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E X P O S É X X I 

L E T H É O R È M E D E FINITUDE 

P O U R LES COEFFICIENTS N O N ABÉLIENS 

Frédéric Déglise 

À la mémoire de mon oncle Olivier. 

1. Introduction 

Le but de l'exposé est de démontrer les théorèmes suivants, qui généralisent le 

théorème d'Artin (cf. [SGA4 xiv 1.1]) dans le cas ensembliste et non abélien : 

1.1. Théorème. — Soit f : Y —> X un morphisme de type fini entre schémas noethé-

riens. Pour tout faisceau constructible F sur Y^t, le faisceau f*F est constructible. 

1.2. Théorème. — Soit f : Y —» X un morphisme de type fini entre schémas quasi-

excellents. Soit L un ensemble de nombres premiers inversibles sur X. Pour tout 

faisceau constructible de groupes F sur Yét de h-torsion, le faisceau R 1 / ^ ( F ) sur X^t 

est constructible. 

1.3. Théorème. — Soit X un schéma excellent, Z G X une partie fermée telle que pour 

toute composante irréductible X' de X, codimx'(^ D X') > 2. Notons j : U —• X 

l'immersion ouverte du complémentaire de Z. Pour tout groupe fini G, le faisceau 

R1ji,(Gu) est constructible. 

1.4. Théorème. — Soit A un anneau strictement local de dimension 2. On suppose 

que A est normal, excellent, et on note X' = Spec (A) — {va A} son spectre épointé. 

Alors, pour tout groupe fini G, Vensemble H 1 ( X / , G ) est fini. 

Le théorème 1.1 est prouvé dans la section 2. Ce théorème est utilisé par les suivants 

dans le cas où X est quasi-excellent. Ce cas est beaucoup plus simple, comme nous le 

dégageons dans la démonstration. 
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530 EXPOSÉ XXI. LE THÉORÈME DE FINITUDE... 

Le théorème 1.2 est réduit — en trois étapes — au théorème 1.3 dans la section 3. 

Toutefois, le lecteur attentif notera que ce dernier théorème n'est pas un simple cas 

particulier car il n'est pas nécessaire de faire d'hypothèse sur le cardinal du groupe 

G. 

Le théorème 1.3 est réduit au théorème 1.4 dans la section 4. Cette réduction 

apparaît en 4.3 et utilise deux lemmes qui ont été établis auparavant (lemmes 3.3.2 

et 4.2.2). 

Le dernier théorème est bien un cas particulier de 1.3. Toutefois, nous avons choisi 

de le dégager dans cette introduction à la fois comme une résultat important et comme 

un point clé. Il est démontré dans la section 5 suivant un raisonnement par l'absurde 

qui utilise la méthode des ultrafiltres (voir 5.2.1 pour des rappels). 

Notations et conventions 

— Quand une topologie sur un schéma est sous-entendue, il s'agit de la topologie 

étale. 

— Étant donné un ensemble D (resp. un groupe G), on notera parfois D (resp. G) 

pour le faisceau étale constant induit sur un schéma X lorsque X est clair d'après 

le contexte. Si l'on veut préciser X , on note ce faisceau Dx (resp. Gx), suivant 

l'usage. 

— Quand on parle de la normalisation d'un schéma X , il s'agit du morphisme ca­

nonique 

x=l[x'z^x 

où I désigne l'ensemble des composantes irréductibles de X et X[ désigne le 

schéma normalisé de la composante irréductible de X correspondant à z, munie 

de sa structure de sous-schéma réduit. On dit aussi que X' est le schéma normalisé 

associé à X . 

2. Image directe de faisceaux d'ensembles constructibles 

Dans le cas où X est quasi-excellent, la preuve est une application de résultats déjà 

connus (cf. [SGA4 ix]). Nous commençons par exposer la démonstration dans ce cas, 

puis dans le cas général. Toutefois, l'étape de réduction exposée dans la section qui 

suit est valable dans les deux cas. 

2.1. Réduction du théorème. — On commence par réduire le théorème 1.1 à l'assertion 

suivante : 

Soit D un ensemble fini et j : U —• X une immersion ouverte entre schémas 

noethériens. Alors, le faisceau d'ensembles j+(Du) est constructible. 
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2. IMAGE DIRECTE DE FAISCEAUX D'ENSEMBLES CONSTRUCTIBLES 531 

Considérons les hypothèses du théorème 1.1. D'après [SGA4 ix 2.14], on peut trouver 

un monomorphisme 
n 

F^\{^{Ci) = Q 
1=1 

pour des morphismes finis lïi : Y* —> Y et des faisceaux constants finis Ci 

sur Yi. Comme un sous-faisceau d'un faisceau constructible est constructible 

([SGA4 IX 2.9(ii)]), il suffit de montrer que / • (Q) est constructible. On est donc 

ramené au cas de (fni)*{Ci) pour tout i, ce qui montre qu'on peut supposer F = Dy 

pour un ensemble fini D. 

Notons que dans ce cas, le théorème est local en Y. En effet, si l'on se donne un 

recouvrement étale de type fini TT : W —» Y, le morphisme d'adjonction 

DY 7T^(DY) = TT*(DW) 

est un monomorphisme. En lui appliquant /*, on en déduit un monomorphisme 

MDY) - (fnUDw). 

Il suffit donc de montrer que le membre de droite est constructible ([SGA4 IX 2.9(ii)] 

à nouveau). Notamment, on peut donc supposer que Y est affine. 

Alors, / est séparé de type fini. On peut donc considérer une factorisation 

Y - U x Ï+X 

de / telle que j est une immersion ouverte et / un morphisme propre. Le résultat est 

connu pour / (cf. [SGA4 xiv 1.1]) donc on est réduit au cas de l'immersion ouverte 

jf, c'est-à-dire à l'assertion 

2.1.1. Remarque. — (i) Si l'on suppose que X est quasi-excellent, le schéma X qui 

apparaît dans la réduction ci-dessus est encore quasi-excellent puisque / est de 

type fini. 

(ii) Dans cette réduction, on a vu que ( ^ ) est locale en U. 

2.2. Cas où X est quasi-excellent. — Notons le lemme facile suivant : 

2.2.7. Lemme. — Considérons un carré cartésien de schémas noethériens 

U' -Ï-+X' 

q p 

U-^-^X 

tel que j est une immersion ouverte et p un morphisme fini surjectif. Alors, pour tout 

ensemble fini D, si j'^Dw) est constructible, jiç(Du) est constructible. 
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532 EXPOSÉ XXI. LE THÉORÈME DE FINITUDE... 

Démonstration. — Par hypothèse, q est surjectif. On en déduit que le morphisme 

d'adionction 

Du->q*q*{Du) = qir(Dw) 

est un monomorphisme. Appliquant j * , on en déduit un monomorphisme 

MDV) ^ pMDu>)). 

Puisque p est fini, p* préserve la constructibilité d'après [SGA4 IX 2.14(i)]. Le 

lemme en résulte puisqu'un sous-faisceau d'un faisceau d'ensembles constructible est 

constructible ([SGA4 ix 2.9(ii)]). • 

2.2.2. — Avant de passer à la preuve dans le cas général, notons que la démonstration 

du théorème 1.1 dans le cas où X est quasi-excellent est plus simple. Grâce à la 

remarque précédente, on se réduit à l'assertion ( ^ ) dans le cas où X est quasi-

excellent. Dès lors, la normalisation p : X' —> X de X est finie. Ainsi, le lemme 

précédent appliqué au carré cartésien évident nous ramène au cas où X est normal. 

Seul le cas où X et U sont connexes non vides nous intéresse. Alors, d'après 

[SGA4 IX 2.14.1], j*(Du) = Dx, ce qui conclut. 

