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E X P O S É III 

A P P R O X I M A T I O N 

Luc Illusie et Yves Laszlo 

1. Introduction 

On montre ici comment ramener la preuve du théorème d'uniformisation (6.1) 

au cas local, noethérien complet (6.2). On utilise pour cela le théorème de Popescu 

(qui implique que les anneaux locaux noethériens, henséliens et excellents vérifient la 

propriété d'approximation d'Artin, cf. 1-10.3) et des méthodes d'approximations de 

complexes de longueur 2 adaptées de [Conrad & de Jong, 2002] (cf. section 4). 

L'exposé oral donné par Alban Moreau utilisait des résultats (dus à Ofer Gab-

ber) d'approximations de complexes plus forts que ceux utilisés ici (4.5). Une version 

écrite de son exposé a été très utile pour la rédaction de ce texte : nous l'en remer­

cions. Nous remercions également Fabrice Orgogozo de nous avoir signalé que l'énoncé 

[Conrad & de Jong, 2002, 3.1] suffisait pour les applications en vue. 

2. Modèles et approximations à la Artin-Popescu 

Soit A un anneau local noethérien, m son idéal maximal, A son complété. On 

suppose A excellent et hensélien. Soit TT : S = Spec(A) —• S = Spec(A) le morphisme 

canonique. Pour tout n > 0, on note 

• Sn

 c > S 

l'immersion fermée définie par l'idéal m n + 1 = m n + 1 A de A. Le composé 

• Sn > S —> S 

est l'immersion fermée Sn ^ S définie par l'idéal m72"1"1. 
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38 EXPOSÉ III. APPROXIMATION 

2.1. Définition. — Soient g : S —• T et / : S —> T des morphismes de schémas et 

n G N. On dira que f et g sont (n + l)-proches si leurs restrictions /7rin et gin à 5 n 

coïncident. 

Si X est un 5-schéma, on note Xn le £n-schéma X X ô 'S'n —* Sn. 

Écrivons A comme limite inductive suivant un ensemble ordonné filtrant E de 

A-algèbres de type fini Aa. On a des diagrammes commutatifs 

(2.1.1) Sa = Spec(Aa) 

s ^ ^ > 1 

avec t a de type fini et un isomorphisme S — l i m 5 a [EGA IV3 8.2.3]. 

2.2. Définition. — Soit X un 5-schéma de type fini et h : X —» Y un morphisme de 

5-schémas de type fini. 

(i) Un modèle de X sur Sa est un diagramme cartésien 

X ^Xa 

f • foc 

S - 5 a 

où Xa est de type fini sur Sa. 

(ii) Un modèle de h sur Sa est un Sa-morphisme ha : Xa —• Ya de 5a-schémas de 

type fini, muni d'un isomorphisme h (ha)§. 

Des modèles de X sur £ a existent pourvu que a soit assez grand [EGA IV3 8.8.3]. 

De plus, si Xa, X$ sont des modèles de X sur 5 a , 5^, il existe 7 > a, f3 et un 5 7-iso-

morphisme 

-̂ a x 5 a 5 7 —>• x 5̂  5 7 

(loc. cit.). De même, des modèles ha de /1 : X —> y sur 5 a existent pourvu que a soit 

assez grand et les images inverses de tels modèles ha,hp sur S'y sont 57-isomorphes 

pour 7 > a,/3 assez grand. 

Si T est un 5-schéma et B une A-algèbre, on note T(B) = Hom5(Spec( JB), T) 

l'ensemble des 5-points de T à valeurs dans B. D'après le théorème de Popescu 

[Popescu, 1986, 1.3], comme A est excellent et hensélien, il vérifie la propriété d'ap­

proximation d'Artin, cf. 1-10.3. Donc, comme Sa —» S est de type fini, Sa(A) est 

dense dans Sa(A) (pour la topologie m-adique). Il existe donc, pour tout n > 0 une 

section u : S —> Sa de t a qui est n-proche de sa : S —• Sa. On définit alors Xu par le 
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3. APPROXIMATIONS ET TOPOLOGIE DES ALTÉRATIONS 39 

