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EXPOSE XX

RIGIDITE

Yves Laszlo et Alban Moreau

1. Introduction

Le but de cet exposé est de démontrer les deux résultats techniques 2.1.1 (compa-
raison des torseurs sur I'ouvert complémentaire Spec A — V(I) défini par un couple
hensélien non nécessairement noethérien et ’ouvert correspondant de Spec Aot A dé-
signe le complété I-adique de A) et 5.3.1 (rigidité de la ramification). Ils permettront
dans 'exposé suivant de montrer ’énoncé de finitude suivant (XXI-1.4) :

Théoréme. — Soit A un anneau strictement local de dimension 2. On suppose que A
est normal, excellent, et on note X' = Spec(A) — {ma} son spectre épointé. Alors,
pour tout groupe fini G, l’ensemble H* (X', G) est fini.

Ce résultat est la clef pour démontrer le résultat de finitude général suivant
(XXI-1.2) :

Théoréme. — Soit f : Y — X un morphisme de type fini entre schémas quasi-
excellents. Soit 1. un ensemble de nombres premiers inversibles sur X. Pour tout
faisceau constructible de groupes F sur Yz de L-torsion, le faisceau R! f(F) sur Xe
est constructible.

Par des techniques d’ultrafiltres, chéres aux théoriciens des modéles, on est ramené
& étudier des revétements étales de spectres épointés d’anneaux non noethériens, ce
qui explique qu’on soit contraint de démontrer les énoncés techniques hors de tout
cadre noethérien.

Remarque. — Soit X un schéma. On considérera des champs en groupoides % sur Xg;
(on dira simplement champs). En général, la catégorie fibrée € n’est pas scindée de
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492 EXPOSE XX. RIGIDITE

sorte que si z,y sont deux objets de €(S) ou S — X est étale, il faut quelques précau-
tions pour parler du faisceau Hom(z,y) sur Sg. Précisément, suivant [Giraud, 1971,
1.2.6.3.1], on considére l’équivalence de catégories fibrées € — £ entre € et la
catégorie libre £% engendrée par &, catégorie libre qui elle est scindée. On définit
alors

Hom(z,y)(S") = Homgg (s (L2, £y')

ou £z’, £y’ sont les images inverses par le morphisme étale S’ — S de £z, £y dans
L£%(S"). Bien entendu ([Giraud, 1971, 1.2.6.3.2 (1)]), £ induit une bijection

Hom%(S) (Il,‘, y) = HO(Sa ﬂoﬂ(x, y))

Ces remarques justifient qu’on puisse si besoin supposer sans dommage que les champs
que ’on considérera sont scindés.

2. Lemme de rigidité

Soit (A, I) un couple hensélien (V-1.2.1 ou [EGA 1v4 18.5.5]) non nécessairement
noethérien, avec I de type fini™W. Soit U un ouvert de X = Spec(A) contenant
Spec(A) — V(I). On note A le compléts () I-adique de A et U I'image inverse de
U par le morphisme de complétion 7 : X = Spec(ﬁ) — X. On suppose pour simpli-
fier U quasi-compact (cf. 2.1.4).

2.1. Enoncés. — Rappelons [SGA 4 1x 1.5] qu’un faisceau de groupes % sur X est
ind-fini si pour tout ouvert étale u : U — X avec U quasi-compact, le groupe .% (u)
est limite inductives filtrante de ses sous-groupes finis. On dit alors qu’un champ
en groupoides ¥ sur X est ind-fini si pour tout ouvert étale u : U — X avec U
quasi-compact et tout x,, € €(u), le faisceau en groupes m (%, z,) = Autg(z,) est
ind-fini.

Le but de cette section est de démontrer le théoréme de rigidité suivant.

2.1.1. Théoréme (Théoréme de rigidité de Gabber). — Soit ¥ un faisceau d’ensembles
sur Ug. Alors on a
i) la fleche naturelle HO(U, ) — HO(U, n*.F) est bijective ;
ii) si F est de plus un faisceau en groupes ind-fini, la fleche naturelle HY(U, ) —
HY (U, 7*F) est bijective.

() Cette hypothése sera utilisée pour comparer les gradués I-adiques de A et de son complété A
(|Bourbaki, AC, III, § 2, n° 12])
(i) On dira simplement complété pour séparé complété.
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2. LEMME DE RIGIDITE 493

Les deux énoncés du théoréme précédent sont conséquence du théoréme suivant
p s
apparemment plus fort, forme champétre du théoréme de rigidité (i,

2.1.2. Théoréme (Théoréme de rigidité de Gabber, forme champétre). — Soit €  un
champ en groupoides ind-fini sur Ug. Alors, la fleche naturelle v(€) : T'(U,¥¢) —
L'(U,n*€) est une équivalence.

2.1.3. Remarque. — En fait, le théoréme de rigidité 2.1.1 est a priori équivalent a
la version champétre 2.1.2. C’est ce qui ressort par exemple de ’énoncé 6.3.2. Mais,
formellement, on n’a pas besoin de démontrer cela a ce stade.

2.1.4. Remarque. — Les résultats précédents sont également valables lorsque U n’est
pas nécessairement quasi-compact. Cela résulte du fait que la catégorie des sections
d’un champ sur U est équivalente & la 2-limite projective des sections sur les ouverts
quasi-compacts de U contenant Spec(A) — V(I). L’hypothése de quasi-compacité est
utilisée dans un argument d’éclatement ci-dessous (cf. 2.4.2).

2.2. Réduction au cas constant. — Le résultat est le suivant

2.2.1. Proposition. — Supposons que pour tout U comme plus haut,

i) pour tout ensemble fini F, la fieche H'(U,F) — Ho(ﬁ ,F) est bijective. Alors,
2.1.11) est vrai, c’est-a-dire le théoréme de rigidité 2.1.2 est vrai pour les champs
discrets.

ii) pour tout groupe fini G, la fleche Tors(U,G) — Tors(fj ,G) est une équivalence et
2.1.11) est vrai. Alors le théoréme de rigidité 2.1.2 est vrai.

Démonstration. — D’aprés [SGA 4 XII prop. 6.5], il suffit pour prouver 2.1.1 i) (resp.
2.1.2) de prouver que pour tout U’ — U fini et tout ensemble fini F' (resp. groupe fini
G), la fleche

(2.2.1.1) HO(U', F) — HY(U', F) (resp. Tors(U’,G) — Tors(U’, G))
est bijective (resp. une équivalence) ou U =0UxyU.
2.2.2. Lemme. — Il existe un schéma affine Spec(B) et un diagramme cartésien
U’ — Spec(B)
| = |

U —— Spec(A4)

(i) Les champs (ind-finis) en groupoides discrets s’identifient aux faisceaux d’ensembles : on dira
parfois un champ discret.
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494 EXPOSE XX. RIGIDITE

ot B est fini sur A. Le morphisme U’ — Spec(B) s’identifie & I’immersion ouverte
Up — Spec(B). De plus, Ug contient Spec(B) — V(IB).

Démonstration. — Comme U’ — U est fini, il est projectif ([EGA 11 6.1.11]). Comme
U est quasi-compact, I'immersion ouverte U — X est quasi-affine ([EGA 11 5.1.1]),
donc quasi-projective de sorte que le composé f : U’ — U — X est quasi-projectif
([EGA 11 5.3.4]). Comme X = Spec(A) est affine, Ox est certainement ample (cf. la
définition ou [EGA 11 5.1.2]). Les hypothéses du théoréme principal de Zariski ([EGA
1v3 8.12.8]) sont donc vérifiées. Il existe donc X’ — X fini de sorte que f se factorise
en U — X' - X ot U’ — X' immersion ouverte et X’ — X fini. L’adhérence
schématique de U’ dans X’ est fermée dans X' : elle s’écrit donc Spec(B) ou B est
fini sur A. On a donc un diagramme commutatif

U' —— U~ Spec(B)

N

UC—— Spec(4)

ot les fleches non horizontales sont finies. La fleche U’ — Ug est donc propre. Comme
c’est aussi une immersion ouverte d’image dense, c’est un isomorphisme. L’ouvert U
contenant Spec(A) — V(I), on déduit que U’ = Up contient Spec(B) — V(IB) =
(Spec(4) — V(I))s. 0

D’aprés le lemme, la fléche (2.2.1.1) s’identifie &
(2.2.2.1) H°(Up, F) — H*(Up, F) (resp. Tors(Ug,G) — Tors(Ug, G))
(ou ?p est ’extension des scalaires du A-schéma ? a Spec(B)). Il s’agit donc de
montrer que (2.2.2.1) est bijectif (resp. une équivalence).

Par définition, on a

Up = n5'(U)
ou 7¢ est la projection naturelle
me : Spec(C) — Spec(4), avec C = A®4 B.

Dans le cas noethérien, C' est le complété IB-adique B de B ce qui prouve la
proposition dans ce cas — appliquer ’hypothése 2.2.1 i) & % constant de valeur F' sur
Up. Dans le cas général, la fleche C — B n’est pas en général un isomorphisme.

2.2.3. Lemme. — Avec les notations précédentes, on a
i) Soit (An,I,) un systéme projectif de couples henséliens. Le couple (Ao, loo) =
(lim A,,,lim I,,) est hensélien.
Pty i " R
il) Le complété I-adique A de A est I-hensélien.
iii) Les couples (B, IB) et (C,IC) sont henséliens et ont méme complété I-adique.
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2. LEMME DE RIGIDITE 495

Démonstration. — Soit P un polynome de A [z] et @ € A /I une racine simple
(c’est-a-dire telle que P’(a) inversible dans A /I ). L'image @, de @ dans A, /I, est
une racine simple de P. Elle se reléve donc de fagon unique en une racine a,, € A,, de P
d’aprés le lemme de Hensel. Comme I, 1 s’envoie dans I,,, par unicité des relévements,
limage de a,.; dans A, est égale & a,, de sorte que la suite a = (an) € Ao est le
relévement cherché de @ ce qui prouve i) d’aprés [Crépeaux, 1967, Prop. 1].

Puisque A — A/I™ est notoirement entier, les couples (A/I™,IA/I"™) sont hensé-
liens de sorte que ii) découle de i).

Par associativité du produit tensoriel, le morphisme naturel B/I"B — C/I"C
s’identifie & la tensorisation par B du morphisme naturel A/I"A — ;1\/ I"A. Comme
ce dernier est un isomorphisme (|[Bourbaki, AC, III, §2, n° 12, prop. 15 et cor. 2|),
B et C ont méme complété I-adique. iii) suit alors de ii) car un couple fini sur un
hensélien est hensélien. O

On a donc (UB) ( ¢)- D’aprés le lemme précédent, sous les hypothéses de 2.2.1
i) (resp. ii)), la fleche naturelle

H'(Up, F) — B'((Up), F) = B*((Uo), F) — K’(Uc, F) = B'(Up, F)
(resp.
Tors(Upg, G) — Tors((U/B\),G) = Tors((U/;),G) — Tors(Uc, G) = Tors(Ug, G))

est alors une bijection (resp. équivalence), ce qu’on voulait. O

2.3. Réduction au cas strictement hensélien. — Résumons les notations dans le dia-

T‘ T

X-T-x
V(I

avec U quasi-compact contenant Spec(A) —

gramme cartésien suivant

). Montrons le résultat suivant.

