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EXPOSE XVIII

DIMENSION COHOMOLOGIQUE :
RAFFINEMENTS ET COMPLEMENTS

Fabrice Orgogozo

Notre premier objectif est de démontrer que pour tout nombre premier £ il existe
un ouvert affine d’un schéma ncethérien strictement hensélien régulier de dimension 2
dont la ¢-dimension cohomologique est égale & 3. Outre les ingrédients cohomologiques
— pureté, morphisme de Gysin et comparaison & la complétion —, on utilise une
construction dont le principe est dit & Nagata : utilisant des « dilatations formelles »,
on construit un schéma ncethérien strictement hensélien X de dimension 2, de com-
plété X régulier de dimension 2, et une courbe irréductible C dans X devenant le
£-iéme multiple d’un diviseur régulier dans X. Cette construction est ensuite étendue
au cas, plus délicat, de la dimension supérieure. A partir de la, on construit aisément
des schémas dont l'existence a été annoncée dans la premiére partie (XVIIIA-1.5).
Pour vérifier que leur dimension cohomologique est bien celle attendue, on fait appel
A une majoration assez générale établie sans hypothése d’excellence. Enfin, on termine
par une minoration de la dimension cohomologique d’un ouvert (non nécessairement
affine) du spectre épointé d’un schéma ncethérien intégre strictement local.

1. Préliminaires

1.1. Dilatations formelles. — Soient R un anneau, 7 un élément non diviseur de 0
et f un élément de la complétion m-adique R de R. Pour tout n > 0, choisissons un
fn € R tel que f = f, modulo 7™.

1.1.1. Définition. — On note Dil{ R la sous-R-algébre de R[x~!,F], ot F est une

indéterminée, colimite des R-algébres R[Z={=].

T

On notera également F' 'image de cette variable dans Dilfr R.
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462 EXPOSE XVIIlg. DIMENSION COHOMOLOGIQUE

1.1.2. Remarque. — Notons que les R-algébres considérées sont toutes isomorphes a
une algébre de polynomes en une variable sur R.

1.1.8. — On vérifie immédiatement les faits suivants :

(i) la construction ne dépend pas des choix des f,, et ne dépend de I’élément 7 qu’a
travers I’idéal qu’il engendre;;
(i) les morphismes R — Dil{ R et Dilf R — R, £=fo s £ ;,{", induisent des iso-

T

morphismes sur la complétion 7m-adique.

1.2. Platitude et nethérianité

1.2.1. — Rappelons que si un morphisme A — B est fidélement plat, A est ncethérien
si B est ([EGA 1V 2.2.14]). Pour vérifier la platitude, il est parfois commode d’utiliser
le critére suivant ([Raynaud & Gruson, 1971, 11.1.4.2.1]).

1.2.2. Proposition. — Soient M un R-module, et m € R. On suppose que 7 n’est divi-
seur de zéro ni dans R ni dans M. Alors, M est plat sur R si et seulement si M/w
Uest sur R/m et M[r~] Uest sur R[n~1].

1.2.3. Remarque. — Pour démontrer la noethérianité des anneaux considérés ci-aprés,
on pourrait également utiliser le critére de Cohen rappelé en XIX-3.2, en vérifiant
notamment que les idéaux de hauteur 1 sont principaux.

1.3. Gonflements

1.3.1. — Soit A un anneau local noethérien, d’idéal maximal m. Suivant [Bourbaki,
AC, IX, appendice, § 2], on note A]t] et on appelle gonflement (é1émentaire) de A le
localisé de Panneau de polynomes A[t] en l'idéal premier mA[t]. C’est un anneau
local noethérien. (Il est noté A(t), par analogie avec les fractions rationnelles, dans
[Nagata, 1962, p. 17-18] ; voir aussi [Matsumura, 1980b, p. 138].) Plus généralement,
on peut considérer un ensemble arbitraire de variables t., e € E, et définir ’anneau
Alte,e € EJ, localisé de Alt.,e € E] en I'idéal premier engendré par m. Rappelons le
fait suivant ([Bourbaki, AC, IX, appendice, prop. 2 et corollaire]).

1.3.2. Proposition. — L’anneau Alt.,e € E[ est local nethérien de méme dimension
que A.
1.3.3. — Notons que le cas d’un nombre fini de variables est trés élémentaire et que

le cas général résulte du lemme [EGA Oryp 10.3.1.3], reproduit en XIX-3.1, par passage
4 la (co)limite. Pour une autre démonstration, voir également [Bourbaki, AC, III, § 5,
exercice 7].
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2. CONSTRUCTION DE NAGATA EN DIMENSION 2 463

1.8.4. — Observons également que si le corps résiduel de A est «, celui de Alt.,e € E|
est canoniquement isomorphe & son extension transcendante pure k(te,e € E). De
plus, on montre que si F' est un sous-ensemble de E, le morphisme Alt.,e € F[—
Alte,e € E[ est fidelement plat. (Voir [Bourbaki, AC, IX, appendice, prop. 2] pour
une démonstration dans le cas ou F = &, auquel on se raméne immédiatement.)

2. Construction de Nagata en dimension 2, application cohomologique

2.1. Dilatation relativement a une série transcendante

2.1.1. — Soit W un anneau de valuation discréte, d’idéal maximal my = (), corps
résiduel k, corps des fractions K et de complété W On note K le corps des fractions
de W. Supposons qu’il existe un élément ¢ € W transcendant sur K. Clest le cas
si W est dénombrable ou, par exemple, lorsque W = k[t]«) auquel cas ¢ = ), ™
convient. Par translation, on peut supposer que ¢ appartient & I’idéal maximal de w.

2.1.2. — Fixons un entier £ > 1 et considérons I’élément f = (y — ¢)* du complété
m-adique m de W{y]. Notons que ce complété s’injecte dans la complétion totale
W[[y]] et que f appartient au sous-anneau W[y] de m et ﬁ\/’[[y]] En conséquence, le
morphisme canonique Dilf Wy — V[//-[Z] se factorise en un morphisme Dil{ W[y] —
Wly].

2.1.3. Proposition. — Le morphisme Dil{. W[y] — W][y] est plat.

Démonstration. — Notons pour simplifier 2 la source de ce morphisme. D’aprés le
critére de platitude rappelé ci-dessus, il suffit de montrer que le morphisme 2[7~1] —
/W[y] [771] est plat car 2 — /I/I?[y] induit visiblement un isomorphisme modulo 7. Or,
lorsque l’on inverse m, les W{y]-algébres dont 2 est par définition la colimite sont
toutes isomorphes & un anneau de polynémes K[y, F] o1, rappelons-le, K est le corps
des fractions W[n~!] de W. Par conséquent, il nous faut montrer que le morphisme
Ky, F] — W[y] [7~1], composé des morphismes

K[y, F] - K[y, F'] K[y, F'] - K[y]
Fw— F" Flesy—¢

est plat. La platitude du premier est évidente. Pour le second, on se raméne par

translation et changement de base & montrer que le morphisme K[F'] — K, F @,

est plat. Il se factorise en le composé du passage aux fractions K[F'] — K(F') avec

Vinjection K(F') — K déduite de ¢. Chacun de ces morphismes est plat. |

2.1.4. Remarque. — La construction de ’anneau de dilatation Dil£ Wy] est inspirée
de celle de [Nagata, 1958], qui considére le cas ¢ = 2. (Voir aussi [Nagata, 1962,
appendice, E4.1] et [Heinzer et al., 1997).)
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464 EXPOSE XVIIlg. DIMENSION COHOMOLOGIQUE

2.2. Le diviseur C = V(F)

2.2.1. — On conserve les notations précédentes. Soit A le localisé de 'anneau de
dilatation 2 en l'idéal premier image inverse de I'idéal (7, y) C W{y]. C’est un anneau
necethérien par fidéle platitude, de corps résiduel k.

