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E X P O S É IV 

L E T H É O R È M E D E C O H E N - G A B B E R 

Fabrice Orgogozo 

1. p-bases et différentielles (rappels) 

1.1. Définition et caractérisation différentielle 

1.1.1. — Pour la commodité du lecteur, et pour fixer les notations, nous rappelons 

ici quelques résultats bien connus dont nous ferons usage ci-après. Nous conseillons 

au lecteur de ne s'y reporter qu'en cas de besoin. 

1.1.2. Définition. — Soient k un corps de caractéristique p > 0, K une extension de fc, 

et (bi)iei une famille d'éléments de K. On dit que les (bi) constituent une p-base de 

K sur k (resp. sont p-libres sur k) si les monômes f]* (0 — n W < P> (n(^))iei de 

support fini) forment une base du A;(ifp)-espace vectoriel K (resp. sont linéairement 

indépendants sur k(Kp)). 

Si k = F p , on parle alors de p-base absolue, ou de p-base s'il n'y a pas d'ambiguïté. 

Enfin, on appelle parfois p-monôme un produit comme ci-dessus. Un lien entre cette 

notion et la structure des anneaux locaux complets ressort du théorème suivant. 

1.1.3. Théorème ([Bourbaki, AC, IX, § 3, n° 3, th. 1 b)]). — Soient A un anneau local 

séparé complet de caractéristique p > 0 et une famille d'éléments de A dont 

les classes modulo l'idéal maximal TTIA forment une p-base du corps résiduel A/xtiA- H 

existe alors un unique corps de représentants de A contenant les éléments Pi. 

1.1.4. Remarque. — On peut étendre de façon évidente la notion de p-base au cas 

d'un anneau quelconque de caractéristique p > 0; voir [EGA Orv 21.1-4]. Nous n'en 

aurons pas besoin. 
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52 EXPOSÉ IV. LE THÉORÈME DE COHEN-GABBER 

1.1.5. — On vérifie immédiatement que les (bi)iei forment une p-base de K sur k 

si et seulement si, pour tout i e I, l'élément bi n'appartient pas au sous-corps 

k(Kp, (bj)^) de K. (Voir p. ex. [EGA 0i V 21.4.3].) 

1.1.6. — Pour toute extension de corps K/k, nous noterons d^/k la différentielle 

K ---->1/k/k-1 

1.1.7. Proposition. — Soient k un corps de caractéristique p > 0, et K une extension 

de k. Une famille (&i)ie/ d'éléments de K est une p-base de K sur k si et seulement 

si les différentielles dx/k(bi) forment une base du K-espace vectoriel 

Démonstration. — Soit B = (frJzeJ u n e p-base de K sur k. Tout morphisme (ensem-

bliste) A : B —> K s'étend de manière unique en une ^-dérivation D de K : il suffit 

de poser D(b^ • • • b?) = £\ n ^ 1 • • • b^'1 • • • b^A(pi) et de l'étendre par ^ ^ - l i ­

néarité. Cela est équivalent au fait que les dx/k(bi) forment une base de Ré­

ciproquement, si les dx/k(bi) forment une base, on observe que les p-monômes sont 

k(Kp)-linéairement indépendants : dans le cas contraire on aurait, pour un indice i 

convenable, bi € Kp((bj)j^i), ce qui se traduirait par une relation linéaire entre les 

différentielles. Soit B' une p-base de K sur k contenant les bi (loc. cit., 21.4.2) ; d'après 

l'implication précédente, on a nécessairement B' = (&i)iei- • 

1.1.8. Corollaire. — Soient k un corps de caractéristique p > 0, et K une extension 

de k. Un élément x de K appartient à k(Kp) si et seulement si dx/k(x) — 0. 

1.1.9. — Rappelons que le p-rang d'un corps est le cardinal d'une p-base absolue 

(bien défini en vertu de ce qui précède). On vérifie immédiatement que ce cardinal 

(fini ou non) est invariant par extension finie de corps. 

1.2. Stabilisation 

1.2.1. Lemme (voir p. ex. [EGA Oiv 21.8.1]). — Soient K un corps, k un sous-corps, 

{ka)aei (I 7^ 0) une famille de sous-corps de K telle que f]a ka = k et filtrante 

décroissante, c'est-à-dire telle que pour toute paire d'indices a,(3, il existe un indice 

7 tel que k7 C ka H kp. Soient V un K-espace vectoriel, et (vi) (1 < i < n) une 

famille finie de vecteurs de V. Si la famille (vi) est libre sur k, il existe un indice 7 

telle qu'elle soit aussi libre sur k7. 

1.2.2. Lemme. — Soient K un corps de caractéristique p > 0, k un sous-corps et 

(Ka)aei une famille filtrante décroissante de sous-corps contenants k. Les conditions 

suivantes sont équivalentes : 

(i) f]aKa(Kn = k(KP); 

(ii) pour tout ensemble fini { 6 1 , . . . , bn} C K, p-libre sur k, il existe un indice a tel 

qu'il soit p-libre sur Ka ; 
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1. p-BASES ET DIFFÉRENTIELLES (RAPPELS) 53 

(iii) il existe une p-base de K sur k telle que tout sous-ensemble fini soit p-libre sur 

un Ka pour a convenable ; 

(iv) le morphisme canonique fî^-/ fe —• lim^ til

KjKa est injectif. 

Démonstration. — (i)=>(ii) est une conséquence immédiate du lemme précédent. 

(ii)=>(iii) est trivial (toute p-base convient). (iii)=»(iv) trivial (utiliser 1.1.7). Vé­

rifions (iv)=>(i). Soit x £ k(Kp). D'après 1.1.8, dK/k(x) ^ 0 de sorte qu'il existe 

a tel que dx/KA(
X) s °i t également non nul. D'après loc. cit., cela entraîne que x £ 

Ka(KP). a • 

On en déduit le lemme suivant, qui est un cas particulier de [EGA Oiv 21.8.5]. 

1.2.3. Lemme. — Soient K un corps de caractéristique p, k un sous-corps et 

(Ka)aei une famille filtrante décroissante de sous-corps de K contenant k telle 

que f]aKa(K
p) = k(Kp). Pour toute extension finie L de K, on a également 

f]aKa(Ln = HL"). 