diagramme cartésien 

(2.2.1) Xu ^Xa 

fu • foc 

s - ^ ^ s a 

Comme u est n-proche de saj on a par définition l'égalité 

de sorte la restriction de Xu —• S à Sn s'identifie à Xn —• S n , autrement dit on a un 

carré cartésien 

(2.2.2) Xn >» Xu 

fn • fu 

De même, si X , Y sont de type fini sur S et / i a est un modèle de h G Hom^(X, Y) 

sur 5 a , l'image inverse hu : X w —• Yu est un 5-morphisme induisant la restriction 

hn : Xn -^Yn de h au dessus de Sn. 

3. Approximations et topologie des altérations 

Commençons par un rappel (cf. exposé II) sur la topologie des altérations. Soit T 

un schéma noethérien. La catégorie alt/T est la sous-catégorie pleine de la catégorie 

des T-schémas dont les objets sont les T-schémas réduits de type fini X , dont tout 

point maximal s'envoie sur un point maximal de T avec extension résiduelle finie. 

Notons que les morphismes de alt/T envoient point maximal sur point maximal. On 

définit deux topologies sur alt/T. 

(i) La topologie des altérations est la moins fine pour laquelle les familles suivantes 

sont couvrantes 

(a) les recouvrements ouverts de Zariski ; 

(b) les morphismes propres et surjectifs . 

Une famille couvrante pour la topologie des altérations sera dite alt-couvrante. 

(ii) Soit £ un nombre premier. La topologie des £'-altérations sur alt/T est la moins 

fine pour laquelle les familles suivantes sont couvrantes 

(a) les recouvrements étales de Nisnevich ; 

(b) les morphismes propres surjectifs X' —• X tels que pour tout point maximal 

rj de X , il existe un point maximal 7]f de X' au dessus de 77 avec £ ne divisant 

pas deg(/c(r/)/A;(77)). 
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40 EXPOSÉ III. APPROXIMATION 

Une famille couvrante pour la topologie des ^'-altérations sera dite ahV-

couvrante. 

Pour tout T-schéma X de type fini, on note X m d le sous-schéma fermé réduit de 

X réunion des composantes irréductibles qui dominent une composante irréductible 

de T. 

3.1. Proposition. — On reprend les notations de 2 : soit A un anneau local noethérien, 

m son idéal maximal, A son complété. On suppose A excellent et hensélien. Soit 

7T : S = Spec(.A) —• S = Spec(A) le morphisme canonique. Soit X —• S un objet non 

vide de ait/S. Supposons de plus S intègre. Choisissons un modèle Xp de X sur Sp, 

pour un indice ¡3 G E (cf. 2.2), et pour a > (3 notons Xa le modèle qui s'en déduit 

par changement de base. 

(i) Alors, il existe ao G E,ao > (3, et un entier no > 0 tels que pour tout a > 

otQ, tout entier n > no, toute section u : S —• Sa de t a qui est n-proche de 

sa : S —> Sa, Xu (2.2.1) est à fibre générique finie et le morphisme composé 

(Xu)md -* Xu —• S est un objet non vide de ait/S. 

(ii) Supposons X —• S dit-couvrant. Alors, il existe ao G E,ao > (3, et un entier 

no > 0 tels que pour tout a > ao, tout entier n > no, toute section u : S —» Sa de 

t a qui est n-proche de sa : S —» Sa, le morphisme composé (Xu)m^ —> Xu —»• S 

est oit-couvrant. 

(iii) Supposons X —» S ait£'-couvrant. Alors, il existe ao G E,ao > ¡3, et un entier 

n 0 > 0 tels que pour tout a > ao, tout entier n > no, toute section u : S —> Sa de 

t a qui est n-proche de sa : S ^ Sa, le morphisme composé (Xu)md —• Xu —> S 

est ait£' -couvrant. 

Démonstration. — Observons d'abord que, S étant hensélien et excellent, S est in­

tègre, cf. 1-6.3. 

