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EXPOSE IV

LE THEOREME DE COHEN-GABBER

Fabrice Orgogozo

1. p-bases et différentielles (rappels)

1.1. Définition et caractérisation différentielle

1.1.1. — Pour la commodité du lecteur, et pour fixer les notations, nous rappelons
ici quelques résultats bien connus dont nous ferons usage ci-aprés. Nous conseillons
au lecteur de ne s’y reporter qu’en cas de besoin.

1.1.2. Définition. — Soient k un corps de caractéristique p > 0, K une extension de k,
et (b;)icsr une famille d’éléments de K. On dit que les (b;) constituent une p-base de
K sur k (resp. sont p-libres sur k) si les monomes []; b?(i) (0 < n(i) <p, (n(2))ier de
support fini) forment une base du k(K?)-espace vectoriel K (resp. sont linéairement
indépendants sur k(K?)).

Si k = F,, on parle alors de p-base absolue, ou de p-base s’il n’y a pas d’ambiguité.
Enfin, on appelle parfois p-monéme un produit comme ci-dessus. Un lien entre cette
notion et la structure des anneaux locaux complets ressort du théoréme suivant.

1.1.3. Théoréme ([Bourbaki, AC, IX, § 3, n° 3, th. 1 b)]). — Soient A un anneau local
séparé complet de caractéristique p > 0 et (8;)ic1 une famille d’éléments de A dont
les classes modulo 1’idéal mazimal m4 forment une p-base du corps résiduel A/my. Il
eziste alors un unique corps de représentants de A contenant les éléments (3;.

1.1.4. Remarque. — On peut étendre de fagon évidente la notion de p-base au cas
d’un anneau quelconque de caractéristique p > 0; voir [EGA Opy 21.1-4]. Nous n’en
aurons pas besoin.
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52 EXPOSE IV. LE THEOREME DE COHEN-GABBER

1.1.5. — On vérifie immédiatement que les (b;);c; forment une p-base de K sur k
si et seulement si, pour tout ¢ € I, ’élément b; n’appartient pas au sous-corps
k(KP,(bj)j£) de K. (Voir p. ex. [EGA Oy 21.4.3].)

1.1.6. — Pour toute extension de corps K/k, nous noterons dg,; la différentielle
1

K — Qp Jk-

1.1.7. Proposition. — Soient k un corps de caractéristique p > 0, et K une extension

de k. Une famille (b;);c1 d’éléments de K est une p-base de K sur k si et seulement
si les différentielles dg /i (b;) forment une base du K -espace vectoriel Qj, Ik

Démonstration. — Soit B = (b;);e1 une p-base de K sur k. Tout morphisme (ensem-
bliste) A : B — K s’étend de maniére unique en une k-dérivation D de K : il suffit
de poser D(b7* - --b1r) = 3. nb7t - bM Tl b2 A(b;) et de Iétendre par k(KP)-li-
néarité. Cela est équivalent au fait que les dg/x(b;) forment une base de Qj, /i Ré-
ciproquement, si les dg/x(b;) forment une base, on observe que les p-mondmes sont
k(KP)-linéairement indépendants : dans le cas contraire on aurait, pour un indice 4
convenable, b; € KP((b;);+:), ce qui se traduirait par une relation linéaire entre les
différentielles. Soit B’ une p-base de K sur k contenant les b; (loc. cit., 21.4.2) ; d’aprés
Iimplication précédente, on a nécessairement B’ = (b;);c;. O

1.1.8. Corollaire. — Soient k un corps de caractéristique p > 0, et K une extension
de k. Un élément x de K appartient a k(KP) si et seulement si dgp(x) = 0.

1.1.9. — Rappelons que le p-rang d’un corps est le cardinal d’une p-base absolue
(bien défini en vertu de ce qui précéde). On vérifie immédiatement que ce cardinal
(fini ou non) est invariant par extension finie de corps.

1.2. Stabilisation

1.2.1. Lemme (voir p. ex. [EGA Opy 21.8.1)). — Soient K un corps, k un sous-corps,
(ka)acr (I # @) une famille de sous-corps de K telle que [, ka = k et filtrante
décroissante, c’est-a-dire telle que pour toute paire d’indices ., 3, il existe un indice
v tel que ky C ko N kg. Soient V un K-espace vectoriel, et (v;) (1 < i < n) une
famille finie de vecteurs de V. Si la famille (v;) est libre sur k, il existe un indice -y
telle qu’elle soit aussi libre sur k..

1.2.2. Lemme. — Soient K un corps de caractéristique p > 0, k un sous-corps et
(Ko)acr une famille filtrante décroissante de sous-corps contenants k. Les conditions
suivantes sont équivalentes :
() No Ka(KP) = k(K?);
(ii) pour tout ensemble fini {by,...,b,} C K, p-libre sur k, il existe un indice « tel
qu’il soit p-libre sur K, ;
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1. p-BASES ET DIFFERENTIELLES (RAPPELS) 53

(iii) 4l existe une p-base de K sur k telle que tout sous-ensemble fini soit p-libre sur
un K, pour a convenable;
(iv) le morphisme canonique Q}, sk — lima (9)% /K., est injectif.

Démonstration. — (i)=-(ii) est une conséquence immeédiate du lemme précédent.
(ii)=>(iii) est trivial (toute p-base convient). (iii)=>(iv) trivial (utiliser 1.1.7). Vé-
rifions (iv)=-(i). Soit z ¢ k(KP). D’aprés 1.1.8, dg/x(x) # 0 de sorte qu'il existe
a tel que dg/k, (x) soit également non nul. D’aprés loc. cit., cela entraine que z ¢
K.(KP). O

On en déduit le lemme suivant, qui est un cas particulier de [EGA Ory 21.8.5].

1.2.3. Lemme. — Soient K un corps de caractéristique p, k un sous-corps et
(Ka)acr une famille filtrante décroissante de sous-corps de K contenant k telle
que (), Ko(KP) = k(KP). Pour toute extension finie L de K, on a également
Ny Ko(LP) = k(LP).

Démonstration. — On se raméne immédiatement au cas od L/K est sans sous-
extension non triviale. Si L/K est (algébrique) séparable, la conclusion résulte
immédiatement de l’existence des isomorphismes canoniques Q}; Jk 5 Q}{ /K OK L,
Q5 k. = Qk k. ®x L et du critére (iv) ci-dessus. Dans le cas contraire, L = K (a),
ot b= a? € K — K?. On distingue naturellement deux cas. Premier cas : dg i (b) = 0,
c’est-a-dire b € k(KP). Il en résulte que pour toute sous-extension M de L/k, on a
légalité M(LP) = M(KP,b) = M(KP). Ainsi,

() Kao(LP) = (| Ko(KP) = k(K?) = k(LP).