Démonstration. — On se ramène immédiatement au cas où L/K est sans sous-

extension non triviale. Si L/K est (algébrique) séparable, la conclusion résulte 

immédiatement de l'existence des isomorphismes canoniques fî^/ f e ^ ^K/k ®K ^, 

^l\lK —> ^K/K ®K L e ^ °- u c ritère (iv) ci-dessus. Dans le cas contraire, L = K(a), 

où b = ap E K — Kp. On distingue naturellement deux cas. Premier cas : d^/kip) = 0> 

c'est-à-dire b G k(Kp). Il en résulte que pour toute sous-extension M de L/k, on a 

l'égalité M(Lp) = M(Kp,b) = M(KP). Ainsi, 

H = f]Ka(K
p) = k(Kp) = k(Lp). 

a a 

Second cas : dK/>k(b) ^ 0. On peut alors compléter {b} en une p-base de K sur k, 

que l'on note (b, (bj)jej). La famille (a, (bj)jej) est alors une p-base de L sur k et on 

vérifie immédiatement le critère (iii) ci-dessus : si (b, &i , . . . , bn) est p-libre sur Ka, il 

en est de même de (a, &i , . . . , bn). • 

1.2.4. Proposition ([Matsumura, 1980b], § 30, lemme 6). — Soient K un corps de carac­

téristique p > 0 et (Ka) une famille filtrante décroissante de sous-corps cofinis — 

c'est-à-dire tels que les degrés [K : Ka] soient finis — telle que f]aKa = Kp. Alors, 

pour toute extension finie L/K, il existe un indice (3 tel que pour tout sous-corps cofini 

K' C Kp on ait : 

rang L f t [ / K , = rang K f t^ / K , . 

Démonstration. — Montrons tout d'abord que l'on peut supposer L/K sans sous-

extension non triviale. Supposons qu'il existe une sous-if-extension K C M C L, sans 

quoi il n'y a rien à démontrer. Par récurrence sur [L : K], on peut supposer le lemme 

établi pour l'extension M/K. Les sous-corps Ma = Ka(M
p) sont cofinis dans M 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



54 EXPOSÉ IV. LE THÉORÈME DE COHEN-GABBER 

et, pour a, P et 7 comme dans l'énoncé, on a M 7 C Ma D M p. En vertu du lemme 

précédent, appliqué dans le cas particulier où k = Kp, on a l'égalité f]a Ma = Mp'. 

D'autre part, les extensions Ma/Ka sont finies et, pour tout sous-corps K' de if, on 

a les égalités îî]^/^-, = ^M/K'{MP) E^ ̂ L / K ' = ^ L / K , ( M P ) ' ^ e c * n o u s ramène au cas 
particulier où M = K, puis au cas où L/K est sans sous-extension non triviale. 

Si celle-ci est (algébrique) séparable, le théorème est trivial : on a ^ \ / K f 

^K/KF ®K L P o u r tout K' c K. Sinon, L = K(a), où ap = b G K — Kp, et, pour 

chaque K' C K, le module des différentielles est naturellement isomorphe à 

(Q}K/KlIKdKfK,(b))®KL ®LdL/K,(a). 

De plus, dx/Kp(b) et di/Lp(a) sont non nuls car b (resp. a) n'appartient pas à Kp 

(resp. L p ) . Puisque Kp = f]a #a (resp. L p = f|a il existe un £ tel que 

dx/KpiP) 7^ 0 (resp. dLfK0(o) ^ 0). Il résulte de l'isomorphisme ci-dessus que pour 

chaque K' C Kp, on a l'égalité r a n g L f l ^ K , = r ang^Q^^ , . • 

1.2.5. — Rappelons enfin que si A et B sont deux anneaux linéairement topologi-

sés ([EGA 0i 7.1.1]), et A —> B un morphisme continu, le ^-module est un 

B-module topologique, la topologie étant déduite de celle de B ® A B par restriction 

et passage au quotient ([EGA Oiv 20.4.3]). Le 5-module sous-jacent ne dépend pas 

des topologies de A et B. On note î î ] ^ son séparé complété; il est isomorphe à une 

limite de Q1 de morphismes entre anneaux topologiques discrets (loc. cit., §20.7.14). 

Pour tout ^-module topologique L tel que l'anneau DB(L) = B 0 L soit linéaire­

ment topologisé ( i ), le morphisme canonique induit par la dérivation universelle est un 

isomorphisme : 

H o m . c o n t ^ ^ / ^ , ! / ) Dér.contA(B,L).№ 

Si le S-module topologique L est de plus séparé et complet, l'isomorphisme précédent 

peut se réécrire Hom.cont^(f i^ A , L) ^ Dér.contai?, L). Comme on le constate dans 

le cas particulier très simple où A est un corps et B un anneau de séries formelles, le 

B-module ^tl

BjA a des propriétés de finitude bien plus remarquables que Q}B^ {loc. 

cit., exemple 20.7.16 et prop. 20.7.15). 

W Cette hypothèse entraîne que la topologie de L est définie par une famille de sous-B-modules L' 
tels que L/L' soit annulé par un idéal ouvert de B. Réciproquement, un B-module L muni d'une telle 
topologie est un B-module topologique (l'action B x L —> L est continue) et DB{L) est linéairement 
topologisé (c'est-à-dire par une famille de sous-B-modules). 
(n) Comme nous l'a signalé O. Gabber, l'isomorphisme précédent — tiré de [EGA Oiv 20.4.8 (ii)] — 
peut être mis en défaut si l'on suppose seulement que L est un B-module topologique. 
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2. Les théorèmes de Cohen-Gabber en caractéristique > 0 

2.1. Le théorème de Cohen-Gabber non équivariant en caractéristique > 0. — Le but de 

ce paragraphe est de démontrer la variante suivante du théorème de structure des 

anneaux locaux ncethériens complets [EGA Oiv 19.8.8 (ii)], dû à Irving S. Cohen. 

2.1.1. Théorème (théorème de Cohen-Gabber ; [Gabber, 2005a], lemme 8.1). — Soit A 

un anneau local complet nœthérien réduit, d'égale caractéristique p > 0, équidimen-

sionnel de dimension d et de corps résiduel k. Il existe un sous-anneau AQ de A, 

isomorphe à k[[ti,... ,£d]], tel que A soit fini sur AQ, sans torsion et génériquement 

étale. De plus, le morphisme AQ —> A induit un isomorphisme sur les corps résiduels. 

2.1.2. Remarques. — Ce résultat apparaît explicitement comme hypothèse, pour A 

intègre, dans [EGA Oiv 21.9.5]. L'expression « génériquement étale » signifie 

ici qu'il existe un ouvert dense de Spec(A 0) au-dessus duquel le morphisme 

Spec(A) —> Spec(^o) est étale. 

2.1.3. — La démonstration du théorème, qui est une adaptation au cas non irréduc­

tible de [Gabber, 2005a], occupe le reste de cette section. Nous supposerons par la 

suite d > 0, sans quoi l'énoncé est évident. Dans les alinéas 2.1.4 à 2.1.11, nous allons 

montrer qu'il existe un corps de représentants K de A tel que le A-module des formes 

différentielles complété Çl\jK soit de rang générique égal à d sur chaque composante 

irréductible. En (2.1.12) nous verrons comment en déduire rapidement le théorème. 