2.2.2. Lemme. — L’anneau A satisfait les propriétés swivantes :

(i) il est régulier et la suite (m, F') est réguliére;
(ii) son quotient A/F est intégre ;
(iii) Vintersection schématique du fermé V(F) avec le spectre épointé de A est un
schéma régulier.

Démonstration. — (i) 11 suffit d’établir les deux énoncés pour Z. Pour se faire, on
peut compléter m-adiquement (cf. par exemple [Bourbaki, AC, X, §4, n° 2, cor. 3]).
Le complété de 2 est isomorphe a I/I//[\y] de sorte que la régularité de ’anneau et
de la suite (7, F) — c’est-a-dire l'injectivité de la multiplication par w, et par F'
modulo 7 — sont évidents. (ii) Si on inverse m, ’anneau A devient une localisation
de l'anneau de polynémes K|y, F']. La restriction du diviseur & cet ouvert est intégre.
La multiplication par 7 dans le quotient A/F étant injective d’aprés (i), l'intégrité
de A/F résulte de celle de A[r~!]/F. Le quotient est non nul car F € my. (iii)
Sur Pouvert complémentaire de V (r), ’élément F' est une indéterminée de sorte que
le résultat est clair. D’autre part, intersection du complémentaire de V (y) avec le
diviseur est contenu dans le complémentaire de V() car 1’équation est — dans le
complété m-adique — de la forme (y — ¢)¢, avec ¢ € (). Ceci suffit pour conclure. O

2.2.8. — Notons le fait suivant, trivial mais crucial : par construction, le divi-
seur V(F) devient V((y — ¢)¢) dans le complété A de A relativement & son idéal
maximal.

2.3. Hensélisation. — Pour simplifier les notations, on suppose dorénavant le corps k
séparablement clos.

2.8.1. — Soient A" le hensélisé de A en son point fermé, Ale complété de A (ainsi
que de A"), et notons X = Spec(A") et X = Spec(ﬁ) leurs spectres respectifs,
ainsi que * et % les points fermés. Comme Spec(A), le schéma X est intégre. De plus,
le diviseur C d’équation F' = 0 dans X est réduit, cette propriété étant également
conservée par hensélisation.

2.8.2. — Vérifions que le diviseur C est irréductible. D’aprés le théoréme de compa-
raison de Elkik, le morphisme g (C’ — %) — mo(C — %) est une bijection. Or, C-%
est connexe : dans un anneau local régulier B, le spectre Spec(B/g*) est irréductible
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2. CONSTRUCTION DE NAGATA EN DIMENSION 2 465

pour tout g € mp — m%. Ainsi, 'ouvert C — x de C est connexe et, finalement, C est

irréductible.
2.4. Application cohomologique. — On suppose dorénavant l’entier £ inversible sur X.
2.4.1. — Notons pour simplifier G I’élément y— ¢ de A\, de sorte que — par construc-

tion — on a l'égalité F = G* dans A. Notons U T'ouvert affine X — C du schéma
strictement local X. Soient j 'immersion ouverte de U dans le spectre épointé X —
et ¢ Pimmersion fermée C — x — X — .

2.4.2. — Le triangle
ixit — Id — Ry, j*

sur X — % induit la suite exacte

H,_ (X —%,Z/¢Z) — H3(X — *,Z/¢Z) — H3(U,Z/¢Z)
— H:_ (X —%,Z/0Z) = H2(C — %,i'Z/0Z[2]).

Par pureté (XVI-3.1.1), le faisceau de cohomologie locale i'Z/¢Z est constant concen-
tré en degré 2. Or le groupe de cohomologie H?(C — %, Z/¢Z) est nul : la cohomologie
du corps des fractions d’un anneau B strictement local intégre de dimension 1 est nul
en degré > 2. (On se rameéne au cas bien connu d’un anneau de valuation discréte en
observant que le normalisé de B dans son corps des fractions est un anneau noethérien,
de Dedekind, et strictement local car colimite locale d’anneaux strictement locaux.) Il
en résulte que la fléche de restriction H3(X — %, Z/¢Z) — H3(U, Z/{Z) est surjective;
nous allons voir que c’est un isomorphisme.

2.4.8. — Comme rappelé ci-dessus, le morphisme H}, (X — x,Z/¢Z) — H3(X -
*, Z/07) s’identifie, par pureté, au morphisme de Gysin
Gys(f) : HY(C — %, Z/¢Z) — H3}(X — %,Z/¢Z). 1l résulte de la commutativité
du diagramme

Gys(F)

HY(C — *, Z/(Z) H3(X — , Z/0Z)

Gys(F) = Gys(G*)

HY(C — x,Z/¢Z) H3(X — %, Z/¢Z),

de Végalité Gys(F) = £ - Gys(G) et enfin du fait que les fleches verticales sont des
isomorphismes (comparaison & la complétion, [Fujiwara, 1995, 6.6.4]) que le mor-
phisme Gys(F') est nul. (La commutativité du diagramme résulte par exemple de la
définition XVI-2.3.1 et de XVI-2.2.3.1.) Ainsi, le morphisme de restriction induit un
isomorphisme

H3(X — %,Z/tZ) = H3(U,Z/(Z).
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466 EXPOSE XVIIIg. DIMENSION COHOMOLOGIQUE

Or le terme de gauche est non nul, & nouveau par pureté. Le schéma affine U est donc
de dimension cohomologique > 2. O

3. Séries formelles de Gabber, application cohomologique

On étend la construction précédente en dimension arbitraire > 2.

3.1. Une série formelle et sa décomposition

8.1.1. — Soit A un anneau commutatif. Rappelons que 1’application A-linéaire
> Alzjzlliwi] = Allay, ..., ]
i=1

somme des injections canoniques est surjective : si G € A[[z1,...,Z,]], on peut par
exemple regrouper pour chaque i € [1,n] les termes az}’ ---z8 € Al[zy,...,z,]]
de G pour lesquels 8; = max;c(1,n 0B; et B1,...,0i—1 < B;. (Cette derniére condition
n’est 1a que pour définir ¢ de fagon non ambigué; tout autre choix conviendrait.) La
somme g; de ces termes appartient & Az 4]{[z:]], et G=91+ - + gn-

8.1.2. — On fixe maintenant deux entiers non nuls n et ¢ et on considére
n o0
Y
S = (y + Z Z tiax?) € Z[ya tie[l,n],aZI][[wl, “ee »xn]]
=1 a=1

Il résulte de 'observation précédente que ’on peut écrire cette série sous la forme
Y+ fit o+

ou chaque f; est une série formelle en z;, & coefficients polynomiaux en les autres
variables.