Second cas : dg i (b) # 0. On peut alors compléter {b} en une p-base de K sur k,
que I'on note (b, (bj)jcs). La famille (a, (bj);cs) est alors une p-base de L sur k et on
vérifie immédiatement le critére (iii) ci-dessus : si (b, b1,...,by,) est p-libre sur K, il
en est de méme de (a,by,...,by). O

1.2.4. Proposition ((Matsumura, 1980b], § 30, lemme 6). — Soient K un corps de carac-
téristigue p > 0 et (K,) une famille filtrante décroissante de sous-corps cofinis —
c’est-a-dire tels que les degrés [K : K, soient finis — telle que (), Ko = K?. Alors,
pour toute extension finie L/ K, il existe un indice 8 tel que pour tout sous-corps cofini
K’ C K on ait :

rangLQIL/K, = rangKQ}{/K,.

Démonstration. — Montrons tout d’abord que 'on peut supposer L/K sans sous-
extension non triviale. Supposons qu’il existe une sous-K-extension K C M C L, sans
quoi il n’y a rien & démontrer. Par récurrence sur [L : K], on peut supposer le lemme
établi pour Pextension M/K. Les sous-corps M, = K,(MP) sont cofinis dans M
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54 EXPOSE IV. LE THEOREME DE COHEN-GABBER

et, pour @, 3 et v comme dans I’énoncé, on a M, C M, N Mg. En vertu du lemme
précédent, appliqué dans le cas particulier ot k = KP, on a I'égalité (), M, = MP.
D’autre part, les extensions M, /K, sont finies et, pour tout sous-corps K’ de K, on
a les égalités Q}//xr = Dy /e (arry €6 Q% k0 = QLK (av)- Ceci nous ramene au cas
particulier ot M = K, puis au cas ou L/K est sans sous-extension non triviale.

Si celle-ci est (algébrique) séparable, le théoréme est trivial : on a QIL K &
Q}(/K, ®k L pour tout K’ C K. Sinon, L = K(a), ou a? = b € K — KP, et, pour
chaque K’ C K, le module des différentielles Q}; K st naturellement isomorphe &

(Q}{/K’/KdK/K’(b))‘@KL 7] LdL/KI(a).

De plus, di/k»(b) et dr/r»(a) sont non nuls car b (resp. a) n’appartient pas a K?
(resp. LP). Puisque K? = (), K, (resp. LP = ), Ko (LP)), il existe un 3 tel que
di/k(b) # 0 (resp. dp/k,(a) # 0). Il résulte de I'isomorphisme ci-dessus que pour
chaque K’ C Kz, on a l'égalité rangLQIL/K, = rangKQ}{/K,. O

1.2.5. — Rappelons enfin que si A et B sont deux anneaux linéairement topologi-
sés ([EGA 0; 7.1.1]), et A — B un morphisme continu, le B-module QL /a €st un
B-module topologique, la topologie étant déduite de celle de B ® 4 B par restriction
et passage au quotient ([EGA Ory 20.4.3]). Le B-module sous-jacent ne dépend pas
des topologies de A et B. On note ﬁ}g /4 SO séparé complété ; il est isomorphe & une
limite de Q' de morphismes entre anneaux topologiques discrets (loc. cit., §20.7.14).
Pour tout B-module topologique L tel que 'anneau Dg(L) = B @ L soit linéaire-
ment topologisé®, le morphisme canonique induit par la dérivation universelle est un
isomorphisme :

Hom.contB(Q}g/A, L) = Dér.cont4(B,L).®

Si le B-module topologique L est de plus séparé et complet, 'isomorphisme précédent
peut se réécrire Hom.cont §(Q}3 /A> L) = Dér.cont 4 (B, L). Comme on le constate dans
le cas particulier trés simple o A est un corps et B un anneau de séries formelles, le
B-module 9113 /A ? des propriétés de finitude bien plus remarquables que Q}B /A (loc.
cit., exemple 20.7.16 et prop. 20.7.15).

(1) Cette hypothése entraine que la topologie de L est définie par une famille de sous-B-modules L’
tels que L/L’ soit annulé par un idéal ouvert de B. Réciproquement, un B-module L muni d’une telle
topologie est un B-module topologique ('action B X L — L est continue) et D (L) est linéairement
topologisé (c’est-a-dire par une famille de sous-B-modules).

() Comme nous I’a signalé O. Gabber, I'isomorphisme précédent — tiré de [EGA Oy 20.4.8 (ii)] —
peut étre mis en défaut si ’on suppose seulement que L est un B-module topologique.
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2. Les théorémes de Cohen-Gabber en caractéristique > 0

2.1. Le théoréme de Cohen-Gabber non équivariant en caractéristique > 0. — Le but de
ce paragraphe est de démontrer la variante suivante du théoréme de structure des
anneaux locaux ncethériens complets [EGA 0Oy 19.8.8 (ii)], di 4 Irving S. Cohen.

2.1.1. Théoréme (théoréme de Cohen-Gabber ; [Gabber, 2005a], lemme 8.1). — Soit A
un anneau local complet neethérien réduit, d’égale caractéristique p > 0, équidimen-
sionnel de dimension d et de corps résiduel k. Il existe un sous-anneau Ag de A,
isomorphe & k[[t1,...,td4]], tel que A soit fini sur Ay, sans torsion et génériqguement
étale. De plus, le morphisme Ag — A induit un isomorphisme sur les corps résiduels.

2.1.2. Remarques. — Ce résultat apparait explicitement comme hypothése, pour A
intégre, dans [EGA Opy 21.9.5]. L’expression « génériquement étale » signifie
ici qu’il existe un ouvert dense de Spec(Ap) au-dessus duquel le morphisme
Spec(A) — Spec(Ay) est étale.

2.1.8. — La démonstration du théoréme, qui est une adaptation au cas non irréduc-
tible de [Gabber, 2005a], occupe le reste de cette section. Nous supposerons par la
suite d > 0, sans quoi 1’énoncé est évident. Dans les alinéas 2.1.4 4 2.1.11, nous allons
montrer qu’il existe un corps de représentants k de A tel que le A-module des formes
différentielles complété 5\2114 /n soit de rang générique égal & d sur chaque composante
irréductible. En (2.1.12) nous verrons comment en déduire rapidement le théoréme.

