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E X P O S É X I X 

U N C O N T R E - E X E M P L E 

Yves Laszlo 

1. Introduction 

L'exposé est destiné à construire, suivant Gabber ([Gabber, 2001]), un exemple 

d'immersion ouverte j : U —> X de schémas noethériens telle que R 1 j ^ Z / 2 Z ne soit 

pas constructible. Ceci montre que l'hypothèse de quasi-excellence du théorème de 

constructibilité de Gabber (XIII-1.1.1) est indispensable. D'un point de vue géomé­

trique, la construction est intéressante : U est le complémentaire d'un diviseur D dans 

une surface régulière X mais possède une infinité de points doubles ordinaires ; en par­

ticulier, son lieu régulier n'est pas ouvert ce qui lui interdit d'être quasi-excellent. Ce 

diviseur est un exemple de diviseur dans une surface régulière localement à croise­

ments normaux (au sens de de Jong) mais pas globalement (5.5). 

2. La construction 

Si K est un corps et x = (xi,... , # n ) , on note K{x} le hensélisé à l'origine de 

l'anneau de polynômes K[x\. On choisit un corps parfait infini k, au plus dénombrable 

tel que k*/k*2 est infini. Par exemple, on peut prendre pour k un corps de nombres. 

2.1. Remarque. — Pour toute extension finie L/k, le groupe L*/L*2 est infini. En 

effet, d'après la théorie de Kummer, le noyau de 

k*/k*2 -> L*/L* 2 

paramètre les extensions quadratiques intermédiaires de L/k qui sont en nombre fini 

car L/k est séparable. 

On note k une clôture algébrique de k. Dans la suite, on note A = Z/2Z. 
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482 EXPOSÉ XIX. UN CONTRE-EXEMPLE 

On commence par regarder le plan A 2 = Spec(fc[x, y]) privé des courbes irréduc­

tibles ne coupant pas la droite A = Spec(fc[x]) d'équation y = 0. Ces courbes sont 

exactement les courbes irréductibles d'équation u(l + yg(x,y)),u G A;*. On pose donc 

A0 = (l + yk[x,y\)-lk[x,y\. 

Le morphisme de localisation k[x,y] —•> A$ identifie Spec(Ao) au sous-ensemble du 

plan A 2 = Spec(fc[x,y]) cherché. Les points de Spec(Ao) sont de trois sortes 

— Le point générique de A 2 ; 

— Les points génériques des courbes irréductibles du plan qui rencontrent A ; 

— Les points de Spec(Ao) fermés dans A 2 (qui sont les points fermés de A comme 

on va le voir). 

Notons qu'un point générique d'une courbe C qui coupe A se spécialise dans 

S p e c ( ^ o ) sur n'importe quel point fermé de C D A et donc n'est pas fermé dans 

S p e c ( ^ o ) . 

Par ailleurs, un point de Specmax(^Lo) est donc défini par (x,y) e k. Si y est 

non nul, étant algébrique sur k, son inverse est dans k[y] ce qui entraîne (x,y) £ 

Spec(Ao)(fc). L'immersion fermée 

Spec(fc[#]) = Spec(A0/yA0) <-> S p e c ( A 0 ) 

induit donc un homéomorphisme Specmax(fc[a;]) ^ Specmax(Ao) . 

Si f G Specmax(^4o)> on note TTÇ G k[x] le générateur unitaire des polynômes nuls 

en f et on choisit une racine de 7i£ dans k définissant un point géométrique £ au-dessus 

de £. On le voit comme un élément de A0 via le plongement t autologique k[x] <—> A0. 

Le couple (7Tç,y) est un système de coordonnées locales de AQ en £, i.e. on a un 

isomorphisme ( i ) 

(2.1.1) k ( № { , y } ^ 4 ' 

Comme k est dénombrable, Specmax(fc[x]) est dénombrable. On note > 0 la 

suite de ses points qu'on peut voir aussi comme la suite des idéaux maximaux de AQ. 

On note alors P(ï) l'image de P G k[X] dans k([ï\). 

Commençons par un lemme type Bertini élémentaire. 

