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EXPOSE XXI

LE THEOREME DE FINITUDE
POUR LES COEFFICIENTS NON ABELIENS

Frédéric Déglise

A la mémoire de mon oncle Olivier.

1. Introduction

Le but de I'exposé est de démontrer les théorémes suivants, qui généralisent le
théoréme d’Artin (cf. [SGA 4 x1v 1.1]) dans le cas ensembliste et non abélien :

1.1. Théoréme. — Soit f : Y — X un morphisme de type fini entre schémas noethé-
riens. Pour tout faisceau constructible F' sur Y, le faisceau f,F est constructible.

1.2. Théoréme. — Soit f : Y — X un morphisme de type fini entre schémas quasi-
excellents. Soit . un ensemble de nombres premiers inversibles sur X. Pour tout
faisceau constructible de groupes F sur Yy, de L-torsion, le faisceau R f,(F) sur Xe
est constructible.

1.3. Théoréme. — Soit X un schéma excellent, Z C X une partie fermée telle que pour
toute composante irréductible X' de X, codimx/(Z N X') > 2. Notons j : U — X
l’tmmersion ouverte du complémentaire de Z. Pour tout groupe fini G, le faisceau
R'j.(Gy) est constructible.

1.4. Théoréme. — Soit A un anneau strictement local de dimension 2. On suppose
que A est normal, excellent, et on note X' = Spec(A) — {ma} son spectre épointé.
Alors, pour tout groupe fini G, ensemble HY (X', G) est fini.

Le théoréme 1.1 est prouvé dans la section 2. Ce théoréme est utilisé par les suivants
dans le cas ou X est quasi-excellent. Ce cas est beaucoup plus simple, comme nous le
dégageons dans la démonstration.
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530 EXPOSE XXI. LE THEOREME DE FINITUDE...

Le théoréme 1.2 est réduit — en trois étapes — au théoréme 1.3 dans la section 3.
Toutefois, le lecteur attentif notera que ce dernier théoréme n’est pas un simple cas
particulier car il n’est pas nécessaire de faire d’hypothése sur le cardinal du groupe
G.

Le théoréme 1.3 est réduit au théoréme 1.4 dans la section 4. Cette réduction
apparait en 4.3 et utilise deux lemmes qui ont été établis auparavant (lemmes 3.3.2
et 4.2.2).

Le dernier théoréme est bien un cas particulier de 1.3. Toutefois, nous avons choisi
de le dégager dans cette introduction & la fois comme une résultat important et comme
un point clé. Il est démontré dans la section 5 suivant un raisonnement par I’absurde
qui utilise la méthode des ultrafiltres (voir 5.2.1 pour des rappels).

Notations et conventions

— Quand une topologie sur un schéma est sous-entendue, il s’agit de la topologie
étale.

— FEtant donné un ensemble D (resp. un groupe G), on notera parfois D (resp. G)
pour le faisceau étale constant induit sur un schéma X lorsque X est clair d’aprés
le contexte. Si I'on veut préciser X, on note ce faisceau Dx (resp. Gx), suivant
I'usage.

— Quand on parle de la normalisation d’un schéma X, il s’agit du morphisme ca-
nonique

X =][xi-Xx
iel
ou I désigne ’ensemble des composantes irréductibles de X et X désigne le
schéma normalisé de la composante irréductible de X correspondant & i, munie
de sa structure de sous-schéma réduit. On dit aussi que X" est le schéma normalisé
associé a X.

2. Image directe de faisceaux d’ensembles constructibles

Dans le cas oit X est quasi-excellent, la preuve est une application de résultats déja
connus (cf. [SGA 4 1x]). Nous commengons par exposer la démonstration dans ce cas,
puis dans le cas général. Toutefois, I’étape de réduction exposée dans la section qui
suit est valable dans les deux cas.

2.1. Réduction du théoréme. — On commence par réduire le théoréme 1.1 a I’assertion
suivante :

(&) Soit D un ensemble fini et j : U — X une immersion ouverte entre schémas
noethériens. Alors, le faisceau d’ensembles j,(Dy) est constructible.
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2. IMAGE DIRECTE DE FAISCEAUX D’ENSEMBLES CONSTRUCTIBLES 531

Considérons les hypothéses du théoréme 1.1. D’apreés [SGA 4 1x 2.14], on peut trouver
un monomorphisme

F — Hﬂ'i*(ci) = Q
i=1

pour des morphismes finis m; : Y; — Y et des faisceaux constants finis C;
sur Y;. Comme un sous-faisceau d’un faisceau constructible est constructible
([SGA 4 1x 2.9(ii)]), il suffit de montrer que f,(Q) est constructible. On est donc
ramené au cas de (f;).(C;) pour tout ¢, ce qui montre qu’on peut supposer F' = Dy
pour un ensemble fini D.

Notons que dans ce cas, le théoréme est local en Y. En effet, si I’on se donne un
recouvrement étale de type fini 7 : W — Y, le morphisme d’adjonction

Dy — mn*(Dy) = m(Dw)
est un monomorphisme. En lui appliquant f,, on en déduit un monomorphisme
fe(Dy) = (fm)(Dw).

11 suffit donc de montrer que le membre de droite est constructible ([SGA 4 1x 2.9(ii)]
a nouveau). Notamment, on peut donc supposer que Y est affine.
Alors, f est séparé de type fini. On peut donc considérer une factorisation

vyLxLx
de f telle que j est une immersion ouverte et f un morphisme propre. Le résultat est

connu pour f (cf. [SGA 4 x1v 1.1]) donc on est réduit au cas de 'immersion ouverte
Jj, C’est-a-dire a 'assertion (2?).

2.1.1. Remarque. — (i) Si I’on suppose que X est quasi-excellent, le schéma X qui
apparait dans la réduction ci-dessus est encore quasi-excellent puisque f est de
type fini.

(ii) Dans cette réduction, on a vu que (£?) est locale en U.

2.2. Cas ou X est quasi-excellent. — Notons le lemme facile suivant :
2.2.1. Lemme. — Considérons un carré cartésien de schémas noethériens

v x

U—1+x

tel que j est une immersion ouverte et p un morphisme fini surjectif. Alors, pour tout
ensemble fini D, si j.(Dy) est constructible, j.(Dy) est constructible.
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532 EXPOSE XXI. LE THEOREME DE FINITUDE...

Démonstration. — Par hypothése, ¢ est surjectif. On en déduit que le morphisme
d’adjonction

Dy — ¢.q*(Dy) = ¢.(Dy-)

est un monomorphisme. Appliquant j,, on en déduit un monomorphisme
Jx(Dy) — p*(ji(DU’))-

Puisque p est fini, p, préserve la constructibilité d’aprés [SGA4 1x 2.14(i)]. Le
lemme en résulte puisqu’un sous-faisceau d’un faisceau d’ensembles constructible est
constructible ([SGA 4 1x 2.9(ii)]). o

2.2.2. — Avant de passer a la preuve dans le cas général, notons que la démonstration
du théoréme 1.1 dans le cas ou X est quasi-excellent est plus simple. Grace a la
remarque précédente, on se réduit a assertion (£?) dans le cas ou X est quasi-
excellent. Dés lors, la normalisation p : X’ — X de X est finie. Ainsi, le lemme
précédent appliqué au carré cartésien évident nous raméne au cas ou X est normal.

Seul le cas ou X et U sont connexes non vides nous intéresse. Alors, d’aprés
[SGA 4 1x 2.14.1}, j«(Dy) = Dx, ce qui conclut.

