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EXPOSE VI

LOG REGULARITE, ACTIONS TRES MODEREES

Luc Illusie

1. Log régularité

1.1. — Pour le langage des log schémas nous renvoyons le lecteur & [Kato, 1988],
[Niziot, 2006], [Gabber & Ramero, 2013]. Sauf mention du contraire, les log structures
considérées le seront au sens de la topologie étale. Un log schéma fin (resp. fs, i.e. fin
et saturé) [Kato, 1988] est un schéma muni d’une log structure admettant localement
(pour la topologie étale) une carte sur un monoide fin (resp. fin et saturé). On note en
général Mx le faisceau de monoides d’un log schéma X, a : Mx — Ox le morphisme
structural, et Mx = Mx /0%, My = M% /0%. Sauf mention du contraire, les log
schémas considérés sont supposés localement noethériens.
Dans ce qui suit, X désigne un fs log schéma.

1.2. — Soient T un point géométrique de X, d’image = € X, Ox z le localisé strict
de X en Z. Notons Ixz (ou Iz s’il n’y a pas de confusion & craindre) l'idéal de Ox z
engendré par a(Mx z — O% ;), Cx 7 le sous-schéma fermé de X (z) = Spec Ox z défini
par Irz. Le fermé sous-jacent & Cx 7 est la trace sur X(z) de la strate de X ot le rang
de M est égal a r(z) = rg(M% 5)-

On dit que X est log régulier en = (ou Z) si C'x z est régulier et I'on a

(1.2.1) dim(X(z)) = dim(Cx,z) + rangz (M z),

(cette condition ne dépend que de z). On dit que X est log régulier si X est log régulier
en tout point. La définition analogue pour les log schémas zariskiens est due & Kato
[Kato, 1994]. La variante dans le cadre étale a été traitée par Niziol [Niziot, 2006].
Voir aussi [Mochizuki, 1999] et [Gabber & Ramero, 2013, 9.5]. Nous rappelons ci-
aprés quelques propriétés de cette notion.
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78 EXPOSE VI. LOG REGULARITE, ACTIONS TRES MODEREES

1.3. — Supposons X muni d’une carte Px — Mx, avec P fin et saturé. Alors, pour
tout z, X est log régulier en x si et seulement si X, muni de la log structure Zariski
M )Z;" =&, Mx, ot € : X¢g — Xzar, est log régulier en x au sens de Kato [Kato, 1994],
[Tsuji, 1997, II 4.6], [Niziot, 2006, 2.4]. En particulier, si X est log régulier en =, X est
log régulier en toute générisation y de X (la stabilité de la log régularité (Zariski) par
générisation est énoncée dans [Kato, 1994, 7.1], mais, comme Gabber I’a observé, la
démonstration qui est donnée est insuffisante ; voir [Gabber & Ramero, 2013, 9.5.47]
pour un argument correct).

Si la log structure de X est triviale, X est log régulier si et seulement si X est
régulier au sens usuel.

1.4. — Supposons X log régulier. Soit j : U — X I'inclusion de l'ouvert de trivialité
de sa log structure. Alors U est un ouvert dense de X et on a

MX = ﬁX ﬂj*ﬁ;}

(INiziot, 2006, 2.6]).

Nous dirons qu’un couple (X, Z) formé d’un schéma X et d’un fermé Z est un
couple log régulier si, pour la log structure sur X définie par Mx = Ox N j. O, ol
j : U — X est I’ouvert complémentaire de Z, X est log régulier et Z est le complément
de Pouvert de trivialité de sa log structure. La log structure précédente sur X sera
dite associée au couple (X, 7).

1.5. — Supposons X log régulier. Il résulte de 1.6 ci-aprés (cf. [Kato, 1994, 4.1]) que
le schéma sous-jacent & X est Cohen-Macaulay et normal. En particulier, en (1.2.1),
on a

(1.5.1) codimz(Cx z, X(5)) = rangg (Mipj).

Pour i € N, soit X () I’ensemble des points = de X tels que r(z) = 4, avec la notation
de 1.2. C’est une partie localement fermée, sous-jacente & un sous-schéma régulier de
X, de codimension %, dont la trace sur X(z), en chaque point géométrique T localisé
enz € X, est Cxz. On dit que X est la strate de codimension i définie par le rang
de M®. La stratification par les X(® est appelée stratification par le rang de 7", ou
stratification canonique. Voici deux exemples.

(i) Si X est un schéma noethérien régulier, muni de la log structure définie par un
diviseur & croisements normaux D, X(®) est ensemble des points ou passent exacte-
ment 7 branches de D, i.e. tels que le normalisé de D ait i points au-dessus de x.

(ii) Si X est une variété torique sur un corps k, de tore T, munie de sa log structure
canonique, X est un log schéma log régulier, 'ouvert de trivialité de la log structure
est T, et X9 est la réunion des orbites de T de codimension i.
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1. LOG REGULARITE 79

1.6. — Supposons X log régulier en z, image du point géométrique T, soient P =
M xz, k = k(Z). Notons que P est un monoide fs saillant (i.e. tel que P* = 0). Soit
X le complété de X (7) au point fermé. Alors, d’aprés [Kato, 1994, 3.2], X admet une
carte modelée sur P en T, qui donne lieu & des isomorphismes
(i)
Xz = Spec k[[P]][[t1, - - -, tnl]

si Ox . est d’égale caractéristique,
(ii)
Xz 5 Spec C(R)[[Pll[[t1, - - - tall/(f)

si Ox . est d’inégale caractéristique (0,p), ot C(k) est un anneau de Cohen pour k,
et f est congru & p modulo I'idéal engendré par P — {0} et les ;.

1.7. — Supposons X log régulier. Alors X est régulier en z, image de T, si et seule-
ment si Mz ~ N" ([Niziot, 2006, 5.2|, voir aussi [Vidal, 2001b, 1.8]). Il en résulte
que ’ensemble des points de régularité de X coincide avec I’ensemble des points de
régularité du monoide M, et en particulier est ouvert dans X ([Niziot, 2006, 5.3]).
Si X est log régulier et régulier, Pouvert de trivialité de la log structure est alors le
complément d’un diviseur & croisements normaux.

1.8. — Soit f : X — Y un morphisme de log schémas fs. Si Y est log régulier et f
log lisse, X est log régulier.

L’analogue pour les log structures Zariski est [Kato, 1994, 8.2]. La démonstration
de loc. cit. s’applique, mutatis mutandis, dans le cadre étale.

Le corollaire suivant jouera un role clé dans 'application des résultats de de Jong
a la démonstration du théoréme d’uniformisation de Gabber. Un énoncé similaire est
donné dans [Mochizuki, 1999, 4.2]. Rappelons que, si S est un schéma, une courbe
nodale f : C — S est un morphisme plat, localement de présentation finie, purement
de dimension relative 1, dont les fibres géométriques ont pour seules singularités des
croisements normaux ®).

