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E X P O S É VI 

L O G R É G U L A R I T É , A C T I O N S T R È S M O D É R É E S 

Luc Illusie 

1. Log régularité 

1.1. — Pour le langage des log schémas nous renvoyons le lecteur à [Kato, 1988], 

[Niziol, 2006], [Gabber & Ramerò, 2013]. Sauf mention du contraire, les log structures 

considérées le seront au sens de la topologie étale. Un log schéma fin (resp. fs, Le. fin 

et saturé) [Kato, 1988] est un schéma muni d'une log structure admettant localement 

(pour la topologie étale) une carte sur un monoïde fin (resp. fin et saturé). On note en 

général Mx le faisceau de monoïdes d'un log schéma X , a : Mx —> &x le morphisme 

structural, et Mx = Mx/&xi = ^xV^x- Sauf mention du contraire, les log 

schémas considérés sont supposés localement noethériens. 

Dans ce qui suit, X désigne un fs log schéma. 

1.2. — Soient x un point géométrique de X , d'image x G X , ûx,x le localisé strict 

de X en x. Notons Ix,x (ou s'il n'y a pas de confusion à craindre) l'idéal de ûx,x 

engendré par a(Mx,x — @x,x)i &x,x le sous-schéma fermé de X^) = Spec ûx,x défini 

par Ix- Le fermé sous-jacent à Cx,x est la trace sur X(x) de la strate de X où le rang 

de M^x est égal à, r(x) = rg(M^ > ^). 

On dit que X est log régulier en x (ou x) si Cx,x est régulier et l'on a 

(1.2.1) d im(X ( ^ ) = d i m ( C ^ ) + r a n g z ( M ^ ) , 

(cette condition ne dépend que de x). On dit que X est log régulier si X est log régulier 

en tout point. La définition analogue pour les log schémas zariskiens est due à Kato 

[Kato, 1994]. La variante dans le cadre étale a été traitée par Niziol [Niziol, 2006]. 

Voir aussi [Mochizuki, 1999] et [Gabber & Ramerò, 2013, 9.5]. Nous rappelons ci-

après quelques propriétés de cette notion. 
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78 EXPOSÉ VI. LOG RÉGULARITÉ, ACTIONS TRÈS MODÉRÉES 

1.3. — Supposons X muni d'une carte Px —> M x , avec P fin et saturé. Alors, pour 

tout x, X est log régulier en x si et seulement si X , muni de la log structure Zariski 

Mx

aT := £*Mx, où e : Xét —> X z a r , est log régulier en x au sens de Kato [Kato, 1994], 

[Tsuji, 1997, II 4.6], [Niziol, 2006, 2.4]. En particulier, si X est log régulier en x, X est 

log régulier en toute générisation y de X (la stabilité de la log régularité (Zariski) par 

générisation est énoncée dans [Kato, 1994, 7.1], mais, comme Gabber l'a observé, la 

démonstration qui est donnée est insuffisante ; voir [Gabber & Ramero, 2013, 9.5.47] 

pour un argument correct). 

Si la log structure de X est triviale, X est log régulier si et seulement si X est 

régulier au sens usuel. 

1.4. — Supposons X log régulier. Soit j : U <-* X l'inclusion de l'ouvert de trivialité 

de sa log structure. Alors U est un ouvert dense de X et on a 

Mx = Û x n j ^ 

([Niziol, 2006, 2.6]). 

Nous dirons qu'un couple (X, Z) formé d'un schéma X et d'un fermé Z est un 

couple log régulier si, pour la log structure sur X définie par Mx = @x ^ j^û^, où 

j : U <-* X est l'ouvert complémentaire de Z, X est log régulier et Z est le complément 

de l'ouvert de trivialité de sa log structure. La log structure précédente sur X sera 

dite associée au couple (X, Z). 

1.5. — Supposons X log régulier. Il résulte de 1.6 ci-après (cf. [Kato, 1994, 4.1]) que 

le schéma sous-jacent à X est Cohen-Macaulay et normal. En particulier, en (1.2.1), 

on a 

(1.5.1) codimâr(Cx,â-, X{^) = r a n g z ( M ^ ) . 

Pour i e N , soit X^ l'ensemble des points x de X tels que r(x) = z, avec la notation 

de 1.2. C'est une partie localement fermée, sous-jacente à un sous-schéma régulier de 

X , de codimension z, dont la trace sur X ( S ) , en chaque point géométrique x localisé 

en x e X « , est Cxx- On dit que X ^ est la strate de codimension i définie par le rang 

de M .La stratification par les X ^ est appelée stratification par le rang de M , ou 

stratification canonique. Voici deux exemples. 

(i) Si X est un schéma noethérien régulier, muni de la log structure définie par un 

diviseur à croisements normaux D, X M est l'ensemble des points où passent exacte­

ment i branches de D, i.e. tels que le normalisé de D ait i points au-dessus de x. 

(ii) Si X est une variété torique sur un corps k, de tore T, munie de sa log structure 

canonique, X est un log schéma log régulier, l'ouvert de trivialité de la log structure 

est T, et XW est la réunion des orbites de T de codimension i. 
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1. LOG RÉGULARITÉ 79 

1.6. — Supposons X log régulier en x, image du point géométrique x, soient P = 

M X , Î , k = k(x). Notons que P est un monoïde fs saillant (i.e. tel que P * = 0 ) . Soit 

Xx le complété de X^) au point fermé. Alors, d'après [Kato, 1994, 3.2], X admet une 

carte modelée sur P en âf, qui donne lieu à des isomorphismes 

(i) 

Xm^Speck[[P}}[[h,... ,tn}} 

si 0x,x est d'égale caractéristique, 

(ii)' 

Xx^SpecC(k)[[P}][[t1,...,tn]}/(f) 

si @x,x est d'inégale caractéristique (0,p), où C(k) est un anneau de Cohen pour k, 

et / est congru à p modulo l'idéal engendré par P - { 0 } et les U. 

1.7. — Supposons X log régulier. Alors X est régulier en x, image de x, si et seule­

ment si ~ N r ([Niziol, 2006, 5.2], voir aussi [Vidal, 2001b, 1.8]). Il en résulte 

que l'ensemble des points de régularité de X coïncide avec l'ensemble des points de 

régularité du monoïde M^, et en particulier est ouvert dans X ([Niziol, 2006, 5.3]). 

Si X est log régulier et régulier, l'ouvert de trivialité de la log structure est alors le 

complément d'un diviseur à croisements normaux. 

1.8. — Soit / : X —• Y un morphisme de log schémas fs. Si y est log régulier et / 

log lisse, X est log régulier. 

L'analogue pour les log structures Zariski est [Kato, 1994, 8.2]. La démonstration 

de loc. cit. s'applique, mutatis mutandis, dans le cadre étale. 

Le corollaire suivant jouera un rôle clé dans l'application des résultats de de Jong 

à la démonstration du théorème d'uniformisation de Gabber. Un énoncé similaire est 

donné dans [Mochizuki, 1999, 4.2]. Rappelons que, si S est un schéma, une courbe 

nodale / : C —> S est un morphisme plat, localement de présentation finie, purement 

de dimension relative 1, dont les fibres géométriques ont pour seules singularités des 

croisements normaux 

1.9. Proposition. — Soit (Y,T) un couple log régulier (1.4). Soit f : X —• Y une 

courbe nodale, lisse au-dessus de Y — T. Soit D un diviseur effectif sur X, de support 

contenu dans le lieu de lissité de f, et étale sur Y. Alors le couple (X, f~1(T)UD) est 

log régulier, et pour les log structures associées, f est un morphisme de log schémas 

et est log lisse. 