2.3. Cas général

2.3.1. — Considérons les hypothéses de I’assertion (4?). Celle-ci est locale en X et
il suffit donc de traiter la cas o X est affine, spectre d’'un anneau noethérien A.
Utilisant le lemme 2.2.1 — en prenant pour X’ la somme disjointe des composantes
irréductibles de X — on peut supposer aussi que A est intégre. On a déja vu que ()
est aussi locale en U (point ii de la remarque 2.1.1). On peut donc se ramener au cas
ot U = Spec(Ay) pour un élément non nul f € A.

Pour prouver (&), nous allons démontrer par induction noethérienne sur les fermés
irréductibles Z de X la propriété légérement plus forte suivante :

(*z) Pour tout morphisme fini Z/ — Z, Z’ intégre, tout ensemble fini D et toute
immersion ouverte | : V' — Z', le faisceau I, (Dy) est constructible.

D’aprés ce qui précéde, on est ramené a prouver (£?) pour X = Spec(A) intégre
et U = Spec(Ay), f # 0, en supposant la propriété d’induction suivante :

(##) Pour tout fermé propre Z de X, tout morphisme fini Z’ — Z, tout ensemble fini
D et toute immersion ouverte | : V! — Z’, le faisceau I, (Dy+) est constructible.

2.8.2. — Soit A’ la cloture intégrale de A dans son corps des fractions. On pose
X' = Spec(4’), Z = Spec(A/(f)) et on considére le diagramme formé de carrés
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2. IMAGE DIRECTE DE FAISCEAUX D’ENSEMBLES CONSTRUCTIBLES 533

cartésiens :
Z/I

hi

U'—JQ-XI<¢—Z' 7r

|

U—>X~<~"7

tel que i et j sont les immersions évidentes, p (resp. h) est la normalisation de X
(resp. Z').

2.3.8. Premiére étape (fibres génériques de p). — D’aprés [Nagata, 1962, 3.3.10],
l’anneau A’ est un anneau de Krull. Il en résulte que Z’ n’a qu’un nombre fini de
points génériques 21, ..., 2,. On pose z, = p(z.). Bien que p ne soit pas nécessairement
fini, p~1(2,) est fini et Pextension résiduelle x(2})/x(2s) est finie (voir [Nagata, 1962,
chap. V, 33.10]). D’aprés le lemme 2.2.1, on peut toujours remplacer A par une exten-
sion finie A C B C A’. L’hypotheése (J#) est en effet encore vérifiée pour Y = Spec(B).
Dés lors, on peut supposer que les conditions suivantes sont vérifiées :

(h1) Pour tout indice s, p~1({2s}) = {z.}.

(h2) Pour tout indice s, k(2.)/k(2s) est triviale.

Notons A; (resp. A.) anneau localisé de X en z; (resp. X’ en 2}). Alors, A’ est un
anneau de valuation discréte. Du fait que I'extension induite A./A; est entiére, on
déduit que A, est de dimension 1, ce qui implique que z; est un point maximal du
diviseur Z de X. Comme q est surjectif, on déduit de (hl) que z1, ..., 2, est Pensemble
des points génériques de Z.

2.8.4. Deuriéme étape (restriction & un ouvert de Z). — Puisque trivialement
7*j«(Dy) = Dy, il suffit de montrer que i*j,(Dy) est constructible. Notons les faits
suivants :

(i) ¢ surjectif : Dy — ¢x¢*(Dy) = ¢»(Dy-) est un monomorphisme.
(ii) X' normal, j/ dominante : j,(Dy/) = Dx/ (voir [SGA 4 1x 2.14.1]).
(iii) h surjectif : Dz — hyh*(Dz/) = hy(Dz~) est un monomorphisme.

On déduit de (i) et (ii) un monomorphisme
Jx(Du) = jxax(Dur) = p«(Dx)-

Notons que p est pro-fini. Le théoréme de changement de base propre s’étend a ce
cas, ce qui donne la relation : i*p, = r.i’*. Si on applique i* au monomorphisme
précédent, on déduit de cette relation et de (iii) un monomorphisme composé :

g i*j*(DU) — i*p*(DX') = T*(DZ/) — 71'*(DZ//),
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534 EXPOSE XXI. LE THEOREME DE FINITUDE...

Considérons maintenant une immersion ouverte dense [ : V — Z ainsi que le carré
cartésien suivant :
A v v

Z< v

On en déduit un diagramme commutatif de faisceaux d’ensembles :

i*j*(DU) 2 l*l*i*j*(DU)

UL Ll*l*a

W*(DZH) L‘ l*l*’fr*(DZ//).

Or le morphisme § — induit par le morphisme de coiinité ’adjonction (I*,1,) —
est un isomorphisme. En effet, [ étant une immersion ouverte I*7, = my,I'* par
changement de base. On obtient donc l'identification : l,I*7,(Dz/) = m I, (Dy+). De
plus, & travers cette identification, le morphisme 3 est 'image® par 7, du morphisme
de coiinité pour 'adjonction (I'*,1}) :

Dzn — l;l/*(DZ//) = li(Dvu).

Ce dernier est un isomorphisme puisque Z” est normal et I’ dense (voir [SGA 4 1X 2.14.1]).
Puisque o est un monomorphisme, on en déduit que a est un monomorphisme.

Or, d’aprés (), le faisceau d’ensembles [, (Dy) est constructible. Pour conclure, il
suffit donc (d’aprés [SGA 4 1x 2.9(ii)]) de trouver un ouvert dense V de Z tel que

(2.3.4.1) Jx(Dv)lv = Dy.

2.8.5. Troisiéme étape (composantes immergées de Z ). — Considérons la réunion T
des composantes immergées de Z dans X. Alors, 'ouvert V = Z — T satisfait la
relation (2.3.4.1).

On doit montrer que pour tout point géométrique Z de V, la fibre du morphisme
canonique Dy — j,(Dy)|v au point Z est un isomorphisme. Autrement dit, on doit
montrer que le morphisme canonique

(U xx X(z)) = To(X(z))
est un isomorphisme. En raisonnant par induction sur la dimension de Xz, on se

raméne & montrer que le morphisme suivant

(2.3.5.1) mo(X(z) ~ {2}) = m0(X(z))

() On le vérifie facilement en revenant & la définition du morphisme de changement de base 4 I’aide des
adjonctions (I*,1,) et (I’*,1,) et en utilisant que la composée suivante de morphismes unités/coiinités
est I'identité :

Lo = L*l — L.
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3. IMAGE DIRECTE DERIVEE DE FAISCEAUX DE GROUPES CONSTRUCTIBLES 535

est un isomorphisme.
Soit x le point de X = Spec A correspondant & Z. Si x n’est pas un point maximal,
puisque V n’a pas de composante immergée,

Prof;(A/(f)) > 1 = Profy(A) > 2.

D’aprés le théoréme de Hartshorne ([SGA 2 111 3.6]), le morphisme (2.3.5.1) est donc
un isomorphisme.

Supposons que z est un point maximal. D’aprés (hl), il existe un indice i tel que
x = 2z;. Or, d’aprés (h2), le morphisme entier birationnel

Xzz;) = SpeC(Aé) — Spec(4;) = X(Zi)

est radiciel. C’est donc un homéomorphisme universel. On en déduit que le mor-
phisme X (’ ) X(z,) est encore un homéomorphisme, ot Z} est le point géométrique
correspondant & la cloture séparable de k(z;) définie par z;. Dés lors, (2.3.5.1) est un
isomorphisme puisque la propriété correspondante est vraie pour le schéma normal
X EZ,’-)‘ Ceci conclut.

