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EXPOSE XVI

CLASSES DE CHERN, MORPHISMES DE GYSIN,
PURETE ABSOLUE

Joél Riou

Dans ces notes, on présente la nouvelle démonstration par Ofer Gabber du théo-
réme de pureté cohomologique absolue, annoncée dans [Gabber, 2005b]. La section 1
rappelle la construction des classes de Chern en cohomologie étale. Celles-ci servent
dans la section 2 qui consiste en la construction et I’étude des propriétés des mor-
phismes de Gysin associés aux morphismes d’intersection compléte lissifiables. Dans la
section 3, ces morphismes de Gysin sont utilisés pour donner une formulation précise
du théoréme de pureté absolue (théoréme 3.1.1). La démonstration du théoréme de
pureté (différente de celle rédigée dans [Fujiwara, 2002]) s’appuie notamment sur les
résultats de géométrie logarithmique établis dans les exposés VI, VIII et X. On s’est
efforcé de faire attention aux signes dans les calculs cohomologiques : les conventions
utilisées et quelques remarques les concernant sont détaillées dans la section 4.

Dans tout cet exposé, on fixe un entier naturel n > 1. Tous les schémas seront
supposés étre des schémas sur Spec (Z [1]). On note A le faisceau d’anneaux constant
de valeur Z/nZ, A(1) le faisceau des racines n-iémes de 'unité (pour la topologie étale)
et A(r) ses puissances tensorielles, auxquelles on peut donner un sens pour tout r € Z.

1. Classes de Chern

Dans cette section, on rappelle la construction des classes de Chern des fibrés vec-
toriels sur des schémas généraux & valeurs dans la cohomologie étale. On s’appuie sur
le calcul de la cohomologie étale des fibrés projectifs de [SGA 5 viI 2] et sur la mé-
thode de [Grothendieck, 1958a]. Les démonstrations sont parfois différentes de celles
de [SGA5 viI 3] : on s’est efforcé de donner une présentation aussi « économique »
que possible.
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302 EXPOSE XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETE ABSOLUE

A la différence de I’exposé oral qui utilisait un langage géométrique, dans ces notes,
un fibré vectoriel est un Module & localement libre de rang fini et le fibré projectif de
& est le fibré des hyperplans défini dans [EGA 11 4.1.1] : P(&) = Proj(S*&) ou $*&
est I’Algébre symétrique de &.

1.1. Définition. — Soit X un Z [1]-schéma. Soit £ un fibré en droites sur X. En
faisant agir les fonctions inversibles par multiplication sur les sections inversibles de
%, on munit le faisceau des sections inversibles de .Z d’une structure de torseur sous le
schéma en groupes G,. La classe d’isomorphisme de .# définit donc un élément dans
H,,(X,Gm). On note ¢1(¥) € H% (X, A(1)) 'image de cet élément par le morphisme
de bord §: H, (X, Gm) — HZ (X, A(1)) déduit de la suite exacte courte de Kummer® :

0—>A(1)-—>Gm[ﬁle~—>0.

Si .Z et £’ sont deux fibrés en droites sur X, on a la relation d’additivité@® :
(£ L) =ci(ZL) + (L) € HA(X,A(1)).

Notons que les classes de Chern de fibrés en droites résident dans les degrés pairs
de la cohomologie étale, elles commutent donc avec toutes les classes de cohomologie.
Notons aussi que si f: Y — X est un morphisme et .Z un fibré en droites sur X,

alors f*(c1(%)) = a1(f*2).

1.2. Théoréme (Formule du fibré projectif). — Soit X un Z [1]-schéma. Soit & un fibré
vectoriel de rang constant v sur X. On note w: P(&) — X le fibré projectif de &. On
pose £ = c1(0(1)) € H2(P (&), A(1)) (9. Alors, les puissances £ € H2 (P (&), A(3)) de
& définissent un isomorphisme dans DT (Xg, A) -

r—1
1,6,...,671): @ A(-i)[-2i] S Rm,A
=0
D’aprés le théoréme de changement de base pour un morphisme propre, on peut
supposer que X est le spectre d’un corps algébriquement clos k. On se raméne ainsi au
calcul de l’algébre de cohomologie étale des espaces projectifs sur k, cf. [SGA 5 viI 2].

1.3. Théoréme. — 1l existe une unique maniére de définir, pour tout Z [%] -schéma X
et tout fibré vectoriel &, des éléments c;(&) € HZ (X, A(3)) pour tout i € N appelés

() Les conventions de signes utilisées dans cet exposé sont précisées dans la section 4 (voir notamment
4.3 pour la classe de cohomologie associée & un torseur et 4.2 pour le morphisme §).

(1) I existe des théories cohomologiques « orientées » pour lesquelles cette propriété de la premiére
classe de Chern n’est pas satisfaite, cf. [Morel & Levine, 2001].

(i) Te faisceau €(1) est le faisceau fondamental sur P(&) : c’est le quotient inversible de 7*& par
I’hyperplan universel.
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1. CLASSES DE CHERN 303

classes de Chern de sorte que si l’on définit la série formelle c,(&) = 3,5 ci(E)E,

on ait les propriétés suivantes : -

— la série formelle ¢;(&) ne dépend que de la classe d’isomorphisme du fibré vectoriel
& surle? [%] -schéma X ;

— st f: Y — X est un morphisme de Z {%] -schémas et & un fibré vectoriel sur X,
alors f*(ci(&)) = c(f*€) ;

— 510> & — & — & — 0 est une suite exacte courte de fibrés vectoriels sur un
Z [%] -schéma X, on a la relation de Cartan- Whitney :

e (&) = ci(ENe(E") ;
— 8i £ est un fibré en droites sur un Z []-schéma X, la classe c1(Z) est celle de
la définition 1.1 et
(&) =141 (L)t
On a alors les relations co(&) = 1 et ¢;(&) = 0 pour i > rang & pour tout fibré
vectoriel & sur un Z [1]-schéma X.

La démonstration utilise plusieurs constructions géométriques :

1.4. Proposition (Principe de scindage I). — Soit X un Z [1]-schéma. Soit & un fibré
vectoriel de rang r. On note w: Drap(&) — X le fibré des drapeaux complets de &.
Les propriétés suivantes sont satisfaites :

— le fibré vectoriel m*& admet une filtration (canonique) 0 = My C My C -+ C
M, = n*& par des fibrés vectoriels de sorte que pour tout entier 1 < i <r, le
quotient &, = M;| M;—y soit un fibré en droites;

— le morphisme canonique A — Rm,A est un monomorphisme scindé dans
Dt (Xg,A).

La seule propriété non triviale réside dans le fait que A — Rm, A soit un monomor-
phisme scindé. En remarquant que la projection Drap(&) — X peut s’écrire comme
un composé de r projections de fibrés projectifs, ceci se déduit de la formule du fibré
projectif (théoréme 1.2) ),

1.5. Proposition (Principe de scindage II). — Soit X un Z [1]-schéma. Soit (E):0 —
& — & B &" - 0 une suite ezacte courte de fibrés vectoriels sur X . On note Sect(E)
le X-schéma défini par le fait que pour tout X-schéma f: Y — X, Uensemble des
X -morphismes Y — Sect(E) s’identifie naturellement & l'ensemble des sections de
la surjection de fibrés vectoriels f*(p): f*& — f*&" sur’Y V). Le Y -schéma Sect(E)

(v) Plus précisément, Grothendieck a montré (cf. [Grothendieck, 1958b], ou [SGA 6 v1 4.6] pour le
méme argument dans le cas de la K-théorie algébrique) que la théorie des classes de Chern permettait
de calculer ’algébre de cohomologie des fibrés de drapeaux, fussent-ils incomplets.

(V) Je remercie Dennis Eriksson de m’avoir signalé cette construction.
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304 EXPOSE XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETE ABSOLUE

est naturellement muni d’une structure de torseur sous le Y -schéma en groupes vec-
toriel d’homomorphismes Hom(&",&"). Notons w: Sect(E) — X la projection. Les
propriétés suivantes sont satisfaites :

— Uimage inverse par w: Sect(E) — X de la suite exacte de fibrés vectoriels (E)
est (canoniquement) scindée ;
— le morphisme canoniqgue A — Rm, A est un isomorphisme dans Dt (X4, A).

L’existence de Sect(E) est évidente, la question étant de nature locale sur X.
Localement pour la topologie de Zariski sur X, la projection 7 est la projection
depuis un espace affine, I’isomorphisme A = R, A résulte alors de I'invariance par
homotopie de la cohomologie étale pour les Z [1]-schémas [SGA 4 xv 2.2].

Démontrons le théoréme 1.3. Grace aux propositions 1.4 et 1.5, I'unicité est évi-
dente. Il s’agit donc de construire une théorie des classes de Chern satisfaisant les pro-
priétés demandées. Soit & un fibré vectoriel (que ’on peut supposer de rang constant
r) sur un Z [1]-schéma X. On considére le fibré projectif P(&) sur X. On note
& = c1(0(1)). D’aprés la formule du fibré projectif (théoréme 1.2), il existe d’uniques
éléments, notés c;(&) € H(X,A()) pour 1 <4 < r tels que l’on ait la relation

€ — ()T ()T 4+ (=) (&) = 0 € H(P(£), A(r)).

On pose ¢p(€) =1 et ¢;(&) = 0 pour ¢ > r. Dans le cas ol & est un fibré en droites,
P(&) ~ X et 0(1) ~ &, ce qui montre que cette définition étend la précédente pour
les fibrés en droites. La seule propriété non évidente est la formule de Cartan-Whitney.
Par principe de scindage (propositions 1.4 et 1.5), il suffit d’établir la formule suivante :

1.6. Lemme. — Soit X un Z [%]—schéma. Soit (Z5)1<i<r une famille finie de fibrés
en droites sur X, soit & = D, <, & leur somme directe. Dans H?"(P(&),A(r)), on
a la relation :

1'[(5 —a(Z) =0

ot & = c1(O(1)). Autrement dit,
ci(€) = [[ et(0)-
i=1

L’argument qui suit est inspiré de [Panin & Smyrnov, 2003]. Pour 1 < i < r, on
note H; ~ P(&/.%;) 'hyperplan projectif de P(&£) défini par Pinclusion & — &.
Notons 7: P(&) — X la projection. Le morphisme canonique 7*.%; — €(1) induit
un isomorphisme sur 'ouvert complémentaire de H; dans P(&). On en déduit que
I'élément ¢ — c; (%) de H2(X, A(1)) peut étre relevé en un élément z; du groupe de
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2. MORPHISMES DE GYSIN 305

cohomologie & supports H% (X, A(1)) ™). Le produit des éléments z; vit naturellement

dans le groupe de cohomologie & support H%T1<i<r u,(P(E), A7) qui est nul puisque
I'intersection de ces r hyperplans est vide; on en déduit la formule voulue par oubli

du support.

1.7. Proposition. — Soit & un fibré vectoriel sur un Z [%] -schéma X . Pour tout entier
naturel i, on a l’égalité :
ci(6Y) = (-1)'ai(®) ;
autrement dit, on a une formule de changement de variables :
ci(EY) = c_4(&).

Grace a la relation de Cartan-Whitney et au principe de scindage, on peut se
ramener au cas oil & est un fibré en droites. Cela résulte alors du fait que ¢; : Pic(X) —
H2(X, A(1)) soit un homomorphisme de groupes.

2. Morphismes de Gysin

Etant donné un morphisme d’intersection compléte X 4, S entre Z [1]-schémas
vérifiant certaines hypothéses techniques, on va construire un morphisme de Gysin
Cly: A — f'A ou f* = f'(—d)[—2d] (d est la dimension relative virtuelle de f). Ces
morphismes de Gysin seront compatibles & la composition des morphismes d’intersec-
tion compléte.

L’essentiel de cette section est consacrée & la construction de ces morphismes de
Gysin dans le cas des immersions réguliéres. Le morphisme trace permettra de faire
la construction dans le cas des morphismes lisses. Ces deux définitions se recolleront
pour donner la définition 2.5.11 dans le cas général et le théoréme 2.5.12 établira la
compatibilité & la composition de ces morphismes de Gysin.

2.1. Premiére classe de Chern d’un pseudo-diviseur. — Soit . un fibré en droites sur un

Z [%]-schéma X, Z un fermé de X et U louvert complémentaire. On suppose donnée

une section inversible s: &y = L. Au couple (Z, s) est canoniquement associée une
classe ¢1(Z,s) € H%(X,A(1)) induisant ¢;(¢) € H?(X, A(1)) par oubli du support
(construire un élément de HL (X, Gyy) et utiliser la suite exacte de Kummer).

La classe ¢1(-%,s) correspond & un morphisme Az = Ax/Ay — Ax(1)[2] dans
D*(X¢t, A). En « composant » un tel morphisme avec une classe de cohomologie de Z
représentée par un morphisme Ay — Az(q) [p] (cf. 4.5.3), il vient que ¢; (., s) induit
des morphismes de Gysin

Gys(g.s: H*(Z,A(g)) — HP? (X, A(g+ 1))

(V1) Pour le moment, peu importe de fixer un relévement canonique.
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306 EXPOSE XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETE ABSOLUE

2.1.1. Définition. — Si Z — X est une immersion réguliére de codimension 1 définie
par un Idéal (inversible) .#, on pose Gyszcx = —Gys(s1,_,) = G¥S_(s,14_,)-

On anotéici —(.#,1x_z) 'opposé du pseudo-diviseur (.#,1x_z), cf. [Fulton, 1998,
§2.2]. Via les identifications usuelles, —(.#,1x_z) correspond au diviseur effectif Z.

2.2. Classes fondamentales généralisées. — Pour étudier la compatibilité & la compo-
sition des classes fondamentales définies dans [Fujiwara, 2002, §1] dans le cas des
immersions réguliéres (cf. [SGA 6 viI 1.4]), Ofer Gabber définit une classe fondamen-
tale généralisée pour une immersion fermée Y — X définie par un Idéal de type fini
4. Cette construction n’est plus limitée aux immersions réguliéres et est compatible
aux changements de bases arbitraires, mais elle dépend d’une donnée supplémen-
taire, & savoir celle d’un fibré vectoriel sur Y se surjectant sur le faisceau conormal

Ny = I

2.2.1. Eclatement modifié. — Soit Y — X une immersion fermée entre Z [%]-sché—
mas définie par un Idéal de type fini #. On note U l'ouvert complémentaire. Soit
& — Nxy un épimorphisme de Modules sur Y ott & est un Module localement libre
de rang fini. On définit une Ox-Algébre graduée quasi-cohérente <7, par produit fibré
de fagon & avoir un carré cartésien de &'x-Modules, pour tout entier naturel n :

o, I
SnEL -~ jn/jn+1

ou l'algébre symétrique S*& est prise sur le faisceau d’anneaux Oy = Ox /7.

2.2.1.1. Définition. — On pose Ecly s(X) = Proj(«) et on note 7: Ecly ¢(X) — X
la projection.

2.2.1.2. Remarque. — Si' Y — X est une immersion fermée réguliére et que & —
Nx/y est un isomorphisme, Ecly,g(X ) s’identifie a 1’éclaté de Y dans X. C’est ce cas
particulier que ’on généralise ici en vue d’obtenir une construction compatible aux
changements de base.

2.2.1.3. Proposition. — L’Algébre 2y est isomorphe & Ox, les Modules <, sont de
type fini, ’Algébre graduée <, est engendrée par &4 et on a un isomorphisme cano-
nique de Oy -Algébres graduées o, ®e, (Ox|I) = S*&.

