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E X P O S E X V I 

C L A S S E S D E C H E R N , M O R P H I S M E S D E GYSIN, 

P U R E T É A B S O L U E 

Joël Riou 

Dans ces notes, on présente la nouvelle démonstration par Ofer Gabber du théo­

rème de pureté cohomologique absolue, annoncée dans [Gabber, 2005b]. La section 1 

rappelle la construction des classes de Chern en cohomologie étale. Celles-ci servent 

dans la section 2 qui consiste en la construction et l'étude des propriétés des mor­

phismes de Gysin associés aux morphismes d'intersection complète lissifiables. Dans la 

section 3, ces morphismes de Gysin sont utilisés pour donner une formulation précise 

du théorème de pureté absolue (théorème 3.1.1). La démonstration du théorème de 

pureté (différente de celle rédigée dans [Fujiwara, 2002]) s'appuie notamment sur les 

résultats de géométrie logarithmique établis dans les exposés VI, VIII et X. On s'est 

efforcé de faire attention aux signes dans les calculs cohomologiques : les conventions 

utilisées et quelques remarques les concernant sont détaillées dans la section 4. 

Dans tout cet exposé, on fixe un entier naturel n > 1. Tous les schémas seront 

supposés être des schémas sur Spec (Z [^] ) . On note A le faisceau d'anneaux constant 

de valeur Z /nZ , A(l ) le faisceau des racines n-ièmes de l'unité (pour la topologie étale) 

et A(r) ses puissances tensorielles, auxquelles on peut donner un sens pour tout r G Z. 

1. Classes de Chern 

Dans cette section, on rappelle la construction des classes de Chern des fibres vec­

toriels sur des schémas généraux à valeurs dans la cohomologie étale. On s'appuie sur 

le calcul de la cohomologie étale des fibres projectifs de [SGA5 vu 2] et sur la mé­

thode de [Grothendieck, 1958a]. Les démonstrations sont parfois différentes de celles 

de [SGA 5 vil 3] : on s'est efforcé de donner une présentation aussi « économique » 

que possible. 
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302 EXPOSÉ XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETÉ ABSOLUE 

À la différence de l'exposé oral qui utilisait un langage géométrique, dans ces notes, 

un fibre vectoriel est un Module S localement libre de rang fini et le fibre projectif de 

S est le fibre des hyperplans défini dans [EGA n 4.1.1] : P(<?) = Proj(S*<f) où S*<? 

est l'Algèbre symétrique de S. 

1.1. Définition. — Soit X un Z [^]-schéma. Soit 5£ un fibre en droites sur X. En 

faisant agir les fonctions inversibles par multiplication sur les sections inversibles de 

j£f, on munit le faisceau des sections inversibles de j£f d'une structure de torseur sous le 

schéma en groupes G m . La classe d'isomorphisme de Jzf définit donc un élément dans 

Hl t (X, G m ) . On note ci(«5f) G H | t ( X , A(l ) ) l'image de cet élément par le morphisme 

de bord S : Hï t (X, G m ) —> H? t (X, A(l ) ) déduit de la suite exacte courte de Kummer ( i ) : 

0 _> A(i) - G m H G m - 0. 

Si j£f et Jzf' sont deux fibres en droites sur X, on a la relation d'additivité ( i i ) : 

ci(JSf ® J?) = a(Sf) + a(Sf') G H 2 (X , A( l ) ) . 

Notons que les classes de Chern de fibres en droites résident dans les degrés pairs 

de la cohomologie étale, elles commutent donc avec toutes les classes de cohomologie. 

Notons aussi que si / : Y —• X est un morphisme et j£f un fibre en droites sur X , 

alors f*(c1{J?)) = c1(f*S>). 

1.2. Théorème (Formule du fibre projectif). — Soit X un Z [^] -schéma. Soit S un fibre 
vectoriel de rang constant r sur X. On note TC: P ( ^ ) —• X le fibre projectif de (o . On 

pose £ = c i ( ^ ( l ) ) G H2(P(<f), A(l))<m>. Alors, les puissances f G H2*(P(<f), k(ï)) de 

Ç définissent un isomorphisme dans D + (Xét ,A) : 

r-l 
( 1 , f - 1 ) : 0 A ( - i ) [ - 2 i ] ^ R 7 r . A 

D'après le théorème de changement de base pour un morphisme propre, on peut 

supposer que X est le spectre d'un corps algébriquement clos k. On se ramène ainsi au 

calcul de l'algèbre de cohomologie étale des espaces projectifs sur k, cf. [SGA5 vu 2]. 

1.3. Théorème. — // existe une unique manière de définir, pour tout Z [^] -schéma X 

et tout fibre vectoriel S, des éléments ci(S) G H?J(X, A(i)) pour tout z G N appelés 

t1) Les conventions de signes utilisées dans cet exposé sont précisées dans la section 4 (voir notamment 
4.3 pour la classe de cohomologie associée à un torseur et 4.2 pour le morphisme ô). 
(") Il existe des théories cohomologiques « orientées » pour lesquelles cette propriété de la première 
classe de Chern n'est pas satisfaite, cf. [Morel & Levine, 2001]. 
(Ui) Le faisceau est le faisceau fondamental sur P(<f) : c'est le quotient inversible de ir*é? par 
l'hyperplan universel. 

ASTÉRISQUE 363-364 



1. CLASSES DE CHERN 303 

classes de Chern de sorte que si l'on définit la série formelle Ct(S) = 2i>o c*(^)^> 
on ait les propriétés suivantes : 

— la série formelle ct(£) ne dépend que de la classe d'isomorphisme du fibre vectoriel 

é> sur le Z [̂ ] -schéma X ; 

— si f : Y —> X est un morphisme de Z [^] -schémas et S un fibre vectoriel sur X, 

alors F{ct{£)) = ctU*£); 

— si 0 —• S' —• S —> S" —* 0 est une suite exacte courte de fibres vectoriels sur un 

Z [^\-schéma X, on a la relation de Cartan-Whitney : 

ct(ê) = cM')ct{S") ; 

— si Jïf est un fibre en droites sur un Z [̂ ] -schéma X, la classe ci(«Sf) est celle de 

la définition 1.1 et 

ct(Sf) = l + c1(Sf)t. 