3. Image directe dérivée de faisceaux de groupes constructibles

3.1. Réduction au cas d’un faisceau constant.

3.1.1. Lemme. — Soit f : Y — X une morphisme de type fini entre schémas noethé-
riens et u : F — F' un monomorphisme de faisceaur de groupes constructibles sur
Yes.

Alors, R f,(F") constructible implique R! f,(F) constructible.

Démonstration. — Posons C = F’/F vu comme faisceau pointé, constructible sur Yz,
par hypothése. On considére la suite exacte de faisceaux pointés (cf. [SGA 4 x11 3.1])

Fo(F') = f(C) = R fu(F) = R fu(F).

Supposant que R! f,(F’) est constructible, on peut trouver une famille génératrice de
sections locales (e1,...,e,) de R}f,(F’) ot e; est définie sur un X-schéma étale de
type fini V;. Soit ®; le faisceau fibre de v en e;, défini par le diagramme cartésien de
faisceaux (d’ensembles) sur Xg; :

vy

d; Vi
R'f(F) —== R f,(F").

ot on voit e; € T'(V;,R!f,(F’)) comme un morphisme du topos étale de X. Pour
montrer que R! f,(F) est constructible, il suffit de montrer qu’il est engendré par une
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536 EXPOSE XXI. LE THEOREME DE FINITUDE...

famille finie de sections locales sur des objets quasi-compacts. Il suffit donc de montrer
que pour tout ¢, ®;, vu comme un faisceau étale sur V; grace au morphisme v;, est
engendré par un nombre fini de sections locales. On est donc ramené a montrer que
le faisceau étale ®; sur V; est constructible.

" Pour montrer cela, on suppose X = V; pour simplifier les notations et on utilise
Pinterprétation de ®; en termes de F-objets tordus. Le faisceau ®; est un prolonge-
ment par le vide d’un faisceau & fibres non vides sur un ouvert U de X. Soit Z un
point géométrique de U. Il existe un voisinage étale V de Z dans X et une section e
de ®; sur V/X. Quitte & restreindre le voisinage V, e provient d’un F-torseur P sur
V xx Y. On peut alors tordre par P les faisceaux F, I’ et C et obtenir une suite
exacte sur V :

JL(F'P) = £.(CF) = RUL(FP) “5 RUA(F'P).
On sait que ®;|y s’identifie avec le noyau de v¥. On en déduit ®;|y ~ £, (F'P)\f.(CF).

Or ce faisceau est constructible d’aprés le théoréme 1.1. O

Considérons les hypothéses du théoréme 1.2. D’aprés [SGA4 1x 2.14], on peut
trouver un monomorphisme de faisceaux de groupes

-
F — F' = Hﬂ'z‘*(Gi)
i=1
pour des morphismes finis 7; : Y; — Y et des groupes finis G; pour ¢ = 1,...,7.
Notons que d’aprés la preuve de loc. cit., on peut supposer que les groupes G; sont de
IL-torsion, du fait que F' est de LL-torsion. D’aprés le lemme précédent, on est réduit
au cas de F’. Puisque m;, est exact, on est donc ramené au cas du morphisme f o 7;
et du faisceau constant sur Y; de groupe G; pour chaque indice 3.

3.2. Réduction au cas d’une immersion ouverte. — Le lemme clé dans cette étape de
réduction est le suivant :

3.2.1. Lemme. — Soit G un groupe fini. Considérons un diagramme commutatif

Y/
N
Y f X

de morphismes de type fini entre schémas noethériens. Les assertions suivantes sont

vérifiées :
(1) Si h est surjectif,
R!f.(Gy) constructible implique R'g,(Gy") constructible.
(ii) Si g est propre,
R'h,(Gy) constructible impliqgue R! f,(Gy) constructible.
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3. IMAGE DIRECTE DERIVEE DE FAISCEAUX DE GROUPES CONSTRUCTIBLES 537

Démonstration. — Rappelons que l'on dispose de la suite exacte de faisceaux d’en-
sembles sur Xg; (cf. [SGA 4 x11 3.2]) :

* = R'g.(hGy) = R f.(Gy) = g.R . (Gy).
Considérons ’assertion (i). Puisque h est surjectif, le morphisme d’adjonction
GY/ g h*h*Gy/ = h*GY

est un monomorphisme. Appliquant le lemme 3.1.1, il suffit de montrer que
R'g.(h.Gy) est constructible. On peut alors conclure puisque le morphisme
u: Rlg.(hyGy) — R f,(Gy) est un monomorphisme.

Considérons maintenant 1’assertion (ii). Puisque g est propre, le théoréme de chan-
gement de base propre [SGA 4 x1v 1.1] conjugué avec le théoréme 1.1 montre que
la source de u est constructible. Par hypothése et une nouvelle application du théo-
réme 1.1, le but de v est constructible.

11 suffit alors de raisonner comme dans la démonstration de 3.1.1 sur les fibres
du morphisme v associées & une famille finie de sections locales de g,Rh,(Gy) qui
est génératrice. Chacune de ses fibres est un prolongement par le vide d’un faisceau
localement isomorphe au faisceau tordu R' g, ((h.G%)) pour une de ses sections locales
représentée par un torseur P. Comme ce faisceau est toujours constructible, on peut
conclure. O

Considérons maintenant les hypothéses du théoréme 1.2, dans le cas F = Gy.
Puisque Y est noethérien, il existe un recouvrement Zariski 7 : W — Y tel que W
est affine. D’aprés ’assertion (i) du lemme ci-dessus, il suffit de montrer le théoréme
pour fox. On peut donc supposer que Y est affine.

Le morphisme f : Y — X est alors quasi-projectif. On peut donc considérer une
factorisation Y 2> Y’ % X de f tel que g est projectif et j est une immersion ouverte.
D’apres assertion (ii) du lemme ci-dessus, nous sommes réduit au cas de I'immersion
ouverte j.

3.3. Réduction au théoréme 1.3 (i.e. 1a codimension 2)

8.8.1. — Grace aux deux étapes de réduction précédentes, nous sommes ramenés
au cas d’une immersion ouverte dense j : U — X, X quasi-excellent, et d’un fais-
ceau constant sur U de groupe G. Dans cette étape de réduction, on considére la
codimension du complémentaire Z de U dans X.

Pour montrer que R!j,(Gy) est constructible on peut raisonner localement sur X.
On peut donc supposer que X est noethérien. Considérons la normalisation p : X’ —
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538 EXPOSE XXI. LE THEOREME DE FINITUDE...

X de X ainsi que le carré cartésien :

v xt
L)
Puisque g est surjectif, le morphisme d’adjonction Gy — ¢.¢*(Gy) est un mono-
morphisme. D’aprés le lemme 3.1.1, il suffit donc de montrer que R'j,(q,Gy-) est
constructible. Or p et g étant finis, R'j,(¢.Gy/) = psR'j.(Gy+). On peut donc sup-
poser que X est normal.
Dés lors, X est somme disjointe de ses composantes irréductibles, et on peut donc
le supposer intégre. Notons K son corps des fonctions. Pour une extension finie L/ K,

on peut considérer le schéma normalisé X’ de X dans L, ainsi que le diagramme
cartésien suivant :

Ul _‘7,_> X/

U—1sX.

Par adjonction, on obtient un morphisme canonique
L . .
657x 1 Rix(Gu) = pR'j,(Gyy)

induit par le morphisme qui & un G-revétement d’un schéma étale V/U associe son
pullback sur V' =V xy U’.