L’assertion concernant % est tautologique. Soit n un entier naturel. Comme #"™ —
S/ F™HL est un épimorphisme, la projection &, — S™& est aussi un épimorphisme
et si on note %, son noyau, on a un isomorphisme .%;, = .#"*!. Par dévissage, il en
résulte que &7, est un Module de type fini.
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2. MORPHISMES DE GYSIN 307

Puisque S™& est un Ox/.#-Module, .%;, contient .# - o,. Comme & — ¥ /.92
est un épimorphisme, le morphisme S"& — .#™/.#"+1 est aussi un épimorphisme,
ce qui implique que la projection &, — #™ est un épimorphisme. Le morphisme
induit £ - o, —» F - I" = I ~ %, est donc & la fois un monomorphisme et
un épimorphisme : J#, = £ - &,. Ceci permet d’obtenir l'isomorphisme &% ®¢,
(Ox]F) > 8*6.

Pour montrer que le morphisme évident &71@" — @, de Modules est un épimor-
phisme, il suffit, d’aprés le lemme de Nakayama, de le tester aprés passage aux corps
résiduels de X. Au-dessus de 'ouvert U, c’est évident ; au-dessus de Y, cela résulte
de I'isomorphisme %7, ®4, (Ox/F) = S*&.

2.2.1.4. Corollaire. — Le morphisme 7: ECly’g(X ) — X est projectif et on dispose
d’isomorphismes canoniques m~1(U) = U et m~1(Y) ~ P(&).

L’isomorphisme au-dessus de U est évident. Compte tenu de [EGA 11 3.5.3], celui
décrivant 71 (Y") se déduit de 'isomorphisme de &'y-Algébres graduées 7, ® o, Oy —
S*&.

2.2.1.5. Proposition. — Soit p: X' — X wun morphisme. On pose Y' =Y xx X'
et & = p*&. On dispose d’un épimorphisme évident &' — Nx: y/. Le morphisme
canonique

ECly/’g/ (X/) s Ecly’g(X) Xx X’

est une nil-immersion.

Notons &7 la &x/-Algébre graduée quasi-cohérente donnant naissance a Ecly/,g/ (x".
On dispose d’un morphisme évident p*</, — &7/ de Ox/-Algébres graduées quasi-
cohérentes. Pour tout entier, le morphisme p*«,, — &7, est un morphisme entre
Ox-Modules de type fini; pour montrer qu’il s’agit d’'un épimorphisme, d’aprés le
lemme de Nakayama, il suffit de vérifier que ce morphisme induit un isomorphisme
d’une part au-dessus de U’ = X' — Y’ (c’est évident) et d’autre part modulo
lidéal .#’ définissant Y’ dans X’ (cela résulte de la description donnée dans la
proposition 2.2.1.3). Le morphisme

Ecly: ¢/(X') = BEcly £(X) xx X’

s’identifie au X’-morphisme évident Proj(</) — Proj(p* <) ([EGA 113.5.3]) ; d’aprés
ce qui précéde, il s’agit d’une immersion fermée. Le fait que ce morphisme induise un
isomorphisme au-dessus de p~(U) et de p~!(Y) permet d’en déduire aussitét que le
morphisme induit au niveau des schémas réduits associés

Ecly: s/(X")zea — (Bely ¢(X) xx X')rea

est un isomorphisme.
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308 EXPOSE XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETE ABSOLUE

2.2.2. Définition des classes. — On se donne toujours une immersion fermée i: Y —
X définie par un Idéal .# de type fini. On note j: U — X l’inclusion de 'ouvert
complémentaire (% étant de type fini, j est un morphisme de type fini). On suppose
donné un épimorphisme de Oy-Modules & — A%,y avec & est localement libre de
rang fini. On note 7: Ecly,g(X ) — X la projection de I’éclatement modifié, j': U —
Ecly ¢(X) Pimmersion ouverte évidente et i’: P(&) — Ecly ¢(X) 'immersion fermée
donnée par le corollaire 2.2.1.4. On note r le rang du fibré vectoriel & que ’on suppose
de rang constant pour simplifier et on suppose r > 0.
On a ainsi le diagramme suivant de schémas, ou les carrés sont cartésiens :

-/

P(&) —= Bely ¢(X) <—U

o

U

2.2.2.1. Proposition. — Le morphisme évident A — R\ A dans DT (Y, A) est un mo-
nomorphisme scindé : la formule du fibré projectif identifie son conoyau a

r—1
D A(—k) [-2k].
k=1

Les morphismes évidents définissent un triangle distingué :
A — Rm, A — i,Coker(A — RarlA) > A[1]

dans DV (Xe, A). On peut le récrire sous la forme

r—1
A — R, A 5 @i A(=k) [-2k] > A 1],
k=1

le morphisme p admettant une section canonique donnée par les éléments c1(€(1), 1y)*
de H%,k(g) (Ecly £(X), A(k)), identifiés a des morphismes i, A(—k) [~2k] — R, A dans
Dt (Xg, A).

On note L une résolution injective du faisceau constant A vu comme faisceau de
A-modules sur le grand site étale des schémas de type fini sur X. Pour tout morphisme
de type fini W 5 X, on note Lw le complexe de faisceau de A-modules sur Wy; induit
par L ; on peut le voir comme un objet de DT (W, A) isomorphe & A.
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2. MORPHISMES DE GYSIN 309

2.2.2.2. Lemme. — Le carré commutatif évident de complezes de faisceaur sur X est
homotopiquement bicartésien :

Lx ——— i Ly

| |

TeLigay, 4 x) — TiLip(e)

(ceci signifie par exemple que le compleze simple associé o ce diagramme, identifié a
un compleze 3-uple, est acyclique).

Les complexes simples associés aux complexes doubles
j!L'U d LIX — ’i*Lly
et
3w = Ligay, ,x) = Lips)

de faisceaux sur X et Ecly,g(X ) respectivement sont acycliques. Choisissons un fonc-
teur de résolution « flasque » additif r sur la catégorie des faisceaux de A-modules
sur Ecly ¢(X) & €t notons abusivement R, le foncteur (additif) de la catégorie des
complexes (bornés inférieurement) de faisceaux de A-modules sur Ecly ¢(X) vers
la catégorie des complexes de faisceaux de A-modules sur X défini par la formule
Rn.K = Tot(m,rK), ce foncteur préserve les quasi-isomorphismes et induit le fonc-
teur R, : D* (Ecly,s(X),,, A) — D¥(Xe, A) usuel.

On obtient ainsi un diagramme commutatif de complexes de faisceaux de A-mo-
dules sur X :

I Lix ix L)y

| | |

Rﬂ'*j!/L|U —_— RW*L|Ecly,,g(X) —_— R?T*iiLu:(g).

Les lignes de ce diagramme constituent des complexes doubles dont les complexes
simples associés sont acycliques. D’apreés le théoréme de changement de base pour un
morphisme propre, le morphisme jiL;y — Rm,j{Ljy est un quasi-isomorphisme. On
en déduit que le carré de droite est homotopiquement bicartésien, ce qui permet de
conclure.

Revenons & la démonstration de la proposition 2.2.2.1, la formule du fibré projectif
pour P (&) implique que I’on a un triangle distingué dans DT (X, A) :

r—1
ixA — R il A — @ i A(—i) [-2i] > i, A[1].

i=1
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310 EXPOSE XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETE ABSOLUE

En considérant les colonnes du carré homotopiquement bicartésien donné par le
lemme, on peut conclure a ’existence d’un triangle distingué

r—1
A — Rm A — @i A(—i) [-2i] — A[1].

i=1

Ce triangle est scindé par les puissances de ’élément ¢;(€(1), 1) ; le morphisme de
droite est donc nul, ce qui achéve la démonstration de la proposition.

2.2.2.3. Corollaire. — La suite suivante, dont les morphismes sont évidents, est
ecacte :

0 — HY(X,A(r)) — Hg(g) (Ecly’g(X),A(T)) — Coker(H?" (Y, A(r)) — H>(P(&£),A(r))) — 0.

L’énoncé de ce corollaire vaut bien évidemment en tout bidegré (p, q) et pas seule-
ment en bidegré (2r,r), mais nous n’utiliserons pour ainsi dire que ce cas particulier.

On note Gys: HP(P(&),A(q)) — Hf,g,) (Ecly,s(X),A(g + 1)) le morphisme de
Gysin associé au pseudo-diviseur —(&(1),1y) sur Ecly,g(X) et £ = ¢1(OQ1)) €
H2(P(&),A(1)). Le lemme suivant est évident :

2.2.2.4. Lemme. — Le morphisme composé

HP(P(£), A(g) & BB (Bely,s(X), A(g + 1)) — HPP2(P(6), A(g + 1)),

ot la fleche de droite est le morphisme de restriction, est la multiplication par —&.

2.2.2.5. Définition. — On définit un élément Clf; » de H*~2(P (&), A(r — 1)) par la
formule :

Clfie =& —c1(E) 2+ -+ (1) Lera1 (&)
2.2.2.6. Lemme. — Dans H*"(P(&),A(r)), on a l’égalité
_£ClE 5 = (~1) e (&).

Si & est un fibré vectoriel de rang r sur X, on peut introduire le polynéme P;(&) =
Y o(=1)ici(&)t""" en une indéterminée ¢ & coefficients dans I'anneau commutatif
@, H** (X, A(n)). On peut écrire :

r—1

Py(€) = 1G(&) + (=1)"er(&) ot Go(8) = Y (=Des(E)7 .
=0
Quand on effectue la substitution t := ¢ € H2(P (&), A(1)), par définition de CIf; ¢ on
a Clf; & = G¢(&) et la définition des classes de Chern donne la relation 0 = P¢(&') =
ECIlf; ¢ + (—1)"c, (&) de sorte que —£CIf; ¢ = (—1)"c . (&).
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2.2.2.7. Définition. — Compte tenu du corollaire 2.2.2.3, les lemmes
2.2.2.4 et 2.2.2.6 montrent que I’élément Gys(Clf; ») € H%,"(é,)(Ecly,g(X),A(r))
provient par restriction d’un unique élément de H2" (X, A(r)), noté Cl; ¢.

2.2.3. Propriétés des classes généralisées

2.2.3.1. Proposition. — La formation des classes généralisées Cl; & et Clf; & est com-
patible & tout changement de base X' — X.

Compte tenu de la proposition 2.2.1.5, ceci résulte aussitot des définitions.

2.2.3.2. Proposition. — Soit &' — & un épimorphisme de modules localement libres
surY. Soit X le noyau de cet épimorphisme. On suppose que &' est de rang constant
r’. On a alors la relation

Clig = (=1)" Tep_p(H)-Clig
dans H%,T/ (X,A(r")) ou on a utilisé les accouplements canoniques

H(Y, A(b)) ® HE (X, A(Y')) — HZ (X, A(b + ')

On dispose d’une immersion fermée de Ecly £(X) dans Ecly, s (X), ce qui permet
de considérer la composition suivante de fleches de restriction :

HY' (X, A(r")) — HE o (Ecly,e (X), A(r)) — HE ) (Bely,e(X), A(r)).

Cette composée étant injective, il s’agit de montrer que les images des deux
éléments considérés dans H2pr(,g) (Ecly ¢(X),A(r')) sont égales, mais comme ces
deux éléments sont naturellement définis comme étant des images d’éléments de
H2"'~2(P(&),A(r’ — 1)) par le morphisme Gys associé au fibré en droites &(—1) sur
Ecly s(X) canoniquement trivialisé sur X — Y, on se raméne & montrer ’égalité

Clfi.s/ pgy = (=1)" "ew—r(#) - Clfi s

dans H?"' (P(&), A(r")).

On reprend les notations du lemme 2.2.2.6. La formule de Cartan-Whitney appli-
quée & la suite exacte courte 0 — ¥ — &' — & — 0 donne la relation suivante :
P,(&") = P,(X)P:,(&), ou encore :

tGy(&") + (—1)" e (&) = tGH(H)P(E) + (=1)" T ep_r(K)(tGe(&) + (1) ¢y (&)).

Ceci implique lidentité G;(&') = Gi(H)Pi&E) + (1) ~"cr_r(H)G(&). En
faisant la substitution t := £ € H?(P(&),A(1)), on obtient l'égalite G¢(&') =
(=)™~ (H )G¢(&), qui n’est autre que la relation voulue.
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2.3. Immersions réguliéres. — On rappelle que la notion d’immersion réguliére est
définie dans [SGA 6 viI 1.4].

2.3.1. Définition. — Soit i: Y — X une immersion réguliére entre Z [%]-schémas. On
pose i’ = i*(c) [2¢] : Dt (X4, A) — D*(Yg, A) ot c est la codimension de 3. On définit
un morphisme Cl;: A — i’A dans D* (Y, A) de la fagon suivante. Quitte & décompo-
ser Y en réunion disjointe d’ouverts-fermés, on peut supposer que la codimension ¢ de
i est constante. Si ¢ = 0, 7 est I'inclusion d’un ouvert, Cl; est I'isomorphisme évident.
Dans le cas ot ¢ > 0, choisissons un ouvert U de X dans lequel Y est un sous-schéma
fermé, notons i': Y — U cette immersion fermée. Le faisceau conormal A,y de Y’
dans X est un fibré vectoriel de rang ¢ sur Y muni de I’épimorphisme tautologique
Nx)y — Nx/vy ; on peut donc considérer la classe Cly = Clyv yy ,, € H2(U, A(c)),
que l’on identifie & un morphisme Cl;: A — i*A ~ i’ A dans D* (Y, A) ; il est évident
que la construction ne dépend pas de l'ouvert intermédiaire U. Si 'immersion i est
fermée, on note Gys; ou Gysy . x les morphismes H?(Y; A(q)) — HE (X, A(q + ¢))
induits par la multiplication par Cl; € H2¢(X, A(c)) ). On note de méme les versions
a supports H2 (Y, A(g)) — H% (X, A(g+c)) définies de méme pour tout sous-schéma
fermé Z de Y.

Les propositions 2.2.3.1 et 2.2.3.2 impliquent immédiatement la « formule d’excés
d’intersection » (analogue de [Fulton, 1998, theorem 6.3] ou elle est énoncée dans la
théorie de Chow) :

2.3.2. Proposition (Formule d’excés d’intersection). — Supposons que l’on dispose d’un
carré cartésien dans la catégorie des Z [%] -schémas :

Y/ _'L/) XI
.
y ‘. x
ot i: Y — X est une immersion fermée réquliere de codimension c. Supposons
que i: Y’ — X' soit une immersion réguliére de codimension ¢, notons J¢ :=
Ker(q¢* Ax/y — Nx1/y') le faisceau conormal d’exces. C’est un fibré vectoriel de rang
e:=c—c surY'. On a alors Uégalité f*Cl; = (—1)%ce(¥) - Cliv € HES (X', A(c)).-
En particulier, sii': Y' — X' est une immersion fermée réguliére de méme codi-
mension que i: Y — X, alors f*Cl; = Cly € Hzc,‘ét(X’,A(c)).

Le théoréme suivant généralise '’énoncé établi dans [Fujiwara, 2002, proposi-
tion 1.2.1] :

(vii) Cette définition est bien siir compatible avec celle déja donnée en codimension 1 dans la défini-
tion 2.1.1.
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2.3.3. Théoréme. — Si Z > Y et Y 3, X sont deuz immersions réguliéres compo-
sables, le diagramme suivant est commutatif dans D¥ (Ze;, A) -

Cl; .
A—5"A

Cljx\ Li‘(cb‘)

i’5°A.

