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EXPOSE III

APPROXIMATION

Luc Illusie et Yves Laszlo

1. Introduction

On montre ici comment ramener la preuve du théoréme d’uniformisation (6.1)
au cas local, noethérien complet (6.2). On utilise pour cela le théoréme de Popescu
(qui implique que les anneaux locaux noethériens, henséliens et excellents vérifient la
propriété d’approximation d’Artin, cf. I-10.3) et des méthodes d’approximations de
complexes de longueur 2 adaptées de [Conrad & de Jong, 2002] (cf. section 4).

L’exposé oral donné par Alban Moreau utilisait des résultats (dus a Ofer Gab-
ber) d’approximations de complexes plus forts que ceux utilisés ici (4.5). Une version
écrite de son exposé a été trés utile pour la rédaction de ce texte : nous ’en remer-
cions. Nous remercions également Fabrice Orgogozo de nous avoir signalé que I’énoncé
[Conrad & de Jong, 2002, 3.1] suffisait pour les applications en vue.

2. Modéles et approximations a la Artin-Popescu

Soit A un anneau local noethérien, m son idéal maximal, A son complété. On
suppose A excellent et hensélien. Soit 7 : § = Spec(A) — S = Spec(A) le morphisme
canonique. Pour tout n > 0, on note

i Sy — S
I'immersion fermée définie par I'idéal ™! = m"*1 A de A. Le composé
Mip : Sy = 85— 8

est 'immersion fermée S,, — S définie par I’idéal m"™+!.
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38 EXPOSE III. APPROXIMATION

2.1. Définition. — Soient g : S — T et f S — T des morphismes de schémas et
n € N. On dira que f et g sont (n + 1)-proches si leurs restrictions fwi, et gi, a4 S,
coincident.

Si X est un S'-schéma, on note X, le S,-schéma X x5 S, — Sp.
Ecrivons A comme limite inductive suivant un ensemble ordonné filtrant E de
A-algébres de type fini A,. On a des diagrammes commutatifs

(2.1.1) So = Spec(A,)

Sa
ta
~ ™

§——S§

avec t, de type fini et un isomorphisme 3§ = lim S, [EGA 1v3 8.2.3].

2.2. Définition. — Soit X un S-schéma de type fini et A : X — Y un morphisme de
S-schémas de type fini.

(i) Un modéle de X sur S, est un diagramme cartésien

ou X, est de type fini sur S,.
(ii) Un modéle de h sur S, est un S,-morphisme h, : X, — Y, de S,-schémas de
type fini, muni d’un isomorphisme h = (hq) 4.

Des modéles de X sur S, existent pourvu que « soit assez grand [EGA 1v3 8.8.3].
De plus, si X, Xg sont des modeéles de X sur S,, S, il existe v > «, B et un S,-iso-
morphisme

Xa X8, S’Y :-*Xg Xsa S—y

(loc. cit.). De méme, des modéles h, de h : X — Y sur S, existent pourvu que « soit
assez grand et les images inverses de tels modéles hq, hg sur S, sont S,-isomorphes
pour v > a, 3 assez grand.

Si T est un S-schéma et B une A-algébre, on note T(B) = Homg(Spec(B),T)
Pensemble des S-points de T & valeurs dans B. D’aprés le théoréme de Popescu
[Popescu, 1986, 1.3], comme A est excellent et hensélien, il vérifie la propriété d’ap-
proximation d’Artin, cf. I-10.3. Donc, comme S, — S est de type fini, S,(A) est
dense dans S,(A) (pour la topologie m-adique). Il existe donc, pour tout n > 0 une
section u : S — S, de t, qui est n-proche de s : S — S,. On définit alors X, par le
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3. APPROXIMATIONS ET TOPOLOGIE DES ALTERATIONS 39

diagramme cartésien

(2.2.1) X, — X,

o) o )

s -8,
Comme u est n-proche de s, on a par définition I’égalité
ULy = Salin

de sorte la restriction de X,, — S a S, s’identifie & X,, — S,,, autrement dit on a un
carré cartésien

(2.2.2) X, — X,
S S

n
De méme, si X,Y sont de type fini sur S et ko est un modele de h € Homg(X,Y)
sur S,, I'image inverse h, : X, — Y, est un S-morphisme induisant la restriction
hy, : X, — Y, de h au dessus de S,,.