2.3. Cas général 

2.3.1. — Considérons les hypothèses de l'assertion Celle-ci est locale en X et 

il suffit donc de traiter la cas où X est affine, spectre d'un anneau noethérien A. 

Utilisant le lemme 2.2.1 — en prenant pour X' la somme disjointe des composantes 

irréductibles de X — on peut supposer aussi que A est intègre. On a déjà vu que (2?) 

est aussi locale en U (point ii de la remarque 2.1.1). On peut donc se ramener au cas 

où U = Spec(Af) pour un élément non nul / G A. 

Pour prouver ( « ^ ) , nous allons démontrer par induction noethérienne sur les fermés 

irréductibles Z de X la propriété légèrement plus forte suivante : 

(*z) Pour tout morphisme fini Z' —> Z , Z' intègre, tout ensemble fini D et toute 

immersion ouverte Z : V' —> Z ' , le faisceau l±(Dv>) est constructible. 

D'après ce qui précède, on est ramené à prouver { & ) pour X = Spec(A) intègre 

et U = Spec(A/), / ^ 0, en supposant la propriété d'induction suivante : 

Pour tout fermé propre Z de X , tout morphisme fini Z' —> Z , tout ensemble fini 

D et toute immersion ouverte Z : V —• Z 7 , le faisceau l+(Dv) est constructible. 

2.3.2. — Soit A' la clôture intégrale de A dans son corps des fractions. On pose 

X' = Spec(^4 /), Z = Spec(A/( / ) ) et on considère le diagramme formé de carrés 
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2. IMAGE DIRECTE DE FAISCEAUX D'ENSEMBLES CONSTRUCTIBLES 533 

cartésiens : 

Z" 

U' —3—^ X' ^— Z' 7T 

q p r J 

u — x — Z 

tel que i et j sont les immersions évidentes, p (resp. h) est la normalisation de X 

(resp. Z'). 

2.3.3. Première étape (fibres génériques de p). — D'après [Nagata, 1962, 3.3.10], 

l'anneau A' est un anneau de Krull. Il en résulte que Z' n'a qu'un nombre fini de 

points génériques z[,...,zf

n. On pose zr = p(z'r). Bien que p ne soit pas nécessairement 

fini, p~1(zs) est fini et l'extension résiduelle K(Z'S)/K(ZS) est finie (voir [Nagata, 1962, 

chap. V, 33.10]). D'après le lemme 2.2.1, on peut toujours remplacer A par une exten­

sion finie A C B C A!. L'hypothèse (Jf) est en effet encore vérifiée pour Y = Spec(J3). 

Dès lors, on peut supposer que les conditions suivantes sont vérifiées : 

(hl) Pour tout indice s, p~1({zs}) = {z's}. 

(h2) Pour tout indice s, K(Z'S)/K(ZS) est triviale. 

Notons As (resp. A's) l'anneau localisé de X en zs (resp. X' en z's). Alors, A's est un 

anneau de valuation discrète. Du fait que l'extension induite A's/As est entière, on 

déduit que As est de dimension 1, ce qui implique que zs est un point maximal du 

diviseur Z de X. Comme q est surjectif, on déduit de (hl) que z\,...,zn est l'ensemble 

des points génériques de Z. 

2.3.4. Deuxième étape (restriction à un ouvert de Z). — Puisque trivialement 

j*j+(Du) = Du, il suffit de montrer que i*j*(Du) est constructible. Notons les faits 

suivants : 

(i) q surjectif : Du —> qi,q
k(Du) = q*(Du>) est un monomorphisme. 

(ii) X' normal, j ' dominante : j+(Du>) = Dx> (voir [SGA4 ix 2.14.1]). 

(iii) h surjectif : Dz1 —• h+hf^Dz') = h*(Dz") est un monomorphisme. 

On déduit de (i) et (ii) un monomorphisme 

j*(Du)->j*q*(Du,)=p*(DXf). 

Notons que p est pro-fini. Le théorème de changement de base propre s'étend à ce 

cas, ce qui donne la relation : i*p+ = r*i'*. Si on applique z* au monomorphisme 

précédent, on déduit de cette relation et de (iii) un monomorphisme composé : 

a : i*j*(Du) - i*P*(Dx>) = r v ( D Z ' ) - * * ( £ > Z / , ) . 
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534 EXPOSÉ XXL LE THÉORÈME DE FINITUDE... 

Considérons maintenant une immersion ouverte dense l : V —> Z ainsi que le carré 

cartésien suivant : 

Z" < V V" 

V V 

z < 1 V. 
On en déduit un diagramme commutatif de faisceaux d'ensembles : 

i * i . ( O i / ) ^ U V j ; ( ^ ) 

7r*(Dz„)-^lJ*7r*(Dz„). 

Or le morphisme ¡3 — induit par le morphisme de coùnité l'adjonction (Z*,/*) — 

est un isomorphisme. En effet, Z étant une immersion ouverte Z*7r* = ny+l'* par 

changement de base. On obtient donc l'identification : l^ir^Dz") = ir+l'^Dv"). De 

plus, à travers cette identification, le morphisme f3 est l ' image ( i ) par 7r* du morphisme 

de counité pour l'adjonction (Z'*,Z*) : 

DZ„^IT{DZ„) = UDV„). 

Ce dernier est un isomorphisme puisque Z" est normal et l' dense (voir [SGA4 IX 2.14.1]). 

Puisque a est un monomorphisme, on en déduit que a est un monomorphisme. 

Or, d'après ( ^ ) , le faisceau d'ensembles l*(Dy) est constructible. Pour conclure, il 

suffit donc (d'après [SGA4 ix 2.9(ii)]) de trouver un ouvert dense V de Z tel que 

(2.3.4.1) j*(Du)\v = D v . 

2.3.5. Troisième étape (composantes immergées de Z). — Considérons la réunion T 

des composantes immergées de Z dans X. Alors, l'ouvert V — Z — T satisfait la 

relation (2.3.4.1). 

On doit montrer que pour tout point géométrique x de F , la fibre du morphisme 

canonique Dy —• j-k{Du)\v au point x est un isomorphisme. Autrement dit, on doit 

montrer que le morphisme canonique 

Ko(U XX Xfâ) —> 7To(-X"(5)) 

est un isomorphisme. En raisonnant par induction sur la dimension de X^), on se 

ramène à montrer que le morphisme suivant 

(2.3.5.1) M*(x) ~ {*}) ^ M*(x)) 

On le vérifie facilement en revenant à la définition du morphisme de changement de base à l'aide des 
adjonctions (/*,/•) et (/'*, Z )̂ et en utilisant que la composée suivante de morphismes unités/coùnités 
est l'identité : 

l-k 1*1*1* —> l*-
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3. IMAGE DIRECTE DÉRIVÉE DE FAISCEAUX DE GROUPES CONSTRUCTIBLES 535 

est un isomorphisme. 

Soit x le point de X = Spec A correspondant à x. Si x n'est pas un point maximal, 

puisque V n'a pas de composante immergée, 

P ro f x (A/ ( / ) ) > 1 Prof « (A) > 2. 

D'après le théorème de Hartshorne ([SGA2 ni 3.6]), le morphisme (2.3.5.1) est donc 

un isomorphisme. 

Supposons que x est un point maximal. D'après (hl), il existe un indice i tel que 

x — Z{. Or, d'après (h2), le morphisme entier birationnel 

X'{<) = Spec(4) - Spec (^ ) = X(Zi) 

est radiciel. C'est donc un homéomorphisme universel. On en déduit que le mor­

phisme -X"^/) —• X(2i) est encore un homéomorphisme, où z[ est le point géométrique 

correspondant à la clôture séparable de K>(zi) définie par Z{. Dès lors, (2.3.5.1) est un 

isomorphisme puisque la propriété correspondante est vraie pour le schéma normal 

XL,s. Ceci conclut. 
\z%) 

3. Image directe dérivée de faisceaux de groupes constructibles 

3.1. Réduction au cas d'un faisceau constant. 

3.1.1. Lemme. — Soit f :Y —> X une morphisme de type fini entre schémas noethé-

riens et u : F —• F' un monomorphisme de faisceaux de groupes constructibles sur 

Yét-
Alors, Rxf+(Ff) constructible implique R X /^ (F) constructible. 

