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E X P O S É X X 

RIGIDITÉ 

Yves Laszlo et Alban Moreau 

1. Introduction 

Le but de cet exposé est de démontrer les deux résultats techniques 2.1.1 (compa­

raison des torseurs sur l'ouvert complémentaire Spec A — V(I) défini par un couple 

hensélien non nécessairement noethérien et l'ouvert correspondant de Spec A où A dé­

signe le complété 7-adique de A) et 5.3.1 (rigidité de la ramification). Ils permettront 

dans l'exposé suivant de montrer l'énoncé de finitude suivant (XXI-1.4) : 

Théorème. — Soit A un anneau strictement local de dimension 2. On suppose que A 

est normal, excellent, et on note X' = Spec(yl) — { m ^ } son spectre épointé. Alors, 

pour tout groupe fini G, l'ensemble H ^ X ^ G ) est fini. 

Ce résultat est la clef pour démontrer le résultat de finitude général suivant 

(XXI-1.2) : 

Théorème. — Soit f : Y —• X un morphisme de type fini entre schémas quasi-

excellents. Soit L un ensemble de nombres premiers inversibles sur X. Pour tout 

faisceau constructible de groupes F sur Yét de h-torsion, le faisceau R 1 / ^ (F ) sur Xét 

est constructible. 

Par des techniques d'ultrafiltres, chères aux théoriciens des modèles, on est ramené 

à étudier des revêtements étales de spectres épointés d'anneaux non noethériens, ce 

qui explique qu'on soit contraint de démontrer les énoncés techniques hors de tout 

cadre noethérien. 

Remarque. — Soit X un schéma. On considérera des champs en groupoïdes fé7 sur Xét 

(on dira simplement champs). En général, la catégorie fibrée ^ n'est pas scindée de 
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492 EXPOSÉ XX. RIGIDITÉ 

sorte que si x, y sont deux objets de ^ ( 5 ) où S —> X est étale, il faut quelques précau­

tions pour parler du faisceau Homfa;, y) sur £ é t . Précisément, suivant [Giraud, 1971, 

1.2.6.3.1], on considère l'équivalence de catégories fibrées —• £ ^ entre ^ et la 

catégorie libre £cé? engendrée par fé7, catégorie libre qui elle est scindée. On définit 

alors 

Hom(a?,y)(S') = YLom^{sl){£x',£y') 

où £x',£y' sont les images inverses par le morphisme étale Sf —» 5 de £x,£y dans 
B i e n entendu ([Giraud, 1971, 1.2.6.3.2 (1)]), £ induit une bijection 

Hom^ (5 )(a;,2/) H°(g, Hom(x,g/)). 

Ces remarques justifient qu'on puisse si besoin supposer sans dommage que les champs 

que l'on considérera sont scindés. 

2. Lemme de rigidité 

Soit (A,I) un couple hensélien (V-l.2.1 ou [EGA IV4 18.5.5]) non nécessairement 

noethérien, avec I de type fini^\ Soit U un ouvert de X = Spec(^4) contenant 

Spec(yl) — V(I). On note A le complé té7-adique de A et U l'image inverse de 

U par le morphisme de complétion TT : X = Spec(Â) —> X. On suppose pour simpli­

fier U quasi-compact (cf. 2.1.4). 

2.1. Énoncés. — Rappelons [SGA4 IX 1.5] qu'un faisceau de groupes ^ sur X est 

ind-fini si pour tout ouvert étale u : U —• X avec U quasi-compact, le groupe &{u) 

est limite inductives filtrante de ses sous-groupes finis. On dit alors qu'un champ 

en groupoïdes ^ sur X est ind-fini si pour tout ouvert étale u : U —> X avec U 

quasi-compact et tout xu G ̂ (u), le faisceau en groupes TT\{^,XU) = Aut^(xu) est 

ind-fini. 

Le but de cette section est de démontrer le théorème de rigidité suivant. 

2.1.1. Théorème (Théorème de rigidité de Gabber). — Soit & un faisceau d'ensembles 

sur Uét- Alors on a 

i) la flèche naturelle H°([/,J^) -> H0(Û,TT*&) est bijective; 

ii) si & est de plus un faisceau en groupes ind-fini, la flèche naturelle H 1 (17, —•> 

H 1 (£7,^*^) est bijective. 

Cette hypothèse sera utilisée pour comparer les gradués 7-adiques de A et de son complété A 
([Bourbaki, AC, III, §2, n° 12]) 
(") On dira simplement complété pour séparé complété. 
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2. LEMME DE RIGIDITÉ 493 

Les deux énoncés du théorème précédent sont conséquence du théorème suivant, 

apparemment plus fort, forme champêtre du théorème de rigidité 

2.1.2. Théorème (Théorème de rigidité de Gabber, forme champêtre). — Soit un 

champ en groupoïdes ind-fini sur Uét- Alors, la flèche naturelle ^/(cé>) : r(J7,^) —> 

T(Uj 71-*̂ ) est une équivalence. 

2.1.3. Remarque. — En fait, le théorème de rigidité 2.1.1 est a priori équivalent à 

la version champêtre 2.1.2. C'est ce qui ressort par exemple de l'énoncé 6.3.2. Mais, 

formellement, on n'a pas besoin de démontrer cela à ce stade. 

2.1.4. Remarque. — Les résultats précédents sont également valables lorsque U n'est 

pas nécessairement quasi-compact. Cela résulte du fait que la catégorie des sections 

d'un champ sur U est équivalente à la 2-limite projective des sections sur les ouverts 

quasi-compacts de U contenant Spec(A) — V(I). L'hypothèse de quasi-compacité est 

utilisée dans un argument d'éclatement ci-dessous (cf. 2.4.2). 

2.2. Réduction au cas constant. — Le résultat est le suivant 

2.2.1. Proposition. — Supposons que pour tout U comme plus haut, 

i) pour tout ensemble fini F, la flèche H°(U,F) —• H°(U,F) est bijective. Alors, 

2.1.1 i) est vrai, c'est-à-dire le théorème de rigidité 2.1.2 est vrai pour les champs 

discrets. 

ii) pour tout groupe fini G, la flèche Tors(C7, G) —* Tors(C7, G) est une équivalence et 

2.1.1 i) est vrai. Alors le théorème de rigidité 2.1.2 est vrai. 

Démonstration. — D'après [SGA4 XII prop. 6.5], il suffit pour prouver 2.1.1 i) (resp. 

2.1.2) de prouver que pour tout U' —> U fini et tout ensemble fini F (resp. groupe fini 

G), la flèche 

(2.2.1.1) H°(t7', F) BP(Û}

1 F) (resp. Tors(c7', G) -> Tors(C^, G)) 

est bijective (resp. une équivalence) où UF = U XJJU'. 

2.2.2. Lemme. — // existe un schéma affine Spec(jB) et un diagramme cartésien 

U' ^ Spec(B) 

• 

U ^ Spec(A) 

(m) Les champs (ind-finis) en groupoïdes discrets s'identifient aux faisceaux d'ensembles : on dira 
parfois un champ discret. 
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494 EXPOSÉ XX. RIGIDITÉ 

où B est fini sur A. Le morphisme U' —> Spec(i?) s'identifie à l'immersion ouverte 

UB Spec(B). De plus, UB contient Spec(B) - V(IB). 

Démonstration. — Comme U' —• U est fini, il est projectif ([EGA II 6.1.11]). Comme 

U est quasi-compact, l'immersion ouverte U X est quasi-affine ([EGA il 5.1.1]), 

donc quasi-projective de sorte que le composé / : U' —• U —» X est quasi-projectif 

([EGA II 5.3.4]). Comme X = Spec(A) est affine, Ox est certainement ample (cf. la 

définition ou [EGA II 5.1.2]). Les hypothèses du théorème principal de Zariski ([EGA 

IV3 8.12.8]) sont donc vérifiées. Il existe donc X' —» X fini de sorte que / se factorise 

en U' X' —» X où U' ^ X' immersion ouverte et X' —• X fini. L'adhérence 

schématique de U' dans X' est fermée dans X' : elle s'écrit donc Spec (B) où B est 

fini sur A. On a donc un diagramme commutatif 

U' ^ UB

C ^ Spec(£) 

W >• Spec(A) 

où les flèches non horizontales sont finies. La flèche U' —• UB est donc propre. Comme 

c'est aussi une immersion ouverte d'image dense, c'est un isomorphisme. L'ouvert U 

contenant Spec(A) — V(I), on déduit que U' = UB contient Spec(B) — V(IB) = 

( S p e c ( A ) - • 

D'après le lemme, la flèche (2.2.1.1) s'identifie à 

(2.2.2.1) ÏÏ°(UB,F) - H?(ÛB,F) (resp. Tors(*7j3,G) -> Tors(£ f í ,G)) 

(où ?B e s t l'extension des scalaires du A-schéma ? à Spec(J3)). Il s'agit donc de 

montrer que (2.2.2.1) est bijectif (resp. une équivalence). 

Par définition, on a 

ÛB = Ttç\U) 

où 7Tc est la projection naturelle 

7Tc : Spec(C) —• Spec(A), avec C = A®A B. 

Dans le cas noethérien, C est le complété 75-adique B de B ce qui prouve la 

proposition dans ce cas - appliquer l'hypothèse 2.2.1 i) à & constant de valeur F sur 

UB- Dans le cas général, la flèche C —• B n'est pas en général un isomorphisme. 

2.2.3. Lemme. — Avec les notations précédentes, on a 

i) Soit (AniIn) un système projectif de couples henséliens. Le couple ( -A^ioo) = 

(lim An,\\mln) est hensélien. 

ii) Le complété I-adique A de A est I-hensélien. 

iii) Les couples (B, IB) et (C, IC) sont henséliens et ont même complété I-adique. 
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2. LEMME DE RIGIDITÉ 495 

Démonstration. — Soit P un polynôme de Axja;] et a G A^/IOQ une racine simple 

(c'est-à-dire telle que P'(à) inversible dans AOO/IQO). L'image an de a dans An/In est 

une racine simple de P. Elle se relève donc de façon unique en une racine an G An de P 

d'après le lemme de Hensel. Comme In+i s'envoie dans 7 n , par unicité des relèvements, 

l'image de a n + i dans An est égale à an de sorte que la suite a = (an) G A^ est le 

relèvement cherché de a ce qui prouve i) d'après [Crépeaux, 1967, Prop. 1]. 

Puisque A —> A/In est notoirement entier, les couples (A/In, IA/In) sont hensé­

liens de sorte que ii) découle de i). 

Par associativité du produit tensoriel, le morphisme naturel B/InB —> C/InC 

s'identifie à la tensorisation par B du morphisme naturel A/InA —> A/InA. Comme 

ce dernier est un isomorphisme ([Bourbaki, A C , III , §2, n° 12, prop. 15 et cor. 2]), 

B et C ont même complété 7-adique. iii) suit alors de ii) car un couple fini sur un 

hensélien est hensélien. • 

On a donc (UB) = (Uc). D'après le lemme précédent, sous les hypothèses de 2.2.1 

i) (resp. ii)), la flèche naturelle 

R°(UB, F) - H°((C7B), F) = H°((t/c), F) <- R°(UC, F) = R°(ÛB, F) 

(resp. 

Tors(C/ f î,G) Tors((E/B),G) = Tore((Cfc),G) <- Tors(£/ c ,G) - Tors(£ f î ,G)) 

est alors une bijection (resp. équivalence), ce qu'on voulait. • 

2.3. Réduction au cas strictement hensélien. — Résumons les notations dans le dia­

gramme cartésien suivant 

? • j 

avec U quasi-compact contenant Spec (A) — V(I). Montrons le résultat suivant. 

2.3.1. Proposition. — Supposons que pour tout U comme plus haut, 

i) pour tout ensemble fini F, la flèche ~H°(U,F) —• H°(£/, F) est bijective si A est 

de plus strictement local. Alors, 2.1.1 i) est vrai (que A soit strictement local ou 

non). 

ii) pour tout groupe fini G, la flèche Tors(C7, G) —> Tors(C/, G) est une équivalence si 

A est de plus strictement hensélien et 2.1.1 i) est vrai. Alors, 2.1.2 est vrai (que 

A soit strictement local ou non). 