1.9. Proposition. — Soit (Y, T) un couple log régulier (1.4). Soit f : X — Y une
courbe nodale, lisse au-dessus de Y —T'. Soit D un diviseur effectif sur X, de support
contenu dans le lieu de lissité de f, et étale sur Y. Alors le couple (X, f~1(T)UD) est
log régulier, et pour les log structures associées, f est un morphisme de log schémas
et est log lisse.

() On impose souvent aux fibres géométriques d’étre connexes. Cette condition supplémentaire est
inutile pour ’énoncé qui suit.
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80 EXPOSE VI. LOG REGULARITE, ACTIONS TRES MODEREES

La question est locale pour la topologie étale sur X et I’assertion est triviale sur
louvert de lissité de f et sur f~1(Y — T). On peut donc supposer D = &. D’aprés
[SGA 7 xv 1.3.2] (voir aussi [de Jong, 1996, 2.23]), on peut supposer que Y est affine,
Y = Spec R, et que X est défini par

(1.9.1) X = Spec R[u,v]/(uv — h),

ol h est une section de &y inversible sur Y — T. On peut supposer de plus qu’on
dispose d’une carte ¢ : P — My avec h = ec(a), pour € € R* et a € P. Soit Q le
monoide fs défini par le carré cocartésien

N2 —(Q

|

N——=ZxP

K

ot la flecche N — N2 (resp. N — Z x P) est donnée par 1 — (1,1) (resp. 1 — (1,a)).
Le carré

Spec R[u,v]/(uv — h) —2 5 Spec Z[Q]

[ lSpec Z[g]

Spec R Spec Z[Z x P]

ou la fleche ¢’ est donnée par cet Z — R, 1 — ¢, et d par (1,0) — u, (0,1) — v sur
N2 et ¢’ sur Z x P, est cartésien. Alors d définit une log structure sur X dont ’ouvert
de trivialité est f~1(Y — T), et (c/,d, g) est une carte de f. Comme g est injectif et
Coker g8P ~ Z, f est log lisse. Comme Y est log régulier, X est donc log régulier,
et comme l'ouvert de trivialité de la log structure de X est f~1(Y — T), le couple
(X, f71(T)) est log régulier.

2. Revétements Kummer étales

Dans cette section et la suivante, nous aurons & considérer des actions de groupes
sur des schémas ou des log schémas : sauf mention du contraire, il s’agira d’actions a
droite.

2.1. — Rappelons quelques définitions (cf. [Illusie, 2002, 3], [Stix, 2002, 3.1],
[Vidal, 2001a]). Un homomorphisme h : P — @ de monoides intégres est dit de
Kummer si h est injectif et, pour tout ¢ € Q, il existe n > 1 et p € P tels que
ng = h(p). On dit qu’un morphisme f : X — Y de fs log schémas est de Kummer si,
pour tout point géométrique T de X d’image ¥ = f(Z) dans Y, 'homomorphisme
induit Mz — M7z est de Kummer. On dit qu’un morphisme f : X — Y est Kummer
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2. REVETEMENTS KUMMER ETALES 81

étale si f est de Kummer et log étale. On dit que f est un revétement Kummer étale si
f est de Kummer étale et le morphisme de schémas sous-jacent est fini.

Le site Kummer étale d’un fs log schéma X est la catégorie des fs log schémas de
Kummer étales au-dessus de X munie de la topologie définie par les familles surjec-
tives de X-morphismes (lesquels sont automatiquement de Kummer étale). Pour X
connexe non vide, les revétements Kummer étales de X forment une catégorie galoi-
sienne, équivalente & la catégorie des représentations d’un groupe profini, le groupe
fondamental logarithmique de X, wiog (X, z), ou z est un point géométrique logarith-

mique de X, cf. loc. cit.

2.2. — Un morphisme f : X — Y de log schémas fs qui est déduit par changement
de base par un morphisme strict g : ¥ — SpecZ[P] d’'un morphisme SpecZ[h] :
SpecZ[Q] — SpecZ[P], ou h : P — @ est un homomorphisme de Kummer entre
monoides fs tels que le conoyau de h&P soit annulé par un entier n inversible sur
Y, est un revétement Kummer étale. On dit qu’un tel revétement est un revétement
Kummer étale standard.

Un revétement Kummer étale standard f : X — Y comme ci-dessus est galoisien
dans le sens suivant : le groupe diagonalisable (étale) G = Hom(Q#e?/ P8P, G,,y ) opére
sur X par automorphismes de Y-log schémas, et le morphisme canonique

(2.2.1) X Xy G— X xy X, (z,9) — (z,z9),

ol le produit au second membre est pris dans la catégorie des fs log schémas, est
un isomorphisme; le log schéma Y est un quotient faisceautique de X par G dans
la catégorie des faisceaux sur le site Kummer étale de Y, et en tant que schéma, un
quotient géométrique au sens usuel de X par G : on a

(2.2.2) Oy = (f.0x)° ; My = (f.Mx)°.

De plus, le morphisme f est fini, ouvert et surjectif, et le reste aprés tout changement
de base fs Y/ — Y. Ces assertions sont un cas particulier de théorémes de descente
de Kato [Kato, 1991, 3.1, 3.4.1, 3.5]. Pour le fait que 2.2.1 soit un isomorphisme,
voir [Illusie, 2002, 3.2]. Pour la premiére formule de 2.2.2, voir [Kato, 1991, 3.4.1] (et
[Mlusie et al., 2013, 2.1] pour le fait, utilisé dans la démonstration de [Kato, 1991,
3.4.1], que Z[P] est facteur direct de Z[Q] comme Z[P]-module). On pourrait aussi
invoquer la structure des représentations des groupes diagonalisables et le fait que
QN P8P = P, La vérification de la seconde formule est plus délicate. Nous en donnons
une démonstration directe dans 2.4.

Tout morphisme de Kummer étale est, localement pour la topologie étale, iso-
morphe & un revétement Kummer étale standard (cf. [Stix, 2002, 3.1.4]). Plus préci-
sément, si f : X — Y est un morphisme de Kummer étale surjectif, avec X (resp. Y)
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82 EXPOSE VI. LOG REGULARITE, ACTIONS TRES MODEREES

strictement local de point fermé z (resp. y), on a un carré cartésien
X —= Spec Z[Q]
f LSpec Z[h]
Y —2> Spec Z[P],

ol a (resp. b) est une carte de X (resp. Y), et h: P — @Q un morphisme de Kummer tel
que Coker h®8P soit annulé par un entier n inversible sur Y. Alors f est un revétement
Kummer étale galoisien de groupe G = Hom(Coker h8?, 1, (k(y))).