Démonstration. — Posons C = F'/F vu comme faisceau pointé, constructible sur Yét 
par hypothèse. On considère la suite exacte de faisceaux pointés (cf. [SGA4 XII 3.1]) 

MF') - MC) - R'MF) ^ R 1/.(*")• 

Supposant que R 1 / ^ ( F / ) est constructible, on peut trouver une famille génératrice de 

sections locales (e i , . . . , e n ) de R 1 / ^ ( F / ) où e\ est définie sur un X-schéma étale de 

type fini V{. Soit &i le faisceau fibre de i; en e ,̂ défini par le diagramme cartésien de 

faisceaux (d'ensembles) sur Xét • 

*• *Vi 

e» 

RXMF)—^R'MF')-

où on voit ei G r (Vi ,R 1 / * (F / ) ) comme un morphisme du topos étale de X. Pour 

montrer que R} f+{F) est constructible, il suffit de montrer qu'il est engendré par une 
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536 EXPOSÉ XXI. LE THÉORÈME DE FINITUDE... 

famille finie de sections locales sur des objets quasi-compacts. Il suffit donc de montrer 

que pour tout i , vu comme un faisceau étale sur Vi grâce au morphisme i^, est 

engendré par un nombre fini de sections locales. On est donc ramené à montrer que 

le faisceau étale $i sur Vi est constructible. 

Pour montrer cela, on suppose X = Vi pour simplifier les notations et on utilise 

l'interprétation de $>i en termes de F-objets tordus. Le faisceau $i est un prolonge­

ment par le vide d'un faisceau à fibres non vides sur un ouvert U de X. Soit x un 

point géométrique de U. Il existe un voisinage étale V de x dans X et une section e 

de $i sur VIX. Quitte à restreindre le voisinage V, e provient d'un F-torseur P sur 

V Xx Y. On peut alors tordre par P les faisceaux F , F ' et C et obtenir une suite 

exacte sur V : 

f*(F'p) - U{CP) - R1fir(F
p) ^ R7.(0-

On sait que $i\v s'identifie avec le noyau de v p . On en déduit $i\v — f*{FfP)\f*(Cp). 

Or ce faisceau est constructible d'après le théorème 1.1. • 

Considérons les hypothèses du théorème 1.2. D'après [SGA4 IX 2.14], on peut 

trouver un monomorphisme de faisceaux de groupes 

г 
F^F' = n ^ . ( G ¿ ) 

¿=i 

pour des morphismes finis 7^ : Yi —• Y et des groupes finis Gi pour i = l , . . . , r . 

Notons que d'après la preuve de loc. cit., on peut supposer que les groupes Gi sont de 

L-torsion, du fait que F est de L-torsion. D'après le lemme précédent, on est réduit 

au cas de F'. Puisque 7Tj* est exact, on est donc ramené au cas du morphisme / o m 

et du faisceau constant sur Yi de groupe Gi pour chaque indice i. 

3.2. Réduction au cas d'une immersion ouverte. — Le lemme clé dans cette étape de 

réduction est le suivant : 

5.2./. Lemme. — Soit G un groupe fini. Considérons un diagramme commutatif 

Y' 

h / 

' f 

Y ^X 

de morphismes de type fini entre schémas noethériens. Les assertions suivantes sont 

vérifiées : 

(i) Si h est surjectif, 

R 1 / ^ ( G y ) constructible implique R 1 ^ ( G y / ) constructible. 

(ii) Si g est propre, 

R x / i^(Gy) constructible implique R 1 / ^ ( G y ) constructible. 
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3. IMAGE DIRECTE DÉRIVÉE DE FAISCEAUX DE GROUPES CONSTRUCTIBLES 537 

Démonstration. — Rappelons que l'on dispose de la suite exacte de faisceaux d'en­

sembles sur Xét (cf. [SGA4 xn 3.2]) : 

* - R V ( ^ G V ) A RV*(Gy) ^ ^ M G y ) . 

Considérons l'assertion (i). Puisque h est surjectif, le morphisme d'adjonction 

Gy —> h*h*Gy> — h+Gy 

est un monomorphisme. Appliquant le lemme 3.1.1, il suffit de montrer que 

R 1 ^ ( / i ^ G y ) est constructible. On peut alors conclure puisque le morphisme 

u : R 1 g*{h±Gy) —• R 1 / * ( G y ) est un monomorphisme. 

Considérons maintenant l'assertion (ii). Puisque g est propre, le théorème de chan­

gement de base propre [SGA4 xiv 1.1] conjugué avec le théorème 1.1 montre que 

la source de u est constructible. Par hypothèse et une nouvelle application du théo­

rème 1.1, le but de v est constructible. 

Il suffit alors de raisonner comme dans la démonstration de 3.1.1 sur les fibres 

du morphisme v associées à une famille finie de sections locales de gicR
1hiç(Gy) qui 

est génératrice. Chacune de ses fibres est un prolongement par le vide d'un faisceau 

localement isomorphe au faisceau tordu R x ^ ( ( / i ^ G y ) ) pour une de ses sections locales 

représentée par un torseur P. Comme ce faisceau est toujours constructible, on peut 

conclure. • 

Considérons maintenant les hypothèses du théorème 1.2, dans le cas F = Gy. 

Puisque Y est noethérien, il existe un recouvrement Zariski TT : W —> Y tel que W 

est affine. D'après l'assertion (i) du lemme ci-dessus, il suffit de montrer le théorème 

pour f o u. On peut donc supposer que Y est affine. 

Le morphisme / : Y —> X est alors quasi-projectif. On peut donc considérer une 

factorisation Y Y' ^ X de / tel que g est projectif et j est une immersion ouverte. 

D'après l'assertion (ii) du lemme ci-dessus, nous sommes réduit au cas de l'immersion 

ouverte j . 

3.3. Réduction au théorème 1.3 (Le. la codimension 2) 

3.3.1. — Grâce aux deux étapes de réduction précédentes, nous sommes ramenés 

au cas d'une immersion ouverte dense j : U —* X , X quasi-excellent, et d'un fais­

ceau constant sur U de groupe G. Dans cette étape de réduction, on considère la 

codimension du complémentaire Z de U dans X. 

Pour montrer que R1ji,(Gu) est constructible on peut raisonner localement sur X. 

On peut donc supposer que X est noethérien. Considérons la normalisation p : X' —> 
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538 EXPOSÉ XXL LE THÉORÈME DE FINITUDE... 

X de X ainsi que le carré cartésien : 

q p 

U—^X. 

Puisque q est surjectif, le morphisme d'adjonction GJJ —> q*q*(Gu) est un mono­

morphisme. D'après le lemme 3.1.1, il suffit donc de montrer que R1j*{q*Gu') est 

constructible. Or p et q étant finis, R1j±(qicGu') = p+R^j+iGw). On peut donc sup­

poser que X est normal. 

Dès lors, X est somme disjointe de ses composantes irréductibles, et on peut donc 

le supposer intègre. Notons K son corps des fonctions. Pour une extension finie L/K, 

on peut considérer le schéma normalisé X' de X dans L, ainsi que le diagramme 

cartésien suivant : 

U' - ^ X ' 

q p 
v . v 
U—^X. 