3.3.2. Lemme. — Considérons les hypothéses et notations précédentes. Alors, les
conditions suivantes sont équivalentes :

(i) R'j.(Guv) est constructible.

(ii) Il existe une extension finie séparable L/K telle que ¢>§JL/)X est trivial.

Démonstration. — (ii) = (i) : Soit L/K une extension finie telle que ¢§JL/)X est trivial.
Avec les notations qui précédent, on pose C = ¢,(Gy')/Gu, faisceau sur Uy, pointé
de maniére évidente. On peut alors former la suite exacte de faisceaux pointés (cf.
[SGA 4 x11 3.1]) :

. . . 1 .
G20 (Gur) = §+(C) = R, (Gr) 5 RYj, (¢.(Gu)) -

Notons que, puisque p est fini, R'j, (¢.(Gy+)) = p«R'j.(Gy) et le morphisme (1)
s’identifie au morphisme qﬁE,L/)X Par hypothése, la suite exacte ci-dessus implique donc
que R'5,(Q) = j+(C)/xqx(Gy-) ce qui conclut d’apreés le théoréme 1.1.

(i) = (ii) : Considérons une famille (ey,...,e,) de sections de R!j,(Gy) qui soit
génératrice. Le schéma X étant supposé noethérien, on peut supposer que e; est définie
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3. IMAGE DIRECTE DERIVEE DE FAISCEAUX DE GROUPES CONSTRUCTIBLES 539

sur un X-schéma étale de type fini V;. Quitte & remplacer V; par un recouvrement étale
de type fini, on peut en outre supposer que la section e; correspond & un revétement
P, — V; xx U. Puisque V; x x U est quasi-compact, le schéma P; est quasi-compact :
soit L;; /K la famille finie des extensions de corps correspondant aux points génériques
de P;. On considére la cloture normale L d’une extension de K composée des L;;/K
pour tous les indices (4, j). Par définition, ¢§]L/)X (e;) = * pour tout entier i et le résultat
suit puisque (ey, ..., e,) est génératrice. O

3.3.3. Remarque. — Considérons les notations qui précédent le lemme. En termes de
G-revétements, la trivialité du morphisme ¢§JL/)X s’interpréte comme suit :
(i) Pour tout point géométrique 5 de Z et pour tout G-revétement 7 : P — X (5 —
Z(3), le revétement qﬁgjL/)X’g(P) est trivial.
(ii) Pour tout schéma étale V/X et tout G-revétement w : P — V — Zy, il existe un
recouvrement étale W/V x x X' tel que m|w_z, sétend & W (I’extension est
alors unique (& isomorphisme unique prés) puisque X’ est normal).

Dans le cas des immersions ouvertes, on peut renforcer le lemme 3.2.1 comme suit :

3.3.4. Lemme. — Considérons un diagramme commutatif

A
U ! b'e
d’immersions ouvertes tel que U # &, X est intégre, noethérien, normal, quasi-
excellent. Alors, les assertions suivantes sont vérifiées :

(i) Si R'j.(G) est constructible, alors R*k,(G) est constructible.

(ii) Si Rh,(G) est constructible et pour tout morphisme fini surjectif X' — X
ot X' est la normalisation de X dans une extension finie de son corps des
fractions, k' = kxx X', le faisceau R k. (G) est constructible, alors R'j.(G) est
constructible.

Démonstration. — Remarquons que 'hypothése sur U et X entraine que h,(Gy) =
Gv (cf. [SGA4 1x 2.14.1)).

L’assertion (i) résulte donc simplement du fait que le morphisme canonique
Rk, (Gv) — R'j,(Gy) est toujours un monomorphisme.

Considérons les hypothéses de Passertion (ii). Soit K le corps des fonctions de X.
D’aprés le lemme précédent appliqué & h, on peut trouver une extension finie L/K
telle que %IL/)V = *. Soit X’ le schéma normalisé de X dans L/K, k' : V' — X'
le pullback de k sur X’. Appliquant le lemme précédent & k', on peut trouver une
extension finie E/L telle que ¢>§E} X = *.
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On note X” le normalisé de X dans E/K, X" *5 X’ 2 X les morphismes
canoniques. On note b’, j', k' (resp. h”’, 5", k") les pullback respectifs de h, j, k sur
X' (resp. X"). On peut alors conclure grace au diagramme commutatif suivant :

R'j.(G) kE.R'h,(G)
7 - tqsif/x iwif/v
PRIKL(G) P.RIL(G) (Ok') BRI (G)
”“wf"’l Lmiﬁ}x,

(pp')«R'E(G) — (pp').R'5}(G).

La fleche pointillée existe du fait de ’exactitude de la suite horizontale du milieu et

de ¢(UL/)V = *. On conclut puisque ¢§Jb;)x = (p*ngL:} x/)© ¢§]L/)X O
3.3.5. Lemme. — Soit X un schéma régulier et Z un sous-schéma fermé régulier de

X. Notons j : U — X limmersion ouverte complémentaire.
Soit n lordre de G. Alors, si n est inversible sur X, R'j,(Gy) est constructible.

Démonstration. — L’assertion est Zariski locale en X. On peut donc supposer que
X est affine irréductible et Z est irréductible.

Si Z est de codimension supérieure & 2 dans X, il résulte du théoréme de pureté
de Zariski-Nagata (cf. [SGA 1 x 3.1, 3.3]) que R'j,(G) = * ce qui conclut.

En codimension 1, on peut supposer que Z admet un paramétre régulier f € A.
On considére le schéma

X' = Spec (A[t]/(t" - f))-

Le lemme d’Abhyankar absolu (cf. [SGA 1 X111 5.2]) montre alors précisément que
pour tout point géométrique § de Z, pour tout revétement E 5 U x x X, (y) principal
galoisien de groupe G, le revétement 7 xx X' : E' — U xx X' xx X3 se prolonge
a X' xx X(g). Il est donc trivial et le lemme 3.3.2 accompagné de la remarque 3.3.3
permet de conclure. O

Revenons au cas général d’une immersion ouverte j : U — X de fermé complémen-
taire Z, X étant supposé intégre, noethérien, normal, et quasi-excellent. Supposons
que 'ordre de G est inversible sur X.
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Soit T la réunion des lieux singuliers de X et Z. Posons V = X — T et W =
X — (ZUT) et considérons les immersions ouvertes correspondantes :

VN

w Y X
U.

D’aprés le lemme précédent, R'h,(G) est constructible. D’aprés le lemme 3.3.4, on est
donc ramené & prouver que pour tout morphisme fini surjectif X’ — X tel que X’ est
la normalisation de X dans son corps des fractions, k' = k x x X', le faisceau R'k,(G)
est constructible. Cette derniére assertion est bien impliquée par le théoréme 1.3.

4. Cas de codimension 2 sans hypothése sur la torsion

4.1. Résolution des singularités

4.1.1. Lemme. — Soit X un schéma normal, conneze et excellent, Z C X une partie
fermée de codimension supérieure a 2 et j : U — X limmersion ouverte complémen-
taire.

Alors, il existe une partie fermée T C Z de codimension supérieure & 3 dans X
telle que pour tous points géométriques § et t de Z — T et toute spécialisation 7 :
X — X(s), le noyau du morphisme de spécialisation

7" : R (@)s — RYju(G)s
est trivial.