2.3. — Dans ce cas, l’action de G sur X se décrit simplement. Plus généralement,
considérons un revétement Kummer étale standard f : X — Y, donné par un carré
cartésien de schémas

(2.3.1) X —> SpecA[Q)]
f lSpec AlR]
Y —2> Spec A[P],

ou A = Z[u,][1/n], pn = pn(C) (n entier > 1), h : P — @ est un morphisme de
Kummer tel que Coker h8P soit annulé par n, et 'on munit X et Y des log structures
définies par les fléches horizontales. Soit C' = Coker h8P. La suite exacte

0— P8 - Q8 - C — 0

donne, par application du dual de Cartier D = Hom(—, G,,), une suite exacte de
groupes diagonalisables sur Spec A,

0-G—-Tg—Tp—0,
ou G = D(C). Posons Zp = Spec A[P], Zg = Spec A[Q)]. L’accouplement canonique
(2.3.2) Tp ® P?* — G,
définit une famille de caractéres
(Xp : Tp = Gm)peper,
qui détermine ’action de Tp sur Zp par

(2.3.3) 9-p = xp(9)p,

pour un point g de Tp (3 valeurs dans un schéma S), et un point p de Zp & valeurs
dans S. L’action de Tg sur Zg est décrite de fagon similaire, et la carte a : X — Zg
est équivariante relativement aux actions de G et Tg sur X et Zg respectivement :
pour g € G et q € Q,

(2.3.4) 9-a*(q) = xq(9)a*(q),
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2. REVETEMENTS KUMMER ETALES 83

ot a*(q) est la section de Mx image inverse de ¢ par a.

2.4. — Déduisons de cette description la seconde formule de (2.2.2). L’argument qui
suit est dit & Gabber. On doit vérifier que My — (f.Mx)® induit un isomorphisme
sur les fibres en tout point géométrique de Y, donc on peut supposer Y strictement
local de point fermé y. Dans la suite, nous omettrons parfois h : P — @ de la
notation, et noterons encore a (resp. b) I’homomorphisme @ — &(X) (resp. P -
0(Y)) déduit de a (resp. b). Quitte & remplacer P par son localisé P,y en 'idéal
premier p complémentaire de la face b—l(é’;‘,,y), et Q par Q ®p Pp), on peut supposer
que P* = b‘l(é’,",’y). Et, pour ¢ € Q, q est inversible si et seulement si a(gq) 'est
sur un point au-dessus de y (car si tel est le cas, et n > 1 est tel que ¢" € P, on
a a(q”) = b(¢") € Oy, et ¢" € P*). Si z est un point de X au-dessus de y, donc
correspondant & un relévement a Q de P — k(y), il en résulte, par la formule (2.3.3)
(appliquée a l’action de Tg sur X), que g € G fixe ce point si et seulement si g est
orthogonal a Q*/P* C Q8P/P#P pour 'accouplement G ® Q8P /P& — y,, déduit de
(2.3.2). L’homomorphisme P — @ se factorise canoniquement en

P— P <Q,
ot P’ := Q* @p- P. Cette factorisation définit une factorisation de f en
X357 3y,

oll v est un revétement fini étale usuel, galoisien de groupe H égal au dual de Cartier
de Q*/P*, et strict en tant que morphisme de log schémas. En particulier, &5 —
(v.05)H et My — (v,My+)H sont des isomorphismes. Remplagant Y par Y’ puis par
son localisé strict en un point au-dessus de y, on peut donc supposer que P* = Q*. Il
découle de la remarque faite plus haut que X a alors un unique point = au-dessus de y,
donc est strictement local, et que le groupe d’inertie en x est G tout entier. Considérons
le diagramme commutatif suivant, & lignes exactes, ou les fléches verticales sont les
fléches canoniques évidentes :

(241) 0 oy, Mg My,

L)

* AL d *
0—— (ﬁX,z)G —_— (M)g{}?a:)a —_— (Mip,z)c _— Hl(G7 ﬁX,z)’

ou d est l'opérateur bord de la suite exacte de cohomologie de G relative 4 la suite
exacte de G-modules

0— 0%, — MY, — Higm — 0.
D’aprés la premiére formule de (2.2.2), la fléche verticale de gauche est un isomor-

phisme. D’aprés (2.3.4), G opére trivialement sur Mip,z, donc (M?{w)G = T/fip’m. Un

SOCIETE MATHEMATIQUE DE FRANCE 2014



84 EXPOSE VI. LOG REGULARITE, ACTIONS TRES MODEREES

calcul qui sera fait en 3.5 montre que la fléche naturelle H' (G, 6% ) — H'(G, k(z)*) =
Hom(G, u,) est un isomorphisme, et que, via ces identifications, 'opérateur bord

d: M3 (= Q% /P*) - Hom(G, 1)

est déduit de 'accouplement canonique G ® Q% /P8 — pu, (cf. (2.3.2)), qui est un
accouplement parfait. Le noyau de d est donc P8P/P* = M—ffy. Il s’ensuit que ¢
induit un isomorphisme sur le noyau de d, et donc que la fleche verticale médiane
de (2.4.1) est un isomorphisme. Comme My,, = My, N Mx, C M %o (f étant de
Kummer), si a € (Mx,;)%, il existe b € My, et u € 0% . tels que a = ub, donc
u € (ﬁ}’z)a = 0%, et a € My,, et la flacche My, — (f.Mx,;) est elle aussi un
isomorphisme.

2.5. Proposition. — Considérons un revétement Kummer étale standard (2.3.1). Pour
tout point géométrique T de X d’image § dans Y, le morphisme Gz-équivariant

(2.5.1) Cxz — Cyg,
ot Gz est le sous-groupe d’inertie en T, est un isomorphisme. En particulier, Gz opére
trivialement sur Cx z.

Procédant comme en 2.4, on peut supposer X (resp. Y) strictement local de point

~

fermé x (resp. y), avec P* = b“l(ﬁ{/’y), (resp. Q* = a7 (0% ,)), et P* = Q*. Il en
résulte que la fleche composée
Z[P*] - Z[P] - Z[P)/b~ (O, - 6%,)
(resp.
Z[Q*] — Z[Q] — Z[Q]/a™ (Ox s — O% )
est un isomorphisme, et que par suite la fléche
¢ Z[P)/b~ (Oyy — Oy,) — Z[Q)/a™H(Ox e — Ok )
est un isomorphisme. Comme la fleche Oy, /Iy, — Ox ;/Ix . est donnée par
Oy,y ®z(p] ¥, la projection Cx , — Cy,y (2.5.1) est donc un isomorphisme.

3. Actions trés modérées

3.1. — Soit X un log schéma fs, muni d’une action d’un groupe fini G. On se propose
de dégager des conditions suffisantes sur 'action de G pour que, lorsque X est log
régulier, le quotient de X par G existe comme log schéma et soit log régulier.

On dit que G opére modérément sur X en un point géométrique T de X localisé en x, si
le stabilisateur Gz de T (groupe d’inertie en x) est d’ordre premier & la caractéristique
de k(z). On dit que G opére modérément sur X si G opére modérément en T pour tout
Z. Ces définitions ne font pas intervenir la log structure de X.
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3. ACTIONS TRES MODEREES 85

La définition et les résultats qui suivent sont dus & Gabber. On dit que G opére
trés modérément sur X en T si les trois conditions suivantes sont satisfaites :

(i) G opére modérément en T ;

(ii) G opére trivialement sur M x z ;

(iii) Gz opére trivialement sur la strate Cx z (1.2).