2.1.4- — Soit (bi)içE une p-base de k = A/VCIA- Choisissons des relèvements arbi­

traires fa des bi dans A. Rappelons qu'il existe un unique corps de représentants K C A 

contenant les fii et se surjectant sur k (1.1.3). Changer de corps de représentants re­

vient donc à changer les . Fixons également un système de paramètres T\ , . . . , Ta de 

A ; nous ne le changerons qu'à la fin de la démonstration (2.1.12). 

2.1.5. — Pour toute partie finie e C E, posons KE := Kp((3i, i £ e) C K. Les trois 

propriétés suivantes sont évidentes : 

pour toute partie finie e C E, [K : ne] < +oo, 

pour toutes parties finies e, e' C E, tteue' C KE D KE>, 

eCE 

2.1.6. — Soient Spec(A) une composante irréductible de Spec(yl), munie de la struc­

ture réduite, et rf, . . . , les images des dans A par la surjection canonique A - » A. 
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56 EXPOSÉ IV. LE THÉORÈME DE COHEN-GABBER 

Considérons le diagramme d'anneaux : 

KeHn", • • • ,TF}\ K[[ñ, . . . A 

LK,e ^ Lu ^ L 

où les flèches horizontales sont les homomorphismes canoniques, et les flèches verti­

cales les inclusions dans les corps de fractions respectifs. Les flèches horizontales sont 

injectives et correspondent à des morphismes finis. Pour la seconde, cela résulte du 

fait que le module A est quasi-fini ([EGA Oi 7.4.1]) sur «[[rf, • • • i^d]] donc de type 

fini car l'idéal (rfî • • • ,Td)A est un idéal de définition ([EGA Oi 7.4.4]). Enfin, les T¡ 

sont analytiquement indépendants sur K : le sous-anneau K,[\TÎ, . . . ,7^]] de A est bien 

un anneau de séries formelles ([EGA Oiv 16.3.10]). 

On a observé ci-dessus que la famille des K,E C e C E, satisfait aux hypothèses 

de la proposition 1.2.4. On vérifie immédiatement qu'il en est de même de la famille 

des sous-corps L« > e de LK ; on a donc l'égalité 

(2.1.6.1) r ang L í í ¿ / L | € > e = r a n g ^ f i ^ / ^ , 

dès que l'ensemble fini e est suffisamment grand. 

Posons RK = tt[[rf,..., Td[] et RK,e = Ke[[T\p,... ,T¿¿p]]. Le terme de gauche de 

(2.1.6.1) est le rang générique du A-module Ù^. , c'est-à-dire le rang de son tenso-

risé avec L. Remarquons que d'après [EGA Oiv 21.9.4], tëj s'identifie au A-mo-
•A/ r¿K,,e 

dule iî^y^ de formes différentielles complété. Le terme de droite est quant à lui le 

rang du i^e-module libre Q1

RK/RK e - Ce dernier est égal à d+rang^i î*^ = d+ \e\ (où 

I — I désigne le cardinal d'un ensemble), de sorte que la formule (2.1.6.1) se réécrit : 
(2.1.6.2) r a n g ^ / / i e = d + | e | . 

2.1.7. — La proposition suivante va nous permettre de modifier le corps des repré­

sentants de façon à pouvoir supposer e vide (de façon équivalente : KE = K). 

2.1.8. Proposition. — II existe une partie finie e de E et des éléments (3'if pour i G 

e, relevant les b{ tels que, pour chaque composante irréductible intègre Spec (A) de 

Spec (A), les conditions suivantes soient vérifiées : 

(i) r a n g ^ / # 6 e = d + | e | , 

(ii) les images des d/3¡ dans <S*-j L, où L = Frac(A), sont L-linéairement 

indépendantes. 

L'égalité 2.1.6.1 (et donc 2.1.6.2) étant valable, pour chaque composante irréduc­

tible, dès que e est suffisamment grand, on peut choisir un tel ensemble qui convient 

pour chacune d'entre elles. La propriété (i) en découle. 
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Pour démontrer la propriété (ii), nous utiliserons le lemme élémentaire suivant. 

2.1.9. Lemme. — Soient A et L comme ci-dessus. Pour tout idéal non nul I de A, 

l'ensemble des df <8)jX; pour f E I, est une famille génératrice du L-espace vectoriel 

A/Ke A 

Démonstration. — Soient / 0 G i" non nul, et u>o = dfo. Pour tout b G A, d(bfo) = 

bwo + fodb. La famille des d(bfo) <S> 1 contient UQ ® 1 ; d'après la formule précédente, 

le L-espace vectoriel qu'elle engendre contient donc les db (g) 1 pour chaque b G A. • 

Soit { p i , . . . , p c } l'ensemble des idéaux premiers minimaux de A. Pour chaque j G 

{ 1 , . . . , c } , posons Aj = A/pj et Xj = Spec(Aj) la composante irréductible intègre de 

X = Spec(A) correspondante. Notons pour tous i G e et j G { 1 , . . . , c } , faj l'image 

dans Aj de Pi e A. (Rappelons que les fa font partie d'une p-base de K C A.)- Nous 

allons démontrer par récurrence sur j (0 < j < c) qu'il existe des éléments {mij} 

dans m A, pour i G e, tels que les images des éléments fa + rriij dans chacun des 

anneaux A i , . . . , Aj aient des différentielles linéairement indépendantes dans chacun 

des espaces vectoriels ft\1/RKe ®AX I ^ a c Ai , ^AJ/RKG ®A? Frac Aj. Pour j — 

0, cette condition est vide. Supposons l'assertion démontrée pour un j < c — 1 et 

montrons la pour j; + 1. Quitte à remplacer par + ra^, on peut supposer que 

mij = 0 pour tout i e e. L'anneau A étant réduit, les pa forment une décomposition 

primaire réduite de (0), de sorte que l'idéal qj := pi fl • • • fl pj (= Ker(A —> Ai x 

• • • x Aj)) n'est pas contenu dans pj+i- Si j > 0, notons Ij+i son image dans A = 

A J + i ( = A / p J + i ) ; c'est un idéal non nul. Si j = 0, on considère nv^. D'après (i), 

rang-7-^ = d + |e| > |e| ; d'autre part, la famille d(L+i) est génératrice dans 

0*. ® j L (où L = Frac A). 

2.1.10. Lemme. — Soient V un espace vectoriel de dimension au moins n, b\,..., bn 

des vecteurs de V et W une famille génératrice. Il existe une famille Wi,..., wn 

d'éléments de W U {0} tels que les bi + W{ soient linéairement indépendants. 