Démonstration. — Commençons par un lemme. 

2.3.2. Lemme. — Supposons que pour tout U comme plus haut, 
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i) pour tout ensemble fini F, la flèche H°(C7, F) —> H°(£7, F) est bijective si A est 

de plus strictement local. Alors, la flèche de changement de base 

T f i -------> i g f = IF 

est un isomorphisme (que A soit strictement local ou non). 

ii) pour tout groupe fini G, la flèche Tors(£7, G) —» Tors(£7, G) est une équivalence 

si A est de plus strictement hensélien et 2.1.1 i) est vrai. Alors, la flèche de 

changement de base 

7 : 7r*j.Tors(^ G) - j*7r*3brs(*7, G) = j*Tbrs(£/, G), 

oti Végalité résulte de [Giraud, 1971, III.2.1.5.7], est une équivalence (que A soit 

strictement local ou non). 

Démonstration. — Les formules = Id et = Id assurent qu'on a 

3*n*3* = n*3*3* = 7T* = j * j*7T* 

de sorte que l'image inverse sur ¿7 de la flèche de changement de base 

(2.3.2.1) TT^f 

est une équivalence pour tout champ en groupoïdes céf. 

Soit x un point géométrique de X d'image le point géométrique x = n o x de X 

et montrons que la fibre de la flèche de changement de base (2.3.2.1) en x est une 

équivalence. D'après ce qui précède, on peut supposer x ^ U. En particulier, x 6 V(I). 

Soit Ahs (resp. X ( x ) ) l'hensélisé strict de A (resp. X ) en x et -A11*3 (resp. X(£)) celui 

de A (resp. X ) en x. On a un diagramme commutatif où les flèches sont les flèches de 

fonctorialité, complétion ou stricte hensélisation 

X(x) ^ X(£) >- X 

\ l 

X(x) ^ X(x) - ^ X . 

On note alors 

U(&) —^ û{x) ^ U 

\ 
U(x) ^ U(x) —^ u 

l'image inverse du diagramme par l'immersion ouverte U —> X. En particulier, U(x) 

(resp. U(x)) désigne l'image inverse de l'hensélisé strict X^ (resp. X^) de X (resp. 
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2. LEMME DE RIGIDITÉ 497 

X) en x (resp. x) par j (resp. j). Comme U est quasi-compact, il en est de même des 

ouverts U(X),U(&) de X^,X^ . 

Les morphismes j,j étant cohérents, dans le cas i), la fibre j x s'identifie à la flèche 

naturelle 

H°( t f ( l ) ,F ) ->H°(CÀ ( â ) ,F ) 

tandis que dans le cas ii) elle s'identifie à 

T o r s ( ^ ) , G ) - > T o r s ( ^ ) , G ) . 

On déduit que les flèches naturelles 

R°(U{X),F) - H ° ( t ^ ) , F ) et H°( t f ( â ) ,F ) - H ° ( ^ , F ) 

sont bijectives dans le cas i) et que les flèches 

TOTS(U{X),G) - T o r s ( ^ ) , G ) et Tors (% } , G) - Tors(£/ ( â ) ,G) 

sont des équivalences dans le cas ii). Il suffit donc de voir que la flèche naturelle 

(2.3.2.2) Û{&) - ¿7^) 

est un isomorphisme, ou encore que 

Ahs et A 1 1 8 ont même /-complété. 

Puisque l'anneau local Ahs est hensélien, il est a fortiori /-hensélien (V-1.2.1). Utilisant 

(2.2.3), on constate que le /-complété Ahs est hensélien. Comme son corps résiduel 

est celui de Ahs, il est strictement hensélien. La flèche A —» Ahs induit donc une flèche 

Âhs —• Ahs et donc, par /-complétion, une flèche 

(*) Âhs -> Ahs. 

Par ailleurs, la flèche de complétion A —• A induit par hensélisation stricte puis 

complétion une flèche 

(**) Ahs -> Âhs. 

Les flèches (*) et (**) sont inverses l'une de l'autre, d'où le lemme. • 

On a le diagramme commutatif à carré cartésien 

£ " 

3t a j 

X - - X 

X j = Spec(4/J). 
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498 EXPOSÉ XX. RIGIDITÉ 

Comme on l'a observé, les paires (A, I) et (Â, IÂ) sont henséliennes. La flèche 

H ° ( X , ^ ) —• H ^ X j j ^ X j ) e s t donc une équivalence pour tout champ ind-fini ^ sur 

Xét d'après [Gabber, 1994, théorème 1']. 

On déduit d'une part 

K°(U,F) = H°(X, j+F) = H°(X 7 , ti*F)\x,) 

et, d'autre part 

B°(Û,F) = H°(X, j . F ) 2 = 2 H°(X,w*j*F) = H ^ X / ^ T T ^ F ) , ^ ) 

ce dernier n'étant autre que H°(Xj , (j*F)\Xj) (bien entendu l'isomorphisme induit 

R°{U,F) ^R°{Û,F) 

est la restriction). 

De même, on a 

H 0([/,Tbrs([/,G)) = H°(X, j .Tbrs(^ ,G)) = H 0 (Xj , j , Jb r s ( t f ,G) | X j ) 

et, d'autre part 

R°(Û,TOTS(Û,G)) = H°(X,j .2brs(£/ ,G)) 

2 ^ 2 H°(X,7r*j.Tbrs(£/,G)) 

= H ^ T T ^ T b ^ G ) , * , ) 

ce dernier n'étant autre que H°(Xr, 7+Tors(?7, G)| y j ) , l'équivalence induisant bien 

entendu 

H°(cT,Tbrs(C/,G)) ^ H°(C/,Ibrs(C/,G)). 

Reste à invoquer 2.2.1. • 

2.4. Fin de la preuve de 2.1.2. — D'après 2.3.1, pour prouver 2.1.2, il suffit de prouver 

l'énoncé suivant 

2.4.1. Proposition. — Supposons A strictement hensélien (et I C rad(A)) et soit U 

comme plus haut. 

i) pour tout ensemble fini F, la flèche H°(C/, F) —> H°(C7, F) est bijective. 

ii) pour tout groupe fini G, la flèche Tors(C7, G) —• Tors(C7, G) est une équivalence. 

La formule 7r*Tors(U G) = Tbrs(C/,G) ([Giraud, 1971], III.2.1.5.7) permet de ré­

écrire 2.4.1 sous la forme suivante 

2.4.2. Proposition. — Supposons A strictement hensélien (et I C rad(A)) et soit U 

comme plus haut. Désignons par le champ discret F\j ou bien Tp_rs(C7, G). Alors, la 

flèche H°(C/, ̂ ) —» H°(C7,7r*^) est une équivalence. 
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2. LEMME DE RIGIDITÉ 499 

Démonstration. — On va se ramener par éclatement au cas ou l'idéal J définissant 

le complémentaire de U est principal . 

Pour tout idéal / d'un anneau A, on note 

É c l / ( i ) = P r o j ( 0 / " ) 
n>0 

l'éclatement de / dans Spec(A). Si / est de type fini, le morphisme structural e : 

Eclj(A) —» Spec(Â) est projectif, en particulier propre. 

On suppose donc A strictement hensélien de corps résiduel k et & = Fu comme 

plus haut. On a déjà observé que A était aussi strictement hensélien. Il suit en parti­

culier que l'ensemble des sections globales de tout faisceau étale sur l o u l s'identifie 

à sa fibre spéciale, ce qu'on utilisera sans plus de précaution. 

Comme U est quasi-compact, il existe un idéal J de type fini tel que U = Spec (A) — 

V(J). Comme U contient Spec A — V(I) et que I est de type fini, on peut supposer 

I C J. Soit 

Y = Éclj(A) et Y' = É c l j ( l ) . 

(On aurait dû écrire Éclj^(Â) pour Éclj(A)). Pour des raisons de cohérences, on 

notera simplement X' le schéma X = Spec(A) (resp. U' sa restriction U = 7r_1(C7) à 

U). 

2.4.3. Sous-lemme. — Soient n,m des entiers > 0. Le morphisme de complétion défi­

nit des isomorphismes 

A/ImJn - Â/Im JnÂ et A/Jn ~ Â/JnÂ 

induisant un isomorphisme 

jn/jrnjn _ J^X/rnJnÂ. 

Démonstration. — Comme / est de type fini, le morphisme de complétion induit des 

isomorphismes 

A/Im+n - Â/I^Â et A/In - Al TA 

d'après [Bourbaki, AC, III, §2, n° 12, cor. 2 de la prop. 16]. Mais comme J contient 

i~, on a 
jm+n c jmjn e t jn cJn^ 

de sorte que les changements de base 

A/jrn+n _^ A/jrnjn e t Aijn _^ A/jn 

donnent alors des isomorphismes 

A/Im Jn ~ Â/Im JnÂ et A/Jn ~ Â/JnÂ 

qui donnent 2.4.3. • 
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500 EXPOSÉ XX. RIGIDITÉ 

La flèche naturelle Y' —• Y est donc un isomorphisme au-dessus de Spec(A/7) C X 

car elle est induite par le morphisme gradué 

0 Jn/IJn -+ JnÂ/IJnÂ 

qui est un isomorphisme. On identifiera ces restrictions par la suite. En particulier, le 

morphisme ps : Y£ —• Ys entre fibres spéciales (c'est-à-dire au-dessus du point fermé 

de s G Spec(A/I) C X) est un isomorphisme grâce auquel nous les identifierons. 

Regardons le solide commutatif 

U = U'^—^ Y' ^-^Ys ^ ^ ^ ^ ^ ^ ^ 

P PU X = Xf^ >Spec(fc) 

X >Spec(/c). 

Admettons pour un temps le résultat suivant. 

2.4.4. Lemme. — Soitfê = Fu (resp. = Tors(¿7, G)). Alors, la flèche de changement 

de base 7 : p^j^ —> j+p*^ est bijective (resp. une équivalence). 

Déduisons alors l'équivalence cherchée 

H°(cT,^) ^ H?(U',V) - H?(U',p*V) 

grâce au théorème de changement de base propre d'Artin-Grothendieck ([Giraud, 1971] 

dans le cas noethérien et théorème 7.1 dans le cas général) appliqué aux faces inférieure 

et supérieure du diagramme précédent. On a en effet un diagramme essentiellement 

commutatif où toutes les flèches sont les flèches naturelles (obtenues par adjonction) 

H°(C/,#) = — H°(y , j*#) h—+ H°(y a , i*j*#) — H ° ( 7 s , i V i ^ ) 

a a 
-̂"""̂  c v y V 

H°(£/',p*<*?) — H ° ( y ; , H ° ( y s , i , * j V ^ ) -

Les flèches 6, d sont bijectives (resp. des équivalences) grâce au théorème de chan­

gement de base propre (7.1) tandis que c est une bijection (resp. une équivalence) 

grâce à (2.4.4). Il suit que a et a sont des bijections (resp. des équivalences). 
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2. LEMME DE RIGIDITÉ 501 

Preuve du lemme 2.4-4- — Soit x' un point géométrique de Y' d'image x dans Y. On 

peut supposer xf G V(JÛY')- Soit B l'hensélisé (strict) de Y en x' et B' celui de Y' 

en x. On doit étudier la flèche 

(•) . H°(Spec(£) - V(JB),V) -> H°(Spec(B ;) - V(JB')tf) 

Observons que par définition de l'éclatement, JB (resp. JB') est un idéal princi­

pal engendré par un élément non diviseur de zéro et non inversible t E B (resp. 

t' G B') (équation locale du diviseur exceptionnel). Par ailleurs, les couples (B,JB) 

et (B',JBR) sont henséliens car B,B' sont locaux henséliens (exercice). Les isomor­

phismes 

jnA/jn+mA ^ rA/Jn+rnÂ,n,m> 0 

assurent que B et B' ont même complété J-adique B = B'. 