2.3.1. Proposition. — Supposons que pour tout U comme plus haut,

i) pour tout ensemble fini F, la fleche H*(U,F) — Ho(ﬁ , F) est bijective si A est
de plus strictement local. Alors, 2.1.11) est vrai (que A soit strictement local ou
non,).

ii) pour tout groupe fini G, la fleche Tors(U,G) — Tors(f]' ,G) est une équivalence si
A est de plus strictement hensélien et 2.1.1 1) est vrai. Alors, 2.1.2 est vrai (que
A soit strictement local ou non).

Démonstration. — Commengons par un lemme.

2.3.2. Lemme. — Supposons que pour tout U comme plus haut,
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i) pour tout ensemble fini F, la fleche HO(U, F) — Ho(ﬁ, F) est bijective si A est
de plus strictement local. Alors, la fleche de changement de base

v : 7 F = j,n*F =5, F
est un isomorphisme (que A soit strictement local ou non).
ii) pour tout groupe fini G, la fleche Tors(U,G) — Tors(U,G) est une équivalence

si A est de plus strictement hensélien et 2.1.1 i) est vrai. Alors, la fleche de
changement de base

~: ¥4, Tors(U, G) — iw*Tors(U, G) = ?*Tors(f/\', G),

ot légalité résulte de |Giraud, 1971, I11.2.1.5.7], est une équivalence (que A soit
strictement local ou non).

Démonstration. — Les formules j*j, = Id et /j\*;* = Id assurent qu’on a

~ A~

Fre =1 = 1t =7
de sorte que I'image inverse sur U de la fleche de changement de base
(2.3.2.1) T E — Ju 1 E
est une équivalence pour tout champ en groupoides %.

Soit & un point géométrique de X d’image le point géométrique z = 1o % de X
et montrons que la fibre de la fléche de changement de base (2.3.2.1) en £ est une
équivalence. D’aprés ce qui précéde, on peut supposer & € U. En particulier, z € V (I).

Soit A" (resp. X(,)) I'hensélisé strict de A (resp. X) en z et Abs (resp. X (#)) celui
de A (resp. X) en 2. On a un diagramme commutatif ou les flieches sont les fléches de
fonctorialité, complétion ou stricte hensélisation

X(fv) E X(i) : 5[

On note alors

U U U
U@ Utw) U

I'image inverse du diagramme par I'immersion ouverte U — X. En particulier, U,
(resp. ﬁ(i)) désigne I'image inverse de I’hensélisé strict X ;) (resp. X (3)) de X (resp.
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2. LEMME DE RIGIDITE 497

X ) en z (resp. ) par j (resp. ;) Comme U est quasi-compact, il en est de méme des
ouverts Uy, Uiz) de X(z), X(3) -

Les morphismes j,3 étant cohérents, dans le cas i), la fibre ; s’identifie & la fleche
naturelle
tandis que dans le cas ii) elle s’identifie &

Tors(U(z), G) — Tors(ﬁ(j), QG).
On déduit que les fleches naturelles
H(Uge), F) = B (U, F) et B (Ug), F) — B (U(s), F)
sont bijectives dans le cas i) et que les fleches
Tors(U(y), G) — Tors(U/'(:),G) et Tors(ﬁ(j),G) — Tors(fj\'(i),G)
sont des équivalences dans le cas ii). Il suffit donc de voir que la fléche naturelle
(2.3.2.2) Uty = Uy
est un isomorphisme, ou encore que
APs et A" ont méme I-complété.

Puisque ’anneau local AP est hensélien, il est a fortiori I-hensélien (V-1.2.1). Utilisant
(2.2.3), on constate que le I-complété ZE est hensélien. Comme son corps résiduel
est celui de APS, il est strictement hensélien. La fléche A — Abs induit donc une fléche
Abs _, Abs ot donc, par I-complétion, une fléche

(+) Abs _, Abs,

Par ailleurs, la fléeche de complétion A — A induit par hensélisation stricte puis
complétion une fleche

(**) ZE N A\hs‘
Les fleches (*) et (**) sont inverses I'une de l'autre, d’ou le lemme. O

On a le diagramme commutatif & carré cartésien
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Comme on ’a observé, les paires (A4,1I) et (A\, IA\) sont henséliennes. La fléche
H(X,%) — HO(X 1,%]x,) est donc une équivalence pour tout champ ind-fini ¢ sur
X, d’aprés [Gabber, 1994, théoréme 1].

On déduit d’une part

H°(U, F) = H(X, j. F) = H(X1, (ju F) x,)
et, d’autre part
H(U, F) = H*(X, 7, F) *2? BO(X, 7"}, F) = H'(X1, (7§, F) x,)
ce dernier n’étant autre que H°(X7, (j.F) x,) (bien entendu I'isomorphisme induit
HY(U,F) & HO(U, F)

est la restriction).
De méme, on a

H°(U, Tors(U, G)) = H*(X, j.Tors(U, G)) = H*(X1, juTors(U, G)  x,)

et, d’autre part

HO(X,?*M((/J', G))
H° ()?, W*j*M(Ua G))
- HO(XI,W*j*TOIS(U, G)IXI)

H(U, Tors(U, G))
2

e 1l

2

ce dernier n’étant autre que H°(X7, j.Tors(U, G)|x,)), 'équivalence induisant bien
entendu
H°(U, Tors(U, G)) = HY(U, Tors(U, G)).

Reste & invoquer 2.2.1. O

2.4. Finde la preuve de 2.1.2. — D’aprés 2.3.1, pour prouver 2.1.2, il suffit de prouver
I’énoncé suivant

2.4.1. Proposition. — Supposons A strictement hensélien (et I C rad(A)) et soit U
comme plus haut.

i) pour tout ensemble fini F, la fleche HO(U, F) — HO(U, F) est bijective.
ii) pour tout groupe fini G, la fleche Tors(U, G) — Tors(U,G) est une égquivalence.

La formule m*Tors(U, G) = Tors(U, G) ([Giraud, 1971], I11.2.1.5.7) permet de ré-
écrire 2.4.1 sous la forme suivante

2.4.2. Proposition. — Supposons A strictement hensélien (et I C rad(A)) et soit U
comme plus haut. Désignons par € le chamyp discret Fy ou bien Tors(U, G). Alors, la
fleche HO(U,€) — HO(U,m*€) est une équivalence.
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2. LEMME DE RIGIDITE 499

Démonstration. — On va se ramener par éclatement au cas ou l'idéal J définissant
le complémentaire de U est principal .
Pour tout idéal I d’un anneau A, on note
Ecl;(4) = Proj(@ m
n>0
Péclatement de I dans Spec(A). Si I est de type fini, le morphisme structural e :
Eclf(A) — Spec(A) est projectif, en particulier propre.

On suppose donc A strictement hensélien de corps résiduel k et % = Fyy comme
plus haut. On a déja observé que A était aussi strictement hensélien. Il suit en parti-
culier que I’ensemble des sections globales de tout faisceau étale sur X ou X s’identifie
a sa fibre spéciale, ce qu’on utilisera sans plus de précaution.

Comme U est quasi-compact, il existe un idéal J de type fini tel que U = Spec(A4)—
V(J). Comme U contient Spec A — V(I) et que I est de type fini, on peut supposer
I C J. Soit

Y = Ecly(A) et Y' = Ecly(A).

(On aurait da écrire Ecl J X(A\) pour Ecl J(E)) Pour des raisons de cohérences, on
notera simplement X’ le schéma X = Spec(A) (resp. U’ sa restriction U = 7~ 1(U) a
).
2.4.3. Sous-lemme. — Soient n,m des entiers > 0. Le morphisme de complétion défi-
nit des isomorphismes

AT I ~ AT J"A et A)J" ~ A)J"A
induisant un isomorphisme

Jr /I ~ JPA/ T A,

Démonstration. — Comme I est de type fini, le morphisme de complétion induit des
isomorphismes

A/I™™ ~ A/ A et AT ~ AJT"A
d’aprés [Bourbaki, AC, III, §2, n° 12, cor. 2 de la prop. 16]. Mais comme J contient
I,ona

mtr cIrmjr et I Cc J",
de sorte que les changements de base
AT — AJT™J™ et AJT" — A)J"

donnent alors des isomorphismes

AT I ~ AT J"A et A)J" ~ A)J"A
qui donnent 2.4.3. O
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500 EXPOSE XX. RIGIDITE

La fléche naturelle Y’ — Y est donc un isomorphisme au-dessus de Spec(A/I) C X
car elle est induite par le morphisme gradué

@/ — A/ 1A

qui est un isomorphisme. On identifiera ces restrictions par la suite. En particulier, le
morphisme p; : Y] — Y; entre fibres spéciales (c’est-a-dire au-dessus du point fermé
de s € Spec(A/I) C X) est un isomorphisme grace auquel nous les identifierons.
Regardons le solide commutatif

U=vd—y <oy,

X <———Spec(k).
Admettons pour un temps le résultat suivant.

2.44. Lemme. — Soit % = Fy (resp. € = Tors(U, G)). Alors, la fleche de changement
de base 7y : p*5,.€ — j.p*€ est bijective (resp. une équivalence).

Déduisons alors 1’équivalence cherchée
H(U, %) 5 H°(U', %) = H' (U, p*%¥)
grace au théoréme de changement de base propre d’Artin-Grothendieck ([Giraud, 1971]
dans le cas noethérien et théoréme 7.1 dans le cas général) appliqué aux faces inférieure

et supérieure du diagramme précédent. On a en effet un diagramme essentiellement
commutatif ot toutes les fleches sont les fléches naturelles (obtenues par adjonction)

HO(U, ¥) =——— H'(Y, ,%) —— H'(Y;,i*},%) HO(Y,, " p* . €)
HO(U', p*€) =—— HO(Y, jLp*€) —2> HO(Y,, i j.p*€).

Les fléches b, d sont bijectives (resp. des équivalences) grace au théoréme de chan-
gement de base propre (7.1) tandis que c¢ est une bijection (resp. une équivalence)
grace & (2.4.4). Il suit que a et o sont des bijections (resp. des équivalences).
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2. LEMME DE RIGIDITE 501

Preuve du lemme 2.4.4. — Soit 2’ un point géométrique de Y’ d’image z dans Y. On
peut supposer z' € V(JOy). Soit B ’hensélisé (strict) de Y en z’ et B’ celui de Y’
en z. On doit étudier la fléche

(%). H°(Spec(B) — V(JB), %) — H°(Spec(B') — V(JB'),¥)

Observons que par définition de I’éclatement, JB (resp. JB') est un idéal princi-
pal engendré par un élément non diviseur de zéro et non inversible ¢ € B (resp.
t' € B') (équation locale du diviseur exceptionnel). Par ailleurs, les couples (B, JB)
et (B’, JB’) sont henséliens car B, B’ sont locaux henséliens (exercice). Les isomor-
phismes

JYAJTA S JVA) T A, m > 0
assurent que B et B’ ont méme complété J-adique B=7.