On peut évidemment supposer que les immersions ¢ et j sont des immersions fer-
mées et que les codimensions de i et de j sont constantes, de valeurs respectives m et
n. Sim =0 ou n =0, c’est trivial ; on suppose donc que m > 0 et n > 0.

2.3.4. Lemme. — On peut supposer que n =1 (i.e. j est de codimension 1).

On éclate Y dans X pour obtenir le diagramme suivant ot les carrés sont cartésiens :

P e Pt . Bely(X)

PorL L

z——‘t.y 1 .x

L’idée de la démonstration va étre d’utiliser la formule d’excés d’intersection 2.3.2
pour les immersions joi: Z — X et j: Y — X relativement au changement de
base m: Ecly (X) — X qui va faire chuter la codimension de ces immersions fermées
réguliéres.

On a des isomorphismes canoniques P = P(A%,y) et P’ = P(./VX/yl 2)- On
vérifie facilement que P — Ecly (X) est une immersion fermée réguliére de codimen-
sion 1. Par changement de base lisse, P’ — P est une immersion fermée réguliére
de codimension m. On suppose que i’?(Clj/) o Cly = Cljoi et on veut montrer que
i’(Clj) o Cl; = Cljo;. Les morphismes & comparer s’identifient & des éléments de
H2Z(m+")(X ,A(m + n)) (on fera ce type d’identifications jusqu’a la fin de la démons-
tration). La proposition 2.2.2.1 implique que I’application

7 HA™ (X, A(m + n)) — HX™ ™ (Bely (X), A(m + n))

est injective, il suffit donc de comparer les classes aprés application de 7*.

D’aprés la formule d’excés d’intersection 2.3.2, on a égalité 7* (Cljo;) = cp_1(&"")-
Cljrosr € Hf.@(,m +n) (Ecly (X), A(m +n)) ot & est le fibré vectoriel de rang n — 1 noyau
de I’épimorphisme p™* Ax ;7 — /@cly(X)/P“

La composition des classes admise provisoirement pour les immersions j’ et i’ donne
I’égalité

Cljrosr = Clyr - Clyy
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via 1’accouplement
HZP (P, A(m)) x H3(Ecly (X),A(1)) —» HX™ ) (Bely (X), A(n + 1)).
On a ainsi obtenu :
W*Cljoi = Cn_l(éalv) . Cli/ . Clj/.

Notons & le noyau de '’épimorphisme p* Ax/y — */K‘?:cly( X)/P* Il vient aussitdot que
dans le diagramme évident de Modules sur P’ qui suit, les lignes et les colonnes sont
exactes :

0 ——i*p* Nx)yy ———p*Nx)z ——D* Nz —=0

0—— i,*‘/%]cly(x)/P - ‘/VE'}cly(X)/P’ — Apyp —>0

0 0 0.

En particulier, on obtient un isomorphisme canonique i"*& = &', d’oi1 i"*c,_1(&V) =
cn1(€"Y) € H2*~D (P’ A(n — 1)). On en déduit :

7T*Cljoi = Cn_l(@@/v) . Cli/ . C]jl = Cli/ . Cn_l(ébv) . Clj/.

On utilise implicitement dans ces notations I’associativité des structures multiplica-
tives permettant par exemple de définir une application

H2 (P, A(m)) x HX=D(P, A(n — 1)) x H (Bely (X), A(1)) — HX™™ (Bely (X), A(m + n))

sans qu’il y ait & s’inquiéter de Pordre dans lequel les multiplications sont faites. La
formule d’excés d’intersecion 2.3.2 implique 1’égalité suivante :

7*Clj = cu_1(€Y) - Ol € HE (Ecly (X), A(n)).

Le morphisme p étant lisse, on a aussitét Cl;; = 7#*Cl;. On a ainsi obtenu 1’égalité
voulue :

m*Cljo; = 7*Cl; - 7*Cl;

ce qui achéve la démonstration du lemme.
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On est ramené & établir le théoréme 2.3.3 dans le cas oil j est de codimension 1. On
pose maintenant P = P(A%,z) et P’ = P(Ayz). Le diagramme suivant récapitule
la situation :

P—— 1" }(Y) — Eclz(X)

o

P’ — = Eclz(Y) n
z—t sy 7 .x

On veut établir ’égalité suivante dans H3"t2(X, A(m + 1)) :
Cljo; = Cl; - Cl;.

D’aprés la proposition 2.2.2.1, il suffit de vérifier cette égalité dans
H?,m”(Ecl z(X),A(m + 1)) apres application de 7*.
Par définition, la classe Cljo; € H3"2(X, A(m + 1)) se « restreint » en un élément

7 i= 7" Clioi = GYSpcga, x) (Clfjor)

dans HE"*2(Eclz(X), A(m + 1)) ot Clfj0; € H2(P, A(m)).
Notons .# I'ldéal de Y dans X, #p celui de P dans Eclz(X) et .# celui de Eclz(Y)
dans Eclz(X). On a un isomorphisme canonique de faisceaux inversibles sur Eclz(X) :

I~ IpR I

Cet isomorphisme est compatible aux trivialisations données sur 7~ 1(V) ou
V = X —Y. On obtient ainsi une égalité dans le groupe des classes d’équivalence de
tels pseudo-diviseurs, ce qui permet de décomposer 7*Cl; = —7*(c1(F,1x-v)) €
Hfr_l(v)(Ecl z(X),A(1)) en une somme de deux composantes :

7T*Clj = —W*(Cl(f, ]-X—Y)) = —Cl(ﬂ'*], lﬂ—l(x_y))
= —a(fp, lEclz(X)—P) -al(s, 1Eclz(x)—Eclz(Y))~
On en déduit une décomposition
7*Cly - m*Cl = a+
dans HZ"*2(Eclz(X ), A(m + 1)) od

a = Gyspcgay,x)(Clip):
B = GYSEclz(Y)cEclz(X)(GYSP'cEclz(Y)(lei))'
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Le calcul de Cl ou k est I'inclusion de l'intersection de diviseurs de Cartier s’inter-
sectant transversalement dans le schéma ambiant réalisé dans [Fujiwara, 2002, pro-
position 1.1.4] permet d’obtenir 1’égalité d’opérateurs suivante :

GySEclz(Y)cEclz(X) °GYSp o, (v) = GySPCEch(X) oGyspicp-

Notre but est d’établir ’égalité v = a + 3. Les calculs précédents permettent d’écrire
chacun des éléments a, § et vy comme des images par le morphisme Gys PCEely(X) de

classes &, ( et 4 dans H2™(P,A(m)) :

a = Clp,
B = GySP'CP(C]'fi)’
"5’ = le]m

On est ainsi ramené & établir I'égalité 5 = & + 8 dans H>™(P, A(m)).
D’aprés les lemmes 2.2.2.4 et 2.2.2.6, on a Cl;jz = (=1)™cm(Ay/z). On en déduit
Iégalité
o= (—=1)"cm(A/z)-

Pour calculer 3, on observe que 1'Idéal de P’ dans P s’identifie au faisceau inversible
H Rp, O(—1) oo X = JVx/ylz est le noyau de I’épimorphisme Ax,; — Ay,z. On
en déduit

B=(E—a(X) [ —a( )™+ + (=)™ emo1(Hyyz)] -
Par ailleurs, la définition de 4 donne 1’égalité :
=" —cr(Mxsz)E™ "+ (=) em(Ax)z)-
La formule de Cartan-Whitney appliquée a la suite exacte courte
0— X — Nx)z — Nyjz =0

de fibrés vectoriels sur Z permet d’obtenir aussitot la relation voulue ¥ = & + B, ce
qui achéve la démonstration du théoréme.

2.3.5. Lemme. — Supposons que l’on dispose d’un carré cartésien dans la catégorie
des Z [71—1] -schémas :

7
51
Yio——=Y,

L

v, — = X.
Supposons de plus que i1 et i) (resp. iy etiy) soient deux immersions fermées réguliéres
de méme codimension ¢; (resp. cg). Alors, on a Uégalité suivante entre opérateurs
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HP(Yi2,A(q)) — HE 222 (X, Mg+ e + ¢2)) -
Gst1 cX OGySY12CY1 = GySYzCX ° GySYmCYz '

D’apreés la proposition 2.3.2, 'image de Cl;, par i5: Hf,f‘ (X,A(er)) — H,z,‘f; (Y2, A(e))
est Cl;;. Ceci permet de montrer que 'opérateur Gysy,cx © Gysy,,cy, est induit par
le produit Cl;, - Cl;, € H%f;”cz (X,A(c1 + ¢2)). Par symétrie des roles de Yy et Ya,
on obtient I'identité énoncée dans le lemme.

2.3.6. Remarque. — Une fois que le théoréme 2.3.3 est connu, on peut observer que
les deux opérateurs apparaissant dans le lemme précédent sont égaux & Gysy,,-x, ce
qui signifie aussi que le produit Cl;, - Cl;, € Hf,f;”” (X, Aecr + ¢2)) est égal a Cly, ou
k: Y12 — X est linclusion de l'intersection de Y7 et Y5 dans X.

La classe que l'on a définie est compatible avec celle définie localement dans
[SGA 43 [Cycle] 2.2] :

2.3.7. Proposition. — Soiti: Y — X une immersion réguliére de codimension c entre
Z [L]-schémas. Le morphisme de faisceauz A — H#*°(i'A(c)) induit par le morphisme
Cl;: A — i"A est donné par la classe clY de [SGA 43 [Cycle] 2.2].

Le lecteur intéressé par les questions de signes pourra consulter 4.8...

2.4. Morphismes lisses. — Soit p: X — S un morphisme lisse compactifiable de
Z [%]—schémas de dimension relative d. D’aprés [SGA 4 xviil 2.9], on dispose d’un
morphisme trace

Tr,: R¥*pA(d) — A,
que ’on peut réinterpréter sous la forme d’un morphisme

RpiA(d) [2d] — A

dans D*(Sg, A) (en effet, d’aprés le théoréme de changement de base pour un mor-
phisme propre et [SGA 4 X 4.3], les faisceaux Rip/A sont nuls pour i > 2d).

2.4.1. Définition. — Soit p: X — S un morphisme lisse compactifiable de Z [%]-sché—

mas. Le morphisme Cl,: A — p’A ) dans D* (X, A) est le morphisme déduit par
adjonction du morphisme RpiA(d) [2d] — A défini ci-dessus.

D’aprés [SGA 4 xv111 3.2.4], ce morphisme Cl, est un isomorphisme : c’est la dualité
de Poincaré.

(vil)) On rappelle que 'on a posé p’ = p!(—d) [—2d] ou d est la dimension relative de p.
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2.4.2. Proposition. — Si f: Z —Y et g: Y — X sont des morphismes lisses compac-
tifiables composables, le diagramme suivant est commutatif dans Dt (Zg, A) :

A—2L prp

Ck Lf’(Clg)
f79°A.

Ceci est énoncé en [SGA 4 XVIII 3.2.4] et résulte de la compatibilité des morphismes
traces & la composition, cf. propriété (Var 3) dans [SGA 4 xvIII 2.9).

2.4.3. Remarque. — Si cette théorie avait été a notre disposition, il et peut-&tre été
plus commode d’utiliser ici la construction des foncteurs f' pour f lissifiable mention-
née dans I'introduction de [SGA 4 xv111 0.4]. Dans le cadre axiomatique des « foncteurs
homotopiques stables », ceci est réalisé dans [Ayoub, 2007].

2.5. Morphismes d’intersection compléte lissifiables

2.5.1. Définition. — Un morphisme d’intersection compléte est un morphisme X EAFS
admettant localement une factorisation sous la forme X - T 2 S ot p est lisse et
i une immersion réguliére (cf. [SGA 6 viI 1.4]). On pose dim. rel. virt. f = dimp —
codim : c’est la dimension relative virtuelle de f (cf. [SGA 6 viiI 1.9]). Il s’agit d’une
fonction localement constante X — Z.

2.5.2. Définition. — On note .¥ la catégorie dont les objets sont les Z [-};]-schémas
quasi-compacts admettant un faisceau inversible ample et dont les morphismes sont
les morphismes de type fini entre de tels schémas. On note .#'° la sous-catégorie de .%
ayant les mémes objets mais dont les morphismes sont les morphismes d’intersection
compléte.

Dans ., tout morphisme X — Y peut se factoriser sous la forme X N Py Sy
ol 7 est une immersion et 7 la projection canonique. Tous les morphismes de . sont
donc compactifiables, on peut leur appliquer le formalisme des foncteurs Rf; et f'.

Les morphismes de .#¢ admettent des factorisations globales dans .#¢ sous la
forme d’une immersion fermée réguliére suivie d’un morphisme lisse.

2.5.3. Définition. — Pour tout morphisme f: X — Y dans .#'°, on peut définir un
foncteur

f7: DY (Y, A) — D (Xs, A)
par la formule f° = f'(—d) [-2d] ou d = dim. rel. virt. f ().

(ix) On peut donner un sens i cette définition méme si la dimension relative virtuelle n’est
pas constante. On définit alors f’K pour tout K € DT (Xg,A) par recollement des objets
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Les foncteurs f° sont les foncteurs image inverse pour une structure de catégorie
fibrée convenable au-dessus de la catégorie .#° : on utilisera implicitement les isomor-
phismes de transitivité f7g” ~ (gf)’ associés & la composition de deux morphismes
composables dans ¢,

2.5.4. Définition. — Soit f: X — S un morphisme dans .#. On suppose donnée
une factorisation de f dans .#'° sous la forme X 5 Y 2, S ot i est une immersion
réguliére et p un morphisme lisse. On définit un morphisme

Clyi: A — f7A
dans D" (Xg;, A) comme étant le morphisme composé

Cl .
A —%4"A

A
ou Cl; est le morphisme de la définition 2.3.1 et Cl,, celui de la définition 2.4.1.

2.5.5. Théoréme. — Soit f: X — S un morphisme dans . Si X 5 Y B S et
X 5 Y' 5 S sont deuz factorisations du type envisagé dans la définition 2.5.4, alors
les deuz morphismes suivants dans la catégorie DV (X4, A) sont égauz :
Clp’i = Clpl‘,'/t A— f?A
La notation suivante s’avére assez commode pour cette démonstration :

2.5.6. Définition. — Si f: Z — Y et g: Y — X sont des morphismes composables
dans .7, a: A — g’A et b: A — f’A des morphismes dans D (Yx, A) et DT (Zs, A)
respectivement, on pose akb = f’(a) ob: A — (go f)*A.

Cette loi % vérifiant une propriété d’associativité évidente, on omettra les paren-
théses.

Par définition, on a ainsi : Cl,; = Cl,%Cl;. On veut vérifier I’égalité Cl,%Cl; =
Cly % Cl;s. Quitte & introduire le produit fibré de Y et de Y’ au-dessus de S, on peut
supposer que « Y’ coiffe Y », a savoir qu’il existe un morphisme lisse q: Y’ — Y tel
quei=gqgoi et p =pogq:

Y/
N

XxX‘t.y_ 2.5

(f"K)lUi(—-i)[—Z'i] sur les ouverts-fermés disjoints U; := {z € X,d(z) = i} ou f est de dimension
relative virtuelle ¢, pour tout ¢ € Z.
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On a ainsi

Cly i+ = Clpy % Cly = Cl, % Cl, % Cl,
la derniére égalité résultant de la proposition 2.4.2. On est ramené & montrer I’égalité
Cl; = Clg%Cl;s. Pour cela, on introduit le produit fibré X’ de X et Y’ au-dessus de
Y :

XI —]> YI

7
s q, . q
i

X ——V.