Prouvons (i). Comme X —• S est génériquement fini, il existe a G A — { 0 } tel que 

X soit fini, surjectif et libre de rang d > 0 au dessus de l'ouvert non vide S — V(a). 

On peut choisir ao assez grand de sorte que 

— a provienne de aa G Aa — {0} pour a > ao ; 

— Xa —> Sa soit fini, surjectif ([EGA i v 3 8.10.5]) et libre de rang d sur Sa — V(aa) 

(utiliser [EGA i v 3 8.5.2]). 

Choisissons alors un entier n tel que a 0 m n + 1 . Pour tout a > a0,m > n, toute 

section u qui est m-proche de t a,, on a 

u*(aa) ^ m n + 1 

et donc u*(a a ) est non nul. Ceci assure que Xu est fini, surjectif et libre de rang d au 

dessus de l'ouvert non vide S — V(u*(aa)) image réciproque de Sa — V(aa) par u. Le 

premier point en découle. 
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3. APPROXIMATIONS ET TOPOLOGIE DES ALTÉRATIONS 41 

Prouvons (iii) [La preuve de (ii) est en tout point similaire]. On suppose donc que 

X —• S est ahV-couvrant. On sait (II-3.2.1) que X —• S est dominé dans ait/S par 

un recouvrement standard 

Y X' -> 5 

avec 

— y —• X ' Nisnevich couvrant 

— X' —> S propre et surjectif dont la restriction à chaque composante irréductible 

est dominante et génériquement finie, le degré générique de l'une d'elles étant 

premier à £. 

Quitte à remplacer le schéma réduit X' par une composante convenable et Y par le 

ahV-recouvrement Nisnevich induit, on peut supposer X' intègre de degré générique 

deg(X'/S) = S premier à £. 

Soit Ï] le point générique de S. La construction X \—• X m a est fonctorielle pour la 

sous-catégorie pleine des 5-schémas X à fibre générique finie. Or, d'après (i), pour 

OLQ > (3 assez grand et des choix de modèles Yao —• X'aQ —> 5 a o , Yao —• Xao —• Sao 

et de section u de t a (a > ao) convenables, on sait que Yu,X
f

u et Xu sont à fibre 

générique finie. On a donc une factorisation 

(̂ u)md ^ (̂ w)md 

(^l)md ^ S 

Or, toujours d'après (i), on peut en outre supposer que (Yu)md, (^)md'et (Xu)r sont 

des objets de ait /S. Pour conclure que (Xu)md —> S est ah>-couvrant, il suffit de 

prouver que pour u convenable (lr

n)md —* S est alt^/-couvrant. 

Tenant compte des propriétés de permanence usuelles des modèles [EGA IV3 8.8.3 

et 8.10.5], la preuve de (i) assure que pour des modèles et u convenables le morphisme 

Xr

u —• S est propre et surjectif et que sa fibre générique est de degré premier à £. Ceci 

assure que la restriction de X'u —» S à au moins une des composantes réduites de X'u 

dominant S est de degré premier à £. Ainsi, (X'u)md —> S est bien ahV-couvrant. 

La propriété d'être un recouvrement Nisnevich (resp. propre et surjectif) étant 

stable par changement de base, reste à prouver le lemme suivant. 

3.1.1. Lemme. — 77 existe ao > /3 tel que pour tout a > ao, le modèle Ya —> X'a —• Sa 

de Y —• X' —> S (déduit de Yao —» X'aQ —> SaQ) ait la propriété que Ya —> X'a est 

Nisnevich couvrant. 
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42 EXPOSÉ III. APPROXIMATION 

Démonstration. — Dire que le morphisme Y —• X' est Nisnevich couvrant, c'est dire 

qu'il est lisse, quasi-fini et qu'on a une stratification 

0 = X^cX'1---cX'n = X' 

avec X[ fermé de X' et Y/X' a une section au dessus de X'i+1 — X[. La conclusion 

découle immédiatement de cette remarque et des propriétés de permanence usuelles 

des modèles [EGA i v 3 8.8.3 et 8.10.5] et [EGA i v 4 17.7.8]. • 

Le but de ce qui suit est d'améliorer les résultats topologiques de la proposition 3.1 

en montrant que des épaississements convenables des cônes normaux des fibres spé­

ciales de X (resp. Xu) dans X (resp. Xu) sont isomorphes. Ceci permettra de prouver 

des énoncés de stabilité de propriétés dans le passage de X à Xu, en l'occurrence la 

dimension et la régularité (corollaire 5.4). 