On dit que G opére trés modérément sur X si G opére trés modérément sur X en
tout point géométrique.

Dans la situation de (2.3.1), il découle de (2.3.4) et de 2.5 que, pour tout point
géométrique T de X, Gz opére trivialement sur Mz et sur la strate C 'xz. Donc G
opére trés modérément sur X. On va voir qu’en un sens convenable, toute action trés
modérée génériquement libre sur un log schéma log régulier est localement de ce type.
Plus précisément, le résultat principal est le suivant :

3.2. Théoréme. — Soit X un log schéma fs log régulier, muni d’une action d’un groupe
fini G. On suppose que G opére de fagon admissible sur le schéma sous-jacent & X,
librement sur un ouvert dense, et trés modérément. Soit Y = X/G le schéma quotient,
f: X =Y la projection. Alors :

(1) Y est localement noethérien et le morphisme f est fini;

(ii) ’homomorphisme fia : (fMx)C — (fOx)C = Oy est une log structure fs
sur 'Y, qui fait de Y un log schéma log régulier, et f : X — Y est un revétement
Kummer étale de groupe G. En outre, en tout point géométrique T de X, le groupe
d’inertie Gz est abélien.

Rappelons ([SGA 1 v 1]) que dire que G opére de fagon admissible sur un schéma
(non nécessairement localement noethérien) X signifie que X est réunion d’ouverts
affines stables par G, de sorte que le quotient X/G existe comme schéma.

3.3. — La preuve de 3.2 sera donnée en 3.6. Nous établirons d’abord un résultat plus
précis que 3.2, a savoir 3.4, de nature locale sur X. Nous aurons besoin pour cela de
la notion suivante. Soient n un entier > 1, G un groupe fini, et @ un monoide fs.
Supposons donné un homomorphisme

X :G*®® Q% — py, = p,(C), g®q+ x(9,9)

Pour g € G et g € Q, on écrira encore, par abus, x(g,q) (ou x4(9)) pour x(g,9), ou g
est I'image de g dans G®P. Soit A = Z[u,][1/n]. On déduit de x une action de G sur
le log schéma Spec A[Q)], caractérisée par

99 = Xq(9)q

pour g € G, g € Q.
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86 EXPOSE VI. LOG REGULARITE, ACTIONS TRES MODEREES

Soit X un log schéma fs muni d’une action de G. Par une carte G-équivariante de
X modelée sur (x, Q), on entend un morphisme strict, G-équivariant

c: X — SpecA[Q)].
Un tel morphisme est donné par un homomorphisme
¢ :Q—-T(X, Mx)

tel que, pour tout ¢ € @ et tout g € G, on ait g*(c*(q)) = x(9,9)c*(q), ou g* désigne
I’endomorphisme de I'(X, Mx) défini par g.

3.4. Proposition. — Soit X un fs log schéma, muni d’une action d’un groupe fini G,
et soit T un point géométrique de X localisé en x. On note H = Gz le groupe d’inertie
en .

(a) On suppose que les conditions (i) et (ii) de 3.1 sont vérifiées en T. Soit n
Vordre de H. Il existe un voisinage étale affine H-équivariant U de T et une carte
H-équivariante de U modelée sur (x,Q), ot Q = Mz et x : H*® @ Q8 — u,,.

(b) On suppose de plus que G agit trés modérément en T, i.e. que H agit trivia-
lement sur la strate Cx z. Alors, il existe un voisinage affine étale H -équivariant U
de T tel que le schéma quotient V.= U/H, muni de la log structure (m,My)? —
(7o Op)2 = Oy, otv m: U — V est la projection, soit un fs log schéma, et qu’on ait
une V-immersion fermée stricte équivariante, et d’idéal nilpotent, i : U — U’, ou
w' U — V est un revétement Kummer étale standard de V.

(c) Si, sous les hypothéses de (b), X est supposé en outre log régulier en x, alors il
existe m : U — V comme en (b) tel que m soit un revétement Kummer étale standard
de V, et V est log régulier en y = w(x). Si de plus H opeére librement sur un ouvert
dense de U, H est abélien, et égal au groupe du revétement .

3.5. — Preuve de 3.4.

(a) Observons d’abord que les voisinages affines étales H-stables de T forment une
famille cofinale de voisinages étales de T. En effet, soit U; un voisinage étale, affine,
de Z. Soit Uy = [],cy Urh, ot [] désigne un produit fibré sur X. Le schéma U est
un voisinage étale quasi-affine H-stable de . Si Us est un voisinage ouvert affine de
'image z de Z dans Us, Uy = [,y Ush est un voisinage affine étale, H-stable, de
T, au-dessus de U. Comme k(Z) contient u,, on peut supposer, quitte & remplacer X
par un voisinage étale H-stable convenable de T, que X est au-dessus de Spec A, ol
A = Z[p,][1/n], avec action triviale de H sur A.

Considérons la suite exacte de groupes abéliens

(3.5.1) 0— ﬁ;(,i — Mi{’i — Mip,f — 0.

Elle est H-équivariante, et si Q = Mz, Q2P est de type fini sans torsion. Choisissons
un scindage s : Q8% — M )ggf de (3.5.1) (comme suite exacte de groupes ). Comme H
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agit trivialement sur Q®P, on a, pour ¢ € Q¥ et g€ H

(3.5.2) g9-8(q) = 2(9,9)s(q)

avec z(g,9) € Ok 5 Pour g1, g2 dans H, on a

2(9192,9) = (912(92,9))-2(92, 9),
en d’autres termes, g — (¢ — 2(g, q)) est un l-cocycle
z € ZI(H, Hom(Q®P, ﬁ}i))

L’image (2] de z dans H' (H, Hom(Q#?, 6% ;)) est la classe de cohomologie de (3.5.1).
Dans le carré commutatif de fléches canoniques

Z'(H,Hom(Q®P, Oxz) —= Z'(H,Hom(Q#P, k(Z)*))

| |

H'(H,Hom(Q®?, 6% ;) — H'(H,Hom(Q®?, k(Z)*)),

la fléche verticale de droite est (trivialement) un isomorphisme. D’autre part, la fléche
horizontale inférieure est un isomorphisme, car (1 + mx z)* est n-divisible. L’image

de z dans Z'(H, Hom(Q®®, k(Z)*)) est un homomorphisme

x : H — Hom(Q®, uy), g — (g — x(9,9))-

Cet homomorphisme se reléve en un élément de Z'(H, Hom(Q#?, % 7)), noté encore
X, qui a méme classe de cohomologie que z dans H'(H, Hom(Q8P, & % z))- 11 existe
donc u € Hom(Q®, 0% ) tel que 2(g,4)/x(9, ) = gu(g)/u(g). Alors g.(u(q)s(g)) =
x(g,9)u(g)~'s(g). Donc quitte 4 remplacer s par (g — u(q)~'s(g)), on peut supposer
que z = X, autrement dit z est défini par un homomorphisme (noté encore x)