2.1.4. — Soit (b;);icr une p-base de k = A/m 4. Choisissons des relévements arbi-
traires 3; des b; dans A. Rappelons qu’il existe un unique corps de représentants kK C A
contenant les §; et se surjectant sur k (1.1.3). Changer de corps de représentants re-
vient donc & changer les ;. Fixons également un systéme de parameétres 7, ...,74 de
A; nous ne le changerons qu’a la fin de la démonstration (2.1.12).

2.1.5. — Pour toute partie finie e C E, posons k. := kP(8i, 1 ¢ e€) C k. Les trois
propriétés suivantes sont évidentes :

pour toute partie finie e C E, [k : ke] < 400,

pour toutes parties finies e, e’ C E, Keuer C Ke N Kers

ﬂ Ke = KP.

eCE
2.1.6. — Soient Spec(A) une composante irréductible de Spec(A), munie de la struc-
ture réduite, et 77, . . . , 74 les images des 7; dans A par la surjection canonique A — A.
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56 EXPOSE IV. LE THEOREME DE COHEN-GABBER

Considérons le diagramme d’anneaux :

Ke[[T_lp’ L . vT_dp]] —_— K’[[T_l’ [/ . ,7'71]] ﬁT]
Lx,e L)g L

ou les fleches horizontales sont les homomorphismes canoniques, et les fléches verti-
cales les inclusions dans les corps de fractions respectifs. Les fléches horizontales sont
injectives et correspondent &4 des morphismes finis. Pour la seconde, cela résulte du
fait que le module A est quasi-fini ([EGA 0p 7.4.1]) sur &[[7T,...,7q4]] donc de type
fini car l'idéal (77,...,74)A est un idéal de définition ([EGA O 7.4.4]). Enfin, les 7;
sont analytiquement indépendants sur & : le sous-anneau k[[71, .. .,74)] de A est bien
un anneau de séries formelles ([EGA Oy 16.3.10]).

On a observé ci-dessus que la famille des ke C k, e C F, satisfait aux hypothéses
de la proposition 1.2.4. On vérifie immédiatement qu’il en est de méme de la famille
des sous-corps L, . de L, ; on a donc I’égalité

(2.1.6.1) rangLQ}J/LN , =rangp_ QlLN/LN o
dés que I’ensemble fini e est suffisamment grand.

Posons R, = k[[71,...,7d]] et Ree = Ke[[T1%,...,74"]]. Le terme de gauche de
(2.1.6.1) est le rang générique du A-module le IR c’est-a-dire le rang de son tenso-
risé avec L. Remarquons que d’aprés [EGA Oy 21.9.4], le R s’identifie au A-mo-

dule le » de formes différentielles complété. Le terme de droite est quant & lui le
rang du Ry .-module libre Qf, . Ce dernier est égal a d+rang, Q] = d+]e| (on
| — | désigne le cardinal d’un ensemble), de sorte que la formule (2.1.6.1) se réécrit :

(2.1.6.2) rangzﬂlz/ne =d+ |e].

2.1.7. — La proposition suivante va nous permettre de modifier le corps des repré-
sentants de fagon a pouvoir supposer e vide (de fagon équivalente : k. = k).

2.1.8. Proposition. — 1l existe une partie finie e de E et des éléments (., pour i €
e, relevant les b; tels que, pour chaque composante irréductible intégre Spec(A) de
Spec(A), les conditions suivantes soient vérifiées :
(i) rangzﬁlz/ne =d+ e,
(ii) les images des dB; dans ﬁlz Jre ®x L, ou L = Frac(A), sont L-linéairement
indépendantes.

L’égalité 2.1.6.1 (et donc 2.1.6.2) étant valable, pour chaque composante irréduc-
tible, dés que e est suffisamment grand, on peut choisir un tel ensemble qui convient
pour chacune d’entre elles. La propriété (i) en découle.
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2. LES THEOREMES DE COHEN-GABBER EN CARACTERISTIQUE > 0 57

Pour démontrer la propriété (ii), nous utiliserons le lemme élémentaire suivant.

2.1.9. Lemme. — Soient A et L comme ci-dessus. Pour tout idéal non nul I de A,
Uensemble des df @4 L, pour f € I, est une famille génératrice du L-espace vectoriel
ﬁlz ®z L.

/Ke

Démonstration. — Soient fo € I non nul, et wy = dfy. Pour tout b € A, d(bfy) =
bwg + fodb. La famille des d(bfy) ® 1 contient wy ® 1; d’aprés la formule précédente,
le L-espace vectoriel qu’elle engendre contient donc les db® 1 pour chaque b € A O

Soit {p1,...,p.} I'ensemble des idéaux premiers minimaux de A. Pour chaque j €
{1,...,c}, posons A; = A/p; et X; = Spec(A;) la composante irréductible intégre de
X = Spec(A) correspondante. Notons pour tous i € e et j € {1,...,c}, B;; U'image
dans A; de 8; € A. (Rappelons que les §; font partie d’une p-base de K C A.) Nous
allons démontrer par récurrence sur j (0 < j < ¢) qu'’il existe des éléments {mi,j}
dans my4, pour ¢ € e, tels que les images des éléments §; + m; ; dans chacun des
anneaux A;,...,A; aient des différentielles linéairement indépendantes dans chacun
des espaces vectoriels 91141/R~,e ®a4, Frac Ay, ..., Q}Qj/RK‘e ®a, Frac A;. Pour j =
0, cette condition est vide. Supposons ’assertion démontrée pour un j < c—1 et
montrons la pour j + 1. Quitte & remplacer 8; par §; + m; j, on peut supposer que
m; ; = 0 pour tout i € e. L’anneau A étant réduit, les p, forment une décomposition
primaire réduite de (0), de sorte que l'idéal g; := p; N---Np; (= Ker(A — A; x
.-+ x Aj)) n’est pas contenu dans p;41. Si j > 0, notons I;;; son image dans A=
Aj+1(f A/pj41); c’est un idéal non nul. Si j = 0, on considére my. D’aprés (i),
ranngllz e = d + |e| > |e|; d’autre part, la famille d(I;+1) est génératrice dans
0L ®5 L (ou L = Frac 4).

A/Ke
2.1.10. Lemme. — Soient V un espace vectoriel de dimension au moins n, by,...,b,
des vecteurs de V et W une famille génératrice. Il existe une famille wq,...,w,

d’éléments de W U {0} tels que les b; + w; soient linéairement indépendants.
Démonstration. — Par récurrence immeédiate sur n. O

Il existe donc des éléments mg,j 41 € Ijq1, i € e, tels que les différentielles des
éléments d((8; mod pj+1) +m{;.,), @ € e, soient linéairement indépendantes dans
~) -

Q5 I ®% L.