4. Gradués supérieurs et approximations de complexes 

Soient / un idéal d'un topos annelé (^,G), & un ^-module de SC et a un en­

tier > 1. On pose In = G si n < 0. On définit le module Z-gradué 

gra(^) = ^ I n ^ / I n + a ^ 
nez 

qui est donc la somme 

g r a ( j ^ ) = e • • • e &/iAF e i&/ia+1& 0 P&/ia+2& 0 • • • 

concentrée en degrés > —(a — 1). C'est un ^//"-module ; de plus, le produit 

jn ^ jm ^ jn+ra 

induit une structure de ^//"-algèbre Z-graduée sur g r a ( ^ ) et gr a (^") est un 

gr a(^)-module Z-gradué. 

On s'intéresse ici au cas où 2£ est le topos de Zariski d'un 5-schéma X annelé par 

son faisceau structural G et / = mG. 

4.1. Remarque. — Le morphisme surjectif tautologique gra(<^) —• gr1(G) a pour 

noyau J = I • g r a ( ^ ) . On a donc Ja = 0 (puisque J est un Gxa_1 -module) de sorte 

que Ca(X) = Spec(gr G(^)) est un épaississement d'ordre a — 1 du cône normal 

Spec(gr 1 (^)) . 

4.2. Définition. — Soient X , Y des 5-schémas (resp. des 5-schémas). Un a-isomor-

phisme X Y est la donnée d'un 5-isomorphisme <j> : X a _ i ^ Ya-\ et d'un isomor­

phisme de gra(A)-algèbres graduées ( /> _ 1 gr a (^y) g r a ( ^ x ) - On dit dans ce cas que 

X , Y sont a-proches. 
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4. GRADUÉS SUPÉRIEURS ET APPROXIMATIONS DE COMPLEXES 43 

On identifiera alors leurs fibres spéciales XO,YQ grâce à l'isomorphisme X a _ i ^ 

4.3. — On adapte ici le théorème 3.2 de [Conrad & de Jong, 2002] (et le lemme clef 

3.1 de loc. cit.). Commençons par une définition. Soient B un anneau noethérien et / 

un idéal de B. 

4.4. Définition. — Soit / : M —> N un morphisme de ^-modules de type fini. Un 

entier c > 0 est une constante d'Artin-Rees de / si pour tout n > c on a 

/ n A T n I m ( / ) C / n ~ c I m ( / ) . 

Le lemme d'Artin-Rees assure l'existence d'une constante d'Artin-Rees. 

4.5. Proposition. — Soient (L*, dm

L), (M*, d*M) des complexes de B-modules libres de 

type fini concentrés en degré [—2,0] avec U = M% pour tout i. Soit c une constante 

d'Artin-Rees pour d~[2 et d^1 et n un entier > c. Supposons H _ 1 ( L # ) = 0 et 

d9

L = dm

M m o d / n + 1 . 

Alors : 

(i) c est une constante d'Artin-Rees pour d~^ ; 

(ii) si I est contenu dans le radical de A^\ H - 1 (M*) = 0 ; 

(iii) L'identité de L° = M°induit un isomorphisme de gr n + 1_ c(jB)-modules 

g r „ + 1 _ c ( H 0 ( L ' ) ) ^ g r „ + 1 _ c ( H ° ( M ' ) ) ; 

(iv) De plus, si L° = M0 = B, l'isomorphisme précédent est un isomorphisme 

de grn+1_c(B)-algèbres, autrement dit les algèbres H°(L*) et H°(M*) sont 

(n + 1 — c)-isomorphes. 

