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EXPOSE XIX

UN CONTRE-EXEMPLE

Yves Laszlo

1. Introduction

L’exposé est destiné a construire, suivant Gabber ([Gabber, 2001]), un exemple
d’immersion ouverte j : U — X de schémas noethériens telle que R'j,Z/2Z ne soit
pas constructible. Ceci montre que ’hypothése de quasi-excellence du théoréme de
constructibilité de Gabber (XIII-1.1.1) est indispensable. D’un point de vue géomé-
trique, la construction est intéressante : U est le complémentaire d’un diviseur D dans
une surface réguliére X mais posséde une infinité de points doubles ordinaires ; en par-
ticulier, son lieu régulier n’est pas ouvert ce qui lui interdit d’étre quasi-excellent. Ce
diviseur est un exemple de diviseur dans une surface réguliére localement & croise-
ments normaux (au sens de de Jong) mais pas globalement (5.5).

2. La construction

Si K est un corps et £ = (z1,...,Z,), on note K{z} le hensélisé a Porigine de
Panneau de polynomes K [z]. On choisit un corps parfait infini &, au plus dénombrable
tel que k*/k*? est infini. Par exemple, on peut prendre pour k un corps de nombres.

2.1. Remarque. — Pour toute extension finie L/k, le groupe L*/L*? est infini. En
effet, d’aprés la théorie de Kummer, le noyau de

k*/k*2 N L*/L*2

parameétre les extensions quadratiques intermédiaires de L/k qui sont en nombre fini
car L/k est séparable.

On note k une cloture algébrique de k. Dans la suite, on note A = Z/27.
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482 EXPOSE XIX. UN CONTRE-EXEMPLE

On commence par regarder le plan A? = Spec(k|[x,y]) privé des courbes irréduc-
tibles ne coupant pas la droite A = Spec(k[z]) d’équation y = 0. Ces courbes sont
exactement les courbes irréductibles d’équation u(1 + yg(z,y)),u € k*. On pose donc

Ao = (1 +yklz,y]) " klz, y].
Le morphisme de localisation k[z,y] — Ao identifie Spec(Agy) au sous-ensemble du
plan A2 = Spec(k[z,y]) cherché. Les points de Spec(Ay) sont de trois sortes
— Le point générique de A?;
— Les points génériques des courbes irréductibles du plan qui rencontrent A ;
— Les points de Spec(Ag) fermés dans A? (qui sont les points fermés de A comme
on va le voir).

Notons qu’un point générique d’une courbe C qui coupe A se spécialise dans
Spec(A4p) sur n’importe quel point fermé de C N A et donc n’est pas fermé dans
Spec(Ao).

Par ailleurs, un point de Specmax(Ag) est donc défini par (Z,7) € k. Si § est
non nul, étant algébrique sur k, son inverse est dans k[g] ce qui entraine (Z,y) ¢
Spec(Ap)(k). L’'immersion fermée

Spec(k[z]) = Spec(Ao/yAo) — Spec(Ao)

induit donc un homéomorphisme Specmax(k[z]) = Specmax(Ay).

Si € € Specmax(Ap), on note m¢ € k[z] le générateur unitaire des polynémes nuls
en £ et on choisit une racine de ¢ dans k definissant un point géométrique & au-dessus
de £. On le voit comme un élément de Ag via le plongement tautologique k[z] — Ag.
Le couple (m¢,y) est un systéme de coordonnées locales de Ag en &, i.e. on a un
isomorphisme )

(2.1.1) k(€){me,y} > Af .

Comme k est dénombrable, Specmax(k[z]) est dénombrable. On note [¢],i > 0 la

suite de ses points qu’on peut voir aussi comme la suite des idéaux maximaux de Ayg.

On note alors P(z) 'image de P € k[X] dans k([4]).
Commencons par un lemme type Bertini élémentaire.