Par adjonction, on obtient un morphisme canonique 

<f$Jx:R
1j<,(Gu)-+pi,B.1j'i,(Gu,) 

induit par le morphisme qui à un G-revêtement d'un schéma étale V/U associe son 
pullback sur V = V XJJ U'. 

3.3.2. Lemme. — Considérons les hypothèses et notations précédentes. Alors, les 

conditions suivantes sont équivalentes : 

(i) R1jiç(Gu) est constructible. 

(ii) // existe une extension finie séparable L/K telle que (/>^JX est trivial. 

Démonstration. — (ii) (i) : Soit L/K une extension finie telle que 4>^jjx est trivial. 

Avec les notations qui précèdent, on pose C = q*(Gu')/Gu, faisceau sur Uét pointé 

de manière évidente. On peut alors former la suite exacte de faisceaux pointés (cf. 

[SGA 4 xn 3.1]) : 

J*q*(Gu>) - J.(C) - R'j.iGu) ^ R 1 ^ (q*(Gw)). 

Notons que, puisque p est fini, R1j*(q*(Gu')) = p+R^j'^Gu') et le morphisme (1) 

s'identifie au morphisme <j>^jjx- Par hypothèse, la suite exacte ci-dessus implique donc 

que R1j*(G) = j*(C)/j*q*(Guf) ce qui conclut d'après le théorème 1.1. 

(i) (ii) : Considérons une famille (e i , . . . , e n ) de sections de R}j+(Gu) qui soit 

génératrice. Le schéma X étant supposé noethérien, on peut supposer que ei est définie 
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sur un X-schéma étale de type fini Vi. Quitte à remplacer Vi par un recouvrement étale 

de type fini, on peut en outre supposer que la section correspond à un revêtement 

Pi Vi XxU. Puisque Vi X j U est quasi-compact, le schéma Pi est quasi-compact : 

soit Lij/K la famille finie des extensions de corps correspondant aux points génériques 

de Pi. On considère la clôture normale L d'une extension de K composée des Lij/K 

pour tous les indices (i, j). Par définition, <t>^x(
ei) = * P o u r tout entier i et le résultat 

suit puisque (e i , . . . , e n ) est génératrice. • 

3.3.3. Remarque. — Considérons les notations qui précèdent le lemme. En termes de 

G-revêtements, la trivialité du morphisme 4^u)x s'interprète comme suit : 

(i) Pour tout point géométrique s de Z et pour tout G-revêtement n : P —» X^§) — 

Z(s), le revêtement $FJX ë(P) est trivial. 

(ii) Pour tout schéma étale V/X et tout G-revêtement 7r : P —» V — Zy, il existe un 

recouvrement étale W/V x x X' tel que 7r\w-zw s'étend à W (l'extension est 

alors unique (à isomorphisme unique près) puisque X' est normal). 

Dans le cas des immersions ouvertes, on peut renforcer le lemme 3.2.1 comme suit : 

3.3.4. Lemme. — Considérons un diagramme commutatif 

V 

by/ N N \ ^ 

U ^X 

d'immersions ouvertes tel que U ^ 0, X est intègre, noethérien, normal, quasi-

excellent. Alors, les assertions suivantes sont vérifiées : 

(i) Si ~R}j*(G) est constructible, alors R1A:^(G) est constructible. 

(ii) Si R}h*(G) est constructible et pour tout morphisme fini surjectif X' —> X 

où X' est la normalisation de X dans une extension finie de son corps des 

fractions, k' — k XxX', le faisceau Rlk+(G) est constructible, alors R1ji,(G) est 

constructible. 

Démonstration. — Remarquons que l'hypothèse sur U et X entraîne que h*{Gjj) = 

Gv (cf. [SGA4 ix 2.14.1]). 

L'assertion (i) résulte donc simplement du fait que le morphisme canonique 

R 1/c^(Gy) —> R1jic(Gu) est toujours un monomorphisme. 

Considérons les hypothèses de l'assertion (ii). Soit K le corps des fonctions de X. 

D'après le lemme précédent appliqué à ft, on peut trouver une extension finie L/K 

telle que 4^u)v = *• ^' ^ e s c n e m a normalisé de X dans L/K, k' : V —> X' 

le pullback de k sur X'. Appliquant le lemme précédent à k\ on peut trouver une 

extension finie E/L telle que </>ffi/X'
 = *• 
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On note X" le normalisé de X dans E/K, X" -^-> X' ^ X les morphismes 

canoniques. On note h', j ' , k' (resp. h", j " , k") les pullback respectifs de h, j , k sur 

X' (resp. X"). On peut alors conclure grâce au diagramme commutatif suivant : 

R ^ G ) KRlK(G) 

6{L) k 6{L) 

^ ^ Vu/x K*Vu/v 
p+RXiG) - P . R ' i K G ) ( P A; ' )*RX(G) 

P**v//X, P**u>/x' 
y y 

(pp')*Rlk':(G) (pp'^j'JiG). 

La flèche pointillée existe du fait de l'exactitude de la suite horizontale du milieu et 

de <pffv = *• On conclut puisque (j>]^Jx = (p^u^/xf) ° ^u/X' ^ 

3.3.5. Lemme. — Soit X un schéma régulier et Z un sous-schéma fermé régulier de 

X. Notons j : U —> X l'immersion ouverte complémentaire. 

Soit n l'ordre de G. Alors, si n est inversible sur X, K1ji<(Gu) est constructible. 

Démonstration. — L'assertion est Zariski locale en X. On peut donc supposer que 

X est affine irréductible et Z est irréductible. 

Si Z est de codimension supérieure à 2 dans X , il résulte du théorème de pureté 

de Zariski-Nagata (cf. [SGA 1 x 3.1, 3.3]) que R 1 j^(G) = * ce qui conclut. 

En codimension 1, on peut supposer que Z admet un paramètre régulier f e A. 

On considère le schéma 

X' = Spec (A[t]/(tn-f)). 

Le lemme d'Abhyankar absolu (cf. [SGA 1 x m 5.2]) montre alors précisément que 

pour tout point géométrique y de Z , pour tout revêtement E U Xx X^ principal 

galoisien de groupe G, le revêtement n Xx X' : Ef —> U x ^ I ' x x X^ se prolonge 

k X' Xx X(yy II est donc trivial et le lemme 3.3.2 accompagné de la remarque 3.3.3 

permet de conclure. • 

Revenons au cas général d'une immersion ouverte j : U —> X de fermé complémen­

taire Z , X étant supposé intègre, noethérien, normal, et quasi-excellent. Supposons 

que l'ordre de G est inversible sur X. 
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Soit T la réunion des lieux singuliers de X et Z. Posons V — X — T et W = 

X — (Z UT) et considérons les immersions ouvertes correspondantes : 

V 

W ^X 

u. 

D'après le lemme précédent, R}h*(G) est constructible. D'après le lemme 3.3.4, on est 

donc ramené à prouver que pour tout morphisme fini surjectif X' —> X tel que X' est 

la normalisation de X dans son corps des fractions, k' = k Xx X', le faisceau R1k/

k(G) 

est constructible. Cette dernière assertion est bien impliquée par le théorème 1.3. 

4. Cas de codimension 2 sans hypothèse sur la torsion 

4.1. Résolution des singularités 

4.1.1. Lemme. — Soit X un schéma normal, connexe et excellent, Z C X une partie 

fermée de codimension supérieure à 2 et j : U —> X l'immersion ouverte complémen­

taire. 

Alors, il existe une partie fermée T C Z de codimension supérieure à 3 dans X 

telle que pour tous points géométriques s et t de Z — T et toute spécialisation rj : 

—» X(ë), le noyau du morphisme de spécialisation 

77* : R'MGh - RV*(G) t-

est trivial. 

Démonstration. — Dans cette preuve, on considère Z muni de sa structure réduite 

de sous-schéma de X. 

