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E X P O S É X V I I I B 

D I M E N S I O N C O H O M O L O G I Q U E : 

R A F F I N E M E N T S E T C O M P L É M E N T S 

Fabrice Orgogozo 

Notre premier objectif est de démontrer que pour tout nombre premier £ il existe 

un ouvert affine d'un schéma noethérien strictement hensélien régulier de dimension 2 

dont la ^-dimension cohomologique est égale à 3. Outre les ingrédients cohomologiques 

— pureté, morphisme de Gysin et comparaison à la complet ion —, on utilise une 

construction dont le principe est dû à Nagata : utilisant des « dilatations formelles » , 

on construit un schéma noethérien strictement hensélien X de dimension 2, de com­

plété X régulier de dimension 2, et une courbe irréductible C dans X devenant le 

£-ième multiple d'un diviseur régulier dans X. Cette construction est ensuite étendue 

au cas, plus délicat, de la dimension supérieure. À partir de là, on construit aisément 

des schémas dont l'existence a été annoncée dans la première partie (XVIIIA-1-5) . 

Pour vérifier que leur dimension cohomologique est bien celle attendue, on fait appel 

à une majoration assez générale établie sans hypothèse d'excellence. Enfin, on termine 

par une minoration de la dimension cohomologique d'un ouvert (non nécessairement 

affine) du spectre épointé d'un schéma noethérien intègre strictement local. 

1. Préliminaires 

1.1. Dilatations formelles. — Soient R un anneau, TT un élément non diviseur de 0 

et / un élément de la complétion 7r-adique R de R. Pour tout n > 0, choisissons un 

fn G R tel que f = fn modulo 7rn. 

1.1.1. Définition. — On note Dil{ R la sous-i2-algèbre de R[it~l,F\, où F est une 

indéterminée, colimite des iî-algèbres R[F~ln\. 

On notera également F l'image de cette variable dans Dil{ R. 
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462 E X P O S É XVIIIB- DIMENSION C O H O M O L O G I Q U E 

1.1.2. Remarque. — Notons que les i^-algèbres considérées sont toutes isomorphes à 

une algèbre de polynômes en une variable sur R. 

1.1.3. — On vérifie immédiatement les faits suivants : 

(i) la construction ne dépend pas des choix des / n , et ne dépend de l'élément 7r qu'à 

travers l'idéal qu'il engendre ; 

(ii) les morphismes R —> Dil{ R et Dil{ R —• R, F ~ / n i-> induisent des iso-

morphismes sur la completion 7r-adique. 

1.2. Platitude et nœthérianité 

1.2.1. — Rappelons que si un morphisme A —• B est fidèlement plat, A est noethérien 

si B l'est ([EGA iv 2 2.2.14]). Pour vérifier la platitude, il est parfois commode d'utiliser 

le critère suivant ([Raynaud & Gruson, 1971, II.1.4.2.1]). 

1.2.2. Proposition. — Soient M un R-module, et n e R. On suppose que ir n'est divi­

seur de zéro ni dans R ni dans M. Alors, M est plat sur R si et seulement si M/TT 

l'est sur R/TT et M[7r _ 1] l'est sur R^'1}. 

1.2.3. Remarque. — Pour démontrer la nœthérianité des anneaux considérés ci-après, 

on pourrait également utiliser le critère de Cohen rappelé en XIX-3.2, en vérifiant 

notamment que les idéaux de hauteur 1 sont principaux. 

1.3. Gonflements 

1.3.1. — Soit A un anneau local noethérien, d'idéal maximal m. Suivant [Bourbaki, 

AC, IX, appendice, §2], on note A]t[ et on appelle gonflement (élémentaire) de A le 

localisé de l'anneau de polynômes A[t] en l'idéal premier m^4[t]. C'est un anneau 

local noethérien. (Il est noté A(t), par analogie avec les fractions rationnelles, dans 

[Nagata, 1962, p. 17-18] ; voir aussi [Matsumura, 1980b, p. 138].) Plus généralement, 

on peut considérer un ensemble arbitraire de variables t e, e G E, et définir l'anneau 

A]te,e G E[, localisé de A[te,e G E] en l'idéal premier engendré par m. Rappelons le 

fait suivant ([Bourbaki, AC, IX, appendice, prop. 2 et corollaire]). 

1.3.2. Proposition. — L'anneau A]te,e G E[ est local nœthérien de même dimension 

que A. 

1.3.3. — Notons que le cas d'un nombre fini de variables est très élémentaire et que 

le cas général résulte du lemme [EGA 0m 10.3.1.3], reproduit en XIX-3.1, par passage 

à la (co)limite. Pour une autre démonstration, voir également [Bourbaki, AC, III, § 5, 

exercice 7]. 
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2. CONSTRUCTION DE NAGATA EN DIMENSION 2 463 

1.3.4- — Observons également que si le corps résiduel de A est K;, celui de A]te, e G E[ 

est canoniquement isomorphe à son extension transcendante pure K(te,e G E). De 

plus, on montre que si F est un sous-ensemble de E, le morphisme A]teje G F[—> 

A]te,e G E[ est fidèlement plat. (Voir [Bourbaki, AC, IX, appendice, prop. 2] pour 

une démonstration dans le cas où F = 0 , auquel on se ramène immédiatement.) 

2. Construction de Nagata en dimension 2, application cohomologique 

2.1. Dilatation relativement à une série transcendante 

2.1.1. — Soit W un anneau de valuation discrète, d'idéal maximal mw = (TT), corps 

résiduel fc, corps des fractions K et de complété W. On note K le corps des fractions 

de W. Supposons qu'il existe un élément (j) G W transcendant sur K. C'est le cas 

si W est dénombrable ou, par exemple, lorsque W = k[t](t) auquel cas <j> = ^2nt
n] 

convient. Par translation, on peut supposer que (f) appartient à l'idéal maximal de W. 

2.1.2. — Fixons un entier £ > 1 et considérons l'élément / = (y — <t>Y du complété 

7r-adique W[y] de W[y]. Notons que ce complété s'injecte dans la completion totale 

W [[?/]] E ^ Q U E / appartient au sous-anneau W [y] de W[y] etW[[y]]. En conséquence, le 

morphisme canonique Dil{ W [y] —• W[y] se factorise en un morphisme Dil{ W[y] —• 

W[y). 

2.1.3. Proposition. — Le morphisme Dil{ W[y] —» W[y] est plat. 

Démonstration. — Notons pour simplifier la source de ce morphisme. D'après le 

critère de platitude rappelé ci-dessus, il suffit de montrer que le morphisme ^[7r_ 1] —• 

^MI 7 1 " - 1 ] e s t car 3) —> W[y] induit visiblement un isomorphisme modulo n. Or, 

lorsque l'on inverse 7r, les WfyJ-algèbres dont SI est par définition la colimite sont 

toutes isomorphes à un anneau de polynômes K[y, F] où, rappelons-le, K est le corps 

des fractions W[7r_ 1] de W. Par conséquent, il nous faut montrer que le morphisme 

K[y,F] —> W[y][7r_1], composé des morphismes 

(K[y, F) - K[y, Ff] (K[y, F'] -+ K[y) 

\F^F'£ [F' ^y-(f> 

est plat. La platitude du premier est évidente. Pour le second, on se ramène par 

translation et changement de base à montrer que le morphisme K[F'] —• F' i-> 0 , 

est plat. Il se factorise en le composé du passage aux fractions K[F'] —> K(F') avec 

Vinjection K(F') ^ K déduite de (j). Chacun de ces morphismes est plat. • 

2.1.4. Remarque. — La construction de l'anneau de dilatation Dil{ W [y] est inspirée 

de celle de [Nagata, 1958], qui considère le cas £ = 2. (Voir aussi [Nagata, 1962, 

appendice, E4.1] et [Heinzer et al., 1997].) 
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2.2. Le diviseur C = V(F) 

2.2.1. — On conserve les notations précédentes. Soit A le localisé de l'anneau de 

dilatation en l'idéal premier image inverse de l'idéal (ir, y) C W[y\. C'est un anneau 

noethérien par fidèle platitude, de corps résiduel k. 