On a alors les relations c${$) = 1 et Ci(£) = 0 pour i > rang S pour tout fibre 

vectoriel S sur un Z [^-schéma X. 

La démonstration utilise plusieurs constructions géométriques : 

1.4. Proposition (Principe de scindage I). — Soit X un Z [^]-schéma. Soit S un fibre 

vectoriel de rang r. On note 7r: Drap(<f) —• X le fibre des drapeaux complets de S. 

Les propriétés suivantes sont satisfaites : 

— le fibre vectoriel 7r*(o admet une filtration (canonique) 0 = C C • • • C 

= K*$ par des fibres vectoriels de sorte que pour tout entier 1 < i < r, le 

quotient = soit un fibre en droites ; 

— le morphisme canonique A —> R,7r*A est un monomorphisme scindé dans 

D + ( X é t , A ) . 

La seule propriété non triviale réside dans le fait que A —> Rn+A soit un monomor­

phisme scindé. En remarquant que la projection Drap(^) —> X peut s'écrire comme 

un composé de r projections de fibres projectifs, ceci se déduit de la formule du fibre 

projectif (théorème 1.2) ( i v ) . 

7.5. Proposition (Principe de scindage II). — Soit X un Z [^] -schéma. Soit (E) : 0 —• 

S1 —> S <§" —» 0 une suite exacte courte de fibres vectoriels surX. On note Sect(E) 

le X-schéma défini par le fait que pour tout X-schéma f:Y—>X, l'ensemble des 

X-morphismes Y —> Sect(E) s'identifie naturellement à l'ensemble des sections de 

la surjection de fibres vectoriels f*{p) : f*£ —> f*£" sur Y(v). Le Y-schéma Sect(E') 

(1V) Plus précisément, Grothendieck a montré (cf. [Grothendieck, 1958b], ou [SGA6 vi 4.6] pour le 
même argument dans le cas de la K-théorie algébrique) que la théorie des classes de Chern permettait 
de calculer l'algèbre de cohomologie des fibres de drapeaux, fussent-ils incomplets. 
(v) Je remercie Dennis Eriksson de m'avoir signalé cette construction. 
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304 EXPOSÉ XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETÉ ABSOLUE 

est naturellement muni d'une structure de torseur sous le Y-schéma en groupes vec­

toriel d'homomorphismes H o m ( ^ / / , ^ / ) . Notons TT: Sect(E) —> X la projection. Les 

propriétés suivantes sont satisfaites : 

— Vimage inverse par 7r: Sect(E') —> X de la suite exacte de fibres vectoriels (E) 

est (canoniquement) scindée; 

— le morphisme canonique A —• R7r*A est un isomorphisme dans D + (Xét , A). 

L'existence de Sect(E) est évidente, la question étant de nature locale sur X. 

Localement pour la topologie de Zariski sur X , la projection n est la projection 

depuis un espace affine, l'isomorphisme A RÎT*A résulte alors de l'invariance par 

homotopie de la cohomologie étale pour les Z [^]-schémas [SGA 4 xv 2.2]. 

Démontrons le théorème 1.3. Grâce aux propositions 1.4 et 1.5, l'unicité est évi­

dente. Il s'agit donc de construire une théorie des classes de Chern satisfaisant les pro­

priétés demandées. Soit ê un fibre vectoriel (que l'on peut supposer de rang constant 

r) sur un Z [^]-schéma X. On considère le fibre projectif P(<?) sur X. On note 

£ = ci(û{l)). D'après la formule du fibre projectif (théorème 1.2), il existe d'uniques 

éléments, notés ci(S
>) e H 2 î ( X , A(z)) pour 1 < i < r tels que l'on ait la relation 

T - c X { S + c2(é?)C-2 + ••• + {-l)rcr{£) = 0 € H 2 P ( P ( ^ ) , A(r)). 

On pose CQ{S) = 1 et Ci(<§) = 0 pour i > r. Dans le cas où S est un fibre en droites, 

P(S') ~ X et ~ (o, ce qui montre que cette définition étend la précédente pour 

les fibres en droites. La seule propriété non évidente est la formule de Cartan-Whitney. 

Par principe de scindage (propositions 1.4 et 1.5), il suffit d'établir la formule suivante : 

1.6. Lemme. — Soit X un Z [^]-schéma. Soit {^i)i<i<r une famille finie de fibres 

en droites sur X, soit <§ = @i<i<r leur somme directe. Dans H 2 R ( P ( ^ ) , A(r)), on 

a la relation : 
r 

] 7 ( £ - c i ( ^ ) ) = o 

i=l 

où £ = ci(^(l)). Autrement dit, 

r 

1=1 

L'argument qui suit est inspiré de [Panin & Smyrnov, 2003]. Pour 1 < i < r, on 

note Hi ~ l'hyperplan projectif de P(<^) défini par l'inclusion —• $-

Notons 7r: P(S') —> X la projection. Le morphisme canonique 7r*Ĵ  —> induit 

un isomorphisme sur l'ouvert complémentaire de Hi dans P(<^). On en déduit que 

l'élément £ — Ci(J^) de H 2 (X , A(l ) ) peut être relevé en un élément Xi du groupe de 
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2. MORPHISMES DE GYSIN 305 

cohomologie à supports H2^. (X, A ( l ) ) ( v i ) . Le produit des éléments xi vit naturellement 

dans le groupe de cohomologie à support Hpr

 H.(P(-E?), A(z)) qui est nul puisque 

l'intersection de ces r hyperplans est vide ; on en déduit la formule voulue par oubli 

du support. 

7.7. Proposition. — Soit S un fibre vectoriel sur un Z [̂ ] -schéma X. Pour tout entier 

naturel i, on a l'égalité : 

Ci{^) = {-lYciW ; 

autrement dit, on a une formule de changement de variables : 

cÉ(<fv) = c_t(<r). 

Grâce à la relation de Cartan-Whitney et au principe de scindage, on peut se 

ramener au cas où S est un fibre en droites. Cela résulte alors du fait que C\ : Pic(X) —> 

H 2 (X , A(l)) soit un homomorphisme de groupes. 