Si l'on dénote par X S i n g le lieu singulier de X , le sous-ensemble 

To = (Xjing — Z) fi Z 

est de codimension supérieure à 3 dans X. On peut donc supposer que Xs[ng est inclus 

dans Z. Le schéma X étant excellent, Z est aussi excellent. Donc quitte à enlever une 

partie nulle part dense dans Z , on peut supposer que Z est régulier. On se ramène 

alors au cas où Z est de plus intègre et de codimension 2. 

D'après [Lipman, 1978], on peut résoudre la singularité de X au point maximal de 

Z par une suite d'éclatements et de normalisations. Donc, quitte à retirer de nouveau 
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une partie fermée nulle part dense de Z , on peut supposer qu'il existe un diagramme 

formé de carrés cartésiens 

Z' ^ X' U' 

v / q 
v y & • y 

z ^x^——u 

tel que X' est régulier, Z ' est un diviseur dans X ' , toute composante irréductible de 

Z' domine Z , p est propre et q est un isomorphisme. 

On en déduit donc R1ji,(G) = R 1 / ^ ( G ) . Comme X' est régulier et U' dominant 

dans X', on obtient j+(Gu') = Gx> (cf. [SGA4 ix 2.14.1]). On obtient donc un 

monomorphisme canonique p : R x p * ( G ) —> R 1 / ^ ( G ) . 

Considérant les notations du lemme (où l'on a supposé T = 0 ) , on obtient donc 

un diagramme commutatif d'ensembles pointés 

Rip^Gh-^&MG), 

(i) v* 
V V 

D'après le théorème de constructibilité appliqué à p (cf. [SGA4 x i v 1.1]), le faisceau 

de groupes K1pir(G) est constructible. Du fait que p est un isomorphisme au-dessus 

de C/, on obtient que quitte à retirer un fermé propre de Z , on peut même supposer 

que R1pi,(G) est localement constant. Il résulte donc de [SGA4 ix 2.13(i)] que le 

morphisme (1) est injectif. D'après ce qui précède, pi est aussi injectif. On obtient 

donc que la composée 77* o pë est un monomorphisme. Il nous suffit donc de vérifier 

que le noyau de 77* est inclus dans l'image de p^. 

Quitte à tirer la situation sur X^ë) > o n P e u t supposer que X = X^ë) pour simplifier 

les notations — notons que Z reste intègre car, étant supposé régulier, il est géomé­

triquement unibranche. On se donne donc un G-revêtement principal P —» U' qui 

est trivial sur U' x x X^. Soit P la clôture normale de X' dans P/U'. Nous allons 

montrer que P/X' est étale et donne donc un antécédent à la classe de P/U' par 

l'application ps comme attendu. 

Par construction P Xxf U' = P , donc P/X' est non ramifié au-dessus de U'. Il 

suffit donc de montrer que P/X' est non ramifié au-dessus de Z'. D'après le théorème 

de Zariski-Nagata (cf. [SGA 1 x 3.1]), il suffit de montrer que P/X' est non ramifié en 

tout point de codimension 1 du schéma régulier X'. D'après ce qui précède, il suffit de 

traiter les points maximaux z' de Z'. Or, un tel point s'envoie sur le point maximal 

de Z par construction. Du fait que 77 est un morphisme de spécialisation, il résulte 

qu'il existe un point y' de Z' x x X^ qui s'envoie sur z'. Du fait que P x x X^ est 
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trivial sur U' Xx ^{t)i il s u i t que P x x ^(t) e s t non ramifié au-dessus de y'. On en 

déduit que P/X' est non ramifié au-dessus de z' ce qui conclut. • 

4.2. Un argument « à la Lefschetz » . — Pour cet argument, nous utiliserons le lemme 

suivant, qui est une application des résultats liés à « la méthode de Lefschetz » de 

[SGA2 x §2]. 

4.2.1. Lemme. — Soit X un schéma normal excellent connexe, D un diviseur de Car­

tier effectif connexe dans X, et Z C D une partie fermée de codimension supérieure 

à 2. Alors, D — Z est connexe. 

Démonstration. — Il suffit de montrer que pour tout point s de Z , le schéma 

(D — Z) Xx X( s ) est connexe. Par induction sur dim(^x,s)> il suffit de montrer que 

(D Xx X( s ) — {s}) est connexe. On peut donc supposer que X est local, de dimension 

supérieure à 3 et que Z est son point fermé. Considérons le complété X du schéma 

local X. Puisque X est excellent, X est encore normal. Puisque le morphisme X —» X 

est un surjectif, il suffît de montrer que (D — Z) Xx X est connexe. On peut donc 

supposer en outre que X est complet. 

Alors, le spectre épointé X' = X — Z est normal, connexe et équicodimension-

nel de dimension supérieure à 2. Il résulte du critère de normalité de Serre (cf. 

[Matsumura, 1989, 23.8]) que pour tout point fermé x de X ' , 

î>roî{ûx>,x) > 2. 

Dès lors, d'après [SGA2 x 2.1] (voir aussi plus directement [SGA2 IX 1.4]), on obtient 

un isomorphisme canonique 

T(x\â)~v(xfD 

D 
où X' désigne le complété formel de X le long de ce qui conclut. • 

4.2.2. Lemme. — Soit X un schéma normal excellent, D un diviseur de Cartier ef­

fectif dans X et Z C D une partie fermée non vide de codimension supérieure à 2. 

On pose U = X - Z,V = D - Z. 

Considérons le carré cartésien formé des immersions évidentes 

f 
V — D 

iu i 

Alors, le morphisme de changement de base associé 

i*Rlj*(G) -+ R1J:(G) 

est un monomorphisme. 
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Démonstration. — On peut supposer que X et D sont locaux strictement henséliens. 

On doit montrer que le morphisme de restriction 

H 1 (U, G) H 1 (V, G) 

est injectif. 

Remarquons que le lemme précédent nous montre déjà que V est connexe. Soit 

P et P' deux G-torseurs sur U qui coïncident sur V. On considère le faisceau L = 

I s o m G ( P , P') des G-isomorphismes de P dans P1 sur Uét. On doit montrer qu'il admet 

une section sur U. 

Comme L est localement constant constructible, il est représentable par un 

[/-schéma étale fini noté U'. Posons V = U' XJJ V. Par hypothèse, V/V admet une 

section. 

On va montrer que pour toute composante connexe U¿ de U' telle que U'QXU V/V 

admet une section, il existe une section de UQ/U ce qui suffira pour conclure. 

Quitte à remplacer U' par C/Q, on peut supposer pour montrer cela que U' est 

connexe non vide. Les corps de fonctions de U' et U définissent une extension finie 

separable L/K. Soit X' le schéma normalisé de X dans L/K. On pose encore D' = 

X' x x D e t Z' = X' x x Z . 

Notons que X' est normal excellent et connexe. Dès lors, le lemme précédent im­

plique que V = D' — Z' est connexe. Par hypothèse, le V-schéma étale V' admet 

une section, donc V = V. Il en résulte que le revêtement étale U'/U est de degré 1 

au-dessus de V , donc U' = U. • 

4.3. Réduction du théorème 1.3 au théorème 1.4. — On peut supposer que X est affine 

réduit. Pour un anneau excellent A fixé, on démontre par induction noethérienne sur 

les fermés Z de Spec(A) que le résultat est vrai pour les Z-schémas finis réduits. Pour 

cela, il suffit de démontrer le résultat pour X affine réduit en supposant le résultat vrai 

pour tout schéma fini sur un sous-schéma fermé strict d'une composante irréductible 

de X. 

Montrons tout d'abord qu'on peut supposer que X est normal. Considérons la nor­

malisation p : X' —• X de X (somme des normalisations des composantes irréductibles 

de X) ainsi que le carré cartésien : 

u ' - i ^ x ' 

q p 

u — X . 