2.2. Lemme. — Soit P,Q € k[X]. Supposons P' # 0 ou Q" # 0 et PGCD(P,Q) = 1.
Alors, pour tout t € k sauf un nombre fini P + tQ est séparable.

Démonstration. — Puisque PGCD(P, Q) = 1, le systéme linéaire (P, Q) est sans point
base et définit un morphisme

AL F9), p1
() On devrait plutét dire que le morphisme k[X, Y](O,o) — Ap,¢ qui envoie X sur m¢ et Y sur y
induit un unique isomorphisme k(§){m¢, y} i A3,5~
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2. LA CONSTRUCTION 483

Le point (T : 1) € PL(k(T)) est générique de sorte que la fibre géométrique

1
F, C AL

a pour équation
P(X)-TQ(X)=0.
Le polynéme en T
P(X) - TQ(X)

est primitif (PGCD(P,Q) = 1) et de degré 1. Il est donc irréductible dans k[X,T] =
k[T][X] et donc dans k(T)[X]. Par ailleurs, P'(X) — TQ'(X) n’est pas nul. Sinon, P’
serait nul et donc Q' aussi, ce qui n’est pas. Donc, le polynéme irréductible P(X) —
TQ(X) € k(T)[X] est premier avec sa dérivée ce qui assure la lissité de F},. On conclut
grace au théoréme de lissité générique. O

2.3. Lemme. — Il existe des suites &, € Specmax(k[X]), gn € k[X] telles que

(i) les gn sont deuz & deux premiers entre euz;
(ii) &, zéro de multiplicité 2 de g, ;
(iii) les autres zéros de g, sont simples;
(iv) pour tout i < m, gn(i) #0 et

(9n (1) mod k([3])*?) & F2({(g;(1) mod k([i])*?),j < n | g;(5) # 0) C k([a])*/k([i])**.
Démonstration. — Supposons les &;, g;,4 < n construits (condition vide si n = 0).
Choisissons &, € Specmax(k[X]) différent des zéros de g,,,m < n et des [i],i < n.

Pour tout ¢ < n, choisissons un polynéme P; tel que

Pi(3) # 0 et (Pi(3) mod k([i])**) ¢ F2(g;(3) | g;(5) # 0,5 < n)
ce qui est possible d’aprés (2.1). Posons P; = 1 si 4 > n. Soit V C Specmax(k[X])
I’ensemble des zéros des g.,,m < n.
Choisissons alors g, tel que
gn = wgn modﬂgn et §o = Pimod[i] sii <mousil[i € V.

Par construction, (gn,&,) satisfait toutes les propriétés requises sauf la troisiéme.

Soit
P=gam;” et Q =g, H 9 H ()

j<n  j<n
Comme @ s’annule & lordre 1 en &,, sa dérivée n’est pas identiquement nulle de
sorte que (2.2) on peut choisir ¢ € k tel que

P+1tQ

soit séparable. Par construction,

(9n = 7"2" (P+1tQ), &)
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484 EXPOSE XIX. UN CONTRE-EXEMPLE

satisfait les propriétés requises dans le lemme. O
On définit alors
Api1 = Anlzn)/ (22 —y — gn) et A = colim A,,.

Soit n € N.

Par construction, Spec(A,) est un schéma régulier intégre de dimension 2 fini au-
dessus de Spec(Ap). Comme ’extension d’anneaux intégres A, — A est entiére, on
peut choisir un point géométrique &, o, de Spec(A) au dessus de &,. Il définit donc
des points géométriques &, au-dessus de &,.

Par construction, l'inclusion A, 41 < A définit un isomorphisme (cf. la note i)

hs

sn,eo

E{ﬂ'gn,y,zn}/(zi —Yy- gn) S A

compatible & (2.1.1), i.e. tel que le diagramme

E{ﬂ'ﬁn’y’ zn}/(zgz —Y—9n) — Al

n,00

1

76{71’511, y} = Ag’sg_"‘

commute (rappelons que ’hensélisation stricte commute aux limites inductives fil-
trantes, cf. [EGA 1v, 18.8.18]).