On utilise alors les généralisations des résultats d’Elkik [Elkik, 1973] — et
donc de Ferrand-Raynaud pour le myp — au cas principal non noethérien de
|Gabber & Ramero, 2003]. Précisément, le théoréme 5.4.37 loc. cit. appliqué au
B[t~ !]-groupoide discret Fg = Spec(B[t!]) x F assure qu’on a

HO(Spec(B[t 1)), F) = mo(F) = mo(F) = H°(Spec(B[t™1]), F)

et de méme en remplacant B,t par B’,t. Comme B et B’ ont méme complété
J-adique, on a donc

H(Spec(B[t™")), F) = H’(Spec(B'[t'"]), F),

ce qu'on voulait. Dans le cas ¥ = Tors(U,G), on déduit du cas discret que (%)
est plemement fidéle. Soit alors P un revétement galoisien de groupe G sur U=
Spec(B) — V(JB). D’aprés le théoréme 5.4.53 de [Gabber & Ramero, 2003], il pro-
vient d’un (unique) revétement P de U. La pleine fidélité de (%) assure que le groupe
d’automorphismes de P est G. Dire que P est galoisien de groupe G, c’est dire que la
fléche canonique

¢:PxG—PxyP

est un isomorphisme. On peut voir cette flécche comme un morphisme de revétements
étales de U. Apreés image inverse sur U, elle s’identifie & la fleche analogue

ﬁ X G — 13 Xﬁ ﬁ
qui est un isomorphisme (de revétements étales de P donc de revétements étales de
U) par hypothése. La pleine fidélité de (x) assure que ¢ est.un isomorphisme de sorte
que P est bien galoisien de groupe G. On a donc obtenu que le foncteur naturel entre
les catégories de G-revétements galoisiens sur U et U sont équivalentes. Il en est donc

de méme pour le foncteur les catégories de G-revétements galoisiens sur U’ et U'. On
conclut en se souvenant de ’égalité U = U’. a
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2.4.5. Remarque. — Le théoréme 2.1.2 entraine immédiatement que la fléche de chan-
gement de base

T3 E — 3*77*‘@”
est une équivalence. En effet, on ’'a déja vu sur U (2.32.1). Si & & fj', on a déja

observé dans la preuve de 2.3.2 que U, et (/J\'(i) avaient méme complété I-adique de
sorte que deux applications de 2.1.2 assurent que la fibre de

T3 € — /f*w*‘é

en £ est une équivalence.

3. Rigidité de la ramification

3.1. La condition c;. — Rappelons ([EGA 1v4 18.6.7]) que I’hensélisé A" d’un anneau
semi-local A est le produit des hensélisés des localisés de A en ses idéaux maxi-
maux. Pour tout anneau noethérien, on note A™°" son normalisé, & savoir la cloture
intégrale de A dans Panneau total K(A) des fractions de A,sq. Puisque K(A) est
le produit des K(A/p) ot p décrit les points maximaux de Spec(A), le normalisé
de A est le produit des normalisés des A/p. Si A™" n’est en général pas noethé-
rien ([Nagata, 1962, exemple 5 de appendice]), ses fibres réduites sur A sont finies
([Nagata, 1962, V.33.10]). En particulier, si A est local noethérien, A™°* est semi-local
de sorte que son hensélisé est bien défini. On a alors (comparer avec [Nagata, 1962,

43.20 et exercice 43.21])

3.2. Lemme. — Soit A un anneau local noethérien.

~

— La fleche canonique A — (A™")! induit un isomorphisme (AP)™or 5 (Aror)h,

— Cette bijection induit une bijection canonique p — p* entre les points maximaux
p de Spec(AP) et les points fermés p* de Spec(A™") de telle sorte que les anneauz
integres (AP /p)Por et (Ag?r)h sont (canoniquement) isomorphes.

Démonstration. — D’aprés [EGA 1v,4 18.6.8], le morphisme canonique A" ® 4 A® —
(Am°r)h est un isomorphisme. Le morphisme canonique A — A" étant ind-étale, il est
normal. D’aprés [EGA 1V, 6.14.4], le morphisme canonique A — A™°"® 4 A" identifie
APr® 4 AP 3 1a fermeture intégrale de A" dans A*® 4 K (A). Si maintenant, A — B est
étale, la fibre au point maximal p € Spec(A) s’identifie & Spec(K (B)). En passant a la
limite, on déduit 1'égalité AP®4 K(A) = K(A") de sorte que A"°*® 4 AP s’identifie 4 la

fermeture intégrale de A® dans A" ®4 K(A) = K(AM) et donc (A")"r 55 Anor @ 4 AP,
La composition

(Ah)nor :) Aror ®4 Ah :) (Anor)h
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est Iisomorphisme annoncé. Pour le second point, on observe d’une part que le spectre
du normalisé de A" est la somme disjointe des normalisés de ses composantes irré-
ductibles
(321) Spec((A")™") = IT  Spec((a™/p)™),

p point maximal
chaque fermé Spec((AP/p)"°F) étant intégre (puisque local et normal) de sorte que
3.2.1 est une la décomposition en composantes irréductibles de Spec((AP)°r). D’autre
part, par définition de ’hensélisé d’un anneau semi-local, on a
(3.2.2) Spec((A™")") = J]  Spec((4p)").

p* point fermé

Or, (A:;?r)h est local et normal (comme AP2"), donc intégre, prouvant que 3.2.2 est la
décomposition en composantes irréductibles de Spec((A™°*)"). Le lemme suit. O

3.3. Proposition. — Soit Z un sous-schéma fermé d’un schéma noethérien X. Les
conditions sutvantes sont équivalentes :

(i) Soit p : X™* — X le morphisme de normalisation. Alors, p~*(Z) est de codi-
mension > 2 dans X™°.

(ii) Pour tout z € Z, toutes les composantes irréductibles de Spec(O% ,) sont de
dimension > 2.

(iipis) Pour tout z € Z, toutes les composantes irréductibles de Spec(ﬁ’g}syz) sont de
dimension > 2.

(iii) Pour tout z € Z, toutes les composantes irréductibles de Spec(gx\,z) sont de
dimension > 2.

Démonstration. — Notons A = Ox,, pour z € Z. Notons d’abord que le morphisme
AP — APS est injectif, entier et fidélement plat. Ceci prouve que le morphisme A :
Spec(A") — Spec(A) vérifie dim(h(x)) = dim(Z) et induit une surjection au niveau
des points maximaux, ce qui prouve I’équivalence de (ii) et (iipis)-

Un anneau intégre et son normalisé ainsi qu’un anneau local et son hensélisé, ont
méme dimension. Conservant les notations de 3.2, on a donc

dim A" /p = dim AP
Or, dire codimp~!(Z) > 2, c’est dire dim Ap?™ > 2 lorsque p* décrit les points fermés
de
Spec(A™") = p~!(Spec(Ox,.))
lorsque z décrit Z. Ceci revient donc a dire que toutes les composantes irréductibles
Spec(A"/p) de Spec(A™®) sont de dimension > 2 prouvant 1’équivalence de (i) et (ii).
Pour montrer I’équivalence de (i) et (iii), on peut supposer que X = Spec(A) est
local hensélien et que Z est réduit & son point fermé.
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Prouvons d’abord que (iii) unphque (ii). Soit Y une composante irréductible de X.
Le morphisme de complétion ¢ : X — X étant fidélement plat, ¥ = ¢ H(Y) est une
réunion de composantes irréductibles de X de sorte qu’on a dlm(Y) > 2. Comme Y
est local noethérien, on a dim(Y) = dim(Y’) > 2.

Prouvons la réciproque. Quitte & se restreindre & une composante irréductible (ré-
duite), on peut supposer X intégre de dimension > 2. Soit £ (resp. z) le point fermé de
X (resp. X) (ce n’est pas une composante irréductible de X qui est de dimension > 2).
Si une des composantes de X était de dimension < 1, elle serait de dimension 1 (car
{Z} n’est pas une composante) et donc son point générique serait un point isolé de
X — {2} de sorte que X — {#} serait disconnexe (étant de dimension > 2). Or, d’apres
[Ferrand & Raynaud, 1970, corollaire 4.4], la fléche

mo(X — {2}) = mo(c™ (X — {2})) = mo(X — {z})

est bijective. Or, comme X est intégre de dimension > 2, 'ouvert X — {z} est intégre
donc connexe. O

3.4. Définition. — Avec les notations de 3.3, si Z vérifie les conditions équivalentes de
3.3, on dit que Z est cz dans X.

3.5. Remarque. — Si X est intégre et excellent, Z est cy si et seulement si X — Z
contient tous les points de codimension < 1. En effet, comme le morphisme de norma-
lisation est fini et X universellement caténaire, on a dim @xnor  nor = dim Ox p(znor)
pour tout 2" € p~1(Z) (cf. [EGA 1v4 5.6.10]).

3.6. Proposition. — Soit f : X' — X un morphisme plat de schémas noethériens et
Z un fermé de X. Alors, si Z est c; dans X, son image inverse Z' = f~1(Z) est
¢z dans X'. En particulier, la condition cy est invariante par localisation Zariski ou
étale.

Démonstration. — Soit 2z’ € Z’' d’image z = f(2’) € Z. On suppose donc (3.3) que
toutes les composantes de A = 5): sont de dimension > 2 et on veut prouver que
toutes les composantes de B = ﬁ/x\/zr sont de dimension > 2. On peut donc supposer
que f est morphisme local de schémas noethériens, locaux et complets. Comme f est
plat, toute composante de X’ domine une composante X, de X et est une composante
de f~!(Xp). On peut donc supposer X intégre de dimension > 1, de point fermé z.
D’aprés [SGA 2 viil 2.3], le A-module &(X — z) est de type fini. Comme B est plat sur
A, on déduit que BR4 O(X —2) = O(X'— f~1(2)) est de type fini sur B. Comme B est
noethérien, le sous B-module (X’ —2') de 0(X'— f~1(z)) est de type fini. Supposons
qu’une composante de X’ soit de dimension 1. Soit 1 le point générique d’une telle
composante et définissons alors X, comme ’adhérence schématique Spec(€x’ ) dans
X'. Le complémentaire X, — 2’ serait alors réduit & n qui serait isolé dans X' — 2'.
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Ainsi 0(X{, — 2') serait un sous B-module de &(X’ — 2’), donc de type fini (B est
noethérien). A fortiori, &(X/}, — 2’) serait de type fini comme &(X{)-module, ce qui
contredit [SGA 2 v1iI 2.3] puisque X{, est de dimension 1. O

4. Théoréme de rigidité de la ramification I : forme faible

Nous allons commencer par démontrer une variante du changement de base lisse
qui est cruciale dans la preuve du théoréme de rigidité 4.2.1.

4.1. Variante du théoréme de changement de base lisse. — Soit G un groupe fini. On
va démontrer une variante du théoréme de changement de base lisse [SGA 4 XvI 1.2]
pour les faisceaux de G-torseurs sans hypothése sur le cardinal de G, mais en se
restreignant au cas d’immersions ouvertes (pour une preuve un peu différente, voir
[Gabber & Ramero, 2013, 10.2.2]).

4.1.1. Théoréme. — Considérons un diagramme cartésien

U/L__j,_> X!
| o )
Uc;. X
Supposons X excellent normal, p : X' — X lisse et j : U — X immersion ouverte

telle que U contient tous les points de codimension < 1. Alors, le morphisme de
changement de base ® : p*j, Tors(U, G) — j. Tors(U’, G) est une équivalence.