2. Morphismes de Gysin 

Étant donné un morphisme d'intersection complète X ^ S entre Z [^]-schémas 

vérifiant certaines hypothèses techniques, on va construire un morphisme de Gysin 

Cl / : A —> f?A où f1 = fl(—d)[—2d] (d est la dimension relative virtuelle de / ) . Ces 

morphismes de Gysin seront compatibles à la composition des morphismes d'intersec­

tion complète. 

L'essentiel de cette section est consacrée à la construction de ces morphismes de 

Gysin dans le cas des immersions régulières. Le morphisme trace permettra de faire 

la construction dans le cas des morphismes lisses. Ces deux définitions se recolleront 

pour donner la définition 2.5.11 dans le cas général et le théorème 2.5.12 établira la 

compatibilité à la composition de ces morphismes de Gysin. 

2.1. Première classe de Chern d'un pseudo-diviseur. — Soit jSf un fibre en droites sur un 

Z [^] -schéma X, Z un fermé de X et U l'ouvert complémentaire. On suppose donnée 

une section inversible s : â\j Au couple («if, s) est canoniquement associée une 

classe ci («if, s) G H | ( X , A(l)) induisant ci(Jf) G H 2 (X , A(l)) par oubli du support 

(construire un élément de H^(X, G m ) et utiliser la suite exacte de Kummer). 

La classe ci(«if, s) correspond à un morphisme Az = Ax/Au —> A ^ ( l ) [2] dans 

D + (Xé t , A). En « composant » un tel morphisme avec une classe de cohomologie de Z 

représentée par un morphisme Az —• Az(q) \p] (cf. 4.5.3), il vient que ci(j£f, s) induit 

des morphismes de Gysin 

G y s ( ^ s ) : H"(Z, A(<?)) - H ^ + 2 ( X , A(q + 1)). 

(vl) Pour le moment, peu importe de fixer un relèvement canonique. 
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306 EXPOSÉ XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETÉ ABSOLUE 

2.1.1. Définition. — Si Z —• X est une immersion régulière de codimension 1 définie 

par un Idéal (inversible) J, on pose G y s Z c X = - G y s ( J M x _ z ) = G y s _ ( ^ ^ x _ z y 

On a noté ici — (y, lx-z) l'opposé du pseudo-diviseur ( Ĵ , l x - z ) , cf. [Fulton, 1998, 

§2.2]. Via les identifications usuelles, — (J ,̂ lx-z) correspond au diviseur effectif Z. 

2.2. Classes fondamentales généralisées. — Pour étudier la compatibilité à la compo­

sition des classes fondamentales définies dans [Fujiwara, 2002, § 1] dans le cas des 

immersions régulières (cf. [SGA6 Vil 1.4]), Ofer Gabber définit une classe fondamen­

tale généralisée pour une immersion fermée Y —• X définie par un Idéal de type fini 

. Cette construction n'est plus limitée aux immersions régulières et est compatible 

aux changements de bases arbitraires, mais elle dépend d'une donnée supplémen­

taire, à savoir celle d'un fibre vectoriel sur Y se surjectant sur le faisceau conormal 

"X/Y = P/ P2 

2.2.1. Éclatement modifié. — Soit Y —* X une immersion fermée entre Z [^-sché­

mas définie par un Idéal de type fini J>. On note U l'ouvert complémentaire. Soit 

S —» JVX/Y u n épimorphisme de Modules sur Y où <§ est un Module localement libre 

de rang fini. On définit une @x-Algèbre graduée quasi-cohérente srf+ par produit fibre 

de façon à avoir un carré cartésien de ^x-Modules, pour tout entier naturel n : 

Stfn ^Jn 

M y 
Sn£ ^ j^n^n+i 

où l'algèbre symétrique S*<f est prise sur le faisceau d'anneaux ûy = ûxl'^ 

2.2.1.1. Définition. — On pose Éc ly^ (X) = P r o j ( ^ ) et on note 7r: Écly^(X) —> X 

la projection. 

2.2.1.2. Remarque. — Si Y —» X est une immersion fermée régulière et que S —> 

JYX/Y est un isomorphisme, Écly^(X) s'identifie à l'éclaté de Y dans X. C'est ce cas 

particulier que l'on généralise ici en vue d'obtenir une construction compatible aux 

changements de base. 

2.2.1.3. Proposition. — L'Algèbre &/Q est isomorphe à ûx, les Modules g/n sont de 

type fini, l'Algèbre graduée est engendrée par et on a un isomorphisme cano­

nique de Ûy-Algèbres graduées g/* (ûx/^) —* S*<f. 

L'assertion concernant SZ/Q est tautologique. Soit n un entier naturel. Comme —> 

jpn jjrn+i e g j . u n é p i m o r p h i s m e } i a projection &/n —> Sn<f est aussi un épimorphisme 

et si on note Xn son noyau, on a un isomorphisme Xn J^ n + 1 . Par dévissage, il en 

résulte que sén est un Module de type fini. 
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2. MORPHISMES DE GYSIN 307 

Puisque SnS est un ^x /^ -Modu le , Xn contient J • sin. Comme S J j J2 

est un épimorphisme, le morphisme Sn<f —• Jn j j^71^1 est aussi un épimorphisme, 

ce qui implique que la projection srfn —• J^n est un épimorphisme. Le morphisme 

induit • srfn —> • J^n = j ^ n + 1 ~ est donc à la fois un monomorphisme et 

un épimorphisme : Xn = J' • srfn. Ceci permet d'obtenir l'isomorphisme srf* 

{0x1 S) ^ S*<?. 

Pour montrer que le morphisme évident srf®n —> ̂  de Modules est un épimor­

phisme, il suffit, d'après le lemme de Nakayama, de le tester après passage aux corps 

résiduels de X. Au-dessus de l'ouvert U, c'est évident ; au-dessus de Y, cela résulte 

de l'isomorphisme <S>ÛX {^X/^) ^ S*<?. 