Démonstration. — Par récurrence immédiate sur n. • 

Il existe donc des éléments wij - + 1 G /¿+1, i G e, tels que les différentielles des 

éléments d((fa mod pj+i) + m ^ + 1 ) , z G e, soient linéairement indépendantes dans 

A/Ke

 A 

Relevons les en des éléments ra^j+i de si j > 0, ou de m A si J = 0. Par 

construction, ils satisfont la propriété escomptée au cran j + 1. 

2.1.11. — Considérons le sous-corps 

K' := Kp(fa,i g e; î G e) = « c(/3-, i G e) C A, 
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58 EXPOSÉ IV. LE THÉORÈME DE COHEN-GABBER 

où les (3[ (i e e) sont comme en 2.1.8. Il s'envoie isomorphiquement sur k = A/m A 

par réduction : son image contient kp et les images des (i £ e), (3[ (i e e), qui 

constituent une p-base de k. Des égalités 2.1.6.2 et de la propriété (ii) de 2.1.8, on 

tire : 

r a n g ^ / / t , = d, 

pour toute composante irréductible intègre Spec(A) de X. Par la suite, nous noterons 

encore K ce nouveau corps de représentants. 

2.1.12. — Le ^4-module ft\/K étant de rang générique d sur chaque composante 

irréductible, on montre en procédant comme précédemment qu'il existe des éléments 

/ i , . . . , / d d e A tels que les d(fi modp a ) Frac Aj forment une base de ftA./K ®Aj 

Frac Aj pour chaque composante irréductible Spec(A J) de X. Quitte à les multiplier 

individuellement par une puissance p-ième d'un élément appartenant à — UjPj? 

on peut les supposer dans m^. Rappelons que l'on a choisi un système de paramètres 

r i , . . . , Td dans A, de sorte que le morphisme Spec(^4) —• Spec(fe[[ri,..., r^]]) soit fini. 

Posons, pour i G { 1 , . . . , d}, 

U :=7f(l + fi). 

Soient A0 le sous-anneau «[[¿1,... de A, X0 = Spec(A 0). Le morphisme X —> X0 

est fini : cela résulte du fait que les éléments 1 + fi sont des unités de A. Vérifions 

qu'il est génériquement étale. L'anneau A étant nœthérien complet, le A-module de 

type fini Q\/Ao est également complet et coïncide donc avec le module des formes 

différentielles complété ft\/Ao- Les anneaux Ao et A étant métrisables, et tout sous-

A-module de \ , étant fermé, la suite 

^A0/K^AoA - U\/K - Û\/Ao = n A / A o - 0 

est exacte ([EGA Oiv 20.7.17]). Il résulte de l'hypothèse sur les éléments fi et de la 

formule 

d(U) = rldfi 

qu'au-dessus de chaque point maximal de X = Spec(A), la première flèche est surjec-

tive. On en déduit que le A-module iïA/Ao est génériquement nul. • 

2.2. Le théorème de Cohen-Gabber équivariant en caractéristique > 0 

2.2.1. — Nous allons démontrer ici une généralisation du théorème 2.1.1 dans le cas 

d'un anneau non nécessairement équidimensionnel, muni d'une action d'un groupe 

fini. 

2.2.2. Théorème. — Soient A un anneau local nœthérien complet réduit d'égale carac­

téristique, dimension d, corps résiduel K et G un groupe fini agissant sur A avec \G\ 
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inversible dans K. Alors, il existe un morphisme fini génériquement étale, G-équiva-

riant, K,[[ti,... ,td\] —• A, où n —> A relève Videntité de K et G agit trivialement sur 

les U. 

Commençons par une proposition. 

2.2.3. Proposition. — Soit A un anneau muni d'une action d'un groupe fini G d'ordre 

inversible sur A et soit B = Fix^ A le sous-anneau des invariants. 

(i) L'anneau B est 

(a) nœthérien si A l'est; 

(b) réduit si A l'est; 

(c) local d'idéal maximal m fl B si A est local d'idéal maximal m, de corps 

résiduel isomorphe au sous-corps Fix^ A/m de K = A/m. 

(ii) Le morphisme Spec(A) —• Spec(i?) = Spec(A)/G est 

(a) fini si A est nœthérien ; 

(b) génériquement étale si A est de plus réduit. 

Démonstration. — (i) Notons Tr le morphisme 5-linéaire Tr : A —• B, x »—• 

jèf YlgeG d(x)i P a r f ° i s appelé « opérateur de Reynolds » . Pour tout idéal I de B, on 

a, IAnB = I. En effet, l'inclusion I c IAnB est triviale et l'inclusion opposée résulte 

du fait que si x G IAnB, sa « trace » x = Tr(x) appartient, par /-linéarité, à IB = /. 

On en déduit immédiatement l'énoncé (a). L'énoncé (b) est trivial. Si A est local, on 

a i - m = A x . Il résulte d'une part que G stabilise globalement m et d'autre part que 

Fixe A — Fixcrtn = (Fixer A)x. Ainsi, B est maximal d'idéal n = Fix G m. Enfin, le 

morphisme canonique B/n —» Fix^ K déduit de l'inclusion canonique B/n —• K est un 

isomorphisme. En effet, si a e A est un relèvement arbitraire de À G Fixe ft, l'élément 

b = Tr(a) en est un relèvement G-équivariant. Ceci achève la démonstration du (c). 

(ii.a) Nous allons montrer que le morphisme entier Spec(i) —> Spec(B) est fini par 

réduction au cas bien connu où A est un corps. 

— Réduction au cas réduit. Soient N le nilradical de A et M = N D B celui de B. 

Pour chaque entier z G N, le A/N-modu\e N1 /Nl+1 est de type fini, car A est supposé 

nœthérien, et nul pour i ^> 0. Le module gvN(A) = 0 n > o N
%/N%+1 est donc de type 

fini sur grQ

N(A) = A/N. Si ce dernier est de type fini sur B/M = gr°M(B), il en est 

de même de grN(A) sur grM(B) et finalement ([Bourbaki, AC, III, §2, n° 9, cor. 1]) 

de A sur B, par complétude de l'anneau nœthérien B pour la topologie M-adique. 