W On impose souvent aux fibres géométriques d'être connexes. Cette condition supplémentaire est 
inutile pour l'énoncé qui suit. 
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La question est locale pour la topologie étale sur X et l'assertion est triviale sur 

l'ouvert de lissité de / et sur f~l(Y — T). On peut donc supposer D = 0. D'après 

[SGA7 XV 1.3.2] (voir aussi [de Jong, 1996, 2.23]), on peut supposer que Y est affine, 

Y = Spec R, et que X est défini par 

(1.9.1) X = SpecR[u,v]/(uv - h), 

où h est une section de ûy inversible sur Y — T. On peut supposer de plus qu'on 

dispose d'une carte c : P —> My avec h = <sc(a), pour e G R* et a £ P. Soit Q le 

monoïde fs défini par le carré cocartésien 

N 2 , 

9 

N x P 

où la flèche N —• N 2 (resp. N - » Z x P) est donnée par 1 t-» (1,1) (resp. 1 i-> ( l , a ) ) . 

Le carré 

Spec R[u, v\j(uv — h) —>- Spec Z[Q] , 

SpecZ[(?] 

Spec R — ^ Spec Z [ Z x P] 

où la flèche c' est donnée par c et Z —• R, 1 i—• £, et d par (1,0) i—• ̂ , (0,1) i—• v sur 

N 2 et c ; sur Z x P, est cartésien. Alors d définit une log structure sur X dont l'ouvert 

de trivialité est f~l(Y — T) , et (cf,d,g) est une carte de / . Comme g est injectif et 

Coker# g p ~ Z , / est log lisse. Comme Y est log régulier, X est donc log régulier, 

et comme l'ouvert de trivialité de la log structure de X est f~x(Y — T) , le couple 

( X , / - 1 ( T ) ) est log régulier. 

2. Revêtements Kummer étales 

Dans cette section et la suivante, nous aurons à considérer des actions de groupes 

sur des schémas ou des log schémas : sauf mention du contraire, il s'agira d'actions à 

droite. 

2.1. — Rappelons quelques définitions (cf. [Illusie, 2002, 3], [Stix, 2002, 3.1], 

[Vidal, 2001a]). Un homomorphisme h : P —> Q de monoïdes intègres est dit de 

Kummer si h est injectif et, pour tout q € Q, il existe n > 1 et p G P tels que 

nq = h(p). On dit qu'un morphisme / : X —> Y de fs log schémas est de Kummer si, 

pour tout point géométrique x de X d'image y = f(x) dans Y, l'homomorphisme 

induit My —• Mx est de Kummer. On dit qu'un morphisme / : X —• Y est Kummer 
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2. REVÊTEMENTS KUMMER ÉTALES 81 

étale si / est de Kummer et log étale. On dit que / est un revêtement Kummer étale si 

/ est de Kummer étale et le morphisme de schémas sous-jacent est fini. 

Le site Kummer étale d'un fs log schéma X est la catégorie des fs log schémas de 

Kummer étales au-dessus de X munie de la topologie définie par les familles surjec-

tives de X-morphismes (lesquels sont automatiquement de Kummer étale). Pour X 

connexe non vide, les revêtements Kummer étales de X forment une catégorie galoi-

sienne, équivalente à la catégorie des représentations d'un groupe profini, le groupe 

fondamental logarithmique de X , 7rJ°g(X, x), où x est un point géométrique logarith­

mique de X , cf. loc. cit. 

2.2. — Un morphisme / : X —> Y de log schémas fs qui est déduit par changement 

de base par un morphisme strict g : Y —» SpecZ[P] d'un morphisme SpecZ[/i] : 

SpecZ[Q] —> SpecZ[P], où h : P —> Q est un homomorphisme de Kummer entre 

monoïdes fs tels que le conoyau de hëP soit annulé par un entier n inversible sur 

y, est un revêtement Kummer étale. On dit qu'un tel revêtement est un revêtement 

Kummer étale standard. 

Un revêtement Kummer étale standard / : X —» Y comme ci-dessus est galoisien 

dans le sens suivant : le groupe diagonalisable (étale) G = H o m ( Q g p / P g p , G m y ) opère 

sur X par automorphismes de Y-log schémas, et le morphisme canonique 

(2.2.1) X x y G - + X xYX,(x,g) H-> (x,xg), 

où le produit au second membre est pris dans la catégorie des fs log schémas, est 

un isomorphisme; le log schéma Y est un quotient faisceautique de X par G dans 

la catégorie des faisceaux sur le site Kummer étale de y , et en tant que schéma, un 

quotient géométrique au sens usuel de X par G : on a 

(2.2.2) ÛY = (f*Ûxf ; MY = (hMxf. 

De plus, le morphisme / est fini, ouvert et surjectif, et le reste après tout changement 

de base fs Y' —> Y. Ces assertions sont un cas particulier de théorèmes de descente 

de Kato [Kato, 1991, 3.1, 3.4.1, 3.5]. Pour le fait que 2.2.1 soit un isomorphisme, 

voir [Illusie, 2002, 3.2]. Pour la première formule de 2.2.2, voir [Kato, 1991, 3.4.1] (et 

[Illusie et al., 2013, 2.1] pour le fait, utilisé dans la démonstration de [Kato, 1991, 

3.4.1], que Z[P] est facteur direct de Z[Q] comme Z[P]-module). On pourrait aussi 

invoquer la structure des représentations des groupes diagonalisables et le fait que 

Q fl P s p = P. La vérification de la seconde formule est plus délicate. Nous en donnons 

une démonstration directe dans 2.4. 

Tout morphisme de Kummer étale est, localement pour la topologie étale, iso­

morphe à un revêtement Kummer étale standard (cf. [Stix, 2002, 3.1.4]). Plus préci­

sément, si / : X —» Y est un morphisme de Kummer étale surjectif, avec X (resp. Y) 
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82 EXPOSÉ VI. LOG RÉGULARITÉ, ACTIONS TRÈS MODÉRÉES 

strictement local de point fermé x (resp. y), on a un carré cartésien 

X—^SpecZ[Q] 

/ SpecZ[/i] 
v y 
Y —^SpecZ[P], 

où a (resp. 6) est une carte de X (resp. Y), et /i : P —• Q un morphisme de Kummer tel 

que Coker / i g p soit annulé par un entier n inversible sur Y. Alors / est un revêtement 

Kummer étale galoisien de groupe G = Hom(Coker /i g p , jjLn(k(y))). 