2.2.1.4. Corollaire. — Le morphisme TT: Ecly } ^(X) —• X est projectif et on dispose 

d'isomorphismes canoniques 7r""1(C7) ^ U et 7r _ 1(y) ~ P(<^)-

L'isomorphisme au-dessus de U est évident. Compte tenu de [EGA il 3.5.3], celui 

décrivant 7r~1(Y) se déduit de l'isomorphisme de <^y-Algèbres graduées £^(g)^x ûy 

s*<r. 

2.2.1.5. Proposition. — Soit p: Xf —» X un morphisme. On pose Y' = Y Xx X' 

et S' = p*&\ On dispose d'un épimorphisme évident S' —• <JVx'/Y'- Le morphisme 

canonique 

É c l y ^ ( X ' ) - Éc ly^ (X) x x X' 

est une nil-immersion. 

Notons s^l la ^x'-Algèbre graduée quasi-cohérente donnant naissance à Écly/^/(X / ) . 

On dispose d'un morphisme évident p*£/* —> £¿1 de ^x'-Algèbres graduées quasi-

cohérentes. Pour tout entier, le morphisme p*£/n —• ^ est un morphisme entre 

i^X'-Modules de type fini; pour montrer qu'il s'agit d'un épimorphisme, d'après le 

lemme de Nakayama, il suffit de vérifier que ce morphisme induit un isomorphisme 

d'une part au-dessus de U' = X' — Y' (c'est évident) et d'autre part modulo 

l'idéal J?' définissant Y' dans X' (cela résulte de la description donnée dans la 

proposition 2.2.1.3). Le morphisme 

ÉclY>Mx') Éc ly^ (X) x x X' 

s'identifie au X'-morphisme évident P r o j ( ^ ) —• Proj(pW*) ([EGA II 3.5.3]) ; d'après 

ce qui précède, il s'agit d'une immersion fermée. Le fait que ce morphisme induise un 

isomorphisme au-dessus de p _ 1 ( î 7 ) et de p~x(Y) permet d'en déduire aussitôt que le 

morphisme induit au niveau des schémas réduits associés 

É c l y ^ p O r é d -> (Écly, , (X) Xx X')M 

est un isomorphisme. 
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2.2.2. Définition des classes. — On se donne toujours une immersion fermée i: Y —> 

X définie par un Idéal de type fini. On note j : U —» X l'inclusion de l'ouvert 

complémentaire ( j^ étant de type fini, j est un morphisme de type fini). On suppose 

donné un épimorphisme de ^y-Modules S —• ^YX/Y a v e c & e s t localement libre de 

rang fini. On note 7r: Écly^ (X) —• X la projection de l'éclatement modifié, j ' : U —» 

Écly?<f (X) l'immersion ouverte évidente et i': P(<f) —> Ec ly^ (X) l'immersion fermée 

donnée par le corollaire 2.2.1.4. On note r le rang du fibre vectoriel S que l'on suppose 

de rang constant pour simplifier et on suppose r > 0. 

On a ainsi le diagramme suivant de schémas, où les carrés sont cartésiens : 

P(<?) — É c l y ^ X ) U 

Y l- ^ X ^ — U 

2.2.2.1. Proposition. — Le morphisme évident A —> R7r*A dans D + ( l é t 5 A) est un mo-

nomorphisme scindé : la formule du fibre projectif identifie son conoyau à 

r-l 

© A ( - f e ) [-2*]. 
k=l 

Les morphismes évidents définissent un triangle distingué : 

A -> RTT*A -> z*Coker(A R < A ) A A [1] 

dans D + ( X é t , A). On peut le récrire sous la forme 

r-l 
A _> R ^ A A 0 ûA(-fe) [-2k] A A [1], 

k=l 

le morphisme p admettant une section canonique donnée par les éléments c i ( ^ ( l ) , lu)k 

de Hp^ (Ec ly ? ( ^ (X) , A(fe)), identifiés à des morphismes ûA(—k) [—2k] —> RTT+A dans 

D + ( X é t , A ) . 

On note L une résolution injective du faisceau constant A vu comme faisceau de 

A-modules sur le grand site étale des schémas de type fini sur X. Pour tout morphisme 

de type fini W X , on note L\W le complexe de faisceau de A-modules sur Wét induit 

par L ; on peut le voir comme un objet de D + (Wét 5 A) isomorphe à A. 

ASTÉRISQUE 363-364 



2. MORPHISMES DE GYSIN 309 

2.2.2.2. Lemme. — Le carré commutatif évident de complexes de faisceaux sur est 

homotopiquement bicartésien : 

L\x ^ i*L\Y 

v v 

^lÉcly^iX) ^ * * U l P ( * ) 

(ceci signifie par exemple que le complexe simple associé à ce diagramme, identifié à 

un complexe 3-uple, est acyclique). 

Les complexes simples associés aux complexes doubles 

j\L\u —> L\X —> UL\Y 

et 

3\L\u L\Éc\Y,s{X) ~* **£|P(<*) 

de faisceaux sur X et Éc ly^ (X) respectivement sont acycliques. Choisissons un fonc­

teur de résolution « flasque » additif r sur la catégorie des faisceaux de A-modules 

sur Écly5£>(X) é t et notons abusivement R,7r* le foncteur (additif) de la catégorie des 

complexes (bornés inférieurement) de faisceaux de A-modules sur Ecly 5 ^(X) vers 

la catégorie des complexes de faisceaux de A-modules sur X défini par la formule 

RTT+K = Tot(7r±rK), ce foncteur préserve les quasi-isomorphismes et induit le fonc­

teur RTT*: D+(Écly , < r (X) é t ,A) -+ D + ( X é t , A ) usuel. 

On obtient ainsi un diagramme commutatif de complexes de faisceaux de A-mo­

dules sur X : 

3\L\u ^ L\X >• i*L\Y 

R7rj{L\u ^ R7r*£|Écly,*(X) ^ R7T*^L|p W . 

Les lignes de ce diagramme constituent des complexes doubles dont les complexes 

simples associés sont acycliques. D'après le théorème de changement de base pour un 

morphisme propre, le morphisme j\L\u —> Rit+j^L^ est un quasi-isomorphisme. On 

en déduit que le carré de droite est homotopiquement bicartésien, ce qui permet de 

conclure. 