Démonstration. — Les deux premiers points sont prouvés dans le lemme 3.1 de loc. 

cit. Le dernier est trivial. Reste le point (iii). 

Pour n = c, c'est le théorème 3.2 de loc. cit. dont on ne fait qu'adapter la preuve 

dans le cas n > c. Soit m G Z . On écrit c^ , C^M pour d^1 > . Pour ô = d^, dM, on a 

gC + 1 _ c (Coker(£)) = r L 7 ( / m + n + 1 - c L 0 + ImL° H Im(<S)) 

de sorte qu'il s'agit de montrer l'égalité 

/ m + n + 1 _ C L 0 + jmL0 n = / m + n + l - C j L 0 + jmL0 R I m ( d M ) 

pour tout ra G Z . Soit x G L - 1 tel que dL(x) G ImL°. 

Supposons m < c. Comme 

dL(x) - dM{x) G In+1L° et m < c < n, 

Cette hypothèse manque dans le lemme 3.1 de loc. cit. 
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on a (IL{X) — OIM(X) G i"mL° de sorte que 

dM(x) = dL{x) + dM{x) - dL{x) G ImL° H I m ( d M ) . 

Comme n + l > r a + n + l — c, on a également 

dL{x) - dM{x) G 7 n + 1 L ° c /^+n+i -c L o 

de sorte que 

dL(x) = dL{x) - dM(a?) + dM{x) G / ^ + - + i - c L o + jmLo R Im(^M) 

et donc 

/ m + n + 1 _ C L 0 + 7m L0 n j m ( d L ) c jm+n+l-c£0 + jn^O R I m ( ^ M ) . 

Par symétrie des rôles de dx, et C/M , on a l'égalité cherchée dans ce cas. 

Si m > c, le calcul est analogue. On a (4.4) 

J m L ° H Im(d L ) C I^d^L-1) 

de sorte que 

dL(x) = dL(x') avec a;' G J ^ I T 1 . 

Comme d̂ , — dM — 0 mod 7 n + 1 , la matrice de d^ — dM est à coefficients dans / n + 1 

de sorte que 

dL~dMe I n + 1 H o m B ( L - 2 , L ' 1 ) . 

On a donc 

dL{x') - dM(x') G r + 1 r - c L ° = / n + 1 + m - c L ° . 

Comme 

d<M(xf) = dL(x') + dM(x') - dL(x') = d£,(a;) + dM{x) - dL(x'), 

on a d'une part 

« M * ' ) e ( J m L° + 7 n + 1 + m - c L 0 ) H Im(dM) C / m L ° fl I m ( d M ) , 

car n > c, et, d'autre part, 

^ ( z ) = d L ( z ' ) - dM{x') + d M ( s ' ) G / - + - + 1 " C L ° + /™L° n Im(d M ) . 

On conclut comme plus haut par symétrie. • 
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5. MODÈLES ET a-ISOMORPHISMES 45 

5. Modèles et a-isomorphismes 

5.7. Théorème (Approximation). — Soit A un anneau local noethérien, m son idéal 

maximal, A son complété. On suppose A excellent et hensélien. Soit n : S = 

Spec(A) —> S = Spec(A) le morphisme canonique. Soit X de type fini sur S. On se 

donne de plus a 0 G E et un modèle (cf. 2.2) Xao de X sur Sao. Pour tout a > a0 on 

note Xa = Xa x saQ Sa le modèle de X sur Sa déduit par changement de base. Il existe 

ai > ao et des entiers no > c > 0 tels que pour tout n > no, a > ai et toute section 

u de t a qui est (n + 1)-proche de sa, il existe un unique (n + 1 — c)-isomorphisme 

X ^>n+i-c Xu au dessus de Visomorphisme Xn-C —• (Xu)n-C déduit de (2.2.2). 

5.2. Définition. — Dans les conditions précédentes, on dit que ( X a , a, u) (ou, si aucune 

conclusion n'est à craindre, Xu) est une approximation de X sur S (à l'ordre n — c). 