Relevons les m; ;. en des éléments m; ;41 de g; si j > 0, ou de my si j = 0. Par

construction, ils satisfont la propriété escomptée au cran j + 1.

2.1.11. — Considérons le sous-corps

k' = kP(Bi,i € e;Bl,i €e) = ke(Bl,i €Ee) C A,
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58 EXPOSE IV. LE THEOREME DE COHEN-GABBER

ou les 3] (i € e) sont comme en 2.1.8. Il s’envoie isomorphiquement sur k = A/m4
par réduction : son image contient k? et les images des 3; (i & e), 8. (i € €), qui
constituent une p-base de k. Des égalités 2.1.6.2 et de la propriété (ii) de 2.1.8, on
tire :

rangzﬁlz I = d,

pour toute composante irréductible intégre Spec(A) de X. Par la suite, nous noterons
encore K ce nouveau corps de représentants.

2.1.12. — Le A-module ﬁh /i étant de rang générique d sur chaque composante
irréductible, on montre en procédant comme précédemment qu’il existe des éléments
f1,..., fa de A tels que les d(f; modp,) ®4, Frac A; forment une base de ﬁ,lq,-/n ®a,;
Frac A; pour chaque composante irréductible Spec(A4;) de X. Quitte & les multiplier
individuellement par une puissance p-iéme d’un élément appartenant & mg — |J i Pjs
on peut les supposer dans m 4. Rappelons que ’on a choisi un systéme de paramétres
T1,...,7q dans A, de sorte que le morphisme Spec(A) — Spec(k[[1, ..., 74]]) soit fini.
Posons, pour i € {1,...,d},

t; = T,;p(]. + fz)

Soient Ag le sous-anneau k[[t1,...,tq]] de A, Xo = Spec(Ap). Le morphisme X — X
est fini : cela résulte du fait que les éléments 1 + f; sont des unités de A. Vérifions
qu’il est génériquement étale. L’anneau A étant ncethérien complet, le A-module de
type fini Q} /4, St également complet et coincide donc avec le module des formes
différentielles complété 5\2‘14 /Ao Les anneaux Ag et A étant métrisables, et tout sous-

A-module de ﬁh /i étant fermé, la suite
o n®a0A = Ly — Qyya, = Qasa, = 0

est ezacte ([EGA Opy 20.7.17]). 1l résulte de I’hypothése sur les éléments f; et de la
formule

d(t:) = T4

qu’au-dessus de chaque point maximal de X = Spec(A), la premiére fléche est surjec-
tive. On en déduit que le A-module Q7 /A, €st génériquement nul. O

2.2. Le théoréme de Cohen-Gabber équivariant en caractéristique > 0

2.2.1. — Nous allons démontrer ici une généralisation du théoréme 2.1.1 dans le cas
d’un anneau non nécessairement équidimensionnel, muni d’une action d’un groupe
fini.

2.2.2. Théoréme. — Soient A un anneau local nethérien complet réduit d’égale carac-
téristique, dimension d, corps résiduel k et G un groupe fini agissant sur A avec |G|
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2. LES THEOREMES DE COHEN-GABBER EN CARACTERISTIQUE > 0 59

inversible dans k. Alors, il existe un morphisme fini génériguement étale, G-équiva-
riant, K[[t1,...,tq]] — A, ot K — A reléve Uidentité de k et G agit trivialement sur
les t;.

Commengons par une proposition.

2.2.3. Proposition. — Soit A un anneau muni d’une action d’un groupe fini G d’ordre
inversible sur A et soit B = Fixg A le sous-anneau des invariants.

(i) L’anneau B est
(a) neethérien si A Uest;
(b) réduit si A lest;
(c) local d’idéal mazimal m N B si A est local d’idéal mazimal m, de corps
résiduel isomorphe au sous-corps Fixg A/m de k = A/m.
(ii) Le morphisme Spec(A) — Spec(B) = Spec(A4)/G est
(a) fini si A est neethérien;
(b) génériquement étale si A est de plus réduit.

Démonstration. — (1) Notons Tr le morphisme B-linéaire Tr : A — B, =z ~
ﬁ > 9eG g(z), parfois appelé « opérateur de Reynolds ». Pour tout idéal I de B, on
a IANB = I. En effet, I'inclusion I C IAN B est triviale et 'inclusion opposée résulte
du fait que si x € TAN B, sa « trace » z = Tr(z) appartient, par I-linéarité, 4 IB = I.
On en déduit immédiatement ’énoncé (a). L’énoncé (b) est trivial. Si A est local, on
a A—m = A*. Il résulte d’une part que G stabilise globalement m et d’autre part que
Fixg A — Fixgm = (Fixg A)*. Ainsi, B est maximal d’idéal n = Fixg m. Enfin, le
morphisme canonique B/n — Fixg & déduit de l'inclusion canonique B/n — & est un
isomorphisme. En effet, si a € A est un relévement arbitraire de A € Fixg &, I’élément
b = Tr(a) en est un relévement G-équivariant. Ceci achéve la démonstration du (c).

(ii.a) Nous allons montrer que le morphisme entier Spec(A) — Spec(B) est fini par
réduction au cas bien connu ou A est un corps.

— Réduction au cas réduit. Soient N le nilradical de A et M = N N B celui de B.
Pour chaque entier i € N, le A/N-module N¢/N‘+! est de type fini, car A est supposé
ncethérien, et nul pour ¢ > 0. Le module gry(A4) = @,,5, N*/N**! est donc de type
fini sur gr%(4) = A/N. Si ce dernier est de type fini sur B/M = grl,(B), il en est
de méme de gry (A) sur gry,(B) et finalement ([Bourbaki, AC, III, §2, n° 9, cor. 1])
de A sur B, par complétude de ’anneau ncethérien B pour la topologie M-adique.