On utilise alors les généralisations des résultats d'Elkik [Elkik, 1973] — et 

donc de Ferrand-Raynaud pour le TTO — au cas principal non noethérien de 

[Gabber & Ramero, 2003]. Précisément, le théorème 5.4.37 loc. cit. appliqué au 

i?[£ - 1]-groupoïde discret FB = Spec(l?[£ _ 1]) x F assure qu'on a 

H ^ S p e c ^ - 1 ] ) , ^ ) = ITQ(FB) = 7r0(FÊ) = H°(Spec(B[t _ 1]), F) 

et de même en remplaçant B,t par B',t'. Comme B et B' ont même complété 

J-adique, on a donc 

H°(Spec(B[t- 1 ]),F) = H°(Spec(B / [ t , - 1 ]) ,F) , 

ce qu'on voulait. Dans le cas ^ = Tors(£7, G), on déduit du cas discret que (*) 

est pleinement fidèle. Soit alors P un revêtement galoisien de groupe G sur U = 

Spec(ê) - V(JB). D'après le théorème 5.4.53 de [Gabber & Ramero, 2003], il pro­

vient d'un (unique) revêtement P de U. La pleine fidélité de (*) assure que le groupe 

d'automorphismes de P est G. Dire que P est galoisien de groupe G, c'est dire que la 

flèche canonique 

<j> : P x G P xu P 

est un isomorphisme. On peut voir cette flèche comme un morphisme de revêtements 

étales de U. Après image inverse sur U, elle s'identifie à la flèche analogue 

PxG-^Px0P 

qui est un isomorphisme (de revêtements étales de P donc de revêtements étales de 

17) par hypothèse. La pleine fidélité de (•) assure que (j) est.un isomorphisme de sorte 

que P est bien galoisien de groupe G. On a donc obtenu que le foncteur naturel entre 

les catégories de G-revêtements galoisiens sur U et U sont équivalentes. Il en est donc 

de même pour le foncteur les catégories de G-revêtements galoisiens sur U' et U'. On 

conclut en se souvenant de l'égalité U = U''. • 
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2.4.5. Remarque. — Le théorème 2.1.2 entraîne immédiatement que la flèche de chan­

gement de base 

7T*7.íf -> 7.ÍT*íf 

est une équivalence. En effet, on l'a déjà vu sur U (2.3.2.1). Si x 0 /7, on a déjà 

observé dans la preuve de 2.3.2 que et avaient même complété 7-adique de 

sorte que deux applications de 2.1.2 assurent que la fibre de 

n* j* C - ^j*n*C 

en x est une équivalence. 

3. Rigidité de la ramification 

3.1. La condition c 2 . — Rappelons ( [EGA i v 4 18.6.7]) que l'hensélisé AH d'un anneau 

semi-local A est le produit des hensélisés des localisés de A en ses idéaux maxi­

maux. Pour tout anneau noethérien, on note ANOT son normalisé, à savoir la clôture 

intégrale de A dans l'anneau total K(A) des fractions de Aréd- Puisque K(A) est 

le produit des K(A/p) où p décrit les points maximaux de Spec(A) , le normalisé 

de A est le produit des normalisés des A/p. Si ANOR n'est en général pas noethé­

rien ([Nagata, 1962, exemple 5 de l'appendice]), ses fibres réduites sur A sont finies 

([Nagata, 1962, V.33.10]). En particulier, si A est local noethérien, ANOR est semi-local 

de sorte que son hensélisé est bien défini. On a alors (comparer avec [Nagata, 1962, 

43.20 et exercice 43.21]) 

3.2. Lemme. — Soit A un anneau local noethérien. 

— La flèche canonique AH —* (ANOR)H induit un isomorphisme (AH)NOT (ANOT)H. 

— Cette bijection induit une bijection canonique p p* entre les points maximaux 

p de Spec(^4 h ) et les points fermés p* de S p e c ( A n o r ) de telle sorte que les anneaux 

intègres ( A h / p ) n o r et ( A £ ? r ) h sont (canoniquement) isomorphes. 

Démonstration. — D'après [EGA IV4 18.6.8], le morphisme canonique ANOR <S>A AH —• 

( A n o r ) h est un isomorphisme. Le morphisme canonique A —• AH étant ind-étale, il est 

normal. D'après [EGA IV2 6.14.4], le morphisme canonique AH —> ANOT(S>A AH identifie 

ANOR®AAH à la fermeture intégrale de AH dans AH®AK(A). Si maintenant, A —> B est 

étale, la fibre au point maximal p G Spec(A) s'identifie à Spec(K(jB)) . En passant à la 

limite, on déduit l'égalité AH®AK(A) = K(AH) de sorte que ANOR®AA
H s'identifie à la 

fermeture intégrale de AH dans AH®AK(A) = K(AH) et donc (AH)NOT ^ A N O R ® A A H . 

La composition 

(^h)nor _~ A n o r ^ A h _ ~ ^ n o r j h 
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est l'isomorphisme annoncé. Pour le second point, on observe d'une part que le spectre 

du normalisé de Ah est la somme disjointe des normalisés de ses composantes irré­

ductibles 

(3.2.1) S p e c ( ( A h ) n o r ) = ] J Spec(( ,4 h /P) n o r ) , 
p point maximal 

chaque fermé Spec ( (A h / p ) n o r ) étant intègre (puisque local et normal) de sorte que 

3.2.1 est une la décomposition en composantes irréductibles de S p e c ( ( A h ) n o r ) . D'autre 

part, par définition de l'hensélisé d'un anneau semi-local, on a 

(3.2.2) Spec(( .4 n o r ) h ) = ] J S p e c ( ( ^ ? r ) h ) . 

p* point fermé 

Or, (Ap? r ) h est local et normal (comme AJJ?r), donc intègre, prouvant que 3.2.2 est la 

décomposition en composantes irréductibles de S p e c ( ( A n o r ) h ) . Le lemme suit. • 

3.3. Proposition. — Soit Z un sous-schéma fermé d'un schéma noethérien X. Les 

conditions suivantes sont équivalentes : 

(i) Soit p : X n o r —> X le morphisme de normalisation. Alors, p~l(Z) est de codi­

mension > 2 dans XnOT. 

(ii) Pour tout z e Z, toutes les composantes irréductibles de S p e c ( ^ z) sont de 

dimension > 2. 

hbis) Pour tout z e Z, toutes les composantes irréductibles de S p e c ( ^ s

z ) sont de 

dimension > 2. 

(iii) Pour tout z e Z, toutes les composantes irréductibles de Spec(ûx,z)
 s o n ^ de 

dimension > 2. 

Démonstration. — Notons A = 6x,z pour z G Z. Notons d'abord que le morphisme 

Ah —• Ahs est inject if, entier et fidèlement plat. Ceci prouve que le morphisme h : 

Spec(A h s ) —» Spec(A) vérifie dim(h(x)) = dim(x) et induit une surjection au niveau 

des points maximaux, ce qui prouve l'équivalence de (ii) et (iibis)-

Un anneau intègre et son normalisé ainsi qu'un anneau local et son hensélisé, ont 

même dimension. Conservant les notations de 3.2, on a donc 

d imA h /p = d i m ^ ? r . 

Or, dire c o d i m p _ 1 ( Z ) > 2, c'est dire dim Ap? r > 2 lorsque décrit les points fermés 

de 

S p e c ( A n o r ) = p - 1 ( S p e c ( ^ ) ) 

lorsque z décrit Z. Ceci revient donc à dire que toutes les composantes irréductibles 

Spec(A h/p) de Spec(A h) sont de dimension > 2 prouvant l'équivalence de (i) et (ii). 

Pour montrer l'équivalence de (i) et (iii), on peut supposer que X = Spec(A) est 

local hensélien et que Z est réduit à son point fermé. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



504 EXPOSÉ XX. RIGIDITÉ 

Prouvons d'abord que (iii) implique (ii). Soit Y une composante irréductible de X. 

Le morphisme de completion c : X —• X étant fidèlement plat, Y = c~1(Y) est une 

réunion de composantes irréductibles de X de sorte qu'on a dim(F) > 2. Comme Y 

est local noethérien, on a dim(Y") = dim(y) > 2. 

Prouvons la réciproque. Quitte à se restreindre à une composante irréductible (ré­

duite), on peut supposer X intègre de dimension > 2. Soit x (resp. x) le point fermé de 

X (resp. X) (ce n'est pas une composante irréductible de X qui est de dimension > 2). 

Si une des composantes de X était de dimension < 1, elle serait de dimension 1 (car 

{x} n'est pas une composante) et donc son point générique serait un point isolé de 

X — {x} de sorte que X — {x} serait disconnexe (étant de dimension > 2). Or, d'après 

[Ferrand & Raynaud, 1970, corollaire 4.4], la flèche 

7T0(X - {x}) = ir0(c-\X - {x})) - 7T0(X - {x}) 

est bijective. Or, comme X est intègre de dimension > 2, l'ouvert X — {x} est intègre 

donc connexe. • 

3.4. Définition. — Avec les notations de 3.3, si Z vérifie les conditions équivalentes de 

3.3, on dit que Z est C2 dans X. 

3.5. Remarque. — Si X est intègre et excellent, Z est C2 si et seulement si X — Z 

contient tous les points de codimension < 1. En effet, comme le morphisme de norma­

lisation est fini et X universellement caténaire, on a dim ^ x n o i > n o r = dim <^x,p(znor) 

pour tout znoT G p~l(Z) (cf. [EGA iv 2 5.6.10]). 

3.6. Proposition. — Soit f : X' —> X un morphisme plat de schémas noethériens et 

Z un fermé de X. Alors, si Z est e 2 dans X, son image inverse Z' = f~l(Z) est 

C2 dans X'. En particulier, la condition c 2 est invariante par localisation Zariski ou 

étale. 

Démonstration. — Soit z' G Z' d'image z = f(zf) G Z. On suppose donc (3.3) que 

toutes les composantes de A = @x,z sont de dimension > 2 et on veut prouver que 

toutes les composantes de B = &x' ,z> sont de dimension > 2. On peut donc supposer 

que / est morphisme local de schémas noethériens, locaux et complets. Comme / est 

plat, toute composante de X' domine une composante Xo de X et est une composante 

de f~1(Xo). On peut donc supposer X intègre de dimension > 1, de point fermé z. 

D'après [SGA2 Vin 2.3], le A-module û(X — z) est de type fini. Comme B est plat sur 

A, on déduit que B®Aû(X-z) = û(X'-f~1(z)) est de type fini sur B. Comme B est 

noethérien, le sous 5-module 0(X* — z') de Û(X' — f~1(z)) est de type fini. Supposons 

qu'une composante de X' soit de dimension 1. Soit rj le point générique d'une telle 

composante et définissons alors X'0 comme l'adhérence schématique Spec(^x /,r/) dans 

X'. Le complémentaire XQ — z' serait alors réduit à r\ qui serait isolé dans X' — z'. 
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Ainsi Û(XQ — z') serait un sous ^-module de Û(X' — z1), donc de type fini (B est 

noethérien). A fortiori, Û(XQ — z1) serait de type fini comme ^(X^)-module, ce qui 

contredit [SGA2 vin 2.3] puisque X'Q est de dimension 1. • 

4. Théorème de rigidité de la ramification I : forme faible 

Nous allons commencer par démontrer une variante du changement de base lisse 

qui est cruciale dans la preuve du théorème de rigidité 4.2.1. 

4.1. Variante du théorème de changement de base lisse. — Soit G un groupe fini. On 

va démontrer une variante du théorème de changement de base lisse [SGA4 xvi 1.2] 

pour les faisceaux de G-torseurs sans hypothèse sur le cardinal de G, mais en se 

restreignant au cas d'immersions ouvertes (pour une preuve un peu différente, voir 

[Gabber & Ramero, 2013, 10.2.2]). 

4.1.1. Théorème. — Considérons un diagramme cartésien 

• P 

Ut-^-^X 

Supposons X excellent normal, p : X' —> X lisse et j : U —• X immersion ouverte 

telle que U contient tous les points de codimension < 1. Alors, le morphisme de 

changement de base $ : p*j+ Tors(£7, G) —» ?̂  TOTS(U'\ G) est une équivalence. 