2.2.2. Lemme. — L'anneau A satisfait les propriétés suivantes : 

(i) il est régulier et la suite (TT,F) est régulière; 

(ii) son quotient A/F est intègre; 

(iii) l'intersection schématique du fermé V(F) avec le spectre épointé de A est un 

schéma régulier. 

Démonstration. — (i) Il suffit d'établir les deux énoncés pour Q). Pour se faire, on 

peut compléter 7r-adiquement (cf. par exemple [Bourbaki, AC, X, §4, n° 2, cor. 3]). 

Le complété de est isomorphe à W[y] de sorte que la régularité de l'anneau et 

de la suite (TT,F) — c'est-à-dire l'injectivité de la multiplication par 7r, et par F 

modulo 7T — sont évidents, (ii) Si on inverse 7r, l'anneau A devient une localisation 

de l'anneau de polynômes K[y, F]. La restriction du diviseur à cet ouvert est intègre. 

La multiplication par n dans le quotient A/F étant injective d'après (i), l'intégrité 

de A/F résulte de celle de A[ir~L]/F. Le quotient est non nul car F G m A- (iii) 

Sur l'ouvert complémentaire de V(TT), l'élément F est une indéterminée de sorte que 

le résultat est clair. D'autre part, l'intersection du complémentaire de V(y) avec le 

diviseur est contenu dans le complémentaire de V(TT) car l'équation est — dans le 

complété 7r-adique — de la forme (y — (j))1, avec <fi G (n). Ceci suffit pour conclure. • 

2.2.3. — Notons le fait suivant, trivial mais crucial : par construction, le divi­

seur V(F) devient V((y — <j>Y) dans le complété A de A relativement à son idéal 

maximal. 

2.3. Hensélisation. — Pour simplifier les notations, on suppose dorénavant le corps k 

séparablement clos. 

2.3.1. — Soient Ahs le hensélisé de A en son point fermé, A le complété de A (ainsi 

que de A h s ) , et notons X = Spec(.A h s) et X = Spec(A) leurs spectres respectifs, 

ainsi que • et • les points fermés. Comme Spec(A), le schéma X est intègre. De plus, 

le diviseur C d'équation F = 0 dans X est réduit, cette propriété étant également 

conservée par hensélisation. 

2.3.2. — Vérifions que le diviseur C est irréductible. D'après le théorème de compa­

raison de Elkik, le morphisme 7r0(C — • ) —• 7r0(C — • ) est une bijection. Or, C — * 

est connexe : dans un anneau local régulier le spectre Spec(B/ge) est irréductible 
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pour tout g ëxtiB — ̂ aB. Ainsi, l'ouvert C — * de C est connexe et, finalement, C est 

irréductible. 

2.4. Application cohomologique. — On suppose dorénavant l'entier £ inversible sur X. 

2.4.I. — Notons pour simplifier G l'élément y — (j) de A, de sorte que — par construc­

tion — on a l'égalité F = Ge dans A. Notons U l'ouvert affine X — C du schéma 

strictement local X. Soient j l'immersion ouverte" de U dans le spectre épointé X — * 

et i l'immersion fermée C — • X — •. 

£^.J2. — Le triangle 

-+ Id R¿*¿* 

sur X — • induit la suite exacte 

h ^ _ * ( x - z /¿z) h 3 ( x - z/ez) h 3(í7, z /¿z) 

H£_*(X - *, Z /¿Z) = H 2 (C - i ! Z / ¿ Z [ 2 ] ) . 

Par pureté (XVI-3.1.1), le faisceau de cohomologie locale vZ/iZ est constant concen­

tré en degré 2. Or le groupe de cohomologie H 2 (C - Z/£Z) est nul : la cohomologie 

du corps des fractions d'un anneau B strictement local intègre de dimension 1 est nul 

en degré > 2. (On se ramène au cas bien connu d'un anneau de valuation discrète en 

observant que le normalisé de B dans son corps des fractions est un anneau noethérien, 

de Dedekind, et strictement local car colimite locale d'anneaux strictement locaux.) Il 

en résulte que la flèche de restriction H 3 ( X — Z/£Z) —• H 3(t/, Z/£Z) est surjective ; 

nous allons voir que c'est un isomorphisme. 

2.4-3. — Comme rappelé ci-dessus, le morphisme 1^_^(X — *,Z/£Z) —» H 3 ( X — 

Z/£Z) s'identifie, par pureté, au morphisme de Gysin 

Gys(/) : H ^ C - *,Z/IZ) -> R3(X - * ,Z /£Z) . Il résulte de la commutativité 

du diagramme 

h x ( c - • , z/ez) > h 3 ( x - • , z/ez) 

Hi(C X Z/£Z) G y s ( F ) = G y s ( G % H 3 ( X - 1 , Z / Œ ) , 

de l'égalité Gys(F) = £ • Gys(G) et enfin du fait que les flèches verticales sont des 

isomorphismes (comparaison à la complétion, [Fujiwara, 1995, 6.6.4]) que le mor­

phisme Gys(F) est nul. (La commutativité du diagramme résulte par exemple de la 

définition XVI-2.3.1 et de XVI-2.2.3.1.) Ainsi, le morphisme de restriction induit un 

isomorphisme 

H 3 ( X - Z/£Z) ^ H3(C7, Z/IZ). 
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Or le terme de gauche est non nul, à nouveau par pureté. Le schéma affine U est donc 
de dimension cohomologique > 2. • 

3. Séries formelles de Gabber, application cohomologique 

On étend la construction précédente en dimension arbitraire > 2. 

3.1. Une série formelle et sa décomposition 

3.1.1. — Soit A un anneau commutatif. Rappelons que l'application A-linéaire 
n 

] T A[xj±i] [[xi]] А[[хг,..., xn]] 
i=l 

somme des injections canoniques est surjective : si G G ^4[[#i,... ,ж п ]], on peut par 
exemple regrouper pour chaque i G [l,n] les termes ax^1 •••a?^n G A[[x\,...,xn]] 
de G pour lesquels fa = m a x j G [ l n ] et . . . , A - i < fa- (Cette dernière condition 

n'est là que pour définir i de façon non ambiguë ; tout autre choix conviendrait.) La 

somme gi de ces termes appartient à -А[ж^г][[#г]]> et G = #i + h gn. 

3.1.2. — On fixe maintenant deux entiers non nuls n et £ et on considère 
n oo 

S = (У + ^"52^<*х?) G Z [ y , t i 6 [ i j n ] j a > i ] [ [ i i , . . . , a ; n ] ] . 
i=l oc—1 

Il résulte de l'observation précédente que l'on peut écrire cette série sous la forme 

Ve + fi + • • • + fn 

où chaque fi est une série formelle en Xï, a coefficients polynomiaux en les autres 

variables. 