— Réduction au cas d’un produit de corps. Supposons A réduit et considérons
Pensemble fini {p;};c; des idéaux premiers minimaux de A. Pour chaque %, q; =
pi N B est un idéal premier minimal de B. Cela résulte du théoréme de Cohen-
Seidenberg ([Bourbaki, AC, V, §2, n° 1, th. 1 et cor. 2]) et de la transitivité de ’action
de G sur les fibres de Spec(A) — Spec(B) (op. cit., n° 2, th. 2). Soit K = Frac A
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(resp. L = Frac B) I'anneau total des fractions de A (resp. B); c’est un produit
de corps dans lequel A (resp. B) s’injecte, isomorphe au semi-localisé de A en les
{pi}ier (resp. {gi}ier). Soit S = A —J,p;; on a donc K = S~1A. D’aprés (op. cit.,
§1, n° 1, prop. 23), on a Fixg(S™1A) = (Fixg S)™!B, de sorte que Fixg K = L et
A®p L = K. Supposons K fini sur L — comme il sera démontré au paragraphe
suivant —, de sorte qu’il existe d’aprés I'isomorphisme précédent un nombre fini n
d’éléments ay, ..., a, de A qui engendrent K sur L. Pour conclure, il suffit de vérifier
que l'opérateur Tr : A — B définit, par composition avec le produit, un accouplement
A ®p A — B qui est non-dégénéré en passant aux anneaux de fractions, c’est-a-dire
que si un élément ¢ € K vérifie Tr(K - ) = {0}, alors z = 0. En effet, s’il en est
ainsi, Papplication A — B™, a — (Tr(a;a)) est un plongement B-linéaire et I'on
peut conclure par noethérianité de B. Le fait que l’accouplement K ®; K — L soit
non-dégénéré résulte du fait que si e est un idempotent correspondant a un facteur
Frac A/p de K, I’élément Tr(e) est égal & %’ f, ot H est le stabilisateur de e, et f
est I'idempotent de L correspondant au facteur Frac B/q, avec q =p N A.

— Réduction au cas d’un corps. Soit donc A = [], K; un produit fini de corps
et posons X = Spec(A) = [[,n. Si X = X; II X5, ou X; et X, sont G-stables,
X/G = (X1/G) 11 (X2/G) de sorte que ’on se raméne immédiatement au cas ou X/G
est connexe, c’est-a-dire oli 'action de G est transitive. Pour tout i, notons G; le
groupe de décomposition correspondant. D’aprés le cas classique (cas d’un corps),
1:; — 1;/G,; est fini étale. Il en résulte que le morphisme X — []7;/G; est fini. Enfin,
puisque pour tout i, 7;/G; — X/G (loc. cit., §2, n° 2, prop. 4), le résultat (ii.a) en
découle.

L’énoncé (ii.b) est désormais évident. a

2.2.4. — Soient A et G comme dans I’énoncé du théoréme 2.2.2. Il résulte de la
proposition précédente que l'on a ’égalité dim(B) = dim(A) < o0, ou 'on note
B = Fixg A. Nous noterons d leur dimension commune. Soit B/I le quotient maximal
d-équidimensionnel de B. D’aprés le théoréme de Cohen-Gabber 2.1.1, il existe un
corps de représentants A — B/I et un systéme de paramétres ti,...,tq de B/I tel
que A[[t1,...,tq]] — B/I soit fini, génériquement étale. On peut relever l'inclusion
A — B/I en une inclusion A\ — B : cela résulte par exemple, en caractéristique
résiduelle positive (seul cas non trivial), de la correspondance entre sous-corps de
représentants et relévements d’une p-base donnée du corps résiduel. Enfin, on peut
relever le systéme de paramétres de B/I en un systéme de paramétres de B : cela
résulte, par dévissage, du lemme suivant.

2.2.5. Lemme. — Soient A — B une surjection d’anneauz locaux neethériens et b €
mp un élément sécant pour B, c’est-a-dire tel que dim(B/b) = dim(B) — 1. Il existe
un reléevement de b dans A sécant pour A.
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Pour des généralités sur les suites sécantes, voir par exemple op. cit., chap. VIII,
§3, n° 2.

Démonstration. — On se raméne immédiatement au cas ou B = A/(f), f € A.
Soit @ € A un relévement arbitraire de b; par hypothése, on a dim(A/(f,a)) =
dim(B) — 1. Si dim(B) = dim(A) — 1, on a nécessairement dim(A/a) = dim(4) -1
car la dimension chute d’au plus un par équation. Dans le cas contraire, f appartient
a la réunion |J._, p;, ol les p; sont les idéaux premiers de A de cohauteur dim(A).
Supposons que f € pi,...,P,, et seulement ces idéaux-ci. La conclusion ne peut
étre mise en défaut que si a + (f) C U], ps, C’est-a-dire si tous les relévements de
b sont non sécants. Pour chaque ¢ < r, on a a € p; car f appartenant a p;, on
aurait dim(A/(f,a)) = dim(A). Il en résulte notamment que r # n. Il suffit donc
de montrer que I'hypotheése a + (f) € U—,,, p; est absurde. On aurait en effet
a+fm=a+f "' e, 4 pi pour tout m et finalement f™(1 — ™'y e p;
pour deux entiers m > m' et un indice r + 1 < ¢ < n. On en tire immédiatement
f € pi, ce qui est contraire a ’hypothése. O

2.2.6. — L’extension x/\ étant étale, car A = Fixg k, le morphisme kK — A/m se
reléve uniquement en un A\-homomorphisme k¥ — A ; ce morphisme est G-équivariant.
Le morphisme A/B étant fini, génériquement étale, ceci achéve la démonstration du
théoréme 2.2.2.

3. Autour du théoréme de Epp

3.1. Enoncé (rappel)

8.1.1. — Si X est un schéma réduit n’ayant qu’un nombre fini de composantes irré-
ductibles, nous noterons X™°" son normalisé ([EGA 11 6.3.6-8]).

3.1.2. Théoréme (Helmut Epp, [Epp, 1973], théoréme 1.9). — Soit T — S un mor-
phisme local dominant de traits complets, de caractéristique résiduelle p > 0. Notons
kg et kr leurs corps résiduels respectifs. Supposons kg parfait et le sous-corps parfait
mazimal de kr algébrique sur kg. Il eriste une extension finie de traits S’ — S telle
que le produit fibré réduit normalisé

T/ = (T Xg Sl)rédnor
ait une fibre spéciale réduite au-dessus de S’.

3.1.3. Remarque. — En caractéristique mixte, le produit fibré T x g S’ est réduit. En
effet, le morphisme 77 — S’ (obtenu par changement de base d’un plat) est plat, et S’
est intégre si bien que 'anneau des fonctions de 7" s’injecte dans ’anneau des fonctions
de sa fibre générique. Il suffit donc de prouver que cette derniére est réduite. Or, en
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caractéristique nulle, toute extension de corps est séparable. On vérifie également sans
difficulté que la conclusion du théoréme est encore valable si I’on suppose seulement
S complet, mais pas nécessairement T (cf. loc. cit., §2).