Démonstration. — D'après le théorème de changement de base lisse pour les faisceaux 

d'ensembles [SGA4 xvi 1.2], $ est pleinement fidèle. Il suffit de prouver l'essentielle 

surjectivité. Soit x' un point géométrique de X' d'image x = p{x'). Passant aux fibres, 

on est ramené à prouver que la flèche d'image inverse des torseurs 

(*) H 1 ( C / ( X ) , G ) —> H 1(t/"(' x,),G) 

est bijective, avec de plus x' fermé dans sa fibre [SGA4 vin 3.13 b)]. La stricte 

hensélisation préserve la normalité et la codimension (platitude). Les propriétés de 

permanence des anneaux excellents (cf. 1-8) assurent donc qu'on peut supposer X = 

Spec(A),XF = Spec(-A') avec A = Û^X,A' = 6^, x , strictement locaux, normaux et 

excellents. 

Il se peut que l'extension résiduelle k(x')/k{x) soit purement inséparable. Comme 

dans la preuve du théorème d'acyclicité locale usuelle ([SGA4 XV 2.1]), pour se ra­

mener au cas séparable, donc au degré 1, on considère une extension finie A C B telle 

que l'extension résiduelle contienne k{x')/k{x) (on peut par exemple considérer un 
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gonflement de A!/A au sens de Bourbaki). On peut supposer B intègre et normal et 

considérer alors 

TT: Y = Spec(B) -+ X = Spec(A) 

ainsi que Y' = Y x x Xf et V l'image inverse de U dans Y. Le couple (Y, V) 

vérifie les mêmes propiétés que (X,U). Le morphisme tautologique Tors(EA G) —> 

Tors(7r~1(?7), G) est fidèle. On peut alors invoquer 6.2.1 pour ramener la preuve 

de (*) à l'énoncé analogue sur (Y, V), autrement dit on peut supposer k(x) = k(xf). 

Comme p est lisse, le choix de coordonnées locales ¿ 1 , . . . ,tn de X' en x' définit 

un A-isomorphisme A{t\,... ,tn} A' où comme d'habitude A{ti, ...,tn} désigne 

l'hensélisé strict de A[ti,... ,tn] à l'origine. Une récurrence évidente permet de sup­

poser n = 1. On s'est ramené à la situation 

X' 

uc j > X 

avec A strictement local, normal et excellent et o~ la section de p définie par l'immersion 

fermée d'équation t = 0. Comme X , X' sont locaux et normaux, ils sont intègres. Les 

ouverts non vides de X , X' sont donc intègres et donc connexes. Le composé 

étant l'identité, il suffit de prouver que o* est surjectif. Soit alors V un revêtement 

étale connexe de U'. On doit prouver que sa restriction V —• U au fermé U Ur 

d'équation t = 0 est connexe. 

Comme X' est excellent, la clôture intégrale Y' de X' dans V est finie sur X', 

normale et intègre (comme X'). Comme X' est hensélien, il en de même de Y' qui 

est donc une union disjointe de ses composants locaux. Comme Y' est intègre, Y' est 

local. Soit D C Y' le diviseur de Cartier d'équation t = 0 : D est connexe, puisque 

fermé dans un schéma local. 

On a donc un diagramme commutatif à carrés cartésiens et où les flèches verticales 

sont finies (et dominantes). 

V,(: ^ Y' ^ ^ V 

V y } V 
u'( X' ^-^x ^—>u. 

Soit x' un point de D — V, d'image x dans X — U. Comme D —> X est fini, on 

a d i m { x ' } = d im{#} et dim(D) = dim(X). Comme X , D sont caténaires (ils sont 

même excellents) et D équidimensionnel, on en déduit l'égalité dim ÛD,X' — dim &x,x 

ce qui assure que l'ouvert V dans D contient tous les points de codimension 1 dans 
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D (de même que U contient tous les points de codimension 1 dans X ) . D'après le 

lemme XXI-4.2.1 appliqué au diviseur de Cartier connexe du schéma normal, excellent 

Y 7 , le schéma V est connexe. • 

4.2. Énoncé et réductions 

4.2.1. Théorème (Rigidité de la ramification). — Soient X , X' des schémas noethé-

riens, Z C X un sous-schéma fermé, U ^ X l'ouvert complémentaire et X' X 

un morphisme plat. Notons U' X' l'immersion ouverte U1 = 7r~1(U) X'. On 

suppose que 7r est régulier au-dessus de Z. Soit un champ en groupoïdes sur C/ét-

Alors, la flèche de changement de base 

</>(<#) : 7T*U<€ -

est une équivalence dans les deux cas suivants : 

(i) fé7 est discret (c'est-à-dire équivalent à un faisceau d'ensembles). 

(ii) Z est C2 etff = Tors(E/, G) avec G un groupe (ordinaire) fini. 

En considérant les fibres, on peut supposer que 7r est un morphisme local de schémas 

strictement locaux (la condition c 2 ne dépendant que des hensélisés stricts aux points 

de Z). 

Soient x,xf les points fermés respectifs de X , X'. Par récurrence sur la dimension 

de X ' , on peut supposer que </>(̂ V e s ^ u n e équivalence en tout point géométrique 

y' de X' — {x'} et il suffit de prouver que est une équivalence. On peut de 

plus supposer x G Z (sinon U = X et c'est terminé). Par hypothèse, la fibre spéciale 

F = TT~1(X) de 7r est géométriquement régulière. 

On a un diagramme commutatif à « carrés » cartésiens (avec des notations un peu 

abusives) 

U' ^ \ 

]'( X'-F *X-{x} )] 

^ X' —-—». X. ^ 

Par hypothèse de récurrence, la flèche de changement de base associée au carré 

supérieur est une équivalence de sorte qu'on a une équivalence ir*]*^ ^> j+ir*^ sur 

X' — F. Comme X, X' sont strictement henséliens, la flèche de changement de base 

o(j*C)x' 

H°(X,ltf) = R°(X - {x},j*V) 

^K°(X' -F,n*j^) 
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= H ° ( X ' - F , j > * ^ ) 

= H ° ( X ' , Î > * ^ ) 

s'identifie à la flèche d'image inverse 

(4.2.1.1) 7T* : H ° ( X - {x}J^) -> H ° ( X ' - F^jitf). 

Notons X le schéma complété de X le long de son point fermé et X' le complété 

de X' le long de F. Pour tout 5-espace S sur S é t avec 5 = X , X ' , on note <f son 

image inverse sur S. On a un diagramme commutatif 

X' — ^ X ' 

X 1 > X 

où 7 , 7 ' sont les morphismes de completion, donc sont plats, et TT est plat comme 

7T est un morphisme local de schémas noethériens. Sa fibre spéciale est encore F de 

sorte qu'elle est géométriquement régulière. Ainsi, 7r est formellement lisse ( [EGA IV4 

19.7.1]) et donc régulier ([André, 1974]) puisque X est local noethérien complet donc 

excellent. D'après 3.6, Z — X — U est encore c 2 (dans le cas (ii)) . D'après le théorème 

de rigidité de Gabber (2.1.2) appliqué aux paires henséliennes ( X , x) et ( X ' , F ) , il 

suffit, pour prouver que le foncteur 4.2.1.1 est une équivalence, de prouver que le 

foncteur 

(4.2.1.2) r : H ° ( X - {x}, j&) - H ° ( X ' - FX№) 

est une équivalence. 

Si ^ est un faisceau d'ensembles, on procède comme dans (XIV-2.5.3) pour montrer 

la bijectivité de (4.2.1.2) et achever la preuve du théorème 4.2.1 dans le cas discret. 

Dans le cas (ii), montrons un lemme. 

4.2.2. Lemme. — On peut supposer que 7r est un morphisme essentiellement lisse de 

schémas strictement locaux et excellents. 

Démonstration. — Mais le morphisme de changement de base 

t : y* j*C = j*C - j*y*C = J*C 

est fidèle. En effet, en considérant les faisceaux de morphismes, il suffit démonter que 

le morphisme de changement de base 

1*3*&^3*1*& 
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est injectif pour tout faisceau d'ensembles sur U. La fibre de ce morphisme en un 

point géométrique £ de X d'image £ dans X s'identifie au morphisme d'image inverse 

T : R°(Uxx X{&,&) - H°((7 X ^ J ? ) 

par le morphisme canonique 

7R.Û x^X^^U xxX^y 

Mais la platitude de 7 assure que 7^ est surjectif et donc T injectif. 

D'autre part 

y = T o r s ( ^ G ) 

d'après [Giraud, 1971, 111.2.1.5.7]. Dans le cas (ii), pour prouver que (4.2.1.1) est une 

équivalence, on peut donc supposer d'après (6.2.1) que X est complet, donc excellent 

et 7T un morphisme local régulier. 

D'après le théorème de Popescu ([Swan, 1998]), le morphisme régulier 7r est li­

mite projective filtrante de morphismes locaux essentiellement lisses TTI : X[ —> X. 

Notons que les X[ sont strictement locaux et excellents comme X. Comme les X[ 

sont cohérents, le foncteur section globale commute à la limite projective au sens de 

[SGA4 vu 5.7] de sorte qu'il suffit de prouver le théorème pour les 71̂ . • 

4.3. Preuve de 4.2.1. — On suppose donc que 7r est un morphisme local essentiellement 

lisse de schémas excellents et — Tors(£7, G). On doit prouver pour conclure la preuve 

du théorème 4.2.1 la variante suivante du théorème de changement de base lisse de 

Gabber (4.1.1). 

4.3.1. Proposition. — Considérons un diagramme cartésien 

U^—^X 

où 7T est un morphisme local essentiellement lisse de schémas excellents strictement 

locaux. On suppose que le fermé complémentaire Z = X — U est non vide et C2 (c'est-

à-dire sous ces hypothèses, que U contient les points de codimension 1 (3.5)). Alors, 

le morphisme 

7T* : H°(X - {X}J*TOYS(U,G)) -* E°(Xf - it~l{x}< 7r*i+ Tors(£7, G)) 

est une équivalence, où x est le point fermé de X. 
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Démonstration. — Le morphisme de normalisation p : XnOT —> X étant entier, son 

image est fermée. Comme p est (ensemblistement) dominant, p est surjectif. Comme 

p est surjectif, le foncteur 

j * Ibrs(C/, G) —• j*p*p* TOTS(J7, G) [G™d> ^ U L 2 - 1 ^ ^ S » ^ , G ) 

est fidèle(iv). D'après 6.2.1 et le théorème 4.2.1 (i), il suffit de prouver que la flèche 

(4.3.1.1) 

TT* : H°(X - {x},pjrrTors(Unoi,G)) - H°(X' - ^ { x } , * ^ ^ Tors(Ua°r,G)) 

est une équivalence. 

Considérons le diagramme cartésien 

-7rn°r 

X' — X . 

Comme p est fini (donc propre), on a 7r*p* = j9^7rnor* de sorte que (4.3.1.1) s'identifie 

à la flèche d'image inverse 

(4.3.1.2) 7rnor* : H ° ( X n o r - {x}no\j™TTvrs{UnoT,G)) 

-> H ° ( X ' n o r - (TT^^JX}^, 7rnor*7Tor Tors(£/ n o r , G)). 

Notons que, la condition C2 ne dépendant que du normalisé, le complémentaire 

ZnOT de JJnoT est encore c 2 dans X n o r , et JJnor contient tous les points de codimen­

sion 1. D'après le théorème de changement de base lisse de Gabber 4.1.1, la flèche de 

changement de base 

7 r n o r ^ o r I b r s ( t / n o r , G ) -+ 7 i n o r T o r s ( ^ / n o r , G ) 

est une équivalence de sorte que (4.3.1.2) s'identifie à l'image inverse 

7rnor* : Tors(£/ n o r ,G) Tors(*7 , n o r ,G). 

