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EXPOSE V

ALGEBRISATION PARTIELLE

Fabrice Orgogozo

1. Préparatifs (rappels)

1.1. Le théoréme de préparation de Weierstra. — On trouvera dans [Bourbaki,
AC, VII, §3, n° 7-8] une démonstration du théoréme suivant.

1.1.1. Théoréme. — Soient A un anneau local séparé complet d’idéal mazimalm, d > 0
un entier et f € A[[X,T]| une série formelle, ot U'on pose X = (X1,...,Xq).
(i) Soit p un entier naturel tel que f soit p-réguliére relativement 6 T, c’est-a-dire
congrue & (u € A[[T]]*) - T? modulo (m,X). Alors, pour tout g € A[[X,T]],
il existe un unique couple (q,7) € A[[X,T]] x A[[X]])[T] tel que g = qf +r et
degr(r) < p. De plus, il existe un unique polynome P =T° + 3, _ p p:Tt, ot les
coefficients p; appartiennent a (m, X)A[[X]], et une unité u € A[[X,T||* tels
que f = uP.
(ii) Si f est non nulle modulo m, il existe un entier naturel p et un automorphisme
A[[T]]-linéaire c de A[[X,T]), tel que c(X;) = X; +TN: (N; > 0) et la série
entiére c(f) soit p-réguliére.

1.1.2. — Signalons que 'on peut satisfaire la condition (ii) simultanément pour un
nombre fini d’éléments : cf. loc. cit., n° 7, lemme 2 ou 'on considérera un produit
(fini) de séries formelles.

Nous ferons usage de la propriété suivante des polyndmes comme en (i) ci-dessus.

1.1.3. Lemme. — Soient B un anneau local complet neethérien et P € B[X]| un poly-
nome de la forme X”—i—ZKP b; X%, oub; € mp et p > 0. Alors, le complété (P)-adique
de B{X} s’dentifie & B[[X]]-

Rappelons que B{X} désigne I'hensélisé en 'origine de 'anneau B[X]. Un poly-
noéme P comme ci-dessus est parfois dit de WeierstralBi.
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70 EXPOSE V. ALGEBRISATION PARTIELLE

Démonstration. — Soient N un entier naturel et @ = PV. Il résulte de 1.1.1 (i), que
l'anneau quotient B[[X]]/(Q) est isomorphe comme B-module & B[X]/(X &) et
en particulier fini sur B. Par fidéle platitude du morphisme B{X} — B[[X]], on a
QB[ X]]NnB{X} = QB{X} de sorte que le B-morphisme B{X}/Q — B[[X]]/Q est
injectif. L’anneau B{X}/Q est donc également fini sur I’anneau complet B ; il est
donc isomorphe & son complété B[[X]]/Q. En faisant tendre N vers 'infini, on en
déduit que le séparé-complété (P)-adique de B{X} est isomorphe & celui de B[[X]];
ce dernier est isomorphe & B[[X]] puisque deg(P) > 0. d

1.2. Le théoréme d’algébrisation d’Elkik

1.2.1. Définition. — Une paire (C, J), ou J est un idéal d’un anneau C, est dite hen-
sélienne si pour tout polynome f € C[T], toute racine 3 de f dans C/J telle que f'(3)
soit une unité de C/J se reléve en une racine dans C.

1.2.2. Remarques. — La notion de racine simple introduite dans la définition est plus
forte que celle de [Bourbaki, A, IV, §2, n° 1, déf. 1] et le relévement ci-dessus
est nécessairement unique. D’autre part, la définition ci-dessus ne dépend que du
fermé F = V(J). En effet, si I C V/J et (C, J) est hensélienne, il en est de méme de la
paire (C,I); voir [Kurke et al., 1975, 2.2.1] et le lemme ci-dessous pour un cas parti-
culier. Ceci nous autorise & dire qu’une paire (X, F'), ot X = Spec(C) et F = Spec(J),
est hensélienne lorsque la paire (C, J) Dest.

1.2.3. Lemme. — Soient C un anneau local hensélien d’idéal mazimal m, et J C m
un idéal. La paire (Spec(C),V(J)) est hensélienne.

En particulier, pour B et P comme dans le lemme 1.1.3, la paire
(Spec(B{X}),V(P)) est hensélienne.