3. Approximations et topologie des altérations

Commencons par un rappel (cf. exposé II) sur la topologie des altérations. Soit T
un schéma noethérien. La catégorie alt/T est la sous-catégorie pleine de la catégorie
des T-schémas dont les objets sont les T-schémas réduits de type fini X, dont tout
point maximal s’envoie sur un point maximal de T avec extension résiduelle finie.
Notons que les morphismes de alt/T envoient point maximal sur point maximal. On
définit deux topologies sur alt/T.

(i) La topologie des altérations est la moins fine pour laquelle les familles suivantes
sont couvrantes
(a) les recouvrements ouverts de Zariski;
(b) les morphismes propres et surjectifs .
Une famille couvrante pour la topologie des altérations sera dite alt-couvrante.
(ii) Soit £ un nombre premier. La topologie des ¢'-altérations sur alt/T est la moins
fine pour laquelle les familles suivantes sont couvrantes
(a) les recouvrements étales de Nisnevich ;
(b) les morphismes propres surjectifs X’ — X tels que pour tout point maximal
n de X, il existe un point maximal 7’ de X’ au dessus de 7 avec £ ne divisant

pas deg(k(n’)/k(n)).
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40 EXPOSE III. APPROXIMATION

Une famille couvrante pour la topologie des ¢’-altérations sera dite altg-
couvrante.

Pour tout T-schéma X de type fini, on note X4 le sous-schéma fermé réduit de

X réunion des composantes irréductibles qui dominent une composante irréductible
de T.

3.1. Proposition. — On reprend les notations de 2 : soit A un anneau local noethérien,
m son idéal mazximal, A son complété. On suppose A excellent et hensélien. Soit
7 : 8 = Spec(A) — S = Spec(A) le morphisme canonique. Soit X — S un objet non
vide de alt/ S. Supposons de plus S intégre. Choisissons un modeéle X g de X sur Sg,
pour un indice B € E (cf. 2.2), et pour a > 8 notons X, le modéle qui s’en déduit
par changement de base.

(i) Alors, il existe ag € E,a9 > B, et un entier ng > 0 tels que pour tout o >
g, tout entier n > ng, toute section u : S — S, de t, qui est n-proche de
Sa 1 8 > Sa, Xu (2.2.1) est a fibre générique finie et le morphisme composé
(Xu)ma — Xy — S est un objet non vide de alt/S.

(ii) Supposons X — S alt-couvrant. Alors, il existe ag € E, a9 > 3, et un entier
ng > 0 tels que pour tout a > aq, tout entier n > nyg, toute sectionu : S — S, de
to qui est n-proche de s, : S S,, le morphisme composé (X, )md — Xu — S
est alt-couvrant.

(iif) Supposons X — S alty -couvrant. Alors, il existe ag € E,ag > 3, et un entier
no > 0 tels que pour tout o > «yg, tout entier n > ng, toute sectionu : S — S, de
to qui est n-proche de s, : S — Sy, le morphisme composé (Xy)ma — Xu — S
est alty -couvrant.

Démonstration. — Observons d’abord que, S étant hensélien et excellent, S est in-
tégre, cf. 1-6.3.

Prouvons (i). Comme X — § est génériquement fini, il existe a € A — {0} tel que
X soit fini, surjectif et libre de rang d > 0 au dessus de I’ouvert non vide S - V(a).
On peut choisir ag assez grand de sorte que

— a provienne de a, € A, — {0} pour a > ap;
— X, — S, soit fini, surjectif ((EGA 1v3 8.10.5]) et libre de rang d sur S, — V(aq)
(utiliser [EGA 1v3 8.5.2]).

Choisissons alors un entier n tel que a € m™*!. Pour tout a > ap,m > n, toute

section u qui est m-proche de t,,, on a

u*(aa) ¢ mn+1

et donc u*(a,,) est non nul. Ceci assure que X, est fini, surjectif et libre de rang d au
dessus de 'ouvert non vide S — V(u*(ao)) image réciproque de S, — V(aq) par u. Le
premier point en découle.
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3. APPROXIMATIONS ET TOPOLOGIE DES ALTERATIONS 41

Prouvons (iii) [La preuve de (ii) est en tout point similaire]. On suppose donc que
X — § est alty-couvrant. On sait (II-3.2.1) que X — S est dominé dans alt/S par
un recouvrement standard

Y -X' -8

avec

— Y — X’ Nisnevich couvrant

— X' -8 propre et surjectif dont la restriction & chaque composante irréductible
est dominante et génériquement finie, le degré générique de 'une d’elles étant
premier & £.