L'assertion « Il existe ao, un entier no tels que pour tout n > no, a > ao et toute 

section u de t a qui est (n + l)-proche de sa, Xu vérifie la propriété P » pourra parfois 

être condensée en « Toute approximation Xu assez fine de X vérifie la propriété P ». 

On emploiera une terminologie analogue pour les approximations de 5-morphismes. 

Démonstration. — Deux (n + 1 — c)-isomorphismes diffèrent par un automorphisme 

* : g r n+l -c (^) ^ g r n + i _ c ( ^ x ) 

de <^xn_c-algèbres graduées. Il est en particulier ^-linéaire. Comme g r n + 1 _ c ( ^ x ) 

est engendré sur gra(ûs) par <^x n_ c 5 l'automorphisme i est l'identité. D'où l'unicité. 

On peut donc supposer X affine. Comme X est de type fini sur S, X se plonge 

dans l'espace affine 

= S p e c ( i ^ ) 

de coordonnées t = (t\,..., £ m ) comme le sous-schéma fermé d'idéal 

j = (p1,...,pN) 

où Pi G B = A[t]. Choisissons une résolution partielle du 5-module C = B/J par des 

B-modules libres de type fini 

(5.2.1) Ba A Bb P = ( P i \ B^C-^0 

où R est une matrice à coefficients dans B. 

Pour ao assez grand, P et R proviennent de matrices Pao, Rao à coefficients dans 

Bao = Aao [t] telles que PR = 0 

de sorte que le fermé F de A™ d'équations PaQ,i = • • • = Pa0,N = 0 est un modèle 

d e X sur SaQ. Comme rappelé dans la section 2, quitte à changer ao en un indice plus 
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46 EXPOSÉ III. APPROXIMATION 

grand, on peut supposer qu'on a, F = Xao. Pour a > ao, note Pa,Ra les matrices à 

coefficients dans Ba déduites de Pao, par le morphisme 

Ba0

 = ^otQ [t] > Ba = Aa [t]. 

Pour tout a > ao, les matrices à coefficients dans B déduites de Pai^a par le mor­

phisme 

Bao =Aao[t] B = Â[t] 

sont les mêmes : on les note P, R. 

On s'est ramené, pour a > ao, au cas où 

Xa = Spec(C a ) avec Ca = Ba/(Pa). 

On dispose donc d'une part d'un complexe (en degrés [-2,0]) de J5a-modules libres 

La = (Ba

a ^ Bb

a

 P a = ( P i ' a ) . Ba) 

avec H ° ( L a ) = Ca. Le complexe de B-modules libres de rang fini 

L = B®BaLa = (Ba A Bb p = 1 ® p " > B) 

est acyclique en degré —1 par construction. 

5.3. Remarque. — A priori, La n'a pas de raison d'être acyclique en degré —1, même 

pour a grand. 

D'autre part, la section u de t a est définie par un morphisme de A-algèbres 

u* : Aa —> A 

de sorte que 

u* mod m n + 1 = s* mod m n + 1 , 

où ' Aa -+ A est défini par sa : S —» 5 a (2.1.1). Par action sur les coefficients des 

polynômes, on obtient un morphisme d'anneau 

û:Ba = Aa[t] -+ A\t] = B 

d'où un complexe 
M = ( B -->B -->B 

Par construction, on a 

L / m n + 1 L = M / m n + 1 M . 

On choisit alors une constante d'Artin-Rees c pour B 6 A S et on invoque la propo­

sition 4.5 pour conclure. • 

5.4. Corollaire. — Soient X,Y des S-schémas noethériens qui sont a-proches. Soit 

xex0 = Y0. 

(i) Si a > 1, les dimensions de X et Y en x sont les mêmes. 
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6. RÉDUCTION AU CAS LOCAL NOETHÉRIEN COMPLET 47 

(ii) Si a > 2 et X est régulier en x, alors Y est régulier en x. 