3.2. Sorites

3.2.1. — Nous dirons qu’une extension de corps K /k d’exposant caractéristique p > 1
a la propriété de Epp si tout élément du sous-corps parfait maximal K?~ := Npso K "
de K est algébrique séparable sur k. Pour k parfait, c’est ’hypothése faite sur K7 /Ks
dans 3.1.2. Dans ce court paragraphe, on rappelle quelques résultats élémentaires de
stabilité pour cette notion. Commengons par un lemme.

3.2.2. Lemme. — Pour tout corps K d’exposant caractéristique p > 1, on a, dans une
sép
cloture séparable K de K,

oo | sép

(K™Y =

sép )poo )
Démonstration. — L’inclusion (K”m)sép C (K*")P™ est évidente : KP™ est parfait
donc toute extension algébrique, en particulier sa cléture séparable (K ”oo)Sép, Pest
également. Comme cette derniére est contenue dans K Sép, elle est également contenue
dans son plus grand sous-corps parfait (K **® )L

Réciproquement, considérons z € (K “ )*” | et notons, pour chaque entier n > 0,
T, sa racine p™-iéme dans K P ot fr son polynéme minimal (unitaire). Compte tenu
d’une part de I’expression de f, en fonction des polynémes symétriques en les conju-
gués galoisiens de z,, et d’autre part de l'injectivité et de 'additivité de ’élévation
a la puissance p"-iéme, on a l'égalité fo = £, ot fP" est le polynome obtenu a
partir de f,, en élevant les coefficients 4 la puissance p™-iéme. Il en résulte que les
coefficients du polynéme minimal fy de z appartiennent a K7™ . O

3.2.3. Proposition (Voir [Epp, 1973], §0.4). — Soit k un corps d’exposant caractéris-
tique p.

(i) Soient L/K et K/k ayant la propriété de Epp. Alors, L/k a la propriété de Epp.
(ii) Toute extension finie de k a la propriété de Epp.
(iif) Si p > 1, pour tout entier naturel d, Uextension (Frac k[[z1,...,z4]])/k o la
propriété de Epp.
(iv) Si p > 1, pour toute inclusion k C A, ot A est un anneau local complet noe-
thérien intégre, induisant un isomorphisme sur les corps résiduels, ’extension
(Frac A)/k a la propriété de Epp.

Démonstration. — Supposons immédiatement p > 1 sans quoi (i) et (ii) sont triviaux.
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(i) Par hypothése on a dans une cloture séparable de L linclusion LP~ C K .
Comme le corps LP” est parfait, on en déduit que LP* C (K P P = (KP” )sép ck”,
ou ’égalité résulte du lemme précédent.

(ii) Toute extension étale a tautologiquement la propriété de Epp. D’apreés (i), il
reste & considérer le cas d’une extension radicielle K /k. Si elle est de hauteur < r, on
a KP" C k et en particulier K*~ C k C £

(iil) Soit A = k[[z1,...,z4]] et K son corps des fractions. Montrons que K?~ =
kP”. Comme K est contenu dans k((z1,...,z4_1))((x4)), on se raméne par récurrence
au cas ott d = 1. Tout élément non nul de k((t))?” a une valuation infiniment p-di-
visible donc nulle, de sorte que k((t))?~ — {0} est contenu dans k[[t]]* et finalement
dans kP~ par un calcul immédiat.

(iv) Cela résulte des observations précédentes et du théoréme de structure de Co-
hen. O

4. Le théoréme de Cohen-Gabber en caractéristique mixte

4.1. Anneaux de Cohen et lissité formelle (rappels)

4.1.1. — Pour la commodité du lecteur, nous énongons quelques résultats, principa-
lement dus & Cohen. Pour les démonstrations, nous renvoyons a [Bourbaki, AC, IX,
§2] et [EGA Oy §19].

4.1.2. Définition (EGA 0Oyy 19.3.1]). — Soit A un anneau topologique. Une A-al-
gébre topologique B est dite formellement lisse si pour toute A-algébre topologique
discréte C, et tout idéal nilpotent I de C, tout A-morphisme continu u : B — C/I se

¢
factorise en B > C' —» C/I, ol v est un A-morphisme continu et ¢ ’homomorphisme

canonique.

On dit aussi que A — B est un morphisme formellement lisse. La proposition sui-
vante énonce une propriété de relévement un peu plus générale que celle de la défini-
tion.

4.1.3. Proposition (loc. cit., 19.6.1). — Soient A un anneau topologique, et B un A-al-
gébre formellement lisse. Soient C une A-algébre topologique, I un idéal de C vérifiant
les conditions suivantes :

(i) C est métrisable et complet ;
(ii) I est fermé et la suite (I™),en tend vers zéro.

(i) i, et ci-dessous, on suit la convention [EGA Orv 19.0.3] : les anneaux sont supposés linéairement
topologisés.
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Alors, tout A-morphisme continu u : B — C/I se factorise en B > C — C/I, ou v
est un A-morphisme continu.

Les deux théorémes suivants donnent deux critéres importants de lissité formelle.

4.1.4. Théoréme (loc. cit., 19.6.1). — Une extension de corps munis de la topologie dis-
créte est formellement lisse si et seulement si [’extension est séparable.

4.1.5. Théoréme (loc. cit., 19.7.1). — Soient A, B deur anneauz locauxr ncethériens,
m, n leurs idéauz mazimauz respectifs et k = A/m le corps résiduel de A. Munissons
A et B respectivement des topologies m-adique et n-adique. Soit ¢ : A — B un
morphisme local, et posons By = B® 4 k. Les propriétés suivantes sont équivalentes :

(i) B est une A-algébre formellement lisse ;
(ii) B est un A-module plat, et By munie de la topologie quotient est une k-algébre
formellement lisse.

Le théoréme suivant, joint au précédent, est & la base de la démonstration de
Iexistence des anneaux de Cohen définis ci-apreés.

Dans les énoncés qui suivent, les anneaux locaux sont munis de la topologie
de l’idéal mazimal.

4.1.6. Théoréme (loc. cit., 19.7.2). — Soient A un anneau local neethérien, I un idéal
strict, Agp = A/I, By un anneau local nethérien complet, Ay — By un morphisme local
formellement lisse. Il existe alors un anneau local neethérien complet B, un morphisme
local A — B faisant de B un A-module plat, et un Ag-isomorphisme u: B ®4 Ay =
By.