3.1.3. — Afin que la proposition de platitude ci-dessous soit vraie, on procède de 

façon légèrement différente pour définir les séries formelles fi G Z[y,tja,Xk^i][[xi\] 

telles que S — y£ = Y^i=ifi- Écrivons 
oo n 

S = ye + ^2Œ2^iaX^£ ~^ ( é l é m e n t de degré < £ en les tjp). 
a=l i=l 

Soient г G [l,n] et a > 1 des indices. On considère les termes ax^-'-x^1 de 

(И7=1^Х?У P o u r lesquels г est le plus grand indice tel que fa ф 0, c'est-à-dire 
les termes de (]СГ=1 UaXfY qui sont dans Z[tia,..., tna,#i,..., x^ mais pas dans 
Z[tia,..., tnonxi,..., Xi-i]. À i fixé, la somme sur a de ces termes est un élément fi-t 
de Z[tjp, xkjLi][[xi]]. Par construction, on a l'égalité S^LidCILi UaXfY = YJi=i f%,=i-
Enfin, on décompose le terme restant, S — ye — Yl7=i Д=-£> e n u n e somme 
2Г=1 fo,<i o u с п а ( ш е A<^ appartient à Z[^, tj^, х^Ща^]], en procédant par 

exemple comme en 3.1.1. On pose alors fi = fi-i + fi,<£\ chacun de ces éléments 
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3. SÉRIES FORMELLES DE GABBER, APPLICATION COHOMOLOGIQUE 467 

est de degré total en les tj@ inférieur ou égal à £, et appartient donc également à 

% ^ J f c , . - ^ n ] ] [ i i a r - - , U pour chaque a > 1. 

3.1.4. Proposition. — Fixons a > 1. Notons T{ = tia pour chaque i G [l,n] et Ra 

Vanneau Z ^ t ^ ^ ] ^ ! , . . . ,xn]]. Le morphisme 

Ra[Fi,..., Fn] —» Ra [Ti,..., Tn] 

Fi» fi 

est libre, donc plat, au-dessus de rouvert x\ • • -xn / 0 de Spec(it!). 

Démonstration. — Par construction, chaque fi est une somme fii=£ + fit<e, où 

fi-i (resp. fi,<£) est un polynôme dans Ra[Ti,...,Tn] de degré total égal (resp. 

strictement inférieur) à £. De plus, /i,=£ est, comme polynôme en T ,̂ de la forme 

xf£Tf 4- ^2m<£CmT-n où les c m appartiennent à i? a[Tj<i]. Munissons les monômes 

de i î a [ T i , . . . , Tn] de l'ordre lexicographique gradué suivant : T?1 • • • T^n ^ T*'1 • • • r f 1 

si et seulement si ^2d{ < J2^i 0 1 1 Yl^i = e t ^ < pour le plus grand i tel 

que d{ ^ d!{. Il est clair que le terme de tète in^(^) pour cet ordre d'un polynôme 

g = fi1--- f%n en les fi est Tf1* • • • T%ni, à multiplication près par un monôme en 

les Xi. Il en résulte immédiatement qu'en inversant les Xi, l'anneau Ra[Ti,..., Tn] est 

libre sur Ra[Fi,..., Fn] de base les monômes T-J"1 • • • Tr

d

d, avec 0 < < £. • 

3.1.5. — Soit A un anneau local noethérien régulier de dimension n dont on note 

xi,...,xn un système régulier de paramètres. On pourra penser par exemple au lo­

calisé k[x\,... ,a;n](a;i,...,xn) d'un anneau de polynômes sur un corps. On considère le 

gonflement A]t[ défini en 1.3, où t est l'ensemble des variables {tia : i G [ 1 , . . . , n], a G 

N>!>. 

3.2. Construction d'un anneau local régulier pathologique. — Soit i G [ l , . . . , n ] . No­

tons encore fi l'image de la série formelle à coefficients entiers considérée en 3.1.3 

dans le complété a^-adique de A]£[[2/], et ^ l'anneau de dilatation Dil^. A]t[ [y]. 

Le produit tensoriel & de ces A]t[ [y]-algèbres s'envoie naturellement dans le com­

plété [[?/]], où la première complétion est faite relativement à l'idéal maximal 

( x i , . . . , £ n ) de A]t[. On note @ le localisé de S? en l'image de l'idéal maximal 

(xu...,xn,y) de Spec( A] t [[[y]]). 

3.2.1. Proposition. — Le morphisme 3 —> A]£[[[y]] est fidèlement plat. 

Il en résulte que l'anneau @ est local nœthérien, régulier. 

3.2.2. Remarque. — Notons qu'il est clair que S) est «quasi-régulier». En effet, 

le gradué de & relativement à l'idéal ( # i , . . . , xn, y) est une algèbre symétrique : 
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pour chaque entier r, le morphisme A]t[ [y] —> S? induit un isomorphisme modulo 

(x\, . . . , Xn) . 

Démonstration. — Il suffit de montrer que le morphisme S? —» A]t[ [[y]] est plat. 

D'après le critère de platitude rappelé précédemment (1.2.2), il suffit de montrer la 

platitude sur l'ouvert X\ • • • xn ^ 0. En effet, le cas où seuls certains x\ sont nuls se 

ramène à ce cas particulier : en tensorisant par A]t[ [y]/xi le morphisme 2? —> A]t[ [[y]], 

on obtient une flèche du même type définie par l'anneau A/xi de dimension n — 1 

et des séries qui coïncident avec l'évaluation en X{ = 0 des / i , . . . , / ¿ - 1 , /¿+1» • • • > /n-

Pour chaque i, ^[x^1] est une algèbre de polynômes [y, F ^ x " 1 ] de sorte que le 

morphisme dont on souhaite montrer la platitude est 

A]t[ [y, F,,..., Fn] ] - M [[V]} \zr^-7-\» 

^ fi. 

Il suffit de montrer que pour chaque sous-ensemble fini ¿7 des variables t, le morphisme 

A]t e ^ [ [ y , F U . . . , F n ] [ ± ] - A]fi>[[[j/]] [ ] 

est plat. Quitte à agrandir un tel ensemble on se ramène au cas où £F est co-

fini, de complémentaire des variables tia,... , £ n û ; pour un indice a > 1 quelconque. 

Posant alors i2 a = A^ti^a[ et .R7 = il suffit de montrer que le morphisme 

Ra[y, Fi,..., Fn] —> Rf[[y]] est plat au-dessus de l'ouvert x\ — -xn ^ 0. Un dernier 

dévissage nous ramène à montrer la platitude du morphisme Ra[y, F±,..., Fn] —> 

Ra[y,tia,..., t n a ] , au-dessus du même ouvert. Ce dernier point résulte de la propo­

sition 3.1.4. • 

3.23. Proposition. — Le diviseur C = V(y£ + F\ H h Fn) de Spec(^) est régulier 

hors du point fermé. 

Dans cet énoncé, on note abusivement F{ l'image dans @ de l'élément de cor­

respondant à fi (cf. 1.1). 

Démonstration. — Il suffit de montrer que pour chaque sous-ensemble strict E 

de [1,72], l'intersection schématique de C avec le sous-schéma XE = = 0,i G 

E \x\ 7^ 0,i £ E} de Spec(f^) est un diviseur régulier de XE- Si E = 0 , cela 

résulte du fait que le schéma X0 est le localisé d'une algèbre de polynômes en les 

?/, F i , . . . , Fn. Le cas général se ramène aisément à ce cas particulier. (Remarquons 

que si Xi = 0, il en est de même de Fi.) • 

3.2.4. Proposition. — L'image inverse de C dans un localisé strict de Spec(^) est 

irréductible. 