3.1.3. — Afin que la proposition de platitude ci-dessous soit vraie, on procéde de
facon légérement différente pour définir les séries formelles f; € Z[y, tjq, Trzi][[zi]]
telles que S — y* = >, fi. Ecrivons

o0 n

S=y'+ Z(Z tiaz) + (6lément de degré < £ en les t;g).

a=1 i=1
Soient i € [1,n] et @ > 1 des indices. On considére les termes az?' ---zf» de
(X tiaz®)® pour lesquels i est le plus grand indice tel que B; # 0, c’est-a-dire
les termes de (3.;_; tiax®) qui sont dans Z[tia,...,tna,Z1,--., ;) mais pas dans
Zltia, .- tna,T1,- - -, Ti—1]. A fixé, la somme sur « de ces termes est un élément f; —p
de Z[t;g, Tk [[x:]]- Par construction, on a l'égalite Yoo (30, tiax®)® = Y1 fi=e-
Enfin, on décompose le terme restant, S — y¢ — >or 1 fi=e, en une somme
Sor .y fi<e ou chaque f; <, appartient a Z[y,t;g,Tkxil[[xs]], en procédant par
exemple comme en 3.1.1. On pose alors f; = f; = + fi,<¢; chacun de ces éléments
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3. SERIES FORMELLES DE GABBER, APPLICATION COHOMOLOGIQUE 467

est de degré total en les t;3 inférieur ou égal & ¢, et appartient donc également a
Zly,t;s+all[Z1, .-, Zn]][t1a, - - - tna] Pour chaque o > 1.

3.1.4. Proposition. — Fizons a > 1. Notons T; = t;, pour chaque i € [1,n] et R,
Vanneau Zly, t; gzal([T1, . - ., 2n]]. Le morphisme

Ra[Fl,. .. ,Fn] nd Ra[Tl, PN ,Tn]

Fi— fi
est libre, donc plat, au-dessus de l'ouvert 1 - -z, # 0 de Spec(R).

Démonstration. — Par construction, chaque f; est une somme f;_, + f; <¢, ol
fi,=¢ (resp. fi <¢) est un polynéme dans R,[T7,...,T,] de degré total égal (resp.
strictement inférieur) & £. De plus, f; —¢ est, comme polynéme en T;, de la forme
eTf + 3, <o cmT{™ out les c,,, appartiennent & Ro[T)j<;]. Munissons les monémes
de R,[T1,...,T,] de Pordre lexicographique gradué suivant : T{ll < Tdn < Tld L T:;
si et seulement si Y. d; < ) d; ou > d; = ) d; et d; < d pour le plus grand i tel
que d; # di. Il est clair que le terme de téte in<(g) pour cet ordre d’un polynéme
g = f{'--fi» en les f; est qule -+.T3»* 3 multiplication prés par un monéme en

les z;. Il en résulte immédiatement qu’en inversant les z;, 'anneau Ry [T1,...,T,] est
libre sur R,[Fi,..., F,] de base les monomes Ty --- T;¢, avec 0 < r; < £. O
8.1.5. — Soit A un anneau local noethérien régulier de dimension n dont on note
Z1,...,T, un systéme régulier de paramétres. On pourra penser par exemple au lo-
calisé k[z1,...,Zn](z,,...,z,) d’'un anneau de polyndmes sur un corps. On considére le
gonflement AJt[ défini en 1.3, o ¢ est 'ensemble des variables {t;o : ¢ € [1,...,n],a €
N>}

3.2. Construction d’un anneau local régulier pathologique. — Soit ¢ € [1,:..,n]. No-

tons encore f; 'image de la série formelle & coefficients entiers considérée en 3.1.3
dans le complété z;-adique de A]t[[y], et Z; I'anneau de dilatation Dilﬁ, Alt[ [y]-
Le produit tensoriel &7 de ces AJt|[y]-algébres s’envoie naturellement dans le com-
plété Z]\t[[[y]], ou la premiére complétion est faite relativement & I'idéal maximal
(z1,...,2n) de A]f[. On note 2 le localisé de & en 'image de I'idéal maximal

("1:17 ceey Ty y) de Spec(A]g[ [[y]])
3.2.1. Proposition. — Le morphisme 9 — Z]\t[ [[y]] est fidelement plat.
Il en résulte que 'anneau 2 est local nethérien, régulier.

3.2.2. Remarque. — Notons qu’il est clair que 2 est « quasi-régulier ». En effet,
le gradué de & relativement & l'idéal (zi,...,2n,y) est une algébre symétrique :
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468 EXPOSE XVIIlg. DIMENSION COHOMOLOGIQUE

pour chaque entier 7, le morphisme A)t[[y] — & induit un isomorphisme modulo
(Z1,.-yzn)".

—

Démonstration. — 11 suffit de montrer que le morphisme &2 — AJt[[[y]] est plat.
D’aprés le critére de platitude rappelé précédemment (1.2.2), il suffit de montrer la
platitude sur 'ouvert z; - - - z,, # 0. En effet, le cas ou seuls certains z; sont nuls se
ramene A ce cas particulier : en tensorisant par AJt[ [y]/z; le morphisme &2 — ZE[ [ly]l,
on obtient une fleche du méme type définie par 'anneau A/z; de dimension n — 1
et des séries qui coincident avec ’évaluation en z; = 0 des f1,..., fi—1, fi+1,---5 fn-
Pour chaque i, Z;[z; '] est une algébre de polynomes Alt[ [y, F;][z; '] de sorte que le
morphisme dont on souhaite montrer la platitude est

1 — 1

Alt[ly, F1, ..., Fy] [m] — At[[[y]] [m]»
Fi— fi.

11 suffit de montrer que pour chaque sous-ensemble fini 7 des variables ¢, le morphisme

1 —— 1

Alte T(ly, F1,..., Fy] [m] — Alt € 7[[lyll [m]

est plat. Quitte & agrandir un tel ensemble .7, on se rameéne au cas ou 7 est co-
fini, de complémentaire des variables t1,,...,tno pour un indice @ > 1 quelconque.
Posant alors R, = Alt; g+a[ et R = Alt[, il suffit de montrer que le morphisme
R,[y, F1,...,F,] — R'[[y]] est plat au-dessus de Pouvert z;---x, # 0. Un dernier

dévissage nous raméne & montrer la platitude du morphisme R,[y, Fi,...,F,] —
Ro[Y,t1a, - - - » tnal, au-dessus du méme ouvert. Ce dernier point résulte de la propo-
sition 3.1.4. O

3.2.3. Proposition. — Le diviseur C = V(y* + F1 + -+ + F,,) de Spec(2) est régulier
hors du point fermé.

Dans cet énoncé, on note abusivement F; 'image dans & de ’élément de Z; cor-
respondant & f; (cf. 1.1).

Démonstration. — 11 suffit de montrer que pour chaque sous-ensemble strict E
de [1,n], l'intersection schématique de C avec le sous-schéma Xp = {z; = 0,i €
E ;z; # 0,i ¢ E} de Spec(2) est un diviseur régulier de Xg. Si E = &, cela
résulte du fait que le schéma X, est le localisé d’une algébre de polynémes en les

y,F1,...,F,. Le cas général se raméne aisément & ce cas particulier. (Remarquons
que si z; = 0, il en est de méme de F;.) O
3.2.4. Proposition. — L’image inverse de C dans un localisé strict de Spec(Z) est
irréductible.