Le morphisme ¢’ donne naissance & la section s de la projection ¢’: X’ — X. Le mor-
phisme ¢ étant lisse, Pimmersion j: X’ — Y’ est réguliére. Admettons provisoirement
les égalités suivantes :

Cly % Cl; =1da, Clg%Cl; = Cl;%Cl,.
Il vient :
Cl; = CL%Cly%Cl,
= Cl;%Cl;%Cl,.
On utilise alors la composition des morphismes de Gysin associés aux immersions
réguliéres (cf. théoréme 2.3.3). Celle-ci donne I’égalité Cl; % Cl; = Cl;; qui permet de

conclure que Cl; = Cly%Cl;/. Les deux lemmes qui suivent permettent d’obtenir les
deux égalités admises ci-dessus :

2.5.7. Lemme. — Soit un diagramme cartésien dans % :

x Loy

.

X _‘.vy
On suppose que q est lisse et que i est une immersion réguliére (donc j aussi). Alors
on a l’égalité

Cl,%Cl,; = Cl;%Cl, .

On peut supposer que i est une immersion fermée. On identifie Cl; (resp. Cl;) & une
classe dans H% (Y, A(d)) (resp. H%,(Y’, A(c))) ot c est la codimension de 'immersion
réguliére ¢. D’aprés la proposition 2.3.2, on a ¢*(Cl;) = Cl;.

On peut identifier DT (X4, A) a la sous-catégorie pleine de Dt (Y4, A) formée
des complexes tels K que K = j,5*K : le foncteur j, s’interpréte alors comme
un foncteur d’inclusion. On identifie de méme D¥ (X, A) & une sous-catégorie
pleine de D (Y, A). Le foncteur gf: Dt (X's,A) — DT(Xg, A) est alors induit
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par q: DT(Y’e,A) — Dt (Yg,A) et ¢ est également induit par ¢'. Notons d la
dimension relative de q. Le morphisme Trg: giAy (d)[2d] — Ay s’étend via la formule
de projection [SGA 4 xvII 5.2.9] en un morphisme fonctoriel en K € D(Yg, A) :
L T ,®K , L
Try: " K(d)[2d] ~ qAy/(d)2d| @ K 5 Ay @ K ~ K.

La compatibilité du morphisme trace au changement de base par i (propriété (Var 2)
de [SGA 4 xvi 2.9]) revient & dire que pour K = Ax = i, Ax € D°(Yy,A), le
morphisme Try: ¢ig*Ax(d)[2d] — Ax est Try. La fonctorialité de la transformation
naturelle Tr, ci-dessus appliquée au morphisme Cl;: Ax — Ay (c)[2d] fournit alors le
diagramme commutatif suivant :

Try/
91q* Ax (d)[2d] Ax
l/(I!q*Cli tch‘
Trq(c)[2¢
aq* Ay (d + o)2d + 2 — DAL (o).

Compte tenu de I'identité ¢*Cl; = Cl; précédemment obtenue, la commutativité du
diagramme ci-dessus signifie précisément que Cl, % Cl; = Cl; % Cl .

2.5.8. Lemme. — Soit p: X — S un morphisme lisse dans % admettant une section
s: 8 — X (qui est une immersion réguliere). Alors, Cl,%Cl; = Ida dans D*(Se, A).

Les endomorphismes de A dans D*(Sg;, A) étant donnés par des sections du faisceau
A dans S, il suffit de vérifier que les nombres obtenus en passant aux points génériques
de S sont égaux & 1. Comme on peut supposer que S est réduit et que la construction
est compatible avec le passage aux points génériques, on peut supposer que S est le
spectre d’un corps k. Notons = I'image de Spec(k) dans X . Quitte & remplacer X par
un voisinage ouvert, on peut supposer qu’il existe un morphisme étale 7: X — A‘,g
identifiant z & 'image inverse de l'origine dans A¢. En utilisant 'isomorphisme évident
H%(‘)i,...,o) (A¢,A(d)) = H24(X,A(d)), on se raméne au lemme suivant :

2.5.9. Lemme. — Pour tout entier naturel d et tout schéma S € %, si on note
p: A‘é — S la projection et s: S — A‘é Uinclusion de l'origine, on a ’égalité
Cl, % Cl, = Ida
dans Dt (S, A).
L’énoncé est évident pour d = 0. Une récurrence évidente s’appuyant sur le théo-
réme 2.3.3 et la proposition 2.4.2 permet de se ramener au cas ou d = 1, et comme

précédemment, on peut supposer que S = Spec(k) ou k est un corps que I’on peut
supposer séparablement clos. On se raméne finalement au lemme suivant :
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2.5.10. Lemme. — Pour tout corps séparablement clos k, si on note p: PL — Spec(k)
la projection et s: Spec(k) — P} Vinclusion de 0, on a l’égalité

Cl,%Cl, = Idy
dans Dt (Spec(k)y,, A).

L’idéal de 'immersion fermée s s’identifie au faisceau inversible €(—1) sur la droite
projective. L'image Clsp1 de Cl, dans H?(P}, A(1)) est —c1(6(=1)) = c1(6(1)) (cf.
définitions 2.1.1 et 2.3.1). Le degré du fibré en droites €(1) étant 1, on peut conclure
en utilisant la commutativité du diagramme suivant (cf. [SGA 4 xviII 1.1.6]) :

Pic(P}) —— H2(P},A(1))

2.5.11. Définition. — Soit f: X — S un morphisme dans .#*°. On note Cl;: A — f7A
le morphisme Cl, ; dans D* (X, A) défini & partir d’une factorisation de f dans .#'
sous la forme f = poi avec 7 une immersion réguliére et p un morphisme lisse. D’aprés
le théoréme 2.5.5, cette définition est indépendante de la factorisation.

2.5.12. Théoréme. — Si X 5 Y et Y % Z sont des morphismes composables dans
€, le diagramme suivant est commutatif dans D (Xg, A).

A—0op7

k lf’ (Clg)

(go f)’A.

. ’

Paraphrasant [SGA 6 V11 2.6], on choisit une factorisation Y % V' % Z dans &'

avec j une immersion réguliére et p’ lisse, et une immersion réguliére X = Py, de
fagon & obtenir le diagramme suivant :

’

] J
X —=Py ——=P7,

N,k

Y |4

RNy

Z.

En utilisant le théoréme 2.3.3 et la proposition 2.4.2, on obtient

Clgos = (Cly kCly) % (Clj % CL;).
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Le lemme 2.5.7 donne I’égalité :
Cl,» % Cl; = CLi%Cl,,
ce qui permet d’obtenir :
Clgos = (Clpy % Cl;) % (Cl, % Cl;),

ot 'on reconnait I’égalité Clgos = Cl ¥ Cly.

2.5.13. Proposition. — Soit f: X — S un morphisme dans . On suppose que
f est plat de dimension relative d. Alors le morphisme Cly: A — f*A correspond
par adjonction au morphisme RfiIA(d)[2d] — A donné par le morphisme trace
Tr;: R2fA(d) — A.

Compte tenu de la proposition 2.3.7, cela résulte de [SGA 43 [Cycle] 2.3.8 (i)].

2.5.14. Remarque. — Si f: X — Y est un morphisme propre dans .#*° de dimen-
sion relative virtuelle (constante) d, le morphisme Cl; permet de définir, pour tout
K € D*(Yg,A), un morphisme f,: HP(X, f*K) — HP~24(Y, K(—d)), compatible &
la composition. On peut aussi en définir une version & supports f,: H, (X, f*K) —
H%TM(Y, K(—d)) si f: X — Y est un morphisme dans .#'°, que Z et Z’ sont des
sous-schémas fermés de X et Y respectivement, que f(Z) C Z’ et que morphisme
induit fiz: Z — Z' est propre.

3. Théoréme de pureté

3.1. Enoncés. — L’ob jectif de cette section est de donner une démonstration du théo-
réme suivant :

3.1.1. Théoréme. — Soit X un Z [1]-schéma régulier. Soit Y un sous-schéma (fermé)
de X qui est aussi régulier. On note i: Y — X lUimmersion, et ¢ sa codimension.
Alors, le morphisme de Gysin Cl;: A — i*A = i'A(c) [2¢] est un isomorphisme dans
D+ (Y, A).

3.1.2. Corollaire. — Soit f: X — S un morphisme de type fini entre Z [%]-schémas
réguliers. On suppose que X et S admettent un faisceau ample. Alors, le morphisme
de Gysin Cly(d)[2d]: A(d)[2d] — f'A est un isomorphisme dans D*(Xe,A), ou d
désigne la dimension relative virtuelle de f.

3.1.3. Corollaire. — Soit X un Z [%]-sche’ma régulier. Soit D un diviseur régulier
dans X. On note j: X — D — X linclusion de son complémentaire. Alors, on dispose
d’isomorphismes canoniques j,A = A, R1j,A = Az(~1) et R%j,A = 0 pour q > 2.
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Ce corollaire résulte du théoréme 3.1.1 appliqué a4 'immersion fermée i: D — X et
de la suite exacte longue de cohomologie appliquée au triangle distingué canonique
suivant dans DV (Xg, A) :

ii*A = A > Rj, A > i,4'A1]

L’isomorphisme Az(—1) ~ R'j,Az(—1) est normalisé de facon & ce que le composé
Az(-1) 2R, Az(-1) % i,R2i'A soit donné par la classe Cl;. Alternativement, cette
identification est induite par une section globale du faisceau R!j,A(1) qui est donnée
localement par I'opposé de la classe du pu,-torseur des racines n-iémes de f ou f est
une équation locale de D dans X. (Voir la démonstration du lemme 3.4.8 pour plus
de détails sur cette compatibilité.)

3.1.4. Corollaire. — Soit X un Z [%]-schéma régulier. Soit D un diviseur & croise-
ments normauzx dans X. On note j: X — D — X Uinclusion de son complémentaire.
Alors, Rj A appartient a ch’tf(Xét, A). Plus précisément, si D = D1 +---+ D, est un
diviseur @ croisements normaug strict, alors R*j, A s’identifie ¢ @, ;, Ap,(—1) et

R*j,A est algébre extérieure sur Rj, A.

Ce corollaire mérite une démonstration. Pour la premiére assertion, on peut tra-
vailler localement pour la topologie étale sur X ; il suffit donc d’établir la deuxiéme
assertion. On suppose que D = D; + ---+ D,, est un diviseur & croisements normaux
strict. On note j;: X — D; — X linclusion du complémentaire de D; pour tout .
Nous allons montrer que le morphisme de Kiinneth

L L
le*A ®...0 R_]n*A — R_]*A

est un isomorphisme dans D(Xg;, A), ce qui impliquera le résultat vu que les faisceaux
R%j;, A sont connus par pureté (corollaire 3.1.3) et qu’ils sont plats.

On procéde par récurrence sur n. Les cas n = 0 et n = 1 sont évidents. On suppose
n > 2, on pose D' = Dy +---+ D, et on fait I’hypothése que le résultat est connu
pour D’. Il s’agit donc de montrer que si on note j': X — D' — X linclusion du
complémentaire de D’, alors le morphisme de Kiinneth

L
Rji:A ® RjLA — Rj, A
est un isomorphisme. Autrement dit, le morphisme canonique
L
RHOII’I(AX_D1 s A) ® RHOl‘n(AX_D/, A) — RHOI’I’I(AX_D1 ®Ax_p/, A)

est un isomorphisme dans D(X¢;, A). A K (resp. L) fixé dans D(Xg, A), la famille des
L (resp. K) tels que le morphisme

L L
RHom(K,A) ® RHom(L,A) - RHom(K ® L, A)
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soit un isomorphisme, propriété que nous appellerons (Kii), est une sous-catégorie
triangulée de D(Xgt, A).

Pour K = A ou L = A, la condition (Kii) est évidemment vérifiée, la montrer pour
(Ax-p,,Ax_p) revient donc, par dévissage, & la montrer pour (Ap,,Ax_p’) ou
encore pour (Ap,, Ap). Il résulte aussitdot du théoréme de pureté et des compatibilités
obtenues (cf. remarque 2.3.6) que si Y et Z sont deux sous-schémas fermés réguliers de
X s’intersectant transversalement (i.e. Y NZ est régulier de codimension la somme des
codimensions de Y et de Z), alors (Ay,Az) vérifie (Kii). En particulier, (Ap,,Ap,)
vérifie (Kii) pour ¢ > 2 et plus généralement, pour tout sous-ensemble non vide I de
{2,...,n}, (Ap,,Ap,) vérifie (Kii) ou Dy est lintersection des D; pour i € I. En
utilisant la suite exacte standard

0—-Ap — @ADi—’ @ Ap, — -,

2<i<n 2<i<j<n

on en déduit par dévissage la condition (Kii) pour (Ap,,Aps), ce qu’il fallait démon-
trer.

3.1.5. Définition. — Un couple régulier est un couple (X,Y) ot X est un Z [1]-schéma
régulier et Y un sous-schéma fermé de X qui est régulier. On dit que (X,Y") est pur
si la conclusion du théoréme 3.1.1 est vraie pour l'inclusion de Y dans X. Siy — Y
est un point géométrique de Y, on dira que (X,Y’) est pur en 7 si aprés passage aux
germes en 7, le morphisme Cl;: A — 4’A induit un isomorphisme dans la catégorie
D+(§éta A)'

Le théoréme 3.1.1 peut ainsi se reformuler en disant que tout couple régulier est
pur. Dans la sous-section 3.2 sera introduite la notion de pureté ponctuelle qui consiste
a étudier les couples réguliers de la forme (X, z) ou X est un schéma local régulier
de point fermé x. Pour démontrer le théoréme de pureté, il suffira de savoir que les
couples réguliers de cette forme sont purs. Dans la sous-section 3.3, on se raménera au
cas ou 'anneau de coefficients A est Z/¢Z avec £ un nombre premier inversible sur les
schémas réguliers considérés. Dans la sous-section 3.4, on établira quelques propriétés
utiles concernant la pureté des couples réguliers donnés par des diviseurs. Comme
dans la démonstration de [Fujiwara, 2002], la démonstration de la pureté ponctuelle
pour des schémas réguliers arbitraires se rameénera a celle des schémas réguliers qui
sont de type fini sur un trait S (d’inégale caractéristique). Dans la sous-section 3.5,
on obtiendra des conditions suffisantes pour montrer que des schémas réguliers de
type fini sur S sont ponctuellement purs. La sous-section 3.6 donnera les énoncés de
géométrie logarithmique permettant d’établir que si (X, M) est un log-schéma, log-
lisse sur un trait (muni de sa log-structure canonique) et que le schéma X est régulier,
alors X est ponctuellement pur. La démonstration du théoréme 3.1.1 sera donnée dans

SOCIETE MATHEMATIQUE DE FRANCE 2014



326 EXPOSE XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETE ABSOLUE

la sous-section 3.7. Elle utilisera les résultats des sous-sections précédentes ainsi que
trois théorémes de résolution des singularités que ’on peut résumer ainsi :

— utilisation d’altérations pour obtenir un schéma a réduction semi-stable & partir
d’un schéma (normal) sur S (cf. [Vidal, 2004, proposition 4.4.1]);

— modification d’une action modérée d’un groupe fini sur un log-schéma log-régulier
de fagon & obtenir une action trés modérée (cf. X-1.1);

— résolution des singularités des log-schémas log-réguliers (théoréme de Kato-Niziol,
cf. [Kato, 1994, 10.3, 10.4] et [Niziot, 2006, 5.7]).

3.2. Pureté ponctuelle

3.2.1. Définition. — Soit X un Z [%]-schéma local régulier. On dit que X est ponc-
tuellement pur en son point fermé z si le morphisme Cl;: A — i’ A est un isomorphisme
dans Dt (x4, A) ot i: £ — X est l'inclusion du point fermé de X.