Démonstration. — Soient f et 8 comme ci-dessus. L’anneau C étant local hensélien,
l'image 7 de 3 dans le corps résiduel C'/m se reléve en une racine a de P. Notons 3’ son
image dans C/J et vérifions que 8 = 3'. Remarquons tout d’abord que puisque P’(c)
est une unité de C, P’(8’) est une unité de C/J. De plus, l'égalitée P(8) = P(8') +
(B-B8)YP(B)+(B—p)boube B/Jseréduit a 3— 3 = (B— ﬂ')zﬁg,) ; si 'on
pose z = 3 — (3, on a donc z(1 — ax) = 0 pour un a € C/J. Comme x appartient & m
(car 8 et /' ont pour image v dans C/m), on a z = 0. |

1.2.4. — La définition donnée ci-dessus — tirée de op. cit. §2.2 et [Gabber, 1992,
p. 59] — est équivalente aux définitions usuelles : une paire (X, F) est hensélienne au
sens précédent si et seulement si elle satisfait la propriété de relévement des idempo-
tents de [EGA 1v 18.5.5] ou encore si elle satisfait le théoréme des fonctions implicites
au-dessus de F' (voir p. ex. [Gruson, 1972, définition]). Pour la démonstration de ces
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équivalences, voir par exemple [Kurke et al., 1975, 2.6.1], [Crépeaux, 1967, prop. 2] et
[Raynaud, 1970, chap. XI, § 2, prop. 1].

1.2.5. — Signalons que dans ces deux derniéres références, il est supposé que J est
contenu dans le radical de Jacobson de A ; c’est ici automatique, comme on le voit en
considérant les polynomes de degré 1 adéquats (cf. [Kurke et al., 1975, 2.2.1]). Notons
d’ailleurs que dans [Crépeaux, 1967] et [Raynaud, 1970], ne sont considérés que des
polyndmes unitaires. L’équivalence entre les deux points de vue peut se vérifier de la
fagon suivante. Soit f = a9+ a1T + -+ a,T" € C[T] avec ag € J et a; € C*; ce
polynoéme a, modulo J, une racine simple en 0. Cherchons une racine de f dans C
de la forme ag/u, avec u € C*. Par substitution, il suffit de montrer que I’équation
g=0,00g=U"+aU"" 4 azaqU" 2+ - + a) 'a, est un polyndme unitaire,
posséde une racine inversible. Or, ce polynéme a, modulo J, la classe de —a; pour
racine simple.

Terminons ces rappels par I’énoncé du théoréme d’algébrisation de Renée Elkik
([Elkik, 1973, théoréme 5]).

1.2.6. Théoréme. — Soient (X = Spec(A), F) une paire hensélienne avec A neethé-
rien, et U le sous-schéma ouvert complémentaire de F' dans X. Notons Xp le com-
plété de X le long de F, Fle fermé correspondant & F et U son complémentaire
dans Xp. Le foncteur X' — X' xx Xp induit une équivalence de catégories entre
la catégorie des X -schémas finis, étales sur U, et la catégorie des X z-schémas finis,
étales sur U.

2. Algébrisation partielle en égale caractéristique

2.1. Enoncé

2.1.1. — Soient A un anneau local ncethérien complet et {I.}.cr une collection
d’idéaux de A. On dit que la paire (A, {I.}.cE) est partiellement algébrisable s’il existe
un anneau local ncethérien complet B de dimension strictement inférieure & celle de
A, une B-algébre de type fini C, un idéal maximal n au-dessus de I'idéal maximal de
B, et un isomorphisme A ~ é’; tel que les idéaux I, (e € E) proviennent d’idéaux de

Ch.

2.1.2. Théoréme. — Soit A un anneau local neethérien complet réduit d’égale caracté-
ristique qui ne soit pas un corps. Alors, A muni d’un ensemble fini quelconque d’idéaux
est partiellement algébrisable.

2.2. Démonstration
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72 EXPOSE V. ALGEBRISATION PARTIELLE

2.2.1. — Soient X = Spec(A) et I1,...,I, C A comme dans I’énoncé. Il résulte de
la définition 2.1.1 que si un idéal I de A est de la forme J; N---N J, et que les J;
sont simultanément partiellement algébrisables (c’est-a-dire : la paire (A, {J;}1,... ) est
partiellement algébrisable au sens de la définition précédente), 'idéal I 'est également.
D’aprés le théoréme de décomposition primaire des idéaux, on peut supposer les I;
primaires.

2.2.2. — Notons k le corps résiduel de A et d > 0 sa dimension. D’aprés IV-2.1.1
si X est équidimensionnel ou bien d’aprés IV-2.2.2 (avec G = {1}) dans le cas
général, il existe un morphisme fini génériquement étale 7 : X — Xg, ou Xg =
Spec(k[[t1,. .-, td]]).
2.2.8. — Soit I 'un des I;. Deux cas se présentent.

(i) dim(A/I) = d. L’idéal I est donc un idéal premier minimal de A.