4.1.7. Définition (loc. cit., 19.8.4 et 5). — On appelle anneau de Cohen un anneau qui
est soit un corps de caractéristique nulle, soit un anneau de valuation discréte complet,
de corps résiduel de caractéristique p > 0 et d’idéal maximal engendré par p.

4.1.8. Théoréme (Cohen, loc. cit., 19.8.6 et 21.5.3). — (i) Soient W un anneau de
Cohen de corps résiduel K, C un anneau local neethérien complet, et I un
idéal strict de C. Alors, tout morphisme local w : W — C/I se factorise en
W 5 C — C/I, ot v est local. De plus, la factorisation est unique si et
seulement si Q) =0 ou I =0.

(ii) Soit K un corps. Il existe un anneau de Cohen W de corps résiduel isomorphe
a K. Si W' est un second anneau de Cohen, de corps résiduel K', tout iso-
morphisme u : K = K' provient par passage au quotient d’un isomorphisme
v WS W
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4.1.9. — Rappelons que I’hypothése 2}, = 0 est équivalente au fait que K est parfait
s’il est de caractéristique > 0 ou bien est une extension algébrique de Q s’il est de
caractéristique nulle.

Signalons que si K est parfait de caractéristique p > 0, le morphisme v de (ii)
est unique. Dans ce cas, W est d’ailleurs isomorphe & ’anneau des vecteurs de Witt
sur K.

4.2. Le théoréme de Cohen-Gabber en caractéristique mixte

4.2.1. — Soit A un anneau local noethérien complet de caractéristique résiduelle
p > 0. Le schéma X = Spec(A) est de maniére unique un Spec(Z,)-schéma. Notons
X, le sous-schéma fermé de X, fibre au-dessus du point fermé de Spec(Z,). Nous
dirons qu’un ouvert U C X est p-dense si U N X, est dense dans X,.

4.2.2. Théoréme. — Soit X = Spec(A) un schéma local nethérien complet normal de
corps résiduel k, de dimension d > 2 et de point générigue de caractéristique nulle. Il
existe un morphisme fini surjectif X' — X, ot X' est normal intégre de corps résiduel
k', et un morphisme fini surjectif X' — Spec(V[[t1,...,ta—1]]), 0@ V est un anneau
de valuation discréte de corps résiduel k', étale au-dessus d’un ouvert p-dense du but.

La suite de ce paragraphe est consacrée a la démonstration du théoréme précédent.

4.2.8. — Soit X comme dans I’énoncé. Considérons le sous-corps parfait maximal
ko = kP~ du corps résiduel k de A = I'(X, Ox) et notons Wy = W (ko) ’anneau
des vecteurs de Witt correspondant. Il résulte du théoréme de Cohen qu’il existe un
unique morphisme X — Sy = Spec(Wp) qui étende le morphisme Spec(k) — Spec(ko)
entre les points fermés (4.1.8, (i)).

Pour tout point maximal p de la fibre spéciale X, de ce morphisme, ’anneau
de valuation discréte A, a pour corps résiduel Frac A/p, ot anneau A/p est local
neethérien complet intégre de corps résiduel k. D’aprés 3.2.3 (i) & (iv), ’extension
Frac(A/p)/ko a la propriété de Epp. De tels idéaux p étant en nombre fini et la
conclusion du théoréme de Epp (3.1.2), (3.1.3) étant stable par changement de base
fini car c’est un résultat de lissité formelle, il existe donc un changement de base
fini S{ = Spec(W{) — Sy tel que la fibre spéciale du produit fibré normalisé X| :=
(X xg,85)"°" = Spec(Ayp) soit réduite en ses points maximaux. (On utilise le fait que
les points maximaux de la fibre spéciale de X — S se trouvent au-dessus des points
maximaux de la fibre spéciale de X — Sy ; cf. p. ex. [EGA Oy 16.1.6].)

D’aprés le lemme suivant, la fibre spéciale du morphisme X} — S est alors réduite.

4.2.4. Lemme. — Soit X un schéma neethérien normal. Tout diviseur de Cartier ef-
fectif génériqguement réduit est réduit.
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Démonstration. — On peut supposer X affine et le diviseur de Cartier effectif défini
par une fonction f € A = I'(X, Ox). Soient a € A et n > 1 tels que a™ € (f); on
souhaite montrer que a € (f). L’anneau A/(f) étant génériquement réduit, 1’élément
a/f de Frac A appartient & A, pour tout idéal premier p de hauteur 1 contenant f.
Il en est évidemment de méme pour f ¢ p. L’anneau A étant normal, ﬂp A, = Aou
p parcourt les idéaux de hauteur 1 (voir [Bourbaki, AC, VII, §1, n° 6, th. 4]) de sorte
que a/f € A. O

4.2.5. — Notons kg le corps résiduel de Wy, w’ une uniformisante de W, et consi-
dérons une composante connexe X’ = Spec(A’) de X{; c’est un schéma fini surjectif
au-dessus de X. Soit &’ son corps résiduel. L’inclusion k{ — k' déduite du morphisme
X' — S| est formellement lisse, car k{, est parfait, donc se reléve d’aprés 4.1.5 et
4.1.6 en un morphisme formellement lisse W) — V ot V est un anneau local complet
neethérien. Cet anneau est un anneau de valuation discréte. L’anneau A’'/w’ étant
réduit, équidimensionnel de dimension d — 1, de corps résiduel k’, il existe d’aprés
le théoréme de Cohen-Gabber (2.1.1), un relévement kj-linéaire k' — A’/w’ et des
éléments x1,...,z4-1 dans l'idéal maximal de A’/w’ tels que le morphisme induit
K'[[t1,...,ta-1]] = A’/w’, envoyant V'indéterminée t; sur z;, soit fini, génériqguement
étale en haut et en bas.