Un schéma local régulier est ponctuellement pur en son point fermé si et seulement
si son hensélisé (resp. son hensélisé strict) ’est.

3.2.2. Définition. — Soit X un Z [1]-schéma. Si z € X, on dit que X est ponctuelle-
ment pur au point z si le localisé de X en z est ponctuellement pur en son point fermé.
On dit que X est ponctuellement pur s’il I’est en tous ses points.

La proposition suivante est [Fujiwara, 2002, proposition 2.2.4]. La démonstration
de cet article semble compliquée puisqu’elle passe par des résultats plus fins que ceux
dont nous avons besoin. On en redonne donc une démonstration plus courte.

3.2.3. Proposition. — Soit i: Y — X une immersion fermée entre schémas réguliers.
Le nombre de conditions satisfaites parms les trois suivantes ne peut pas étre deuz :

(a) Le couple régulier (X,Y) est pur;
(b) Le schéma'Y est ponctuellement pur;
(c) Le schéma X est ponctuellement pur auz points situés dans l’image de i.

Soit ¥y € Y, notons V(y) le localisé de Y en y et V(z) celui de 'image = de y
dans X. On a un diagramme de schémas :

y—=V(y)

N

V(z).
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La composition des morphismes de Gysin donne le diagramme commutatif suivant
dans DT (yet, A) :

Cl;
~——ilA

™ Li;cg,
iZA.
Sur ce diagramme, on voit aussitot que (a) et (b) impliquent (c) et que (a) et
(c) impliquent (b). Montrons que (b) et (c) impliquent (a). Il s’agit de montrer que
pour tout point y de Y, le morphisme 7;Cl;; est un isomorphisme. On peut procéder

A

par récurrence sur la dimension de V(y). On peut ainsi supposer que le support
d’un céne C du morphisme Cl;; dans D*(V(y)y,,A) est contenu dans {y}. Mézalor,
le morphisme canonique i;C — 4y C est un isomorphisme; le diagramme ci-dessus
montre que i;C = 0, ce qui permet de conclure que C = 0 et finalement d’obtenir (a).

Rappelons quelques propriétés importantes concernant la pureté ponctuelle :

3.2.4. Proposition (|[Fujiwara, 2002, proposition 2.2.2]). — Soit X un schéma local stric-
tement hensélien régulier. Le complété X est ponctuellement pur en son point fermé
si et seulement si X [’est.

3.2.5. Proposition ([Fujiwara, 2002, corollary 2.2.3]). — Soit k un corps premier. Si X
est schéma régulier qui est un k-schéma, alors X est ponctuellement pur.

3.3. Changement de coefficients

3.3.1. Proposition. — Soit n un entier naturel non nul. Soit n = H;=1 Z;j la factori-
sation de n en produit de puissances de nombres premiers distincts. Un couple régulier
(X,Y) est pur relativement & 'anneau de coefficients Z/nZ si et seulement s’il est

relativement & l’anneau de coefficients Z/f;.'" Z pour tout j € {1,...,k}.

Cela résulte aussitot du lemme chinois et du fait que si m est un entier naturel
divisant n, alors pour toute immersion fermée réguliére i: ¥ — X, le diagramme
évident commute dans Dt (Y, Z/nZ) :

Z/nZ — 2 77 /nZ
L Cl, .2 L
Z/mZ —i'Z/mZ.

3.3.2. Proposition. — Soit £ un nombre premier. Pour tout entier v > 1, un couple
régulier (X,Y) est pur relativement & Uanneau de coefficients Z/{Z si et seulement
s’il Vest relativement & l’anneau de coefficients Z/¢"Z.
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En utilisant la résolution de Godement des faisceaux Z/¢*Z(c) (ou c est la codi-
mension de 'immersion i: Y — X)) pour tout v, on peut représenter les morphismes
de Gysin Cl;: Z/¢*Z — i'Z/¢*Z dans D* (Y, Z/¢¥Z) par des cocycles. Un tel co-
cycle pour v fixé induit pour tout entier v < vy un cocycle représentant le morphisme
de Gysin a coefficients dans Z/¢*Z. Les propriétés élémentaires de la résolution de
Godement font que, si on le souhaite, on peut en fait trouver une famille compatible
de cocycles pour tout v € N.

Compte tenu de ces observations, une fois ces cocycles convenablement choisis,
on dispose d’un céne privilégié C(v) du morphisme Cl;: Z/¢*Z — i'Z/¢¥Z dans
D*(Ye, Z/¢¥Z) pour tout v € N et de triangles

Clp) —=C(p+v) C(v) C(w[1]

dans DT (Y, Z/¢#TVZ) pour tous (u,v) € N2.

Par conséquent, si C(1) = 0, il vient que pour tout » > 1, C(v) = 0. Inversement,
si C(1) est non nul, son premier objet de cohomologie non nul s’injecte dans celui de
C(v) pour tout v > 1.

3.4. Diviseurs réguliers

3.4.1. Définition. — Si X est un schéma et T — X un point géométrique, on note
V() hensélisé strict de X en T et iz: V(T) — X le morphisme canonique.

3.4.2. Proposition. — Soit X un schéma régulier. Soit D un diviseur régulier de X .
Le couple régulier (X, D) est pur si et seulement si pour tout point géométrique T — D,
on a HL (V(Z) — iz (D), A) = 0 pour tout q¢ > 2.

Cela résulte du calcul de HE, (V(Z) — iz' (D), A) pour g € {0,1} (cf. [SGA 43 [Cycle] 2.1.4]).

3.4.3. Proposition. — On suppose que l’anneau de coefficients est Z/lZ ou £ est un
nombre premier. Soit f: Y — X un morphisme fini et plat de degré constant premier
a ¢ entre Z [%] -schémas réguliers. Soit D un diviseur régulier de X. On suppose que
D' = f~Y(D).sq est un diviseur régulier de Y. Si le couple régulier (Y,D') est pur,
alors (X, D) aussi.

Grace a la proposition 3.4.2, on peut choisir un point géométrique de D et rem-
placer X par son hensélisé strict en ce point. On suppose donc que X et D sont
locaux strictement henséliens et on se concentre sur la pureté du couple (X, D) en le
point fermé de D. Le schéma Y est alors réunion disjointe finie de schémas locaux
strictement henséliens; au moins un de ceux-ci est de degré premier & £ sur X. On

() On veut dire par 1a que D est un sous-schéma fermé de X qui est régulier et purement de
codimension 1. Ceci n’exclut pas le cas ou D serait vide.
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peut donc supposer que Y aussi est local strictement hensélien. Il suffit alors de mon-
trer que H4(X — D, Z/{¢Z) s’injecte dans HY(Y — D’,Z/¢Z), ce qui résulte du lemme
suivant :

3.4.4. Lemme. — On suppose que l’anneau de coefficients A est Z/LZ ou £ est un
nombre premier. Soit f: Y — X un morphisme de présentation finie, fini et plat de
rang d premier a £ entre Z [%] -schémas. Alors, le morphisme canonique A — f, A est
un monomorphisme scindé dans DT (X, A).

D’aprés [SGA 4 Xv1I 6.2.3], on a un morphisme Try: f,A — A tel que la composée
A—- fLA—> A

soit la multiplication par d, ce qui donne le scindage voulu puisque d est inversible
dans A.

3.4.5. Proposition. — On suppose que l’anneau de coefficients A est Z/¢Z ou £ est
un nombre premier. Soit X un Z [%]-schéma régulier. Soit f une fonction sur X
dont le liew des zéros D = V(f) soit un diviseur régulier de X. On pose X' =
Spec (Ox[T]/(T* — f)). On note n: X' — X la projection, D' = n=1(D)sea (no-
ter que D' — D est un isomorphisme). Alors, X' est un schéma régulier, et le couple
régulier (X', D’) est pur si et seulement si le couple régulier (X, D) Uest.

Soit T un point géométrique de D (on identifiera aussi T & un point géométrique
de D’). On va en fait montrer que (X, D) est pur en T si et seulement si (X', D’)
Pest. On peut supposer que X est le spectre premier d’un anneau local strictement
hensélien A d’idéal maximal m et que T est au-dessus du point fermé de X. On a
évidemment f € m; le fait que D = V(f) soit régulier revient & dire que f & m2.

Notons A’ = A[T]/(T* — f). En considérant le déterminant de ’endomorphisme
de A’ comme A-module donné par la multiplication par un élément b € A’, on
observe que b est inversible dans A’ si et seulement si son image dans l’algébre
locale (A/m)[T]/(T*) est inversible. Il en résulte que A’ est local d’idéal maximal
m’ = (T) + mA’. Par ailleurs, on a un isomorphisme A/(f) = A’/(T) (i.e. D' — D
est un isomorphisme). L’anneau A f)[T]/(T¢ — f) est un anneau de valuation discréte
d’uniformisante T'; on en déduit un isomorphisme A4 [T]/(T* - f) & Alry dont il
découle que le localisé de A’ par rapport a l'idéal (T') est un anneau de valuation
discréte. La codimension de I'idéal premier (T") dans A’ est donc 1. On en déduit que
dimA’ > 1+ dim A’/(T) = 1+ dim A/(f) = dim A. Comme f € m — m?, on peut
introduire des éléments (g1, ..., g4) de m tels que les classes des éléments f, g1,..., 94
forment une base de m/m? comme A/m-espace vectoriel. On a alors m = (£, g1,...,da)
et dim A = d+1 car A est régulier. L’idéal maximal (T) + mA’ de A’ est engendré par
(T,91,---,94), donc dim A’ < d+1 = dim A. Comme on sait déja que dim A’ > dim A,
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il vient que dim A’ = d + 1 et que 'idéal maximal de A’ est engendré par dim A’ élé-
ments, donc A’ est régulier.

On peut considérer, pour tout entier » > 0, le X-schéma affine XV =
Spec (A[T]/(T* — f)). En élevant T & la puissance ¢, on obtient une tour de
morphismes

s XL L XY S X S X0

le dernier morphisme X! — X©° s’identifiant & m: X’ — X. Pour tout entier n in-
versible dans A, on note p, := pn(A). Pour tout v > 0, on munit la A-algébre
A[T]/(T* — f) de I’action & gauche de g telle que ¢ € ppv agisse en envoyant T sur
¢T. Le schéma X" hérite ainsi d’une action & droite de pp et XY xx (X — D) est
muni d’une structure de pe-torseur a droite au-dessus de (X — D). D’aprés 4.6.2, on
dispose pour tout v > 0 d’un morphisme de topos (X — D)¢ — Bpug tel que 'image
inverse du pgv-torseur & droite Eppv (cf. 4.6.1) s’identifie & X*. Les compatibilités évi-
dentes entre les revétements constituant cette tour font que si on note Z,(1) = lilsn v
alors on dispose en fait d’'un morphisme de topos ps: (X — D)s — BZ,(1) tel que
le foncteur p} envoie le systéme projectif EZ,(1) := (Epgv ), sur (X xx (X — D))y,
et ce de fagon équivariante pour les actions & droite des groupes pgv. (Si on a choisi
un systéme compatible de points géométriques 7, des schémas X” xx (X — D), la
construction 4.6.3 donne un systéme compatible de morphismes 7$¢(X — D, G,) — pev -
Par passage 4 la limite projective on obtient un morphisme 7§t (X —D,7,) — Z¢(1). Le
morphisme de topos p; s’identifie alors au composé evident X¢, — Bnét(X —D,7,) —
BZ,(1).)

Dans la suite, le py-torseur étale & droite X’ — D = X! — D au-dessus de X — D
sera aussi considéré comme un pp-torseur a gauche (sans passage & linverse, ce qui
est possible parce que u, est commutatif) : c’est le pg-torseur des racines £-iémes de f.

3.4.6. Lemme. — Le couple régulier (X, D) est pur en T si et seulement si le mor-
phisme
RI'(BZ(1), ) — RI((X — D)et, pe)
induit par le morphisme de topos py est un isomorphisme dans la catégorie dérivée
des groupes abéliens.
Ce lemme découle des deux lemmes suivants :
3.4.7. Lemme. — Pour tout entier ¢ > 2, HY(BZ(1),p¢) = 0 et on a des isomor-
phismes canoniques
HO(BZg(l), ,u,g) X Uy, H1 (BZe(l),/Lg) >~ HOmcont(Zg(l),p,g) ~ Z/KZ

Pour obtenir 'identification H'(BZ¢(1), it¢) ~ Homcont(Ze(1), i), on utilise des
conventions de signes compatibles avec 4.6.1. Pour le reste, il s’agit de montrer que
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Z,(1) est de ¢-dimension cohomologique 1. Pour cela, voir par exemple [Serre, 1994,
§ 3.4, chapitre IJ.

3.4.8. Lemme. — Le morphisme composé
P} b
Z/¢Z ~ H'(BZ(1), e) = H'((X — D)er, ) — HH(X, pe)
envoie 1 sur —Clpcx.

Grace & 4.6.1, on obtient que le générateur canonique de H!(BZ,(1), u¢) s’envoie
par p} sur la classe du pie-torseur X "— D — X — D qui d’aprés la construction 4.3.1
est égale & 0k (f) ot 6 : HY(X — D, Gy,) — H*1(X — D, ) est le morphisme de bord
associé a la suite exacte de Kummer. Si on note dx_p: H/(X — D, #) — HF (X, F)
les morphismes de bord reliant la cohomologie et la cohomologie & supports (cf. 4.7.6),
comme dans [SGA 43 [Cycle] 2.1.3], 4.7.5 fournit la relation suivante dans H% (X, u) :

ox-p(0k(f)) = —dk(6x-p(f))
—c1(Ox,f) d’aprés 4.7.6
= a(0x,f™)
a(fox,1)

= —Clpcx-

On peut appliquer le lemme 3.4.6 & X’ : il vient que le couple régulier (X', D’) est
pur en T si et seulement si le morphisme

RT(BZ(1), ue) — RL((X' — D)t pae)

induit par le morphisme de topos pr: (X’ — D')¢; — BZ4(1) est un isomorphisme.
On dispose d’un carré commutatif de topos :

PT

(X' = D)gy — BZy(1)

P,

(X — D)oy 22—~ BZ(1)

ou g est induit par 7: X’ — X et g’ par la multiplication par £ sur Z,(1). Le faisceau
9+Z/{Z s’identifie canoniquement & p’ g, (Z/€Z). Il en découle aisément que le couple
régulier (X', D’) est pur en Z si et seulement si le morphisme canonique

RI'(BZ,(1),9,(2/¢Z)) —» RT((X — D)«, p}9,(Z/Z))

est un isomorphisme.
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La cohomologie relative du morphisme de topos ps: (X — D)sy, — BZ,(1) définit
un foncteur triangulé

F: DY (BZ(1),Z/¢Z) — D*(Z/¢Z)

tel que pour tout K € DT (BZ,(1),Z/¢Z), F(K) soit isomorphe & un céne du mor-
phisme canonique RI'(BZ,(1), K) — RI'((X — D)et, p} K).
Le lemme suivant découle de ce qui précéde :

3.4.9. Lemme. — Le couple régulier (X, D) est pur en T si et seulement si F(Z/{Z) =
0 tandis que (X', D') est pur en T si et seulement si F(g,(Z/¢Z)) = 0.

Comme Zy(1) est un pro-£-groupe, le faisceau g, (Z/¢Z) est une extension successive
de ¢ copies de Z/¢Z. Le foncteur F étant triangulé, on en déduit aussitdot que si
F(Z/tZ) est nul, alors F(g,Z/¢Z) aussi et que si F(Z/{Z) est non nul, son premier
objet de cohomologie non nul s’injecte dans celui de F(g.(Z/¢Z)). Ceci achéve la
démonstration de la proposition 3.4.5.