(iii) Supposons X —• S de type fini et X régulier. Soit Xp un modèle de X sur Sp, et 

pour a > (3, notons Xa le modèle sur Sa déduit par changement de base. Alors, 

il existe ao G E, ao > /3, et un entier no > 0 tels que pour tout a > ao, tout 

entier n > no, toute section u de t a qui est n-proche de sa : S —• Sa, le schéma 

Xu déduit de Xa soit régulier dans un voisinage ouvert de la fibre spéciale. 

Démonstration. — Par hypothèses, les cônes normaux de X o , l o dans X, Y sont 

5-isomorphes. Comme la dimension de X en x est égale à celle de son cône normal 

[Matsumura, 1989, 15.9], le premier point en découle. 

Supposons maintenant que X , Y soient 2-proches. D'après (i), on sait que X et Y 

ont même dimension en x. Comme X, Y sont 2-proches, X\ et Y\ sont isomorphes. 

Puisque l'espace tangent de Zariski à X en un point de Xo ne dépend que de X\, les 

fc(x)-espaces vectoriels cotangents de Zariski en x à X et Y sont isomorphes, d'où ii). 

Pour le dernier point, il suffit d'invoquer les deux premiers et le théorème 5.1 pour 

conclure qu'une approximation assez fine est régulière au voisinage de la fibre spéciale. 

Comme Xu est excellent (puisque de type fini sur S excellent), son lieu régulier R est 

ouvert de sorte que R est un voisinage ouvert régulier de la fibre spéciale. • 

5.5. Remarque. — O. Gabber sait généraliser la proposition 4.5 au cas où les com­

plexes envisagés sont seulement de type fini sur un anneau noethérien pour obtenir 

les proximités de la cohomologie également en degré —2 (et pas seulement en degré 

0 , - 1 ) . Il peut plus précisément montrer des énoncés de proximité pour les images, 

noyaux des différentiellesGabber en déduit de nombreux énoncés de permanence 

par approximation analogues au corollaire 5.4 . Notamment, si X, Y sont a-proches 

pour a assez grand, alors X réduit (resp. normal) le long de XQ entraîne Y réduit 

(resp. normal) le long de YQ. Cependant, plusieurs questions naturelles restent en 

suspens comme par exemple la permanence des propriétés Sn,Rn. 

6. Réduction au cas local noethérien complet 

Rappelons l'énoncé du théorème d'uniformisation (Intro.-2, II-4.3.2). 

6.1. Théorème (Uniformisation). — Soient T un schéma noethérien quasi-excellent et 

Z un fermé rare de T. Soit £ un nombre premier inversible sur T. Il existe une famille 

finie de morphismes (Xi —» T)iei telle que pour tout i E I on ait 

(i) La famille finie de morphismes (Xi —» T)iej est ait-couvrante (resp. ahV-

couvrante ) ; 

(") La preuve de cette généralisation a été exposée par A. Moreau lors du séminaire oral. 
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(ii) Xi est régulier et intègre ; 

(iii) Vintage inverse de Z dans Xi est vide ou le support d'un diviseur à croisements 

normaux strict. 

Nous allons montrer l'énoncé de réduction suivant. 

6.2. Proposition. — Si (6.1) est vrai pour tout T noethérien, local, complet, alors (6.1) 

est vrai. 

Démonstration. — On peut d'abord supposer T local, excellent et hensélien (rappe­

lons (1-6.3) qu'un schéma local, hensélien et quasi-excellent est excellent). Voir II-4.3.3 

pour cette réduction. 

Supposons donc T local, noethérien, hensélien, excellent. 

Quitte à remplacer T par la somme disjointe de ses composantes réduites, on se 

ramène au cas où T est de plus intègre. 

On peut supposer de plus T = Spec(^4) normal intègre. En effet, comme A est ex­

cellent, le morphisme de normalisation est fini de degré générique 1, donc est alt-cou-

vrant (resp. ah>-couvrant). Comme A est local intègre et hensélien, A est unibranche 

de sorte que le normalisé de A est local, donc intègre, et est noethérien hensélien 

puisque fini sur A. 