2.2. Lemme. — Soit P, Q G k[X}. Supposons P' ^ 0 ou Q' ^ 0 et P G C D ( P , Q ) = 1. 

Alors, pour tout t E k sauf un nombre fini P + tQ est separable. 

Démonstration. — Puisque P G C D ( P , Q) = 1, le système linéaire (P, Q) est sans point 

base et définit un morphisme 

A l ™ . P l . 

(x) On devrait plutôt dire que le morphisme k[X, ]̂(o,o) ~~^o,£ qui envoie X sur et Y sur y 
induit un unique isomorphisme k(£){ir£,y} ^ AQ ^. 
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2. LA CONSTRUCTION 483 

Le point (T : 1) G ~P\(k(T)) est générique de sorte que la fibre géométrique 

p c A-

a pour équation 

P(X) - TQ(X) = 0. 

Le polynôme en T 

P{X) - TQ{X) 

est primitif (PGCD(P, Q) = 1) et de degré 1. Il est donc irréductible dans k[X,T] = 

k[T][X] et donc dans k(T)[X]. Par ailleurs, P'{X) - TQ'(X) n'est pas nul. Sinon, P' 

serait nul et donc Q' aussi, ce qui n'est pas. Donc, le polynôme irréductible P(X) — 

TQ(X) G k(T)[X] est premier avec sa dérivée ce qui assure la lissité de Fv. On conclut 

grâce au théorème de lissité générique. • 

2.3. Lemme. — // existe des suites £ n G Specmax(fc[X]), gn G k[X] telles que 

(i) les gn sont deux à deux premiers entre eux; 

(ii) £ n zéro de multiplicité 2 de gn ; 

(iii) les autres zéros de gn sont simples; 

(iv) pour tout i < n, gn(i) ^ 0 et 

(9n(i)modk(\i}y2) é F2((9j(i)modk([i}y2),j < n | 9j(i) ± 0) C *([*])''IKW' 

Démonstration. — Supposons les gi,i < n construits (condition vide si n = 0). 

Choisissons £ n G Specmax(fc[X]) différent des zéros de gm,m < n et des < n. 

Pour tout i < n, choisissons un polynôme Pi tel que 

Pi(i) ï 0 et (P^)modfc([i])* 2 ) £ F2<<fe(*) I ft-(0 ^ 0,j < n) 

ce qui est possible d'après (2.1). Posons Pi = 1 si i > n. Soit V C Specmax(A:[X]) 

l'ensemble des zéros des g™, m < n. 

Choisissons alors gn tel que 

gn = 7Tçn mod 7r|n et # n = Pi mod [z] si i < n ou si [i] G F. 

Par construction, (gn^n) satisfait toutes les propriétés requises sauf la troisième. 

Soit 

p = ^ F n 2 e t Q = I I & I I ^ i * 
j<n j<n 

Comme Q s'annule à l'ordre 1 en £ n , sa dérivée n'est pas identiquement nulle de 

sorte que (2.2) on peut choisir t G k tel que 

P + tQ 

soit séparable. Par construction, 

(0n =7Tfn (P + *Q), £ n ) 
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484 EXPOSÉ XIX. UN CONTRE-EXEMPLE 

satisfait les propriétés requises dans le lemme. • 

On définit alors 

A n + i = AN[ZN]/(ZL - y - gn) et A = colim AN. 

Soit n G N. 

Par construction, Spec(74n) est un schéma régulier intègre de dimension 2 fini au-

dessus de Spec(-Ao)- Comme l'extension d'anneaux intègres AN ^ A est entière, on 

peut choisir un point géométrique £ n ? 0 0 de Spec(A) au dessus de £ n . Il définit donc 

des points géométriques £ n au-dessus de £ n . 

Par construction, l'inclusion ^4n+i A définit un isomorphisme (cf. la note i) 

»î/>*n}/tâ -y-gn)^ A^— 
Sn,oo 

compatible à (2.1.1), i.e. tel que le diagramme 

H*tn » Vi zn}/{zl -y-9n) — ^ Ap— 
Çn, oo 
Í 

H^n,y} - ^ k 

commute (rappelons que l'hensélisation stricte commute aux limites inductives fil­

trantes, cf. [EGA iv 4 18.8.18]). 