Revenons à la démonstration de la proposition 2.2.2.1, la formule du fibre projectif 

pour P(<f) implique que l'on a un triangle distingué dans D+(Xét, A) : 

r-l 

ÛA - R T T ^ A - 0 û A ( - i ) [ -2<] ^> i*A [1]. 

i=l 
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En considérant les colonnes du carré homotopiquement bicartésien donné par le 

lemme, on peut conclure à l'existence d'un triangle distingué 

r-l 

A - RTT*A - 0 û A ( - i ) [-2i] - A [1]. 

i=l 

Ce triangle est scindé par les puissances de l'élément ci(û(l), lu) ; le morphisme de 

droite est donc nul, ce qui achève la démonstration de la proposition. 

2.2.2.5. Corollaire. — La suite suivante, dont les morphismes sont évidents, est 

exacte : 

0 - HypC, A(r)) - ^ r w ( É d y , , ( X ) , A(r)) - Coker(H2r(Y, A(r)) - H2r(P(<f), A(r))) -» 0. 

L'énoncé de ce corollaire vaut bien évidemment en tout bidegré (p, q) et pas seule­

ment en bidegré (2r, r), mais nous n'utiliserons pour ainsi dire que ce cas particulier. 

On note Gys: rP(P(<f), A(q)) -> H ^ ^ É c l y , ^ ^ ) , A ( ç + 1)) le morphisme de 

Gysin associé au pseudo-diviseur — (û(l),lu) sur Ecly 5 ^(X) et £ = c i ( ^ ( l ) ) G 

H 2(P(<?), A( l ) ) . Le lemme suivant est évident : 

2.2.2.4. Lemme. — Le morphisme composé 

H*(P(<?),A(«)) Gls%+

{

2

s)(ÉclYtg(X),A(q+l)) ^ I P + 2 ( P ( < r ) , A ( g + l ) ) , 

o?i /a flèche de droite est le morphisme de restriction, est la multiplication par —Ç. 

2.2.2.5. Définition. — On définit un élément Clf.,^ de H 2 r " 2 (P((f ) , A(r - 1)) par la 

formule : 

c i f , , , = r - 1 - c i W r - 2 + • • • + ( - i ) r - 1 c P _ i K ) . 

2.2.2.6. Lemme. — Dans H 2 r (P(<?), A(r)), on a l'égalité 

- £ C h V = ( - l ) r c r ( ^ ) . 

Si <f est un fibre vectoriel de rang r sur X , on peut introduire le polynôme Pt(é>) = 

J^_o(—l)lCi(<^)£r~* en une indéterminée t à coefficients dans l'anneau commutatif 

© n # 2 n ( X , A(n)). On peut écrire : 

r-l 

P t (0 = *Gt(<?) + (-l) rcr(^) où G t W = J t - l f c i t V " 1 " * . 
¿=0 

Quand on effectue la substitution t := £ G i J 2 ( P ( ^ ) , A( l ) ) , par définition de C l f ^ on 

a Clfi^ = G^{S) et la définition des classes de Chern donne la relation 0 = P${£) = 

iC\î^ + (-\)rcr(£) de sorte que -£Clf i f * = ( - l ) r c r (<T) . 
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2.2.2'.7. Définition. — Compte tenu du corollaire 2.2.2.3, les lemmes 

2.2.2.4 et 2.2.2.6 montrent que l'élément G y s ( C l f ^ ) G H ^ ^ É c l y ^ p f ) , A(r) ) 

provient par restriction d'un unique élément de H y ( X , A(r)), noté C l ^ . 

2.2.3. Propriétés des classes généralisées 

2.2.3.1. Proposition. — La formation des classes généralisées C l ^ et C l f ^ est com­

patible à tout changement de base X' —• X. 

Compte tenu de la proposition 2.2.1.5, ceci résulte aussitôt des définitions. 

2.2.3.2. Proposition. — Soit S" —• S un épimorphisme de modules localement libres 

sur Y. Soit X le noyau de cet épimorphisme. On suppose que S' est de rang constant 

r'. On a alors la relation 

eu,,, = ( - i ) r ' - r c r , _ r p r ) • c v 

dans H 2 / (X, A(r')) où on a utilisé les accouplements canoniques 

Ra(Y, A(6)) <S> Hy (X, AQ/)) -H. H r

+ a ' (X , A(6 + b')). 

On dispose d'une immersion fermée de Ecly^ (X) dans Ecly?<g>/(X), ce qui permet 

de considérer la composition suivante de flèches de restriction : 

Ï$'(X, A(r')) - H ^ É c l y ^ p Q , A(r')) - H ^ É c l y ^ X ) , A(r')). 

Cette composée étant injective, il s'agit de montrer que les images des deux 

éléments considérés dans H p ^ ^ E c l y ^ X ) , A(r')) sont égales, mais comme ces 

deux éléments sont naturellement définis comme étant des images d'éléments de 

H 2 r _ 2 (P (^) , A(rf — 1)) par le morphisme Gys associé au fibre en droites Û{—1) sur 

Éc ly^ (X) canoniquement trivialisé sur X — F, on se ramène à montrer l'égalité 

Crf^' |p(^) = (—l) r ~rcr'-r(X) • Clfi,^ 

dans H 2 r'(P(<?),A(r')). 

On reprend les notations du lemme 2.2.2.6. La formule de Cart an-Whitney appli­

quée à la suite exacte courte 0 — » J É T — > 0 donne la relation suivante : 

Pt{£') = Pt(X)Pt(ë), ou encore : 

tGt(£') + ( - l ) r V ( 0 = tGt{X)Pt{S) + {-l)r'-rcrf-r{K){tGt{S) + (-l)rcr(S)). 

Ceci implique l'identité Gt{£') = Gt(X)Pt(<§) + ( - l ) r ' - r c r , - r {J ( f )G t (£ ) . En 

faisant la substitution t := £ G H2(P(S>), A( l ) ) , on obtient l'égalité G^(S') = 

(—l) r ~r cr'-r(X)Gç((o), qui n'est autre que la relation voulue. 
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2.3. Immersions régulières. — On rappelle que la notion d'immersion régulière est 

définie dans [SGA6 vil 1.4]. 