2.3. — Dans ce cas, l'action de G sur X se décrit simplement. Plus généralement, 

considérons un revêtement Kummer étale standard / : X —• V, donné par un carré 

cartésien de schémas 

(2.3.1) X—^SpecA[Q] 

/ Spec A [h] 

Y —^SpecA[P], 

où A = Z[/x n][l/n], fin = / i n (C) (n entier > 1), h : P —> Q est un morphisme de 

Kummer tel que Coker hëp soit annulé par n, et l'on munit X et Y des log structures 

définies par les flèches horizontales. Soit C = Coker hgp. La suite exacte 

0 _» pgp Qgp _> C -> 0 

donne, par application du dual de Cartier D = Hom(—,G m ) , une suite exacte de 

groupes diagonalisables sur Spec A, 

0 —> G —> TQ —> Tp —• 0, 

où G = D(C). Posons Zp = Spec A [P], ZQ = SpecA[Q]. L'accouplement canonique 

(2.3.2) TP 0 P g p G m 

définit une famille de caractères 

(Xp Tp —> G m ) p e pgp, 

qui détermine l'action de Tp sur Zp par 

(2.3.3) g.p = xP(g)p, 

pour un point g de Tp (à valeurs dans un schéma S), et un point p de Zp à valeurs 

dans S. L'action de TQ sur ZQ est décrite de façon similaire, et la carte a : X —> Z Q 

est équivariante relativement aux actions de G et TQ sur X et Z Q respectivement : 

pour g e G et q E 

(2.3.4) g.a*(q) = Xq(g)a*(q), 
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2. REVÊTEMENTS KUMMER ÉTALES 83 

où a* (q) est la section de Mx image inverse de q par a. 

2.4. — Déduisons de cette description la seconde formule de ( 2 . 2 . 2 ) . L'argument qui 

suit est dû à Gabber. On doit vérifier que My —• (f*Mx)G induit un isomorphisme 

sur les fibres en tout point géométrique de Y, donc on peut supposer Y strictement 

local de point fermé y. Dans la suite, nous omettrons parfois h : P —• Q de la 

notation, et noterons encore a (resp. b) l'homomorphisme Q —> Û(X) (resp. P ^ 

Û{Y)) déduit de a (resp. b). Quitte à remplacer P par son localisé P^ en l'idéal 

premier p complémentaire de la face b~x{ûy )^ et Q par Q®pP(p), on peut supposer 

que P* = & - 1 (^y,y)- Et, pour q e Q, q est inversible si et seulement si a{q) l'est 

sur un point au-dessus de y (car si tel est le cas, et n > 1 est tel que qn G P, on 

a a(qn) = b(qn) G ûyy et qn G P*). Si x est un point de X au-dessus de y, donc 

correspondant à un relèvement à Q de P —» &(?/), il en résulte, par la formule ( 2 . 3 . 3 ) 

(appliquée à l'action de TQ sur X ) , que g G G fixe ce point si et seulement si g est 

orthogonal à Q*/P* C Q S P / P S P pour l'accouplement G <g> Q&>/P&> -+ /xn déduit de 

( 2 . 3 . 2 ) . L'homomorphisme P —* Q se factorise canoniquement en 

P ------P'------Q 

où P ' := Q* 0p* P. Cette factorisation définit une factorisation de / en 

Y-------Y'-------Y1 

où v est un revêtement fini étale usuel, galoisien de groupe H égal au dual de Cartier 

de Q*/P*, et strict en tant que morphisme de log schémas. En particulier, ây —» 

(v+ûy,)11 et My —» (v+My)H sont des isomorphismes. Remplaçant Y par Y' puis par 

son localisé strict en un point au-dessus de y, on peut donc supposer que P* = Q*. Il 

découle de la remarque faite plus haut que X a alors un unique point x au-dessus de y, 

donc est strictement local, et que le groupe d'inertie en x est G tout entier. Considérons 

le diagramme commutatif suivant, à lignes exactes, où les flèches verticales sont les 

flèches canoniques évidentes : 

(2.4.1) o e $ t V M* p

y M%y - 0 

i 

0 (0*XlX)
G (Mf>xf (Melx)

G H 1 (G, Û*XJ, 

où d est l'opérateur bord de la suite exacte de cohomologie de G relative à la suite 

exacte de G-modules 

О ü% „ - MfP -» M t , -» 0. 

D'après la première formule de ( 2 . 2 . 2 ) , la flèche verticale de gauche est un isomor-

phisme. D'après ( 2 . 3 . 4 ) , G opère trivialement sur M ^ x , donc (M^X)
G = . Un 
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84 EXPOSÉ VI. LOG RÉGULARITÉ, ACTIONS TRÈS MODÉRÉES 

calcul qui sera fait en 3.5 montre que la flèche naturelle H 1 (G, Ô"x x) —* H 1 (G, k(x)*) = 

Hom(G, fin) est un isomorphisme, et que, via ces identifications, l'opérateur bord 

d : M f , x ( = Qsp/P*) - Hom(G,/x„) 

est déduit de l'accouplement canonique G (g) Q g p / P g p —• fin (cf. (2.3.2)), qui est un 

accouplement parfait. Le noyau de d est donc p s p / P * — M^y. Il s'ensuit que i 

induit un isomorphisme sur le noyau de d, et donc que la flèche verticale médiane 

de (2.4.1) est un isomorphisme. Comme MY,y = Myiy H Mx,x C ( / étant de 

Kummer), si a G (MX,X)
G, il existe b G MY,y et u e â*x^x tels que a = ub, donc 

u e (&x,x)G = et a G MY,y, et la flèche MY,y (f*Mx,x)
G est elle aussi un 

isomorphisme. 

2.5. Proposition. — Considérons un revêtement Kummer étale standard (2.3.1). Pour 

tout point géométrique x de X d'image y dans Y, le morphisme Gx-équivariant 

(2.5.1) Cx,x —• CV,y, 

où Gx est le sous-groupe d'inertie en x, est un isomorphisme. En particulier, Gx opère 

trivialement sur Cx,x-

Procédant comme en 2.4, on peut supposer X (resp. Y) strictement local de point 

fermé x (resp. y), avec P* = b-l(û^y), (resp. Q* = a~l{@x,x))i et P* ^ Q*. Il en 

résulte que la flèche composée 

Z[P*] -> Z[P] - Z l P l / f c - ^ ^ -

(resp. 

Z[Q*] - Z[Q] - Z [Q] /o - 1 ( ^x , x -

est un isomorphisme, et que par suite la flèche 

<p : T\P\lb-\GY,v - 0ltV) - Z i g j / a - ^ ^ x , * -

est un isomorphisme. Comme la flèche &Y,y/IY,y —> @x,x/Ix,x est donnée par 

^y,2/ ®z[p] <P? ̂ a projection C x ) X —* CY,y (2.5.1) est donc un isomorphisme. 

3. Actions très modérées 

3.1. — Soit X un log schéma fs, muni d'une action d'un groupe fini G. On se propose 

de dégager des conditions suffisantes sur l'action de G pour que, lorsque X est log 

régulier, le quotient de X par G existe comme log schéma et soit log régulier. 

On dit que G opère modérément sur X en un point géométrique x de X localisé en si 

le stabilisateur Gx de x (groupe d'inertie en x) est d'ordre premier à la caractéristique 

de k(x). On dit que G opère modérément sur X si G opère modérément en x pour tout 

x. Ces définitions ne font pas intervenir la log structure de X. 
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3. ACTIONS TRÈS MODÉRÉES 85 

La définition et les résultats qui suivent sont dus à Gabber. On dit que G opère 

très modérément sur X en x si les trois conditions suivantes sont satisfaites : 

(i) G opère modérément en x ; 

(ii) G opère trivialement sur Mx,x ; 

(iii) Gx opère trivialement sur la strate Cx,x (1-2). 