Démonstration. — D’aprés le théoréme de changement de base lisse pour les faisceaux
d’ensembles [SGA 4 xv1 1.2], ® est pleinement fideéle. Il suffit de prouver P'essentielle
surjectivité. Soit ' un point géométrique de X’ d’image x = p(z’). Passant aux fibres,
on est ramené & prouver que la fléche d’image inverse des torseurs

(*) HI(U(:,;),G) - HI(U(II/),G)

est bijective, avec de plus &’ fermé dans sa fibre [SGA4 viir 3.13 b)]. La stricte
hensélisation préserve la normalité et la codimension (platitude). Les propriétés de
permanence des anneaux excellents (cf. I-8) assurent donc qu’on peut supposer X =
Spec(A), X' = Spec(A’) avec A = 0%, A’ = 0%, ,, strictement locaux, normaux et
excellents.

11 se peut que Pextension résiduelle k(z')/k(x) soit purement inséparable. Comme
dans la preuve du théoréme d’acyclicité locale usuelle ([SGA 4 Xv 2.1]), pour se ra-
mener au cas séparable, donc au degré 1, on considére une extension finie A C B telle
que D’extension résiduelle contienne k(z’)/k(z) (on peut par exemple considérer un
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gonflement de A’/A au sens de Bourbaki). On peut supposer B intégre et normal et
considérer alors

m: Y = Spec(B) — X = Spec(A)

ainsi que Y/ = Y xx X’ et V l'image inverse de U dans Y. Le couple (Y,V)
vérifie les mémes propiétés que (X,U). Le morphisme tautologique Tors(U,G) —
7. Tors(m~*(U), G) est fidéle. On peut alors invoquer 6.2.1 pour ramener la preuve
de (%) a I’énoncé analogue sur (Y, V), autrement dit on peut supposer k(z) = k(z').

Comme p est lisse, le choix de coordonnées locales t1,...,t, de X' en z’ définit
un A-isomorphisme A{ti,...,t,} = A’ ot comme d’habitude A{t,...,t,} désigne
Ihensélisé strict de A[t1,...,t,] & Porigine. Une récurrence évidente permet de sup-

poser n = 1. On s’est ramené 4 la situation
U——Xx'
b b
vl x
avec A strictement local, normal et excellent et o la section de p définie par I'immersion

fermée d’équation ¢ = 0. Comme X, X’ sont locaux et normaux, ils sont intégres. Les
ouverts non vides de X, X’ sont donc intégres et donc connexes. Le composé

m(U) 25 m(U') =5 m(U)

étant I'identité, il suffit de prouver que o, est surjectif. Soit alors V' un revétement
étale connexe de U’. On doit prouver que sa restriction V — U au fermé U S u
d’équation ¢ = 0 est connexe.

Comme X’ est excellent, la cloture intégrale Y’/ de X’ dans V' est finie sur X',
normale et intégre (comme X’). Comme X' est hensélien, il en de méme de Y’ qui
est donc une union disjointe de ses composants locaux. Comme Y’ est intégre, Y’ est
local. Soit D C Y’ le diviseur de Cartier d’équation ¢ = 0 : D est connexe, puisque
fermé dans un schéma local.

On a donc un diagramme commutatif & carrés cartésiens et ou les fléches verticales
sont finies (et dominantes).

VY <D <V

R

U'c X <LOXx 0.
Soit 2’ un point de D — V, d’image = dans X — U. Comme D — X est fini, on
a dim {z'} = dim {z} et dim(D) = dim(X). Comme X, D sont caténaires (ils sont
méme excellents) et D équidimensionnel, on en déduit Iégalité dim Op o» = dim Ox

ce qui assure que 'ouvert V dans D contient tous les points de codimension 1 dans
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D (de méme que U contient tous les points de codimension 1 dans X). D’aprés le
lemme XX1I-4.2.1 appliqué au diviseur de Cartier connexe du schéma normal, excellent
Y’, le schéma V est connexe. O

4.2. Enoncé et réductions
4.2.1. Théoréme (Rigidité de la ramification). — Soient X, X' des schémas noethé-

. P . J . . g
riens, Z C X un sous-schéma fermé, U < X l'ouvert complémentaire et X' — X

’

un morphisme plat. Notons U’ &> X' Uimmersion owverte U' = 7= 2(U) — X'. On
suppose que T est régulier au-dessus de Z. Soit € un champ en groupoides sur Us.
Alors, la fleche de changement de base

O(E) : TG E — Jum*E
est une équivalence dans les deuz cas suitvants :

(i) € est discret (c’est-a-dire € égquivalent & un faisceau d’ensembles).
(ii) Z est ca et € = Tors(U,G) avec G un groupe (ordinaire) fini.

En considérant les fibres, on peut supposer que 7 est un morphisme local de schémas
strictement locaux (la condition ¢z ne dépendant que des hensélisés stricts aux points
de 7).

Soient z,z’ les points fermés respectifs de X, X’. Par récurrence sur la dimension
de X', on peut supposer que ¢(%)y est une équivalence en tout point géométrique
7 de X' — {z'} et il suffit de prouver que ¢(%),  est une équivalence. On peut de
plus supposer z € Z (sinon U = X et c’est terminé). Par hypotheése, la fibre spéciale
F = 771(z) de 7 est géométriquement réguliére.

On a un diagramme commutatif & « carrés » cartésiens (avec des notations un peu
abusives)

U

U/
s 3
5 X' —F—=X—{z} )j
f £
X —= S X.

Par hypothése de récurrence, la fleche de changement de base associée au carré
supérieur est une équivalence de sorte qu’on a une équivalence 7*j,% = j.T*€ sur
X' — F. Comme X, X’ sont strictement henséliens, la fleche de changement de base

¢(J*%)z’
HO(X,E*%) = HO(X - {z},g*%)
L HY(X' — F, 7}, %)
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=HYX' — F,j.n*%)
= H(X',J.n"%)
s’identifie & la fleche d’image inverse
(4.2.1.1) ™ : HY(X - {z},5.%) - H*(X' — F,7*4,%).

Notons X le schéma complété de X le long de son point fermé et X le complété
de X’ le long de F'. Pour tout S-espace & sur Sg avec S = X, X', on note & son
image inverse sur S. On a un diagramme commutatif

—_~~ !
X T x!

]

X—1-x
ol 7,7 sont les morphismes de complétion, donc sont plats, et # est plat comme
7 est un morphisme local de schémas noethériens. Sa fibre spéciale est encore F' de
sorte qu’elle est géométriquement réguliére. Ainsi, 7 est formellement lisse ([EGA 1v4
19.7.1]) et donc régulier ([André, 1974]) puisque X est local noethérien complet donc
excellent. D’aprés 3.6, Z = X — U est encore ¢, (dans le cas (ii)). D’aprés le théoréme
de rigidité de Gabber (2.1.2) appliqué aux paires henséliennes (X, z) et (X', F), il
suffit, pour prouver que le foncteur 4.2.1.1 est une équivalence, de prouver que le
foncteur

(4.2.1.2) 0 HY(X — {2}, 5.%) - HAX' — F,7*j,%)

est une équivalence.
Si € est un faisceau d’ensembles, on procéde comme dans (XIV-2.5.3) pour montrer
la bijectivité de (4.2.1.2) et achever la preuve du théoréme 4.2.1 dans le cas discret.
Dans le cas (ii), montrons un lemme.

4.2.2. Lemme. — On peut supposer que w est un morphisme essentiellement lisse de
schémas strictement locauz et excellents.

Démonstration. — Mais le morphisme de changement de base
L Y GE =G — Gy E =5 F

est fidéle. En effet, en considérant les faisceaux de morphismes, il suffit démonter que
le morphisme de changement de base

Y F — 3*7**9
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est injectif pour tout faisceau d’ensembles sur U. La fibre de ce morphisme en un
point géométrique £ de X d’image ¢ dans X s’identifie au morphisme d’image inverse

T': H(U xx Xg),F) = BOU x5 X6, % F)
par le morphisme canonique
Ye ZﬁXXX(é) i UXXX@).

Mais la platitude de v assure que 7¢ est surjectif et donc I' injectif.
D’autre part

& = Tors(U, G)

d’aprés [Giraud, 1971, I11.2.1.5.7]. Dans le cas (ii), pour prouver que (4.2.1.1) est une
équivalence, on peut donc supposer d’aprés (6.2.1) que X est complet, donc excellent
et m un morphisme local régulier.

D’aprés le théoréme de Popescu ([Swan, 1998]), le morphisme régulier 7 est li-
mite projective filtrante de morphismes locaux essentiellement lisses m; : X] — X.
Notons que les X sont strictement locaux et excellents comme X. Comme les X/
sont cohérents, le foncteur section globale commute & la limite projective au sens de
[SGA 4 vi1 5.7] de sorte qu'il suffit de prouver le théoréme pour les ;. O

4.3. Preuvede4.2.1. — On suppose donc que 7 est un morphisme local essentiellement
lisse de schémas excellents et € = Tors(U, G). On doit prouver pour conclure la preuve
du théoréme 4.2.1 la variante suivante du théoréme de changement de base lisse de
Gabber (4.1.1).

4.3.1. Proposition. — Considérons un diagramme cartésien

U'CL)X/
| o |
U;j_>X

ou m est un morphisme local essentiellement lisse de schémas excellents strictement
locauz. On suppose que le fermé complémentaire Z = X — U est non vide et ¢y (c’est-
a-dire sous ces hypothéses, que U contient les points de codimension 1 (3.5)). Alors,
le morphisme

7 : HO(X — {z}, j« Tors(U, G)) — HY(X' — n~*{z}, n*j, Tors(U, G))

est une équivalence, ot x est le point fermé de X.
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Démonstration. — Le morphisme de normalisation p : X™°" — X étant entier, son
image est fermée. Comme p est (ensemblistement) dominant, p est surjectif. Comme
p est surjectif, le foncteur

[Giraud, 1971, I11.2.1.5.7]

J« Tors(U, G) — j.psp™ Tors(U, G) P, jeo" Tors(U™", G)

est fidele("). D’aprés 6.2.1 et le théoréme 4.2.1 (i), il suffit de prouver que la fléche
(4.3.1.1)
. HO(X _ {x},p*jfor TOI‘S(Unor, G)) N HO(X/ . 71'_1{1'}, W*p*jfm TOrS(Unor, G))

est une équivalence.
Considérons le diagramme cartésien

nor

X 'mor LR X nor
Lp' [m] ‘/P
X —T = X.

Comme p est fini (donc propre), on a 7*p, = p,7"°™* de sorte que (4.3.1.1) s’identifie
a la fleche d’image inverse
(4.3.1.2)  mRo™ : HO(X™OF — {z}"°", 52T Tors(U™", G))
N HO (Xlnor _ (ﬂ,nor)—l{w}nor, ﬂ_nor*jfor TOI‘S(Unor, G))
Notons que, la condition c; ne dépendant que du normalisé, le complémentaire
Z1or de UM°T est encore ca dans X™°", et U™°" contient tous les points de codimen-

sion 1. D’aprés le théoréme de changement de base lisse de Gabber 4.1.1, la fleche de
changement de base

ﬂ.nor*j;lor TorS(UHOI" G) — jinor TorS(U/IIO!', G)
est une équivalence de sorte que (4.3.1.2) s’identifie & 'image inverse
7™ : Tors(U™*", G) — Tors(U™", G).
11 suffit alors de constater que la preuve du théoréme 4.3.1 assure que 7"°"* est une
équivalence. O
4.4. Comparaison a la complétion : cas des coefficients abéliens dans le cas non nécessaire-
ment nethérien

Le paragraphe suivant est une esquisse de démonstration de ’analogue du
théoréme 4.2.1 pour les coefficients abéliens. Le cas des schémas ncethériens
est traité dans [Fujiwara, 1995]. Nous reproduisons ici fidélement une lettre
d’Ofer Gabber aux éditeurs (20 juin 2012).