2.3.1. Définition. — Soit i Y —» X une immersion régulière entre Z [^-schémas. On 

pose v = z*(c) [2c] : D + (Xét, A) —• D +(Yét, A) où c est la codimension de i. On définit 

un morphisme Cl; : A —• fA dans D+(Yét> A) de la façon suivante. Quitte à décompo­

ser Y en réunion disjointe d'ouverts-fermés, on peut supposer que la codimension c de 

i est constante. Si c = 0, i est l'inclusion d'un ouvert, 01* est l'isomorphisme évident. 

Dans le cas où c > 0, choisissons un ouvert U de X dans lequel Y est un sous-schéma 

fermé, notons i' : Y —• U cette immersion fermée. Le faisceau conormal *AX/Y de Y 

dans X est un fibre vectoriel de rang c sur Y muni de l'épimorphisme tautologique 

JYXIY —> ̂ X/Y ; o n peut donc considérer la classe CLy = Ch',^x/Y £ Hy (Ï7, A(c)), 

que l'on identifie à un morphisme Cl* : A —>• if?A ~ fA dans D+(Yét, A) ; il est évident 

que la construction ne dépend pas de l'ouvert intermédiaire U. Si l'immersion i est 

fermée, on note Gys^ ou G y s y c X les morphismes W(Y,A(q)) YLp

Y

+2c {X, A{q + c)) 

induits par la multiplication par Cl* G H y ( X , A ( c ) ) ( v i i ) . On note de même les versions 

à supports H^(Y, A(q)) —> H ^ + 2 c ( X , A(q+c)) définies de même pour tout sous-schéma 

fermé Z de Y. 

Les propositions 2.2.3.1 et 2.2.3.2 impliquent immédiatement la « formule d'excès 

d'intersection » (analogue de [Fulton, 1998, theorem 6.3] où elle est énoncée dans la 

théorie de Chow) : 

2.3.2. Proposition (Formule d'excès d'intersection). — Supposons que Von dispose d'un 

carré cartésien dans la catégorie des Z [^] -schémas : 

Yf - ^ X ' 

Q f 
v y 
Y—l-^X 

où i: Y —> X est une immersion fermée régulière de codimension c. Supposons 

que i' : Y' —• X' soit une immersion régulière de codimension c', notons Jff := 

Ker(q'k^i/x/Y ~* ^x'/Y') le faisceau conormal d'excès. C'est un fibre vectoriel de rang 

e:=c-cf sur Y'. On a alors l'égalité /*Cli = ( - l ) e c e ( J T ) • Cl*/ G HY

c,ét(X
f, A(c)). 

En particulier, si i' : Yf —> X' est une immersion fermée régulière de même codi­

mension que i:Y^X, alors /*C1* = Cl*' G HY,ét(X
f, A(c)). 

Le théorème suivant généralise l'énoncé établi dans [Fujiwara, 2002, proposi­

tion 1.2.1] : 

(vi i) Cette définition est bien sûr compatible avec celle déjà donnée en codimension 1 dans la défini­
tion 2.1.1. 
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2.3.3. Théorème. — Si Z ^ Y et Y ^ X sont deux immersions régulières compo-

sables, le diagramme suivant est commutatif dans D +(Zét,A) : 

rjA. 

On peut évidemment supposer que les immersions i et j sont des immersions fer­

mées et que les codimensions de i et de j sont constantes, de valeurs respectives m et 

n. Si m = 0 ou n = 0, c'est trivial ; on suppose donc que m > 0 et n > 0. 

2.5.4. Lemme. — On peut supposer que n = 1 fi.e. j est de codimension 1). 

On éclate y dans X pour obtenir le diagramme suivant où les carrés sont cartésiens : 

P' P ÈclY(X) 

p P n 

z — ^ y — X . 

L'idée de la démonstration va être d'utiliser la formule d'excès d'intersection 2.3.2 

pour les immersions j o i: Z —• X et j : Y —> X relativement au changement de 

base 7r: Ecly(X) —> X qui va faire chuter la codimension de ces immersions fermées 

régulières. 

On a des isomorphismes canoniques P = P ( ^ x / y ) et P' = P(^X/Y^Z)- O*1 

vérifie facilement que P —> Écly(X) est une immersion fermée régulière de codimen­

sion 1. Par changement de base lisse, P' —> P est une immersion fermée régulière 

de codimension m. On suppose que i n (Cljt) o Cl^ = Clj/ 0i' et on veut montrer que 

i ? (Clj) o Cl̂  = Cljoi. Les morphismes à comparer s'identifient à des éléments de 

H ^ m + n ^ ( X , A(m H- n)) (on fera ce type d'identifications jusqu'à la fin de la démons­

tration). La proposition 2.2.2.1 implique que l'application 

7T*: H | ( m + n ) ( X , A ( m + n)) H ^ m + n ) ( É c l y ( X ) , A(m + n)) 

est injective, il suffit donc de comparer les classes après application de 7r*. 

D'après la formule d'excès d'intersection 2.3.2, on a l'égalité 7r*(Cljoi) = c n _i(<f / V )-

C\j>oi> e H p (

/

m + n ) ( É c l y ( X ) , A(m + n)) où S' est le fibre vectoriel de rang n — 1 noyau 

de l'épimorphisme pf*^X/z -> ^Éc\Y(x)/P" 

La composition des classes admise provisoirement pour les immersions f et i' donne 

l'égalité 

Clj'oi' — Cli' • Clj' 
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via l'accouplement 

H£?(P, A(ro)) x H 2 , ( É c l y ( X ) , A ( l ) ) - H ^ m + 1 ) ( É c l y ( - Y ) , A(n + 1)). 

On a ainsi obtenu : 

7T*Cljoi = Cn_l(<? / V) • Cli' ' Cljf. 

Notons S le noyau de l'épimorphisme pkjV'x/Y —> ^EC\Y(X)/P' ^ vient aussitôt que 

dans le diagramme évident de Modules sur P' qui suit, les lignes et les colonnes sont 

exactes : 

0 0 

V \ 
0 ^ ï*£ ^ S1 ^ 0 

v v -i 

0 i'*P*^X/Y P'*^X/Z p'*^Y/Z 0 

V | v 

V V V 
0 0 0. 