Démonstration. — Même argument qu'en dimension 2. • 
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4. DIMENSION COHOMOLOGIQUE : MAJORATION D'UNE... 469 

3.2.5. Corollaire. — Pour tout entier d > 1, il existe un schéma nœthérien stricte­

ment local régulier de dimension d possédant un ouvert affine de £-dimension coho­

mologique 2d — 1. 

Démonstration. — La même démonstration qu'en dimension 2 nous permet de mino­

rer la dimension cohomologique par 2d—l. D'après X V I I I A - 1.1.1, c'est une égalité. • 

4. Dimension cohomologique : majoration d'une « fibre de Milnor générique » 

4.1. Énoncé 

4.1.1. Théorème. — Soit R —» R' un morphisme local essentiellement de type fini 

d'anneaux noethériens strictement locaux intègres. Notons K le corps des fractions 

de R. Alors, pour tout nombre premier £ inversible sur R, on a la majoration 

cdi(# ®R K)<dim(R'), 

où le terme de gauche désigne la £-dimension cohomologique étale du spectre de Van­

neau R' ®R K et le terme de droite désigne la dimension de Krull de R'. 

4-1.2. — Dans cet énoncé, l'hypothèse de finitude sur / signifie que Rf est une coli-

mite de i^-algèbres de type fini à morphismes de transition étales. 

4.1.3. Corollaire. — Soit R un anneau strictement local nœthérien intègre de corps des 

fractions K et soit £ un nombre premier inversible sur R. Alors, on a la majoration 

càt(K) < àim(R). 

4.1.4. Remarque. — Réciproquement, il résulte par passage à la limite des résultats 

de § 6 infra que, sous les hypothèses du corollaire, si U est un ouvert non vide strict de 

Spec(i2), alors càt(U) > dim(.ft) et que, lorsque R' <S)R K ^ 0, la majoration du théo­

rème 4.1.1 est une égalité, excepté dans le cas trivial R' ^ R' <S>R K. Une autre façon 

de procéder serait d'utiliser une variante de la méthode (également due à O. Gabber) 

exposée dans [Gabber & Orgogozo, 2008, §6.1] et reposant sur une « astuce quadra­

tique » . Rappelons pour terminer que la minoration « limite » cdi(K) > dim(iî) 

est élémentaire : on procède par spécialisations successives en codimension 1 (voir 

[SGA4X2.4]). 

4.2. Démonstration. — On procède par récurrence sur d' = dim(R') et l'on se ramène 

au cas excellent. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



470 E X P O S É XVIIIB. DIMENSION C O H O M O L O G I Q U E 

4.2.1. — Notons X = S p e c ( # ) , Y = S p e c ( # ' ) et respectivement X * et Y* les 

spectres épointés. Considérons l'ouvert Y* = Y x x X* de y * , V = Spec(R' K) 

la fibre générique de Y —> X et enfin j le morphisme V y * . Il résulte de 

l'hypothèse de récurrence que pour chaque faisceau & de Z/^Z-modules sur V, le 

complexe § & = Rj*<^ appartient à D - c o d ( y * ) , où cod est la fonction de perver­

sité y i—> dim &Y,y (Ceci est encore vrai avec y ^ d! — dim {y}.) On veut montrer 

que H r (V,J^") = H r ( y * , $ j r ) est nul pour r > df. Fixons un tel r et une classe 

c € H r ( y * , * ^ ) . 

— On suppose d > 2, et on choisit un système de paramètres xi,...,Xd 

pour l'anneau strictement local R. Soit Z = Y}t±,... , le « gonflement étale » , 

hensélisé strict de A y - 1 = Y[t\,..., td-i] en un point générique géométrique de la 

fibre spéciale sur Y. L ' « hyperplan » H = V(t\X\ H h td-iXd-i + xj) de Z est de 

codimension 1, essentiellement lisse au-dessus de Y*. Considérons le triangle distingué 

R T H . (Z* , - R T ( Z * , - R T ( Z * - ±J, 

où l'on note Z * le produit fibre Z X y y* et, abusivement, ses diverses images 

inverses. Soit i l'immersion fermée H* <—> Z * , où H* = H Xz Z*. Le morphisme 

Z / ^ Z —• r Z / ^ Z ( l ) [ 2 ] de complexes sur i ï* est un isomorphisme par pureté relative. 

On montre par dévissage qu'il en est de même de la flèche $&\Hit —> r$&\zi, (1)[2] ob­

tenue par tensorisation à partir de la précédente. On utilise ici le fait que la restriction 

de <Ê>jr à Z* provient de la base Y*. On en tire le morceau de suite exacte : 

H r - 2 ( t f * , Ф ^ ) ( - 1 ) - H r (z., Ф ^ ) - H r (z . - я*, Ф^; 

Notons que Z* — H* = Z — H car # contient la fibre spéciale de Z —• X . Soient Y le 

complété (m^-adique) de y et Z un hensélisé strict du produit fibre Z XyY. Notons 

que le morphisme Z —» Z est un morphisme local entre schémas strictement locaux 

induisant un isomorphisme sur la complet ion le long de la fibre spéciale sur Y. Il ré­

sulte donc du théorème de comparaison de Fujiwara-Gabber ([Fujiwara, 1995, 6.6.4]) 

que le morphisme H r ( Z * , 3>j?) —> H r(Z*,<I>j?) est un isomorphisme pour chaque r. Il 

en est de même de H r ~ 2 ( i ï * , § — • H r _ 2 ( i l * , où i ï* = iJ* Z * . Le schéma 

Z * - i î * est un ouvert affine, qui coïncide avec Z — H, d'un schéma strictement lo­

cal essentiellement de type fini sur le schéma local nœthérien complet Y. Comme 

l'appartenance de à D - c o d est préservée par complétion, il résulte du théorème 

de Lefschetz affine (XV-1.2.2), dans le cas excellent, que le groupe de cohomologie 

H r ( Z * — Jï*, est nul pour chaque r > d i m ( Z ) = d i m ( y ) = d!. En conséquence, le 

morphisme H r ( Z * , $ ) —> H r ( Z * — i ï* , $ ) est nul pour les mêmes r. De ce fait, des théo­

rèmes de comparaisons susmentionnés et de la compatibilité du morphisme de Gysin à 

la complétion, il résulte formellement que toute classe c G H r ( Z * , $ JF) provient d'une 

classe dans H r ~ 2 ( f f * , 1) et est donc tuée par restriction à Z * — i l* . 
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4-2.3. — Il existe donc un voisinage étale e : W —» A y - 1 dont l'image rencontre 

la fibre spéciale sur Y tel que la classe c G H r (y* , 3>j?) soit tuée par restriction à 

W — Hw Notons k' le corps résiduel de Y, et k celui de X. L'ensemble kd~x est 

dense dans A ^ , - 1 , car k est infini. Il en résulte qu'il existe une section a : Y —• A y

_ 1 , 

correspondant à des spécialisations des U à valeurs dans R, telle que ait une fibre 

spéciale sur Y non vide. Le schéma Y étant strictement local, on relève cette section 

en Y —» Wo- —• W. La classe de cohomologie c est donc nulle sur Y — Hy, où Hy est 

maintenant une hypersurface d'équation Xd + t\X\ + • • • + td-iXd-i à coefficients ^ 

dans -R. Cet ouvert affine F — i ïy contient la fibre générique V = Y<S>RK car l'élément 

Xd+tiXi~\ Hd-i^d-i £ ^ e s ^ non nul, les xi constituant un système de paramètres 

de R. Finalement la restriction de c G ET (F*, $jr) à H r(V, = H r(V, ^ ) , qui est 

la classe dont on est parti, est nulle. • 

5. Majoration : amélioration 

5.1. Énoncé 

5.1.1. — Soit / : Y —* X un morphisme entre espaces topologiques sobres non vides. 

