce qui précède, nous 

pouvons supposer le schéma X intègre de dimension d, équipé d'un morphisme do­

minant de type fini / : X —• 5, de fibre générique de dimension 1, où S est local 

nœthérien régulier de dimension d — 1. Quitte à compactifier / , on peut le supposer 

propre ; quitte à éclater, on peut supposer que le fermé Z est un diviseur (c'est-à-dire 

le support d'un diviseur de Cartier effectif). 
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3.4. — Nous sommes dans les conditions d'application du théorème [de Jong, 1997, 

2.4], d'après lequel, quitte à altérer S et X, on peut supposer les faits suivants : 

— le morphisme / est une courbe nodale ; 

— le diviseur Z est contenu dans la réunion d'un diviseur D étale sur 5, contenu 

dans le lieu lisse de / , et de l'image inverse f~l(T) d'un fermé rare T de S. 

4. Résolution des singularités 

4.1. Résolution des singularités de la base. — Les altérations précédentes conduisent à 

une situation où les schémas X et S ne sont pas nécessairement locaux (ni même 

affines) et S n'est plus nécessairement régulier. Il est cependant excellent de dimen­

sion d — 1 donc justiciable de l'hypothèse de récurrence 2.3. Ainsi, on peut supposer 

que la paire (S, T) est régulière, c'est-à-dire que le schéma S est régulier et que T est 

un diviseur à croisements normaux. Il en est en effet ainsi localement pour la topologie 

des altérations. 

4.2. — D'après VI-1.9, la paire (X,D\J / _ 1 ( T ) ) est log régulière au sens de VI-1.2. 

Qu'un diviseur contenu dans un diviseur à croisements normaux strict soit éga­

lement un diviseur à croisements normaux strict nous permet de supposer que 

Z = D U / - 1 ( T ) . La conclusion résulte alors du théorème suivant de Katô K. 

([Kato, 1994, 10.3, 10.4]), complété par W. Niziol ([Niziol, 2006, 5.7]). (Voir aussi 

[Gabber & Ramero, 2013, 9.6.32 & 53] et VIII-3.4.) 

4.3. Théorème. — Soit (X, Z) une paire log régulière, où X est un schéma nœthérien. 

Il existe un schéma noethérien régulier Y et un morphisme projectif birationnel n : 

Y —> X tels que l'image inverse ensembliste n~1(Z) soit le support d'un diviseur à 

croisements normaux strict. 

(On utilise le procédé [de Jong, 1996, 7.2] permettant de rendre strict un diviseur 

à croisements normaux.) 
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