— Réduction au cas d'un produit de corps. Supposons A réduit et considérons 

l'ensemble fini {pi}iei des idéaux premiers minimaux de A. Pour chaque z, = 

pi D B est un idéal premier minimal de B. Cela résulte du théorème de Cohen-

Seidenberg ([Bourbaki, AC, V, § 2, n° 1, th. 1 et cor. 2]) et de la transitivité de l'action 

de G sur les fibres de Spec(A) —• Spec(£) (op. cit., n° 2, th. 2). Soit K = Frac A 
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(resp. L = Frac B) l'anneau total des fractions de A (resp. B) ; c'est un produit 

de corps dans lequel A (resp. B) s'injecte, isomorphe au semi-localisé de A en les 

{pi}iei (resp. {q*}te/)- S o i t s = A - \J. pi ; on a donc K = S'1 A. D'après (op. cit., 

§1, n° 1, prop. 23), on a FixG(S~1A) = ( F i x G 5 ) - 1 5 , de sorte que FixG K = L et 

AÇ§B L — K. Supposons K fini sur L — comme il sera démontré au paragraphe 

suivant —, de sorte qu'il existe d'après l'isomorphisme précédent un nombre fini n 

d'éléments ai,..., an de A qui engendrent K sur L. Pour conclure, il suffit de vérifier 

que l'opérateur Tr : A —• B définit, par composition avec le produit, un accouplement 

A (g)£ A —• B qui est non-dégénéré en passant aux anneaux de fractions, c'est-à-dire 

que si un élément x G K vérifie Tr(K • x) = { 0 } , alors x = 0. En effet, s'il en est 

ainsi, l'application A —> Bn, a i—• (Tr(a^)) est un plongement B-linéaire et l'on 

peut conclure par ncethérianité de B. Le fait que l'accouplement K <£>L K -> L soit 

non-dégénéré résulte du fait que si e est un idempotent correspondant à un facteur 

Frac A/p de K, l'élément Tr(e) est égal à où H est le stabilisateur de e, et / 

est l'idempotent de L correspondant au facteur Frac B/q, avec q = p D A. 

— Réduction au cas d'un corps. Soit donc A = YliKi un produit fini de corps 

et posons X = Spec(A) = Ui^- Si X = X\ II X2, où X\ et X2 sont G-stables, 

X/G = (X\/G) II (X2/G) de sorte que l'on se ramène immédiatement au cas où X/G 

est connexe, c'est-à-dire où l'action de G est transitive. Pour tout i, notons Gi le 

groupe de décomposition correspondant. D'après le cas classique (cas d'un corps), 

Vi —> Wi/Gi est fini étale. Il en résulte que le morphisme X —> \Jrji/Gi est fini. Enfin, 

puisque pour tout i, rji/Gi X/G (loc. cit., §2, n° 2, prop. 4), le résultat (ii.a) en 

découle. 

L'énoncé (ii.b) est désormais évident. • 

2.2.4- — Soient A et G comme dans l'énoncé du théorème 2.2.2. Il résulte de la 

proposition précédente que l'on a l'égalité dim(jB) = dim(A) < +00, où l'on note 

B = Fixer A. Nous noterons d leur dimension commune. Soit B/I le quotient maximal 

d-équidimensionnel de B. D'après le théorème de Cohen-Gabber 2.1.1, il existe un 

corps de représentants À ̂  B/I et un système de paramètres t\,... ,td de B/I tel 

que X[[ti,..., td]] —> B/I soit fini, génériquement étale. On peut relever l'inclusion 

À <—> B/I en une inclusion À ^ B : cela résulte par exemple, en caractéristique 

résiduelle positive (seul cas non trivial), de la correspondance entre sous-corps de 

représentants et relèvements d'une p-base donnée du corps résiduel. Enfin, on peut 

relever le système de paramètres de B/I en un système de paramètres de B : cela 

résulte, par dévissage, du lemme suivant. 

2.2.5. Lemme. — Soient A - » B une surjection d'anneaux locaux nœthériens et b e 

ms un élément sécant pour B, c'est-à-dire tel que dim(B/b) = dim(B) — 1. Il existe 

un relèvement de b dans A sécant pour A. 
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Pour des généralités sur les suites sécantes, voir par exemple op. cit., chap. vin, 

§3, n° 2. 

Démonstration. — On se ramène immédiatement au cas où B = A / ( / ) , f G A. 

Soit a e A un relèvement arbitraire de 6; par hypothèse, on a dim(A/(/ , a)) = 

dim(B) — 1. Si dim(B) = dim(A) — 1, on a nécessairement dim(A/a) = dim(A) — 1 

car la dimension chute d'au plus un par équation. Dans le cas contraire, / appartient 

à la réunion (J™=1pi, où les p̂  sont les idéaux premiers de A de cohauteur dim(A). 

Supposons que / G p i , . . . , p r , et seulement ces idéaux-ci. La conclusion ne peut 

être mise en défaut que si a -h ( / ) C Ur=i P*> c'est-à-dire si tous les relèvements de 

b sont non sécants. Pour chaque i < r, on a a £ pi car / appartenant à pi, on 

aurait dim(A/(/ , a)) = dim(A). Il en résulte notamment que r ^ n. Il suffit donc 

de montrer que l'hypothèse a + ( / ) C (JILr+i e s ^ a D S u r d e - On aurait en effet 

o + / m = a + / • / M " 1 G UIU+i P°ur tout m et finalement / m ( l - / ™ - ™ ' ) G Pi 

pour deux entiers m > m' et un indice r -f- 1 < i < n. On en tire immédiatement 

/ G pi, ce qui est contraire à l'hypothèse. • 

2.2.6. — L'extension K/\ étant étale, car À = Fix^ le morphisme K —• A/m se 

relève uniquement en un À-homomorphisme k —> A ; ce morphisme est G-équivariant. 

Le morphisme A/B étant fini, génériquement étale, ceci achève la démonstration du 

théorème 2.2.2. 

3. Autour du théorème de Epp 

3.1. Énoncé (rappel) 

3.1.1. — Si X est un schéma réduit n'ayant qu'un nombre fini de composantes irré­

ductibles, nous noterons X n o r son normalisé ([EGA il 6.3.6-8]). 

3.1.2. Théorème (Helmut Epp, [Epp, 1973], théorème 1.9). — Soit T —• S un mor­

phisme local dominant de traits complets, de caractéristique résiduelle p > 0. Notons 

Ks et KT leurs corps résiduels respectifs. Supposons KS parfait et le sous-corps parfait 

maximal de KT algébrique sur KS • H existe une extension finie de traits S' —• S telle 

que le produit fibre réduit normalisé 

T' := (TxsS'Ud

Dm 

ait une fibre spéciale réduite au-dessus de S'. 

3.1.3. Remarque. — En caractéristique mixte, le produit fibre T x# S' est réduit. En 

effet, le morphisme T' —> Sf (obtenu par changement de base d'un plat) est plat, et S' 

est intègre si bien que l'anneau des fonctions de T' s'injecte dans l'anneau des fonctions 

de sa fibre générique. Il suffit donc de prouver que cette dernière est réduite. Or, en 
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caractéristique nulle, toute extension de corps est séparable. On vérifie également sans 

difficulté que la conclusion du théorème est encore valable si l'on suppose seulement 

S complet, mais pas nécessairement T (cf. loc. cit., §2). 