(3.5.3) X H*® ® Q% — pn, (h,q) — x(h,q),

i.e. z(h,q) = x(h, q) pour tout h € H et tout ¢ € @ (avec la notation de 3.3). D’apreés
[Kato, 1988, 2.10], ’homomorphisme @ — Mx z induit par s se prolonge en une carte
a : U — Spec A[Q] (correspondant & un homomorphisme a* : Q — I'(U, My)) d’un
voisinage étale U de T. D’aprés ce qu’on a vu plus haut, on peut supposer U H-stable.
D’aprés (3.5.2), ’homomorphisme s : Q — Mx z est H-équivariant, i.e. pour ¢ € Q
et h € H, on a (dans Mx z)

k*a*(q)z = x(h, 9)a*(¢)=-

Pour h et g fixé, on a donc h*a*(q) = x(h,q)a*(q) sur un voisinage étale H-stable
de T au-dessus de U, donc a fortiori sur un voisinage ouvert H-stable U’ de I'image
z de T dans U. Comme H est fini et Q) de type fini, il existe un voisinage ouvert
affine H-stable U"” de z contenu dans U’ tel que l'identité précédente soit satisfaite
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au-dessus de U”. Donc, quitte & remplacer U par un voisinage ouvert affine H-stable
plus petit, a est une carte H-équivariante de U modelée sur (x, Q).

(b) Compte tenu de (a), on peut supposer qu’on dispose d’un voisinage affine étale,
H-stable, U de 7, et d’une carte H-équivariante

a: U — Spec A|Q)]

modelée sur (x, Q). Comme n = |H| est inversible en z, quitte & rétrécir U, on peut
supposer de plus que n est inversible sur U. Comme U est affine, le quotient V = U/H
existe et est affine. De plus, d’aprés IV-2.2.3, V est noethérien, et f : U — V est fini.
Soit P’ le sous-groupe de Q&P défini par

P’ = {q € Q®®|x(h,q) = 1pour touth € H}.
En d’autres termes, P’ est défini par la suite exacte

0 — P' — Q% — Hom(H?®, ii,,),

ot la seconde fleche est ¢ — (h — x(h,q)). Il est donc d’indice fini dans &P, premier
a la caractéristique de k(Z), et I'inclusion Q& /P’ < D(H?") (ot D = Hom(—, 1))
définit par dualité un épimorphisme
(3.5.4) H?® — D(Q®/P").
Soit

P=PNnQ.
C’est un sous-monoide fs de @, tel que P8 = P’ et P — @ est de Kummer. Le
morphisme a : U — Spec A[Q)] de (a) (o0 A = Z[u,][1/n]) est équivariant relativement
4 I’épimorphisme H —» H?*® — D(Q8P/P'), donc définit, par passage au quotient, un
morphisme b : V' — Spec A[P] donnant lieu & un carré commutatif

(3.5.5) U —= SpecA[Q] ,
V —2 Spec A[P)
d’ol un triangle commutatif
(3.5.6) T — v
Vv,

ot U' = V Xgpeca[p] SPec A[Q]. Si I'on munit V' de la log structure (fs) définie
par b, m est un morphisme de log schémas, et (3.5.5) en est une carte. Le tri-
angle (3.5.6) est un triangle de log schémas. De plus, 7’ est un revétement Kummer
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étale standard de groupe D(Q8P/P#®P), et i est équivariant relativement & 1’épimor-
phisme H — H®® — D(QP/P®P) (3.5.4). Comme H agit trivialement sur la strate
Cxz = Cuz = Spec Oyz/I5, et que H est d’ordre premier & la caractéristique de
k(Z), 'homomorphisme

Ovy (= O3 — Ovz/Iz (= (Ouz/I)")
est surjectif, ot ¥ = f(T), donc il en est de méme de ’homomorphisme

k@)[Ql = k@)[Q] - Ovz/myz0usz.

Par Nakayama, il en résulte que le morphisme i de (3.5.6) induit une immersion
fermée en T, i.e. sur les localisés stricts en Z. Quitte & induire (3.5.6) sur un voisinage
affine étale convenable de § au-dessus de V, on peut donc supposer que i est une
immersion fermée. Comme H opére transitivement sur les fibres de 7, donc, compte
tenu de (3.5.4), également sur celles de 7/, au-dessus de tout point de V, ces fibres
coincident, et donc U et U’ ont mémes espaces sous-jacents. L’immersion fermée ¢
est donc définie par un idéal nilpotent I de &y, et est stricte pour les log structures
envisagées. Considérons les homomorphismes

(3.5.7) My — (. My = (m,My)¥

définis par (3.5.6). Comme H — D(Q8P/P%P) est surjectif, il résulte de (2.4) que la
premiére fleche de (3.5.7) est un isomorphisme. Montrons qu’il en est de méme de la
seconde. Comme I'immersion ¢ est stricte, on a un diagramme commutatif équivariant,
a lignes exactes,

(3.5.8) 0—=(1+1)* My My 0
o
0—— (1+1)* M MEP 0,

ou (14 I)* = Ker &, — 07;. Plus précisément, My est un (1 4+ I)*-torseur sur
My induit par le (1 + I)*-torseur Mg, sur Mg, en particulier, le carré de droite est
cartésien. On en déduit un diagramme commutatif ou le carré est cartésien et la ligne
du bas est exacte :

(3.5.9) (m, My )H —— (m.My)¥?
0 —— (m,(1+ 1)*)¥ —— (n,Mg?)" — (m. Mg")".

Comme 7’ est fini, en tout point géométrique Z de V, on a HI(H,n, (1 + I)%) =
[Tzer, HY(H, (1 + I);), et comme les fibres de (1 + I)* sont n-divisibles, on a
HI(H,7,(1 + I)*) = 0 pour tout ¢ > 0. Par ailleurs, (7,(1 + I)*)¥ = 0 (puisque
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(mOu)? = (7, 6y)H et donc (x,I)H = 0). La fleche (m, ME)H — (m M) de
(3.5.9) est donc un isomorphisme, et le carré de droite étant cartésien, il en est
de méme de la fleche (n,My/)? — (7,My)H¥, comme annoncé, ce qui achéve la
démonstration de (b).

(c) Dans ce cas, avec les notations de la démonstration de (b), la strate Cyz est
réguliére, et se projette isomorphiquement sur Cyz. Comme rg(mp) = rg(H%p) =
codim(Cv g, Vig)), V est log régulier en y = =n(z), donc en toute générisation de y
(cf. 1.3), donc V(g est log régulier . Comme 7’ est log étale, U’ Xy V(g) est donc
log régulier, en particulier, réduit, et I"immersion ¢ induit un isomorphisme au-dessus
de V(3), et donc déja au-dessus de V(,) = Spec Oy,,. Quitte a remplacer V par un
voisinage ouvert convenable de y, ¢ est donc un isomorphisme, et 7 : U — V est un
revétement Kummer étale (de groupe D(PgP/Q%P), quotient de H). Enfin, si H opére
librement sur un ouvert dense, prenant un point géométrique t de V' tel que H opére
librement sur la fibre V;(;), on a t.H = t.D(P#P/Q#P), donc H = D(P*?P/Q#P).