En particulier, on obtient un isomorphisme canonique i'*£ S1', d'où i'*cn-i{£
y) = 

c n _ i (< f v ) G H 2 ( n - 1 > ( P ,

1 A(n - 1)). On en déduit : 

7r*Clio< = c n _ i ( ^ , V ) • Cl* • Cl,. = Cl*/ • c n _ ! ( ^ v ) • Cl,/. 

On utilise implicitement dans ces notations l'associativité des structures multiplica­

tives permettant par exemple de définir une application 

Hf,?(P,A(ro)) x K2(n-V(P,A{n-l)) x Hf>(Écly(X), A(l)) -> Hp ( , m + n ) (Éc l y (X) , A(m + n)) 

sans qu'il y ait à s'inquiéter de l'ordre dans lequel les multiplications sont faites. La 

formule d'excès d'intersecion 2.3.2 implique l'égalité suivante : 

T^CLj = c n _ i (<? v ) • CL,-/ G H^ n (Écly(X), A(n)). 

Le morphisme p étant lisse, on a aussitôt Cl* = 7r*Clà. On a ainsi obtenu l'égalité 

voulue : 

7T*Cljoi — TT^Cli * 7T*Clj, 

ce qui achève la démonstration du lemme. 
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On est ramené à établir le théorème 2.3.3 dans le cas où j est de codimension 1. On 

pose maintenant P = P ( ^ \ y z ) et Pf = ^{^Y/Z)- Le diagramme suivant récapitule 

la situation : 

P 7T-1 (Y) Éc\z(X) 
A 4 

P' ^ É c l z ( y ) 

Z —^ Y ^ X. 

On veut établir l'égalité suivante dans H | m + 2 ( X , A (m + 1)) : 

C\j0i = C\i ' C\j. 

D'après la proposition 2.2.2.1, il suffit de vérifier cette égalité dans 

H ^ m + 2 ( É c l z ( X ) , A(m + 1)) après application de TT*. 

Par définition, la classe Cljoi £ H | m + 2 ( X , A(ra + 1)) se « restreint » en un élément 

7 : = n*C\joi = Gys P cÉ c l z ( X)(Clf < 7-oi) 

dans R2™+2(Éclz(X), A(m + 1)) où Clf i 0t £ H 2 m ( P , A(ra)). 

Notons J l'Idéal de Y dans X , JP celui de P dans É c l z ( X ) et J celui de É c l z ( Y ) 

dans E c l z ( X ) . On a un isomorphisme canonique de faisceaux inversibles sur E c l z ( X ) : 

7T* ~ JP (g) « / . 

Cet isomorphisme est compatible aux trivialisations données sur 7r - 1 (V) où 

F = X — F. On obtient ainsi une égalité dans le groupe des classes d'équivalence de 

tels pseudo-diviseurs, ce qui permet de décomposer 7r*Clj = -7r*(ci(J^, 1X-Y)) £ 

H 2 _ ! ^ ^ ( É c l z ( X ) , A(l ) ) en une somme de deux composantes : 

7T*C1,- = -7T*(ci(^,lx-y)) = -Ci(7r*^,l w - i ( X _y)) 

= -Ci(«/p, 1ÉC1 z(X)-P) ~ C l (^' 1Éclz(X)-Éclz(y))-

On en déduit une décomposition 

T^CI* • ir*Clj =a + (3 

dans H2™+2(Éclz(X),A(m + 1)) où 

a = G y s P c É c l z ( x ) ( C l i ( P ) , 

P = G y s Écl z (y)CÉclz (X) ( G y S P ' CÉclz (V) ( C l f *)) * 
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Le calcul de Clk où k est l'inclusion de l'intersection de diviseurs de Cartier s'inter-

sectant transversalement dans le schéma ambiant réalisé dans [Fujiwara, 2002, pro­

position 1.1.4] permet d'obtenir l'égalité d'opérateurs suivante : 

G v sÉci z(y)cÉci zpO o G v s p , cÉciz(^) = G v s PcÉci z po ° G y s P , c p . 

Notre but est d'établir l'égalité 7 = a + /3. Les calculs précédents permettent d'écrire 

chacun des éléments a, /3 et 7 comme des images par le morphisme GySpcÉc\z(x) de 

classes à, fi et 7 dans H 2 m ( P , A(ra)) : 

à = Cli|p, 

P = G y s P , c P ( C l f i ) , 

7 = Clfjo». 

On est ainsi ramené à établir l'égalité 7 = à + /3 dans H 2 m ( P , A (m)). 

D'après les lemmes 2.2.2.4 et 2.2.2.6, on a C1*|Z = ( - l ) m c m ( ^ Ç / z ) . On en déduit 

l'égalité 

& = (-l)mCm(^Y/Z). 

Pour calculer /3, on observe que l'Idéal de P' dans P s'identifie au faisceau inversible 

§§ez ^(—1) où J(f = <yYx/Y\Z est le noyau de l'épimorphisme JVx/z ~* ̂ Y/Z> On 

en déduit 

P = (É - Cl (JT)) • [ C " 1 - C^Y/Z)^-2 + ••• + (-ir^CM-lW/z)] • 

Par ailleurs, la définition de 7 donne l'égalité : 

7 = r - C l ( ^ / Z ) r _ 1 + • • • + (-l)mCm(^X/Z). 

La formule de Cartan-Whitney appliquée à la suite exacte courte 

0 -> -> -> 0 

de fibres vectoriels sur Z permet d'obtenir aussitôt la relation voulue 7 = â + /3, ce 

qui achève la démonstration du théorème. 

2.3.5. Lemme. — Supposons que Von dispose d'un carré cartésien dans la catégorie 

des Z [^] -schémas : 

v _ V 

Supposons de plus que i\ et i[ (resp. ¿2 et i'2) soient deux immersions fermées régulières 

de même codimension c\ (resp. C2). Alors, on a Végalité suivante entre opérateurs 
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H*(Y12,A(q)) - ^ 2

2 c i + 2 c 2 ( X , A ( ç + C l + c 2 ) ) ; 

G y s Y l C X o G y s y i 2 c y i = G y s y 2 C X o G y s y 1 2 C y 2 . 