Il suffit alors de constater que la preuve du théorème 4.3.1 assure que 7rnor* est une 

équivalence. • 

4.4. Comparaison à la complétion : cas des coefficients abéliens dans le cas non nécessaire­

ment nœthérien 

Le paragraphe suivant est une esquisse de démonstration de l'analogue du 

théorème 4.2.1 pour les coefficients abéliens. Le cas des schémas noethériens 

est traité dans [Pujiwara, 1995]. Nous reproduisons ici fidèlement une lettre 

d'Ofer Gabber aux éditeurs (20 juin 2012). 

(iv) On note <§ i—> (onor le foncteur d'image inverse par p. 
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Let (A,I) —• (Af,If) be a map of henselian pairs with I finitely generated, V = 

IA', i ^ î (7-adic completions). X = Spec(A), X' = Spec(A'), TT : X' -> X, 

U = X- V ( / ) , Uf = X' - V(V), j :U -> X , f : £7' -> X ' . 

CTC : For every torsion abelian sheaf F on U, the base change arrow 

7r*R9j*F —> R9j77r*F is an isomorphism for ail q. 

Analogue of 4-2.1 (notations as there) : If F is a sheaf of Z/nZ-modules on U 

where n > 0 is invertible on X , then 7r*R9j*F —• Rïj'^F are isomorphisms. 

This is reduced to CTC by the same argument. 

Sketch of proof of CTC using Zariski-Riemann spaces : For comparing stalks we 

may assume A, A' strictly henselian and I a proper ideal, and we want 

(*) Hq(U,F) ^Rq(U\F). 

We call a finitely generated ideal J C A containing a power of I admissible. We con­

sider the admissible blow-ups Bl j (X) which form a cofiltered category using X-scheme 

morphisms. In general there can be more than one X-morphism between two admis­

sible blow-ups but if we restrict ourselves to J's with V(J) = V(I) (set theoretically) 

(so that U is schematically dense in the blow-up), there is at most one. Define J < J' 

iff there is an X-morphism Blj / (X) —> Bl j (X) . This is a filtered preorder. When 

V(J) C V(J'), J < J' is equivalent to the condition that for some n > 0 and ideal 

K, J'n = JK. Thus we have an isomorphism of the preordered set of admissible J's 

of full support in A and the corresponding set for A!. Let ZRSi(X) = l imBlj(X) 

(a locally ringed space). For the closed point s of X we can consider the special 

fiber ZRSi(X)s and its étale topos, which for our purposes may be defined as the 

projective limit of the étale topoi (Blj(X) s )ét as in [SGA 4]- It has enough points by 

Deligne's theorem. The points are given by "geometric points" of ZRSi(X)s (i.e. a 

point and a choice of a separable closure of the residue field). For every admissible J 

we have 

jj:U<-> Blj(X) 

giving a spectral sequence (using proper base change) 

(**) № ( B l j ( X ) s , R ^ F ) E?+*(U,F). 

We pass to the limit using the general theory of [SGA 4 vi]. We get a spectral sequence 
(**)iim involving cohomology on (ZRSj(X)s)ét- Since the latter topos is the same 
for X ' , to show (*) we use the morphism of the limit spectral sequence to reduce to 
stalks of the limits of the Rqjj* sheaves. 

Using the study in [Fujiwara, 1995] of the local rings of ZRS's and their henseliza-
tions, one reduces (*) to the case of local rings at geometric points of the special fibers 
of ZRS's. Thus we are reduced to the case A, A! are henselian and 7-valuative. Say 
I = ((f). Then ^4[(/?_1] is a henselian local ring with maximal ideal corresponding to 
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P = f)Ini and A/P is a henselian valuation ring whose valuation topology is the 

</?-adic one. In this case to prove (*) one reduces to the corresponding statement 

for Frac(.A/P) —• Prac(^4 //P /). In fact for K —> K' a dense embedding of henselian 

valued fields, if we choose separable closures Ksep, K'sep and a map between them we 

have Gal(K'sep/K') ^ Gal(Ksep/K), using forms of Krasner's lemma (cf. [Bourbaki, 

A C , VI, §8, exercices 12, 14 a]). 

Note: For admissible J, B l j (X ' ) —> Bl j (X) gives an isomorphism on 7-adic com­

pletions (as in the discussion in the proof of 2.4.4) as for every m the map 

n n 

is an isomorphism mod I171. 

5. Rigidité de la ramification II : forme forte 

5.1. Générisations étales immédiates. — On note X^,X^ et X^ les localisés, hen-

sélisés et complétés respectivement de X en x. On note {y} l'adhérence de y dans 

X munie de sa structure réduite. L'hensélisation et la completion commutent aux 

immersions fermées de sorte que {y} , {y} respectivement coïncident avec l'image 

inverse de {y} par les morphismes d'hensélisation, completion respectivement. Rap­

pelons (XIV-2.1.2) qu'une générisation y E X d'un point x d'un schéma X est une 

générisation étale immédiate de x si l'hensélisé strict en x de l'adhérence de y a une 

composante irréductible de dimension 1. 

5.1.1. Lemme. — Soit y une générisation de x. Notons c : X^ —• X^ le morphisme 

de completion. Alors, y est une générisation étale immédiate de x si et seulement si 

Fun des points maximaux de c~1(y) est une générisation étale immédiate du point 

fermé de X^. 

Démonstration. — Notons pour simplifier Y = {y}. Observons d'abord qu'un des 

trois schémas Y(X^,Y^ et Y^ possède un point maximal de dimension nulle si et 

seulement si chacun est réduit (ensemblistement) à son point fermé. On peut donc 

exclure ce cas. Le morphisme Y^) —> Y^ est fidèlement plat et entier. Donc, l'hen­

sélisé strict possède un point maximal de dimension 1 ( v ) si et seulement si l'hensélisé 

possède un point maximal de dimension 1. D'après (3.3), Y^ possède un point 

maximal de dimension 1 si et seulement si F( x) possède un point maximal de dimen­

sion 1. Par platitude de Y^ —> Y", il s'envoie nécessairement sur y, le point générique 

de Y. • 

(v) On devrait plutôt dire point maximal dont l'adhérence est de dimension 1. 

ASTÉRISQUE 363-364 



5. RIGIDITÉ DE LA RAMIFICATION II : FORME FORTE 513 

On peut caractériser agréablement les générisations étales immédiates. 

5.1.2. Lemme. — Soit f : X^) ~~* ^{x) 1>e morphisme d'hensélisation strict. Les gé­

nérisations étales immédiates de x sont les images y = f(y') des y' G X^) ^ s Que 

dim {y'} = 1. 

Démonstration. — Soit y' G X^) tel que dim {y1} = 1. L'image y = f(y') est une gé-

nérisation stricte de x (car par exemple les fibres de / sont discrètes). Pour cette même 

raison, {y'} est une composante de f~l{{y}) = {y}^) - Inversement, si y est une géné-

risation étale immédiate de x, le point générique y' d'une composante de dimension 1 

de {y}^) s'envoie s u r V (platitude de / ) et son adhérence est de dimension 1. • 

5.1.3. Exemple. — Prenons l'exemple du pincement de [EGA IV2 5.6.11]. En conser­

vant les notations de loc. cit., l'anneau pincé G est local noethérien de dimension 2 et 

son normalisé a deux idéaux maximaux de hauteur 1,2 respectivement. D'après 3.2, 

l'hensélisé de C a deux composantes irréductibles de dimension 1 et 2 de points géné­

riques c, c'. Comme dans la preuve de XIV-2.1.9, ceci assure l'existence de c (au-dessus 

de c) dans l'hensélisé strict de G dont l'adhérence est de dimension 1 et donc que le 

point générique de Spec(G) est une générisation étale immédiate de son point fermé. 

5.2. Couples associés et condition (*). — Commençons par une définition. 

5.2.1. Définition. — Soit x un point d'un schéma X. Choisissons une clôture séparable 

de k(x) définissant un point géométrique x de X. 

(i) Soit G un schéma en groupes sur X. On définit les sections locales de G à support 

dans x par la formule 

H°(G) = Ker (H°(X ( s ) ,G) - H ° ( X ( 5 ) - { * } , G ) ) . 

(ii) Soit fé7 un champ (en groupoïdes) sur Xét et p un nombre premier. On dit que 

(x,p) est associé de ^ et on écrit (x,p) G Ass(^) s'il existe a G ^ tel que 

HQ(Aut(cr)) ait de la p-torsion. 

(iii) Soit fé7 un champ ind-fini (en groupoïdes) sur un ouvert U de X. On dit que 

vérifie la condition (*) si pour tout x e X — U de caractéristique p > 0, il n'existe 

pas de générisation étale immédiate y de x telle que (y,p) G Ass(^) . 

Remarquons que la condition (#,p) associé ne dépend pas du choix de la clôture 

séparable de k(x). 

5.2.2. Exemple. — Supposons X normal et G groupe fini. Soit U un ouvert de X. 

Alors, (x,p) est associé de ^ = Tors([7, G) si et seulement si p\ card(G) et x est 

un point maximal de U. En effet, l'unique objet de ^ est le torseur trivial a et 

Aut(cr) = G. Or, — {x} est connexe (resp. vide) si x est non maximal (resp. 
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maximal). Ainsi, on a Hg(Autfcr)) = {1} (resp. HQ(Aut(cr)) = G). On déduit que 

^ vérifie (*) si et seulement si U contient tous les points de codimension 1 dont la 

caractéristique divise l'ordre de G. 

5.2.3. Lemme. — Soit f : X —» Y un morphisme plat de schémas noethériens, x G 

X d'image y = f(x) dans Y et ^ un champ en groupoïdes sur Y. Alors, (x,p) G 

Ass ( /*^) si et seulement si (y,p) G Ass(^) et x e Ma)x(f~1(y)). 

Démonstration. — Choisissons un point géométrique x au-dessus de x, qui définit y 

au-dessus de y. 

Supposons (x,p) G Ass ( /*^ ) . Comme la flèche —• ̂  est une équivalence, 

il existe a G fây et g G Aut(cr) tel que f*g est d'ordre de p et de support {x}. Notons 

F l'hensélisé strict de f~1(y) en x. C'est aussi la fibre de l'hensélisé ip : X^) —• Yç^ 

de / au-dessus de y. Si F n'était pas réduit à x, un des points de F ne serait pas dans 

le support de f*g de sorte que f*g serait l'identité en ce point. Mais f*g est constant 

sur F = <£ _ 1(|/) de sorte que f*g serait l'identité également en x G F, ce qui n'est 

pas. Donc, F est réduit à x de sorte que dimûf-i(y^x = 0 (puisqu'un anneau local a 

même dimension que son hensélisé strict) et x G Max(/_ 1(2/)). De plus, g est trivial 

sur <p(X(x) — {x}) = Y^y} — {y} (fidèle platitude de cp) ce qui assure (y,p) G Ass(^) . 

Inversement, supposons (y,p) G Ass(^) et a: G M a x ( / - 1 (y)). On a donc un au-

tomorphisme g d'ordre p de a G ^ de support {y}. Le support de tp*g est la fibre 

(p~x{y) = f~1(y)(^xy Comme x est maximal dans / _ 1 ( y ) , on déduit (dimension) que 

le schéma local </? - 1(y) est de dimension nulle donc réduit à x, ce qu'on voulait. • 

5.2.4. Corollaire. — Soit (X, x) un schéma local noethérien hensélien, U = X — {x} 

l'ouvert complémentaire du point fermé et c : X —» X le morphisme de complétion. 

Alors, le champ en groupoïdes sur U vérifie (*) si et seulement si fé7 = c * ^ vérifie 

(*)• 

Démonstration. — On note encore x le point fermé de X et on choisit un point 

géométrique x au-dessus de x. 

Supposons que ^ vérifie (*). Soit (y,p = car (a;)) G Ass(^) et notons Y l'adhérence 

de y dans X. Il s'agit de montrer que toutes les composantes de Y j^ sont de dimen­

sion > 2, ou encore (3.3) que toutes les composantes de Y sont de dimension > 2. 