2.4. Lemme. — Le diviseur D = V (y) de la surface Spec(A) est intégre.

Démonstration. — Montrons que c’est déja vrai des diviseurs D,, de Spec(A,). La
fibre de D,, — A au-dessus de [0] est définie par les équations

ziz = gi(O)’ i<n

dans Ajy. C’est le spectre d’un corps car les gi(0),7 < n sont non nuls et linéairement
indépendants mod k([0])*? ce qui permet d’invoquer la théorie de Kummer. Si main-
tenant on avait deux composantes dans D,,, elles se projetteraient sur A (propreté et
platitude) et donc la fibre au-dessus de [0] ne serait pas réduite. O

Avec ces préparatifs, on peut énoncer le résultat principal.
2.5. Proposition. — Soit j l'immersion ouverte Spec(A[1/y]) — Spec(A) et n le point
générique de D = V (y).
(i) A est noethérien.
(ii) Pour tout n, la dimension (sur A) de (R JxMN)g est 2, alors que la dimension
de (R'jA); est 1.
(ili) En particulier, R'j,A n'est pas constructible.
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3. NOETHERIANITE DE A 485

2.6. Remarque. — Notons que le diviseur (intégre donc) D = V(y) de la surface régu-
liere Spec(A) admet chaque &, o comme point double (ordinaire). Il n’est donc pas
quasi-excellent puisque son lieu régulier (ou normal, c’est la méme chose ici) n’est
pas ouvert. On obtient alors un contre-exemple & la constructibilité avec un schéma
ambiant régulier (mais certes pas excellent)!

Le point (iii) découle immédiatement des points (i) et (ii). Le reste de ’exposé est
destiné & prouver les points (i) et (ii), seuls points restant & montrer.

3. Noethérianité de A

On va adapter (cf. proposition 3.4) a la situation (en l'utilisant) le critére usuel de
noethérianité des limites inductives que l’on rappelle :

3.1. Théoréme (JEGA Oy 10.3.1.3]). — Soit (A;, m;) un systéme inductif filtrant d’an-
neauz locaux noethériens. On suppose que tous les A; sont noethériens et que les mor-
phismes de transitions sont locaux et plats. Alors, si pour touti < j, on am;A; = my,
alors colim A; est noethérien.

On utilisera sans le rappeler ensuite le critére de noethérianité de Cohen
([Nagata, 1962, 3.4]) :

3.2. Proposition (Cohen). — Un anneau est noethérien si et seulement si tout idéal
premier est de type fini.

Soit A;,7 > 0 un systéme inductif d’anneaux et Ao, = colim A;. On suppose

— les morphismes A; — A;41 sont finis et injectifs;

— chaque A; est noethérien (ou, ce qui revient au méme, que Ay est noethérien).
En particulier, Spec(A;+1) — Spec(A4;) est fini et surjectif et Spec(As) — Spec(4;)
est entier et surjectif pour tout ¢ ce qu’on utilisera sans plus de précaution. Leurs
fibres sont de dimension nulle. Pour p € Spec(Ay), on note *, la propriété

Propriété x, : Il existe i tel que pour tout j > 4 et tout q € Spec(A;) au-dessus de
p, lidéal qAo est premier.

3.3. Proposition. — Ao, est noethérien si et seulement si tout idéal premier p de Ag
vérifie la propriété x,.

Démonstration. — On note f : Spec(As) — Spec(Ag). Suffisance. Soit qo €
Spec(As) et p son image dans Spec(Ag). Montrons que qo, est de type fini. Choisis-
sons ¢ comme dans x, et soit ¢ = oo N A;. On a d’une part Ao, C oo et, d’autre
part

doo N A; C Ao C qoo
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486 EXPOSE XIX. UN CONTRE-EXEMPLE

ce qui assure I’égalité p = qoo N Ag = gA N Ap de sorte que qA,, se spécialise sur
doo dans f~1(p) qui est de dimension 0. On a donc o = qA ce qui prouve que oo
est de type fini comme g et on invoque 3.2.