3.5. Schémas sur un trait. — Soit S un trait (dans lequel les nombres premiers divisant
le cardinal de A sont inversibles). On note s son point fermé, n son point générique
et 7 une uniformisante.

3.5.1. Proposition. — Le trait S est ponctuellement pur.

Il s’agit de montrer que S est ponctuellement pur en son point fermé. On peut
supposer que S est strictement hensélien; d’aprés la proposition 3.4.2, cela résulte
alors du fait que le corps des fractions de S soit de ¢-dimension cohomologique 1 pour
tout nombre premier ¢ inversible sur S (cf. [SGA 4 x 2.2]).

3.5.2. Proposition. — Pour tout entier naturel n, l’espace affine A% est ponctuelle-
ment pur.

D’apreés la proposition 3.2.5, les schémas AY et AP sont ponctuellement purs. Ainsi,

% est ponctuellement pur en les points de la fibre générique. Pour établir la pureté
ponctuelle de A’ en les points de la fibre spéciale, on utilise la proposition 3.2.3 : il
suffit de montrer que le couple régulier (A%, A7) est pur. Le cas n = 0 résulte de la
proposition 3.5.1 et le cas général en découle en vertu du théoréme de changement de
base lisse.

3.5.3. Corollaive. — Un S-schéma lisse est ponctuellement pur.

3.5.4. Définition. — Soit p: X — S un morphisme de type fini, avec X régulier et
admettant un faisceau ample. On pose Kx = p’Ag et on dispose d’un morphisme de
Gysin Cly/s: Ax — Kx dans D* (X4, A) (cf. définition 2.5.11).
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3.5.5. Proposition. — Soit p: X — S un morphisme de type fini, avec X régulier et
admettant un faisceau ample. Le schéma X est ponctuellement pur si et seulement si
le morphisme Clx,s: Ax — Kx est un isomorphisme dans Dt (Xes, A).

On choisit une factorisation X - Y % S de p (dans la catégorie .#°) avec Y lisse
sur S et ¢ une immersion fermée (réguliére). D’aprés le théoréme 2.5.12 (ou plutdt par
définition de Cly,g), le diagramme suivant est commutatif :

Cl;

A i'A
C%: Li‘ Cl,
i’q’A.

Le morphisme ¢ étant lisse, le morphisme de Gysin Cl, est un isomorphisme. Par
conséquent, Cly,s est un isomorphisme si et seulement si Cl;: A — i’A en est un.
D’aprés la proposition 3.2.3 et compte tenu du fait que Y soit ponctuellement pur (cf.
corollaire 3.5.3), ceci équivaut encore a dire que X est ponctuellement pur.

3.5.6. Corollaire. — Soit X un S-schéma de type fini qui est régulier. Soit Y wun
X -schéma lisse. Si X est ponctuellement pur, alors Y aussi.

3.5.7. Proposition. — Soit f: X — Y un morphisme propre et dominant de S-sché-
mas ot X et'Y sont supposés de type fini sur S, intégres, réguliers et admettant
des faisceaux amples. On suppose de plus que f est génériquement étale de degré d
inversible dans A. Alors, la pureté ponctuelle de X implique celle de Y.

Le morphisme f est localement d’intersection compléte lissifiable de dimension re-
lative virtuelle zéro, d’ont f° = f'. Le morphisme de Gysin relatif & f est un morphisme
Cly: A — f'A.

3.5.8. Lemme. — On peut généraliser le morphisme Cly: A — f'A en des morphismes
f*M — f'M, fonctoriellement en M € D (Y, A).

Le morphisme Clf: A — f 'A correspond par adjonction & un morphisme RfiA —
A, que Pon peut tensoriser avec M pour obtenir (via la formule de projection) un
morphisme Rfif*M — M qui correspond lui-méme par adjonction au morphisme
f*M — f'M du type recherché.
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En appliquant la fonctorialité de la construction du lemme au morphisme
Cly;s: Ay — Ky, on obtient un diagramme commutatif dans Dt (X, A).

f*AY — f!AY
f’(Clws)l lf’(cw/s)
f*Ky — f'Ky.

Via l'isomorphisme canonique f*Ay =~ Ax, le morphisme du haut s’identifie
au morphisme Cl;: Ax — f'Ay; celui de droite est f!(Cly/S). D’aprés le théo-
réme 2.5.12, il vient que le morphisme composé Ax ~ f*Ay — f'Ky ~ Kx est
le morphisme de Gysin Clx,s. On déduit de ceci un diagramme commutatif de la
forme suivante dans Dt (X, A) :

N al
f*Ay Ax  f'Ay

f*(Cly/s)[/ [/Clxw Lf’Cly/s

f*Ky —= Kx — f'Ky.

Comme f est propre, on obtient par adjonction un nouveau diagramme commutatif
dans Dt (Y, A) :

Ay —RfiAx —— Ay
OIY/S[/ lRf*(CIX/s) lCh//s
KY nm—— Rf*KX I—— Ky.

Le diagramme ci-dessus met en évidence une relation entre les morphismes Cly,g
et Rf.(Clx/s). Comme va le montrer le lemme suivant, le premier morphisme est un
facteur direct du second, ce qui montre que la pureté ponctuelle de X implique celle
de Y, achevant la démonstration de la proposition 3.5.7.

3.5.9. Lemme. — Sur le diagramme précédent, les morphismes composés Ay — Ay
et Ky — Ky sont les multiplications par le degré d (en particulier, ce sont des
isomorphismes).

Comme Y est connexe (non vide), on a un isomorphisme évident A =
Endp+(v,,a)(Ay). D’aprés le théoréme de bidualité locale (cf. [SGA 4} [Th. fi-
nitude] 4.3]), on a aussi un isomorphisme A 5 Endp+(y,, a)(Ky). 11 suffit donc
d’obtenir la conclusion au-dessus d’un ouvert non vide de Y. Quitte 4 remplacer Y
par un ouvert non vide convenable, on peut supposer que f est un revétement étale.
On est ainsi ramené au lemme suivant :
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3.5.10. Lemme. — Soit f: X — Y un morphisme de schémas fini étale de degré
constant d. Pour tout objet M € DV (Yy, A), le morphisme composé

M- fif*M—>M
déduit des adjonctions canoniques (f*, fi) et (f, f*) est la multiplication par d.

Grace aux formules de projection, on peut supposer que M = Ay. Il suffit alors
d’établir le résultat aprés un changement de base étale (non vide) trivialisant le revé-
tement X — Y (par exemple une cloture galoisienne de ce revétement). Bref, on peut
supposer que X est une réunion disjointe de d copies de Y, auquel cas le résultat est
trivial.

3.5.11. Définition. — Soit (e1,...,e,) € N™. On définit un S-schéma :
V(S,m,e1,...,en) =Spec(OsTh,...,Tn)/ (1) TF — 7)) .

Pour tout i, on note H; le sous-schéma fermé de V (S, 7, ey,...,e,) défini par I’équa-
tion T; = 0.

3.5.12. Proposition. — Soit (e1,...,e,) un n-uplet d’entiers naturels non tous nuls.
Alors, le schéma V (S, m,e1,...,e,) est régulier et ponctuellement pur.

On peut supposer que I’anneau des coefficients est Z/¢Z o1 £ est un nombre premier
inversible sur S.

3.5.13. Lemme. — (i) Si (ey,...,en) est un n-uplet d’entiers non tous nuls dont
au moins un est inversible dans n, le S-schéma V (S, 7, e1,...,e,) est intégre,

régulier et de fibre générique lisse;

(ii) Soitd > 1, si S’ est le trait obtenu en extrayant une racine d-ieme 7’ de l’unifor-
misante m (cf. [Serre, 1968, Proposition 17, § 6, Chapitre I]), pour tout n-uplet
(e1,-.-,€n), on a un isomorphisme de schémas

V(S 7' e1,...,en) = V(S 7, dei,...,des) ;

(iii) Si(ex,...,en) est un n-uplet d’entiers non tous nuls, le schéma V (S, m,eq,...,en)
est régulier et intégre ;

(iv) Si(e1,...,en) est un n-uplet d’entiers non tous nuls, le schéma V (S, 7, e1,...,ey,)
est ponctuellement pur si et seulement si pour tout i tel que e; > 0, le couple
régulier (V(S,m, e1,...,en), H;) est pur®y;

(v) Soit (e1,...,en) un n-uplet d’entiers non nuls, soit e le p.p.c.m. des e;; on
suppose que ¢ ne divise pas e; si V(S,m,e,...,e) est ponctuellement pur, alors
V(S,me1,...,en) aussi;

(xi) Si e; = 0, c’est vrai aussi : c’est un cas particulier du théoréme de pureté relatif, cf. [SGA 4 xv1 3.7].
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(vi) Si (e1,...,en) est un n-uplet d’entiers tel que ey # 0, V(S, 7, e1,...,e,) est
ponctuellement pur si et seulement si V (S, m,Leq,eq,...,e,) est ponctuellement
pur.

Les assertions (i) et (ii) sont laissées en exercice au lecteur. L’assertion (iii) résulte
aussitot de (i) et de (ii).

Pour montrer ’assertion (iv), il suffit d’observer que les diviseurs H; pour e; > 0
sont ponctuellement purs (ce sont des espaces aflines sur le corps résiduel de S) et
forment un recouvrement de la fibre spéciale de V(S, 7, e1,...,e,). La fibre géné-
rique du schéma V(S m,eq,...,e,) étant ponctuellement pure (puisque lisse sur une
extension de 7), on peut conclure en utilisant la proposition 3.2.3.

Concernant l’assertion (v), I’élévation des T; & la puissance < définit un morphisme
fini et plat V(S,m,e,...,e) = V(S,m,e1,...,e,) de degré =~
tenu du critére (iv), la proposition 3.4.3 permet de conclure.

n

(premier & £) ; compte

Pour établir (vi), remarquons que l’élévation de T} & la puissance ¢ définit
un morphisme fini et plat V(5,7 le1,ez,...,e,) — V(S, 7, e1,...,e,) de degré
£ et étale en dehors du lieu d’annulation de T3. Il suffit donc de montrer que
(V(S,m, Leq,ez,...,en), H1) est pur si et seulement si (V(S,7,e1,...,e,), Hy) Dest,
ce qui résulte de la proposition 3.4.5.

Etablissons la proposition 3.5.12. D’aprés l’assertion (iii), les schémas considé-
rés sont réguliers. Pour établir leur pureté ponctuelle, d’aprés le corollaire 3.5.6, on
peut supposer qu’aucun des exposants e; n’est nul. Dans le cas ou les tous les en-
tiers e; valent 1, le résultat est établi dans [Illusie, 2004, theorem 1.4] (voir aussi
[Rapoport & Zink, 1982, Satz 2.21]). Grace a I'utilisation d’un trait auxiliaire, 1’as-
sertion (ii) permet d’en déduire que pour tout entier d > 1, V(S,m,d,...,d) est
ponctuellement pur. En utilisant 1’assertion (v), on obtient que V (S, 7, e1,...,e,) est
ponctuellement pur si £ ne divise aucun des entiers e;. L’assertion (vi) permet de
passer au cas général.

3.6. Géométrie logarithmique

3.6.1. Définition. — Soit S un trait, de point générique 7. La log-structure canonique
sur S est la log-structure image directe de la log-structure triviale sur 7. Toute uni-
formisante de S définit un morphisme de monoides N — I'(S, &s) donnant naissance
a une carte S — Spec(Z[N]) du log-schéma S.

L’objectif de cette sous-section est d’établir le théoréme suivant :

3.6.2. Théoréme. — Soit S un trait muni de sa log-structure canonique. Soit
(X, M) — S un morphisme log-lisse de log-schémas fs. Si le schéma X est ré-
gulier, alors il est ponctuellement pur.
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La proposition suivante précise [Kato, 1988, theorem 3.5] dans le cas des log-
schémas fs :

3.6.3. Proposition. — Soit (X, M) — (Y, N) un morphisme log-lisse entre log-schémas
fs. On suppose donnée une carte Y — Spec(Z[Q]) de (Y,N) ot Q est un monoide
fs sans torsion™. Pour tout point géométriqgue T de X, il existe un voisinage étale
U de T, un morphisme injectif de monoide Q — P avec P fs sans torsion et une
carte U — Spec(Z[P)) tels que la partie de torsion de Coker(Q® — P®P) soit d’ordre
inversible sur U et que le morphisme de schémas U — Y Xgpec(z(q)) Spec(Z[P]) soit
étale.

Dans la démonstration du critére de log-lissité de [Kato, 1988, theorem 3.5], des
éléments ty,...,t, de Mz sont choisis de sorte que la famille (dlogty,...,dlogt,)
forme une base du faisceau des log-différentielles w}( IYE On considére ensuite le
morphisme de monoides évident N” @ Q — Mz donné sur la composante N” par les
t1,...,tr. Il est tel que le conoyau de Z" @ Q& — ME®/O% . soit fini d’exposant
n inversible dans 'anneau Ox z (en particulier, 0’;;5 est n-divisible). Il existe un
morphisme injectif Z" @ @¥° — G de conoyau tué par une puissance de n et un
prolongement h: G — ME® de Z" ® Q8 — ME® tel que G — ME® /0y  soit surjectif.
Comme ME® /0% ; est un groupe abélien de type fini et sans torsion, le lemme suivant
montre que I'on peut s’arranger pour que G soit un groupe abélien libre. Dans la
démonstration de [Kato, 1988, theorem 3.5, on pose ensuite P = h~!(Mz) et il est
montré que sur un voisinage étale U de Z, P engendre la log-structure de (X, M) et
que le morphisme de schémas U — S X gpec(z[q)) SPec(Z[P]) est étale en Z. Le monoide
P ainsi construit est fs et sans torsion.

3.6.4. Lemme. — Soit n un entier naturel non nul. Soit A un groupe abélien libre de
type fini. Soit p: A — B un morphisme de groupes abéliens. Soit U C B un sous-
groupe n-divisible. On suppose que B/U est sans torsion et que Coker(A — B/U) est
fini et tu€ par n. Alors, il existe un groupe abélien A’ libre de type fini, un morphisme
injectif A — A’ de groupes abéliens tel que A’/ A soit tué par une puissance de n et une
extension A’ — B du morphisme A — B telle que le morphisme composé A' — B/U
soit surjectif.

Grace & une récurrence sur 'ordre de Coker(A — B/U), on peut supposer que
Coker(A — B/U) est cyclique d’ordre d > 2, engendré par la classe d’un élément
b € B. Il existe donc a € A et u € U tels que db = ¢(a) + u. Comme u est n-divisible,

(xi1) Sj 7 est un point géométrique de Y, il existe un voisinage étale de 7 admettant une telle carte
avec Q = Mg/ﬁ;ﬁj qui est fs saillant (cf. [Kato, 1994, Lemma 1.6]).
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il existe & € U tel que u = dii. Quitte & remplacer b par b — 4, on peut supposer que
u = 0. On forme le carré cocartésien suivant dans la catégorie des groupes abéliens :

Z_a'_>A

L

17—~ A

En raison de la relation db = ¢(a), on peut définir un unique morphisme de groupes
abéliens ¢’: A’ — B induisant ¢: A — B et envoyant 5 sur b. On obtient ainsi une
surjection A’ — B/U induisant un isomorphisme A’/A = Coker(A — B/U). Il reste
a vérifier que A’ est sans torsion. Soit a’ un élément de torsion de A’. L’image de a’
dans B/U via ¢’ est de torsion, mais B/U étant sans torsion, on a ¢’(a’) € U. Comme
¢’ induit un isomorphisme A’/A = Coker(A — B/U), on en déduit que a’ € A, mais
A est sans torsion, donc a’ = 0.