Mais c'est bien le cas car, d'après le lemme 5.2.3, on a (y,p) G Ass(^) pour tout point 

maximal y de Y. 

Inversement, supposons que *ê vérifie (*). Soit donc (y,p = car(x)) G Ass(^) et soit 

y — c(y). D'après le lemme 5.2.3, (y,p) G Ass(^) et y est maximal dans c~1(y) = Y 

où Y = {y}. Alors, toutes les composantes de Y^) (donc de Y d'après (3.3)) sont de 

dimension > 1. En particulier, d im{y} > 1, ce qu'on voulait. • 
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5.3. Le théorème de rigidité de la ramification 

5.5.7. Théorème (Rigidité de la ramification II). — Soit n : X' —> X un morphisme plat 

de schémas noethériens, régulier au-dessus d'un sous-schéma fermé Z C X. Soit 

j:U = X — Z^X l'immersion ouverte du complémentaire de Z et^ un champ ind-

fini sur U vérifiant la condition (*). Alors, la flèche de changement de base n^j^ —• 

j+Tr'*^ est une équivalence. 

Démonstration. — D'après le théorème de rigidité de la ramification I (4.2.1), le 

théorème est vrai dans le cas discret de sorte que 7r*j*^ —> j+ir'*^ est toujours 

pleinement fidèle. Comme dans la preuve de 4.2.1, on peut supposer X , X' strictement 

locaux de point fermés x,xf et 7r morphisme local. Par récurrence sur la dimension 

de X , on peut supposer que le changement de base par n est une équivalence pour 

l'immersion U X — {x} de sorte qu'on peut supposer U = X — {x}. Comme dans la 

preuve de 4.2.1 et en utilisant l'invariance par complétion de la condition (*) (5.2.4), 

on peut supposer de plus X complet et TT morphisme essentiellement lisse et local et 

il s'agit de démontrer que la flèche 

TT* : H°(X - {x},tf) -> H°(X' - TT-^XJX) 

est essentiellement surjective. 

Soit donc o' un objet de H ^ X ' — /K~1{x},cé"). La condition (*) étant stable par 

passage aux sous-gerbes (maximales), on peut comme dans la preuve de 6.2.2 en 

considérant la sous-gerbe maximale de c € l engendrée par cr', supposer de plus que 

fé7 est une gerbe. Comme ^ est ind-finie, on peut supposer que ^ est constructible 

(8.3.3). 

Pour tout point maximal y G U, notons iy le morphisme canonique 

iy : Spec(fc(î/)) U = X - {x}. 

La catégorie fibre de iy+iytë sur un ouvert étale V —» U s'identifie aux sections ra­

tionnelles de fé7 définies au voisinage des points maximaux de V au-dessus de y. Soit 

¥ : <g - 9 := JJ iyjy 
yGMax([/) 

le morphisme déduit des morphismes d'adjonction. 

Pour toute section r G H°(É7, S) (vu comme un morphisme de [/-espaces r : U —• 

S), le champ des relèvements K(r) = U x^fê associé est un champ en groupoïdes. 

Le morphisme canonique 

K(T) -+ 

est fidèle ([Giraud, 1971, IV.2.5.2]). Comme est constructible et vérifie (*), il en est 

de même des sous-gerbes maximales de K{r). 
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Il suffit alors (exercice) de vérifier que la flèche de changement de base est essen­

tiellement surjective pour 

1) les gerbes = iy+Vfê ; 

2) les sous-gerbes maximales du champ des relèvements K(r) = U x^fê associée à 

r eH°(U,&). 

5.3.2. Premier cas : changement de base pour = iy+iytë. — Supposons donc = 

iy+iyfê. Quitte à changer X , U en {y}, U fl {y}, on peut supposer que X est irréductible 

de point générique y. 

Si la dimension de X est 1, on a U = {y} et ^ y — Tors(Spec(fc(y)), G) avec 

p = ca,r(y) ne divisant pas l'ordre de G (cf. l'argument dans l'exemple 5.2.2). On 

invoque alors le changement de base par un morphisme lisse usuel ([Giraud, 1971, 

VII.2.1.2]). 

On suppose donc que la dimension de X est > 1. 

Choisissons une clôture séparable k(y) ^ ky et notons j y : Spec(ky) —• U est le 

morphisme canonique. On a 

7*i f = Tors(Spec(fey),G) 

où G est un groupe fini constant. Comme 

iy*iy*C - jy*jy*C 

est fidèle, on peut (6.2.1) remplacer 5? par jy+jytë = j V x Tors(Spec(k v ) , G). 

5.3.3. Lemme. — On a R}jy*G = {*} et j V k TorsfSpecffc,), G) = Tors(?7, jVkG). 

Démonstration. — La seconde égalité découle de la première et de la formule 

([Giraud, 1971, V.3.1.5]) 

7rn(7 y j lTors(Spec(fc y),G)) - RxjyirG. 

Soit À l'hensélisé strict de X = Spec(A) en un point géométrique f de X. C'est une 

limite inductive filtrante d'algèbres Ai de type fini qui sont génériquement étales. On 

déduit que j ~ 1 ( S p e c ( J [ ) ) est le spectre de la limite inductive filtrante des algèbres 

étales B{ = ky <8>k(y) M qui sont donc scindées puisque ky est séparablement clos. 

Ainsi, les schémas considérés étant cohérents, on a 

i&jy+G^ = HHj^Specti)),^) = limHHSpec^)^) - {*}. • 

En terme de module galoisien, jy+G est l'induite (continue) Hom c ( r ,G) où T est 

le groupe profini Gal(ky/k(y)). En écrivant T = co\imGal(Ka/k(y)) où (Ka/k(y))a 

est le système inductif des sous-extensions galoisiennes finies de ky/k(y), on trouve 

jy*G = lim ja*G 
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où j a : Spec(Ka) —> Spec(k(y)) —» U est le morphisme canonique. Comme U, U' sont 

noethériens donc cohérents, on a 

H°(17, Tbrs(C/, colim j a * G ) ) = colim H°(C7, Tors(l7, 

et 

B°(U\ TT'* Toreffr colim Û+G)) = H°(t7 ; , TorafE/', TT;* colim 7 ' ^ G ) ) 

= colim H°(Z7, TorafET', TT'* 

de sorte qu'on est réduit pour le cas 1) à étudier le changement de base pour la gerbe 

#a = Tm(UJaitG). 

Soit p : W —> X la normalisation de X dans Spec (K a ) —> X : c'est un morphisme 

fini (car X est excellent) et surjectif de sorte que W est semi-local et hensélien (comme 

X). On déduit que W est la réunion disjointe de ses hensélisés aux points fermés. 

Comme W est intègre, W est strictement local : on note w son point fermé w. De 

plus, W est normal, donc géométriquement unibranche de sorte que ja*G = p±G\w-w 

Comme R 1 / ? * ^ est trivial (p est fini), on déduit l'égalité 

&a=p*Tors(W-{w},G) 

comme dans la preuve du lemme 6.3.3 infra. 

En utilisant le changement de base propre pour p, on est ramené à prouver que la 

flèche 

Tors(W - {w}, G) -+ T o r s ( W - TT" 1 !^}, G) 

est une équivalence. 

Rappelons qu'on a supposé que la dimension de X (ou W, c'est la même chose) 

est > 1. Dans ce cas, {w} est C2 dans W et on invoque la variante du théorème de 

changement de base lisse de Gabber (4.3.1). 

5.3.4- Deuxième cas : changement de base pour une sous-gerbe maximale K du champ 

des relèvements K = K(r). — La gerbe K vérifie (*) comme K{r). Comme ^ est 

une équivalence pour tout point maximal y e on déduit que K(r)y est ponctuel 

et donc que Ky est la gerbe triviale en tous ces points. Par hypothèse de récurrence, 

il suffit pour achever la preuve de prouver le lemme suivant. 

5.5.5. Lemme. — / / existe une immersion fermée i : F —• X nulle part dense telle que 

K = iJ*K. 

Démonstration. — Il suffit de prouver que pour tout y maximal, il existe un ouvert de 

Zariski contenant y sur lequel K est triviale. Par construction, il existe un voisinage 

étale V —> U de y et o G K(V). Comme Aut(cr) est un faisceau constructible de Vét, 

l'isomorphisme 

{ I d } ^ ^ Aut((7)y 
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provient d'un isomorphisme 

{ld}w ^ AutOV 

sur un voisinage étale W V —> U de y. Quitte à localiser, on peut supposer que 

W —> U est un revêtement galoisien de son image. La section a descend sur U et n'a 

pas d'automorphisme par construction. Ainsi, la restriction à U de K est une gerbe 

neutre avec groupe d'automorphisme triviale, donc est triviale. • 

6. Appendice 1 : sorites champêtres 

6.1. — Dans la situation du théorème 2.1.2, on sait déjà (2.1.1 i)) que le foncteur 

H°(£/ ,^) —• H°(£757T*^) est pleinement fidèle que soit ind-fini ou non. 

Soit ^ un champ ind-fini sur Yét- On cherche des conditions assurant que l'hypo­

thèse 

6.1.1. Hypothèse. — Soit / : X —» Y un morphisme de schémas. On suppose que pour 

tout faisceau d'ensembles & sur Yét, la flèche H°(Y, —> H°(X, / * ^ ) est bijective. 

entraîne que la conclusion 

6.1.2. Conclusion. — La flèche 0 : H°(Y,<*f) H ° ( X , / * ^ ) est une équivalence de 

catégories. 

est vraie, autrement dit assurant que l'assertion 

6.1.3. Assertion. — On a l'implication 6.1.1 6.1.2. 

est vraie. On sait déjà que 6.1.1 entraîne que <t> est pleinement fidèle (cf. 2.1). 

6.2. Premières réductions. — Commençons par un lemme formel : 

6.2.1. Lemme. — Soit f : X —> Y un morphisme de schémas et fêi —> % un mor­

phisme de champs sur Y qu'on suppose fidèle. Si 6.1.3 est vraie pour alors 6.1.3 

est vraie pour . 

Démonstration. — On a déjà observé (2.1) que (/> est pleinement fidèle. Soit donc 

c f G H ° ( X , r ^ ) = Hom x (X , /* t f i ) 

dont on cherche un antécédent dans H° (Y, ) • Son image 

4 € H ° ( X , r ^ 2 ) 

a un antécédent (à isomorphisme près) 

4 E H ° ( F , f 2 ) . 
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Le couple ( c ^ c * — f*c%) définit une section du champ des relèvements 

K(f*c*) = Xxf*v1f*<ë'2. 

Mais (associativité du produit fibre) K{f^c^) s'identifie à 

tK{cl) = r (y xVl V2). 

Or, K(c%) est un faisceau d'ensembles car féi —> ̂ 2 est fidèle. Donc, (c^c^ = 

f*c%) G H°(X, f*K((%)) a un unique antécédent de la forme (cf, c^f) et est bien 

l'antécédent cherché. • 

6.2.2. Lemme. — Si 6.1.3 est vrai pour toute gerbe (resp. toute gerbe ind-finie), alors 

6.1.3 est vrai pour tout champ (resp. tout champ ind-fini). 

Démonstration. — Soit t G H ° ( X , / * ^ ) et 7* C la sous-gerbe maximale en­

gendrée par t dans ([Giraud, 1971, III.2.1.3.2]) <vi). Ceci définit une section r G 

TTO!/*^) du faisceau d'ensembles 7To(/*^) des sous-gerbes maximales de / * ^ (/oc. 

cz£., 2.1.4). D'après /oc. cit, 2.1.5, la flèche naturelle 

Mf**) - /*7T0(tf) 

est bijective. Mais, par hypothèse, la flèche 

H°(y,7r0(^)) -> H°(X,/*7ro(^)) = H°(X ,7r 0 (r^)) 

est bijective de sorte qu'il existe une (unique) sous-gerbe (maximale) 7 C ^ telle 

que / * 7 = 7t, qui sera ind-finie si l'est. L'image dans H°(Y, ^ ) de l'antécédent de 

t G H°(X, / *7 ) dans H°(y, 7) est l'antécédent cherché. • 

6.3. Réduction au cas d'un champ de torseurs sous un groupe fini constant. — Admettons 

pour un instant le résultat suivant, généralisation au cas des champs de la résolution 

flasque de Godement. 