On dit que G opère très modérément sur X si G opère très modérément sur X en 

tout point géométrique. 

Dans la situation de (2.3.1), il découle de (2.3.4) et de 2.5 que, pour tout point 

géométrique x de X , Gx opère trivialement sur Mx et sur la strate CXix- Donc G 

opère très modérément sur X. On va voir qu'en un sens convenable, toute action très 

modérée génériquement libre sur un log schéma log régulier est localement de ce type. 

Plus précisément, le résultat principal est le suivant : 

3.2. Théorème. — Soit X un log schéma f s log régulier, muni d'une action d'un groupe 

fini G. On suppose que G opère de façon admissible sur le schéma sous-jacent à X, 

librement sur un ouvert dense, et très modérément. Soit Y = X/G le schéma quotient, 

f : X -+Y la projection. Alors : 

(i) Y est localement noethérien et le morphisme f est fini; 

(ii) l'homomorphisme f*a : (f*Mx)G —> (f*&x)G = @Y est une log structure fs 

sur Y, qui fait de Y un log schéma log régulier, et f : X —> Y est un revêtement 

Kummer étale de groupe G. En outre, en tout point géométrique x de X, le groupe 

d'inertie Gx est abélien. 

Rappelons ([SGA1 V 1]) que dire que G opère de façon admissible sur un schéma 

(non nécessairement localement noethérien) X signifie que X est réunion d'ouverts 

affines stables par (7, de sorte que le quotient X/G existe comme schéma. 

3.3. — La preuve de 3.2 sera donnée en 3.6. Nous établirons d'abord un résultat plus 

précis que 3.2, à savoir 3.4, de nature locale sur X. Nous aurons besoin pour cela de 

la notion suivante. Soient n un entier > 1, G un groupe fini, et Q un monoïde fs. 

Supposons donné un homomorphisme 

X : G a b ® Q g p - + / x n : = / / n ( C ) , g®q^x(g,q)-

Pour g e G et q e Q, on écrira encore, par abus, %(#, q) (ou Xg(#)) P o u r x(di q), o u 9 

est l'image de g dans G a b . Soit A = Z[ / / n ][ l /n] . On déduit de x u n e action de G sur 

le log schéma Spec A [Q], caractérisée par 

9-Q = xq{g)q 

pour g e G, q e Q. 
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Soit X un log schéma fs muni d'une action de G. Par une carte G-équivariante de 

X modelée sur (%, Q), on entend un morphisme strict, G-équivariant 

c : X -> Spec A [Q]. 

Un tel morphisme est donné par un homomorphisme 

c*:Q^T(X,Mx) 

tel que, pour tout q e Q et tout g e G, on ait g*(c*(q)) = x{9iO)c*(o), o u 9* désigne 

l'endomorphisme de T(X,Mx) défini par g. 

3.4. Proposition. — Soit X un fs log schéma, muni d'une action d'un groupe fini G, 

et soit x un point géométrique de X localisé en x. On note H = Gx le groupe d'inertie 

en x. 

(a) On suppose que les conditions (i) et (ii) de 3.1 sont vérifiées en x. Soit n 

l'ordre de PL. Il existe un voisinage étale affine H-équivariant U de x et une carte 

H-équivariante de U modelée sur (x, Q), où Q = Mx et % : i f a b (g) Q g p —• fin. 

(b) On suppose de plus que G agit très modérément en x, i.e. que H agit trivia­

lement sur la strate Cx,x- Alors, il existe un voisinage affine étale H-équivariant U 

de x tel que le schéma quotient V = U/H, muni de la log structure (TÏ+MJJ)11 —* 

(7r+ûu)H = @v, où n : U —» V est la projection, soit un fs log schéma, et qu'on ait 

une V-immersion fermée stricte équivariante, et d'idéal nilpotent, i : U U', où 

7rf : U' —» V est un revêtement Kummer étale standard de V. 

(c) Si, sous les hypothèses de (b), X est supposé en outre log régulier en x, alors il 

existe 7r : U —• V comme en (b) tel que 7r soit un revêtement Kummer étale standard 

de V, et V est log régulier en y = 7T(X). Si de plus H opère librement sur un ouvert 

dense de U, H est abélien, et égal au groupe du revêtement n. 

3.5. — Preuve de 3.4-

(a) Observons d'abord que les voisinages affines étales iï-stables de x forment une 

famille cofinale de voisinages étales de x. En effet, soit Ui un voisinage étale, affine, 

de x. Soit U2 = YlheH Uih, où f j désigne un produit fibre sur X. Le schéma U2 est 

un voisinage étale quasi-affine if-stable de x. Si Us est un voisinage ouvert affine de 

l'image x de x dans [/3, U4 = f]heH U$h est un voisinage affine étale, i^-stable, de 

x, au-dessus de U. Comme k(x) contient /x n, on peut supposer, quitte à remplacer X 

par un voisinage étale H-stable convenable de âf, que X est au-dessus de Spec A, où 

A = Z[/ i n ] [ l /n] , avec action triviale de H sur A. 

Considérons la suite exacte de groupes abéliens 

(3.5.1) 0 - ^ - Mf- -> M*l-X - 0. 

Elle est i7-équivariante, et si Q = Mx, Qgp est de type fini sans torsion. Choisissons 

un scindage s : Q g p —> Mjj?- de (3.5.1) (comme suite exacte de groupes ) . Comme H 
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agit trivialement sur Q g p , on a, pour q G Q g p et g e H 

(3.5.2) 9.8(q) = z(g,q)8(q) 

avec z(g,q) G &xx- P ° u r 0i> 02 dans if, on a 

2(0102, q) = (012(02, ?) ) .*(02, tf), 

en d'autres termes, # (ç z(g,q)) est un 1-cocycle 

^ G Z 1 ( f f , H o m ( Q « p , ^ ) ) . 

L'image [2] de 2 dans H1 (H, Hom(<2gp, ^ ) ) est la classe de cohomologie de (3.5.1). 

Dans le carré commutatif de flèches canoniques 

Z 1 ( ^ , H o m ( Q g p , ^ ) ) -Z 1 ( i^ ,Hom(Q g p ,A; (x)*) ) 

# H # , H o m ( Q g p , ^ - ) ) ^ i / 1 ( ^ H o m ( Q g p , A : ( ^ ) * ) ) , 

la flèche verticale de droite est (trivialement) un isomorphisme. D'autre part, la flèche 

horizontale inférieure est un isomorphisme, car (1 + mx,x)* est n-divisible. L'image 

de z dans ZX(H, Hom(Q g p , k(x)*)) est un homomorphisme 

X : H -> H o m ( Q g p , / / n ) , g ^ (q ^ x(0,0))-

Cet homomorphisme se relève en un élément de Z1(H, Hom(Q g p , ^x,x))> n o t e encore 

X, qui a même classe de cohomologie que z dans H 1(H, Hom(Q g p , &x,x))- ^ existe 

donc u G Hom(Q g p , 6*Xx) tel que z(g, q)/x(9, Q) = 9u(q)/u(q). Alors 0.(w(g) _ 1s(0)) = 

x(0, Q)U(Q)~1S{Q)' Donc quitte à remplacer s par (g 1—• w(ç ) - 1 5 (ç ) ) , on peut supposer 

que z — x, autrement dit z est défini par un homomorphisme (noté encore x) 

(3.5.3) X : Hah ® Q g p - M n , (fc, <?) ^ g), 

ie . g) = x(^ , Q) pour tout h e H et tout q € Q (avec la notation de 3.3). D'après 

[Kato, 1988, 2.10], l'homomorphisme Q —> M j ^ induit par s se prolonge en une carte 

a : U —> SpecA[<2] (correspondant à un homomorphisme a* : Q —• T(U,Mu)) d'un 

voisinage étale U de x. D'après ce qu'on a vu plus haut, on peut supposer U if-stable. 