3.6.5. Proposition. — Soit (X, M) — S un log-schéma fs log-lisse sur un trait S (muni
de sa log-structure canonique). On suppose que le schéma X est régulier. Alors,
localement pour la topologie étale, X admet un morphisme étale vers un schéma
V(S,m,e1,...,en) ot (e1,...,e,) est un n-uplet d’entiers non tous nuls (cf. défi-
nition 3.5.11).

Soit 7 une uniformisante de S; elle donne naissance & une carte S — Spec(Z[N]).
D’aprés la proposition 3.6.3, on peut supposer qu’il existe un monoide P fs sans tor-
sion, un morphisme injectif N — P, une carte X — Spec(Z[P]) telle que le morphisme
de schémas X — S Xgpec(z(n)) SPec(Z[P]) soit étale. Soit T un point géométrique de
X. On note P’ le sous-monoide de P formé des éléments dont 'image dans I'(X, &)
soit inversible au point T.

On peut supposer que P’ est un groupe. En effet, si A est un sous-ensemble fini de
P’ qui engendre le groupe abélien (libre de type fini) P8P i) on peut remplacer X
par le voisinage ouvert de T sur lequel les images des éléments de A (et donc de P’)
sont inversibles dans le faisceau structural et par suite, remplacer P par P[—P’] qui
est encore fs et sans torsion.

Le fait que X — Spec(Z[P]) soit une carte implique alors que P’ est le noyau de
PeP — MEP /0% . En particulier, on obtient un isomorphisme

P/P' 5 Mz/6% ..

Comme X est log-régulier, on reconnait que X est régulier au fait que Mz/ é’;,i soit
un monoide libre (cf. VI-1.7). Par conséquent, il existe un entier r et un isomorphisme

(xiil) En fait, on peut montrer que P’ est un monoide de type fini (c’est une face de P).
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de monoides N = P/P’. On peut relever ce morphisme en un morphisme N — P,
ce qui permet de construire un isomorphisme N" @ P’ = P.

11 en résulte que le morphisme de carte X — Spec(Z[P]) a pour but un schéma
isomorphe & Spec(Z[N"® P’]) qui est le produit d’un espace affine et d’un tore déployé
(dont P’ est le groupe des caractéres). Dans la carte du morphisme (X, M) — S

qui est donnée, 'image de 1 par le morphisme de monoides N — P peut s’écrire

(e1,---,er,p") dans N”™ & P’ via les identifications ci-dessus. On peut choisir une
base aj,...,a, de P’ comme groupe abélien telle que p’ = Y ;_, fia; avec f; € N.
On a ainsi construit un morphisme étale X — V(S,m,e1,...,er, f1,..., fs) (avec les
€1y...,€r, f1,..., fs non tous nuls).

Compte tenu de la proposition 3.5.12, le théoréme 3.6.2 résulte aussitét de la pro-
position 3.6.5.

3.7. Démonstration du théoréme de pureté. — Démontrons le théoréme 3.1.1. D’aprés
les propositions 3.3.1 et 3.3.2, on peut supposer que ’anneau des coefficients A est
Z/¢Z ou ¢ est un nombre premier. D’aprés la proposition 3.2.3, il s’agit de montrer
que tout Z [%]-schéma. régulier est ponctuellement pur. D’aprés [Fujiwara, 2002, co-
rollary 6.1.5], on peut supposer que X est un schéma régulier intégre, quasi-projectif et
plat sur un trait (strictement hensélien) S, que ’on peut supposer d’inégale caractéris-
tique d’aprés la proposition 3.2.5. On peut utiliser les notations de la sous-section 3.5.
Quitte a étendre le trait S, on peut supposer que ’anneau sous-jacent & S est inté-
gralement fermé dans le corps des fonctions rationnelles sur X. La fibre générique X,
de X est donc géométriquement intégre.

En appliquant [Vidal, 2004, proposition 4.4.1] & la normalisation de I’adhérence
de X dans un plongement projectif, on obtient qu’il existe un groupe fini G et un
diagramme G-équivariant :

X —X

]

S —— 8
tels que :

— @ agisse trivialement sur X et S;

— &8’ — § soit une extension finie de traits;

— X' — X soit projectif, X’ soit régulier, connexe et & réduction semi-stable sur
S’

— G agisse fidelement sur X’ et X’ — X soit génériquement un revétement étale
galoisien de groupe G.

On munit X’ de la log-structure dont 'ouvert de trivialité est la fibre générique
de X' — S'. Soit H un ¢-Sylow de G. On note T = S’/H. L’extension de traits
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(strictement henséliens) S’ — T est d’ordre une puissance de ¢, donc modérément
ramifiée. Par conséquent, pour les log-structures canoniques, S’ — T est log-étale.
Comme on sait que X’ est log-lisse sur §’, il 'est donc aussi sur 7. Comme H agit
trivialement sur 7" et que son action sur X’ est modérée, on peut appliquer le théoréme
de résolution équivariante X-1.1 qui donne un morphisme projectif et birationnel
H-équivariant X" — X' de log-schémas tel que X" soit log-lisse sur T et que H
agisse trés modérément sur X”. Le log-schéma quotient X”/H est aussi log-lisse
sur T' (en particulier, X" /H est log-régulier). D’aprés le théoréme de résolution des
singularités de Kato-Niziol (cf. [Kato, 1994, 10.3, 10.4] et [Niziol, 2006, 5.7]), il existe
un log-éclatement (en particulier, log-étale, projectif et birationnel) X" — X" /H tel
que X" soit régulier. La situation est résumée sur le diagramme suivant :

H G
X birat. X! - X

XM birat. X”/H GC ‘Slv//
T——8.

Le log-schéma X' est régulier et log-lisse sur T'; d’aprés le théoréme 3.6.2, X' est
ponctuellement pur. Le morphisme évident X"/ — X est projectif et génériquement
un revétement étale de degré premier & £ ; d’apreés la proposition 3.5.7, on peut conclure
que X est ponctuellement pur, ce qui achéve la démonstration du théoréme de pureté.

4. Conventions de signes

Bien que le rédacteur de cet exposé y répugne, il peut étre utile de préciser certaines
conventions de signe. Nous nous appuierons sur celles de [Conrad, 2000, § 1.3] ; elles ne
coincident pas avec celles de [SGA 4 xvi1I 1.1]. Quelques conventions supplémentaires
sont précisées ci-dessous.

4.1. — Onrappelle quesi K = (--- — K™ — K"*! — ...) est un complexe dans une
catégorie abélienne, pour tout i € Z, le complexe K|i] est tel que K[i]" = K'™" et
que les différentielles sur K[i] soient données par les différentielles sur K multipliées

par (—1)%.
Si f: K — L est un morphisme de complexes, cone(f) est le complexe tel
que cone(f)” = K"l @ L™ et dont la différentielle est représentée par la
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—d 0

matrice ( K ) Les inclusions L” — K" @ L™ induisent un mor-
dr,

phisme i: L — cone(f) et les projections K"*!' @ L™ — K"*! un morphisme

p: cone(f) — K[1]. On décréte que le triangle suivant est distingué =) :

KL L2 cone(f) 2 K11,
Si0— M % M2 M” - 0 est une suite exacte courte dans une catégorie abélienne
o/, B induit un quasi-isomorphisme coéne(a) — M" :
-1 M ——0
B

0 M—— M

cone(a) ——= M".
Dans la catégorie dérivée de &, on obtient ainsi un triangle distingué
YR VNS VRIS VTN
ou § est le zigzag ainsi décrit :

—Id

-1 0 M M’
L

M M
0 5 0

M" <=— cone(a) — M'[1].

4.2. — Si I'on dispose d’un foncteur cohomologique (covariant) .#° d’une des va-
riantes de la catégorie dérivée d’une catégorie abélienne &7, on peut étendre ce fonc-
teur en une suite de foncteurs (#™),cz en posant F"M := F°(M|[n]). A toute suite

exacte courte 0 — M’ 5 M LA VN 0 dans & est associée une suite exacte longue :
. _‘)yanﬁ)anﬁ)gan/Iiﬁn+lM/_>

ou les morphismes 6: F"M" — Z"+t1 M’ sont obtenus par I'application du fonc-

teur #° au morphisme §[n]: M'[n] — M"[n + 1]. C’est ainsi que 'on munit par

exemple la suite des foncteurs H"(X, —) pour X un site d’une structure de d-foncteur

[Grothendieck, 1957, § 2.1], lequel est universel, ce qui permet de comparer des classes

(xiv) On prendra garde au fait que [SGA 4 xvi1 1.1] utilise une convention opposée.
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de cohomologie construites par des procédés faisant intervenir différentes construc-
tions du d-foncteur universel (cf. §4.8).

4.3. — Soit ¥ est un faisceau de groupes abéliens sur un site X et .7 est un ¥-torseur
(2 gauche). On se propose de définir une classe [7] € H (X, 9).

4.8.1. — 1l existe un monomorphisme de faisceaux abéliens i: ¥ — & et un
morphisme ¥-équivariant a: J — & ou lon fait agir 4 sur &/ par la formule
g.a = i(g9) + a. L’image de o dans le quotient &/¥ s’identifie & un élément
s € HY(X, o7 /%). On note [7] := 6(s) € H'(X,¥) 'image de s par le morphisme de
bord §: H*(X, o7 /%) — H}(X,¥) associé & la suite exacte 0 - ¥ — o — o/ /9 — 0
(cf. [SGA 45 [Cycle] 1.1.1]).

4.8.2. — Si & — e est un épimorphisme de faisceaux d’ensembles (ou e est ’objet
final) et s: & — 7 un morphisme (que l'on considére comme une section de Z au-
dessus de &), en considérant 7 comme un torseur-¢ (i.e. comme un torseur & droite
sous ¢) en faisant agir ¢ & droite sur  par la formule t.g := g.t (ce qui est possible
puisque ¥ est commutatif), il existe un (unique) morphisme v: & x & — ¥ tel que
pri(s) = pri(s).y : c’est le 1-cocycle associé au torseur & droite J *¥). En suivant
les conventions de [Conrad, 2000, § 1.3] convenablement généralisées pour s’appliquer
aux sites et pas seulement aux espaces topologiques, le 1-cocycle v est un 1-cocycle
de Cech associé au recouvrement & — e ; il définit donc un élément de H!(X,%) dont
on peut montrer qu’il coincide avec 1’élément [.7] défini en 4.3.1.

4.83.8. — 11 est également intéressant de disposer d’une troisiéme construction
de [7], en identifiant cette fois H!(X,¥) au groupe des morphismes Z — ¥[1]
dans la catégorie dérivée des faisceaux abéliens. Pour cela, avec les mémes nota-
tions qu’en 4.3.2, on introduit le faisceau d’ensembles simplicial Cvl(éa ) défini par
C(E), = Hom({0,...,n},&) ~ &' pour tout n € N, la structure simpliciale
étant évidente. En notant Z— le foncteur adjoint & gauche du foncteur d’oubli des
faisceaux abéliens vers les faisceaux d’ensembles, on obtient un faisceau abélien
simplicial ZC(&) qui donne naissance & un complexe de faisceaux abéliens (concentré
en degré négatifs), que ’on notera encore abusivement Z(VJ'(éa ) :

—>Z(é33) dO—il)+d2 Z(ga) do;d1 ZE 50— -

La projection & — e induit le morphisme d’augmentation e: ZC(é” ) — Z, lequel est
un quasi-isomorphisme. On peut alors décrire [7] € H!(X,¥) comme étant le zigzag

(xv) Cest la formule que l'on utiliserait pour définir le 1-cocycle associé & un torseur 3 droite sous
un faisceau de groupes non-nécessairement commutatif.
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suivant :
-2 0 : 0
[ i S t
-1 0 Z(&%) 9
(ere)
|
0 Y/ VA3 0
Z <——7C(&) —=9[1].
4.4. — Un bicomplexe est une famille (K?7), s)ez> d’objets d'une catégorie abé-

lienne &/ munis de différentielles horizontales dp: KP? — KPt14 et verticales
d,: KP? — KP9t1 telles que dy odp, =0, dyod, = 0 et d, ody, = dj, od,,. Le complexe
simple associé 4 K** est défini par (Tot K**)" := @, ,_, K77 et la différentielle
(Tot K**)™ — (Tot K**)"*1 est définie sur le terme K¢ (pour p + ¢ = n) comme
étant dj, + (—1)Pd,: KP9 — KPTh4 @ KP9t! C (Tot K**)"*!. (Le complexe simple
défini ci-dessus est celui défini en termes de sommes. Il existe aussi une version définie
en utilisant des produits plutét que des sommes. Dans les deux cas, il convient de
s’assurer que les sommes ou produits considérés sont représentables dans 7.)

4.5. — Le produit tensoriel de complexes est défini de la fagon habituelle. Si K
et L sont deux complexes (de modules, ou de faisceaux de modules), (K ® L)" :=
Dptq=nKP ® L7 et la différentielle est définie par la formule d(z ® y) = dz @ y +
(=1)"*lz ® dy ot |z| est le degré de x (autrement dit, K ® L est le complexe simple
associé au bicomplexe évident (K? ® L?), oyez2, cf. 4.4).

4.5.1. — L’automorphisme de symétrie K® L ~ LY K envoie z®y sur (—1)|“|'|y|y®.1;.
(L’isomorphisme d’associativité (K @ L) ® M ~ K ® (L ® M) ne fait en revanche
pas intervenir de signe.) On peut alors remarquer que si K est un complexe et i € Z,
alors K ® (A[i]) s’identifie canoniquement & K décalé de ¢ crans vers la gauche sans
changement du signe des différentielles. En revanche, on peut observer que Afi] ® K
s’identifie tout & fait canoniquement & K[z]. (Ici, A est un anneau (commutatif) de
coefficients tout a fait arbitraire.)

4.5.2. — Supposons que a: M’ ® M" — M soit un morphisme de complexes de
A-modules. On définit pour tout (7,j) € Z% un morphisme a: H'(M') @ H/ (M") —
Hi+J(M) de la fagon suivante. Si z € M" et y € M'7 sont des cocycles, alors z ®y €
M"" @5y M" C (M' ® M")*J est un cocycle dont on peut considérer l'image par
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a dans M**J : on définit ainsi I'image de [z] ® [y]. Avec les notations précédentes, si
on interpréte x, y et a(z ® y) comme des morphismes de complexes z: A — M'[i] =
Ali] @A M, y: A — M"[j] = Alj] @ M" et a(z ® y): A — M[i + j], le diagramme
suivant est commutatif :

(-1¥

A - Aoa A —=2Y  (A[i] @ M) ®4 (Alj] 4 M)
a(x®y) LN
Mi + j] =—— Ali] @4 Alj] ©a M <2 Ali] @4 Alj] @4 (M’ @4 M").

(On prendra garde a la présence de la multiplication par (—1)¥ en haut & gauche!
Elle est liée & Iisomorphisme de symétrie intervenant & droite.) Cette construction
s’étend formellement au cas ou a serait un morphisme M’ ®% M” — M dans D(A)
(cf. XVII-8 pour la construction du produit tensoriel dérivé sur la catégorie dérivée
totale).