Puisque q est surjectif, le morphisme d'adjonction GJJ —> q*q*(Gu) = q*G\j> est un 

monomorphisme. Il suffit donc de montrer que R 1 j*{q*Guf) est constructible. Or p et 

q étant finis, R1ji<(qi,Guf) = P*R Xj*(Gu')- Notons que Z x x X ' est de codimension 2 
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dans toute composante irréductible de X' (puisque X est universellement caténaire). 

On est donc ramené au cas où X est normal et on peut en outre le supposer affine et 

intègre. 

Le cas où X est de dimension 2 résulte du théorème 1.4. On peut donc supposer 

que d i m ( X ) > 2. 

Si c o d i m ( Z ) > 2, on peut trouver un diviseur principal D X qui contient 

Z (il suffit de prendre comme paramètre de D un élément non nul de l'anneau in­

tègre ûx(X) s'annulant sur Z). Soit j ' : D — Z —> D le morphisme induit. D'après 

le lemme 4.2.2, on obtient un monomorphisme i*R1j+(G) —• R 1 j^(G). Du fait que 

R1j*(G) = i*i*R1jir(G), il suffit d'utiliser que R 1 j^(G) est constructible par hypo­

thèse de récurrence. 

Plaçons nous dans le cas critique où c o d i m ( Z ) = 2. 

D'après le théorème 1.4, le résultat est connu pour le schéma semi-localisé de X 

aux points génériques de Z qui sont de codimension 2 dans X. Il existe donc, d'après 

le lemme 3.3.2, une extension finie L du corps des fonctions K de X telle que pour 

tout point maximal rj de Z de codimension 2 dans X , <f>^fjx ^ est trivial. 

Considérons X' la normalisation de X dans L/K et p : X' —• X sa projection. 

On pose j ' = j Xx X' et Z' = Z Xx X'. D'après le lemme 4.1.1, il existe une partie 

fermée T' C Z' de codimension supérieure à 3 dans X' telle que les noyaux des flèches 

de spécialisation de R 1 ^ (G) aux points de Z' — T' soient triviaux. 

Soit T la réunion des composantes irréductibles de Z de codimension supérieure à 

3 et du fermé p(Tf) dans Z. Considérons un point géométrique s de Z — T. Il existe 

un point maximal géométrique t de Z — T et une spécialisation n : X^ —• X(ëy 

Considérant les fibres de </>ffx, on obtient le diagramme suivant : 

R1 j* (G)s ----(L)oU/X,/8 [p*R
1j''*(G)]s 

R^G)! UJ±L^\p*K1fÁG)]t. 

D'après le choix de L/K, la composée ë est triviale. Par ailleurs, puisque p est 

fini, 77* a un noyau trivial. On en déduit que </>^ x ë est trivial. D'après le lemme 3.3.2, 

R 1/i^(G) est constructible pour l'immersion ouverte h : X — Z —> X — T. D'après le 

lemme 3.3.4, on est donc réduit à montrer que pour tout morphisme fini surjectif 

X' —» X, R1A:^(G) est constructible pour l'immersion ouverte k' : X' — T' —• X'. 

Or on peut trouver un diviseur principal D X' qui contient T'. On pose k" = 

kf xx> D. 
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D'après le lemme 4.2.2, on obtient un monomorphisme 

2 * R ^ ( G ) -> R ^ G ) . 

On peut donc à nouveau conclure d'après l'hypothèse d'induction appliquée à k" et 

du fait que R ^ G ) = iJ^k^G). 

5. Revêtements principaux d'une surface strictement locale épointée 

5.1. Mise en place. — D'après le théorème d'algébrisation d'Elkik (cf. [Elkik, 1973], 

théorème 5, aussi rappelé en 1.2.6), on peut supposer que A est complet. Soit 

X = Spec(A) et X' = Spec(74) — {m^}. On note K le corps des fractions de A. 

On commence par montrer qu'on peut supposer qu'il existe un sous-anneau régulier 

R C A tel que l'extension A/R est finie et génériquement étale. 

D'après les théorèmes de structure de Cohen (cf. [Bourbaki, AC, IX, §2, n° 5, 

th. 3] si A est de caractéristique mixte et [Bourbaki, AC, IX, §3, n° 4, th. 2] si A 

contient un corps), il existe un sous-anneau R C A tel que A/R est finie et R est 

un anneau de séries formelles sur un anneau de Cohen ou sur un corps. L'anneau R 

est donc en particulier régulier. Soit E le corps des fractions de R et E' la clôture 

séparable de E dans K. Notons AQ la clôture normale de R dans E'/E. Alors, le 

morphisme XQ = Spec(Ao) —» Spec(A) est fini radiciel et surjectif. D'après l'invariance 

topologique du site étale (cf. [SGA 4 v m 1.1]), on peut remplacer A par AQ qui est 

fini génériquement étale sur R, comme attendu. 

Remarquons tout d'abord le fait suivant : 

5.1.1. Lemme. — Soient R un anneau local régulier de dimension 2 et A une R-algèbre 

finie dominante telle que A est un anneau local et normal. Soit m le degré générique 

de R —> A. Alors A est un R-module libre de rang m. 

Démonstration. — Puisque A est finie dominante sur i?, dim(A) = dim(i?) = 2. De 

plus, puisque A est local normal de dimension 2, il résulte du critère de Serre que 

prof (A) = 2 (cf. [Matsumura, 1989, ex. 17.3]). Donc A est un anneau de Cohen-

Macaulay. Le lemme résulte alors de [EGA Orv 17.3.5 (ii)]. • 

Faisant abstraction du groupe G, on fixe un entier n > 0 et on montre que l'en­

semble des classes d'isomorphisme de revêtements étales de X' de degré n est fini. Dans 

la suite de cette preuve, les revêtements étales considérés seront supposés connexes. 

On raisonne par l'absurde. Considérons une suite {P[ —» X ' ^ N de revêtements 

étales de degré n telle que pour tout i ^ j , P[ est non X'-isomorphe à P'-. 

Soit K le corps des fractions de A. Pour tout entier i, P[/X' correspond à une 

extension finie séparable Li/K. On note B{ la clôture intégrale de A dans Z^, Pi — 
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Spec(Z^). Remarquons par ailleurs que d'après le lemme précédent, A/R est libre de 

rang m et Bi/R est libre de rang nm. 

5.1.2. Questions de discriminant. — Rappelons pour les besoins de la preuve qui 

suit les considérations suivantes : 

5.1.3. Définition. — Soit B/A une algèbre finie libre de rang n. Soit Sê = {ei)\<i<n 

une base de B/A. Le déterminant de la matrice (Tr B/A(eiej)) 1 < . est appelé le dis­

criminant de B/A relativement à 3%. Sa classe dans le monoïde multiplicatif A/(AX)2 

est indépendante de Së. On la note discg/ A . 

Par abus, on considérera la classe disc#/^ comme un élément de A. Rappelons 

que B/A est étale si et seulement si àiscs/A e s t inversible dans A. Par la suite, nous 

aurons besoin de la formule suivante (cf. [Ramero, 2005, 2.1.4]) : Soit B/A et C/B 

deux algèbres finies libres. Soit n le rang de C/B. Alors, 

discc/A = d i sc^ / A • A T B M ( d i s c c / f î ) . 

Revenant à la situation du numéro précédent, on considère un idéal p de hauteur 

1 de R. Soit Ap (resp. -£?i,p) l'anneau semi-localisé de A (resp. Bi) correspondant à la 

fibre au-dessus de p. 

Notons que Ap est normal de dimension 1. Par ailleurs, comme par hypothèse Bi/A 

est étale finie de degré n au-dessus du spectre épointé de A, l'extension d'anneaux 

locaux BijP/Ap est libre de rang n. D'après la formule rappelée précédemment, 

disc B i f P / f l p =àbcAp/Rp 'NAP/Rp(àiscBip/Ap). 