() On note & — &2°T le foncteur d’image inverse par p.
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Let (A,I) — (A’,I') be a map of henselian pairs with I finitely generated, I’ =
IA', A 5 A (I-adic completions). X = Spec(d4), X’ = Spec(4'), 7 : X' — X,
U=X-V(I), U =X"-V{I"),j:U-X,5:U - X'

CTC : For every torsion abelian sheaf F' on U, the base change arrow
m*R4j, F — R%j.7n*F is an isomorphism for all q.

Analogue of 4.2.1 (notations as there) : If F is a sheaf of Z/nZ-modules on U
where n > 0 is invertible on X, then 7*R%j,F — R%j/n*F are isomorphisms.

This is reduced to CTC by the same argument.

Sketch of proof of CTC using Zariski-Riemann spaces : For comparing stalks we
may assume A, A’ strictly henselian and I a proper ideal, and we want

(%) HY(U,F) S HY(U', F).

We call a finitely generated ideal J C A containing a power of I admissible. We con-
sider the admissible blow-ups Bl;(X) which form a cofiltered category using X-scheme
morphisms. In general there can be more than one X-morphism between two admis-
sible blow-ups but if we restrict ourselves to J’s with V(J) = V(I (set theoretically)
(so that U is schematically dense in the blow-up), there is at most one. Define J < J’
iff there is an X-morphism Bl;/(X) — Bl;(X). This is a filtered preorder. When
V(J) c V(J'), J < J' is equivalent to the condition that for some n > 0 and ideal
K, J™ = JK. Thus we have an isomorphism of the preordered set of admissible J’s
of full support in A and the corresponding set for A’. Let ZRS;(X) = limBl,;(X)
(a locally ringed space). For the closed point s of X we can consider the special
fiber ZRS1(X)s and its étale topos, which for our purposes may be defined as the
projective limit of the étale topoi (Bly(X)s)et as in [SGA 4]. It has enough points by
Deligne’s theorem. The points are given by “geometric points” of ZRS;(X). (i.e. a
point and a choice of a separable closure of the residue field). For every admissible J
we have

js: U < Bl;(X)
giving a spectral sequence (using proper base change)
(%) HP(Bl;(X)s, R F) = HPYI(U, F).

We pass to the limit using the general theory of [SGA 4 vi]. We get a spectral sequence
(*#%)1im involving cohomology on (ZRS;(X)s)st- Since the latter topos is the same
for X', to show (x) we use the morphism of the limit spectral sequence to reduce to
stalks of the limits of the R%j;, sheaves.

Using the study in [Fujiwara, 1995] of the local rings of ZRS’s and their henseliza-
tions, one reduces () to the case of local rings at geometric points of the special fibers
of ZRS’s. Thus we are reduced to the case A, A’ are henselian and I-valuative. Say
I = (¢). Then Afp~!] is a henselian local ring with maximal ideal corresponding to
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P = (I™, and A/P is a henselian valuation ring whose valuation topology is the
@-adic one. In this case to prove (*) one reduces to the corresponding statement
for Frac(A/P) — Frac(A’/P’). In fact for K — K’ a dense embedding of henselian
valued fields, if we choose separable closures Kep,, K|, and a map between them we

sep

have Gal(K_.,/K') 5 Gal(Ksep/K), using forms of Krasner’s lemma (cf. [Bourbaki,
AC, VI, §8, exercices 12, 14 a]).
Note: For admissible J, Bl;(X’) — Bl;(X) gives an isomorphism on I-adic com-

pletions (as in the discussion in the proof of 2.4.4) as for every m the map
- @ra
n n

is an isomorphism mod I™.

5. Rigidité de la ramification II : forme forte

5.1. Générisations étales immédiates. — On note X (;), X 2‘1) et X (z) les localisés, hen-
sélisés et complétés respectivement de X en z. On note {y} I’adhérence de y dans
X munie de sa structure réduite. L’henié\lisation et la complétion commutent aux
immersions fermées de sorte que @h,m respectivement coincident avec I'image
inverse de @ par les morphismes d’hensélisation, complétion respectivement. Rap-
pelons (XIV-2.1.2) qu’une générisation y € X d’un point z d’un schéma X est une
générisation étale immédiate de x si I’hensélisé strict en Z de '’adhérence de y a une
composante irréductible de dimension 1.

5.1.1. Lemme. — Soit y une générisation de x. Notons c : )?(m) — X(z) le morphisme
de complétion. Alors, y est une générisation étale immédiate de x si et seulement si
lun des points marimauz de c~1(y) est une générisation étale immédiate du point
fermé de X(z).

Démonstration. — Notons pour simplifier Y = m Observons d’abord qu’un des
trois schémas Y(z),Y(‘;) et }A’(m) posséde un point maximal de dimension nulle si et
seulement si chacun est réduit (ensemblistement) & son point fermé. On peut donc
exclure ce cas. Le morphisme Yz — Y(l;) est fidélement plat et entier. Donc, ’hen-
sélisé strict posséde un point maximal de dimension 1) si et seulement si I’hensélisé
Y(};) posséde un point maximal de dimension 1. D’aprés (3.3), Y(}g‘c) posséde un point
maximal de dimension 1 si et seulement si ?(,,) posséde un point maximal de dimen-
sion 1. Par platitude de 17(1) — Y, il s’envoie nécessairement sur y, le point générique
de Y. O

(V) On devrait plutot dire point maximal dont ’'adhérence est de dimension 1.
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On peut caractériser agréablement les générisations étales immédiates.

5.1.2. Lemme. — Soit f : X(z) — X(¢) le morphisme d’hensélisation strict. Les gé-
nérisations étales immédiates de x sont les images y = f(y') des y' € X(z) tels que
dim {y'} = 1.

Démonstration. — Soit y' € X(z) tel que dim {y'} = 1. L’image y = f(y’) est une gé-
nérisation stricte de z (car par exemple les fibres de f sont discrétes). Pour cette méme
raison, m est une composante de f _l(m) = @(5)- Inversement, si y est une géné-
risation étale immédiate de z, le point générique y’ d’une composante de dimension 1
de m(i) s’envoie sur y (platitude de f) et son adhérence est de dimension 1. a

5.1.3. Exemple. — Prenons I’exemple du pincement de [EGA 1V, 5.6.11]. En conser-
vant les notations de loc. cit., ’anneau pincé C est local noethérien de dimension 2 et
son normalisé a deux idéaux maximaux de hauteur 1,2 respectivement. D’aprés 3.2,
I’hensélisé de C a deux composantes irréductibles de dimension 1 et 2 de points géné-
riques ¢, ¢’. Comme dans la preuve de XIV-2.1.9, ceci assure l’existence de ¢ (au-dessus
de c) dans ’hensélisé strict de C' dont ’adhérence est de dimension 1 et donc que le
point générique de Spec(C') est une générisation étale immédiate de son point fermé.

5.2. Couples associés et condition (*). — Commencons par une définition.

5.2.1. Définition. — Soit z un point d’un schéma X . Choisissons une cloture séparable
de k(z) définissant un point géométrique Z de X.
(i) Soit G un schéma en groupes sur X. On définit les sections locales de G a support
dans Z par la formule

Hg(G) = Ker(HO(X(j), G) — HO(X(Q-C) - {i‘}, G))

(ii) Soit ¥ un champ (en groupoides) sur X et p un nombre premier. On dit que
(z,p) est associé de € et on écrit (z,p) € Ass(%) s'il existe o € % tel que
HY(Aut(0)) ait de la p-torsion.

(iii) Soit € un champ ind-fini (en groupoides) sur un ouvert U de X. On dit que ¥
vérifie la condition (%) si pour tout z € X — U de caractéristique p > 0, il n’existe
pas de générisation étale immédiate y de x telle que (y,p) € Ass(¥).

Remarquons que la condition (z,p) associé ne dépend pas du choix de la cloture
séparable de k(z).

5.2.2. Exemple. — Supposons X normal et G groupe fini. Soit U un ouvert de X.
Alors, (z,p) est associé de ¥ = Tors(U,G) si et seulement si p|card(G) et x est
un point maximal de U. En effet, 'unique objet de % est le torseur trivial o et
Aut(oc) = G. Or, Xz — {Z} est connexe (resp. vide) si = est non maximal (resp.
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maximal). Ainsi, on a H2(Aut(c)) = {1} (resp. H2(Aut(c)) = G). On déduit que
& vérifie (*) si et seulement si U contient tous les points de codimension 1 dont la
caractéristique divise l'ordre de G.

5.2.3. Lemme. — Soit f : X — Y wun morphisme plat de schémas noethériens, x €
X d’image y = f(x) dans Y et € un champ en groupoides sur Y. Alors, (z,p) €
Ass(f*%) si et seulement si (y,p) € Ass(%) et x € Max(f~1(y)).

Démonstration. — Choisissons un point géométrique Z au-dessus de z, qui définit g
au-dessus de y.

Supposons (z,p) € Ass(f*%¢). Comme la fléeche (f*%€)z — € est une équivalence,
il existe o € €} et g € Aut(o) tel que f*g est d’ordre de p et de support {Z}. Notons
F Thensélisé strict de f~'(y) en Z. C’est aussi la fibre de I'hensélisé ¢ : X(z) — Yy
de f au-dessus de §. Si F' n’était pas réduit & Z, un des points de F' ne serait pas dans
le support de f*g de sorte que f*g serait I'identité en ce point. Mais f*g est constant
sur F = ¢~ 1(§) de sorte que f*g serait I'identité également en Z € F, ce qui n’est
pas. Donc, F' est réduit & Z de sorte que dim s-1(,) , = 0 (puisqu’un anneau local a
méme dimension que son hensélisé strict) et € Max(f~!(y)). De plus, g est trivial
sur p(X(z) — {Z}) = Y(g) — {7} (fidéle platitude de ) ce qui assure (y,p) € Ass(%).

Inversement, supposons (y,p) € Ass(%) et € Max(f~'(y)). On a donc un au-
tomorphisme g d’ordre p de o € €} de support {7}. Le support de ¢*g est la fibre
¢ 17) = f~1(y)(z)- Comme z est maximal dans f~!(y), on déduit (dimension) que
le schéma local ¢~!(y) est de dimension nulle donc réduit a Z, ce qu’on voulait. [

5.2.4. Corollaire. — Soit (X,z) un schéma local noethérien hensélien, U = X — {z}
louvert complémentaire du point fermé et ¢ : X — X le morphisme de complétion.
Alors, le champ en groupoides € sur U vérifie (x) si et seulement si € = c*€ vérifie

(%)-

Démonstration. — On note encore = le point fermé de X et on choisit un point
géométrique T au-dessus de .

Supposons que € vérifie (*). Soit (y,p = car(x)) € Ass(¥) et notons Y ’adhérence
de y dans X. Il s’agit de montrer que toutes les composantes de Yz sont de dimen-
sion > 2, ou encore (3.3) que toutes les composantes de Y sont de dimension > 2.
Mais c’est bien le cas car, d’aprés le lemme 5.2.3, on a (,p) € Ass(cg) pour tout point
maximal § de Y.