3.6. — Preuve de 3.2.
Les assertions de 3.2 découlent du corollaire suivant de 3.4 :

3.7. Corollaire. — On se place sous les hypothéses de (3.4) (c)), i.e. X est log régulier
en z, l’action de G sur X est trés modérée en T. On suppose de plus que l’action de
G sur X est admissible, et libre sur un ouvert dense. On note f : X - Y = X/G la
projection, et x (resp. y) limage de T (resp. § = f(Z) dans X (resp. Y). Alors Gz
est abélien, et il existe un voisinage ouvert affine V de y dans Y tel que :

(i) le schéma V soit noethérien, et, muni de la log structure fio : (fe Mx)C|V —
(f«Ox)C|V = Oy, soit un log schéma fs, log réqulier en y ;

(ii) fv : X xy V. = V soit un revétement Kummer étale de V de groupe G.

Preuve de 3.7. La question est locale sur Y au voisinage de 3. Quitte a remplacer Y
par un voisinage étale Y’ de 7, et X par X Xy Y’, on peut supposer que z est un point
rationnel de X, de stabilisateur H, de sorte que X, s’identifie & H\G par z — zg. Le
morphisme f : X — Y étant entier, donc fermé, quitte & remplacer Y par un voisinage
de y, on peut trouver un voisinage ouvert et fermé U de z, stable par H, dont les
translatés par un systéme de représentants de H\G dans G sont deux & deux disjoints,
de sorte que X s’identifie au produit contracté U A G. Alors U/H — X/G est un
isomorphisme, et en particulier, d’aprés IV-2.2.3, Y est noethérien, et f : X — Y est
fini. Par Pargument précédent, on se rameéne au cas o G = H, X, = {z}. Comme
f est fini, les voisinages étales de T images inverses par f de voisinages étales de ¥
forment un systéme cofinal de voisinages étales de T, et ceux-ci sont H-stables. De
plus, pour tout voisinage étale H-stable Z de T il existe un voisinage étale V de §
et un morphisme h : Z' — Z entre voisinages de T, ou Z' = f~1(V), et, quitte &
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rétrécir V, on peut imposer & h d’étre H-équivariant. La démonstration de (3.4 (c))
montre qu’on peut choisir U de loc. cit. de cette forme, i.e. U = f~1(V), de sorte que
f=m:U —V =U/H est un revétement Kummer étale standard de V de groupe
H, ce qui achéve la démonstration.

3.8. Corollaire. — Sous les hypothéses de 3.4 (b), le sous-groupe Ker (Gz —
Hom(M x z,k(Z))) agit trivialement sur le log schéma X dans un voisinage ou-
vert Gz-stable de x.

En effet, avec les notations de 3.5 (b), on a
H = Gz - H* — D(Q®/P®) = Hom(Q®"/ P*®, k(%)) — Hom(M x 7, k(Z)),

donc 3.4 (b) implique qu’il existe un voisinage étale H-stable u : U — X de T tel que
Ker H — Hom(M x 7, k(Z)) opére trivialement sur le log schéma U, et donc a fortiori
sur le voisinage ouvert (H-stable) u(U) de z.

Signalons également la conséquence suivante de 3.4 (b) :

3.9. Corollaire. — Plagons-nous sous les hypothéses de 3.4 (b), et supposons X séparé.
Alors G agit trés modérément sur X dans un voisinage ouvert G-stable de x.

Considérons le voisinage étale H-stable u : U — X de T construit dans 3.5 (b).
Comme on I’a observé en 3.1, H agit trés modérément sur U’, donc sur U, et a fortiori
sur u(U). Admettons provisoirement le lemme suivant :

3.10. Lemme. — Quitte & remplacer U par un voisinage ouvert H-stable de l’image
z' de T plus petit, on peut supposer que la propriété suivante est satisfaite :

(¥) pour tout point géométrique Z de U, ’homomorphisme Hz — G,z est un
isomorphisme.

Supposons que U posséde la propriété (). Alors, comme H opére trés modérément
sur w(U), G opére trés modérément sur u(U).G. 1l reste donc & prouver 3.10. La
propriété (x) équivaut a la conjonction de

() v (X9 =@ pourge G- H,

(ii) w~1(X9) = U9 pour g € H,

o (—)9 désigne un schéma des points fixes de g. Comme X est séparé, X9 est un
sous-schéma fermé de X. Si g n’est pas dans H, X9 ne contient pas z, donc, quitte &

oter de U la réunion des u=!(X9) pour g € G — H, la condition (i) est réalisée. Pour
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g € H, U9 est défini par le carré cartésien

U9 U

.
(1,9)

u_l(Xg) —U xx U,

ol A est la diagonale. Comme A est ouverte et fermée, U9 est ouvert et fermé dans
u~1(X9). Mais U9 et u~!(X9) sont des sous-schémas fermés de U contenant z’. Ils
coincident donc dans un voisinage ouvert de z’. Donc quitte & remplacer U par un
voisinage ouvert H-stable de z’ plus petit, on peut réaliser la condition (ii) pour tout
geH.

4. Points fixes

4.1. — Soit X un schéma noethérien sur lequel opére un groupe fini G. Pour chaque
sous-groupe H de G, on note X le schéma des points fixes de H. C’est un sous-
schéma de X, fermé si X est séparé, représentant le foncteur S — X (S)¥, intersection
des graphes des translations h : X — X,z +— zh pour h € H. Supposons X séparé.
En chaque point géométrique Z de X d’image z, le sous-groupe d’inertie Gz de G
contient H, et est égal & H si et seulement si z appartient au sous-schéma (localement
fermé)
xp=x"- |J x¥.
H/D>H,H'#H

Pour g € G, on a

(XH)g = x9 ' Hg,
et de méme

(Xu)g = Xg-ng
de sorte que la réunion X (resp. X¢) des X (resp. Xp) pour H dans une classe
de conjugaison C de sous-groupes de G est G-stable. Les X¢, pour C' parcourant
les classes de conjugaison de sous-groupes de G, forment une stratification de X par
des sous-G-schémas, avec la propriété que pour tout point géométrique T localisé en
Xc, le groupe d’inertie Gz appartient & C. Nous appellerons cette stratification la
stratification par D’inertie.

Le but de ce numéro est de donner des exemples d’actions trés modérées de groupes
finis G sur des log schémas log réguliers et réguliers X, ot un raffinement de la
stratification par D'inertie est déduite de la stratification canonique d’un diviseur &
croisements normaux G-stable.

Le résultat suivant est classique, nous en donnons une démonstration, faute de
référence.
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4.2. Proposition. — Soit X un schéma noethérien régulier sur lequel opére un groupe
fini G de fagon modérée 3.1. Alors le schéma des points fires XC est régulier.