Quitte & remplacer le schéma réduit X’ par une composante convenable et Y par le
alty-recouvrement Nisnevich induit, on peut supposer X’ intégre de degré générique
deg(X’/8) = 6 premier a £.

Soit 7 le point générique de S. La construction X — X4 est fonctorielle pour la
sous-catégorie pleine des S-schémas X & fibre générique finie. Or, d’apreés (i), pour
oo > [ assez grand et des choix de modéles Yo, — X/, — Sag; Yoo = Xay — Sa
et de section u de t, (@ > ag) convenables, on sait que Y, X et X, sont & fibre
générique finie. On a donc une factorisation

(Yu)md - (Xu)md

_

(X{L)md S

Or, toujours d’apreés (i), on peut en outre supposer que (Y, )md, (X, )ma €t (Xu), sont
des objets de alt/S. Pour conclure que (X,)ma — S est alty-couvrant, il suffit de
prouver que pour u convenable (Y )ma — S est alty-couvrant.

Tenant compte des propriétés de permanence usuelles des modéles [EGA 1v3 8.8.3
et 8.10.5], la preuve de (i) assure que pour des modéles et u convenables le morphisme
X! — S est propre et surjectif et que sa fibre générique est de degré premier a £. Ceci
assure que la restriction de X, — S & au moins une des composantes réduites de X,
dominant S est de degré premier & £. Ainsi, (X|)ma — S est bien alty-couvrant.

La propriété d’étre un recouvrement Nisnevich (resp. propre et surjectif) étant
stable par changement de base, reste & prouver le lemme suivant.

3.1.1. Lemme. — Il existe ag > 3 tel que pour tout a > g, le modéle Y, — X!, — S,
deY — X' — § (déduit de Yo, — X[, — Sa,) ait la propriété que Yo, — X, est
Nisnevich couvrant.
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42 EXPOSE III. APPROXIMATION

Démonstration. — Dire que le morphisme Y — X’ est Nisnevich couvrant, c’est dire
qu’il est lisse, quasi-fini et qu’on a une stratification

g=XyCcX;---CcX, =X

avec X, fermé de X’ et Y/X' a une section au dessus de X/, ; — X/. La conclusion
découle immédiatement de cette remarque et des propriétés de permanence usuelles
des modeles [EGA 1v3 8.8.3 et 8.10.5] et [EGA 1v,4 17.7.8]. O

Le but de ce qui suit est d’améliorer les résultats topologiques de la proposition 3.1
en montrant que des épaississements convenables des cones normaux des fibres spé-
ciales de X (resp. X,) dans X (resp. X,) sont isomorphes. Ceci permettra de prouver
des énoncés de stabilité de propriétés dans le passage de X a X, en 'occurrence la
dimension et la régularité (corollaire 5.4).

4. Gradués supérieurs et approximations de complexes

Soient I un idéal d’un topos annelé (2, &), F un O-module de £ et a un en-
tier > 1. On pose I™ = & si n < 0. On définit le module Z-gradué

g, (F) =P Ire/mtg
neZ

qui est donc la somme

g (F)=F|IF & - -0 F/I°FOIF /[N F O PF|I**F -
concentrée en degrés > —(a — 1). C’est un &'/I%-module; de plus, le produit

In ® Im — In+m

induit une structure de &/I*-algébre Z-graduée sur gr, (&) et gr, (F) est un
gr,(0)-module Z-gradué.

On s’intéresse ici au cas ou 2 est le topos de Zariski d’'un S-schéma X annelé par
son faisceau structural & et I = m&.