Démonstration. — Dans cette preuve, on considére Z muni de sa structure réduite
de sous-schéma de X.
Si I'on dénote par Xy, le lieu singulier de X, le sous-ensemble

Ty = (Xsimg — Z) N Z

est de codimension supérieure 4 3 dans X. On peut donc supposer que Xg;ng est inclus
dans Z. Le schéma X étant excellent, Z est aussi excellent. Donc quitte & enlever une
partie nulle part dense dans Z, on peut supposer que Z est régulier. On se rameéne
alors au cas ou Z est de plus intégre et de codimension 2.

D’aprés [Lipman, 1978], on peut résoudre la singularité de X au point maximal de
Z par une suite d’éclatements et de normalisations. Donc, quitte & retirer de nouveau

SOCIETE MATHEMATIQUE DE FRANCE 2014



542 EXPOSE XXI. LE THEOREME DE FINITUDE...

une partie fermée nulle part dense de Z, on peut supposer qu’il existe un diagramme
formé de carrés cartésiens

Z/ > X/ j, U/

L A

Z ——X~<—-U

tel que X' est régulier, Z’ est un diviseur dans X', toute composante irréductible de
Z' domine Z, p est propre et g est un isomorphisme.

On en déduit donc R!'j,(G) = R'£,(G). Comme X' est régulier et U’ dominant
dans X', on obtient j,(Gy:) = Gx: (cf. [SGA4 1x 2.14.1]). On obtient donc un
monomorphisme canonique p : R1'p,(G) — R! £,(G).

Considérant les notations du lemme (ot l'on a supposé T = &), on obtient donc
un diagramme commutatif d’ensembles pointés

R'p.(G)s —= R £.(G)s

o

Rp,(G); —2= R1£,(G)s.

D’apres le théoréme de constructibilité appliqué a p (cf. [SGA 4 x1v 1.1]), le faisceau
de groupes R!p,(G) est constructible. Du fait que p est un isomorphisme au-dessus
de U, on obtient que quitte a retirer un fermé propre de Z, on peut méme supposer
que R!p,(G) est localement constant. Il résulte donc de [SGA 4 1x 2.13(i)] que le
morphisme (1) est injectif. D’aprés ce qui précéde, p; est aussi injectif. On obtient
donc que la composée n* o ps est un monomorphisme. Il nous suffit donc de vérifier
que le noyau de n* est inclus dans 'image de p;s.

Quitte & tirer la situation sur X(5), on peut supposer que X = X(5) pour simplifier
les notations — notons que Z reste intégre car, étant supposé régulier, il est géomé-
triquement unibranche. On se donne donc un G-revétement principal P — U’ qui
est trivial sur U’ xx X (- Soit P la cloture normale de X’ dans P/U’. Nous allons
montrer que P/X’ est étale et donne donc un antécédent a la classe de P/U’ par
I’application ps comme attendu.

Par construction P xx: U’ = P, donc P/X’ est non ramifi¢ au-dessus de U’. 1l
suffit donc de montrer que P/X’ est non ramifié au-dessus de Z’. D’aprés le théoréme
de Zariski-Nagata (cf. [SGA 1 x 3.1]), il suffit de montrer que P/ X’ est non ramifié¢ en
tout point de codimension 1 du schéma régulier X’. D’apreés ce qui précéde, il suffit de
traiter les points maximaux 2’ de Z’. Or, un tel point s’envoie sur le point maximal
de Z par construction. Du fait que 1 est un morphisme de spécialisation, il résulte
qu'il existe un point ' de Z’ x x Xz qui s’envoie sur 2’. Du fait que P xx X(z) est
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trivial sur U’ x x X(g), il suit que Pxx X (@ est non ramifié au-dessus de y’. On en
déduit que P/X' est non ramifi¢ au-dessus de 2’ ce qui conclut. O

4.2. Un argument « a la Lefschetz». — Pour cet argument, nous utiliserons le lemme
suivant, qui est une application des résultats liés & « la méthode de Lefschetz » de
[SGA 2 x §2].

4.2.1. Lemme. — Soit X un schéma normal excellent connexe, D un diviseur de Car-
tier effectif connexe dans X, et Z C D une partie fermée de codimension supérieure
a 2. Alors, D — Z est conneze.

Démonstration. — 11 suffit de montrer que pour tout point s de Z, le schéma
(D - Z) xx X5 est connexe. Par induction sur dim(&fx,), il suffit de montrer que
(D xx X5y — {s}) est connexe. On peut donc supposer que X est local, de dimension
supérieure & 3 et que Z est son point fermé. Considérons le complété X du schéma
local X. Puisque X est excellent, X est encore normal. Puisque le morphisme XX
est un surjectif, il suffit de montrer que (D — Z) xx X est connexe. On peut donc
supposer en outre que X est complet.

Alors, le spectre épointé X’ = X — Z est normal, connexe et équicodimension-
nel de dimension supérieure & 2. Il résulte du critére de normalité de Serre (cf.
[Matsumura, 1989, 23.8]) que pour tout point fermé z de X',

prof(Ox: ;) > 2.

Dés lors, d’aprés [SGA 2 x 2.1] (voir aussi plus directement [SGA 2 1x 1.4]), on obtient
un isomorphisme canonique

—~D
rx',0)=r (X", 0)
—~D
ou X’ deésigne le complété formel de X’ le long de D, ce qui conclut. O

4.2.2. Lemme. — Soit X un schéma normal excellent, D un diviseur de Cartier ef-
fectif dans X et Z C D une partie fermée non vide de codimension supérieure a 2.
OnposeU=X-Z,V=D-7Z.

Considérons le carré cartésien formé des immersions évidentes

|4 AN D
N
Uv—L-x.
Alors, le morphisme de changement de base associé
i"R1ju(G) = R'54(G)

est un monomorphisme.
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Démonstration. — On peut supposer que X et D sont locaux strictement henséliens.
On doit montrer que le morphisme de restriction

H'(U,Q) & °H(V,G)

est injectif.

Remarquons que le lemme précédent nous montre déja que V est connexe. Soit
P et P’ deux G-torseurs sur U qui coincident sur V. On considére le faisceau L =
Isom (P, P') des G-isomorphismes de P dans P’ sur Ug. On doit montrer qu’il admet
une section sur U.

Comme L est localement constant constructible, il est représentable par un
U-schéma étale fini noté U’. Posons V' = U’ xy V. Par hypothése, V'/V admet une
section.

On va montrer que pour toute composante connexe U} de U’ telle que Uy xy V/V
admet une section, il existe une section de U}/U ce qui suffira pour conclure.

Quitte a remplacer U’ par U], on peut supposer pour montrer cela que U’ est
connexe non vide. Les corps de fonctions de U’ et U définissent une extension finie
séparable L/K. Soit X’ le schéma normalisé de X dans L/K. On pose encore D' =
X'xxDet Z' =X'xx Z.

Notons que X’ est normal excellent et connexe. Dés lors, le lemme précédent im-
plique que V' = D’ — Z’ est connexe. Par hypothése, le V-schéma étale V' admet
une section, donc V' = V. 1l en résulte que le revétement étale U’ /U est de degré 1
au-dessus de V, donc U’ = U. O

4.3. Réduction du théoréme 1.3 au théoréme 1.4. — On peut supposer que X est affine
réduit. Pour un anneau excellent A fixé, on démontre par induction noethérienne sur
les fermés Z de Spec(A) que le résultat est vrai pour les Z-schémas finis réduits. Pour
cela, il suffit de démontrer le résultat pour X affine réduit en supposant le résultat vrai
pour tout schéma, fini sur un sous-schéma fermé strict d’une composante irréductible
de X.