2.4. Lemme. — Le diviseur D = V(y) de la surface Spec(A) est intègre. 

Démonstration. — Montrons que c'est déjà vrai des diviseurs Dn de Spec(A n ) . La 

fibre de Dn —» A au-dessus de [0] est définie par les équations 

¿i = 0»(O), i < n 

dans A^qj . C'est le spectre d'un corps car les #¿(0), i < n sont non nuls et linéairement 

indépendants mod/c([0])*2 ce qui permet d'invoquer la théorie de Kummer. Si main­

tenant on avait deux composantes dans Dn, elles se projetteraient sur A (propreté et 

platitude) et donc la fibre au-dessus de [0] ne serait pas réduite. • 

Avec ces préparatifs, on peut énoncer le résultat principal. 

2.5. Proposition. — Soit j Vimmersion ouverte Spec(_A[l/?/]) ^ Spec(A) et n le point 

générique de D — V{y). 

(i) A est noethérien. 

(ii) Pour tout n, la dimension (sur K) de ( R 1 j ^ A ) ^ - ^ est 2, alors que la dimension 

de ( R ^ A ) ^ est 1. 

(iii) En particulier, R 1 j*A n'est pas constructible. 
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3. NOETHÉRIANITÉ DE A 485 

2.6. Remarque. — Notons que le diviseur (intègre donc) D = V(y) de la surface régu­

lière Spec(A) admet chaque £ n 5 Q O comme point double (ordinaire). Il n'est donc pas 

quasi-excellent puisque son lieu régulier (ou normal, c'est la même chose ici) n'est 

pas ouvert. On obtient alors un contre-exemple à la constructibilité avec un schéma 

ambiant régulier (mais certes pas excellent) ! 

Le point (iii) découle immédiatement des points (i) et (ii). Le reste de l'exposé est 

destiné à prouver les points (i) et (ii), seuls points restant à montrer. 

3. Noethérianité de A 

On va adapter (cf. proposition 3.4) à la situation (en l'utilisant) le critère usuel de 

noethérianité des limites inductives que l'on rappelle : 

3.1. Théorème ([EGA Om 10.3.1.3]). — Soit (Ai, mi) un système inductif filtrant d'an­

neaux locaux noethériens. On suppose que tous les Ai sont noethériens et que les mor­

phismes de transitions sont locaux et plats. Alors, si pour tout i < j , on a miAj = mj, 

alors colim Ai est noethérien. 

On utilisera sans le rappeler ensuite le critère de noethérianité de Cohen 

([Nagata, 1962, 3.4]) : 

3.2. Proposition (Cohen). — Un anneau est noethérien si et seulement si tout idéal 

premier est de type fini. 

Soit Ai,i > 0 un système inductif d'anneaux et A^ = colim Ai. On suppose 

— les morphismes Ai —> Ai+\ sont finis et injectifs ; 

— chaque Ai est noethérien (ou, ce qui revient au même, que Ao est noethérien). 

En particulier, Spec(^+i) —» Spec (^ ) est fini et surjectif et Spec(Aoo) —> Spec (^ ) 

est entier et surjectif pour tout i ce qu'on utilisera sans plus de précaution. Leurs 

fibres sont de dimension nulle. Pour p G Spec(A 0), on note * p la propriété 

Propriété *p : // existe i tel que pour tout j > i et tout q G Spec(Aj) au-dessus de 

p, Vidéal q̂ oo est premier. 

3.3. Proposition. — AQQ est noethérien si et seulement si tout idéal premier p de AQ 

vérifie la propriété £p. 

Démonstration. — On note / : Spec(A 0 0 ) —• Spec(Ao). Suffisance. Soit G 

Spec(^4oo) et p son image dans Spec(Ao). Montrons que qoo est de type fini. Choisis­

sons i comme dans * p et soit q = D Ai. On a d'une part qA^ C q^ et, d'autre 

part 

qoo H A* c qAœ c q^ 
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ce qui assure l'égalité p = qoo fl AQ = qA^ fl AQ de sorte que q̂ 4oo se spécialise sur 

qoo dans / _ 1 ( P ) qui est de dimension 0. On a donc = qA^ ce qui prouve que 

est de type fini comme q et on invoque 3.2. 