Nécessité. Supposons A, noethérien et soit p € Spec(Ap). La fibre

f7(p) = Spec(doo ® 4, K())

est noethérienne de dimension nulle, donc de cardinal fini. Comme A, est noethérien,
on peut donc supposer que tous les idéaux premiers de f~!(p) sont engendrés par des
éléments de A; pour i convenable. Soit alors q € Spec(4;),j > i au-dessus de p.
Soit ¢’ € Spec(As) au-dessus de q. Comme g’ est engendré par q’ N A;, il 'est par
q' N Aj = q, de sorte que Ao = q' qui est donc premier. O

3.4. Proposition. — On garde les hypothéses et les notations de 8.3. Si de plus les ex-
tensions A;11/A; sont plates, A, est noethérien si et seulement si tout idéal maximal
m de Ag vérifie la propriété x,.

Démonstration. — La nécessité découle de 3.3. Il suffit donc de prouver la suffisance.
Supposons donc que tout idéal mazimal m de Ag vérifie la propriété *,. Soit alors
p € Spec(Ap) et montrons que p vérifie x,.

3.5. Lemme. — Sous les conditions de la proposition, la propriété x, est équivalente
a la propriété

Propriété *, : Il existe i tel que pour tout [ > j > i et tout q € Spec(A;) au-dessus
de p, 'idéal gA; est premier.

Démonstration. — Supposons xp, vérifiée. Soit alors q € Spec(A;) au-dessus de p.
On déduit déja 1 &€ qAs. De plus, si zy € qA, il existe [ > j, tel que z,y € A;.
Quitte & choisir ! plus grand, on peut également supposer zy € qA; et donc par
exemple z € q4; C qAs. On a donc *, = %, (sans hypothése de platitude). L’autre
implication découle directement de 1’égalité qA., N A; = qA; (fidéle platitude). |

La clef est de constater que la condition x, ne dépend que des fibres schématiques de
fi : Spec(A;) — Spec(Ayp) et donc est invariante par localisation, ce qui va permettre
de se ramener au cas local pour appliquer (3.1). Précisons.

3.6. Lemme. — Soit p € Spec(Ag). Les deuz propriétés suivantes sont équivalentes.

— La propriété x, est satisfaite.
— 1l existe 1 tel que pour tout | > j > i le morphisme induit

¢: f7Hp) = £ (p)

entre les fibres schématiques soit bijectif & fibres réduites.
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3. NOETHERIANITE DE A 487

Démonstration. — Supposons x;, vérifiée et choisissons ¢ < j < I comme dans *,. Soit
q€ fj_l(p) et posons A = A;/q et B = A;/qA,;. La fibre schématique ¢~*(q) est le
k(q) = Frac(A)-schéma Spec(B ® 4 Frac(A)). Comme qA; est premier, B est intégre
et donc B ® 4 Frac(A) également (la tensorisation par Frac(A) est une localisation).
Comme A;/A; est finie, ’extension B/A est finie de sorte que B ® 4 Frac(A) est 4 la
fois de dimension finie sur Frac(A) et intégre, donc c’est un corps, ce qui entraine la
seconde condition.

Inversement, supposons que ¢~ '(q) soit le spectre d’un corps. Autrement dit, on
suppose que B® 4 Frac(A) est intégre et on veut montrer que B est intégre. Mais on a

3.7. Sous-lemme. — Soient ¢ : A — B un morphisme plat d’anneauz . Supposons A
intégre. Alors, B est intégre si et seulement si la fibre génériqgue B ® 4 Frac(A) est
intégre.