(ii) dim(A/I) < d. L’image de V(I) dans X est donc de dimension au plus d — 1

donc contenue dans un fermé V(gr) ou gr € 4o = I'(Xo, Ox,) — {0}.

Soient g = [] 91, 0ul; € {I,...,I,} parcourt le sous-ensemble des idéaux du
second type, et f € Ay — {0} telle que le lieu de ramification de 7 soit contenu
dans V(f). Posons h = gf. D’aprés 1.1.1 (ii) et (i), quitte & changer de base par un
automorphisme (c’est-a-dire changer les coordonnées), on peut supposer que h est un
polynéome de Weierstraf en ¢4. (Si h est une unité, on le remplace par t4.) Considérons
le sous-anneau Ag = E[[t1,. .., ta—1]]{ta} de Ao. Il est hensélien et contient h. D’aprés
les lemmes 1.1.3 et 1.2.3, la paire ()’E) = Spec(zg), V'(h)) est hensélienne. On est donc
en mesure d’appliquer le théoréme 1.2.6 et d’en déduire qu’il existe un diagramme

cartésien :
X

Xo —= Xo
ot la fleche verticale de gauche est, par hypothése, étale hors de V(h) et les fléches
horizontales sont des morphismes de complétion (a la fois pour la topologie h-adique
et celle définie par leurs idéaux maximaux respectifs).
Les idéaux I du premier type (c’est-a-dire premiers minimaux) se descendent & X
d’aprés le lemme suivant.

2.2.4. Lemme. — Soit B un anneau local hensélien quasi-excellent de complété
noté B. Tout idéal premier minimal de B provient par extension d’un idéal premier
minimal de B.

Démonstration. — Par restriction a ’adhérence du point générique du fermé, il suf-
fit de démontrer que le complété d’'un anneau intégre hensélien quasi-excellent est
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intégre. Ce fait est bien connu et résulte d’ailleurs immédiatement du théoréme d’ap-
proximation de Popescu, appliqué a I’équation zy = 0. O

2.2.5. — Quant aux idéaux I du second type, il suffit d’observer que chaque V(1)
est fini sur Spec(k[[t1,...,ts—1]]), donc sur X = Spec(X), et d’appliquer le

2.2.6. Lemme. — Soient B un anneau local nethérien, J C mp un idéal, et B le
complété J-adique de B. Tout quotient de B fini sur B se descend & B.

2.2.7. — Admettons momentanément ce lemme et achevons la démonstration de
2.1.2. Comme on ’a vu, les idéaux I, ..., I, proviennent d’idéaux de A. Cet anneau
est fini — donc a fortiori de présentation finie par ncethérianité — sur ’anneau
E[[t1, .. ,ta—1]]{ta}. Ce dernier est 'hensélisé en l'origine de k[[t1,...,t4-1]][ta] ; il est
isomorphe & la colimite filtrante d’anneaux de type fini sur k[[t1,...,tq—1]][td] donc
sur anneau B = k[[t1,...,tq_1]]. La conclusion résulte de [EGA 1v 8.8.2] qui assure
I’existence d’une B-algébre C' comme en 2.1.1 dont proviennent les idéaux I;.

2.2.8. — Revenons & la démonstration du lemme 2.2.6 ci-dessus. Soit I C B tel
que B/I soit fini sur B. Quitte & remplacer B par B/Ker(B — B/I), cest-a-dire
Spec(B) par l'image schématique de V(I), on peut supposer B — B /I injectif, c’est-
a-dire V(I) — Spec(B) schématiquement dominant. Le B-module B/I étant fini, la
topologie J-adique sur B /I induit la topologie J-adique sur B. Puisque I’application
B — §/I est injective, d’image dense, et continue, il en résulte que ﬁ/I est le
séparé-complété de B pour la topologie J-adique. On a donc I = (0); il se descend
tautologiquement a B.

3. Algébrisation partielle premiére a ¢ en caractéristique mixte

3.1. Enoncé

3.1.1. Théoréme. — Soient A un anneau local neethérien complet normal de caracté-
ristique mizte (0,p) de dimension d > 2 et £ # p un nombre premier. Il existe un
morphisme injectif fini A — A’ de degré générique premier o £, ot A’ est un anneau
normal intégre dont toute famille finie d’idéaux est partiellement algébrisable.