D'après (3.5.2), l'homomorphisme s : Q —> Mx,x est if-équivariant, i.e. pour g G Q 

et /1 G if, on a (dans Mx,x) 

h*a*{q)x = x(h,q)a*(q)x-. 

Pour h et q fixé, on a donc h*a*(q) = x{h,q)a*(q) sur un voisinage étale if-stable 

de x au-dessus de U, donc a fortiori sur un voisinage ouvert if-stable Uf de l'image 

x de x dans ¡7. Comme i f est fini et Q de type fini, il existe un voisinage ouvert 

affine if-stable U" de x contenu dans U' tel que l'identité précédente soit satisfaite 
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au-dessus de U". Donc, quitte à remplacer U par un voisinage ouvert affine if-stable 

plus petit, a est une carte i7-équivariante de U modelée sur (x-iQ)-

(b) Compte tenu de (a), on peut supposer qu'on dispose d'un voisinage affine étale, 

instable, U de x, et d'une carte iJ-équivariante 

a:U ^SpecA[Q] 

modelée sur (x, Q)- Comme n = \H\ est inversible en x, quitte à rétrécir U, on peut 

supposer de plus que n est inversible sur U. Comme U est affine, le quotient V = U/H 

existe et est affine. De plus, d'après IV-2.2.3, V est noethérien, et / : U —» V est fini. 

Soit P' le sous-groupe de Qgp défini par 

P' = {qe QëP\x(h, q) = 1 pour tout h € H}. 

En d'autres termes, P' est défini par la suite exacte 

0 -> P' Q g p -> H o m ( # a b , fjLn), 

où la seconde flèche est q i—• (h -+ x(h,q)). Il est donc d'indice fini dans Qgp, premier 

à la caractéristique de k(x), et l'inclusion Qgp/P' °-> £>( i ï a b ) (où D = Hom(—,// n)) 

définit par dualité un épimorphisme 

(3.5.4) # a b - » D(Qgp/P'). 

Soit 

P = P' H Q. 

C'est un sous-monoïde fs de Q, tel que P g p = P', et P —> Q est de Kummer. Le 

morphisme a : U —> Spec A [Q] de (a) (où A = Z[/x n][l/n]) est équivariant relativement 

à l'épimorphisme H -» Hah -» D(Qgp/Pf), donc définit, par passage au quotient, un 

morphisme b : V —> Spec A [P] donnant lieu à un carré commutatif 

(3.5.5) U ^SpecA[Q] , 

7T 

F t s P e c A [ P ] 

d'où un triangle commutatif 

(3.5.6) U —-U. [/' 

7T / 

où f/' = V x S p e c A [ p ] SpecA[Q]. Si l'on munit V de la log structure (fs) définie 

par 6, 7T est un morphisme de log schémas, et (3.5.5) en est une carte. Le tri­

angle (3.5.6) est un triangle de log schémas. De plus, ir' est un revêtement Kummer 
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étale standard de groupe D ( Q g p / P g p ) , et i est équivariant relativement à l'épimor-

phisme H -» Hah -» D(Qgp/Pgp) (3.5.4). Comme H agit trivialement sur la strate 

Cx,x = Cu,x = Spec Ûu,x/Ix, et que H est d'ordre premier à la caractéristique de 

/c(x), l'homomorphisme 

<?V,y ( = - * W M = {®U,xlh)H) 

est surjectif, où y = f{x), donc il en est de même de l'homomorphisme 

Hv)[Q] = H*)[Q]^ 0u,x/nv,y0u,x. 

Par Nakayama, il en résulte que le morphisme i de (3.5.6) induit une immersion 

fermée en Le. sur les localisés stricts en x. Quitte à induire (3.5.6) sur un voisinage 

affine étale convenable de y au-dessus de V, on peut donc supposer que i est une 

immersion fermée. Comme H opère transitivement sur les fibres de 7r, donc, compte 

tenu de (3.5.4), également sur celles de 7r;, au-dessus de tout point de V, ces fibres 

coïncident, et donc U et U' ont mêmes espaces sous-jacents. L'immersion fermée i 

est donc définie par un idéal nilpotent I de &u', et est stricte pour les log structures 

envisagées. Considérons les homomorphismes 

(3.5.7) Mv - - {**Mu)H 

définis par (3.5.6). Comme H D ( Q g p / P g p ) est surjectif, il résulte de (2.4) que la 

première flèche de (3.5.7) est un isomorphisme. Montrons qu'il en est de même de la 

seconde. Comme l'immersion i est stricte, on a un diagramme commutatif équivariant, 

à lignes exactes, 

(3.5.8) 0 ^ (1 + I)* ^ Mjj> ^ Mu >- 0 

id 
v y V 

0 ^ (1 + / ) * ^ M g p ^ M g p ^ 0, 

où (1 + / ) * = Kerûjj, —• ûjj. Plus précisément, Mv> est un (1 + J)*-torseur sur 

Mu induit par le (1 -h J)*-torseur M g p sur M g p , en particulier, le carré de droite est 

cartésien. On en déduit un diagramme commutatif où le carré est cartésien et la ligne 

du bas est exacte : 

(3.5.9) «Mu>)H (ir*Mu)H 

0 « ( 1 + I)*)H (<Mff)» (7UM«T• 

Comme n' est fini, en tout point géométrique z de V, on a Hq(H, 7r*(l + = 

YlïeU Hq(H, (1 + J) | ) , et comme les fibres de (1 + / ) * sont n-divisibles, on a 

+ = 0 P ° u r t o u t Q > 0. Par ailleurs, « ( 1 + I)*)H = 0 (puisque 
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(^ÛV)
H = (-K'^U>)H et donc « J ) H = 0 ) . La flèche « M ^ ) ^ (^M^)H de 

( 3 . 5 . 9 ) est donc un isomorphisme, et le carré de droite étant cartésien, il en est 

de même de la flèche (ir+Mu')11 —» (-K±MU)H, comme annoncé, ce qui achève la 

démonstration de (b). 

(c) Dans ce cas, avec les notations de la démonstration de (b), la strate Cu,x est 

régulière, et se projette isomorphiquement sur Cy^. Comme rg(M^ P ) = r g ( M | P ) = 

codim(CV^, V(j,)), V est log régulier en y = 7r(x), donc en toute générisation de y 

(cf. 1.3), donc VQ/) est log régulier . Comme nf est log étale, U' x v Vçg) est donc 

log régulier, en particulier, réduit, et l'immersion i induit un isomorphisme au-dessus 

de V(y), et donc déjà au-dessus de = Specûy^. Quitte à remplacer V par un 

voisinage ouvert convenable de i/, i est donc un isomorphisme, et ir : U —> V est un 

revêtement Kummer étale (de groupe D ( P g p / Q g p ) , quotient de H). Enfin, si H opère 

librement sur un ouvert dense, prenant un point géométrique t de V tel que H opère 

librement sur la fibre Vn(t), on a t.H = * .£>(P g p /Q g p ) , donc H = £ > ( P g p / Q g p ) . 