4.1. Remarque. — Le morphisme surjectif tautologique gr,(€) — gr,;(&) a pour
noyau J = I - gr,(€). On a donc J* = 0 (puisque J est un Ox, ,-module) de sorte
que C,(X) = Spec(gr,(£)) est un épaississement d’ordre a — 1 du coéne normal

Spec(gr,(9))-

4.2. Définition. — Soient X,Y des S-schémas (resp. des S-schémas). Un a-isomor-
phisme X =, Y est la donnée d’un S-isomorphisme ¢ : X,_1 5Y,_1 et d’un isomor-
phisme de gr,(A)-algébres graduées ¢~'gr,(Oy) = gr,(Ox). On dit dans ce cas que
X,Y sont a-proches.
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4. GRADUES SUPERIEURS ET APPROXIMATIONS DE COMPLEXES 43

On identifiera alors leurs fibres spéciales Xo,Yy grace a I'isomorphisme X, ; —
Y,_1.

4.3. — On adapte ici le théoréme 3.2 de [Conrad & de Jong, 2002] (et le lemme clef
3.1 de loc. cit.). Commengons par une définition. Soient B un anneau noethérien et 1
un idéal de B.

4.4. Définition. — Soit f : M — N un morphisme de B-modules de type fini. Un
entier ¢ > 0 est une constante d’Artin-Rees de f si pour tout n > con a

I"N NIm(f) C I “Im(f).
Le lemme d’Artin-Rees assure 1’existence d’une constante d’Artin-Rees.

4.5. Proposition. — Soient (L*®,d}),(M?*,d},) des complexes de B-modules libres de
type fini concentrés en degré [—2,0] avec L' = M® pour tout i. Soit c une constante
d’Artin-Rees pour d;z et dzl et n un entier > c. Supposons H™1(L*) = 0 et

$ =d}, mod I"!.
Alors :

(i) c est une constante d’Artin-Rees pour dy; ;
(ii) si I est contenu dans le radical de A®, H-}(M®) =0;
(iii) L’identité de L° = M%induit un isomorphisme de gr,,,_.(B)-modules

~

81— (H(L®)) 5 gty (HO(M*));
(iv) De plus, si L° = M° = B, l’isomorphisme précédent est un isomorphisme
de gr,,1_.(B)-algébres, autrement dit les algebres HO(L®) et HO(M*®) sont
(n + 1 — ¢)-isomorphes.

Démonstration. — Les deux premiers points sont prouvés dans le lemme 3.1 de loc.
cit. Le dernier est trivial. Reste le point (iii).

Pour n = ¢, c’est le théoréme 3.2 de loc. cit. dont on ne fait qu’adapter la preuve
dans le cas n > c. Soit m € Z. On écrit dy,,dys pour dzl,d;ll. Pour § =dy,dp, on a

gr,1_(Coker(8)) = I™L° /(I™+"t1=¢L% 4 I™ L% N Im(6))
de sorte qu’il s’agit de montrer I’égalité
e 4 L nim(de) = 1™ L0+ I L0 N Im(dy)

pour tout m € Z. Soit z € L™ tel que dr(z) € I™L°.
Supposons m < ¢. Comme

dr(z) —dy(z) e I L0 et m < c < m,

() Cette hypothése manque dans le lemme 3.1 de loc. cit.
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44 EXPOSE III. APPROXIMATION

on a dr(z) —dy(x) € I™L° de sorte que
du(z) = dp(z) + dp(z) — dr(x) € I™L° NIm(dyy).
Commen+1>m+n+1—c, on a également
dr(z) —dpy(z) € I"THL0 ¢ mAntl-ep0

de sorte que

di(z) = dp(z) — dm(z) + dpr(x) € I™TH=CL0 4 ™ L0 N Im(dypy)
et donc

I t=e 0 4 L0 N Im(dg) € 1™ L0 + 1™ L0 N Im(dy).

Par symétrie des roles de df, et dps, on a I’égalité cherchée dans ce cas.
Sim > ¢, le calcul est analogue. On a (4.4)

I"L°NIm(dy) c I™ %d, (L)

de sorte que
dr(z) = dp(z') avec o’ € I™ L1

Comme dy, — dp; =0 mod I™t!, la matrice de dr, — dps est a coefficients dans I"*!
de sorte que

dr —dy € I"'Homp(L™2,L7Y).
On a donc
dr(e') — dm(2') € MM eL? = [T eerf,

Comme

du(z') = dp(z') +dm(2') — di(2') = dp(z) + dm(z') — d(z'),
on a d’une part

dy(z’) € (I™L° + "™ Loy N Im(dy) € I™L° N Im(dyy),
car n > c, et, d’autre part,

dp(z) = dp(2') — dy (') + dpr(2') € ™00 4 1™ L0 N Im(d ).