Nécessité. Supposons A^ noethérien et soit p G Spec(Ao). La fibre 

/ - 1 ( p ) = Spec(A0 0(8)Ao^(p)) 

est noethérienne de dimension nulle, donc de cardinal fini. Comme AQQ est noethérien, 

on peut donc supposer que tous les idéaux premiers de / - 1 ( p ) sont engendrés par des 

éléments de Ai pour i convenable. Soit alors q G Spec(Aj), j > i au-dessus de p. 

Soit q' G Spec^oo) au-dessus de q. Comme q' est engendré par q' n Ai, il l'est par 

q' fl Aj = q, de sorte que qAx) = q' qui est donc premier. • 

3.4. Proposition. — On garde les hypothèses et les notations de 3.3. Si de plus les ex­

tensions Ai+i/Ai sont plates, A^ est noethérien si et seulement si tout idéal maximal 

m de AQ vérifie la propriété * m . 

Démonstration. — La nécessité découle de 3.3. Il suffit donc de prouver la suffisance. 

Supposons donc que tout idéal maximal m de AQ vérifie la propriété * m . Soit alors 

p G Spec(Ao) et montrons que p vérifie •p. 

3.5. Lemme. — Sous les conditions de la proposition, la propriété *p est équivalente 

à la propriété 

Propriété * p : Il existe i tel que pour tout Z > j > i et tout q G Spec(A J) au-dessus 

de p, l'idéal qAi est premier. 

Démonstration. — Supposons * p vérifiée. Soit alors q G Spec(Aj) au-dessus de p. 

On déduit déjà 1 ^ qA^. De plus, si xy G qAx>> ^ existe Z > j , tel que x,y G Ai. 

Quitte à choisir l plus grand, on peut également supposer xy G qAi et donc par 

exemple x G qAi C qA^. On a donc * p * p (sans hypothèse de platitude). L'autre 

implication découle directement de l'égalité qA^ fl Ai = qAi (fidèle platitude). • 

La clef est de constater que la condition * p ne dépend que des fibres schématiques de 

fi : Spec(Ai) —> Spec(A 0) et donc est invariante par localisation, ce qui va permettre 

de se ramener au cas local pour appliquer (3.1). Précisons. 

3.6. Lemme. — Soit p G Spec(A 0). Les deux propriétés suivantes sont équivalentes. 

— La propriété *p est satisfaite. 

— // existe i tel que pour tout l > j > i le morphisme induit 

<^: / r 1 (P ) -> /7 1 (P) 

entre les fibres schématiques soit bijectif à fibres réduites. 
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3. NOETHÉRIANITÉ DE A 487 

Démonstration. — Supposons * p vérifiée et choisissons i < j < l comme dans * p . Soit 

q G /^ (p ) et posons A = Aj/q et B = Ai/qAi. La fibre schématique </>_1(q) est le 

k(q) = Frac(A)-schéma Spec(B <S)A Frac(A)). Comme qA\ est premier, B est intègre 

et donc B (S) A Frac également (la tensorisation par Frac (A) est une localisation). 

Comme Ai/Aj est finie, l'extension B/A est finie de sorte que B 0 ^ Frac(A) est à la 

fois de dimension finie sur Frac(A) et intègre, donc c'est un corps, ce qui entraîne la 

seconde condition. 

Inversement, supposons que 0 _ 1 ( q ) soit le spectre d'un corps. Autrement dit, on 

suppose que B ®^Frac(A) est intègre et on veut montrer que B est intègre. Mais on a 

3.7. Sous-lemme. — Soient 4> : A —• B un morphisme plat d'anneaux . Supposons A 

intègre. Alors, B est intègre si et seulement si la fibre générique B ®A Frac(A) est 

intègre. 