6.3.1. Lemme (Lemme d'effacement). — Soit 7 une gerbe ind-finie sur un schéma co­

hérent X. Il existe un faisceau de groupes ind-fini sur X et un foncteur fidèle 

7 ^ T b r s ( X , ^ ) . 

On peut alors prouver le critère suivant : 

6.3.2. Proposition. — Soit f : X —> Y un morphisme de schémas cohérents. On sup­

pose que pour tout faisceau d'ensembles & sur Y, la flèche H°(Y, —• H°(X, f*&) 

est bijective (6.1.1). On suppose en outre que pour tout morphisme fini p : Y' —> 

Y induisant f : X' — X Xy Y' —» Y1 et tout groupe fini constant G, la flèche 

Tors(y' ,G) —> Tors(X',G) est une équivalence. Alors, pour tout champ ind-fini 

sur Y, la flèche BPÇY,^) —> H°(X, f*^) est une équivalence. 

( v l) Dans loc. cit., 7ro(X) est noté Ger(^), qui n'est pas actuellement la notation standard. 
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Démonstration. — Seule l'essentielle surjectivité pose problème. Les lemmes d'effa­

cement, 6.2.1 et 6.2.2 permettent de supposer que ^ = Tors (Y", £f ) où ^ est un groupe 

ind-fini sur Y. Comme X, Y sont cohérents, la cohomologie non abélienne commute 

aux limites inductives filtrantes [SGA 4 vu rem. 5.14]. Comme £f est ind-fini, il est 

limite inductive filtrante de faisceaux de groupes constructibles [SGA 4 IX 2.7.2] : on 

peut donc supposer ^ constructible. Puisque Y est cohérent, il existe (loc. cit., 2.14) 

une famille finie de morphismes finis pi : Yi —• Y et des groupes finis constants G¿ 

tels que se plonge dans le produit YÍPÍ*GÍ- On a donc un morphisme fidèle 

Tbrs(y,Sf) — Tbrs(Y, Y[pi*Gi) = Y[Tars(Y,piifGi) 

grâce à [Giraud, 1971, 111.2.4.4]. 

Utilisant à nouveau 6.2.1, on peut supposer 

y = Tore(y,p+G) 

avec G groupe fini constant et p : Y' —• Y fini. 

6.3.3. Lemme. — On a Tors(Y, v+G) = p*Tbrs(Y', G). 

Démonstration. — Comme p est fini, Rlp*G est trivial. Mais Wp+TorsíY', G)) = 

RLp+G ([Giraud, 1971, V.3.1.9.1]) de sorte que p*2brs(Y', G) est une gerbe, visible­

ment neutre et vaut donc nécessairement Tors (Y, v+G). • 

Le théorème de changement de base propre pour les faisceaux (trivial dans ce cas) 

assure qu'on a /*p*G = p*f'*G = p'+G. La flèche 

H°(y,p .Tors(y , ,G)) - H ° ( X , / V t a ( n G ) ) 

s'identifie alors à la flèche naturelle 

Tors (Y' , G) = H ° ( y p+TorsfY', G)) 

->H°(X, /*p . îbrs (y , ,C?) ) 

= H ° Í X T o r s ( X f*v+G)) (d'après 6.3.3 et [Giraud, 1971, III.2.1.5.7]) 

= H ° ( X T o r s ( X vLG)) 

= H°(X,K2brs (X / ,G) ) 

= ïî0(X\Tors(X\G)) 

= Tors(X / ,G) 

qui est bijective par hypothèse. • 
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6.4. Preuve du lemme d'effacement. — Soit X un schéma cohérent. 

6.4.1. Lemme. — // existe un schéma affine X', un morphisme quasi-compact et sur­

jectif f : X' —> X tel que pour tout x' G X', le corps résiduel k{x') est la clôture 

algébrique du corps résiduel k(f(x)). 

Démonstration. — Comme X est quasi-compact, on peut recouvrir X par un nombre 

fini d'ouverts affines X\. Le morphisme X{ —> X est surjectif et quasi-compact (X 

est quasi-séparé). Comme toutes les extensions résiduelles sont des isomorphismes, on 

peut donc supposer X = Spec(^l) affine quitte à changer X en U-^Q-

6.4.2. Sous-lemme. — Soient I Vensemble des polynômes unitaires (non constants) de 

A[X] et 

T'(A) = A[Xp,PeI}/(P(XP)) 

et 

f : X' = Spec T'(A) X = Spec A. 

Le morphisme f est surjectif et, pour tout £ G X', le corps résiduel k(£) est la clôture 

algébrique de &(/(£)). 

Démonstration. — Soit x e X et k(x) une clôture algébrique de k(x). La fibre sché­

matique f~l{x) est le spectre de 

B = k(x)[Xp,Pei}/(P(xP)) 

où P désigne l'image de P G / par le morphisme de localisation des coefficients 

A[X] -*k(x)[X\. 

Le choix de racines xp G k{x) pour tous les polynômes P de I définit un point de 

f~1(x) assurant la surjectivité de / . 

Soit alors £ G / _ 1 ( x ) : c'est un point fermé car / est entier et fc(£) est algébrique 

sur k{x). Soit Q un polynôme unitaire de k{x) de degré d > 0. Il existe a E A d'image 

a(x) non nulle dans k(x), un polynôme unitaire P G / et un entier n > 0 tel que 

andQ(X) = P(anX). 

On déduit que l'image Xp/an dans fc(£) est une racine de Q. Comme fc(£) est algé­

brique sur k(x), ceci assure que fc(£) est une clôture algébrique de k(x). (C'est un 

exercice (facile) de théorie de Galois ou [Bourbaki, A, V, § 10, exercice 20].) • 

Comme / est quasi-compact puisqu'affine, le lemme est prouvé. • 

Dans un second temps, rappelons la construction de la topologie constructible sur 

X (cf. [EGA ivi 1.9.13]). 
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6.4.3. Remarque. — Pour notre propos, on ne l'utilisera en fait que pour le schéma 

affine X'. 

On construit l'espace topologique X c o n s dont l'ensemble sous-jacent coïncide avec 

l'ensemble sous-jacent \X\ de X mais dont les ouverts (resp. fermés) sont les parties 

ind (resp. pro)-constructibles, à savoir les réunions (resp. intersections) de parties 

constructibles. Comme X est cohérent, X est un espace topologique compact, to­

talement discontinu ([EGA iVi 1.9.15]). De plus, la cohérence de X entraîne que les 

parties constructibles sont alors les réunions finies d'intersection UD(X — V) avec U, V 

ouverts quasi-compacts ([EGA nii 9.1.3] et [EGA iVi 1.2.7]). Le complémentaire de 

U fl (X — V) étant (X — U) U F, il est donc également ouvert dans X c o n s de sorte que 

X admet une base d'ouverts compacts. 

L'identité de \X\ induit une application continue X c o n s —» X puisqu'un fermé 

est pro-constructible. Si X = Spec (A) est affine, X c o n s est naturellement homéo-

morphe au spectre d'une certaine A-algèbre T(A) pour un certain endo-foncteur T 

de la catégorie des anneaux ([Olivier, 1968], proposition 5). Cet homéomorphisme est 

compatible à la localisation de sorte que ces structures schématiques se recollent mu­

nissant X c o n s d'une structure naturelle de X-schéma relativement affine compatible 

avec l'application continue (identique!) X c o n s —• X. Si x G |X | , on a &xcons,x = k(x). 

On définit alors 

/ : Xe X 

comme le composé 

/ : Xe = ( X ' ) c o n s X' X. 

Par construction, Xe est compact -en particulier cohérent- (réduit), totalement 

discontinu et admet une base de voisinages ouverts-compacts (qui sont donc ouverts-

fermés puisque Xe est compact donc topologiquement séparé). Ses corps résiduels 

sont algébriquement clos et / est quasi-compact ( v i i ) et surjective (comme composé de 

morphismes quasi-compacts) . 

Rappelons que le faisceau vide sur un espace topologique est le faisceau associé 

au préfaisceau de valeur constante 0 . L'ensemble de ses sections sur tout ouvert non 

vide est 0 et est réduit à un point sur l'ouvert vide. 

6.4.4. Lemme. — Tout morphisme étale f : Y —> Xe est Zariski localement trivial. 

En particulier, le morphisme canonique de topos : X | t —> X^ar est une 

équivalence. Tout faisceau sur Xe ayant des sections localement a des sections globales. 

De plus, tout torseur sur Xe est trivial et toute gerbe est neutre. 

(v u) On appliquera ici cette construction à un ouvert (quasi-compact) d'un schéma affine, donc à un 
schéma séparé de sorte que / sera même affine dans ce cas. 
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Démonstration. — Soit y e Y d'image x G Xe. Comme / est quasi-fini et k(x) 

algébriquement clos, l'inclusion k{x) <^-> k(y) est une égalité. Le morphisme composé 

Spec(^ x ) = Spec(fcOr)) = Spec (%)) -+ Y 

se prolonge au voisinage de x en une section locale de / ce qui prouve le premier 

point. 

Soit & un faisceau (Zariski ou étale, c'est la même chose) sur Xe. Comme Xe 

est compact, on peut trouver un recouvrement fini par des ouverts compacts Ui sur 

lesquels & a une section. On montre par récurrence sur le nombre d'ouverts qu'on 

peut raffiner ce recouvrement en un recouvrement fini Vj par des ouverts compacts 

disjoints. Comme pour tout j il existe i tel que Vj G Ui, le faisceau & a des sections 

locales sur chaque Vj. Ces ouverts étant disjoints, ces sections se recollent en une 

section globale. Le reste suit car tout torseur (resp. toute gerbe) sur Xe a des sections 

localement. • 

La preuve du lemme d'effacement est alors facile. Soit 7 une gerbe ind-finie sur X. 

Le foncteur d'adjonction 

7 - /*/*7 

est fidèle car / est surjectif. La gerbe /*7 ([Giraud, 1971, III.2.1.5.6]) est neutre et ind-

finie (6.4.4) de sorte qu'elle est équivalente à Tors(Xe, &c) pour faisceau de groupes 

ind-fini (SC convenable. Par ailleurs, comme on a déjà vu ([Giraud, 1971, V.3.1.9.1]), 

le faisceau des sous-gerbes maximales 7Tn(/+Tors(Xc, £f c)) s'identifie à Rxf^c. 

6.4.5. Lemme. — Le faisceau R 1 / * ^ c est trivial (constant ponctuel). 

Démonstration. — Soit U —• X un morphisme étale avec U quasi-compact et quasi-

séparé. Comme dans la preuve de 6.4.4, Xfj —> Xe est étale et donc un isomorphisme 

local pour la topologie de Zariski car les corps résiduels de Xe sont algébriquement 

clos. On en déduit que les topos étale et Zariski de Xfr sont équivalents. Tout ^ - tor ­

seur étale sur Xfj provient donc d'un torseur Zariski. Comme Xfy —> Xe est un iso­

morphisme local, Xfj a une base d'ouverts-fermés et donc est séparé. Comme Xfj est 

quasi-compact (puisque / est quasi-compact et U quasi-compact comme X ) , l'espace 

topologique sous-jacent de Xjy est de plus compact. On déduit comme dans 6.4.4 que 

tout torseur sur Xfj est trivial H 1 ( X ^ , ^ C ) = { * } . En passant à la limite (on n'utilise 

pas ici la cohérence de / ) , on trouve que les fibres de R 1 /*5fc sont triviales. • 

D'après le lemme, 7ro(/+Tors(Xc, Gc)) est le faisceau ponctuel ce qui assure que 

/*Tors(X c , Gc) est une gerbe. Comme elle a une section, elle est neutre de groupe 

G = f*Gc et s'identifie donc à Tors(X, G). Mais / est quasi-compact de sorte que G 

est ind-fini comme Gc [SGA4 ix 1.6]. La preuve du lemme d'effacement est complète. 
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7. Appendice 2 : théorème de changement de base propre d'Artin-Grothendieck pour les 

champs ind-finis sur des schémas non noethériens 

On va prouver l'énoncé suivant 

7.7. Théorème. — Considérons un diagramme cartésien 

X' - ^ X 

r • / 

avec f propre. Alors, pour tout champ ind-fini ^ sur X, la flèche de changement de 

base g* f*1^ —> f'+g'*^ est une équivalence. 