3.6. — Preuve de 3.2. 

Les assertions de 3.2 découlent du corollaire suivant de 3.4 : 

5.7. Corollaire. — On se place sous les hypothèses de ( 3 . 4 ) (c)), i.e. X est log régulier 

en x, l'action de G sur X est très modérée en x. On suppose de plus que l'action de 

G sur X est admissible, et libre sur un ouvert dense. On note f : X —• Y = X/G la 

projection, et x (resp. y) l'image de x (resp. y = f(x) dans X (resp. Y). Alors Gx 

est abélien, et il existe un voisinage ouvert affine V de y dans Y tel que : 

(i) le schéma V soit noethérien, et, muni de la log structure f+a : (f*Mx)G\V —• 

(f*&x)G\V = ûy, soit un log schéma fs, log régulier en y ; 

(ii) fy : X Xy V —> V soit un revêtement Kummer étale de V de groupe G. 

Preuve de 3.7. La question est locale sur Y au voisinage de y. Quitte à remplacer Y 

par un voisinage étale Y' de y, et X par I x y F ' , o n peut supposer que x est un point 

rationnel de Xy, de stabilisateur iJ, de sorte que Xy s'identifie à H\G par x i—• xg. Le 

morphisme / : X Y étant entier, donc fermé, quitte à remplacer Y par un voisinage 

de y, on peut trouver un voisinage ouvert et fermé U de x, stable par iJ, dont les 

translatés par un système de représentants de H\G dans G sont deux à deux disjoints, 

de sorte que X s'identifie au produit contracté U AH G. Alors U/H —• X/G est un 

isomorphisme, et en particulier, d'après I V - 2 . 2 . 3 , Y est noethérien, et / : X —• Y est 

fini. Par l'argument précédent, on se ramène au cas où G = H, Xy = {x}. Comme 

/ est fini, les voisinages étales de x images inverses par / de voisinages étales de y 

forment un système cofinal de voisinages étales de âf, et ceux-ci sont i^-stables. De 

plus, pour tout voisinage étale if-stable Z de x il existe un voisinage étale V de y 

et un morphisme h : Z' —» Z entre voisinages de x, où Z' = f~x(V), et, quitte à 
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rétrécir V, on peut imposer à h d'être if-équivariant. La démonstration de (3.4 (c)) 

montre qu'on peut choisir U de loc. cit. de cette forme, i.e.U = / _ 1 ( ^ ) , de sorte que 

f = 7г : U —> V = U/H est un revêtement Kummer étale standard de V de groupe 

if, ce qui achève la démonstration. 

3.8. Corollaire. — Sous les hypothèses de 3.4 (b), le sous-groupe Ker(G^ —> 

Hom(Mx,x^k(x))) agit trivialement sur le log schéma X dans un voisinage ou­

vert G x-stable de x. 

En effet, avec les notations de 3.5 (b), on a 

H = Gx-*Hah - » L > ( Q g p / P g p ) = H o m ( Q g p / P g p , k(x)) H o m ( M x ^ , fc(x)), 

donc 3.4 (b) implique qu'il existe un voisinage étale if-stable и : U —> X de x tel que 
Ker i f —> Hom(Mx^, opère trivialement sur le log schéma U, et donc a fortiori 

sur le voisinage ouvert (if-stable) u(U) de x. 

Signalons également la conséquence suivante de 3.4 (b) : 

3.9. Corollaire. — Plaçons-nous sous les hypothèses de 3.4 (b), et supposons X séparé. 

Alors G agit très modérément sur X dans un voisinage ouvert G-stable de x. 

Considérons le voisinage étale if-stable и : U —• X de x construit dans 3.5 (b). 
Comme on l'a observé en 3.1, i f agit très modérément sur U', donc sur U, et a fortiori 

sur u(U). Admettons provisoirement le lemme suivant : 

3.10. Lemme. — Quitte à remplacer U par un voisinage ouvert H-stable de l'image 

xf de x plus petit, on peut supposer que la propriété suivante est satisfaite : 

(*) pour tout point géométrique z~ de U, l'homomorphisme Hz —• Gu(z) est un 

isomorphisme. 

Supposons que U possède la propriété (*). Alors, comme H opère très modérément 

sur u(U), G opère très modérément sur u(U).G. Il reste donc à prouver 3.10. La 

propriété (*) équivaut à la conjonction de 

(i) u - 1 ^ ) = 0 pour geG-H, 

(ii) и-г№) = ид pour g e H, 
où (—) 9 désigne un schéma des points fixes de g. Comme X est séparé, Xя est un 
sous-schéma fermé de X. Si g n'est pas dans if, Xя ne contient pas x, donc, quitte à 
ôter de U la réunion des и~г(Хя) pour g G G — H, la condition (i) est réalisée. Pour 
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g G H, U9 est défini par le carré cartésien 

U9 *U 

A 

v v 

où A est la diagonale. Comme A est ouverte et fermée, U9 est ouvert et fermé dans 

u~1(X9). Mais U9 et u~1(X9) sont des sous-schémas fermés de U contenant x'. Ils 

coïncident donc dans un voisinage ouvert de xf. Donc quitte à remplacer U par un 

voisinage ouvert iif-stable de x' plus petit, on peut réaliser la condition (ii) pour tout 

geH. 

4. Points fixes 

4.1. — Soit X un schéma noethérien sur lequel opère un groupe fini G. Pour chaque 

sous-groupe H de G, on note XH le schéma des points fixes de H. C'est un sous-

schéma de X , fermé si X est séparé, représentant le foncteur S • X(S)H, intersection 

des graphes des translations h : X —• X , x i-> #/i pour h e H. Supposons X séparé. 

En chaque point géométrique x de XH d'image x, le sous-groupe d'inertie Gx de G 

contient H, et est égal à ^ si et seulement si £ appartient au sous-schéma (localement 

fermé) 

XH = XH- ( J X"'. 
H'DH,H'^H 

Pour g G G, on a 

(XH)g = X^-lн°, 

et de même 

(XH)9 = Xg-1H9 

de sorte que la réunion Xe (resp. Xc) des X 7 * (resp. XH) pour i7 dans une classe 

de conjugaison G de sous-groupes de G est G-stable. Les Xc, pour G parcourant 

les classes de conjugaison de sous-groupes de G, forment une stratification de X par 

des sous-G-schémas, avec la propriété que pour tout point géométrique x localisé en 

Xc, le groupe d'inertie Gx appartient à G. Nous appellerons cette stratification la 

stratification par l'inertie. 

Le but de ce numéro est de donner des exemples d'actions très modérées de groupes 

finis G sur des log schémas log réguliers et réguliers X , où un raffinement de la 

stratification par l'inertie est déduite de la stratification canonique d'un diviseur à 

croisements normaux G-stable. 