Démonstration. — En tensorisant l'inclusion A Frac (A) par B, on obtient (plati­

tude) que le morphisme tautologique 

B _> B ® A Frac(A) = (A - { 0 } ) _ 1 £ 

est inject if. 

Supposons B intègre. Comme B est non nul, il en est de même de (A — {0})~1B. 

De plus, si, avec des notations évidentes, b/ab'/a' = 0 dans (A — {0})~1B, il existe 

a G A — {0} tel que abb' = 0 (dans B). Donc, ab ou b' est nul, et donc 6/1 ou 6'/l 

est nul dans (A - { 0 } ) _ 1 £ . 

Inversement, si B (gu Frac (A) est intègre, il en est de même de B en tant que 

sous-anneau. • 

Terminons la preuve de la proposition 3.4 en se ramenant donc au cas local. 

Choisissons m maximal dans A0 contenant p. D'après (3.5), m vérifie la propriété 

* m . Choisissons alors i comme dans * m . Soit m* G Specmax(Ai) au-dessus de m 

(Spec(Ai) —» Spec(Ao) fini et surjectif). 

Par construction, l'idéal xtiiAj est premier pour tout j > i. Mais on a miAjHAi = m* 

(Aj/Ai est fidèlement plate) de sorte que miAj est maximal (Aj/Ai est finie) et définit 

par localisation l'idéal maximal de AjiXni. On a donc Aj^m = Aj^Aj de sorte qu'on 

peut appliquer (3.4) et en déduire que 

Ami = c o l i m ^ Aj,mi 

est un anneau noethérien. Autrement dit, les localisés Am de Am en m* G 

Specmax(Ai ? m) sont noethériens. Mais est semi local (car fini sur A 0 , m qui 

est local) donc Am est noethérien (exercice). Posons alors 

A'j = Aj,m et p' = pAo, m 
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D'après (3.3), (3.5) et (3.6), quitte à changer z, pour tout Z > j > i, le morphisme 

entre les fibres schématiques <j>' : / /

_ 1 (p / ) —* / 7~
1(p /) est bijectif à fibres réduites. 

Comme s'identifie à d'après (3.3), (3.5) et (3.6) on déduit que A est noethérien, 

ce qui termine la preuve de 3.4. • 

Dans la situation de la proposition 2.5, les idéaux maximaux m de AQ vérifient * m 

par construction (c'est là où sert pleinement la condition d'indépendance linéaire des 

gn(i) mod&([i])*2) ce qui termine la preuve du point i de loc. cit. 

4. Étude des points doubles 

Reste à prouver le point ii de la proposition 2.5. 

La restriction de l'immersion fermée D = V(y) <^-> Spec (A) à S p e c ( ^ ) étant une 

immersion d'un diviseur régulier dans une schéma régulier, le théorème de pureté 

(XVI-3.1.4) assure que la dimension de ( R ^ A ) ^ est 1. 

Pour alléger les notations, on pose x = 7T£n, zn = z, g = gn et R = k{x, y, z}/(z2 — 

y — g) et on rappelle l'écriture 

g = x2u(x) 

où u(x) G k{x} qu'on peut supposer vérifier -¿¿(0) = 1. Il existe une unique racine 

carrée y/u(x) G k{x} de u(x) telle que ^u(x)(0) = 1 qui définit une coordonnée 

locale X = x^Ju(x) de k{x} (rappelons que la caractéristique de k est différente de 

2. ) . Dans ces nouvelles coordonnées X,y,z de k{x,y, z}, on a 

z - y - g = z - y - X 

et on invoque de nouveau (XVI-3.1.4) pour c o n c l u r e C e c i termine la preuve de la 

proposition 2.5. 

5. D est localement mais pas globalement un diviseur à croisements normaux 

Commençons par une définition. Dans cette section D désigne un diviseur effectif 

d'un schéma régulier X et j : U = X — D ^ X l'immersion ouverte du complémen­

taire. 