Démonstration. — En tensorisant l'inclusion A — Frac(A) par B, on obtient (plati-
tude) que le morphisme tautologique

B — B®4 Frac(A) = (A-{0})"'B

est injectif.

Supposons B intégre. Comme B est non nul, il en est de méme de (A — {0})~!B.
De plus, si, avec des notations évidentes, b/ab’/a’ = 0 dans (A — {0})7!B, il existe
a € A— {0} tel que abbt! = 0 (dans B). Donc, ab ou b est nul, et donc b/1 ou /1
est nul dans (4 — {0})7'B.

Inversement, si B ® 4 Frac(A) est intégre, il en est de méme de B en tant que
sous-anneau. O

Terminons la preuve de la proposition 3.4 en se ramenant donc au cas local.
Choisissons m maximal dans Ay contenant p. D’aprés (3.5), m vérifie la propriété
*m. Choisissons alors ¢ comme dans xy. Soit m; € Specmax(A4;) au-dessus de m
(Spec(A;) — Spec(Ap) fini et surjectif).

Par construction, 'idéal m; A; est premier pour tout j > ¢. Maisonam;A4;NA4; =m;
(A;/A; est fidélement plate) de sorte que m; A; est maximal (A;/A; est finie) et définit
par localisation l'idéal maximal de Aj . On a donc A;jm, = Ajm, 4, de sorte qu'on
peut appliquer (3.4) et en déduire que

Ami = COlimjz,; Aj,mi

est un anneau noethérien. Autrement dit, les localisés A, de Ay en m; €
Specmax(A; ;) sont noethériens. Mais A; est semi local (car fini sur Agm qui
est local) donc Ay, est noethérien (exercice). Posons alors

Al =Ajmetp =pAom
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D’apres (3.3), (3.5) et (3.6), quitte & changer %, pour tout ! > j > 4, le morphisme
entre les fibres schématiques ¢’ : fl_l(p’ ) — fj_l(p’ ) est bijectif & fibres réduites.
Comme @’ s’identifie & ®, d’apreés (3.3), (3.5) et (3.6) on déduit que A est noethérien,
ce qui termine la preuve de 3.4. O

Dans la situation de la proposition 2.5, les idéaux maximaux m de Ag vérifient
par construction (c’est 1a o sert pleinement la condition d’indépendance linéaire des
gn (i) mod k([i])*?) ce qui termine la preuve du point 4 de loc. cit.

4. Etude des points doubles

Reste & prouver le point i de la proposition 2.5.

La restriction de I'immersion fermée D = V(y) — Spec(A) a Spec(0,) étant une
immersion d’'un diviseur régulier dans une schéma régulier, le théoréme de pureté
(XVI-3.1.4) assure que la dimension de (R!j,A); est 1.

Pour alléger les notations, on pose = ¢, , 2, = 2,9 = gn et R = k{z,y,2}/(2? -
y — g) et on rappelle I’écriture

g = z’u(x)
ot u(z) € k{z} qu’on peut supposer vérifier u(0) = 1. Il existe une unique racine
carrée \/u(z) € k{z} de u(z) telle que \/u(x)(0) = 1 qui définit une coordonnée
locale X = xm de k{z} (rappelons que la caractéristique de k est différente de
2.). Dans ces nouvelles coordonnées X,y, z de k{z,y,z}, on a

P-y—g=2>-y-X°
et on invoque de nouveau (XVI-3.1.4) pour conclure@. Ceci termine la preuve de la

proposition 2.5.

5. D est localement mais pas globalement un diviseur a croisements normaux

Commencons par une définition. Dans cette section D désigne un diviseur effectif
d’un schéma régulier X et j: U = X — D — X l'immersion ouverte du complémen-
taire.

5.1. Définition. — On conserve les notations précédentes.

(i) On peut éviter si on veut le recours au théoréme général de pureté en utilisant la suite exacte de
Kummer pour se restreindre & calculer le H!(—, A) du complémentaire d’un diviseur & croisements
normaux strict dans le spectre d’un anneau local régulier.