Le résultat suivant est classique, nous en donnons une démonstration, faute de 

référence. 
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4.2. Proposition. — Soit X un schéma noethérien régulier sur lequel opère un groupe 

fini G de façon modérée 3.1. Alors le schéma des points fixes XG est régulier. 

Si y est un point d'un schéma V, notons = SpecÛY,y Supposons XG ^ 0. 

Soit x un point de XG. Il s'agit de montrer que (XG)^ est régulier. Le groupe G 

est le groupe d'inertie en x : il fixe x et k(x). Il existe un voisinage ouvert affine de x 

stable par G : si U est un voisinage ouvert affine de x, l'intersection V des Ug pour 

g e G est un voisinage ouvert quasi-affine de x stable par G, et si VF est un voisinage 

ouvert affine de x contenu dans V, l'intersection des Vg est un voisinage ouvert affine 

de x stable par G. Donc G opère sur trivialement sur k(x), et, si A = ûx,x, on 

a 

(XG)(X) = (X(x)f = S p e c i e , 

où AQ est l'algèbre des co-invariants de G dans A, i.e. 

AG = A/I, 

où I l'idéal engendré par les ga — a, pour g dans G et a dans A. On est donc ramené 

à supposer X = X{x). Si Y = X/G = Spec , 4 e , G opère par F-automorphismes 

de X. Comme G est d'ordre inversible en x, d'après IV-2.2.3, X est fini sur Y, et 

Y est local, noethérien, de point fermé y, avec pour corps résiduel k(y) = k(x)G = 

k(x). Les morphismes XG <^-> X -» Y correspondent aux homomorphismes locaux 
AG ^ A _» A 

qui induisent des isomorphismes sur les corps résiduels. Comme 

XG = Spec A/1A = (X)G, on peut supposer X local et complet. Il en est alors de 

même de Y. En effet, comme il est observé dans la démonstration de IV-2.2.3, pour 

tout idéal J de on a JA D B = J. En particulier, si (resp. mg) désigne l'idéal 

maximal de A (resp. B), on am-gAnf? = mg,donci? = lim-B/m^ —» limA/m^A — A 

est injectif, d'image contenue dans AG — J5, donc B — B. On notera k = k{x) = k(y), 

et xxiA = m. 

On va démontrer la proposition en linéarisant l'action de G. 

Supposons d'abord que A soit d'égale caractéristique. Choisissons une base t = 

{U)i<i<r sur k de l'espace cotangent T = m/m 2 et des éléments Xi dans m rele­

vant les U. Comme B est local noethérien complet, choisissons en outre un corps de 

représentants, noté encore A;, de dans B. Notons 

ip : k[[T}\ - A 

l'homomorphisme envoyant U sur xi. L'homomorphisme 

f:k\[T]]^A 
envoyant t sur le système 

y = 1 E gzg -1 t 
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est G-équivariant. En outre, y est congru à x modulo m 2 , donc est un système ré­

gulier de paramètres de A, et donc / est un isomorphisme. Par suite / induit un 

isomorphisme 

k[[T]]G = k[[TG}} - Aa, 

où TQ est l'espace des co-invariants de G sur T, ce qui démontre 4.2 dans ce cas. 

Supposons maintenant que A soit de caractéristique mixte (0,p). Soit C un anneau 

de Cohen pour de corps résiduel fc, de sorte que B est quotient d'un anneau de 

séries formelles sur C. Comme G est d'ordre premier à p, il existe un (essentiellement) 

unique G[G]-module V, libre de type fini sur G, relevant T. Soit t = {ti)i<i<r une 

base de T, v = (vi) une base de V relevant t. Comme plus haut, choisissons des 

relèvements Xi dans m des U, qui forment donc une suite régulière de paramètres 

dans A. Prolongeons l'homomorphisme G —> A en 

if : C[[V}\ - A 

en envoyant V{ sur xi. L'homomorphisme 

f:C[[V])^A 

envoyant v = (vi) sur 

y = 1 E gzg -1 v 

est G-équivariant, et y est congru à x modulo m 2 , donc est un système régulier de 

paramètres de A. L'homomorphisme / est donc surjectif, et son noyau est défini 

par un élément F congru à p modulo l'idéal engendré par les V{. Ainsi X est un 

diviseur régulier G-équivariant dans X' = SpecG[[V]], d'équation F = 0. Observons 

que le module des coinvariants VQ est libre sur G . En effet, comme l'ordre de G est 

inversible dans G , V est projectif de type fini sur G [ G ] , et donc, si IQ est l'idéal 

d'augmentation de Z [ G ] , VQ = V/IQV = V (8>c[G] C est projectif de type fini, donc 

libre de type fini, sur G (il en est de même d'ailleurs de VG et l'homomorphisme 

composé VG ^ V - » VQ est un isomorphisme). L'image de F dans G[[VG]] est un 

paramètre régulier, donc, comme X'G = SpecC[[VG]], XG = X xX' X'G est régulier, 

ce qui achève la démonstration de 4.2. 

4.3. Corollaire. — Soit X un schéma noethérien séparé, régulier, muni d'une action 

modérée d'un groupe fini G. Alors la stratification de X par Vinertie est formée de 

schémas réguliers. 

4.4. Remarque. — Pour référence ultérieure, notons le résultat complémentaire sui­

vant : sous les hypothèses de 4.2, pour tout x G XG, l'homomorphisme canonique 

(4.4.1) TX(X
G) TX(X)

G 
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est un isomorphisme, où pour un schéma localement noethérien Y on note Ty(Y) 

l'espace tangent de Zariski en un point y de Y (= Hom^^^m^/m 2 , k(y))). Plus géné­

ralement, comme l'observe Gabber, (4.4.1) est un isomorphisme pour un schéma local 

noethérien X = SpecA, de point fermé x, muni d'une action d'un groupe fini G tel 

que l'homomorphisme AG —• A/m = k(x) soit surjectif. En effet, dans ce cas, si I est 

l'idéal de A engendré par les ga — a pour g e G et a e A, de sorte que XG = Spec AQ, 

où AQ = A/I, I est aussi l'idéal de A engendré par les ga — a pour g G G et a G m, 

autrement dit, / = IGW> Notant T*(—) un espace cotangent, dual (à valeurs dans 

k(x)) de Tx(—), l'homomorphisme 

Rom(Tx(Xf,k(x)) = T:(X)G - T*X{X
G) 

s'identifie à l'homomorphisme 

( m / m 2 ) G = m/(J G m + m 2 ) m/(J + m 2 ) 

qui est un isomorphisme, puisque / = / cm. 

4.5. — Sous les hypothèses de 4.3, soit Y un diviseur à croisements normaux strict 

G-stable, réunion de composantes irréductibles Yi, 1 < i < m. On munit X de la 

log structure définie par Y. Rappelons (cf. [de Jong, 1996, 7.1]) qu'on dit que Y est 

G-strict si la condition suivante est réalisée : pour tout i et pour tout g G G, si 

Yig CïYi ^ 0 , alors Yig = Y{. Si Y est G-strict, alors la condition (ii) de 3.1 est 

vérifiée en chaque point géométrique x de X. En effet, si (-t^)i<ï<r est l'ensemble des 

branches de Y passant par x, alors Dig = Di pour tout i. Comme M j P = 0 i < K r 

ei correspondant k Di, le groupe d'inertie Gx opère trivialement sur M ^ P . Rappelons 

également ([de Jong, 1996, 7.2]) qu'il existe une modification G-équivariante cano­

nique / : X —• X telle que f~1(Y)re^ soit G-strict. 