Démonstration. — Méme argument qu’en dimension 2. O
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4. DIMENSION COHOMOLOGIQUE : MAJORATION D’UNE... 469

3.2.5. Corollaire. — Pour tout entier d > 1, il existe un schéma ncethérien stricte-
ment local régulier de dimension d possédant un ouvert affine de £-dimension coho-
mologique 2d — 1.

Démonstration. — La méme démonstration qu’en dimension 2 nous permet de mino-
rer la dimension cohomologique par 2d—1. D’aprés XVIII4-1.1.1, c’est une égalité. [

4. Dimension cohomologique : majoration d’une « fibre de Milnor générique »

4.1. Enoncé

4.1.1. Théoréme. — Soit R — R’ un morphisme local essentiellement de type fini
d’anneauz nethériens strictement locaux intégres. Notons K le corps des fractions
de R. Alors, pour tout nombre premier £ inversible sur R, on a la majoration

cdy(R' ®r K) < dim(R),

ot le terme de gauche désigne la £-dimension cohomologique étale du spectre de l’an-
neau R' ®g K et le terme de droite désigne la dimension de Krull de R'.

4.1.2. — Dans cet énoncé, ’hypothése de finitude sur f signifie que R’ est une coli-
mite de R-algébres de type fini & morphismes de transition étales.

4.1.3. Corollaire. — Soit R un anneau strictement local neethérien intégre de corps des
fractions K et soit £ un nombre premier inversible sur R. Alors, on a la majoration

cdy(K) < dim(R).

4.1.4. Remarque. — Réciproquement, il résulte par passage a la limite des résultats
de §6 infra que, sous les hypothéses du corollaire, si U est un ouvert non vide strict de
Spec(R), alors c¢d,(U) > dim(R) et que, lorsque R’ ® g K # 0, la majoration du théo-
réme 4.1.1 est une égalité, excepté dans le cas trivial R* = R’ ® g K. Une autre fagon
de procéder serait d’utiliser une variante de la méthode (également due & O. Gabber)
exposée dans [Gabber & Orgogozo, 2008, §6.1] et reposant sur une « astuce quadra-
tique ». Rappelons pour terminer que la minoration « limite » cdy(K) > dim(R)
est élémentaire : on procéde par spécialisations successives en codimension 1 (voir

[SGA4 x 2.4]).

4.2. Démonstration. — On procéde par récurrence sur d’ = dim(R’) et ’on se raméne
au cas excellent.
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4.2.1. — Notons X = Spec(R), Y = Spec(R’) et respectivement X* et Y* les
spectres épointés. Considérons 'ouvert Y, = Y xx X* de Y*, V = Spec(R' ®@gr K)
la fibre générique de Y — X et enfin j le morphisme V < Y*. Il résulte de
Phypothése de récurrence que pour chaque faisceau % de Z/¢Z-modules sur V, le
complexe ®z = Rj,.# appartient & DS°4(Y™*), ou cod est la fonction de perver-
sité y — dim Oy,,. (Ceci est encore vrai avec y — d’ — dim {y}.) On veut montrer
que H"(V,#) = H(Y*,®4) est nul pour »r > d. Fixons un tel r et une classe
ce H'(Y*, &)

4.2.2. — On suppose d > 2, et on choisit un systéme de paramétres zi,...,Tq
pour Panneau strictement local R. Soit Z = Y}y,...,t4-1{ le « gonflement étale »,
hensélisé strict de Ady_1 = Y[t1,...,t4—1] en un point générique géométrique de la
fibre spéciale sur Y. L'« hyperplan » H = V(t121 + -+ + tg—1Z4-1 + z4) de Z est de
codimension 1, essentiellement lisse au-dessus de Y,. Considérons le triangle distingué

RTy. (Z.,®5) — R[(Z,,®5) — RT(Z, — H,, %) 5

ou l'on note Z, le produit fibré Z xy Y, et, abusivement, &z ses diverses images
inverses. Soit ¢ 'immersion fermée H, — Z,, ou H, = H Xz Z,. Le morphisme
Z/¢Z — i'Z/¢Z(1)[2] de complexes sur H, est un isomorphisme par pureté relative.
On montre par dévissage qu'il en est de méme de la fleche & |y, — i'® 7|z, (1)[2] ob-
tenue par tensorisation a partir de la précédente. On utilise ici le fait que la restriction
de @4 & Z, provient de la base Y,. On en tire le morceau de suite exacte :

H?(H,, ®%)(-1) - H"(Z,,22) - H (Z, — H,,®%).

Notons que Z, — Hy, = Z — H car H contient la fibre spéciale de Z — X. Soient Y le
complété (mp-adique) de Y et Z un hensélisé strict du produit fibré Z xy Y. Notons
que le morphisme Z — Z est un morphisme local entre schémas strictement locaux
induisant un isomorphisme sur la complétion le long de la fibre spéciale sur Y. Il ré-
sulte donc du théoréme de comparaison de Fujiwara-Gabber ([Fujiwara, 1995, 6.6.4])
que le morphisme H" (Z,,® %) — H" (Z*, 0} ga) est un zsomorphzsme pour chaque r. Il
en est de méme de H"~2(H,,®%) — H"~ 2(H*,<I>‘9z) o H, = H, Xz, Z,. Le schéma
Z, — H, est un ouvert affine, qui coincide avec Z - H d’un schéma strictement lo-
cal essentiellement de type fini sur le schéma local noethérien complet Y. Comme
’appartenance de ®z 4 D=4 est préservée par complétion, il résulte du théoréme
de Lefschetz affine (XV-1.2.2), dans le cas excellent, que le groupe de cohomologie
H"(Z, — H,,®z) est nul pour chaque r > dim(Z) = dim(Y) = d’. En conséquence, le
morphisme HT(Z*, P) — H’(Z* —ﬁ*, ®) est nul pour les mémes r. De ce fait, des théo-
rémes de comparaisons susmentionnés et de la compatibilité du morphisme de Gysin a
la complétion, il résulte formellement que toute classe ¢ € H"(Z,, ® #) provient d’une
classe dans H"~2(H,,®#)(—1) et est donc tuée par restriction & Z, — H,.
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4.2.3. — 1l existe donc un voisinage étale e : W — A‘f,_l dont l'image rencontre
la fibre spéciale sur Y tel que la classe ¢ € H"(Y*,® &) soit tuée par restriction &
W — Hyw. Notons k' le corps résiduel de Y, et k celui de X. L’ensemble k%~ est
dense dans Ag,‘l, car k est infini. Il en résulte qu’il existe une section o : Y — Af,_l,
correspondant & des spécialisations des t; a valeurs dans R, telle que W, ait une fibre
spéciale sur Y non vide. Le schéma Y étant strictement local, on reléve cette section
en Y —» W, — W. La classe de cohomologie ¢ est donc nulle sur Y — Hy, ou Hy est
maintenant une hypersurface d’équation z4 + t1x1 + - -+ + tg—124-1 & coefficients t;
dans R. Cet ouvert affine Y — Hy contient la fibre générique V = Y ® g K car 1’élément
Tgt+tix1+---+tg_124—1 € R est non nul, les x; constituant un systéme de paramétres
de R. Finalement la restriction de c € H"(Y*,®2) a H"(V,®4) = H"(V, %), qui est
la classe dont on est parti, est nulle. O

5. Majoration : amélioration

5.1. Enoncé

5.1.1. — Soit f : Y — X un morphisme entre espaces topologiques sobres non vides.
On note

dim.cat(f) = sup{n € N : 3yg ~ y1 ~ -+~ yn, f(30) # f(1) # -+ # f(yn)} € NU {0}
la dimension caténaire de f, ou chaque y; ~» y;+1 est une spécialisation.