Or A/R (resp. Bi/R) est génériquement étale et BijP/Ap est étale. On déduit de 

la relation précédente que l'élément (disc£. /#)(disc^/#) - 1 de Frac(R) x appartient à 

Rp . Comme ceci est valable pour tout p et que R est normal, on en déduit : 

(5.1.3.1) P ^ e R \ 

5.2. Lemme clé. — La technique pour trouver une contradiction à la situation dans 

laquelle on est parvenu à l'issue de la mise en place 5.1 repose sur l'utilisation des 

ultrafiltres. Dans la section qui suit, nous rappelons cette théorie et démontrons les 

résultats qui nous seront utiles. Le point essentiel de la preuve se résume alors à 

prouver le lemme clé 5.2.8 comme nous le montrons dans le paragraphe 5.2.9. La 

preuve de ce lemme est donnée dans la dernière section, 5.2.10. 

5.2.1. Ultraproduits 

5.2.2. Définition. — Soit I un ensemble et P(I) l'ensemble des parties de / . Un ul­

trafiltre & sur / est la donnée d'un ensemble de parties de / vérifiant les propriétés 

suivantes : 
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(i) VF G VG G P(J), F c G G G J .̂ 

(ii) VF, G G Ĵ , F H G G ^ . 

(iii) VF G P(J), F G & ou bien 7 - F G 

(iv) 0 £ J .̂ 

Dans la suite de la preuve, nous entendrons un ultrafiltre & comme un ensemble 

ordonné tel pour tout F, G G Ĵ , 

F < G ^ F D G . 

Notons qu'il résulte alors de la définition que ^ est un ensemble filtrant. 

5.2.3. Exemple. — Soit a un élément de I. Alors, l'ensemble des parties de I contenant 

a est un ultrafiltre & de I. Dans ce cas, on dit que & est principal. 

D'après le lemme de Zorn, il existe des ultrafiltres non principaux sur un ensemble 

infini I. 

5.2.4. Définition. — Soit & un ultrafiltre sur un ensemble I et ^ une catégorie ad­

mettant des limites inductives filtrantes et des produits. 

Soit (Xi)iej une famille d'objets de <é?. Le système inductif (J\ieF Xi)pe& est 

filtrant. On définit l'ultraproduit de (Xi)ieI suivant & comme la limite inductive de ce 

système : 

Y [ Xi = colimFe^ ( J ! Xi J . 
iei/& \ieF ) 

Si [Xi)i est la famille constante de valeur un objet X , on note son ultra­

produit, appelé l'ultrapuissance de X suivant &. On dispose toujours de l'application 

diagonale X -> X1^. 

On notera en particulier qu'un élément x de l'ultraproduit F L e / / ^ est repré­

senté par une suite (x¿)¿eF pour un élément F G &. De plus, étant donné un autre 

élément y = (yj)jeG d e cet ultraproduit, x = y si et seulement si il existe H G & tel 

que FI C F H G vérifiant Mi e H, Xi = yi. 

Nous utiliserons cette notion dans le cas des anneaux ou des modules et nous 

utiliserons en particulier le lemme suivant : 

5.2.5. Lemme. — Soit I un ensemble et & un ultrafiltre sur I. 

Considérons une famille (^4¿)¿e/ d'anneaux. On pose — I L e i " / ^ ^ ' 

(i) Si pour tout i G I, Ai est intègre (resp. un corps, un corps séparablement clos), 

il en est de même de AOQ. 

(ii) Si pour tout i e I, Ai est local (resp. local hensélien) d'idéal maximal m¿, A^ 

est local (resp. local hensélien) d'idéal maximal Y\i^i¡^mi-
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Considérons une famille d'algèbres (Bi/Ai)^!, BQQ/AQQ son ultraproduit sui­

vant & : 

(iii) Si pour tout i e I, Bi/Ai est une extension locale d'anneaux locaux (resp. libre 

de rang m), il en est de même de Boo/A^. 

Considérons un anneau A, et AQQ = son ultrapuissance. 

(iv) Si M est un A-module de présentation finie, 

M 0 A A1^ = M*/^. 

(v) Si A est cohérent, Vapplication diagonale A —> A1^ est plate. 

Démonstration. — D'après la caractérisation des éléments d'un ultraproduit rappelée 

avant l'énoncé du lemme, un élément x G AQO est inversible (resp. nul) si et seulement 

s'il existe F G & tel que x est représenté par une famille (xi)ieF tel que pour tout 

indice i e F, xi est inversible (resp. nul) dans Ai. 

(i) dans les deux premiers cas respectifs en résulte facilement. Pour montrer que 

l'ultraproduit koo = A^ de corps séparablement clos ki = Ai est encore séparablement 

clos, on considère un polynôme separable P à coefficients dans k^ de degré d > 0. En 

raisonnant sur les coefficients du polynôme P, on peut supposer que P est représenté 

par une famille de polynômes {Pi)iep pour un élément F G & et des polynômes Pi à 

coefficients dans ki. Quitte à restreindre P, on peut supposer que pour tout i e F, Pi 

est separable de degré d. Il admet donc une racine x\ dans ki. Il est alors immédiat 

que la famille {xi)i£F représente un élément x de k^ tel que P(x) = 0. 

(ii) : on traite d'abord l'assertion non respé. Posons = rLei/J*"™** C'est clai­

rement un idéal de A^. Soit x un élément de A^ — rrioo, représenté par une famille 

(xi)iep. L'hypothèse sur x se traduit comme suit : 

$H G H c P | Vz G H, Xi G m*. 

Soit G = {i G P | Xi £ xrii}. Alors, par hypothèse, G ^ ^ . Donc H = F —G appartient 

à & car & est un ultrafiltre. Comme pour tout i G H, xi ^ m̂ , Xi est inversible dans 

l'anneau local Ai. On en déduit que x est inversible d'après la caractérisation des 

éléments inversibles rappelée en début de preuve. 

Pour montrer l'assertion respé, on raisonne comme dans le cas de l'ultraproduit de 

corps séparablement clos traité ci-dessus. 

(iii) concernant la première assertion résulte facilement de (ii). L'assertion respé 

est évidente. 

(iv) résulte facilement du fait élémentaire que le foncteur M <S>A — commute aux 

produits si M est de présentation finie. 

(v) résulte du fait que lorsque A est cohérent, un produit de A-modules plats est 

plat (cf. [Chase, I960]). • 
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5.2.6. Remarque. — D'un point de vue conceptuel, on peut voir ce lemme comme un 

corollaire du théorème de Los (cf. [Bell & Slomson, 1969, chap. 5, § 2]). 

5.2.7. Enoncé du lemme clé. — Revenons à la situation qui nous occupe. Soit & un 

ultrafiltre non principal sur N. On note B^ (resp. A^, R^) l'anneau local obtenu par 

ultraproduit suivant & de (-Bf)ieN (resp. A, R). Soit B^, A^, R^ leurs complétions 

respectives. On en déduit les tours d'anneaux locaux suivantes : 

B{ BQQ ^ Eoo 
A A A 

A ^ AQQ >" AQQ 

R ^~ Roo ^~ Roo • 

D'après le point (iii) du lemme 5.2.5, A^ et sont des i^oo-algèbres libres de 

rang fini. Si koo désigne le corps résiduel de R^, on en déduit que A^ k^ et 

Boo km sont des k^-algèbres locales finies : leurs idéaux maximaux sont donc 

nilpotents. Il en résulte que la complétion de l'anneau local A^ (resp. Boo) coïncide 

avec sa complétion par rapport à l'idéal maximal de R^. Comme A^ (resp. Boo) est 

un RQQ-module libre, on en déduit : 

AOQ = AOQ (ĝ oo ROO.BOQ = Boo ®Roo ^oo-

Considérant le spectre des anneaux locaux sur les deux premières lignes, on obtient 

le diagramme commutatif suivant : 

p. p ^ p 
1 l r oo 1 oo 

p p 

X XQQ -< XOQ 

et la discussion qui précède montre que le carré qui apparaît dans ce diagramme est 

cartésien. Considérant encore le spectre épointé des anneaux locaux A, A^ et Aoo, 

on obtient par changement de base le diagramme suivant : 

pf pf pf 
r i jroo oo 

p' p' 

X' ^ X'oo ̂  X'oo' 
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Notons que les flèches de la ligne inférieure existent car, l'idéal maximal 9JIA étant de 

type fini, on obtient facilement pour les idéaux maximaux respectifs de et A^ : 

mAoo = mA • Aoo, =WIA-AZ. 