Si y est un point d’un schéma Y, notons Y(,) = Spec fy,,. Supposons X G £ o
Soit  un point de X €. Il s’agit de montrer que (X G)(z) est régulier. Le groupe G
est le groupe d’inertie en z : il fixe = et k(x). Il existe un voisinage ouvert affine de
stable par G : si U est un voisinage ouvert affine de z, U'intersection V des Ug pour
g € G est un voisinage ouvert quasi-affine de x stable par G, et si W est un voisinage
ouvert affine de x contenu dans V, 'intersection des Vg est un voisinage ouvert affine
de z stable par G. Donc G opére sur X, trivialement sur k(x), et, si A = Ox 5, on
a

(X)) = (X(2))¢ = Spec Ag,
ol Ag est Palgébre des co-invariants de G dans A, i.e.
Ag = A/I,

ou I lidéal engendré par les ga — a, pour g dans G et a dans A. On est donc ramené
a supposer X = X(;). Si Y = X/G = Spec A%, G opére par Y-automorphismes
de X. Comme G est d’ordre inversible en z, d’aprés IV-2.2.3, X est fini sur Y, et
Y est local, noethérien, de point fermé y, avec pour corps résiduel k(y) = k(z)¢ =
k(x). Les morphismes X¢ — X —» Y correspondent aux homomorphismes locaux
A% < A - Ag, qui induisent des isomorphismes sur les corps résiduels. Comme
XC = Spec A/IA = (X)®, on peut supposer X local et complet. Il en est alors de
méme de Y. En effet, comme il est observé dans la démonstration de IV-2.2.3, pour
tout idéal J de B, on a JAN B = J. En particulier, si m4 (resp. mp) désigne P'idéal
maximal de A (resp. B), on am3 ANB = m%, donc B = lim B/m% — lim A/mz A=A
est injectif, d’image contenue dans A = B, donc B = B. On notera k = k() = k(y),
et my =m.

On va démontrer la proposition en linéarisant 'action de G.

Supposons d’abord que A soit d’égale caractéristique. Choisissons une base t =
(ti)1<i<r sur k de l’espace cotangent T = m/m? et des éléments z; dans m rele-
vant les t;. Comme B est local noethérien complet, choisissons en outre un corps de
représentants, noté encore k, de k dans B. Notons

e k[T — A
I’homomorphisme envoyant t; sur z;. L’homomorphisme

f:E[T] — A
envoyant t sur le systéme

1 -1
y=—1— ) gog 't
card(QG) v

SOCIETE MATHEMATIQUE DE FRANCE 2014



94 EXPOSE VI. LOG REGULARITE, ACTIONS TRES MODEREES

est G-équivariant. En outre, y est congru & £ modulo m2?, donc est un systéme ré-
gulier de paramétres de A, et donc f est un isomorphisme. Par suite f induit un
isomorphisme

k[T = k[[Tc]] — Ag,

ou T est ’espace des co-invariants de G sur T, ce qui démontre 4.2 dans ce cas.

Supposons maintenant que A soit de caractéristique mixte (0, p). Soit C' un anneau
de Cohen pour B, de corps résiduel k, de sorte que B est quotient d’un anneau de
séries formelles sur C. Comme G est d’ordre premier a p, il existe un (essentiellement)
unique C[G]-module V, libre de type fini sur C, relevant T'. Soit t = (¢;)1<i<, une
base de T, v = (v;) une base de V relevant t. Comme plus haut, choisissons des
relévements z; dans m des t;, qui forment donc une suite réguliére de paramétres
dans A. Prolongeons ’homomorphisme C — A en

p:ClVl] - A
en envoyant v; sur ;. L’homomorphisme
f:Ovll— A

envoyant v = (v;) sur
1 -1
vy= card(G) chpg v
g€G

est G-équivariant, et y est congru & x modulo m?, donc est un systéme régulier de
paramétres de A. L’homomorphisme f est donc surjectif, et son noyau est défini
par un élément F congru i p modulo l'idéal engendré par les v;. Ainsi X est un
diviseur régulier G-équivariant dans X’ = Spec C[[V]], d’équation F = 0. Observons
que le module des coinvariants Vg est libre sur C. En effet, comme l’ordre de G est
inversible dans C, V est projectif de type fini sur C[G], et donc, si Ig est 'idéal
d’augmentation de Z[G], Vg = V/IgV = V ®cjg) C est projectif de type fini, donc
libre de type fini, sur C (il en est de méme d’ailleurs de V¢ et ’homomorphisme
composé V& «— V —» Vg est un isomorphisme). L’image de F dans C[[Vs]] est un
paramétre régulier, donc, comme X’¢ = Spec C[[V5]], X& = X xx/ X'¢ est régulier,
ce qui achéve la démonstration de 4.2.

4.3. Corollaire. — Soit X un schéma noethérien séparé, régulier, muni d’une action
modérée d’un groupe fini G. Alors la stratification de X par Uinertie est formée de
schémas réguliers.

4.4. Remarque. — Pour référence ultérieure, notons le résultat complémentaire sui-
vant : sous les hypothéses de 4.2, pour tout z € X¢, ’homomorphisme canonique

(4.4.1) To(X9) - To(X)°
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est un isomorphisme, oul pour un schéma localement noethérien ¥ on note T,(Y)
Pespace tangent de Zariski en un point y de Y (= Homyy)(my/m2, k(y))). Plus géné-
ralement, comme 1’'observe Gabber, (4.4.1) est un isomorphisme pour un schéma local
noethérien X = Spec A, de point fermé z, muni d’une action d’un groupe fini G tel
que I’homomorphisme A® — A/m = k(z) soit surjectif. En effet, dans ce cas, si I est
I'idéal de A engendré par les ga—a pour g € G et a € A, de sorte que X = Spec Ag,
ou Ag = A/I, I est aussi I'idéal de A engendré par les ga — a pour g € G et a € m,
autrement dit, ] = Igm. Notant T(—) un espace cotangent, dual (& valeurs dans
k(z)) de T;,(—), Phomomorphisme

Hom(T3(X)%, k(z)) = T3 (X)e — T;(X°)
s’identifie & ’homomorphisme
(m/m?)g = m/(Igm +m?) — m/(I +m?)

qui est un isomorphisme, puisque I = Igm.

4.5. — Sous les hypothéses de 4.3, soit Y un diviseur a croisements normaux strict
G-stable, réunion de composantes irréductibles Y;, 1 < ¢ < m. On munit X de la
log structure définie par Y. Rappelons (cf. [de Jong, 1996, 7.1]) qu’on dit que Y est
G-strict si la condition suivante est réalisée : pour tout ¢ et pour tout g € G, si
YignY; # o, alors Y;g = Y;. Si Y est G-strict, alors la condition (ii) de 3.1 est
vérifiée en chaque point géométrique T de X. En effet, si (Di)lsigr est I’ensemble des
branches de Y passant par T, alors D;g = D; pour tout i. Comme Mg" =@Di<;<, Ze;,
e; correspondant & D;, le groupe d’inertie Gz opére trivialement sur Mg". Rappelons
également ([de Jong, 1996, 7.2]) qu'il existe une modification G-équivariante cano-
nique f : X — X telle que f~1(Y);eq soit G-strict.