ASTERISQUE 363-364
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— On dit que D est localement un diviseur a croisements normaux (en abrégé, locale-
ment dcn) si pour tout z € D, le localisé de Zariski Spec(€p ;) est un diviseur
a croisements normaux de Spec(Ox ).

— Supposons D localement den. On note e(z), € D le nombre de branches analy-
tiques de I’hensélisé strict Dz) ol Z est un point géométrique au-dessus de z et
¢(z) son nombre de composantes irréductibles. La fonction € : x — e(z) (resp.
¢ : = — ((z)) est appelée fonction de comptage analytique (resp. fonction de
comptage Zariski).

Avec les notations précédentes, si Z est un point géométrique au-dessus de x € D
avec D localement & croisements normaux, I’hensélisé strict D(z) est un diviseur a
croisements normaux strict de X (z). On a alors la caractérisation suivante :

5.2. Lemme. — Avec les notations précédentes, supposons de plus que D est locale-
ment den et A = Z/LZ avec £ un nombre premier inversible sur X. Alors, les propo-
sitions suivantes sont équivalentes.

— R4, A est constructible;
— RPj, A est constructible pour tout p ;
— la fonction de comptage analytique € est constructible.

Démonstration. — D’aprés le théoréme de pureté (XVI-3.1.4), la fibre (Rj.A)z est
I’algébre extérieure sur

(RYjuA)z = A*),
Le lemme en découle immédiatement gréice a la caractérisation des faisceaux construc-
tibles & fibres finies ([SGA 4 1X prop. 2.13 (iii)]). d0

L’intérét de ce lemme réside dans la proposition suivante.

5.3. Proposition. — Avec les notations précédentes, supposons de plus que D est locale-
ment dcn. Alors, € est constructible si et seulement si D est un diviseur & croisements
noTMAUL.

Démonstration. — La constructibilité de € si D est & croisements normaux découle

directement des définitions (cf. [de Jong, 1996]) . Supposons donc € constructible et
montrons que D est & croisements normaux. Soit Z un point géométrique au-dessus
de z € D. Puisque D(z) est un diviseur & croisements normaux strict, il existe un
voisinage étale 7 : X’ — X de T dans X, tel que le diviseur D’ = 771(D) est la
somme de diviseurs D/ qui sont réguliers en z’ (image de T dans X') et qui se coupent
transversalement en . La fonction de comptage analytique ¢’ de D’ est la somme des
fonctions de comptage analytiques €;. Comme ¢’ ne dépend que de ’hensélisé strict,

g =¢com= E €.

on a donc
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490 EXPOSE XIX. UN CONTRE-EXEMPLE

En particulier, £’ est constructible comme e. La fonction de comptage Zariski ¢’ de D’
certainement constructible de sorte que la différence €’ — ¢’ I’est aussi. Par hypothése,
¢’ — ¢’ s’annule sur Spec Ox ./, donc sur I’ensemble des générisations de z’. Comme
elle est constructible, elle est nulle sur un voisinage ouvert U’ (Zariski) de z’. Comme
g} > ¢}, on a e = (] sur U’ de sorte que, quitte & restreindre U’, chaque diviseur D;
est régulier sur U’. En se restreignant au localisé strict de chaque point de U’, sur
lequel on sait que D’ est un diviseur & croisements normaux, on obtient que les D;

se coupent transversalement de sorte que la restriction de D’ & U’ est un diviseur a
croisements normaux strict. O

5.4. Remarque. — L’argument précédent appliqué a { assure que si le localisé Zariski
de D en tout point est un diviseur & croisements normaux strict alors D est un diviseur
& croisements normaux strict.

Avec les notations de la proposition 2.5, on a donc obtenu le résultat suivant.

5.5. Corollaire. — Le diviseur D de la surface réguliére Spec A est localement & croi-
sements normaux mais pas globalement.
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