5.1.2. — Par construction, dim.cat(f : Y — X)) est majorée par les dimensions de X
et de Y avec égalité par exemple lorsque f est 'identité. Plus généralement, lorsque f
est un morphisme générisant ([EGA 1’ 3.9.2]) — comme c’est le cas d’un morphisme

plat de schémas — la dimension caténaire coincide avec la dimension de 'image.

5.1.3. Remarque. — Si f est un morphisme dominant essentiellement de type fini
(c’est-a-dire Zariski-localement comme en 4.1.2) entre schémas noethériens intégres,
on peut montrer que la dimension caténaire de f est la dimension de I’image d’une
platification de f.

5.1.4. Théoréme. — Soit f : Y — X un morphisme essentiellement de type fini entre
schémas neethériens strictement locauz et soit V un ouvert affine de Y. Alors, pour
tout nombre premier £ inversible sur X, on a la majoration

cdg(V) < dim(Y) + max (0, dim.cat(f) — 1).

5.1.5. Corollaive. — Soit f : Y — X un morphisme essentiellement de type fini entre
schémas neethériens strictement locauz, ot dim(X) > 1, et soit V un ouvert affine
de Y. Alors, pour tout nombre premier £ inversible sur X, on a la majoration

cdg(V) < dim(Y) + dim(X) — 1.
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5.1.6. Corollaire. — Soit d > 1 un entier et soit n un entier dans l’intervalle fermé
[d,2d—1]. Il existe un schéma neethérien strictement local X, régulier de dimension d,
et un ouvert affine U de ce schéma tel pour tout nombre premier £ inversible sur X
on ait ’égalité

Cde(U) =n.

Démonstration du corollaire 5.1.6. — 1l suffit de montrer que pour tout entier d > 1,
et tout entier r > 0, il existe un schéma ncethérien strictement local régulier Y de
dimension d 4+ r et un ouvert affine V de Y de ¢-dimension cohomologique égale
a 2d +r — 1. Soient X et f comme en 3.2.5 : ouvert affine U = X[f~!] est de
dimension d, ¢-dimension cohomologique § = 2d — 1. Plus précisément, il résulte de
la démonstration qu’il existe une classe non nulle dans H®(U,Z/¢Z). Considérons
maintenant ¥ = X [Ty un hensélisé strict de la droite affine sur X en l'origine de la
fibre spéciale, g = fT € T(Y, Oy) et V louvert affine Y[g~!]. On a dim(Y) =d + 1.
Par pureté cohomologique, on vérifie immédiatement que le groupe de cohomologie
H+1(V,Z/¢Z) est également non nul. Par récurrence, on obtient une paire (Y,V)
comme ci-dessus telle que cdg(V) > 2d + r — 1. D’aprés le corollaire précédent, on a
également la majoration cdy(V) < 2d + r — 1, d’ou I'égalité. O

5.2. Démonstration. — On procéde par récurrence sur la dimension caténaire de f.

5.2.1. dim.cat(f) = 0. — Cette égalité se produit si et seulement si Y est contenu
dans la fibre spéciale. Le théoréme est donc connu dans ce cas : on est sur un corps
donc dans une situation excellente.

5.2.2. dim.cat(f) = 1. — On peut supposer les schémas X et Y réduits. Quitte
a procéder par récurrence sur la dimension de Y, on peut également supposer Y
irréductible : si Y est la réunion de deux fermés stricts Y7 et Ys, considérer par exemple
le morphisme 7 : Y1 IIY; — Y et la suite exacte 0 —» .% — *F — i, ¢ — 0,
ol ¢ est 'immersion fermée Y1 NYs — Y et S un faisceau sur cette intersection.
Quitte & remplacer X par l'adhérence de l'image de f, on peut également supposer
la base intégre et f dominant. Soit 7 (resp. s) le point générique (resp. fermé) de X
et ' (resp. s') le point générique (resp. fermé) de Y. Comme tout point y de Y
s’insére dans une suite de spécialisations ' ~ y ~» s, d’image n ~ f(y) ~ s,
il résulte de I’hypothése dim.cat(f) = 1 que f(y) = n ou f(y) = s. Soient X le
complété de X et Y un hensélisé strict du produit fibré Y x x X. Cest un schéma
strictement local de dimension dim(Y) et excellent car essentiellement de type fini
sur le schéma local noethérien complet — donc excellent — X. On note V I'ouvert
V xy Y. Il résulte de [SGA 44 [Th. finitude] 1.9] qu’au-dessus de 7, et donc au-dessus
de X — {s}, la formation des images directes par j : V < Y commute au changement
de base Y — Y. En d’autres termes, si V/ = V U (Y — Y;) et j' désigne 'immersion
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intermédiaire V — V’, la formation de Rj, commute & Y — Y. Ilen est de méme pour
j": V' — Y d’aprés le théoréme de comparaison a la complétion de Fujiwara-Gabber
([Fujiwara, 1995, 6.6.4]). On utilise ici le fait que si F' est un fermé de Y inclus dans la
fibre spéciale alors les complétés de Y le long de F' et celui de ’hensélisé de Y (en le
point correspondant au point fermé de Y) sont naturellement isomorphes. Finalement,
le foncteur R['(V) = RI(Y) o Rj, s’identifie au foncteur RI(Y) o Rj, = RI(V),
appliqué & I'image inverse. Ainsi on a 'inégalité cdy(V) < cdg(‘7). Le schéma Y est
quasi-excellent, le terme de droite est donc justiciable du théoréme de Lefschetz affine.
L’inégalité cdg(V) < dim(Y') résulte alors de Pégalité dim(Y) = dim(Y).

5.2.3. Remarque. — Lorsque dim(X) = 1, on a vu en XIII-2.3 que le théoréme peut
également se démontrer par normalisation.

5.2.4. dim.cat(f) > 1. — Notons a nouveau j 'immersion ouverte V' <— Y. Par res-
triction & la fibre générique, on a un isomorphisme RI'(V;, #) = RI'(Yy, (Rj«F )|y, )-
Si y est un point géométrique de Y localisé en Yy, la fibre (R?5,.%), est nulle dés lors
que ¢ > dim(&y, ). Cela résulte par passage & la limite du théoréeme d’Artin pour les
schémas affines de type fini sur un corps et du fait trivial que Y(,y — Y se factorise
a travers Y,,. Soient ¢ > 0 un entier, ¢4 un sous-faisceau constructible de (R7j,.% )|yn
et S ladhérence dans Y de son support. D’aprés ce qui précéde, on a la majoration
codim(S,,Y;) > g¢. Il en résulte que codim(S,Y) > ¢, et ce sans hypothése de ca-
ténarité sur les schémas. De la suite spectrale de composition des foncteurs et du
théoréme 4.1.1, on déduit que le groupe de cohomologie H"(V},, %) est nul lorsque
n > dim(Y).