4.6. Corollaire. — Supposons que Y soit G-strict, que G opère de façon modérée, ad­

missible et génériquement libre, et que la stratification de X par les composantes 

irréductibles des strates de la stratification canonique (1.5) soit plus fine que la stra­

tification par l'inertie (4.1), i.e. que chacune de ces composantes irréductibles soit 

contenue dans une strate de la stratification par Vinertie. Alors G opère très modéré­

ment sur X (et donc la conclusion de 3.2 s'applique). Le groupe d'inertie est constant 

le long de chaque composante irréductible c de la strate X^ (1.5 (\)), de valeur Gc 

(le nombre minimum de générateurs de Gc étant, d'après 3.8, au plus égal à i). En 

particulier, G opère librement sur la strate X^ = X — Y. 

4.7. — Exemples. 

(a) Soient k un corps algébriquement clos, n un entier > 2 premier à la caractéris­

tique de k, G le groupe jin = fin(k). On fait opérer G sur X = A | par homothéties 

((X,x) i—• Xx pour X e G, x E X(k)). La stratification par l'inertie comporte deux 
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strates, X — { 0 } , où G opère librement, et XG = { 0 } . La donnée de deux droites Yî, Y2 

telles que YiflY^ = { 0 } définit un diviseur à croisements normaux G-strict Y = Y1UY2, 

et le couple (X, Y) vérifie les conditions de 4.6. Le choix de paramètres ¿1, £2 tels que 

Yi = V(U) permet de définir une carte équivariante 3.3 c : SpecZ[N 2 ] <— X , e$ 1—> ^ , 

associée à l'homomorphisme x : G 0 Z 2 —• / / n tel que x(^®ei) = ^- Le quotient X/G 

est le schéma torique Spec k[xn, xn~1y,..., x y n _ 1 , y 7 1 ] . 

Plus généralement, soient n un entier > 1, G un groupe abélien d'ordre n, 5 un 

schéma noethérien séparé, régulier, au-dessus de Spec Z[l /n , /x n ] , un ^--module 

localement libre de rang fini, muni d'une action linéaire de G, X le fibre vectoriel 

V(E) = Spec Sym(E'). Pour chaque caractère x : G —• /x n, notons L x le G-^s-module 

correspondant. L'homomorphisme canonique G-équivariant 

XLx * Ex E1 

où E x = J4?orriG(Lx,E) et x parcourt le groupe des caractères de G, est un isomor­

phisme. Il définit une décomposition G-équivariante 

X Xx 

où Xx = V(EX), muni de l'action de G à travers x- En particulier, XG = X i , où 

1 : G —> / i n est le caractère trivial. Supposons 5 local, 5 = Spec A. Pour chaque x £ 

Hom(G, fin), choisissons une base (£*)ieJx de de sorte que Xx = Spec A[(ti)iei], 

avec gU = x(d)U pour g E G, i € Ix.Le couple formé de X et du diviseur à croisements 

normaux (relatifs à S) Y = 2 X z e / x ^ » o u ^ = = ^) P o u r * ^ A:> vérifie les 

conditions de 4.6 (et les vérifie d'ailleurs fibre à fibre). 

(b) Soient k un corps algébriquement clos d'exposant caractéristique p, n un entier 

> 2 tel que (2n,p) = 1, G le groupe diédral Dn = (s,r : s2 = l , r n = l,srs = r _ 1 ) . 

Soit C £ k une racine primitive n-ième de 1. Soit p : G —> GL(E') la représentation 

de degré 2 induite du caractère x de fin C G tel que x ( 0 = C : p ( s ) = I I > 

p(r) = V Soit X le G-schéma V(E) = Specfc[ii,v], s(ix) = v,r(u) = Cu. 

Pour 0 < z < n — 1, notons Zi C X la droite v = et Z = Uo<z<n-i ^ a 

stratification par l'inertie comporte n + 2 strates : X — Z , où G opère librement, 

^ — { 0 } (0 < i < n — 1), où le groupe d'inertie est d'ordre 2 (de générateur rls), et 

{ 0 } = X G . 

Pour n = 2, G = ( Z / 2 Z ) 2 , Z est un diviseur à croisements normaux G-strict, et 

le couple (X, F ) vérifie les conditions de 4.6. Pour n > 2, Z n'est plus un diviseur 

à croisements normaux, et l'inertie en { 0 } n'est plus abélienne. Soient / : X' —> X 
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l'éclaté de { 0 } dans X , E = / - 1 ( 0 ) le diviseur exceptionnel, Z' = Uo<i<n-i le 

transformé strict de Z. Alors G opère de façon naturelle sur X', la projection / est 

G-équivariant e, et Y' = f~1(Z) = E U Z' est un diviseur à croisements normaux 

G-strict. Le couple (X',YF) vérifie les conditions de 4.6. La stratification de X' par 

l'inertie se compose des strates Z[, où l'inertie est un groupe à deux éléments, et de 

X' — Z', où G opère librement. La stratification canonique associée à Y' la raffine : 

X'<o) = X > - r , X'W = Y' - Uo< i<„ - i (£ H ZI), X'W = l U < n - i ( £ n Z[). 

4.8. — La construction précédente, qui rend les inerties abéliennes, se généralise. Soit 

X un schéma noethérien régulier, séparé, muni d'une action modérée d'un groupe fini 

G, et soit Y un diviseur à croisements normaux G-strict. Si H est un sous-groupe de 

G, XH est régulier (et séparé), donc il en est de même de l'éclaté X' = ÉC\XH(X) de 

X le long de XH. Le normalisateur N = NQ(H) de H dans G stabilise XH, donc agit 

sur XF, et le morphisme / : X' —• X est équivariant relativement à N —» G. De plus, 

f~1(XH) est un diviseur régulier dans X'. Si D est une composante de Y, comme D 

est if-stable, D X j = Z } ^ est régulier, et le transformé strict D = ÉC\DH(D) est 

un diviseur régulier croisant f~1(XH) transversalement. Il s'ensuit que le transformé 

total réduit Y' = f~1(Y)red est un diviseur à croisements normaux A/"-strict dans X'. 

4.9. Proposition. — Sous les hypothèses de 4- S, soit x un point géométrique de X en 

lequel le groupe d'inertie Gx n'est pas abélien, et soit H le sous-groupe des commu­

tateurs (Gx,Gx)- Alors Gx = NGW(H) agit sur X' = ÉC\XH(X), et en chaque point 

géométrique y de X' au-dessus de x, le groupe d'inertie (Gx)y est strictement plus 

petit que Gx-

En effet, le point y correspond à une droite L dans (T^ /T^) ®k(x) k(y), où Tx = 

Tx(X). Supposons que y soit fixe sous Gx. Alors Gx agit sur L par un caractère, donc 

H agit trivialement sur L. Or (Tx/T^)11 = 0, contradiction. (Noter que cet argument 

montre en particulier que, si H ^ {1} et l'action de G sur X est génériquement libre, 

XH est de codimension > 2 dans X en x.) 
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