Montrons tout d’abord qu’on peut supposer que X est normal. Considérons la nor-
malisation p : X’ — X de X (somme des normalisations des composantes irréductibles
de X) ainsi que le carré cartésien :

U/ j, Xl
L
U—-x.
Puisque ¢ est surjectif, le morphisme d’adjonction Gy — ¢.¢*(Gu) = ¢.Gy- est un

monomorphisme. Il suffit donc de montrer que R!j, (¢.Gy) est constructible. Or p et
q étant finis, R'5,(¢:Gy+) = psR'j.(Gy/). Notons que Z x x X' est de codimension 2
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dans toute composante irréductible de X’ (puisque X est universellement caténaire).
On est donc ramené au cas oit X est normal et on peut en outre le supposer affine et
intégre.

Le cas ou X est de dimension 2 résulte du théoréme 1.4. On peut donc supposer
que dim(X) > 2.

Si codim(Z) > 2, on peut trouver un diviseur principal D 50X qui contient
Z (il suffit de prendre comme paramétre de D un élément non nul de ’anneau in-
tégre Ox (X) s’annulant sur Z). Soit j' : D — Z — D le morphisme induit. D’aprés
le lemme 4.2.2, on obtient un monomorphisme i*R!j,(G) — R!j.(G). Du fait que
R4 (G) = i,i*R'4,(G), il suffit d’utiliser que R'j.(G) est constructible par hypo-
thése de récurrence.

Plagons nous dans le cas critique ot codim(Z) = 2.

D’aprés le théoréme 1.4, le résultat est connu pour le schéma semi-localisé de X
aux points génériques de Z qui sont de codimension 2 dans X. Il existe donc, d’aprés
le lemme 3.3.2, une extension finie L du corps des fonctions K de X telle que pour
tout point maximal 1 de Z de codimension 2 dans X, qﬁgL/)X’ﬁ est trivial.

Considérons X’ la normalisation de X dans L/K et p : X' — X sa projection.
On pose j' = j xx X' et Z/ = Z xx X'. D’apreés le lemme 4.1.1, il existe une partie
fermée T' C Z' de codimension supérieure & 3 dans X’ telle que les noyaux des fleches
de spécialisation de R!j’(G) aux points de Z’ — T soient triviaux.

Soit T la réunion des composantes irréductibles de Z de codimension supérieure a
3 et du fermé p(T”) dans Z. Considérons un point géométrique 5 de Z — T. Il existe
un point maximal géométrique £ de Z — T et une spécialisation 7 : Xy — X)-
Considérant les fibres de ¢§JL/)X, on obtient le diagramme suivant :

(L)
¢U/x,s

R'j(G)s [P.RYjL(G)]s

T

R}, (@) — 2~ [p,RYL(G));.

D’apres le choix de L/ K, la composée 17*0¢§]L/)X, 5 est triviale. Par ailleurs, puisque p est
fini, n* a un noyau trivial. On en déduit que ¢£,L/)X7 5 est trivial. D’aprés le lemme 3.3.2,
R'h,(G) est constructible pour I'immersion ouverte h: X — Z — X — T. D’aprés le
lemme 3.3.4, on est donc réduit & montrer que pour tout morphisme fini surjectif
X" — X, R (G) est constructible pour I'immersion ouverte k' : X' — T' — X',

Or on peut trouver un diviseur principal D 5 X! qui contient 7. On pose k" =
k' x b & D.

SOCIETE MATHEMATIQUE DE FRANCE 2014



546 EXPOSE XXI. LE THEOREME DE FINITUDE...

D’aprés le lemme 4.2.2, on obtient un monomorphisme
P*RY%.(G) — R (G).

On peut donc & nouveau conclure d’aprés ’hypothése d’induction appliquée & k' et
du fait que Rk, (G) = i,i*RK.(G).

5. Revétements principaux d’une surface strictement locale épointée

5.1. Mise en place. — D’aprés le théoréme d’algébrisation d’Elkik (cf. [Elkik, 1973],
théoréme 5, aussi rappelé en 1.2.6), on peut supposer que A est complet. Soit
X = Spec(A) et X’ = Spec(A) — {m4}. On note K le corps des fractions de A.

On commence par montrer qu’on peut supposer qu’il existe un sous-anneau régulier
R C A tel que Pextension A/R est finie et génériquement étale.

D’aprés les théorémes de structure de Cohen (cf. [Bourbaki, AC, IX, §2, n° 5,
th. 3] si A est de caractéristique mixte et [Bourbaki, AC, IX, §3, n° 4, th. 2] si 4
contient un corps), il existe un sous-anneau R C A tel que A/R est finie et R est
un anneau de séries formelles sur un anneau de Cohen ou sur un corps. L’anneau R
est donc en particulier régulier. Soit E le corps des fractions de R et E’ la cloture
séparable de E dans K. Notons Ay la cloture normale de R dans E’'/E. Alors, le
morphisme Xy = Spec(A4y) — Spec(A) est fini radiciel et surjectif. D’aprés I'invariance
topologique du site étale (cf. [SGA 4 vii1 1.1]), on peut remplacer A par Ay qui est
fini génériquement étale sur R, comme attendu.

Remarquons tout d’abord le fait suivant :

5.1.1. Lemme. — Soient R un anneau local régulier de dimension 2 et A une R-algébre
finie dominante telle que A est un anneau local et normal. Soit m le degré générique
de R — A. Alors A est un R-module libre de rang m.

Démonstration. — Puisque A est finie dominante sur R, dim(A) = dim(R) = 2. De
plus, puisque A est local normal de dimension 2, il résulte du critére de Serre que
prof(A) = 2 (cf. [Matsumura, 1989, ex. 17.3]). Donc A est un anneau de Cohen-
Macaulay. Le lemme résulte alors de [EGA Opy 17.3.5 (ii)]. d

Faisant abstraction du groupe G, on fixe un entier n > 0 et on montre que l’en-
semble des classes d’isomorphisme de revétements étales de X’ de degré n est fini. Dans
la suite de cette preuve, les revétements étales considérés seront supposés connexes.

On raisonne par 'absurde. Considérons une suite (P; — X');en de revétements
étales de degré n telle que pour tout ¢ # j, P/ est non X’-isomorphe & P]' .

Soit K le corps des fractions de A. Pour tout entier i, P;/X’ correspond & une

extension finie séparable L;/K. On note B; la cloture intégrale de A dans L;, P; =
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Spec(B;). Remarquons par ailleurs que d’aprés le lemme précédent, A/R est libre de
rang m et B;/R est libre de rang nm.

5.1.2. Questions de discriminant. — Rappelons pour les besoins de la preuve qui
suit les considérations suivantes :

5.1.3. Définition. — Soit B/A une algébre finie libre de rang n. Soit & = (€;)1<i<n
une base de B/A. Le déterminant de la matrice (’I?r B/A (eiej))1 <ij<n est appelé le dis-
criminant de B/A relativement a 9. Sa classe dans le monoide multiplicatif A/(A*)?2
est indépendante de #. On la note discg,/4.