5.7. Définition. — On conserve les notations précédentes. 

(") On peut éviter si on veut le recours au théorème général de pureté en utilisant la suite exacte de 
Kummer pour se restreindre à calculer le H1(—,A) du complémentaire d'un diviseur à croisements 
normaux strict dans le spectre d'un anneau local régulier. 
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— On dit que D est localement un diviseur à croisements normaux (en abrégé, locale­

ment dcn) si pour tout x £ D, le localisé de Zariski Specfêo^) est un diviseur 

à croisements normaux de Spec(^x,a;)-

— Supposons D localement dcn. On note s(x), x G D le nombre de branches analy­

tiques de l'hensélisé strict D^) o u # e s ^ u n point géométrique au-dessus de x et 

((x) son nombre de composantes irréductibles. La fonction e : x i—• e(x) (resp. 

C : x i—> C(^)) e s t appelée fonction de comptage analytique (resp. fonction de 

comptage Zariski). 

Avec les notations précédentes, si x est un point géométrique au-dessus de x e D 

avec D localement à croisements normaux, l'hensélisé strict D^) est un diviseur à 

croisements normaux strict de X^) • On a alors la caractérisation suivante : 

5.2. Lemme. — Avec les notations précédentes, supposons de plus que D est locale­

ment dcn et A = Z/£Z avec £ un nombre premier inversible sur X. Alors, les propo­

sitions suivantes sont équivalentes. 

— R ^ A est constructible; 

— R p j*A est constructible pour tout p ; 

— la fonction de comptage analytique e est constructible. 

Démonstration. — D'après le théorème de pureté (XVI-3.1.4), la fibre ( R ^ A ) ^ est 

l'algèbre extérieure sur 

( R ^ A ^ A 8 * * ) . 

Le lemme en découle immédiatement grâce à la caractérisation des faisceaux construc­

tibles à fibres finies ([SGA4 ix prop. 2.13 (iii)]). • 

L'intérêt de ce lemme réside dans la proposition suivante. 

5.5. Proposition. — Avec les notations précédentes, supposons de plus que D est locale­

ment dcn. Alors, £ est constructible si et seulement si D est un diviseur à croisements 

normaux. 

Démonstration. — La constructibilité de e si D est à croisements normaux découle 

directement des définitions (cf. [de Jong, 1996]) . Supposons donc e constructible et 

montrons que D est à croisements normaux. Soit x un point géométrique au-dessus 

de x G D. Puisque D^) e s ^ un diviseur à croisements normaux strict, il existe un 

voisinage étale n : X' —» X de x dans X , tel que le diviseur D' = n~1(D) est la 

somme de diviseurs D[ qui sont réguliers en x' (image de x dans X') et qui se coupent 

transversalement en x'. La fonction de comptage analytique e' de D' est la somme des 

fonctions de comptage analytiques e'v Comme e' ne dépend que de l'hensélisé strict, 

on a donc 

e' = £0 7T = Y^£i-
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490 EXPOSÉ XIX. UN CONTRE-EXEMPLE 

En particulier, s' est constructible comme e. La fonction de comptage Zariski £' de D' 

certainement constructible de sorte que la différence e' — C l'est aussi. Par hypothèse, 

e' — (J s'annule sur Spec 6x* ,x'-> donc sur l'ensemble des générisations de x'. Comme 

elle est constructible, elle est nulle sur un voisinage ouvert U' (Zariski) de x'. Comme 

z'i > CL5 on a e'i — (1 sur U' de sorte que, quitte à restreindre Uf, chaque diviseur Di 

est régulier sur U'. En se restreignant au localisé strict de chaque point de U', sur 

lequel on sait que D' est un diviseur à croisements normaux, on obtient que les Di 

se coupent transversalement de sorte que la restriction de D' à U' est un diviseur à 

croisements normaux strict. • 

5.4. Remarque. — L'argument précédent appliqué à ( assure que si le localisé Zariski 

de D en tout point est un diviseur à croisements normaux strict alors D est un diviseur 

à croisements normaux strict. 

Avec les notations de la proposition 2.5, on a donc obtenu le résultat suivant. 

5.5. Corollaire. — Le diviseur D de la surface régulière Spec A est localement à croi­

sements normaux mais pas globalement. 
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