On conclut comme plus haut par symétrie. O
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5. MODELES ET a-ISOMORPHISMES 45

5. Modéles et a-isomorphismes

5.1. Théoréme (Approximation). — Soit A un anneau local noethérien, m son idéal
mazimal, A son complété. On suppose A excellent et hensélien. Soit m : S =
Spec(A) — S = Spec(A) le morphisme canonique. Soit X de type fini sur S. On se
donne de plus ap € E et un modéle (cf. 2.2) Xo, de X sur Squ,. Pour tout a > og on
note Xo = Xo Xs,, S, le modéle de X sur S, déduit par changement de base. Il existe
a1 > ag et des entiers ng > ¢ > 0 tels que pour tout n > ng,a > a; et toute section
u de to qui est (n + 1)-proche de 34, il existe un unique (n + 1 — c¢)-isomorphisme
X So41-c Xy au dessus de lisomorphisme X, — (Xy)n—c déduit de (2.2.2).

5.2. Définition. — Dans les conditions précédentes, on dit que (X, @, u) (ou, si aucune
conclusion n’est a craindre, X,,) est une approximation de X sur S (& 'ordre n — c).

L’assertion « Il existe ag, un entier ng tels que pour tout n > ng,a > ag et toute
section u de t, qui est (n+ 1)-proche de s, X, vérifie la propriété P » pourra parfois
étre condensée en « Toute approximation X, assez fine de X vérifie la propriété P ».
On emploiera une terminologie analogue pour les approximations de S-morphismes.

Démonstration. — Deux (n + 1 — ¢)-isomorphismes différent par un automorphisme

L grn—l—l—c(ﬁX) o grn+1—c(ﬁx)

de Ox,__-algébres graduées. Il est en particulier &s-linéaire. Comme gr, ,,_.(Ox)
est engendré sur gr,(Og) par Ox lautomorphisme ¢ est 'identité. D’ou 'unicité.

On peut donc supposer X affine. Comme X est de type fini sur 3, X se plonge

n—c?

dans l'espace affine
7 = Spec(A[t])
de coordonnées t = (t1,...,t,) comme le sous-schéma fermé d’idéal
J= (131,...,13]\]>

ou P; € B = At]. Choisissons une résolution partielle du B-module C = B/J par des
B-modules libres de type fini

(5.2.1) R p =™ p o

ou R est une matrice & coefficients dans B.
Pour o assez grand, P et R proviennent de matrices Py, Ro, & coeflicients dans

Ba, = Ag,[t] telles que PR =0

de sorte que le fermé F' de Afgao d’équations Py, 1 = -+ = Py, n = 0 est un modéle
de X sur S,,. Comme rappelé dans la section 2, quitte & changer « en un indice plus
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grand, on peut supposer qu’'on a F' = X,,. Pour a > oy, note P,, R, les matrices &
coefficients dans B, déduites de P,,,R,, par le morphisme

Bay = Aqg[t] = Ba = Aalt].

Pour tout a > ap, les matrices & coeflicients dans B déduites de P,, R, par le mor-
phisme
Bo, = Ag,[t] — B = Alt]
sont les mémes : on les note P, R.
On s’est ramené, pour a > ag, au cas ol

Xo = Spec(Cy) avec Cy = By /(P,).

On dispose donc d’une part d’un complexe (en degrés [-2,0]) de B,-modules libres

=(Pi,oz)

Lo = (B2 fo, gt DomPio), g

avec H°(L,) = C,. Le complexe de B-modules libres de rang fini
L=B@®g, L, = (B* % B® £=18=, p)
est acyclique en degré —1 par construction.
5.3. Remarque. — A priori, L, n’a pas de raison d’étre acyclique en degré —1, méme
pour a grand.
D’autre part, la section u de t, est définie par un morphisme de A-algébres
u A, > A

de sorte que

v* mod m™*! =s* mod m"T!,

ol 8% : Aq — A est défini par s, : S — S, (2.1.1). Par action sur les coefficients des
polynémes, on obtient un morphisme d’anneau

@: By = Anft] — Alt] —» A[t] = B
d’ott un complexe
M = (B* 2B, pp B, p)
Par construction, on a
L/w" L = M/m™ M.