Par lissité formelle de W) — V, le morphisme compos¢ V — k' — A'/w’ se re-
léve en un Wj-morphisme V' — A’. En relevant les z; dans A’, nous obtenons un
morphisme V{[t1,...,t4-1]] — A’, fini injectif (cf. p. ex. [EGA Orv 19.8.8 (démons-
tration)]), étale au-dessus du point générique de la fibre spéciale. O

4.3. Le théoréme de Cohen-Gabber premier a £ en caractéristique mixte

4.3.1. Théoréme. — Soit X = Spec(A) un schéma local nethérien complet normal de
dimension d > 2, de corps résiduel k de caractéristigue p > 0 et de point générique
de caractéristique nulle. Soit £ un nombre premier différent de p. Il existe alors :

(i) un schéma local nethérien intégre normal Y muni d’une action d’un £-groupe
fini H et un morphisme fini surjectif H-équivariant Y — X tel que le quo-
tient Y/H soit de degré (g9énérique) premier & £ sur X ;

(ii) un anneau de valuation discréte complet V' de méme corps résiduel k' que Y,
de caractéristique mizte, muni d’une action de H compatible avec son action
sur k' ;

(iii) un morphisme local Y — Y’ = Spec(V|[t1,...,t4-1]]) qui soit fini, étale au-
dessus d’un ouvert p-dense de Y', et H-équivariant avec action triviale de H
sur les t;.
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Ces morphismes sont représentés dans le diagramme ci-dessous, ou toutes les fléches
sont des morphismes finis surjectifs.

p-génériquement étale

Spec(V[[tl, ‘e atd——l]]) =Y Y Y/H
t A%remia al
X
4.3.2. Remarque. — Observons que les conditions (i)—(iii) sur les morphismes Y — X

et Y — Y’ n’entrainent pas que le schéma Y/H soit étale au-dessus d’un ouvert
p-dense de Spec(Fixg (V)[[t1,-..,ta—1]]) = Y'/H. Voici un exemple, dii a Takeshi
Saitd. Soient k un corps algébriquement clos de caractéristique p > 0, W ’anneau des
vecteurs de Witt sur k, £ un nombre premier différent de p, A = W{[z,]]/(z’y —
p). Soient W/ = W{rn]/(n® — p) et B le normalisé de A ®w W’, W'-isomorphe
a W'[[z,z]]/(zz — 7). Le groupe H = pu,(k) agit sur B, via son action sur W' :
¢z =z et (-z=(z Lemorphisme Y = Spec(B) — X = Spec(A) défini par z > z et
y — 2* satisfait les propriétés du théoréme car Y/H = X et Y — Y’ = Spec(W'[[t]]),
t > x+ 2%, est p-génériquement étale. Cependant, Y/H a une fibre spéciale isomorphe
au schéma non réduit Spec (k[[z,y]]/(z*-y)). Elle n’est donc pas étale au-dessus d’un
ouvert dense de la fibre spéciale de Y.

La suite de ce paragraphe est consacrée a la démonstration du théoréme précédent.
Notons que si la fibre spéciale X, de X sur Spec(Z,) est réduite, ce théoréme — comme
le précédent — résulte simplement du théoréme 2.2.2, dans le cas particulier ou le
groupe G est trivial : on peut prendre Y = X et H trivial.

4.3.8. — Considérons a nouveau le sous-corps parfait maximal kg du corps résiduel
k de A et Wy = W (ko) — A I'unique morphisme relevant I'inclusion kg — k. Soit W}
la cléture intégrale de Wy dans A.

4.3.4. Lemme. — L’extension W} /Wy est finie, totalement ramifiée.

Démonstration. — Soit W'/W, une extension finie de traits, ot W' est contenu
dans A. Le corps résiduel de W' est une extension finie de kg ; c’est donc un corps
parfait, contenu dans k et contenant kg. Il est donc égal & kg : ’extension est totale-
ment ramifiée. Le degré de ’extension W'/W,, est par conséquent égal & son indice de
ramification, qui est majoré par 'entier N tel que p appartienne & m% —mﬁ +osiw”
est tel que le degré de 'extension Frac(W")/Frac(W;) soit maximal, on a nécessai-
rement W’ C W, comme on le voit immédiatement en considérant la sous-extension
composée, dans Frac(A), des corps des fractions. Ainsi, W¥ = W est fini sur Wy. 0O
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4.8.5. — D’apres le théoréme de Epp (3.1.2), il existe une extension finie d’anneaux
de valuation discréete W — W, que 'on peut supposer génériquement galoisienne
de groupe un groupe fini G, telle que la fibre spéciale sur W{ de la normalisation A’
de A ®@wy Wy soit réduite. Observons que 'anneau W¢' étant intégralement clos dans
A, l'anneau A’ est local. Notons k§ (resp. k{) le corps résiduel de WY (resp. W{) et &/
le corps résiduel de A’. Choisissons des anneaux de Cohen I(k') et I(Fixg k') relatifs
aux corps k' et Fixg k’. Il existe un morphisme I(Fixg k') — I(Fixg k') relevant lin-
clusion. Ce morphisme étant fini étale entre anneaux locaux complets donc henséliens,
Paction du quotient Gal(k’/Fixg k') de G sur k' se reléve en une action I(Fixg k')-li-
néaire sur I(k’) (cf. p. ex. [Serre, 1968, III, §5, th. 3]). Le corps kj étant parfait, il
existe d’aprés le théoréme 4.1.8 un morphisme G-équivariant W (k{) — I(k'). Soient
enfin V = Wj Qw (k1) I(k'), @ une uniformisante de W), A’ = A'/wA’ et H un
£-Sylow de G. D’aprés le théoréme 2.2.2, il existe un morphisme fini, génériquement
étale, H-équivariant, ¢ : k'[[t1,...,ta—1]] — A’, ol les t; s’envoient dans Fixy A’.
Le morphisme Fixy A’ — Fixy A’ étant surjectif — comme cela se voit en utilisant
la trace — on peut relever les images des t; en des z} dans Fixyg A’. De plus, par
lissité formelle de V/W}, (pour les topologie p-adiques), on peut relever k¥’ — A’ en
un W{-morphisme ¢ : V — A’ : cela résulte par exemple de [EGA Ory 19.3.10]. En
procédant cran par cran, et en considérant des isobarycentres dans les espaces af-
fines définis par le lemme bien connu suivant, on constate qu’il existe méme un tel
relévement qui est H-invariant.

4.3.6. Lemme. — Soient A — B un morphisme d’anneauz et C — C' une surjection
de A-algébres, de noyau & de carré nul. Alors, ’ensemble des relévements A-linéaires
d’un morphisme B — C' a C est soit vide soit un torseur sous Déra(B, V). Le
premier cas ne se produit pas si A — B est formellement lisse.

4.8.7. — Le X-schéma Y = Spec(A’) est bien fini p-génériquement étale sur Y’ =
Spec(V{[t1,- - -,td4—1]]) si'on envoie V dans A’ par ¢ comme ci-dessus et les variables
t; sur les z}. Par construction Y est, génériquement sur X, galoisien de groupe G;
son quotient Y/ H est donc génériquement de degré premier a £ sur X. Ceci achéve la
démonstration du théoréme.
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