Par abus, on considérera la classe discp/4 comme un élément de A. Rappelons
que B/A est étale si et seulement si discg/4 est inversible dans A. Par la suite, nous
aurons besoin de la formule suivante (cf. [Ramero, 2005, 2.1.4]) : Soit B/A et C/B
deux algebres finies libres. Soit n le rang de C/B. Alors,

diSCC/A = diSC%/A 'NB/A(diSCC/B).
Revenant a la situation du numéro précédent, on considére un idéal p de hauteur
1 de R. Soit A (resp. B;,) 'anneau semi-localisé de A (resp. B;) correspondant a la
fibre au-dessus de p.
Notons que A, est normal de dimension 1. Par ailleurs, comme par hypothése B;/A

est étale finie de degré n au-dessus du spectre épointé de A, 'extension d’anneaux
locaux B; /A, est libre de rang n. D’aprés la formule rappelée précédemment,

diSCB“’/Rp = diSCZ‘,/RP ’NAp/Rp (diSCBiyp/Ap )
Or A/R (resp. B;/R) est génériquement étale et B;,/A, est étale. On déduit de
la relation précédente que I’élément (discp,,r)(disc}, r) ! de Frac(R)™ appartient &
Ry. Comme ceci est valable pour tout p et que R est normal, on en déduit :

disc B;/R

(5.1.3.1) € R*.

disc’y/r

5.2. Lemme clé. — La technique pour trouver une contradiction & la situation dans
laquelle on est parvenu a l’issue de la mise en place 5.1 repose sur I'utilisation des
ultrafiltres. Dans la section qui suit, nous rappelons cette théorie et démontrons les
résultats qui nous seront utiles. Le point essentiel de la preuve se résume alors a
prouver le lemme clé 5.2.8 comme nous le montrons dans le paragraphe 5.2.9. La
preuve de ce lemme est donnée dans la derniére section, 5.2.10.

5.2.1. Ultraproduits

5.2.2. Définition. — Soit I un ensemble et P(I) '’ensemble des parties de I. Un ul-
trafiltre .% sur I est la donnée d’un ensemble de parties de I vérifiant les propriétés
suivantes :
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(i) VFe #,VGeP(I), FCG=> Ge #.
(i) VF,Ge Z#, FNG e Z.

(iii) VF € P(I), F € Z oubien I — F € Z.
(iv) o ¢ &.

Dans la suite de la preuve, nous entendrons un ultrafiltre % comme un ensemble
ordonné tel pour tout F,G € %,

F<G& FOG.

Notons qu’il résulte alors de la définition que .# est un ensemble filtrant.

5.2.3. Exemple. — Soit a un élément de I. Alors, ’ensemble des parties de I contenant
a est un ultrafiltre .# de I. Dans ce cas, on dit que .# est principal.

D’aprés le lemme de Zorn, il existe des ultrafiltres non principaux sur un ensemble
infini I.

5.2.4. Définition. — Soit % un ultrafiltre sur un ensemble I et € une catégorie ad-
mettant des limites inductives filtrantes et des produits.

Soit (X;)ier une famille d’objets de 4. Le systéme inductif ([],cr Xi)rez est
filtrant. On définit Iultraproduit de (X;);cs suivant % comme la limite inductive de ce
systéme :

H X; = colimpc e (H X,') .

eI/ F icF
Si (X;); est la famille constante de valeur un objet X, on note X’ /' son ultra-

produit, appelé P'ultrapuissance de X suivant .%#. On dispose toujours de ’application
diagonale X — X1/7.

On notera en particulier qu’un élément z de I'ultraproduit [],c;, 5 X; est repré-
senté par une suite (z;);cr pour un élément F € .#. De plus, étant donné un autre
élément y = (y;);jec de cet ultraproduit, z = y si et seulement si il existe H € .7 tel
que H C F NG vérifiant Vi € H, z; = y;.

Nous utiliserons cette notion dans le cas des anneaux ou des modules et nous
utiliserons en particulier le lemme suivant :

5.2.5. Lemme. — Soit I un ensemble et & un ultrafiltre sur I.
Considérons une famille (A;)icr d’anneauz. On pose As = [[;¢; |7 A;.
(i) Si pour tout i € I, A; est intégre (resp. un corps, un corps séparablement clos),
il en est de méme de Ay .
(ii) Si pour tout i € I, A; est local (resp. local hensélien) d’idéal mazimal m;, A
est local (resp. local hensélien) d’idéal mazimal [];¢; /o M-
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Considérons une famille d’algébres (B;[A:)ici, Boo/Aco son ultraproduit sui-
vant F :

(iii) S% pour tout i € I, B;/A; est une extension locale d’anneauz locauz (resp. libre
de rang m), il en est de méme de Boo/Aco-

Considérons un anneau A, et As = A/Z son ultrapuissance.

(iv) Si M est un A-module de présentation finie,
M®a AI/? — MI/‘?.
(v) Si A est cohérent, Uapplication diagonale A — A7 est plate.

Démonstration. — D’aprés la caractérisation des éléments d’un ultraproduit rappelée
avant 1'énoncé du lemme, un élément x € Ao, est inversible (resp. nul) si et seulement
s’il existe F' € % tel que z est représenté par une famille (z;);cr tel que pour tout
indice i € F, z; est inversible (resp. nul) dans A;.

(i) dans les deux premiers cas respectifs en résulte facilement. Pour montrer que
Pultraproduit ko, = A de corps séparablement clos k; = A; est encore séparablement
clos, on considére un polynéme séparable P & coefficients dans k., de degré d > 0. En
raisonnant sur les coefficients du polynéme P, on peut supposer que P est représenté
par une famille de polynémes (P;);cr pour un élément F' € F et des polynémes P; &
coefficients dans k;. Quitte a restreindre F', on peut supposer que pour tout i € F, P,
est séparable de degré d. Il admet donc une racine x; dans k;. Il est alors immédiat
que la famille (z;);cF représente un élément x de ko, tel que P(z) = 0.

(ii) : on traite d’abord l’assertion non respé. Posons my, = Hie 1/ Mi- C’est clai-
rement un idéal de A,,. Soit z un élément de A,, — my,, représenté par une famille
(z:)ier. L’hypothése sur z se traduit comme suit :

}JHe F HCF|Vic Hz; €m,.

Soit G = {i € F | z; ¢ m;}. Alors, par hypothése, G ¢ #. Donc H = F —G appartient
A & car & est un ultrafiltre. Comme pour tout ¢ € H, z; ¢ m;, x; est inversible dans
P’anneau local A;. On en déduit que z est inversible d’aprés la caractérisation des
éléments inversibles rappelée en début de preuve.

Pour montrer I’assertion respé, on raisonne comme dans le cas de 'ultraproduit de
corps séparablement clos traité ci-dessus.

(iii) concernant la premiére assertion résulte facilement de (ii). L’assertion respé
est évidente.

(iv) résulte facilement du fait élémentaire que le foncteur M ® 4 — commute aux
produits si M est de présentation finie.

(v) résulte du fait que lorsque A est cohérent, un produit de A-modules plats est
plat (cf. [Chase, 1960]). O
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5.2.6. Remarque. — D’un point de vue conceptuel, on peut voir ce lemme comme un
corollaire du théoréme de Lo (cf. [Bell & Slomson, 1969, chap. 5, § 2]).