On choisit alors une constante d’Artin-Rees ¢ pour B® P, Beton invoque la propo-

sition 4.5 pour conclure. O
5.4. Corollaire. — Soient X,Y des S-schémas noethériens qui sont a-proches. Soit
reXg=Yp.

(i) Sia > 1, les dimensions de X etY en x sont les mémes.
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6. REDUCTION AU CAS LOCAL NOETHERIEN COMPLET 47

(ii) Sia>2 et X est réqulier en x, alors Y est régulier en x.

(iii) Supposons X — S de type fini et X régulier. Soit Xp un modéle de X sur Sg, et
pour o > 3, notons X, le modele sur S, déduit par changement de base. Alors,
il existe ag € E,ag9 > B, et un entier ng > 0 tels que pour tout a > «gp, tout
entier n > ng, toute section u de t, qui est n-proche de s, : S — S., le schéma
X, déduit de X, soit régulier dans un voisinage ouvert de la fibre spéciale.

Démonstration. — Par hypothéses, les cones normaux de Xg,Yp dans X,Y sont
S-isomorphes. Comme la dimension de X en z est égale 4 celle de son cone normal
[Matsumura, 1989, 15.9], le premier point en découle.

Supposons maintenant que X,Y soient 2-proches. D’aprés (i), on sait que X et ¥
ont méme dimension en z. Comme X,Y sont 2-proches, X; et Y; sont isomorphes.
Puisque ’espace tangent de Zariski & X en un point de Xy ne dépend que de X7, les
k(z)-espaces vectoriels cotangents de Zariski en z & X et Y sont isomorphes, d’ou ii).

Pour le dernier point, il suffit d’invoquer les deux premiers et le théoréme 5.1 pour
conclure qu’une approximation assez fine est réguliére au voisinage de la fibre spéciale.
Comme X, est excellent (puisque de type fini sur S excellent), son lieu régulier R est
ouvert de sorte que R est un voisinage ouvert régulier de la fibre spéciale. O

5.5. Remarque. — O. Gabber sait généraliser la proposition 4.5 au cas ol les com-
plexes envisagés sont seulement de type fini sur un anneau noethérien pour obtenir
les proximités de la cohomologie également en degré —2 (et pas seulement en degré
0,—1). Il peut plus précisément montrer des énoncés de proximité pour les images,
noyaux des différentielles ). Gabber en déduit de nombreux énoncés de permanence
par approximation analogues au corollaire 5.4 . Notamment, si X,Y sont a-proches
pour a assez grand, alors X réduit (resp. normal) le long de Xy entraine Y réduit
(resp. normal) le long de Y,. Cependant, plusieurs questions naturelles restent en
suspens comme par exemple la permanence des propriétés Sy, R,,.

6. Réduction au cas local noethérien complet

Rappelons I’énoncé du théoréme d’uniformisation (Intro.-2, 11-4.3.2).

6.1. Théoréme (Uniformisation). — Soient T' un schéma noethérien quasi-excellent et
Z un fermé rare de T'. Soit £ un nombre premier inversible sur T'. Il existe une famille
finie de morphismes (X; — T);e; telle que pour tout i € I on ait

(i) La famille finie de morphismes (X; — T);er est alt-couvrante (resp. alty -
couvrante) ;

(i) La preuve de cette généralisation a été exposée par A. Moreau lors du séminaire oral.
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(ii) X; est régulier et inteégre;
(iii) V’image inverse de Z dans X; est vide ou le support d’un diviseur @ croisements
normauz strict.

Nous allons montrer I’énoncé de réduction suivant.

6.2. Proposition. — Si (6.1) est vrai pour tout T’ noethérien, local, complet, alors (6.1)
est vrai.
Démonstration. — On peut d’abord supposer T local, excellent et hensélien (rappe-

lons (I-6.3) qu’un schéma local, hensélien et quasi-excellent est excellent). Voir 11-4.3.3
pour cette réduction.

Supposons donc T local, noethérien, hensélien, excellent.

Quitte a remplacer T' par la somme disjointe de ses composantes réduites, on se
rameéne au cas out 1" est de plus intégre.