On note 

dim.cat(/) = sup {n G N : 3y0 ~> yi ~> - - ~> yn, f{yo) + f(yi) /(î/n)} € N U {00} 

la dimension caténaire de / , où chaque yi ^ ^+1 est une spécialisation. 

5.1.2. — Par construction, dim.cat(/ : Y —• X) est majorée par les dimensions de X 

et de Y avec égalité par exemple lorsque / est l'identité. Plus généralement, lorsque / 

est un morphisme générisant ([EGA I; 3.9.2]) — comme c'est le cas d'un morphisme 

plat de schémas — la dimension caténaire coïncide avec la dimension de l'image. 

5.1.3. Remarque. — Si / est un morphisme dominant essentiellement de type fini 

(c'est-à-dire Zariski-localement comme en 4.1.2) entre schémas nœthériens intègres, 

on peut montrer que la dimension caténaire de / est la dimension de l'image d'une 

platification de / . 

5.1.4. Théorème. — Soit f : Y —> X un morphisme essentiellement de type fini entre 

schémas nœthériens strictement locaux et soit V un ouvert affine de Y. Alors, pour 

tout nombre premier £ inversible sur X, on a la majoration 

cd^(F) < dim(F) + max (0,dim.cat(/) - l ) . 

5.7.5. Corollaire. — Soit f :Y —> X un morphisme essentiellement de type fini entre 

schémas nœthériens strictement locaux, où dim(X) > 1, et soit V un ouvert affine 

de Y. Alors, pour tout nombre premier £ inversible sur X, on a la majoration 

cd£(V) < dim(F) + dim(X) - 1. 
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5.1.6. Corollaire. — Soit d > 1 un entier et soit n un entier dans l'intervalle fermé 

[d, 2d— 1]. 77 existe un schéma nœthérien strictement local X, régulier de dimension d, 

et un ouvert affine U de ce schéma tel pour tout nombre premier £ inversible sur X 

on ait Végalité 

càt{U) = n. 

Démonstration du corollaire 5.1.6. — Il suffit de montrer que pour tout entier d > 1, 

et tout entier r > 0, il existe un schéma nœthérien strictement local régulier Y de 

dimension d + r et un ouvert affine V de Y de ^-dimension cohomologique égale 

à 2d -f r — 1. Soient X et f comme en 3.2.5 : l'ouvert affine U = X[f~x] est de 

dimension d, ^-dimension cohomologique S = 2d — 1. Plus précisément, il résulte de 

la démonstration qu'il existe une classe non nulle dans H5(Î7, Z/£Z). Considérons 

maintenant Y = X[T]( 0 ) un hensélisé strict de la droite affine sur X en l'origine de la 

fibre spéciale, g = fT e T(Y, Gy) et V l'ouvert affine Y [ # - 1 ] . On a dim(y) = d + 1. 

Par pureté cohomologique, on vérifie immédiatement que le groupe de cohomologie 

H d + 1 ( V , Z / ^ Z ) est également non nul. Par récurrence, on obtient une paire (Y, V) 

comme ci-dessus telle que cd^(V) > 2d + r — 1. D'après le corollaire précédent, on a 

également la majoration cdi(V) < 2d + r — 1, d'où l'égalité. • 

5.2. Démonstration. — On procède par récurrence sur la dimension caténaire de / . 

5.2.1. dim.cat(/) = 0. — Cette égalité se produit si et seulement si Y est contenu 

dans la fibre spéciale. Le théorème est donc connu dans ce cas : on est sur un corps 

donc dans une situation excellente. 

5.2.2. dim.cat(/) = 1. — On peut supposer les schémas X et Y réduits. Quitte 

à procéder par récurrence sur la dimension de Y, on peut également supposer Y 

irréductible : si Y est la réunion de deux fermés stricts Y\ et Y<i, considérer par exemple 

le morphisme n : Y\ II Y 2 —» Y et la suite exacte 0 —> & 7r*Ĵ " —> i+J4? —> 0, 

où i est l'immersion fermée Yî fl Y2 ^ Y et Jf? un faisceau sur cette intersection. 

Quitte à remplacer X par l'adhérence de l'image de / , on peut également supposer 

la base intègre et / dominant. Soit rj (resp. s) le point générique (resp. fermé) de X 

et n' (resp. s') le point générique (resp. fermé) de Y. Comme tout point y de Y 

s'insère dans une suite de spécialisations rf ~» y ^> s'd'image rj ^ f(y) ^ s, 

il résulte de l'hypothèse dim.cat(/) = 1 que f(y) = rj ou f(y) = s. Soient X le 

complété de X et Y un hensélisé strict du produit fibre Y x x X. C'est un schéma 

strictement local de dimension dim(Y) et excellent car essentiellement de type fini 

sur le schéma local nœthérien complet — donc excellent — X. On note V l'ouvert 

V xY Y. Il résulte de [SGA4J [Th. finitude] 1.9] qu'au-dessus de r/, et donc au-dessus 

de X — {5}, la formation des images directes par j :V °—> F commute au changement 

de base Y —> Y. En d'autres termes, si V = V U (Y - Ys) et j f désigne l'immersion 
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intermédiaire V V 7 , la formation de Rj* commute à Y —> У. Il en est de même pour 

jff .yf_+Y d'après le théorème de comparaison à la completion de Fujiwara-Gabber 

([Fujiwara, 1995, 6.6.4]). On utilise ici le fait que si F est un fermé de Y inclus dans la 

fibre spéciale alors les complétés de Y le long de F et celui de l'hensélisé de Y (en le 

point correspondant au point fermé de Y) sont naturellement isomorphes. Finalement, 

le foncteur RT(V) = RT(Y) о Rj* s'identifie au foncteur RT(Y) о Rj* = RTjV), 
appliqué à l'image inverse. Ainsi on a l'inégalité cd£(V) < cd^(V"). Le schéma Y est 

quasi-excellent, le terme de droite est donc justiciable du théorème de Lefschetz affine. 

L'inégalité cd^(V) < dim(y) résulte alors de l'égalité dim(y) = dim(y). 

5.2.3. Remarque. — Lorsque dim(X) = 1, on a vu en XIII-2.3 que le théorème peut 

également se démontrer par normalisation. 

5.2.4- dim.cat(/) > 1. — Notons à nouveau j l'immersion ouverte V » Y. Par res­

triction à la fibre générique, on a un isomorphisme RTCV^, = Rr(y r ? , (Rj^)^Yri)-

Si y est un point géométrique de Y localisé en Yv, la fibre (Rqj*<j?)y est nulle dès lors 

que q > dim(Ô>Yv,y)- Cela résulte par passage à la limite du théorème d'Artin pour les 

schémas affines de type fini sur un corps et du fait trivial que У(у) —> Y se factorise 
à travers Yv. Soient q > 0 un entier, W un sous-faisceau constructible de ( R ^ j * ^ " ) ^ 

et S l'adhérence dans Y de son support. D'après ce qui précède, on a la majoration 

codim(5 r 7, Yjj) > q. Il en résulte que codim(Sf, Y) > q, et ce sans hypothèse de ca-

ténarité sur les schémas. De la suite spectrale de composition des foncteurs et du 

théorème 4.1.1, on déduit que le groupe de cohomologie H n (V^,^") est nul lorsque 

n > dim(y). 