4.5.8. — Soit X un site muni du faisceau d’anneaux constant A. On peut appliquer la

construction 4.5.2 au morphisme de Kiinneth a: RI['(X, A) é) ART(X,A) — RI'(X,A)
(cf. XVII-12.4.2). On définit ainsi le produit HY(X,A) x H/(X,A) — H*J(X,A). Si
u € HY(X,A) et v € H/(X,A), on note uv (ou u Uv) le produit de deux classes. Ce
produit vérifie la relation vu = (—1)Yuv.

Il est également possible de décrire ce produit en termes de la composition de
morphismes dans D(X, A). Identifions u € H*(X, A) et v € H/ (X, A) & des morphismes

L
w: A — Afi] et v: A — A[j] dans D(X, A). Le morphisme A ~ A® A “2” Ali]]® A[j] ~
A[i+ j] correspond a une classe dans H**7 (X, A) qui est égale non pas 4 uv en général,
mais & (—1)¥uv, c’est-a-dire vu. En utilisant la factorisation uév = (Idélév) ) (uQ[Z‘)Id),
on montre que vu = (—1)Yuv peut aussi étre décrit comme la composée A 5 Al[i] vl
A[i + j]. Une description plus élégante peut étre obtenue en identifiant u € H'(X, A)
4 un morphisme u': A[—i] — A et v € H/(X,A) & un morphisme v’: A[—j] — A.
Le produit uv € H**7(X,A) correspond alors, sans signe parasite, au morphisme

’ L ’
A= + j)] ~ A[=i] ® A[-j] “2” A. (On notera que cette description du U-produit
est particuliérement adaptée a la définition des variantes & support de ces structures
multiplicatives.)

4.6. — On s’intéresse dans ce paragraphe aux conventions portant sur la cohomologie
des groupes et sur le groupe fondamental étale.

4.6.1. — Soit G un groupe. Soit A un groupe abélien (que 'on munit de Paction
triviale de G). Nous avons besoin de préciser l'identification H(G, A) ~ Hom(G, A4)
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pour le premier groupe de cohomologie du groupe (discret) G. On définit ici la coho-
mologie du groupe G comme étant celle du topos BG des G-ensembles (& gauche).
Soit ¢: G — A un homomorphisme. On définit un ensemble A¥ := A que 'on munit
d’une action a gauche de G par la formule g.a := ¢(g) + a et d’une action & droite de
A par a.a’ :== a + a'. L’ensemble A% muni de l'action a4 gauche de G peut ainsi étre
considéré comme un faisceau sur le topos BG. Si on tient aussi compte de l’action a
droite de A, on fait de A¥ un torseur a droite sous le faisceau constant A sur le topos
BG. Comme A est abélien, A? peut aussi étre vu comme un torseur a gauche sous
A sur BG. D’aprés 4.3, A% posséde une classe [4¥] € H(BG, A) = H}(G, A). L’iso-
morphisme canonique Hom(G, A) = H!(G, A) est celui qui & ¢ associe [4?]. Via la
comparaison entre la cohomologie et la cohomologie de Cech (cf. 4.3.2), cette définition
est compatible avec I'identification de la cohomologie du groupe G calculée en termes
de cochaines (cf. [Serre, 1968, § 3, Chapitre VII]) et la cohomologie de Cech associée
au recouvrement donné par 1’épimorphisme EG — BG ou BG est ici 'objet final du
topos BG et ot EG est le faisceau sur BG correspondant & ’ensemble G muni de 'ac-
tion & gauche de G par multiplication. On peut observer que la multiplication & droite
sur G induit sur EG une structure de torseur & droite sous le groupe constant G dans
le topos BG. Dans le cas ou G est commutatif, la classe de ce torseur [EG] correspond
a l'identité de G wvia les identifications Hom(G, G) ~ H!(G, G) = H!(BG, G).

4.6.2. — Soit G un groupe fini. Soit X un topos. Soit .7 un faisceau d’ensembles
sur X muni d’une structure de torseur a droite sous le groupe G. Pour tout faisceau
d’ensembles F' sur X, on note u,F := Homx(Z,F) et cet ensemble hérite d’une
structure de G-ensemble (& gauche) provenant de ’action sur 7. Ce foncteur wu,
est le foncteur image directe pour un morphisme de topos u: X — BG et on a un
isomorphisme canonique de torseurs a droite  ~ v*EG. Il vient ainsi que la donnée
d’un morphisme de topos u: X — BG équivaut & celle d’un torseur & droite sous G
sur X.

4.6.3. — Soit X un schéma noethérien connexe muni d’un point géométrique Z.
On dispose du groupe fondamental étale 7¢t(X,%), cf. [SGA1 v 7]. La catégorie
des 7t (X, T)-ensembles (& gauche) discrets s’identifie & une sous-catégorie pleine de
la catégorie des faisceaux d’ensembles sur Xg; (cf. XVII-7.2 pour plus de détails).
Ce foncteur d’inclusion est le foncteur image inverse pour un morphisme de topos
canonique X — Bné*(X,Z). Soit Y — X un revétement étale galoisien. Notons
G := Autp, _Algebre(Oy) : C’est le groupe opposé au groupe des automorphismes du
X-schéma Y. Le schéma Y est ainsi naturellement muni d’une action & droite de G
qui en fait un torseur & droite sous G au-dessus de Xg. On dispose donc d’aprés
4.6.2 d’'un morphisme de topos X¢; — BG, lequel est canoniquement isomorphe au

4 B ;
composé Xg — Bnét(X,Z) =5 BG pour p: 7%(X,Z) — G un morphisme que nous
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allons maintenant définir et qui dépend du choix d’un point fermé 7 dans la fibre
géométrique Yz. Soit v € m$*(X, 7). Cet élément +y agit (a gauche) sur la fibre Yz sur
laquelle G agit aussi (& droite), et ces deux actions commutent. On note p(vy) € G
lunique élément tel que 7.5 = 7.p(7).

4.7. — On définit ici le foncteur Hom (hom. interne) sur les complexes (de faisceaux
étales de A-modules sur un schéma X) comme étant le bifoncteur défini par un iso-
morphisme d’adjonction « cher & Cartan » ou le Hom est le hom. dans la catégorie
des complexes :

Hom(K,Hom(L, M)) ~ Hom(K ® L, M).

Cette adjonction s’enrichit tautologiquement en un isomorphisme « cher a Cartan »
énoncé en termes du hom. interne :

Hom(K,Hom(L,M)) ~ Hom(K ® L, M).

4.71. — Si K, L et M sont des complexes, I'identité de Hom(K, L) induit par
adjonction un « morphisme d’évaluation » Hom(K,L) ® K — L auquel on peut
appliquer M ® — pour obtenir un morphisme M ® Hom(K,L) ® K — M ® L, lequel
induit par adjonction un morphisme canonique M @ Hom(K, L) - Hom(K,M ® L).
En particulier, pour M = A[m| avec m € Z, ce morphisme est un isomorphisme
canonique Hom(K, L)[m] ~ Hom(K, L[m)).

4.7.2. — Si L et N sont des complexes, on peut définir un morphisme
~v.: Hom(L,A) ® N — Hom(L, N)

de la facon suivante. L’identité de Hom(L, A) induit par adjonction un morphisme
ev: Hom(L,A) ® L — A qui permet de définir un morphisme :

Hom(L,A) ® N® L = Hom(L,A)® L& N “SY A@ N = N,

lequel définit par adjonction le morphisme voulu Hom(L,A) ® N — Hom(L, N).
Soit m € Z. L’isomorphisme évident Z[—m] ® Z[m] = Z induit par adjonction un
isomorphisme Z[—m] = Hom(Z[m],Z). La construction v, précédente appliquée a
L = Z[|m] fournit ainsi un morphisme 7,,: N[-m] — Hom(A[m], N) qui est un
isomorphisme. Si N = Hom(K, L) avec K et L deux complexes, on obtient un iso-
morphisme (encore noté v,,) :

Hom(K, L)[—m] 7:»'" Hom(A[m|,Hom(K, L)) ~ Hom(A[m] ® K, L) ~ Hom(K[m], L).

On définit a,,: Hom(K[m|,L) = Hom(K,L)[-m] par la formule o, :=
(~1)=F
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4.7.8. — Dans [Conrad, 2000, § 1.3], Conrad définit explicitement le foncteur Hom.
Sa construction est compatible & celle définie ici par adjonction puisqu’elle satis-
fait un tel isomorphisme d’adjonction : cet isomorphisme est donné degré par de-
gré par des isomorphismes d’adjonctions chers & Cartan au niveau du hom. interne
dans la catégorie des faisceaux, et ce sans ajout de signes. Avec ces conventions,
les isomorphismes de « commutation » de Hom(—,—) aux foncteurs —[m] en les
deux variables (4.7.1) et 4.7.2 sont les mémes que ceux de [Conrad, 2000, §1.3].
En dérivant ce foncteur (cf. XVII-8 pour plus de détails), on obtient un bifoncteur
RHom: D(Xg,A)°®® x D(Xg,A) — D(Xg,A) qui est « triangulé par rapport aux
deux variables ». Ceci signifie notamment que pour tout K € D(Xg, A), le foncteur
RHom(K,—): D(Xg,A) — D(Xg, A) est triangulé et que pour tout L € D(Xg;, A),
le foncteur R Hom(—, L): D(X¢;, A)°P® — D(Xet, A) est triangulé.

4.7.4. — La derniére assertion de 4.7.3 signifie que si K’ = K L g 2, K'[1] est
un triangle distingué de D(Xg, A), le triangle suivant
RHom(K',L)[~1] 5> RHom(K", L) > RHom(K, L) %> RHom(K’, L)

obtenu en appliquant le foncteur R Hom(—, L) et en utilisant o; : R Hom(K'[1], L) =
RHom(K’, L)[—1], est antidistingué dans D(Xg, A), ce qui signifie que le triangle
suivant est distingué dans D(X¢, A) :

RHom(K',L)[-1] =% RHom(K",L) %> RHom(K, L) % RHom(K’, L)

Il est également vrai que le triangle suivant est distingué, ou ’on utilise ici implicite-
ment o_;: RHom(K”[-1],L) = RHom(K",L)[1] :

RHom(K”,L) 5 RHom(K, L) > RHom(K’, L) "= RHom(K", L)[1]
Considérons ce morphisme ¢ := y[—1]*: RHom(K’, L) M=l RHom(K", L)[1].
Pour tout entier n € Z, le morphisme ¢ induit aprés application du foncteur HZ, (X, —)
un morphisme de groupes abéliens, ou le Hom est le groupe abélien des morphismes
dans la catégorie D(Xgt, A) :

6™: Hom(K', L[n]) —» Hom(K", L[n + 1]).

On peut alors observer que si ¢ € Hom(K', L[n]), alors 6™(p) est le morphisme
_1\n+1

composé K" =0 K'[1] i Kn+1].

475 —SiLSLALS L'[1] est un triangle distingué dans D(Xg,A), on

dispose aussi de suites exactes longues pour tout K € D(Xg;, A) :

aln|,

. = Hom(K, L'[n]) “™* Hom(K, Ln]) "™ Hom(K, L"[n]) % Hom(K, L'jn + 1]) — - --
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[s7

ot pour tout ¢ € Hom(K, L"[n]), 6(¢) =¢c[n]op. Si K' > K LAY QR K'[1] est un
triangle distingué dans D(Xg;, A), on peut considérer le carré suivant :

Hom (K", L"[n + 1]) —— Hom(K", L'[n + 2])

| |

Hom(K’, L"[n]) —2— Hom(K', L'[n + 1])

L’interprétation des morphismes § en termes de composition dans D(Xg;, A) montre
que ce carré est anticommutatif !

4.7.6. — Un cas particulier de 4.7.4 qui nous intéressera est le suivant. Si Z est un
sous-schéma fermé d’un schéma X et que U = X — Z, on dispose d’une suite exacte
courte canonique de faisceaux étales sur X :

0-Z2Zy >Zx -7z — 0.
D’aprés 4.7.4, on dispose d’une suite exacte longue pour tout L € D(Xg, A) :
- = H (X, L) = HE(X, L) — HE(U, L) > HE G (X, L) — -

Supposons que L est un complexe borné inférieurement formé de faisceaux injectifs.
Soit une classe [y] € HZ, (U, L) représentée par une section vy € I'(U, L") telle que
dy =0 € T(U, L""). Le faisceau L™ étant injectif, il existe une section ¥ € I'(X, L")
telle que 4|y = . La section d¥ € I'(X, L™*+1) s’annule sur U, donc définit un élément
dy € Tz(X,L™"!) qui est évidemment un (n + 1)-cocycle. On a alors §([v]) = [d7] €
Hy(X, ).

Si on suppose maintenant que L = ¢ ou ¥ est un faisceau abélien sur X, il est
utile de connaitre une description explicite du morphisme §: H*(U,¥) — HL(X,9).
Notons tout d’abord que 'on peut généraliser la construction 4.3.1 : si 7 est un
@-torseur sur X4 muni d’une section s € J(U), on dispose d’un élément [T, s] €
H} ,(X,¥) (induisant [7] € H{ (X, 9)). Il est aisé de montrer que si s € 4(U) =
HO(U,%), alors, si on note (¢, s) le 9-torseur trivial (¥ agissant sur lui-méme par
addition) muni de la section s, on a [, s] = §(s) € Héyét(X,g).

4.7.7. — Si K et L sont deux objets de D(X4, A), on a déja construit (cf. 4.7.1)
un morphisme Hom(K,L) ® K — L. En utilisant I"isomorphisme de symétrie, on
en déduit un morphisme K ® Hom(K, L) — L qui correspond par adjonction & un
morphisme K — Hom(Hom(K, L), L) dit de « bidualité ». Il satisfait aux mémes
régles de signe que celles énoncées dans [Conrad, 2000, § 1.3]. L’objet de ’exposé XVII
sera d’étudier une version dérivée de cette construction...
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4.8. — Ce paragraphe est une mise en garde & propos de ’ambiguité du sens que pour-
rait revétir un énoncé disant deux constructions cohomologiques utilisant des conven-
tions de signes différentes sont égales ou bien opposées. Considérons par exemple la ca-
tégorie dérivée D¥ (X)) des faisceaux abéliens sur un site X. Pour tout faisceau abélien
&, on peut noter H(X,.#) := Homp+(x)(Z, #[i]). En utilisant la construction 4.2,
on obtient un d-foncteur (H*(X,—),d). Posons maintenant, H (X, %) := H{(X,.%)
et notons § := —4. Bien sdr, (I:I*(X , —),3) est aussi un O-foncteur : c’est celui que
I'on obtient naturellement en utilisant les conventions de [SGA 4 xvirI 1.1].

Le caractére universel de ces deux d-foncteurs induit un isomorphisme canonique
de d-foncteurs ¢: (H*(X,—),8) = (H*(X,—-),0) : en degré i, il est donné par la
multiplication par (—1)%.

Admettons qu’une certaine construction cohomologique utilisant le premier 0-fonc-
teur produise une classe z € H*(X,.#) et qu'une autre construction utilisant le
deuxiéme produise une classe y € H' (X, Z). L’énoncé « les classes de cohomologie
et y sont égales » peut alors raisonnablement prendre deux sens différents :

(a) Comme ensemblistement, H*(X,.#) et H'(X,.#) sont tous les deux égaux a
I'ensemble des morphismes Z — .#[i] dans D™ (X), on peut comprendre que
y=1;

(b) Si on identifie H(X,.%) et H{(X,.#) via 'isomorphisme de d-foncteurs ¢, on
peut comprendre que y = (—1)%z.

On notera qu’en degré pair, les deux acceptions coincident. (Sinon, le rédacteur re-
commande d’utiliser le sens (b).)
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