3.2. Sorites 

3.2.1. — Nous dirons qu'une extension de corps K/k d'exposant caractéristique p > 1 

a la propriété de Epp si tout élément du sous-corps parfait maximal Kp°° := f]n>0 Kpn 

de K est algébrique séparable sur k. Pour k parfait, c'est l'hypothèse faite sur KT/K>S 

dans 3.1.2. Dans ce court paragraphe, on rappelle quelques résultats élémentaires de 

stabilité pour cette notion. Commençons par un lemme. 

5.2.2. Lemme. — Pour tout corps K d'exposant caractéristique p > 1, on a, dans une 

clôture séparable K*ep de K, 

(K^f = (Ksépy°°. 

Démonstration. — L'inclusion (Kp°°)sép C (Ksep)p°° est évidente : Kp°° est parfait 

donc toute extension algébrique, en particulier sa clôture séparable (Kp°°)séP, l'est 

également. Comme cette dernière est contenue dans Rsep, elle est également contenue 

dans son plus grand sous-corps parfait (Ksep)p°°. 

Réciproquement, considérons x G (Ksép)p°°, et notons, pour chaque entier n > 0, 

xn sa racine p n-ième dans K P et fn son polynôme minimal {unitaire). Compte tenu 

d'une part de l'expression de fn en fonction des polynômes symétriques en les conju­

gués galoisiens de xn et d'autre part de l'injectivité et de l'additivité de l'élévation 

à la puissance p n-ième, on a l'égalité /o = fn \ où fn ^ est le polynôme obtenu à 

partir de fn en élevant les coefficients à la puissance p n-ième. Il en résulte que les 

coefficients du polynôme minimal /o de x appartiennent à Kp°°. • 

3.2.3. Proposition (Voir [Epp, 1973], §0.4). — Soit k un corps d'exposant caractéris­

tique p. 

(i) Soient L/K et K/k ayant la propriété de Epp. Alors, L/k a la propriété de Epp. 

(ii) Toute extension finie de k a la propriété de Epp. 

(iii) Si p > 1, pour tout entier naturel d, l'extension (Frac k[[x±,..., Xd]])/k a la 

propriété de Epp. 

(iv) Si p > 1, pour toute inclusion k C A, où A est un anneau local complet noe-

thérien intègre, induisant un isomorphisme sur les corps résiduels, l'extension 

(Frac A)/k a la propriété de Epp. 

Démonstration. — Supposons immédiatement p > 1 sans quoi (i) et (ii) sont triviaux. 
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(i) Par hypothèse on a dans une clôture séparable de L l'inclusion Lp°° C Rsep. 

Comme le corps Lp est parfait, on en déduit que L p C (il ) p = (Kp ) C k , 

où l'égalité résulte du lemme précédent. 

(ii) Toute extension étale a tautologiquement la propriété de Epp. D'après (i), il 

reste à considérer le cas d'une extension radicielle K/k. Si elle est de hauteur < r, on 
r . _ _,_oo sép 

a A p C A: et en particulier Kp C k C k . 

(iii) Soit A = k[[xi,... ,Xd]] et K son corps des fractions. Montrons que Kp°° = 

kp°°. Comme K est contenu dans &((#! , . . . , #¿-1 ))((#<*)), on se ramène par récurrence 

au cas où d = 1. Tout élément non nul de k((t))p°° a une valuation infiniment p-di-

visible donc nulle, de sorte que k((t))p°° — {0} est contenu dans &[[£]]x et finalement 

dans kp°° par un calcul immédiat. 

(iv) Cela résulte des observations précédentes et du théorème de structure de Co­

hen. • 

4. Le théorème de Cohen-Gabber en caractéristique mixte 

4.1. Anneaux de Cohen et lissité formelle (rappels) 

4-1.1. — Pour la commodité du lecteur, nous énonçons quelques résultats, principa­

lement dus à Cohen. Pour les démonstrations, nous renvoyons à [Bourbaki, AC, IX, 

§2] et [EGA Orv §19]. 

4.1.2. Définition ([EGA Oiv 19.3.1]). — Soit A un anneau topologique ( i i i ). Une A-al­

gèbre topologique B est dite formellement lisse si pour toute A-algèbre topologique 

discrète C, et tout idéal nilpotent I de C, tout A-morphisme continu u : B —• C/I se 
V $ 

factorise enB-*C^»C/I,oùv est un A-morphisme continu et 0 l'homomorphisme 

canonique. 

On dit aussi que A —> B est un morphisme formellement lisse. La proposition sui­

vante énonce une propriété de relèvement un peu plus générale que celle de la défini­

tion. 

4.1.3. Proposition (loc. cit., 19.6.1). — Soient A un anneau topologique, et B un A-al­

gèbre formellement lisse. Soient C une A-algèbre topologique, I un idéal de C vérifiant 

les conditions suivantes : 

(i) C est métrisable et complet; 

(ii) / est fermé et la suite (In)ne^ tend vers zéro. 

(m) Ici, et ci-dessous, on suit la convention [EGA Oiv 19.0.3] : les anneaux sont supposés linéairement 
topologisés. 
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Alors, tout A-morphisme continu u : B —> C/I se factorise en B A C -» C/I, où v 

est un A-morphisme continu. 

Les deux théorèmes suivants donnent deux critères importants de lissité formelle. 

4.1.4. Théorème (loc. cit., 19.6.1). — Une extension de corps munis de la topologie dis­

crète est formellement lisse si et seulement si l'extension est séparable. 

4.1.5. Théorème (loc. cit., 19.7.1). — Soient A, B deux anneaux locaux nœthériens, 

m, n leurs idéaux maximaux respectifs et k = A/m le corps résiduel de A. Munissons 

A et B respectivement des topologies m-adique et n-adique. Soit (j) : A —> B un 

morphisme local, et posons BQ = B <S>A k. Les propriétés suivantes sont équivalentes : 

(i) B est une A-algèbre formellement lisse; 

(ii) B est un A-module plat, et BQ munie de la topologie quotient est une k-algèbre 

formellement lisse. 

Le théorème suivant, joint au précédent, est à la base de la démonstration de 

l'existence des anneaux de Cohen définis ci-après. 

Dans les énoncés qui suivent, les anneaux locaux sont munis de la topologie 

de l'idéal maximal. 

4.1.6. Théorème (loc. cit., 19.7.2). — Soient A un anneau local noethérien, I un idéal 

strict, AQ = A/I, BQ un anneau local nœthérien complet, Ao —> BQ un morphisme local 

formellement lisse. Il existe alors un anneau local nœthérien complet B, un morphisme 

local A —• B faisant de B un A-module plat, et un Ao-isomorphisme u : B <S>A AO —» 

B0. 