4.6. Corollaire. — Supposons que Y soit G-strict, que G opére de fagon modérée, ad-
missible et génériquement libre, et que la stratification de X par les composantes
irréductibles des strates de la stratification canonique (1.5) soit plus fine que la stra-
tification par Uinertie (4.1), i.e. que chacune de ces composantes irréductibles soit
contenue dans une strate de la stratification par Uinertie. Alors G opére trés modéré-
ment sur X (et donc la conclusion de 3.2 s’applique). Le groupe d’inertie est constant
le long de chaque composante irréductible ¢ de la strate X© (1.5 (1)), de valeur G,
(le nombre minimum de générateurs de G. étant, d’aprés 3.8, au plus égal a i). En
particulier, G opeére librement sur la strate X(© = X — Y.

4.7. — Ezemples.

(a) Soient k un corps algébriquement clos, n un entier > 2 premier & la caractéris-
tique de k, G le groupe g, = pn(k). On fait opérer G sur X = AZ par homothéties
((A\,z) — Az pour A € G, z € X(k)). La stratification par l'inertie comporte deux
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strates, X — {0}, oit G opére librement, et X¢ = {0}. La donnée de deux droites Y7, Y,
telles que Y1NY, = {0} définit un diviseur & croisements normaux G-strict Y = Y, UY>,
et le couple (X,Y) vérifie les conditions de 4.6. Le choix de paramétres t1, ta tels que
Y; = V(t;) permet de définir une carte équivariante 3.3 c : Spec Z[N?] — X, e; — t;,
associée 4 ’homomorphisme x : G® Z2 — pu, tel que x(A®e;) = A. Le quotient X/G
est le schéma torique Spec k[z™, 2" 1y, ..., zy" 1, y"].

Plus généralement, soient n un entier > 1, G un groupe abélien d’ordre n, S un
schéma noethérien séparé, régulier, au-dessus de Spec Z[1/n, u,], E un €s-module
localement libre de rang fini, muni d’une action linéaire de G, X le fibré vectoriel
V(E) = Spec Sym(E). Pour chaque caractére x : G — pin, notons L, le G-Os-module
correspondant. L’homomorphisme canonique G-équivariant

P L ®E—E,
X
ou E, = #omg(Ly, E) et x parcourt le groupe des caractéres de G, est un isomor-
phisme. Il définit une décomposition G-équivariante

X1>®Xx,
X

ou X, = V(E,), muni de l'action de G & travers x. En particulier, X¢ = X;, o
1:G — p, est le caractére trivial. Supposons S local, S = Spec A. Pour chaque x €
Hom(G, p.), choisissons une base (t;)icr, de Ey, de sorte que X, = Spec A[(t;)ier, ],
avec gt; = x(g)t; pour g € G, i € I,,. Le couple formé de X et du diviseur & croisements
normaux (relatifs 4 S) ¥ = Zx,ielx Y;, ou Y; = (¢; = 0) pour ¢ € I, vérifie les
conditions de 4.6 (et les vérifie d’ailleurs fibre & fibre).

(b) Soient k un corps algébriquement clos d’exposant caractéristique p, n un entier
> 2 tel que (2n,p) = 1, G le groupe diédral D,, = (s,7 : s2 = 1,7" = 1,srs = r1).
Soit ¢ € k une racine primitive n-iéme de 1. Soit p : G — GL(F) la représentation

01
de degré 2 induite du caractére x de p, C G tel que x(r) = ¢ : p(s) = (1 0),

o(r) = (g C(jl)' Soit X le G-schéma V(E) = Speck[u,v], s(u) = v,7(u) = (u.

Pour 0 < i < n — 1, notons Z; C X la droite v = ('u, et Z = Uo<i<n_1 Zi- La
stratification par l'inertie comporte n + 2 strates : X — Z, ou G opgre_ librement,
Z; — {0} (0 <i < n—1), ot le groupe d’inertie est d’ordre 2 (de générateur r’s), et
{0} = X©.

Pour n = 2, G = (Z/2Z)?, Z est un diviseur & croisements normaux G-strict, et
le couple (X,Y) vérifie les conditions de 4.6. Pour n > 2, Z n’est plus un diviseur
A croisements normaux, et l'inertie en {0} n’est plus abélienne. Soient f : X' — X
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léclaté de {0} dans X, E = f~1(0) le diviseur exceptionnel, Z’' = Uyc;<,_; Z/ le
transformé strict de Z. Alors G opeére de fagon naturelle sur X', la proj_ec_tion f est
G-équivariante, et Y/ = f~1(Z) = E U Z’ est un diviseur & croisements normaux
G-strict. Le couple (X’,Y”) vérifie les conditions de 4.6. La stratification de X’ par
linertie se compose des strates Z;, ou l'inertie est un groupe a deux éléments, et de
X' — Z', ou G opére librement. La stratification canonique associée & Y’ la raffine :
X0 = X'~ Y/, X0 =y - Uogign—1(E n Zz{)’ X'® = UOSiSn—l(E n Z;)

4.8. — La construction précédente, qui rend les inerties abéliennes, se généralise. Soit
X un schéma noethérien régulier, séparé, muni d’une action modérée d’un groupe fini
G, et soit Y un diviseur & croisements normaux G-strict. Si H est un sous-groupe de
G, XH est régulier (et séparé), donc il en est de méme de 'éclaté X' = Eclyx (X) de
X lelong de X¥. Le normalisateur N = Ng(H) de H dans G stabilise X, donc agit
sur X', et le morphisme f : X’ — X est équivariant relativement & N — G. De plus,
F71(XH) est un diviseur régulier dans X’. Si D est une composante de Y, comme D
est H-stable, D x x X# = DH est régulier, et le transformé strict D = Ecl pu (D) est
un diviseur régulier croisant f~(X#) transversalement. Il s’ensuit que le transformé
total réduit Y’/ = f~1(Y)req est un diviseur & croisements normaux N-strict dans X'.

4.9. Proposition. — Sous les hypothéses de 4.8, soit T un point géométrique de X en
lequel le groupe d’inertie Gz n’est pas abélien, et soit H le sous-groupe des commu-
tateurs (Gz, Gz). Alors Gz = Ng (H) agit sur X' = ECIXH(X), et en chaque point
géométrique § de X' au-dessus de T, le groupe d’inertie (Gz)y est strictement plus
petit que Gz.

En effet, le point 7 correspond & une droite L dans (T5/T¥ ) ®k(z) k(y), o Ty =
T%(X). Supposons que ¥ soit fixe sous Gz. Alors Gz agit sur L par un caractére, donc
H agit trivialement sur L. Or (Tz/TH)H = 0, contradiction. (Noter que cet argument
montre en particulier que, si H # {1} et Paction de G sur X est génériquement libre,
XH est de codimension > 2 dans X en x.)
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