Notons que ce théorème est connu dans le cas discret [SGA4 XII 5.1] ainsi que dans 

le cas où Y est localement noethérien ([Giraud, 1971, VII.2.2.2]). La preuve qui suit 

est une adaptation de la preuve de ce dernier énoncé. 

Démonstration. — D'après [Giraud, 1971, VII.2.2.5], il suffit de prouver l'énoncé sui­

vant : soit X propre sur S local hensélien et i : X0 <-^> X l'immersion de la fibre 

fermée. Alors, pour tout champ ind-fini fé7 sur X , la flèche 

7 : H 0 ( X , ^ ) ^ H 0 ( X 0 , i * ^ ) 

est une équivalence. Notons que X/S étant propre, il est cohérent donc X est cohérent 

comme S [SGA4 VI 2.5]. Ainsi, i est un morphisme cohérent de schémas cohérents. Si 

^ est discret, le théorème est une conséquence immédiate du théorème de changement 

de base propre pour les faisceaux d'ensembles [SGA4 XII 5.1 (i)]. On en déduit que 7 

est pleinement fidèle. D'après 6.3.2, il suffit de montrer que pour tout morphisme fini 

X' —• X (induisant une immersion fermée X'0 ^ X') et tout groupe fini G, la flèche 

(7.1.1) 7 : Tors(X', G) -> Tors(X£, G) 

est une équivalence (et en fait est essentiellement surjective puisqu'on sait déjà qu'elle 

est pleinement fidèle). On applique alors [SGA4 XII 5.5 (ii)] au morphisme propre 

X' —> S pour conclure. • 

8. Appendice 3 : sorites sur les gerbes 

On montre que toute gerbe ind-finie sur X noethérien est limite inductive filtrante 

de ses sous-gerbes constructibles (comparer avec [EGA IV3 IX. 2.2 et 2.9]). 
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8.1. Image d'un morphisme de champs 

8.1.1. — Soit (p : y —• y un morphisme (cartésien) de champs sur Xét- On défi­
nit l'image Im(y?) = (pfâ) comme la catégorie ayant pour objets ceux de et telles 
que Hom^^)(^i,^ 2) = H o m ^ ( ^ ( ^ ) , ^(#2)), la structure de catégorie fibrée étant dé­
duites des structures (compatibles) de ^ et cé". Notons que Im(v?) est naturellement 
équivalente à la sous-catégorie pleine de fé" dont les objets sont les images des 
objets de ^ . On identifiera ipfâ) et On notera Im(y?) le champ associé au pré­
champ Im((p). C'est la sous-catégorie pleine de № des objets localement isomorphes 
à l'image d'éléments de ^ . 

8.1.2. Lemme. — Soit x un point géométrique de X et f :W —> X un morphisme de 

schémas. Alors, 

— la flèche naturelle Im((p)x —> Im(<p£) est une équivalence ; 

— on a une équivalence de champs, définie à isomorphisme unique près, /*Im(y?) —• 

I m ( / » . 

Démonstration. — Les objets de lm((p)x et Im(ipx) coïncident avec ceux de ^ et la 

flèche naturelle est simplement l'identité. Construisons l'inverse de la flèche. Soit alors 

a, b G ^ et ip G Hom(<p(a),<p(6)) qui provient de &s € Roms((f (a), <p(/3)). Mais &s 

peut être vu comme une flèche de Im(ip)(S) : on prend son germe en x pour définir 

l'inverse (qui ne dépend pas des choix). On vérifie que ceci définit l'inverse cherché. 

Passons au second point et définissons la flèche. Par adjonction, on doit définir une 

flèche (cartésienne) 

(8.1.2.1) Im(^) - / J m ( / V ) -

D'après la 2-propriété universelle du champ associé, il suffit de définir un morphisme 

cartésien de préchamps 

Im(¥>) - / * M / V ) -

Soit S —> X étale. Les objets du membre de gauche sont les objets de ^(S) tandis 

que ceux de droites sont ceux de (fiçC^)(f~1{S)) = (S). La flèche d'adjonction 

y —> / * / * ^ permet alors de définir la flèche x 1—> f*(x) cherchée au niveau des objets. 

Soient alors x,y des objets de ^(S) et 

g G Homs(<p(x),<p(2/)) = H o m I m ( ^ ) ( 5 ) ( x , y ) 

C'est donc une section sur S de Hp_m((^(x), tp(y)) qui fournit (par image inverse) une 

section sur f-^S) de H o m ( / V ( a ; ) , / V ( y ) ) [Giraud, 1971, II.3.2.8.1 (4)], donc une 

flèche de 

Hom /-i ( 5 )(/*y?(a;),/*^(2/)) = ïïomf-i{S)((<p(f*x),<p(f*y)) = H o m / J m ( / ^ ) ( s ) ( x , y). 
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Le foncteur ainsi défini est visiblement cartésien (comme (p). Le premier point assure 

que les fibres de ce foncteur, et donc également celles du foncteur correspondant 

(8.1.2.1), sont des équivalences, ce qui achève de prouver le lemme. • 

8.2. Groupoïdes libres 
s 

8.2.1. — Soit T = E IV un graphe orienté (E est l'ensemble des arêtes, 
6 

V l'ensemble des sommets, b,s les applications «but , source»). On associe (voir 

[Berger, 1995]) le groupoïde libre L(T) qu'on peut décrire comme suit. Soit E± l'en­

semble E± = {e±,e G E} union disjointe de deux copies de E : ses objets sont les 

sommets et les morphismes entre v,vf G V sont les mots (réduits), éventuellement 

vides, 

ei"'en a v e c s(ef) = b{ef+1)(i = 1,..., n - 1), s(e±) = v, b(ef) = vf. 

8.2.2. Remarque. — Il est bien connu que L(T) est le groupoïde fondamental ITi(RR,) 

de la réalisation géométrique T R de F. 

8.2.3. — Par construction, les foncteurs de L(T) dans un groupoïde G s'identifient 

naturellement aux familles 

(gv) G O b ( G ) y , (7e) e Fl(G)E telles que 7 e G RomG(gs(e), gb{e)). 

Si on préfère, L est l'adjoint à gauche du foncteur d'oubli Groupoïdes —> Graphes. 

8.2.4- — La construction se globalise de la manière suivante. Considérons un dia­

gramme de X-schémas étales 

Tx : E S TV 

X. 

Par fonctorialité de la construction L, on définit une catégorie fibrée (scindée) en 

groupoïdes L(Tx) sur Xét par la formule S t—• L(Tx{S)). Par construction, les fibres 

de L(Tx) sont non vides si et seulement si V —» X est surjectif. Les sections locales 

sont localement isomorphes si et seulement si pour tout point géométrique x —> X , le 

graphe Ex ^ Vx est connexe et non vide. Par construction, on dispose de deux 

sections tautologiques 
g G 0 b L ( r x ) ( V ) , 7 G H o m L ( r x ) № ) ( ^ , b * g ) 

définies par l'identité de V et de E respectivement. Soit <S un groupoïde sur X&. On 

a alors la propriété d'adjonction suivante : la flèche qui à un foncteur cartésien 

V : L(TX) - <S 
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associe 

ip(g) G V{V),ip{i) G Hom^№)(«*^(^),6*^(^)) 

est une équivalence. 

8.3. Constructibilité de sous-gerbes. — Considérons un hyperrecouvrement(viii) de X, 

à savoir un diagramme de X-schémas étales (de type fini) 

Hx : E T V 

X 

où les flèches V —• X et (s,b) : E —• V X j V sont surjectives. Pour tout point 

géométrique x —> X, le graphe est connexe de sorte que L(Hx) est une gerbe. 

Soit 

g G &{y),*t G Hom^№ )(«*§,6*§) 

définissant un morphisme cartésien ^ : L(Hx) —> 

8.3.1. Définition. — Une gerbe sur Xét est dite constructible si pour tout ouvert 

étale S —> X, toute section locale a G (5), le faisceau en groupes Aut(<j) sur Sét est 

constructible. 

8.3.2. Lemme. — Avec les notations précédentes, supposons *S ind-finie. Alors, 

l'image I = Im(y?) est constructible. 

Démonstration. — Comme la formation de l'image et de L commutent à l'image 

inverse, on peut procéder par récurrence noethérienne. Il suffit donc de prouver que I 

est constructible sur un ouvert non vide de X supposé intègre. La constructibilité se 

testant après n'importe quel changement de base surjectif localement de présentation 

finie,[SGA4 ix 2.8], on peut supposer que F, E sont des revêtements étales de X 

complètement décomposés, autrement dit que Hx est un graphe constant fini T. 

Soit alors cr G I(S). Comme T est constant, a est localement isomorphe à n = 

card(F) sections ai G &(X) deux à deux isomorphes. En particulier, chaque faisceau 

Aut(ai) est engendré par un nombre fini de sections provenant d'une famille généra­

trice finie de 7Ti(rR, i) et est contenu dans un faisceau ind-fini de groupes. Ceci assure 

sa constructibilité (cf. la preuve de [SGA4 IX 2.9 (iii)]). • 

(V111) La terminologie est abusive : manque la section diagonale V —+ E pour avoir un hyperrecouvre­
ment (tronqué). 
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8.3.3. Proposition. — Soit 7T : X —» Y un morphisme de schémas noethériens, ^ une 

gerbe ind-finie sur Yét et o E H°(X, 7r*£i). Il existe une sous-gerbe constructible ëfi de 

& telle que a G H°(X,7r*ííi) C H°(X, 7r*^)<ix). 

Démonstration. — La formule (7r*Sf )¿ = &n(x) assure que localement o est isomorphe 

à l'image inverse d'une section locale de ëf. Comme Y est quasi-compact, on peut 

trouver V —• Y étale (surjectif de type fini) et r G &(V) telles que 7r*r et o sont 

localement isomorphes (pour la topologie étale) sur Xy := X Xy V où l'on a encore 

noté 7T la seconde projection Xy —> F. Choisissons donc 

e : X ' - + X y 

étale (surjectif de type fini) et un isomorphisme 

(8.3.3.1) e*7T*r ^ e*p*o 

où p désigne la première projection Xy —• X. Considérons le diagramme commutatif 

X' x x X' —^—^ V xYV 

pri pV2 PT\ pr2 

X ' — ^ V. 

Par définition, poeopn = poeopr2 de sorte que (8.3.3.1) définit un isomorphisme 

(8.3.3.2) h*prlr = prle*7r*T ^ pr\e*K*T = h^pr^r 

et donc ([Giraud, 1971, II.3.2.8]) une section globale du faisceau h* Isom(pr*T, yr^r). 

Comme précédemment, il existe alors (5,6) : E —• V Xy V étale (surjectif de type 

fini) et un isomorphisme 7 : S*T —• b*r induisant (8.3.3.2) localement sur X' x x Xf. 

On vérifie alors que l'image 

Sfi =ím{L{V,E) - ^ W ) 

du morphisme d'adjonction défini par r et 7 (cf. paragraphe précédent) convient. • 

8.3.4. Remarque. — On contourne ici l'absence de sorites sur les limites inductives. 

L'énoncé devrait être en deux parties : d'abord qu'une gerbe ind-finie sur un schéma 

noethérien est limite inductive filtrante de ses sous-gerbes constructibles, ce qui est 

pour l'essentiel le contenu du lemme précédent, ensuite que sur un schéma cohérent, 

le foncteur sections globales commute aux limites inductives filtrantes. 

(lx) Plus précisément, a est dans l'image essentielle de H°(X,TT*^I) dans H 0(X , T T * ^ ) . 
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