4.1.7. Définition (loc. cit., 19.8.4 et 5). — On appelle anneau de Cohen un anneau qui 

est soit un corps de caractéristique nulle, soit un anneau de valuation discrète complet, 

de corps résiduel de caractéristique p > 0 et d'idéal maximal engendré par p. 

4.1.8. Théorème (Cohen, loc. cit., 19.8.6 et 21.5.3). — (i) Soient W un anneau de 

Cohen de corps résiduel K, C un anneau local nœthérien complet, et I un 

idéal strict de C. Alors, tout morphisme local u : W —> C/I se factorise en 

W A C —• C/I, où v est local. De plus, la factorisation est unique si et 

seulement si f î^ = 0 ou I = 0. 

(ii) Soit K un corps. Il existe un anneau de Cohen W de corps résiduel isomorphe 

à K. Si W est un second anneau de Cohen, de corps résiduel K', tout iso­

morphisme u : K ^ Kf provient par passage au quotient d'un isomorphisme 

v.W^W. 
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4-1-9. — Rappelons que l'hypothèse Ù^- = 0 est équivalente au fait que K est parfait 

s'il est de caractéristique > 0 ou bien est une extension algébrique de Q s'il est de 

caractéristique nulle. 

Signalons que si K est parfait de caractéristique p > 0, le morphisme v de (ii) 

est unique. Dans ce cas, W est d'ailleurs isomorphe à l'anneau des vecteurs de Witt 

sur K. 

4.2. Le théorème de Cohen-Gabber en caractéristique mixte 

4.2.1. — Soit A un anneau local noethérien complet de caractéristique résiduelle 

p > 0. Le schéma X = Spec(A) est de manière unique un Spec(Zp)-schéma. Notons 

XP le sous-schéma fermé de X , fibre au-dessus du point fermé de Spec(Z p). Nous 

dirons qu'un ouvert U C X est p-dense si U fl XP est dense dans XP. 

4.2.2. Théorème. — Soit X = Spec(A) un schéma local nœthérien complet normal de 

corps résiduel k, de dimension d > 2 et de point générique de caractéristique nulle. Il 

existe un morphisme fini surjectif X' —• X, où X' est normal intègre de corps résiduel 

k', et un morphisme fini surjectif X' —» Spec(V[[£i,... , t^-i]])* où V est un anneau 

de valuation discrète de corps résiduel k', étale au-dessus d'un ouvert p-dense du but. 

La suite de ce paragraphe est consacrée à la démonstration du théorème précédent. 

4-2.3. — Soit X comme dans l'énoncé. Considérons le sous-corps parfait maximal 

k0 = kp°° du corps résiduel k de A = T(X, &x) et notons WQ = W(k0) l'anneau 

des vecteurs de Witt correspondant. Il résulte du théorème de Cohen qu'il existe un 

unique morphisme X —» So = Spec(Wo) qui étende le morphisme Spec(fc) —> Spec(A:o) 

entre les points fermés (4.1.8, (i)). 

Pour tout point maximal p de la fibre spéciale XP de ce morphisme, l'anneau 

de valuation discrète Ap a pour corps résiduel Frac A/p, où l'anneau A/p est local 

nœthérien complet intègre de corps résiduel k. D'après 3.2.3 (i) & (iv), l'extension 

Frac(^4/p)/A:o a la propriété de Epp. De tels idéaux p étant en nombre fini et la 

conclusion du théorème de Epp (3.1.2), (3.1.3) étant stable par changement de base 

fini car c'est un résultat de lissité formelle, il existe donc un changement de base 

fini SF

Q = Spec(VFo) —> 5o tel que la fibre spéciale du produit fibre normalisé X'Q := 

(X Xs0 S'0)
nor = Spec(^4o) soit réduite en ses points maximaux. (On utilise le fait que 

les points maximaux de la fibre spéciale de X'0 —• S'0 se trouvent au-dessus des points 

maximaux de la fibre spéciale de X —• So ; cf. p. ex. [EGA Orv 16.1.6].) 

D'après le lemme suivant, la fibre spéciale du morphisme XQ —• S'Q est alors réduite. 

4.2.4. Lemme. — Soit X un schéma nœthérien normal. Tout diviseur de Cartier ef­

fectif génériquement réduit est réduit. 
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Démonstration. — On peut supposer X affine et le diviseur de Cartier effectif défini 

par une fonction / G A = T(X, ûx)- Soient a G A et n > 1 tels que an G ( / ) ; on 

souhaite montrer que a G ( / ) . L'anneau A/(f) étant génériquement réduit, l'élément 

a/f de Frac A appartient à Ap pour tout idéal premier p de hauteur 1 contenant / . 

Il en est évidemment de même pour / 0 p. L'anneau A étant normal, f]p Ap = A où 

p parcourt les idéaux de hauteur 1 (voir [Bourbaki, AC, VII, § 1, n° 6, th. 4]) de sorte 

que a/f e A. • 

4-2.5. — Notons k'0 le corps résiduel de WQ, W' une uniformisante de WQ, et consi­

dérons une composante connexe X' = Spec(A') de X'Q ; c'est un schéma fini surjectif 

au-dessus de X. Soit k' son corps résiduel. L'inclusion kf

0 <—> k' déduite du morphisme 

X' —>• Sf

0 est formellement lisse, car kf

0 est parfait, donc se relève d'après 4.1.5 et 

4.1.6 en un morphisme formellement lisse W$ —» V où V est un anneau local complet 

ncethérien. Cet anneau est un anneau de valuation discrète. L'anneau A'/m' étant 

réduit, équidimensionnel de dimension d — 1, de corps résiduel k', il existe d'après 

le théorème de Cohen-Gabber (2.1.1), un relèvement /uQ-linéaire kf A'/m' et des 

éléments x\,... ,Xd-i dans l'idéal maximal de A'/vo' tels que le morphisme induit 

k'[[ti,... ,td-i]] —» A'/w', envoyant l'indéterminée U sur soit fini, génériquement 

étale en haut et en bas. 