Considérons la fléche d’adjonction F — k.k*#, ou k est Pimmersion V,, — V,
et % son noyau. Par construction, la restriction de JZ & V; est nulle. La di-
mension de Padhérence du support de JZ est donc au plus dim(Y) — 1. Il ré-
sulte donc de I’hypothése de récurrence que le résultat d’annulation désiré est
connu pour % . Procédant de méme pour le conoyau de 1’adjonction précé-
dente, on se raméne & démontrer I'annulation du groupe HP(V, R°k.k*.#) pour
p > dim(Y) + dim.cat(f)(> dim(Y)). Compte tenu du résultat d’annulation pré-
cédemment établi pour RI'(V,, #) = RI'(V,Rk.k*.#) et de la suite spectrale de
Leray E5? = HP(V,Rik,k*F) = HPT4(V,, %), il suffit de montrer que pour chaque
tel g, les groupes HP~9~1(V, R%,k*.%) sont nuls pour ¢ > 0. Fixons q. Soit y un
point géométrique de Y tel que la fibre de Rk, k*# en y soit non nulle et z le
point image de y dans X. Le schéma n x x X(,) se décompose en un coproduit de
spectres de corps 7, ; de méme, le produit fibré Y,y xx 7, dont on considére la
cohomologie, est isomorphe au coproduit des Y(y) X x,, 7la- D’aprés op. cit. (4.1.1),
ces derniers n’ont de cohomologie qu’en degré ¢ < dim Y(y) < dim(Y) — dim _{_ﬁ
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Il en résulte que la dimension du support de chacun des sous-faisceaux construc-
tibles de Rk, k*# est au plus dim(Y) — g. De plus, la dimension caténaire du
morphisme f restreint & un tel support est au plus dim.cat(f) — 1. Il résulte donc
de I'hypothése de récurrence que les groupes HP~971(V, R%k,k*.%) sont nuls lorsque
p—¢q—12>(dim(Y) — ¢) + (dim.cat.(f) — 1). d

6. Dimension cohomologique d’un ouvert du spectre épointé : minoration

6.1. Théoréme. — Soient X un schéma intégre strictement local neethérien de dimen-
sion d et ) un ouvert non vide du spectre épointé. Alors, pour tout nombre premier £
inversible sur X, on a

Cd[(Q) >d.

La premiére démonstration occupe les deux paragraphes suivants.

6.2. Construction combinatoire locale

6.2.1. Notations. — Soit X un schéma strictement local noethérien régulier de di-
mension d > 2 et soit t1,...,tq_1,tq un systéme régulier de paramétres. Pour des rai-
sons qui apparaitront ultérieurement, on note également 7 I’élément t;. Pour chaque
1 < i < d-1, on note H; le diviseur régulier V(¢;); pour ¢ = d, on pose H; =
V(ty+---+tq_1 — ). Enfin on note U l'ouvert affine X[r~!], k¥ 'immersion ouverte
U < X et j I'immersion ouverte U —|J¢_, H; < U. On fixe un nombre premier ¢
inversible sur X et on pose A = Z/{Z.

6.2.2. — Soit P une partie de {1,...,d}. Notons Hp lintersection ﬂpep H,, et
désignons par Hp lintersection Hp N U — ouverte dans Hp et fermée dans U —,
et kp 'immersion ouverte Hp — Hp. Pour chaque entier ¢, le groupe de cohomologie
HY(U,Apy,) est isomorphe au groupe H? (Hp,A). Comme Hp — Hp est le diviseur
régulier défini par m dans Hp, il résulte de la pureté cohomologique que H?(U, A H/P)
est nul pour ¢ > 1, isomorphe & A pour ¢ = 0 et de rang 1, engendré par la classe
de Kummer de 7 pour ¢ = 1. Ceci vaut également pour P = O, avec la convention
évidente que Hy = X et Hy = U.

6.2.8. — Considérons maintenant le quasi-isomorphisme
NS A= D Aw—m D A —0)
1<i<d |P|=d~1

de faisceaux de A-modules sur U, ou le premier terme du complexe de droite est placé
en degré 0. (On utilise ici le fait que Hp = @ si |P| = d car Hp est alors le point fermé
de X.) Les différentielles sont des sommes, avec des signes, de fléches de restriction.
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A cette résolution est associée — via la filtration « stupide » — la suite spectrale
EPY=HUU, @ Any) = HI(U,jiA).
|P|=p

D’aprés les observations du paragraphe précédent, toute classe de Ef -

D pj=a—1 H'(U, Ag:,) n’appartenant pas & I'image de E?~%1 survit dans 'aboutisse-
ment He(U, jiA).

6.2.4. — De méme que le faisceau j;A est isomorphe au produit tensoriel
(U-H{ > U)A® - -® (U - Hj < U)A),

le complexe quasi-isomorphe & jiA ci-dessus est isomorphe au produit tensoriel des
complexes (A — Apy), 1 <i < d, ou la fléche est 'unité de I'adjonction, isomorphes
respectivement aux (U — H] — U),A. De cette observation, jointe & (6.2.2), on en
déduit que le complexe E}"" est quasi-isomorphe a la troncation naive o<g_; (A s
A)®d) obtenue en remplagant le d-iéme terme, isomorphe & A, par zéro. Il est bien
connu que ce complexe (« de Koszul ») produit tensoriel est acyclique (avant tron-
cation), cf. par exemple [EGA 111; §1.1]. (L’exactitude résulte également du quasi-
isomorphisme ci-dessus, appliqué & d’autres fermés.) En particulier, I'image de la
différentielle Ef 2, Ef_l’l est naturellement le noyau d’une forme linéaire non
nulle (explicite) sur Ef "' et n'est donc pas EX™ "' tout entier. Il existe donc des
sommes directes de classes de Kummer de 7 qui survivent dans H(U, jiA).

6.3. Eclatement et normalisation partielle

6.3.1. — Soit maintenant X = Spec(R) un schéma strictement local ncethérien in-
tégre de dimension d > 2, de point fermé z, et soit 2 un ouvert non vide strict de X.
Nous allons montrer qu’apreés éclatement et « normalisation partielle » 'ouvert 2 est
— localement et « modulo des nilpotents » — un schéma régulier du type du schéma U
considéré ci-dessus. Ceci permet de produire une classe de cohomologie non nulle de
degré d sur Q.

6.3.2. — Soit Y = Ecl,(X). Notons j 'immersion ouverte de ¥ — Y, dans Y. On
désigne par X le complété du schéma local X, par Y’ le produit fibré ¥ x x X et
par Y, la réduction de Y. Notons que le schéma Y est ezcellent car X Dest.

6.3.83. — Soit ﬁf,) la normalisation de &y dans j,Oy_y,. On définit de méme 5’;7,),
et ﬁf,i,é R La Oy-algébre ﬁ? est colimite (filtrante) de ses sous-Oy-algebres finies &7),.