Comme A est excellent, la normalisation commute à la completion (1-6.2) de sorte 

que A est dès lors normal comme A, donc également intègre puisque normal et local. 

On peut donc supposer T local intègre, normal, hensélien et excellent. 

Comme T est plat sur T, l'image inverse Z de Z est encore un fermé rare de T. 

Choisissons une uniformisation 

(Xi —• T)ier 

de (T,Z) comme dans 6.1. D'après 3.1, 5.1 et 5.4, on peut trouver ao G E et un 

entier no > 1 tels que, pour tout a > ao, tout n > no et u n-proche de s a , on dispose 

de modèles (Xi)a des Xi sur Ta et de n-isomorphismes Xi —>n (Xi)u tels que 

a) chaque T-schéma (Xi)u est régulier le long de sa fibre spéciale (XÏ)Q, donc au 

voisinage (le lieu régulier étant ouvert puisque les schémas considérés sont excellents). 

b) la famille ((Xi)u)m^ est alt-couvrante (resp. ahV-couvrante). 

D'après a), (Xi)u est régulier au voisinage de la fibre spéciale et y est la réunion 

disjointe de ses composantes connexes qui sont intègres. Notons que, pour a et n > no 

donnés, comme le noyau de Aa/xn
nAa —• A/mnA est de type fini, il existe (3 > a tel 

que Aa/xn
nAa —> Ap/mnAp se factorise par A/mnA1 et donc toute section de tp 

donne une section de t a qui est n-proche de sa. Ainsi, quitte à accroître ao et no (ou 

seulement ao), on peut supposer que (Xi)u = ((Xi)u)m^ dans un voisinage de la fibre 

spéciale. C'est en effet une conséquence de la préservation de la dimension (5.4) (i)). 

Pour le voir, choisissons, comme dans la démonstration de 3.1, un élément non nul a 
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de A tel que Xi — V(a) soit fini et plat sur T — V(a). On peut supposer qu'il en est de 

même pour (Xi)u - V(a') au-dessus de T - V(af), où a' = u*(aa). On peut supposer 

qu'en chaque point x de la fibre spéciale les anneaux locaux de Xi et de (Xi)u ont la 

même dimension d, et de même pour V(a) et V(a'). Comme Xi — V(a) est dense dans 

Xi, la dimension de l'anneau local de V(a) en x est < d, donc il en est de même pour 

V(a!) С (Xi)u. Comme &(х^и x

 e s t régulier, la composante irréductible de (Xi)u 

passant par x est donc dominante. 
Ainsi, au voisinage de la fibre spéciale, (Xi)u est schématiquement la réunion dis­

jointe de composantes dominant T. Comme un voisinage ouvert assez petit de la fibre 
spéciale (Xi)о dans (Xi)u est alt-couvrant (resp. ahV-couvrant) (II-4.1.1), la famille 
(Xi —> T)iei des composantes connexes de voisinages convenables des (Xi)о dans 
(Xi)u,i G V vérifie les conditions (i) et (ii). 

Soit D' l'image inverse de Z dans X = Y[ieI, Xi qu'on peut supposer non vide. 

Par hypothèse, D = D'véd est un diviseur à croisements normaux strict, c'est-à-dire 

D = Ejej
DJ a v e c 

зек 
régulier de codimension card(if) pour toute partie К С J. Quitte à augmenter a, on 

peut supposer que les D3 ont des modèles sur T a , ces modèles induisant des modèles 

des DK- Comme и est une section de t a , le schéma Du réunion schématique des (Di)u 

est, topologiquement, l'image inverse de Z dans Xu. D'après 5.4, on peut supposer 

que chaque (DU)K est régulier partout de codimension card(if) le long de la fibre 

spéciale, de sorte que Du est un diviseur à croisements normaux strict le long de la 

fibre spéciale. Les lieux réguliers de (DU)K et Xu étant ouverts, on peut supposer 

que Du est un diviseur à croisements normaux strict au voisinage de la fibre spéciale 

(excellence de Xu). • 
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