5.2.8. Lemme. — (1) Le schéma est noethérien. 

(2) Le morphisme X^ —> X est plat à fibre géométriques régulières. 

(3) Le morphisme X^ —> X^ est une immersion fermée dont l'image contient tous 

les points fermés de X^. 

(4) Le morphisme fini p : PQQ —» XOQ est étale au-dessus de X^. 

(5) Le morphisme fini p : PQQ —» XQQ est étale au-dessus de X^. 

5.2.9. Conséquences du lemme clé. — Montrons pourquoi le lemme précédent permet 

de terminer la démonstration par l'absurde. 

D'après le point (ii) du lemme 5.2.5, Aoo est un anneau local hensélien. On peut 

donc appliquer la variante c^ du théorème de changement de base lisse (cf. XX-4.2.1, 

cas (ii)) au morphisme X^ —» X et à l'ouvert X^. On en déduit qu'il existe un 

revêtement étale Q —• X' tel que P^ ~Qxx> X^. 

D'après le théorème de rigidité de Gabber (cf. 2.1.1) appliqué à A^, pour tout 

groupe fini G, le morphisme 

H 1
 (X'QQ ,G) —> H 1 (X'œ, G) 

est un isomorphisme. On en déduit donc un isomorphisme : 

(5.2.9.1) P ; ^ Q x x , i ; . 

Pour tout élément F de l'ultrafiltre on pose : PF = Spec(Y[ieF Bi), XF = 

Spec(YlieF A),YF = Spec(n^eF e t o n n o t e VF ' PF —> XF,qF : XF —• YF les 

flèches canoniques. Par définition, le morphisme p : —> X^ est la limite projective 

suivant F G & des morphismes pF. Notons p'F : P'F —> X'F le pullback de p au-dessus 

de X'. 

Puisque pour tout i G P, Bi/R (resp. A /R) est fini et libre de rang nm (resp. m), 

on obtient facilement que qF opF (resp. qF) est fini libre de rang nm (resp. m). En 

particulier, pF est fini de présentation finie. On peut alors appliquer [EGA IV3 8.8.2] 

aux familles de X^-schémas PF et Q xx> X'F indexées par les éléments de l'ultrafiltre 

& et on obtient que l'isomorphisme (5.2.9.1) se relève pour un élément particulier 

F G & en un isomorphisme de la forme : 

P'F~QxX,X'F. 

L'ultrafiltre & étant non principal, F contient au moins deux éléments distincts i 

et j . L'isomorphisme précédent implique donc P/ ~ Q ~ Pj ce qui constitue la 

contradiction annoncée. 
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5.2.10. Preuve du lemme clé. — Démontrons pour conclure chaque assertion du 

lemme 5.2.8 : 

Assertion (1) : Notons que l'idéal maximal de l'anneau local A^ est de type fini 

d'après le point (ii) du lemme 5.2.5. Dès lors, le complété AOQ est noethérien d'après 

[EGA Oi 7.2.7, 7.2.8]. Il en est de même pour et B^. 

Assertion (2) : Pour montrer que —• X^ est plat, il suffit, d'après le critère de 

platitude par fibres (cf. [EGA IV3 11.3.10]), de montrer que pour tout entier Z > 0, le 

morphisme A/ml

A —• A 0 0/m
z—- est plat. Or, A^/m1^ = {A/mL

AY^ et le morphisme 

précédent est l'application diagonale. On peut donc conclure en utilisant la propriété 

(v) du lemme 5.2.5 et le fait que A/ml

A est cohérent. 

Notons que l'extension résiduelle KJ^JKA de A^/A est séparable. En effet, pour 

toute extension finie L/KA, L <g>KA njf^ = L1^ est un corps d'après le point (i) du 

lemme 5.2.5. On en déduit que les fibres géométriques du morphisme —> X sont 

régulières par application du théorème de localisation de la lissité formelle d'André 

(cf. [André, 1974]). 

Assertion (3) : On commence par montrer que le morphisme X^ —> X est une 

immersion fermée. Il s'agit de montrer que TT : —» A^ est surjectif. Or, comme 

on l'a déjà vu, A^ est le c o m p l é t é d e A^ pour la topologie OT^-adique. Or, 9KA 

étant de type fini, on obtient que A^ est complet (mais non nécessairement séparé) 

pour la topologie 9Jl^-adique — cela résulte du fait que c'est trivialement vrai pour 

les produits AF pour un élément F G ̂ . La surjectivité de TT en résulte. 

Pour démontrer la deuxième partie de l'assertion (3), il suffit d'appliquer le lemme 

suivant à l'idéal maximal de A^. 

5.2.11. Lemme. — Soit A un anneau et I un idéal de type fini tel que I C rad(A). 

Soit A le complété I-adique de A. 

Alors le morphisme induit Spec(Â) — V(IA) —> Spec(A) — V(I) est surjectif sur les 

points fermés du but. 

Notons / : S p e c ^ ) —» Spec(A) le morphisme canonique. Pour prouver le lemme, 

on doit montrer que pour tout fermé Z C Spec (A), 

Z CV(I)^ f-^Z) cV(IÂ). 

Comme I est de type fini, ceci équivaut à montrer que pour tout idéal J C A, 

3n > 0 | In C J <s> 3n > 0 | InÂ c JÂ. 

Or cela résulte facilement du lemme de Nakayama. 

(n) Rappelons que complété signifie completé-séparé. 
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Assertion (4) : Remarquons d'abord que d'après [EGA IV2 6 .14 .1] , l'anneau A^ est 

normal. En effet, A est normal et le morphisme A —• A^ est normal puisqu'il est plat 

à fibres géométriques régulières d'après le lemme 5.2.8. Or, B^/ROQ est libre (de rang 

nra), donc sans torsion. Comme A^/Roo est entière, on en déduit que BQQ jAçyQ est 

sans torsion. Ainsi, BOQ/1A^ est plat en codimension < 1. 

Or, des relations ( 5 . 1 . 3 . 1 ) pour tout i G N, on déduit 

disc^— 

Si p est un idéal premier de hauteur < 1 de PQO, l'extension (B00)p/(A00)p est sans 

torsion, donc libre. La relation précédente montre que dise,5—x /,T~-\ est inversible 

ce qui prouve que (Poo)p/(Ax>)p est étale, ce qui démontre ( 4 ) . 

Assertion (5) : D'après le critère de platitude par fibres (cf. [EGA IV3 11.3 .10] ap­

pliqué à PQO —• Xoo —» Spec(Poo)), pour tout point x du spectre épointé de i ^ , le 

morphisme des localisés (Poo)(x) ~^ (^oo)(x) est plat. Comme dans le point ( 4 ) , la 

relation ( 5 . 1 . 3 . 1 ) permet de montrer que (P00)^/(X00)^ est étale. La propriété ( 5 ) 

résulte donc du point ( 3 ) . 
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