6.3.4. Proposition. — Le foncteur envoyant une sous-Oy -algébre B de j,Oy_y, sur
Vimage de (Y' — Y)*% par Uadjonction (Y' — Y)*j,Oy_y, — j.0Oy _y, induit une
bijection entre les sous-Oy -algébres finies de j,Oy_y, et les sous-Oy-algébres finies
de j. Oy _vy,. De plus, les algébres 6’;’,) et ﬁf,), se correspondent par ce foncteur.

SOCIETE MATHEMATIQUE DE FRANCE 2014



476 EXPOSE XVIIlg. DIMENSION COHOMOLOGIQUE

Démonstration. — On se rameéne au cas ot Y = Spec(4) et Y; = V(¢). Il suffit de
montrer que si A est une R-algébre intégre et A’ = A ®p R alors le morphisme
A[t71]/A — A'[t71]/A" est un isomorphisme et que les normalisations se corres-
pondent. Notons que les anneaux A et A’ ont méme complétion ¢t-adique. Le premier
point résulte alors du fait que si M est un A-module dont chaque élément est tué par
une puissance de t,ona M = M® 4 A’. Enfin, soit (f'/t")4+a}(f'/t")? 1+ -+al, =0
une relation de dépendance intégrale ou f’ et les a} appartiennent a A’. Soit N un
entier assez grand. Ecrivons f' = f+tV¢', a} = a; +tV¥, ot f et les a; appartiennent
4 A. La relation précédente devient (f/t")%+a1(f/t")4 1+ -+aqs € ANA[t = A
Il en résulte que I’élément f'/t" = f/t" +tV~"g’ est, modulo un élément de A’, dans
l'image de A”. O

6.8.5. — Par excellence, l'algébre &, o est finie sur Oy, . L’anneau ﬁy, en est
I’« image inverse » par la surjection naturelle De ces observatlons et de la proposition
précédente, on déduit qu’il existe un indice A tel que, si Z = Spec(#)) et Z' = Z 2
alors Z/,, est intégralement clos dans Z),, privé de l'image inverse de Y,. Notons
que Z et Y sont isomorphes hors de Y.

6.3.6. — Soit E une composante de dimension d—1 de Y, et soit e un point maximal
de El 4 dans Z/.. Le localisé en e est un anneau de valuation discréte : c’est un
anneau local réduit de dimension 1, intégralement clos dans le complémentaire du
point fermé. Par excellence de Z’ il existe un ouvert dense de E! ; le long duquel
Z!,4 est régulier. On peut également supposer que E/,, est régulier sur cet ouvert.
(Pour ce dernier point il suffit de constater que E/,, est de type fini sur un corps.)
Soit Uy un ouvert de Z/., induisant 'ouvert de E/, ci-dessus et U un ouvert de Z
induisant I'ouvert correspondant de E. (Le morphisme Z’ — Z est un isomorphisme
sur E.) On a U’ C U Xz Z'. Ci-dessous, on s’autorise a rétrécir les ouverts U et U’,
sous réserve qu’ils contiennent tous les points maximaux de E. On suppose de plus

que UNY, =UNE.

6.3.7. — On note ¢t une équation de E dans U et 7 une équation de E/,; dans U/, de
sorte qu’il existe une unité u et un entier e tels que 'on ait 1'égalité ¢ = ux7® sur U],.
L’existence d’un relévement montre que 1’on peut supposer I’équation 7 définie sur U’.
Vérifions que I’on peut également supposer n défini sur U. Les schémas Z' et Z ayant
méme complétion t-adique, il suffit d’observer que si a est une fonction sur U’, on a
légalité d’idéaux () = (7 + at?), du moins lorsque 1 + uan?*~! € G,,(U’), ce que
’on peut supposer quitte & restreindre U’.

6.3.8. — Soit  un ouvert non vide de X — {z} (cf. 6.3.1). On note également
ses images inverses dans Y et Z; elles lui sont isomorphes. Sur un voisinage ouvert
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des points maximaux de F, I'ouvert 2 coincide avec le complémentaire de E. Géné-
riquement sur E, on a donc Q = Z[r~1]. Soit z un point fermé de Z appartenant a
un tel ouvert ainsi qu’a ’ouvert U. Soient t1,...,t4—1 des fonctions de ﬁZ;éd,z consti-
tuant, avec m, un systéme régulier de paramétres. On peut supposer qu’elles s’étendent
a Ul,y. Utilisant a nouveau le fait que le morphisme Z’ — Z est un isomorphisme
au-dessus de F, on peut également supposer qu’elles proviennent de U, quitte & les
changer modulo 7. Pour chaque ¢ < d, considérons I’adhérence schématique H; C Z de
Phypersurface V (¢;) dans U et Hy ’adhérence schématique de V(t1 + - - +t4_1 — 7).
On note H] = H; N Q.

6.3.9. Stratégie. — On va construire une classe non nulle dans le groupe de cohomo-
logie Hd(Q,ngQ_U;z H;), oll j est 'immersion ouverte Q) — U‘li H — Qet A=Z/nZ
avec n inversible sur X. Localement, ces groupes de cohomologie sont invariants par
passage a la complétion de la base X (et bien siir au schéma réduit) de sorte que 'on
va pouvoir utiliser les calculs de 6.2. Il faut cependant prendre garde ici au fait que
Pintersection ﬂ'f H! n’est pas nécessairement vide, contrairement au cas local précé-
demment étudié : ’analogue du complexe 6.2.3 a donc un terme de plus (en degré d).
Malgré tout, on va relever a 2 une classe de degré d « locale » — c’est-a-dire du
schéma Q x 7z Z(z) (ou plutdt 'analogue sur Z;;) — & coefficients dans jiA.

6.3.10. — Considérons a nouveau la suite spectrale du 6.2.3 :
EP? =HI(Q,Ap) = HPTI(Q, 1A),

ott 'on note A, la somme directe des A, avec |P| = p. Pour chaque P C [1,d] de car-
dinal d—1, l'intersection Hp des hypersurfaces correspondantes de Z est propre sur X.
Par construction, elle est aussi quasi-finie au voisinage du point fermé z. Il en ré-
sulte par le théoréme de changement de base propre pour ’ensemble des composantes
connexes (ou le théoréme principal de Zariski) — d’aprés lequel sa décomposition en
composantes connexes se lit sur la fibre spéciale — que chaque Hp se décompose en
le coproduit d’un schéma local fini sur X et d’un schéma ne rencontrant pas z. Ainsi,
H'(92,A4_1) a un facteur direct isomorphe & H! (Z(2) [r~1], Aq_1) et, par comparaison
a la complétion, & H'(Zj¢q(, [77"], Ad-1). De plus, la différentielle gV gt
envoie ce facteur sur 0 dans H' (2, A4) car Dintersection de H{y 4 avec {2 est vide au
voisinage de z. En effet, sit; =to=---=tg3_ 1 =t1+ - +tq_1—w=0alorst=0;
d’autre part, au voisinage de z, = Z[r~!]. Ainsi, toute classe de cohomologie du
facteur direct « local » induit une classe dans H%(Q, 51A) qui reléve la classe corres-
pondante dans Hd(Z;éd(z)[ﬂ"l], jiA). On a vu (6.2.4) qu'il existe de telles classes non

nulles. En conséquence, HY(9, j1A) # 0 et finalement cd,, (Q2) > d. O
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6.4. Joints d’anneaux henséliens et dimension cohomologique

6.4.1. Joints. — Commengons par énoncer une variante du résultat principal de
[Artin, 1971], auquel nous nous ramenons.

6.4.1.1. Proposition. — Soient A un anneau, p et q deuzr idéauz premiers et C une
composante du produit tensoriel AL‘ ®a AQ‘ L’anneau C est local hensélien. De plus,
si ni AL‘ — C ni Aa‘ — C ne sont locaux, il est strictement hensélien.