Inversement, supposons que % vérifie (*). Soit donc (¢, p = car(zx)) € Ass(‘f?) et soit
y = c(§). D’aprés le lemme 5.2.3, (y,p) € Ass(%) et § est maximal dans ¢~ '(y) = Y
ou Y = {y}. Alors, toutes les composantes de Y(z) (donc de Y d’aprés (3.3)) sont de
dimension > 1. En particulier, dimm > 1, ce qu’on voulait. O
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5.3. Le théoréme de rigidité de la ramification

5.3.1. Théoréme (Rigidité de la ramification IT). — Soit 7 : X' — X un morphisme plat
de schémas noethériens, régulier au-dessus d’un sous-schéma fermé Z C X. Soit
j:U=X-Z — X limmersion ouverte du complémentaire de Z et € un champ ind-
fini sur U vérifiant la condition (x). Alors, la fleche de changement de base 7*j, € —
Jam™*€ est une équivalence.

Démonstration. — D’aprés le théoréme de rigidité de la ramification I (4.2.1), le
théoréme est vrai dans le cas discret de sorte que 7*j, & — jin™*% est toujours
pleinement fidéle. Comme dans la preuve de 4.2.1, on peut supposer X, X’ strictement
locaux de point fermés z,z’ et m morphisme local. Par récurrence sur la dimension
de X, on peut supposer que le changement de base par m est une équivalence pour
Iimmersion U «— X —{z} de sorte qu’on peut supposer U = X — {z}. Comme dans la
preuve de 4.2.1 et en utilisant 'invariance par complétion de la condition (x) (5.2.4),
on peut supposer de plus X complet et 7 morphisme essentiellement lisse et local et
il s’agit de démontrer que la fléche

™ HY(X — {z},%) - B(X' — n Yz}, %)
est essentiellement surjective.

Soit donc o’ un objet de H*(X’ — n~1{z},¢”). La condition (*) étant stable par
passage aux sous-gerbes (maximales), on peut comme dans la preuve de 6.2.2 en
considérant la sous-gerbe maximale de %’ engendrée par o', supposer de plus que
% est une gerbe. Comme % est ind-finie, on peut supposer que ¥ est constructible

(8.3.3).

Pour tout point maximal y € U, notons i, le morphisme canonique
iy : Spec(k(y)) » U = X — {z}.

La catégorie fibre de iy.t;% sur un ouvert étale V' — U s’identifie aux sections ra-
tionnelles de ¥ définies au voisinage des points maximaux de V au-dessus de y. Soit
v:6—-2:= ][ ini€

yEMax(U)
le morphisme déduit des morphismes d’adjonction.
Pour toute section 7 € H*(U, 2) (vu comme un morphisme de U-espaces 7 : U —

2), le champ des relévements K(7) = U x4 € associé est un champ en groupoides.
Le morphisme canonique

K(r)—- %

est fideéle ([Giraud, 1971, IV.2.5.2]). Comme € est constructible et vérifie (x), il en est
de méme des sous-gerbes maximales de K (7).
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Il suffit alors (exercice) de vérifier que la fleche de changement de base est essen-
tiellement surjective pour
1) les gerbes & = iy, iy ;
2) les sous-gerbes maximales du champ des relévements K (1) = U x ¢ % associée a
T € H (U, 9).
5.3.2. Premier cas : changement de base pour 4 = iy,i;%. — Supposons donc & =
iyxly % . Quitte & changer X, U en —{—y_}, Uﬂm, on peut supposer que X est irréductible
de point générique y.
Si la dimension de X est 1, on a U = {y} et ¥, = Tors(Spec(k(y)), G) avec
p = car(y) ne divisant pas 'ordre de G (cf. argument dans I’exemple 5.2.2). On
invoque alors le changement de base par un morphisme lisse usuel ([Giraud, 1971,
VIIL.2.1.2]).
On suppose donc que la dimension de X est > 1.
Choisissons une cléture séparable k(y) — k, et notons j, : Spec(k,) — U est le
morphisme canonique. On a

Jy € = Tors(Spec(ky), G)
ol G est un groupe fini constant. Comme
iyxiy € — Jy,Jy
est fidéle, on peut (6.2.1) remplacer ¢ par j,, j;€ = jy, Tors(Spec(k,), G).

5.3.3. Lemme. — On a R'j,.G = {+} et j,, Tors(Spec(ky),G) = Tors(U, j,,G).

Démonstration. — La seconde égalité découle de la premiére et de la formule
([Giraud, 1971, V.3.1.5])
mo(jy, Tors(Spec(k,), G)) = R'jy,.G.

Soit A I’hensélisé strict de X = Spec(A) en un point géométrique & de X. Cest une
limite inductive filtrante d’algébres A; de type fini qui sont génériquement étales. On
déduit que j, 1(Spec(A)) est le spectre de la limite inductive filtrante des algébres
étales B; = ky ®j(y) Ai qui sont donc scindées puisque k, est séparablement clos.
Ainsi, les schémas considérés étant cohérents, on a

(R'jyxG)e = H' (4, ' (Spec(4)), G) = lim H' (Spec(B;), G) = {*}. U

En terme de module galoisien, j,.G est induite (continue) Hom.(T',G) ou T est
le groupe profini Gal(k,/k(y)). En écrivant I' = colim Gal(K,/k(y)) ot (Ko/k(Y))a
est le systéme inductif des sous-extensions galoisiennes finies de k,/k(y), on trouve

yeG = lim jo, G
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ol j, : Spec(K,) — Spec(k(y)) — U est le morphisme canonique. Comme U, U’ sont
noethériens donc cohérents, on a

H®(U, Tors(U, colim j,G)) = colim H(U, Tors(U, jaxG))
et
HO(U’, "™ Tors(U, colim jo,G)) = H(U’, Tors(U’, ©'* colim j,xG))
= colim HO(U, Tors(U’, 7" jox G))

de sorte qu’on est réduit pour le cas 1) a étudier le changement de base pour la gerbe
ga = M(Uvja*G)'

Soit p: W — X la normalisation de X dans Spec(K,) — X : c’est un morphisme
fini (car X est excellent) et surjectif de sorte que W est semi-local et hensélien (comme
X). On déduit que W est la réunion disjointe de ses hensélisés aux points fermés.
Comme W est intégre, W est strictement local : on note w son point fermé w. De
plus, W est normal, donc géométriquement unibranche de sorte que joxG = p«Gw -
Comme R'p,G est trivial (p est fini), on déduit 1'égalité

Yo = DPx M(W - {H)}, G)

comme dans la preuve du lemme 6.3.3 infra.
En utilisant le changement de base propre pour p, on est ramené & prouver que la
fléche
Tors(W — {w}, G) — Tors(W’' — 7~ Hw},G)
est une équivalence.
Rappelons qu’on a supposé que la dimension de X (ou W, c’est la méme chose)

est > 1. Dans ce cas, {w} est co dans W et on invoque la variante du théoréme de
changement de base lisse de Gabber (4.3.1).

5.8.4. Deuzxiéme cas : changement de base pour une sous-gerbe mazimale K du champ
des relevements K = K (7). — La gerbe K vérifie (*) comme K (7). Comme ¥ est
une équivalence pour tout point maximal y € U, on déduit que K(7)y est ponctuel
et donc que Kj est la gerbe triviale en tous ces points. Par hypothése de récurrence,
il suffit pour achever la preuve de prouver le lemme suivant.

5.3.5. Lemme. — 1Ii existe une immersion fermée i : F' — X nulle part dense telle que
K =4iiK.
Démonstration. — 11 suffit de prouver que pour tout y maximal, il existe un ouvert de

Zariski contenant y sur lequel K est triviale. Par construction, il existe un voisinage
étale V. — U de y et 0 € K(V). Comme Aut(o) est un faisceau constructible de Vj;,
I’isomorphisme

{Id}; = Aut(o)g
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provient d’un isomorphisme

{Id}w = Aut(o)w
sur un voisinage étale W — V — U de y. Quitte a localiser, on peut supposer que
W — U est un revétement galoisien de son image. La section o descend sur U et n’a
pas d’automorphisme par construction. Ainsi, la restriction & U de K est une gerbe
neutre avec groupe d’automorphisme triviale, donc est triviale. O

6. Appendice 1 : sorites champétres

6.1. — Dans la situation du théoréme 2.1.2, on sait déja (2.1.1 i)) que le foncteur
HO(U,%¢) — H°(U,n*%¥) est pleinement fidéle que ¥ soit ind-fini ou non.

Soit ¥ un champ ind-fini sur Y. On cherche des conditions assurant que I’hypo-
thése

6.1.1. Hypothése. — Soit f : X — Y un morphisme de schémas. On suppose que pour
tout faisceau d’ensembles .# sur Y, la fleche HO(Y, %) — HO(X, f*.%) est bijective.

entraine que la conclusion

6.1.2. Conclusion. — La fleche ¢ : HO(Y,¢) — HO(X, f*%) est une équivalence de
catégories.

est vraie, autrement dit assurant que ’assertion
6.1.3. Assertion. — On a l'implication 6.1.1 = 6.1.2.

est vraie. On sait déja que 6.1.1 entraine que ¢ est pleinement fidéle (cf. 2.1).

6.2. Premicéres réductions. — Commencons par un lemme formel :

6.2.1. Lemme. — Soit f : X — Y wun morphisme de schémas et €1 — %> un mor-
phisme de champs sur'Y qu’on suppose fidéle. Si 6.1.3 est vraie pour 63, alors 6.1.3
est vraie pour 6.

Démonstration. — On a déja observé (2.1) que ¢ est pleinement fidéle. Soit donc
ef € H'(X, f*%1) = Homx (X, [*%1)
dont on cherche un antécédent dans H°(Y, %7). Son image
oy € H(X, f*%,)
a un antécédent (a isomorphisme prés)

cy € HY(Y, %).
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Le couple (ci¥,cX = f*cY) définit une section du champ des relévements
K(f'e) = X X g, f* 6.
Mais (associativité du produit fibré) K (f*c}) s’identifie a
FE(ey) = (Y x4 ).
Or, K(c¥) est un faisceau d’ensembles car ¢, — % est fidéle. Donc, (cif,c¥ =
f*e¥) e HY(X, f*K(cY)) a un unique antécédent de la forme (c},c}) et ¢! est bien

l’antécédent cherché. O

6.2.2. Lemme. — Si 6.1.3 est vrai pour toute gerbe (resp. toute gerbe ind-finie), alors
6.1.3 est vrai pour tout champ (resp. tout champ ind-fini).

Démonstration. — Soit t € HY(X, f*€) et 74 C f*& la sous-gerbe maximale en-
gendrée par ¢ dans f*% (|Giraud, 1971, I11.2.1.3.2]) Y. Ceci définit une section 7 €
mo(f*€) du faisceau d’ensembles 7o(f*%) des sous-gerbes maximales de f*% (loc.
cit., 2.1.4). D’apres loc. cit., 2.1.5, la fléche naturelle

mo(f*€) — f*mo(%)
est bijective. Mais, par hypothése, la fléche
B (Y, (%)) — H(X, f*mo(€)) = B (X, m0(£*F))
est bijective de sorte qu'’il existe une (unique) sous-gerbe (maximale) v C ¥ telle

que f*y = v, qui sera ind-finie si € 'est. L’image dans H°(Y, %) de I’antécédent de
t € HO(X, f*v) dans H°(Y,~) est Pantécédent cherché. O

6.3. Réduction au cas d’un champ de torseurs sous un groupe fini constant. — Admettons
pour un instant le résultat suivant, généralisation au cas des champs de la résolution
flasque de Godement.