On peut supposer de plus T' = Spec(A) normal intégre. En effet, comme A est ex-
cellent, le morphisme de normalisation est fini de degré générique 1, donc est alt-cou-
vrant (resp. alty-couvrant). Comme A est local intégre et hensélien, A est unibranche
de sorte que le normalisé de A est local, donc intégre, et est noethérien hensélien
puisque fini sur A.

Comme A est excellent, la normalisation commute & la complétion (I-6.2) de sorte
que A est dés lors normal comme A, donc également intégre puisque normal et local.

On peut donc supposer T local intégre, normal, hensélien et excellent.

Comme 7' est plat sur T, I'image inverse Z de Z est encore un fermé rare de 7.
Choisissons une uniformisation

(Xi - T)ie]’
de (T, Z) comme dans 6.1. D’aprés 3.1, 5.1 et 5.4, on peut trouver ag € E et un
entier ng > 1 tels que, pour tout a > aq, tout n > ng et u n-proche de s,, on dispose
de modéles (X,-)a des X; sur T, et de n-isomorphismes X; —, (X,)u tels que

a) chaque T-schéma (X'Z)u est régulier le long de sa fibre spéciale (Xi)o, donc au
voisinage (le lieu régulier étant ouvert puisque les schémas considérés sont excellents).

b) la famille ((X;)y)ma est alt-couvrante (resp. alty-couvrante).

D’aprés a), (X;), est régulier au voisinage de la fibre spéciale et y est la réunion
disjointe de ses composantes connexes qui sont intégres. Notons que, pour a et n > ng
donnés, comme le noyau de A,/m"A, — A/m"™A est de type fini, il existe § > « tel
que A,/m"A, — Ag/m™Ag se factorise par A/m"™A, et donc toute section de tg
donne une section de t, qui est n-proche de s,. Ainsi, quitte & accroitre ag et ng (ou
seulement ag), on peut supposer que (X;)y = ((X;)u)ma dans un voisinage de la fibre
spéciale. C’est en effet une conséquence de la préservation de la dimension (5.4) (i)).
Pour le voir, choisissons, comme dans la démonstration de 3.1, un élément non nul a
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de A tel que X; — V (a) soit fini et plat sur T- V(a). On peut supposer qu’il en est de
méme pour (X;), — V(a’) au-dessus de T' — V'(a’), oit ' = u*(a,). On peut supposer
qu’en chaque point z de la fibre spéciale les anneaux locaux de X; et de (X,)u ont la
méme dimension d, et de méme pour V (a) et V(a’). Comme X; — V' (a) est dense dans
X, la dimension de ’anneau local de V'(a) en z est < d, donc il en est de méme pour
V(a') € (Xi)u. Comme 0%,). . st régulier, la composante irréductible de (Xi)u
passant par z est donc dominante.

Ainsi, au voisinage de la fibre spéciale, (f(,)u est schématiquement la réunion dis-
jointe de composantes dominant 7. Comme un voisinage ouvert assez petit de la fibre
spéciale (X;)o dans (X;), est alt-couvrant (resp. alty-couvrant) (II-4.1.1), la famille
(X; — T)iecr des composantes connexes de voisinages convenables des (X'i)o dans
(X;)u,i € I' vérifie les conditions (i) et (ii).

Soit D’ I'image inverse de Z dans X = Hicr X, qu’on peut supposer non vide.
Par hypothése, D = D/, est un diviseur & croisements normaux strict, c’est-a-dire
D=3 .c;D; avec

Dk = () D;
jEK
régulier de codimension card(K) pour toute partie K C J. Quitte & augmenter «, on
peut supposer que les D; ont des modéles sur T, ces modeéles induisant des modéles
des Dy . Comme u est une section de t,, le schéma D,, réunion schématique des (D;),
est, topologiquement, I'image inverse de Z dans X,. D’aprés 5.4, on peut supposer
que chaque (D, )k est régulier partout de codimension card(K) le long de la fibre
spéciale, de sorte que D,, est un diviseur i croisements normaux strict le long de la
fibre spéciale. Les lieux réguliers de (D,)k et X, étant ouverts, on peut supposer
que D, est un diviseur & croisements normaux strict au voisinage de la fibre spéciale
(excellence de X,). |
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