5.2.7. Enoncé du lemme clé. — Revenons a la situation qui nous occupe. Soit .%Z un
ultrafiltre non principal sur N. On note B, (resp. Ao, R ) 'anneau local obtenu par
ultraproduit suivant # de (B;);en (resp. A, R). Soit E;, Z;, }/2; leurs complétions
respectives. On en déduit les tours d’anneaux locaux suivantes :

Bi Boo _— Boo
A Ao, A
R R, Re

D’aprés le point (iii) du lemme 5.2.5, A, et By sont des R..-algébres libres de
rang fini. Si ko, désigne le corps résiduel de Ry, on en déduit que Ay ®pr_ koo €t
By ®r,, koo sont des koo-algébres locales finies : leurs idéaux maximaux sont donc
nilpotents. Il en résulte que la complétion de ’anneau local Ay, (resp. B ) coincide
avec sa complétion par rapport a I'idéal maximal de Ro,. Comme A, (resp. B, ) est
un R..-module libre, on en déduit :
A = Ao @R, Roo, Boo = Boo ®r,, Roo-

Considérant le spectre des anneaux locaux sur les deux premiéres lignes, on obtient

le diagramme commutatif suivant :

b

X<—Xoo<—f(oo

et la discussion qui précéde montre que le carré qui apparait dans ce diagramme est
cartésien. Considérant encore le spectre épointé des anneaux locaux A, A et A,
on obtient par changement de base le diagramme suivant :

B R —— P
L ‘/p, iﬁ,
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Notons que les fléches de la ligne inférieure existent car, ’idéal maximal 94 étant de
type fini, on obtient facilement pour les idéaux maximaux respectifs de A, et Ay :

—

M. =M Aco, My =My~ Aoy

5.2.8. Lemme. — (1) Le schéma X., est noethérien.
(2) Le morphisme Xoo — X est plat & fibre géométriques réguliéres.
(3) Le morphisme Xoo — Xoo est une immersion fermée dont I’image contient tous
les points fermés de X .
(4) Le morphisme fini p: Poy — Xoo est étale au-dessus de X' .
(5) Le morphisme fini p: Poo — Xoo est étale au-dessus de X/ .

5.2.9. Conséquences du lemme clé. — Montrons pourquoi le lemme précédent permet
de terminer la démonstration par ’absurde.

D’aprés le point (ii) du lemme 5.2.5, Ay, est un anneau local hensélien. On peut
donc appliquer la variante ¢, du théoréme de changement de base lisse (cf. XX-4.2.1,
cas (ii)) au morphisme Xo, — X et & Pouvert X/ . On en déduit qu’il existe un
revétement étale Q — X’ tel que P/, ~ Q x x/ Xc’,o

D’aprés le théoréme de rigidité de Gabber (cf. 2.1.1) appliqué & A, pour tout
groupe fini G, le morphisme

H' (X, G) — H(XL,,G)
est un isomorphisme. On en déduit donc un isomorphisme :
(5.2.9.1) Péo ";’Q Xxr Xc/>o’

Pour tout élément F' de l'ultrafiltre #, on pose : Pr = Spec([[;cp Bi), Xr =
Spec([l;cr A), Yr = Spec([];cr R, et on note pr : Pp — Xp,qr : Xp — Yp les
fléches canoniques. Par définition, le morphisme p : P,, — X, est la limite projective
suivant F' € .# des morphismes pr. Notons p% : P — X} le pullback de p au-dessus
de X'.

Puisque pour tout ¢ € F, B;/R (resp. A/R) est fini et libre de rang nm (resp. m),
on obtient facilement que qr o pr (resp. qr) est fini libre de rang nm (resp. m). En
particulier, pr est fini de présentation finie. On peut alors appliquer [EGA 1v3 8.8.2]
aux familles de X -schémas Py, et Q X x X} indexées par les éléments de I'ultrafiltre
Z et on obtient que I'isomorphisme (5.2.9.1) se reléve pour un élément particulier
F € % en un isomorphisme de la forme :

P }I;‘ ~ Q Xx X},—v
L’ultrafiltre # étant non principal, F' contient au moins deux éléments distincts 4

et j. L’isomorphisme précédent implique donc P ~ Q ~ P]{ ce qui constitue la

contradiction annoncée.
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5.2.10. Preuve du lemme clé. — Démontrons pour conclure chaque assertion du
lemme 5.2.8 :

Assertion (1) : Notons que 'idéal maximal de lanneau local A, est de type fini
d’aprés le point (ii) du lemme 5.2.5. Dés lors, le complété A, est noethérien d’aprés
[EGA 0y 7.2.7, 7.2.8]. Il en est de méme pour R, et By,

Assertion (2) : Pour montrer que Xso — Xoo est plat, il suffit, d’aprés le critére de
platitude par fibres (cf [EGA 1v3 11.3.10]), de montrer que pour tout entier [ > 0, le
morphisme A/ml, — Aoo/mA est plat. Or, Aoo/mA = (A/m!y)1/Z et le morphisme
précédent est ’application dlagonale On peut donc conclure en utilisant la propriété
(v) du lemme 5.2.5 et le fait que A/m!, est cohérent.

Notons que I’extension résiduelle /si/ 7 /ka de Ax /A est séparable. En effet, pour

toute extension finie L/k4, L ®, ’2{1/ z

= L'/¥ est un corps d’aprés le point (i) du
lemme 5.2.5. On en déduit que les fibres géométriques du morphisme Xo — X sont
réguliéres par application du théoréme de localisation de la lissité formelle d’André

(cf. [André, 1974]).

Assertion (8) : On commence par montrer que le morphisme X,, — X est une
immersion fermée. Il s’agit de montrer que 7 : Ay, — Zo\o est surjectif. Or, comme
on I’a déja vu, A, est le complété @ de Ao, pour la topologie 9 4-adique. Or, M4
étant de type fini, on obtient que A, est complet (mais non nécessairement séparé)
pour la topologie M 4-adique — cela résulte du fait que c’est trivialement vrai pour
les produits AT pour un élément F € #. La surjectivité de 7 en résulte.

Pour démontrer la deuxiéme partie de 1’assertion (3), il suffit d’appliquer le lemme
suivant a ’idéal maximal de A,

5.2.11. Lemme. — Soit A un anneau et I un idéal de type fini tel que I C rad(A).
Soit A le complété I-adique de A.

Alors le morphisme induit Spec(A) — V(IA) — Spec(A) — V(I) est surjectif sur les
points fermés du but.

Notons f : Spec(A) — Spec(A) le morphisme canonique. Pour prouver le lemme,
on doit montrer que pour tout fermé Z C Spec(A),

ZcV({) e fYZ) c V(IA).
Comme I est de type fini, ceci équivaut & montrer que pour tout idéal J C A,
In>0|I"cJeIn>0|I"Ac JA

Or cela résulte facilement du lemme de Nakayama.

(1) Rappelons que complété signifie complété-séparé.
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Assertion (4) : Remarquons d’abord que d’aprés [EGA 1v; 6.14.1], 'anneau Ao est
normal. En effet, A est normal et le morphisme 4 — Z; est normal puisqu’il est plat
a fibres géométriques réguliéres d’aprés le lemme 5.2.8. Or, Be / R, est libre (de rang
nm), donc sans torsion. Comme Z; / I/{; est entiére, on en déduit que ]_/3; / Zo\o est
sans torsion. Ainsi, §; / Z; est plat en codimension < 1.

Or, des relations (5.1.3.1) pour tout ¢ € N, on déduit

disc=—  =—

Boo Roo ——
Tt € (B)™.
ISCAOO/RDo

Si p est un idéal premier de hauteur < 1 de Roo, extension (Boo)p/(Aoo)p €st sans
torsion, donc libre. La relation précédente montre que disc(Ez)p JAZ), est inversible
ce qui prouve que (E;)p / (71;),, est étale, ce qui démontre (4).

Assertion (5) : D’aprés le critére de platitude par fibres (cf. [EGA 1v3 11.3.10] ap-
pliqué & P,, — X, — Spec(R)), pour tout point & du spectre épointé de R, le
morphisme des localisés (Pwo)(z) — (Xoo)(z) €st plat. Comme dans le point (4), la
relation (5.1.3.1) permet de montrer que (Pe)(z)/(Xoo)(z) €st étale. La propriété (5)
résulte donc du point (3).
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