Par lissité formelle de W$ —• V, le morphisme composé V —• k' —» A1 /w1 se re­

lève en un VFo-morphisme V —» En relevant les dans A', nous obtenons un 

morphisme V [ [ £ i , . . . , A ' , fini injectif (cf. p. ex. [EGA Oiv 19.8.8 (démons­

tration)]), étale au-dessus du point générique de la fibre spéciale. • 

4.3. Le théorème de Cohen-Gabber premier à £ en caractéristique mixte 

4.3.1. Théorème. — Soit X = Spec(A) un schéma local nœthérien complet normal de 

dimension d > 2, de corps résiduel k de caractéristique p > 0 et de point générique 

de caractéristique nulle. Soit £ un nombre premier différent de p. Il existe alors : 

(i) un schéma local nœthérien intègre normal Y muni d'une action d'un £-groupe 

fini H et un morphisme fini surjectif H-équivariant Y —> X tel que le quo­

tient Y/H soit de degré (générique) premier à £ sur X ; 

(ii) un anneau de valuation discrète complet V de même corps résiduel k' que Y, 

de caractéristique mixte, muni d'une action de H compatible avec son action 

sur k' ; 

(iii) un morphisme local Y —>• Y' = Spec(V[[£i,. . . , *d-i]]) Qui soit fini, étale au-

dessus d'un ouvert p-dense de Y', et H-équivariant avec action triviale de H 

sur les t{. 
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Ces morphismes sont représentés dans le diagramme ci-dessous, où toutes les flèches 

sont des morphismes finis surjectifs. 

_ . ... , . p-génériquement étale , ^ 
Spec(V[[t!,... = Y' - Y Y/H 

v ^ -̂"aegré premier à t 

X ^ ^ 

4.3.2. Remarque. — Observons que les conditions (i)-(iii) sur les morphismes Y —> X 

et Y —• Y' n'entraînent pas que le schéma Y/H soit étale au-dessus d'un ouvert 

p-dense de Spec(Fix#(V)[[£i,.. . , = Y'/H. Voici un exemple, dû à Takeshi 

Saitô. Soient k un corps algébriquement clos de caractéristique p > 0, W l'anneau des 

vecteurs de Witt sur k, £ un nombre premier différent de p, A = W[[x,y]]/(xey — 

p). Soient W = W[7r]/(7re — p) et B le normalisé de A ®w W, VF'-isomorphe 

à Wffa;, z]]/(xz — TT). Le groupe H = fie(k) agit sur B, via son action sur W : 

(-x = x et (-z = (z. Le morphisme Y = Spec(i?) —» X = Spec(A) défini par x i—• x et 

y i-> ze satisfait les propriétés du théorème car Y/H ^> X et Y —• Y' = Spec(W [[£]]), 

t1-> x + z£, est p-génériquement étale. Cependant, Y/H a une fibre spéciale isomorphe 

au schéma non réduit Spec (&[[#, • 2/)) • Elle n'est donc pas étale au-dessus d'un 

ouvert dense de la fibre spéciale de Y'. 

La suite de ce paragraphe est consacrée à la démonstration du théorème précédent. 

Notons que si la fibre spéciale Xp de X sur Spec(Zp) est réduite, ce théorème — comme 

le précédent — résulte simplement du théorème 2.2.2, dans le cas particulier où le 

groupe G est trivial : on peut prendre Y = X et H trivial. 

4-3.3. — Considérons à nouveau le sous-corps parfait maximal ko du corps résiduel 

de A et WQ = W(ko) A l'unique morphisme relevant l'inclusion ko ^ k. Soit WQ 

la clôture intégrale de WQ dans A. 

4.3.4. Lemme. — L'extension WQ /WQ est finie, totalement ramifiée. 

Démonstration. — Soit W/WQ une extension finie de traits, où W' est contenu 

dans A. Le corps résiduel de W' est une extension finie de k0 ; c'est donc un corps 

parfait, contenu dans k et contenant ko. Il est donc égal à ko : l'extension est totale­

ment ramifiée. Le degré de l'extension W'/WQ est par conséquent égal à son indice de 

ramification, qui est majoré par l'entier N tel que p appartienne à — m ^ + 1 . Si W" 

est tel que le degré de l'extension Frac(W")/Prac(W 0) soit maximal, on a nécessai­

rement W' C W", comme on le voit immédiatement en considérant la sous-extension 

composée, dans Frac(A), des corps des fractions. Ainsi, WQ = W" est fini sur WQ. • 
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4-3.5. — D'après le théorème de Epp (3.1.2), il existe une extension finie d'anneaux 

de valuation discrète WQ —» WQ, que l'on peut supposer génériquement galoisienne 

de groupe un groupe fini G, telle que la fibre spéciale sur WQ de la normalisation A' 

de A <g>w» WQ soit réduite. Observons que l'anneau WQ étant intégralement clos dans 

A, l'anneau A! est local. Notons kç (resp. fc0) le corps résiduel de WQ (resp. WQ) et k' 

le corps résiduel de A!. Choisissons des anneaux de Cohen I(k') et I(FÏXG k1) relatifs 

aux corps k' et Fix^ k!. Il existe un morphisme /(Fix^ k') —» /(Fixe* k') relevant l'in­

clusion. Ce morphisme étant fini étale entre anneaux locaux complets donc henséliens, 

l'action du quotient Gal{k'/YYKG k') de G sur k' se relève en une action /(Fix^ ^ - l i ­

néaire sur I(kf) (cf. p. ex. [Serre, 1968, III, §5, th. 3]). Le corps kf

0 étant parfait, il 

existe d'après le théorème 4.1.8 un morphisme G-équivariant W(kf

0) —» /(&'). Soient 

enfin V = WQ ®w(k'0) I(kf), une uniformisante de WQ, A! = A!jwA! et H un 

^-Sylow de G. D'après le théorème 2.2.2, il existe un morphisme fini, génériquement 

étale, H-équivariant, (j) : kf[[ti,..., td-i]] —• A!, où les ti s'envoient dans YYKH Af. 

Le morphisme Fix# A' —• Fix# A' étant surjectif — comme cela se voit en utilisant 

la trace — on peut relever les images des ti en des x[ dans Fix# A!. De plus, par 

lissité formelle de V/WQ (pour les topologie p-adiques), on peut relever k' —> A' en 

un W o ~ m o r P h i s m e 1^ —> A' : cela résulte par exemple de [EGA Oiv 19.3.10]. En 

procédant cran par cran, et en considérant des isobarycentres dans les espaces af­

fines définis par le lemme bien connu suivant, on constate qu'il existe même un tel 

relèvement qui est H-invariant. 

4.3.6. Lemme. — Soient A —> B un morphisme d'anneaux et C -» C' une surjection 

de A-algèbres, de noyau JV de carré nul. Alors, l'ensemble des relèvements A-linéaires 

d'un morphisme B —> C' à C est soit vide soit un torseur sous DérA(B,^V). Le 

premier cas ne se produit pas si A —> B est formellement lisse. 

4-3.7. — Le X-schéma Y = Spec(A ;) est bien fini p-génériquement étale sur Y' = 

Spec(V[[ti , . . . , si l'on envoie V dans A' par ip comme ci-dessus et les variables 

ti sur les x\. Par construction Y est, génériquement sur X, galoisien de groupe G; 

son quotient Y/H est donc génériquement de degré premier à £ sur X. Ceci achève la 

démonstration du théorème. 
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