3.1.2. Remarque. — Signalons qu’il suffit pour démontrer XIII-1.1.1 d’établir la va-
riante affaiblie de I’énoncé précédent selon laquelle — en reprenant les notations de
2.1.1 — tout fermé rare de Spec(A’) =~ Spec(a,) est ensemblistement contenu dans
I'image inverse d’un diviseur de Spec(Cy).
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3.1.83. Reformulation géométrigue. — Soient X un schéma local ncethérien complet
de caractéristique mixte, de dimension d > 2 et £ un nombre premier inversible sur X.
Il existe schéma local normal X’ et un morphisme fini 7 : X’ — X de degré générique
premier & £ tel que pour chaque famille finie {Z}};c; de fermés de X', il existe un
diagramme

XX -25Y7

if

N

ou :

— S est un schéma noethérien régulier complet de caractéristique mixte et de di-
mension d — 1;

— f est un morphisme de type fini;

— a induit un isomorphisme entre X’ et le complété de Y en un point fermé de la
fibre spéciale de f,

et des fermés F; de Y tels que Z, = a~!(F;) pour tout i € I.

3.1.4. Remarque. — 11 découle de 2.1.2 que le résultat précédent est également vrai
en égale caractéristique, et que I’on peut alors supposer X = X'.

3.2. Démonstration

3.2.1. — Soient X = Spec(A) de dimension d > 2 et £ comme dans 1’énoncé. D’aprés
le théoréeme IV-4.3.1, il existe un diagramme commutatif

V[[tl, PN ,td—l]] = Bo — B <~— AI = FIXH(B)

.

A

ol V est le spectre d’'un anneau de valuation discréte complet d’idéal maximal my,
et H est un /-groupe agissant sur I’anneau normal B, son sous-anneau V, et trivia-
lement sur les variables t; (1 <4 < d —1). De plus, A — A’ est une injection finie
de rang générique premier & £ et 7 : Spec(B) — Spec(By) est fini, p-génériquement

étale.
3.2.2. — Nous allons montrer que toute famille finie d’idéaux de A’ est partielle-
ment algébrisable. Soit I1,..., I} une telle famille, que 'on peut supposer constituée

d’idéaux primaires (cf. §2.2.1).
3.2.8. — Soit I' 'un des I. Deux cas se présentent.

(i) dim(A’/I" + (p)) = d — 1. Supposons I’ # (0) et notons p l'idéal premier,
nécessairement de hauteur un, pour lequel I’ est primaire. Par hypothése, I’idéal
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premier p contient p; c’est un idéal premier minimal de A’/(p). D’autre part,
A’ est normal car B l’est. Il résulte par exemple de [Serre, 1965, chap. 111, C,
§1] que I’ est une puissance symbolique de p, c’est-a-dire I'image inverse dans
A’ d’une puissance de I'idéal (principal) pAj.

(ii) dim(A’/(I’+(p))) < d—1. L’image de V(I') dans Spec(Fixg (V)[[t1, .- .,ts-1]])

est donc contenue dans un fermé V(gr/) ou grr € Fixg(V)[[t1,-..,td—1]] est non
nulle modulo Mpiy, (v)-

Soient g = [];, gr ot I} € {I3,..., I} parcourt le sous-ensemble des idéaux du

second type, et une équation f € V|[[t1,...,t4-1]] — my non nulle modulo my telle

que le lieu de ramification de 7 soit contenu dans V(f). On peut supposer que f
n’est pas une unité. D’autre part, quitte & la multiplier par ses H-conjugués, on peut
supposer que ’équation f est H-invariante. Posons h = gf. D’aprés le théoréme de
préparation (1.1.1), on peut supposer que h est un polynéme de Weierstral (non
inversible) en t4_1, invariant sous 1'action de H. (Rappelons que H agit trivialement
sur les variables). Comme en § 2, le morphisme By — B se descend donc d’aprés 1.2.6
en un morphisme By — B, ott By = V|[[t1,...,ta—2]]{ta—1}. Le groupe H préservant
Pouvert D(h) de Spec(By), son action se descend. Le diagramme ci-dessus se compléte
donc en un diagramme

Vllts, ..., tas)){ta_1} = Bo — T ~— A" = Fixg(B)

By B A

ol les fleches verticales sont les morphismes de complétion et les fléches horizontales

sont finies.

3.2.4. — Les idéaux I’ du second type se descendent de A’ a A’ car A’ /I’ est fini
sur Fixg (V)([t1, ..., ta—2]] donc a fortiori sur A’ (cf. 2.2.6). Quant aux idéaux du
premier type (puissances symboliques), il suffit d’appliquer le lemme 2.2.4 3 la paire
constituée de 27/ (p) et de son complété A’/(p). Comme en § 2, on utilise le fait que Al
soit fini — de type fini suffirait — sur Fixg(V)[[t1, ..., td—2]]{t4s—2} pour descendre,
par passage a la limite, les idéaux & un anneau de type fini sur Fixg (V)[[t1,. .., ts—2]]-
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