Considérons la flèche d'adjonction & —> k±k*^, où к est l'immersion Vv » V, 
et Ж son noyau. Par construction, la restriction de Ж à est nulle. La di­
mension de l'adhérence du support de Ж est donc au plus dim(y) — 1. Il ré­

sulte donc de l'hypothèse de récurrence que le résultat d'annulation désiré est 

connu pour Ж. Procédant de même pour le conoyau de l'adjonction précé­

dente, on se ramène à démontrer l'annulation du groupe H P(V, R°k*k*^) pour 

p > dim(y) + dim.cat(/)(> dim(y)). Compte tenu du résultat d'annulation pré­

cédemment établi pour Rr(T^,^*) = Rr(V,Rk*k*^) et de la suite spectrale de 

Leray E™ = HP(V,R9fc*fc*^) => rP+^K,, J?"), il suffit de montrer que pour chaque 

tel q, les groupes W~q~l(V, RVk+k*^) sont nuls pour q > 0. Fixons q. Soit y un 

point géométrique de У tel que la fibre de Rqk+k*J? en y soit non nulle et x le 
point image de y dans X. Le schéma r\ Xx X(x) se décompose en un coproduit de 

spectres de corps 7]a ; de même, le produit fibre Y(y) Xx ?/, dont on considère la 

cohomologie, est isomorphe au coproduit des Y^ Xx(x) Va- D'après op. cit. (4.1.1), 

ces derniers n'ont de cohomologie qu'en degré q < dimy^) < dim(y) — dim { y } . 
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Il en résulte que la dimension du support de chacun des sous-faisceaux construc­

tibles de R9fc*fc*^* est au plus dim(Y) — q. De plus, la dimension caténaire du 

morphisme / restreint à un tel support est au plus dim.cat(/) — 1. Il résulte donc 

de l'hypothèse de récurrence que les groupes H P ~ 9 _ 1 ( V , Rqk*k*<^) sont nuls lorsque 

P - q - 1 > (dim(Y) - q) + (dim.cat.(/) - 1). • 

6. Dimension cohomologique d'un ouvert du spectre épointé : minoration 

6.1. Théorème. — Soient X un schéma intègre strictement local nœthérien de dimen­

sion d et Q, un ouvert non vide du spectre épointé. Alors, pour tout nombre premier £ 

inversible sur X, on a 

cd*(ft) > d. 

La première démonstration occupe les deux paragraphes suivants. 

6.2. Construction combinatoire locale 

6.2.1. Notations. — Soit X un schéma strictement local nœthérien régulier de di­

mension d > 2 et soit ¿ 1 , . . . , td-i,td un système régulier de paramètres. Pour des rai­

sons qui apparaîtront ultérieurement, on note également 7r l'élément ta- Pour chaque 

1 < i < d — 1, on note Hi le diviseur régulier V(ti) ; pour i = d, on pose Hd = 

V(t\ H h td-i — TT). Enfin on note U l'ouvert affine X[7r - 1], k l'immersion ouverte 

U <^> X et j l'immersion ouverte U —*(jf=i Hi U. On fixe un nombre premier £ 

inversible sur X et on pose A = Z/£Z. 

6.2.2. — Soit P une partie de Notons Hp l'intersection C\pepHp, et 

désignons par H'p l'intersection Hp D U — ouverte dans Hp et fermée dans U —, 

et kp l'immersion ouverte H'p Hp. Pour chaque entier q, le groupe de cohomologie 

H.q(U,AH'p) est isomorphe au groupe ~H.q(Hp,A). Comme Hp — H'p est le diviseur 

régulier défini par 7r dans Hp, il résulte de la pureté cohomologique que Jïq(U,AH'p) 

est nul pour q > 1, isomorphe à A pour q = 0 et de rang 1, engendré par la classe 

de Kummer de TT pour q = 1. Ceci vaut également pour P = 0 , avec la convention 

évidente que H0 = X et H'0 = U. 

6.2.3. — Considérons maintenant le quasi-isomorphisme 

l<i<d \P\=d-l 

de faisceaux de A-modules sur où le premier terme du complexe de droite est placé 

en degré 0. (On utilise ici le fait que Hp = 0 si \P\ = d car Hp est alors le point fermé 

de X.) Les différentielles sont des sommes, avec des signes, de flèches de restriction. 
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À cette résolution est associée — via la filtration « stupide » — la suite spectrale 

E™ = H*(tf, 0 AH,p) HP+*(tf,j,A). 
\P\=P 

D'après les observations du paragraphe précédent, toute classe de Ef~1,x = 

0|P |=d-i H 1 (̂ 7, A.H'P) n'appartenant pas à l'image de Ef~2,1 survit dans l'aboutisse­

ment ïïd(U,j\A). 

6.2.4- — De même que le faisceau j\A est isomorphe au produit tensoriel 

(U-H[<-> U)\A ®->>®(U-H'd^> U)\A), 

le complexe quasi-isomorphe à j\A ci-dessus est isomorphe au produit tensoriel des 

complexes (A —• A#/) , 1 < i < d, où la flèche est l'unité de l'adjonction, isomorphes 

respectivement aux (U — H[ ^ U)\A. De cette observation, jointe à (6.2.2), on en 

déduit que le complexe E^1 est quasi-isomorphe à la troncation naïve cr<d-i((A ^ 

A)®d) obtenue en remplaçant le d-ième terme, isomorphe à A, par zéro. Il est bien 

connu que ce complexe (« de Koszul ») produit tensoriel est acyclique (avant tron­

cation), cf. par exemple [EGA Illi §1.1]. (L'exactitude résulte également du quasi-

isomorphisme ci-dessus, appliqué à d'autres fermés.) En particulier, l'image de la 

différentielle Ef~2,1 —• Ef~lfl est naturellement le noyau d'une forme linéaire non 

nulle (explicite) sur J E ^ - 1 ' 1 et n'est donc pas Ef~1,x tout entier. Il existe donc des 

sommes directes de classes de Kummer de 7r qui survivent dans Hd({7, j\A). 

6.3. Éclatement et normalisation partielle 

6.3.1. — Soit maintenant X = Spec(R) un schéma strictement local nœthérien in­

tègre de dimension d > 2, de point fermé et soit un ouvert non vide strict de X. 

Nous allons montrer qu'après éclatement et « normalisation partielle » l'ouvert f2 est 

— localement et « modulo des nilpotents » — un schéma régulier du type du schéma U 

considéré ci-dessus. Ceci permet de produire une classe de cohomologie non nulle de 

degré d sur ft. 

6.3.2. — Soit Y = Éc\x(X). Notons j l'immersion ouverte de Y — Yx dans Y. On 

désigne par X le complété du schéma local X, par Y' le produit fibre Y Xx X et 

par Y^éd la réduction de Y'. Notons que le schéma Y' est excellent car X l'est. 