6.3.1. Lemme (Lemme d’effacement). — Soit v une gerbe ind-finie sur un schéma co-
hérent X. Il existe un faisceau de groupes ind-fini 4 sur X et un foncteur fidéle
v — Tors(X,9).

On peut alors prouver le critére suivant :

6.3.2. Proposition. — Soit f : X — Y un morphisme de schémas cohérents. On sup-
pose que pour tout faisceau d’ensembles F surY, la fleche HO(Y, F) — HO(X, f*.%)
est bijective (6.1.1). On suppose en outre que pour tout morphisme finip : Y' —
Y induisant f' 1 X' = X xy Y’ — Y’ et tout groupe fini constant G, la fleche
Tors(Y',G) — Tors(X',G) est une équivalence. Alors, pour tout champ ind-fini €
sur'Y, la flecche HO(Y,€) — HO(X, f*€) est une équivalence.

() Dans loc. cit., mo(%) est noté Ger(%), qui n’est pas actuellement la notation standard.
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Démonstration. — Seule 1’essentielle surjectivité pose probléme. Les lemmes d’effa-
cement, 6.2.1 et 6.2.2 permettent de supposer que € = Tors(Y,¥) ou ¢ est un groupe
ind-fini sur Y. Comme X,Y sont cohérents, la cohomologie non abélienne commute
aux limites inductives filtrantes [SGA 4 viI rem. 5.14]. Comme ¥ est ind-fini, il est
limite inductive filtrante de faisceaux de groupes constructibles [SGA 4 1X 2.7.2] : on
peut donc supposer ¢ constructible. Puisque Y est cohérent, il existe (loc. cit., 2.14)
une famille finie de morphismes finis p; : ¥; — Y et des groupes finis constants G;
tels que ¢ se plonge dans le produit [[ p;xG;. On a donc un morphisme fidéle

Tors(Y, %) — Tors(Y, [ | pixGi) = [ [ Tors(Y, pinGs)

grace a [Giraud, 1971, 111.2.4.4].
Utilisant & nouveau 6.2.1, on peut supposer

€ = Tors(Y, p.G)

avec G groupe fini constant et p: Y’ — Y fini.
6.3.3. Lemme. — On a Tors(Y, p.G) = p,Tors(Y', G).

Démonstration. — Comme p est fini, R'p,G est trivial. Mais mo(p,Tors(Y',G)) =
R'p,G (|Giraud, 1971, V.3.1.9.1]) de sorte que p,Tors(Y’,G) est une gerbe, visible-
ment neutre et vaut donc nécessairement Tors(Y, p.G). O

Le théoréme de changement de base propre pour les faisceaux (trivial dans ce cas)
assure qu’on a f*p,G = p. f*G = p/,G. La fléche

H(Y, p,Tors(Y', G)) — H(X, f*p,Tors(Y", G))
s’identifie alors & la fléche naturelle

Tors(Y',G) = H(Y, p, Tors(Y’', G))
— H(X, f*p,Tors(Y", G))
= H°(X, Tors(X, f*p.G)) (d’aprés 6.3.3 et [Giraud, 1971, I11.2.1.5.7))
= H°(X, Tors(X, p,G))
= H(X, p,Tors(X’, G))
= H(X', Tors(X’, G))
= Tors(X', G)

qui est bijective par hypothése. a
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6.4. Preuve du lemme d’effacement. — Soit X un schéma cohérent.

6.4.1. Lemme. — 1l existe un schéma affine X', un morphisme quasi-compact et sur-
jectif f : X' — X tel que pour tout ' € X', le corps résiduel k(z') est la cloture
algébrique du corps résiduel k(f(x)).

Démonstration. — Comme X est quasi-compact, on peut recouvrir X par un nombre
fini d’ouverts affines X;. Le morphisme X; — X est surjectif et quasi-compact (X
est quasi-séparé). Comme toutes les extensions résiduelles sont des isomorphismes, on
peut donc supposer X = Spec(A) affine quitte & changer X en [ X;.

6.4.2. Sous-lemme. — Soient I I’ensemble des polynémes unitaires (non constants) de
AlX] et
T'(A) = A[Xp, P € I}/(P(Xp))
et
f: X' =SpecT'(A) — X = Spec A.
Le morphisme f est surjectif et, pour tout £ € X', le corps résiduel k(&) est la cléture
algébrique de k(f(£)).

Démonstration. — Soit x € X et k(z) une cloture algébrique de k(z). La fibre sché-
matique f~!(z) est le spectre de

B = k(z)[Xp, P € I]/(P(Xp))
ot P désigne Iimage de P € I par le morphisme de localisation des coefficients
A[X] — k(z)[X].

Le choix de racines zp € m pour tous les polynémes P de I définit un point de
f~Y(z) assurant la surjectivité de f.

Soit alors £ € f~!(z) : c’est un point fermé car f est entier et k(&) est algébrique
sur k(z). Soit @ un polyndme unitaire de k(z) de degré d > 0. Il existe a € A d’image
a(z) non nulle dans k(z), un polynoéme unitaire P € I et un entier n > 0 tel que

a"Q(X) = P(a"X).

On déduit que I'image Xp/a™ dans k(€) est une racine de Q. Comme k() est algé-
brique sur k(z), ceci assure que k(§) est une cloture algébrique de k(z). (C’est un
exercice (facile) de théorie de Galois ou [Bourbaki, A, V, § 10, exercice 20].) O

Comme f est quasi-compact puisqu’affine, le lemme est prouvé. a

Dans un second temps, rappelons la construction de la topologie constructible sur
X (cf. [EGA 1v; 1.9.13)).
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6.4.3. Remarque. — Pour notre propos, on ne l'utilisera en fait que pour le schéma
affine X'.

On construit ’espace topologique X°°™ dont I’ensemble sous-jacent coincide avec
I’ensemble sous-jacent |X| de X mais dont les ouverts (resp. fermés) sont les parties
ind (resp. pro)-constructibles, a savoir les réunions (resp. intersections) de parties
constructibles. Comme X est cohérent, X est un espace topologique compact, to-
talement discontinu ([EGA 1v; 1.9.15]). De plus, la cohérence de X entraine que les
parties constructibles sont alors les réunions finies d’intersection UN(X —V') avec U, V
ouverts quasi-compacts ([EGA 111; 9.1.3] et [EGA 1v; 1.2.7]). Le complémentaire de
UN(X —V) étant (X —U)UV, il est donc également ouvert dans X°°" de sorte que
X admet une base d’ouverts compacts.

L’identité de |X| induit une application continue X" — X puisqu’un fermé
est pro-constructible. Si X = Spec(A) est affine, X" est naturellement homéo-
morphe au spectre d’une certaine A-algébre T'(A) pour un certain endo-foncteur T
de la catégorie des anneaux ([Olivier, 1968], proposition 5). Cet homéomorphisme est
compatible & la localisation de sorte que ces structures schématiques se recollent mu-
nissant X" d’une structure naturelle de X-schéma relativement affine compatible
avec l’application continue (identique!) X" — X . Si z € | X|, on a Oxcons 5 = k().

On définit alors

f:X-X
comme le composé
f: X=X - X - X.

Par construction, X¢ est compact -en particulier cohérent- (réduit), totalement
discontinu et admet une base de voisinages ouverts-compacts (qui sont donc ouverts-
fermés puisque X°¢ est compact donc topologiquement séparé). Ses corps résiduels
sont algébriquement clos et f est quasi-compact (V') et surjective (comme composé de
morphismes quasi-compacts) .

Rappelons que le faisceau vide sur un espace topologique est le faisceau associé
au préfaisceau de valeur constante @. L’ensemble de ses sections sur tout ouvert non
vide est @ et est réduit & un point sur 'ouvert vide.

6.4.4. Lemme. — Tout morphisme étale f : Y — X€ est Zariski localement trivial.
En particulier, le morphisme canonique de topos (¢7',e,) : X§ — Xg,. est une
équivalence. Tout faisceau sur X ¢ ayant des sections localement a des sections globales.
De plus, tout torseur sur X¢ est trivial et toute gerbe est neutre.

(vil) On appliquera ici cette construction & un ouvert (quasi-compact) d’un schéma affine, donc & un
schéma séparé de sorte que f sera méme affine dans ce cas.
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Démonstration. — Soit y € Y d’image z € X°. Comme f est quasi-fini et k(x)
algébriquement clos, I'inclusion k(z) — k(y) est une égalité. Le morphisme composé

Spec(€,) = Spec(k(z)) = Spec(k(y)) = Y

se prolonge au voisinage de = en une section locale de f ce qui prouve le premier
point.

Soit # un faisceau (Zariski ou étale, c’est la méme chose) sur X¢. Comme X°
est compact, on peut trouver un recouvrement fini par des ouverts compacts U; sur
lesquels % a une section. On montre par récurrence sur le nombre d’ouverts qu’on
peut raffiner ce recouvrement en un recouvrement fini V; par des ouverts compacts
disjoints. Comme pour tout j il existe i tel que V; C Uj, le faisceau # a des sections
locales sur chaque V;. Ces ouverts étant disjoints, ces sections se recollent en une
section globale. Le reste suit car tout torseur (resp. toute gerbe) sur X ¢ a des sections
localement. O

La preuve du lemme d’effacement est alors facile. Soit v une gerbe ind-finie sur X.
Le foncteur d’adjonction
v = fofy
est fidéle car f est surjectif. La gerbe f*v (|Giraud, 1971, IT11.2.1.5.6]) est neutre et ind-
finie (6.4.4) de sorte qu’elle est équivalente & Tors(X¢,¥¢) pour faisceau de groupes

ind-fini ¢° convenable. Par ailleurs, comme on a déja vu ([Giraud, 1971, V.3.1.9.1]),
le faisceau des sous-gerbes maximales 7o ( f, Tors(X¢,%¢)) s’identifie & R! f,4°.

6.4.5. Lemme. — Le faisceau R f,%°¢ est trivial (constant ponctuel).

Démonstration. — Soit U — X un morphisme étale avec U quasi-compact et quasi-
séparé. Comme dans la preuve de 6.4.4, X; — X ¢ est étale et donc un isomorphisme
local pour la topologie de Zariski car les corps résiduels de X° sont algébriquement
clos. On en déduit que les topos étale et Zariski de Xf; sont équivalents. Tout ¥°-tor-
seur étale sur X{; provient donc d’un torseur Zariski. Comme Xj; — X€ est un iso-
morphisme local, X{; a une base d’ouverts-fermés et donc est séparé. Comme Xj; est
quasi-compact (puisque f est quasi-compact et U quasi-compact comme X ), I’espace
topologique sous-jacent de X{; est de plus compact. On déduit comme dans 6.4.4 que
tout torseur sur X§ est trivial H(X§,%°) = {*}. En passant a la limite (on n’utilise
pas ici la cohérence de f), on trouve que les fibres de R! f,%, sont triviales. |

D’aprés le lemme, 7o (f. Tors(X ¢, G¢)) est le faisceau ponctuel ce qui assure que
fxTors(X ¢, G°) est une gerbe. Comme elle a une section, elle est neutre de groupe
G = f,G° et s’identifie donc & Tors(X, G). Mais f est quasi-compact de sorte que G
est ind-fini comme G° [SGA 4 1x 1.6]. La preuve du lemme d’effacement est compleéte.
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7. Appendice 2 : théoréme de changement de base propre d’Artin-Grothendieck pour les
champs ind-finis sur des schémas non noethériens

On va prouver ’énoncé suivant
7.1. Théoréme. — Considérons un diagramme cartésien

x' 2.ox

] o |
v 2.y

avec f propre. Alors, pour tout champ ind-fini € sur X, la flecche de changement de
base g* [, € — flg"*€ est une équivalence.