Ici, A}; désigne I’hensélisé de A en p. Par « composante connexe », on entend —
comme en op. cit., § 3 — ’anneau de fonctions sur une composante connexe du spectre.
Notons que le premier énoncé n’est mis que pour mémoire (op. cit., 3.4 (i)) ; le second
généralise loc. cit. (ii) car si A}; — C est local, on a l'inclusion p C q (et de méme
pour q, mutatis mutandis).

6.4.1.2. Corollaire. — Soient A un anneau et p, q deuz idéaux premiers. Si p ¢ q,
toute composante connexe du produit tensoriel A;} ®a A;‘S est strictement hensélienne.

Ici, A}® désigne un hensélisé strict de A en q.

Démonstration du corollaire. — Soit C' une composante du produit tensoriel Af,‘ ®a
AP et C la composante correspondante de Ay® 4 A%. L’anneau C est local hensélien ; le
morphisme C — C’ étant ind-fini étale, ’anneau C’ est également local hensélien. Par
hypothése, le morphisme A:; — C n’est pas local. Deux cas se présentent. Si Alq‘ - C
n’est pas local non plus, Panneau C est (local) strictement hensélien et il en est
de méme de C’. Si A;‘ — C est local, il en est de méme du morphisme ind-étale
Abs — C’. Les corps résiduels de Ah® et C’ sont donc isomorphes. En particulier,
lanneau hensélien C’ est strictement hensélien. O

Démonstration de la proposition. — Ecrivons A comme un quotient d’un anneau in-
tégre normal A’ et notons encore p et q les idéaux premiers de A’ correspondant a
ceux de A. Pour toute composante connexe C’ de A’ ;‘ ®a A 2 — nécessairement locale
hensélienne —, le quotient C’ ® 4+ A est soit nul soit local hensélien. Les composantes
connexes de Ai} A AL‘ sont exactement les quotients locaux henséliens ainsi obtenus.
Ceci nous permet de supposer A intégre normal. (On pourrait également supposer A
de type fini sur Z; cf. op. cit., démonstration du théoréme 3.4.) Comme dans op. cit.,
2.1, on peut choisir une cloture algébrique K de K = Frac(A) et plonger nos anneaux
dans un diagramme
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Bl C Q— X

U
Ah

Zl(:Al; qDZQ

NS
A

ol C est le sous-anneau de K engendré par A} et Af — c’est le « joint », noté
[AD, AD], de op. cit. —, et Ay, Ay et A sont les clotures intégrales de A dans les corps
de fractions de, respectivement, A};, A;‘ et C. Notons que l'anneau C' est normal :
c’est une composante de la A-algébre ind-étale AE ®a AL‘. D’autre part, ’anneau A;‘
est un localisé (Zariski) de A; en un idéal premier ; cet idéal premier admet — par la
propriété de Hensel — un unique relévement en un idéal premier p de C. De méme
pour gq. L’anneau C est aussi le joint des anneaux henséliens Z; et Zﬁ. Rappelons que,
par hypothése, aucun des morphismes A;} — C et Ag — C' n’est local; il en est donc
de méme de Ay — C'et Az — C et, en particulier,p ¢ g et g ¢ p. Ces réductions étant
faites, le fait que C soit strictement hensélien résulte de [Artin, 1971, théorémes 2.2
et 2.5]. O

6.4.2. Comparaison o la cohomologie d’un corps discrétement valué hensélien. —
Voyons maintenant une conséquence cohomologique de la proposition précédente.

Soit X un schéma tel que toute paire de points appartienne & un ouvert affine.
Soit z € X tel que Ox ; soit (local) ncethérien intégre de dimension 1 et enfin Q C X
un ouvert tel que Q N Spec(Ox ;) soit le point générique Spec(K) de Spec(Ox ;).
Notons enfin K™ I'anneau total des fractions 0% , ® sy , K de I'hensélisé O% _ et ¢ le
morphisme Spec(K?) — Q.

6.4.2.1. Proposition. — Pour tout entier j > 0, on a Rie, = 0. Ainsi, pour tout

faisceau étale abélien F sur Spec(K™), et tout entier i > 0, le morphisme
H(Q,e,#) — H(Spec K, F)

est un isomorphisme. En particulier, pour tout nombre premier £, on a la minoration

Cdz(Q) Z Cde(Kh).

Démonstration. — Seul le résultat d’annulation est & démontrer ; il résulte immédia-
tement de la proposition précédente par passage aux fibres en des points géométriques
de U. O

Il n’est pas difficile d’en déduire une démonstration alternative du théoréme 6.1
(voir aussi 4.1.4) que nous rappelons ici sous la forme d’un corollaire.
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6.4.2.2. Corollaire. — Soit R un anneau strictement local nethérien intégre de corps
des fractions K et soit £ un nombre premier inversible sur R. Pour tout ouvert non
vide strict ) de Spec(R), on a la minoration

cdg(Q) > dim(R).

Démonstration. — Posons X = Spec(R) et considérons, comme en §6.3, I’éclate-
ment Y de X en son point fermé. Soit y le point générique d’une composante irréduc-
tible de dimension dim(X)—1 de la fibre spéciale. D’aprés la proposition 6.4.2.1 appli-
quée au point y de Y et a 'ouvert 2 (vu dans Y), on a la minoration cd,(2) > cd,(K?),
ott K" désigne 1’anneau total des fractions de ﬁ{}’y. D’aprés le théoréme de Krull-
Akizuki, le normalisé de &y, dans K h est un produit fini d’anneaux de valuation
discréte henséliens, de corps résiduels finis sur x(y). Il résulte alors de la formule
cdg(Frac A) =1+ cdy(k) — ot A est un trait hensélien de corps résiduel x de carac-
téristique # £ ([SGA 4 x 2.2.(i)]) —, et de la formule cdy(k) = deg. tr.(k/k) — ol K
est une extension de type fini d’un corps séparablement clos k de caractéristique # £
([SGA 4 x 2.1]) —, que la ¢-dimension cohomologique de K" est dim(R). O

6.4.2.3. Remarques. — Le méme argument permet d’obtenir une nouvelle démonstra-
tion, plus simple, des résultats de [Gabber & Orgogozo, 2008, §6.2].

Enfin, signalons que 'on peut étendre 6.4.2.2 a tout sous-ensemble non vide Q du
schéma épointé X™* qui est stable par générisation : un tel ensemble est une intersection
d’ouverts et on peut définir son topos étale, par passage a la limite ([SGA 4 vI1 §8])
ou bien via le topos étale d’un topos annelé [Hakim, 1972, chap. IV, §5].
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