6.3.3. — Soit G y la normalisation de Gy dans J*GY-YX- On définit de même Gy, 

et Gy, . La ^y-algèbre Gy est colimite (filtrante) de ses sous-^y-algèbres finies srf\. 
réd 

6.3.4. Proposition. — Le foncteur envoyant une sous-Gy-algèbre SS de j±Gy-yx sur 

Vimage de (Y' —» Y)*â§ par l'adjonction (Y' —> Y)*j+Gy-YX —> 3*Gy>-yx induit une 

bijection entre les sous-Gy-algèbres finies de j*Gy-yx et les sous-Gy > -algèbres finies 

de j'^Gy-yx. De plus, les algèbres Gy et Gy, se correspondent par ce foncteur. 
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Démonstration. — On se ramène au cas où Y = Spec(A) et Yx = V(t). Il suffit de 

montrer que si A est une i?-algèbre intègre et A! = A <S>R R alors le morphisme 

—• A']^-1}/^ est un isomorphisme et que les normalisations se corres­

pondent. Notons que les anneaux A et A! ont même complet ion t-adique. Le premier 

point résulte alors du fait que si M est un A-module dont chaque élément est tué par 

une puissance de t, on a M ^ M®AA'. Enfin, soit ( / 7 0 d + a i ( / 7 * r ) d ~ 1 + * ' '+a'd = 0 

une relation de dépendance intégrale où / ' et les appartiennent à A!. Soit N un 

entier assez grand. Écrivons / ' = f + tNg', a[ = ai + ̂ ty où / et les appartiennent 

à A. La relation précédente devient {f /tr)d+ ax(f /tr)d~l + • • - + a d e A'H Alt"1] = A. 

Il en résulte que l'élément f /tr = f/tr + tN~rg' est, modulo un élément de A', dans 

l'image de Â°. • 

6.3.5. — Par excellence, l'algèbre û^f est finie sur ây . L'anneau &2, en est 
*réd r é d 1 

1'« image inverse » par la surjection naturelle. De ces observations et de la proposition 

précédente, on déduit qu'il existe un indice À tel que, si Z = Spec(<£^\) et Z1 — Z^, 

alors Zf

réd est intégralement clos dans Zf

réd privé de l'image inverse de Yx. Notons 

que Z et Y sont isomorphes hors de Yx. 

6.3.6. — Soit E une composante de dimension d — 1 de Yx et soit e un point maximal 

de E'réd dans Z'réd. Le localisé en e est un anneau de valuation discrète : c'est un 

anneau local réduit de dimension 1, intégralement clos dans le complémentaire du 

point fermé. Par excellence de Z' il existe un ouvert dense de E'xêd le long duquel 

Z'réd est régulier. On peut également supposer que E'réd est régulier sur cet ouvert. 

(Pour ce dernier point il suffit de constater que E'réd est de type fini sur un corps.) 

Soit U'réd un ouvert de Z'réd induisant l'ouvert de E'réd ci-dessus et U un ouvert de Z 

induisant l'ouvert correspondant de E. (Le morphisme Z' —> Z est un isomorphisme 

sur E.) On a U' C U Xz Z'. Ci-dessous, on s'autorise à rétrécir les ouverts U et U', 

sous réserve qu'ils contiennent tous les points maximaux de E. On suppose de plus 

que U H Yx = U H E. 

6.3.7. — On note t une équation de E dans U et TT une équation de E'réd dans U'véd de 

sorte qu'il existe une unité u et un entier e tels que l'on ait l'égalité t — u x 7re sur U'réd. 

L'existence d'un relèvement montre que l'on peut supposer l'équation ir définie sur U'. 

Vérifions que l'on peut également supposer TT défini sur U. Les schémas Z' et Z ayant 

même complétion t-adique, il suffit d'observer que si a est une fonction sur on a 

l'égalité d'idéaux (ir) = (n + at 2), du moins lorsque 1 + uan2^1 G G m ( f / / ) , ce que 

l'on peut supposer quitte à restreindre U'. 

6.3.8. — Soit fl un ouvert non vide de X — {x} (cf. 6.3.1). On note également ft 

ses images inverses dans Y et Z ; elles lui sont isomorphes. Sur un voisinage ouvert 
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des points maximaux de E, l'ouvert Q coïncide avec le complémentaire de E. Géné-

riquement sur E, on a donc fi = Z\K~X\. Soit z un point fermé de Z appartenant à 

un tel ouvert ainsi qu'à l'ouvert U. Soient t\,..., td-i des fonctions de âz>, z consti-
réd ' 

tuant, avec 7r, un système régulier de paramètres. On peut supposer qu'elles s'étendent 

à U{.ÉD. Utilisant à nouveau le fait que le morphisme Z' —> Z est un isomorphisme 

au-dessus de E, on peut également supposer qu'elles proviennent de U, quitte à les 

changer modulo 7r. Pour chaque i < d, considérons l'adhérence schématique H{ C Z de 

l'hypersurface V(U) dans U et Hd l'adhérence schématique de V(t\ H h td-\ — TT)-

On note H[ = HiC\ fi. 

6.3.9. Stratégie. — On va construire une classe non nulle dans le groupe de cohomo-

logie Hd(Q, t7iA f i_|jd H,), où j est l'immersion ouverte fi — \J1 H[ fi et A = Z/nZ 

avec n inversible sur X. Localement, ces groupes de cohomologie sont invariants par 

passage à la complétion de la base X (et bien sûr au schéma réduit) de sorte que l'on 

va pouvoir utiliser les calculs de 6.2. Il faut cependant prendre garde ici au fait que 

l'intersection f>|1 H[ n'est pas nécessairement vide, contrairement au cas local précé­

demment étudié : l'analogue du complexe 6.2.3 a donc un terme de plus (en degré d). 

Malgré tout, on va relever à fi une classe de degré d « locale » — c'est-à-dire du 

schéma fi Z^) (ou plutôt l'analogue sur Z'VÉD) — à coefficients dans j\A. 

6.3.10. — Considérons à nouveau la suite spectrale du 6.2.3 : 

^ = H « ( f i , A p ) = ^ H ^ ( n , M ) , 

où l'on note Ap la somme directe des AHp avec |P| = p. Pour chaque P C [1, de car­

dinal d— 1, l'intersection Hp des hypersurfaces correspondantes de Z est propre sur X. 

Par construction, elle est aussi quasi-finie au voisinage du point fermé z. Il en ré­

sulte par le théorème de changement de base propre pour l'ensemble des composantes 

connexes (ou le théorème principal de Zariski) — d'après lequel sa décomposition en 

composantes connexes se lit sur la fibre spéciale — que chaque Hp se décompose en 

le coproduit d'un schéma local fini sur X et d'un schéma ne rencontrant pas z. Ainsi, 

H1(f2, Ad-i) a un facteur direct isomorphe à H1(Z(^)[7r_1], A^- i ) et, par comparaison 

à la complétion, à H ^ Z ^ ^ ^ T T " 1 ] , A d _ i ) . De plus, la différentielle £ f ~ M -» E^1 

envoie ce facteur sur 0 dans H^f^A^) car l'intersection de avec fi est vide au 

voisinage de z. En effet, si t\ = ¿2 — • • * = td-i = ¿1 H H td-i — TT = 0 alors TT = 0 ; 

d'autre part, au voisinage de z, fl = Z[K~1]. Ainsi, toute classe de cohomologie du 

facteur direct « local » induit une classe dans Hd(Çl,j\A) qui relève la classe corres­

pondante dans llD(Z,

Téd^[K~1}^j\K). On a vu (6.2.4) qu'il existe de telles classes non 

nulles. En conséquence, H d(fi, j\A) ^ 0 et finalement cd n (f i ) > d. • 
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6.4. Joints d'anneaux henséliens et dimension cohomologique 

6.4.I. Joints. — Commençons par énoncer une variante du résultat principal de 

[Artin, 1971], auquel nous nous ramenons. 