Notons que ce théoréme est connu dans le cas discret [SGA 4 X11 5.1] ainsi que dans
le cas ou Y est localement noethérien ([Giraud, 1971, VI1.2.2.2]). La preuve qui suit
est une adaptation de la preuve de ce dernier énoncé.

Démonstration. — D’aprés [Giraud, 1971, VII1.2.2.5], il suffit de prouver 1’énoncé sui-
vant : soit X propre sur S local hensélien et i : Xy <— X l'immersion de la fibre
fermée. Alors, pour tout champ ind-fini € sur X, la fléche

v :HY(X,€) — H°(X,,i*%)

est une équivalence. Notons que X/.S étant propre, il est cohérent donc X est cohérent
comme S [SGA 4 vi1 2.5]. Ainsi, ¢ est un morphisme cohérent de schémas cohérents. Si
€ est discret, le théoréme est une conséquence immédiate du théoréme de changement
de base propre pour les faisceaux d’ensembles [SGA 4 x11 5.1 (i)]. On en déduit que v
est pleinement fidéle. D’apreés 6.3.2, il suffit de montrer que pour tout morphisme fini
X' — X (induisant une immersion fermée X() < X') et tout groupe fini G, la fléche

(7.1.1) 7 : Tors(X', G) — Tors(X},G)

est une équivalence (et en fait est essentiellement surjective puisqu’on sait déja qu’elle
est pleinement fidéle). On applique alors [SGA 4 x11 5.5 (ii)] au morphisme propre
X' — S pour conclure. O

8. Appendice 3 : sorites sur les gerbes

On montre que toute gerbe ind-finie sur X noethérien est limite inductive filtrante
de ses sous-gerbes constructibles (comparer avec [EGA 1v3 IX. 2.2 et 2.9]).
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8.1. Image d’un morphisme de champs

8.1.1. — Soit ¢ : € — ¥’ un morphisme (cartésien) de champs sur X¢. On défi-
nit I'image Im(p) = ¢(%) comme la catégorie ayant pour objets ceux de € et telles
que Hom,(%)(g1, g2) = Home (¢(g1), ¢(g2)), la structure de catégorie fibrée étant dé-
duites des structures (compatibles) de € et €”. Notons que Im(p) est naturellement
équivalente a la sous-catégorie pleine ‘6; de ¥’ dont les objets sont les images des
objets de ©. On identifiera (%) et €. On notera fEl(gp) le champ associé au pré-
champ Im(yp). C’est la sous-catégorie pleine de ‘c‘f; des objets localement isomorphes
a l'image d’éléments de %.

8.1.2. Lemme. — Soit T un point géométrique de X et f : W — X un morphisme de
schémas. Alors,

— la fleche naturelle Im(p)z — Im(pz) est une équivalence ;
— on a une équivalence de champs, définie G isomorphisme unique prés, f*Im(p) =
Im(f*p).

Démonstration. — Les objets de Im(p)z et Im(pz) coincident avec ceux de %; et la
fleche naturelle est simplement I’identité. Construisons 'inverse de la fleche. Soit alors
a,b € ¢} et ¥ € Hom(p(a), (b)) qui provient de ¥s € Homg(p(a), ¢(F)). Mais ¥g
peut étre vu comme une fleche de Im(p)(S) : on prend son germe en Z pour définir
Pinverse (qui ne dépend pas des choix). On vérifie que ceci définit I'inverse cherché.

Passons au second point et définissons la fléche. Par adjonction, on doit définir une
fléche (cartésienne)

(8.1.2.1) Im(p) — fulm(f*¢).

D’apreés la 2-propriété universelle du champ associé, il suffit de définir un morphisme
cartésien de préchamps
Im(p) — fIm(f*p).

Soit S — X étale. Les objets du membre de gauche sont les objets de € (S) tandis
que ceux de droites sont ceux de (f*€)(f~1(9)) = f.f*€(S). La fleche d’adjonction
& — f.f*€ permet alors de définir la fléche z — f*(z) cherchée au niveau des objets.
Soient alors x,y des objets de % (S) et

g€ HOHIS(‘P(J")v go(y)) = HomIm(<p)(S) (.’1?, y)

C’est donc une section sur S de Hom(¢(z), ¢(y)) qui fournit (par image inverse) une
section sur f~1(S) de Hom(f*p(z), f*¢(y)) |Giraud, 1971, 11.3.2.8.1 (4)], donc une
fleche de

Hom-1(sy(f*p(2), f*¢(y)) = Hom -1y ((¢(f*x), o(f*y)) = Homy, 1m( s+ ) (5) (2, Y)-
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Le foncteur ainsi défini est visiblement cartésien (comme ¢). Le premier point assure
que les fibres de ce foncteur, et donc également celles du foncteur correspondant
(8.1.2.1), sont des équivalences, ce qui achéve de prouver le lemme. O

8.2. Groupoides libres

821. — Soit I' = FE V un graphe orienté (E est l’ensemble des arétes,

———
b

V T'ensemble des sommets, b, s les applications « but, source »). On associe (voir
[Berger, 1995]) le groupoide libre L(I") qu’on peut décrire comme suit. Soit E* 1’en-
semble E* = {e*,e € E} union disjointe de deux copies de E : ses objets sont les
sommets et les morphismes entre v,v’ € V sont les mots (réduits), éventuellement
vides,

ef .- ef avec s(ef) = b(eﬁ_l)(z’ =1,...,n—1),s(eX) = v,b(el) = v

8.2.2. Remarque. — 1l est bien connu que L(T") est le groupoide fondamental II; (T'r)
de la réalisation géométrique I'r de I'.

8.2.3. — Par construction, les foncteurs de L(I') dans un groupoide G s’identifient
naturellement aux familles

(95) € Ob(G)Y, (7e) € FI(G)” telles que v, € Homg (gs(c)s o(e))-
Si on préféere, L est I’adjoint & gauche du foncteur d’oubli Groupoides — Graphes.

8.2.4. — La construction se globalise de la maniére suivante. Considérons un dia-
gramme de X-schémas étales

s

NS

Par fonctorialité de la construction L, on définit une catégorie fibrée (scindée) en

FxtE |4

groupoides L(I'x) sur X4 par la formule S — L(I'x(S)). Par construction, les fibres
de L(I'x) sont non vides si et seulement si V' — X est surjectif. Les sections locales
sont localement isomorphes si et seulement si pour tout point géométrique z — X, le
graphe Ej : Vz est connexe et non vide. Par construction, on dispose de deux
sections tautologiques

g€ ObL(Fx)(V),’)’ € HomL(px)(E)(s*g, b*g)

définies par 'identité de V et de E respectivement. Soit ¢4 un groupoide sur X¢;. On
a alors la propriété d’adjonction suivante : la fleche qui & un foncteur cartésien

p:L(lx)— ¥
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associe
©(g) € 9(V), () € Homg g)(s*¢(g), b*¢(9))

est une équivalence.

8.3. Constructibilité de sous-gerbes. — Considérons un hyperrecouvrement Vi) de X,
3 savoir un diagramme de X-schémas étales (de type fini)

s

NS

X

HxiE \%4

ou les flecches V — X et (s,b) : E — V xx V sont surjectives. Pour tout point
géométrique T — X, le graphe H; est connexe de sorte que L(Hx) est une gerbe.
Soit

g € g(V),;? € HOmg(E)(S*g, b*g)

définissant un morphisme cartésien ¢ : L(Hx) — 9.

8.3.1. Définition. — Une gerbe ¥ sur X est dite constructible si pour tout ouvert
étale S — X, toute section locale o € 4(5), le faisceau en groupes Aut(o) sur S est
constructible.

8.3.2. Letnme. — Avec les notations précédentes, supposons & ind-finie. Alors,
limage I = Im(yp) est constructible.

Démonstration. — Comme la formation de 'image et de L commutent a 'image
inverse, on peut procéder par récurrence noethérienne. Il suffit donc de prouver que I
est constructible sur un ouvert non vide de X supposé intégre. La constructibilité se
testant aprés n’importe quel changement de base surjectif localement de présentation
finie,|[SGA 4 1xX 2.8], on peut supposer que V,E sont des revétements étales de X
complétement décomposés, autrement dit que Hx est un graphe constant fini I'.
Soit alors o € I(S). Comme I" est constant, o est localement isomorphe & n =
card(V) sections o; € 4(X) deux a deux isomorphes. En particulier, chaque faisceau
Aut(o;) est engendré par un nombre fini de sections provenant d’une famille généra-
trice finie de 71 (I'r, %) et est contenu dans un faisceau ind-fini de groupes. Ceci assure
sa constructibilité (cf. la preuve de [SGA 4 1x 2.9 (iii)]). O

(viil) La terminologie est abusive : manque la section diagonale V — E pour avoir un hyperrecouvre-
ment (tronqué).
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8.3.3. Proposition. — Soit w : X — Y un morphisme de schémas noethériens, 4 une
gerbe ind-finie sur Y et o € HO(X,n*9). Il existe une sous-gerbe constructible 4, de
& telle que 0 € HO(X,n*%,) C HO(X, n*9)(x),

Démonstration. — La formule (7*9)z = %,z assure que localement o est isomorphe
4 P'image inverse d’une section locale de ¥. Comme Y est quasi-compact, on peut
trouver V. — Y étale (surjectif de type fini) et 7 € ¢4(V) telles que 7*7 et o sont
localement isomorphes (pour la topologie étale) sur Xy := X xy V ot I'on a encore
noté 7 la seconde projection Xy — V. Choisissons donc

e: X' - Xy
étale (surjectif de type fini) et un isomorphisme
(8.3.3.1) e*m*r = e*pro
ol p désigne la premiére projection Xy — X. Considérons le diagramme commutatif

X' xx X P evxyVv

pri “/1"”2 pr1 upf‘z

X/ Toe V

Par définition, poeopr; = poeopry de sorte que (8.3.3.1) définit un isomorphisme

(8.3.3.2) h*priT = prie*n*t = prie*n*rt = h*pryT

et donc (|Giraud, 1971, I1.3.2.8]) une section globale du faisceau h* Isom(pr}T, pri).
Comme précédemment, il existe alors (s,b) : E — V xy V étale (surjectif de type
fini) et un isomorphisme v : s*7 — b*7 induisant (8.3.3.2) localement sur X’ x x X'.
On vérifie alors que l'image

@, = Im(L(V, E) 72, )
du morphisme d’adjonction défini par 7 et «y (cf. paragraphe précédent) convient. [

8.3.4. Remarque. — On contourne ici 'absence de sorites sur les limites inductives.
L’énoncé devrait étre en deux parties : d’abord qu’une gerbe ind-finie sur un schéma
noethérien est limite inductive filtrante de ses sous-gerbes constructibles, ce qui est
pour l’essentiel le contenu du lemme précédent, ensuite que sur un schéma cohérent,
le foncteur sections globales commute aux limites inductives filtrantes.

(ix) Plus précisément, o est dans 'image essentielle de HO(X,7*%;) dans HO(X, 7*9).
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