6.4.1.1. Proposition. — Soient A un anneau, p et q deux idéaux premiers et C une 

composante du produit tensoriel Ap (g) A Aq • L'anneau C est local hensélien. De plus, 

si ni Ap —• C ni A^ —• C ne sont locaux, il est strictement hensélien. 

Ici, Ap désigne l'hensélisé de A en p. Par « composante connexe » , on entend — 

comme en op. cit., § 3 — l'anneau de fonctions sur une composante connexe du spectre. 

Notons que le premier énoncé n'est mis que pour mémoire (op. cit., 3.4 (i)) ; le second 

généralise loc. cit. (ii) car si Ap —> C est local, on a l'inclusion p C q (et de même 

pour q, mutatis mutandis). 

6.4.1.2. Corollaire. — Soient A un anneau et p, q deux idéaux premiers. Si p (jL q, 

toute composante connexe du produit tensoriel Ap <S>A est strictement hensélienne. 

Ici, A^s désigne un hensélisé strict de A en q. 

Démonstration du corollaire. — Soit C une composante du produit tensoriel Ap 0 ^ 

A^s et C la composante correspondante de Ap&uAj. L'anneau C est local hensélien ; le 

morphisme C —> C étant ind-fini étale, l'anneau C est également local hensélien. Par 

hypothèse, le morphisme Ap —> C n'est pas local. Deux cas se présentent. Si A^ —> C 

n'est pas local non plus, l'anneau C est (local) strictement hensélien et il en est 

de même de C. Si A^ —> C est local, il en est de même du morphisme ind-étale 

A^s —> C. Les corps résiduels de A^s et C sont donc isomorphes. En particulier, 

l'anneau hensélien C est strictement hensélien. • 

Démonstration de la proposition. — Écrivons A comme un quotient d'un anneau in­

tègre normal A' et notons encore p et q les idéaux premiers de A' correspondant à 

ceux de A. Pour toute composante connexe C de A'p Af

q — nécessairement locale 

hensélienne —, le quotient C ®A' A est soit nul soit local hensélien. Les composantes 

connexes de Ap <S>A ^ sont exactement les quotients locaux henséliens ainsi obtenus. 

Ceci nous permet de supposer A intègre normal. (On pourrait également supposer A 

de type fini sur Z ; cf. op. cit., démonstration du théorème 3.4.) Comme dans op. cit., 

2.1, on peut choisir une clôture algébrique K de K = Frac (A) et plonger nos anneaux 

dans un diagramme 
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K 

c 

A1 c A\ A Ah

q D A2 

\ / 
A 

où C est le sous-anneau de K engendré par Ap et A^ — c'est le «joint » , noté 

[Ap,Aq], de op. cit. —, et Ai, A2 et A sont les clôtures intégrales de A dans les corps 

de fractions de, respectivement, Ap, A^ et C. Notons que l'anneau C est normal : 

c'est une composante de la A-algèbre ind-étale Ap <S>A A1^. D'autre part, l'anneau Ap 

est un localisé (Zariski) de Ai en un idéal premier ; cet idéal premier admet — par la 

propriété de Hensel — un unique relèvement en un idéal premier p de C. De même 

pour q. L'anneau C est aussi le joint des anneaux henséliens Ap et Aq. Rappelons que, 

par hypothèse, aucun des morphismes Ap —• C et A|| —» C n'est local ; il en est donc 

de même de Ap —• C et Aq —> C et, en particulier, p (jL q et q £ p. Ces réductions étant 

faites, le fait que C soit strictement hensélien résulte de [Artin, 1971, théorèmes 2.2 

et 2.5]. • 

6.4-2. Comparaison à la cohomologie d'un corps discrètement value hensélien. — 

Voyons maintenant une conséquence cohomologique de la proposition précédente. 

Soit X un schéma tel que toute paire de points appartienne à un ouvert affine. 

Soit x G X tel que Gx,x s°rt (local) nœthérien intègre de dimension 1 et enfin Q C X 

un ouvert tel que Q D Spec(<^x,z) soit le point générique Spec(K) de Spec(^x,aO-

Notons enfin Kh l'anneau total des fractions ûx x ®@x,x K de l'hensélisé G\x et e le 

morphisme Spec(if h) —» O. 

6.4.2.1. Proposition. — Pour tout entier j > 0, on a RPe* — 0. Ainsi, pour tout 

faisceau étale abélien & sur Spec(Kh), et tout entier i > 0, le morphisme 

H*(fi,e*^) -> H*(Spec 

est un isomorphisme. En particulier, pour tout nombre premier £, on a la minoration 

cd,(fi) > c d ^ ( K h ) . 

Démonstration. — Seul le résultat d'annulation est à démontrer ; il résulte immédia­

tement de la proposition précédente par passage aux fibres en des points géométriques 

de U. • 

Il n'est pas difficile d'en déduire une démonstration alternative du théorème 6.1 

(voir aussi 4.1.4) que nous rappelons ici sous la forme d'un corollaire. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



480 E X P O S É XVIIIB- DIMENSION C O H O M O L O G I Q U E 

6.4.2.2. Corollaire. — Soit R un anneau strictement local nœthérien intègre de corps 

des fractions K et soit £ un nombre premier inversible sur R. Pour tout ouvert non 

vide strict Q de Spec(i?) ; on a la minoration 

cd£(Q) > dim(iî). 

Démonstration. — Posons X = Spec(R) et considérons, comme en §6.3, l'éclate­

ment Y de X en son point fermé. Soit y le point générique d'une composante irréduc­

tible de dimension dim(X) — 1 de la fibre spéciale. D'après la proposition 6.4.2.1 appli­

quée au point y de Y et à l'ouvert ft (vu dans y ) , on a la minoration cd^(ft) > cd^( l f h ) , 

où Kh désigne l'anneau total des fractions de Gy . D'après le théorème de Krull-

Akizuki, le normalisé de &Y,y dans Kh est un produit fini d'anneaux de valuation 

discrète henséliens, de corps résiduels finis sur iî(y). Il résulte alors de la formule 

cd^FracA) = 1-1- cd^(ft) — où A est un trait hensélien de corps résiduel K de carac­

téristique ^ £ ([SGA4 x 2.2.(i)]) —, et de la formule cd*(/c) = deg.tr.(/c/fc) — où K 

est une extension de type fini d'un corps séparablement clos k de caractéristique ^ £ 

([SGA4 x 2.1]) —, que la ^-dimension cohomologique de Kh est dim(iî). • 

6.4.2.3. Remarques. — Le même argument permet d'obtenir une nouvelle démonstra­

tion, plus simple, des résultats de [Gabber & Orgogozo, 2008, §6.2]. 

Enfin, signalons que l'on peut étendre 6.4.2.2 à tout sous-ensemble non vide ft du 

schéma épointé X * qui est stable par générisation : un tel ensemble est une intersection 

d'ouverts et on peut définir son topos étale, par passage à la limite ([SGA4 vi §8]) 

ou bien via le topos étale d'un topos annelé [Hakim, 1972, chap. IV, §5]. 
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