D'après la proposition 2.3.2, l'image de Cl^ par i\: H^1 (X, A(ci)) -> iïy^1 (y 2 , A(ci)) 

est Cl^. Ceci permet de montrer que l'opérateur G y s y 2 C X o Gysy l 2 C y 2 est induit par 

le produit Cl i l • Cl i 2 G i J y ^ + 2 c 2 ( X , A(ci + c 2 ) ) . Par symétrie des rôles de Yx et Y2, 

on obtient l'identité énoncée dans le lemme. 

2.3.6. Remarque. — Une fois que le théorème 2.3.3 est connu, on peut observer que 

les deux opérateurs apparaissant dans le lemme précédent sont égaux à G y s y l 2 C X , ce 

qui signifie aussi que le produit Cl^ • Cli2 G HY^
2c2(X, A(ci + c 2 ) ) est égal à C1& où 

k: Y12 —> X est l'inclusion de l'intersection de Y\ et I2 dans X. 

La classe que l'on a définie est compatible avec celle définie localement dans 

[SGA4J [Cycle] 2.2] : 

2.3.7. Proposition. — Soit i: Y —> X une immersion régulière de codimension c entre 

Z [^-schémas. Le morphisme de faisceaux A —> J f 2 c ( i ! À ( c ) ) induit par le morphisme 

CU: A —• r A est donné par la classe cl F de [SGA4J [Cycle] 2.2]. 

Le lecteur intéressé par les questions de signes pourra consulter 4.8... 

2.4. Morphismes lisses. — Soit p: X —> 5 un morphisme lisse compactifiable de 

Z [^]-schémas de dimension relative d. D'après [SGA4 xvin 2.9], on dispose d'un 

morphisme trace 

Tr p : R 2 dpjA(d) -* A, 

que l'on peut réinterpréter sous la forme d'un morphisme 

Rp.A(d) [2d] A 

dans D + (5ét ,A) (en effet, d'après le théorème de changement de base pour un mor­

phisme propre et [SGA 4 x 4.3], les faisceaux R*piA sont nuls pour i > 2d). 

2.4.1. Définition. — Soit p: X —• S un morphisme lisse compactifiable de Z [^]-sché­

mas. Le morphisme Cl p : A —• p ? A ( v i i i ) dans D + (Xét, A) est le morphisme déduit par 

adjonction du morphisme RpiA(d) [2d] —» A défini ci-dessus. 

D'après [SGA 4 xvin 3.2.4], ce morphisme Cl p est un isomorphisme : c'est la dualité 

de Poincaré. 

(V111) On rappelle que l'on a posé p1 = p\—d) [—2d] où d est la dimension relative de p. 
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2.4.2. Proposition. — Si f : Z —• Y et g: Y —> X sont des morphismes lisses compac-

tifiables composables, le diagramme suivant est commutatif dans D + (Zét ,A) : 

n \ / ? ( C l 9 ) 

/ V A -

Ceci est énoncé en [SGA 4 XVIII 3.2.4] et résulte de la compatibilité des morphismes 

traces à la composition, cf. propriété (Var 3) dans [SGA4 xviii 2.9]. 

2.4.3. Remarque. — Si cette théorie avait été à notre disposition, il eût peut-être été 

plus commode d'utiliser ici la construction des foncteurs f pour / lissifiable mention­

née dans l'introduction de [SGA 4 xvin 0.4]. Dans le cadre axiomatique des « foncteurs 

homotopiques stables » , ceci est réalisé dans [Ayoub, 2007]. 

2.5. Morphismes d'intersection complète lissifiables 

2.5.1. Définition. — Un morphisme d'intersection complète est un morphisme X -£> S 

admettant localement une factorisation sous la forme X T S où p est lisse et 

i une immersion régulière (cf. [SGA 6 vil 1.4]). On pose dim. rei. virt. / = àimp — 

codimi : c'est la dimension relative virtuelle de / (cf. [SGA6 vin 1.9]). Il s'agit d'une 

fonction localement constante X —• Z. 

2.5.2. Définition. — On note 5? la catégorie dont les objets sont les Z [^]-schémas 

quasi-compacts admettant un faisceau inversible ample et dont les morphismes sont 

les morphismes de type fini entre de tels schémas. On note S^lc la sous-catégorie de 5? 

ayant les mêmes objets mais dont les morphismes sont les morphismes d'intersection 

complète. 

Dans S?, tout morphisme X —» Y peut se factoriser sous la forme X P y Y 

où i est une immersion et TT la projection canonique. Tous les morphismes de 5? sont 

donc compactifiables, on peut leur appliquer le formalisme des foncteurs R/i et f. 

Les morphismes de S^10 admettent des factorisations globales dans S^lc sous la 

forme d'une immersion fermée régulière suivie d'un morphisme lisse. 

2.5.3. Définition. — Pour tout morphisme / : X —• Y dans ^ 1 C , on peut définir un 

foncteur 

f : D + ( F é t , A ) - ^ D + ( X é t , A ) 

par la formule f = f'(—d) [—2d\ où d = dim. rei. virt. / ( i x ) . 

(ix) On peut donner un sens à cette définition même si la dimension relative virtuelle n'est 
pas constante. On définit alors f7K pour tout K G D +(X é t,A) par recollement des objets 
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Les foncteurs / ? sont les foncteurs image inverse pour une structure de catégorie 

fibrée convenable au-dessus de la catégorie 5^xc : on utilisera implicitement les isomor-

phismes de transitivité f1 g7' ~ (gf)? associés à la composition de deux morphismes 

composables dans S^lc. 

2.5.4. Définition. — Soit / : X —> 5 un morphisme dans y î C . On suppose donnée 

une factorisation de / dans ^ 1 C sous la forme X A Y S où i est une immersion 

régulière et p un morphisme lisse. On définit un morphisme 

CIp,.: A ^ / ? A 

dans D + (Xét ,A) comme étant le morphisme composé 

A _ ^ i 7 A 

/ ? A 

où Cli est le morphisme de la définition 2.3.1 et Cl p celui de la définition 2.4.1. 

2.5.5. Théorème. — Soit f: X —• S un morphisme dans y i c . Si X A Y S et 

X A Y1 S sont deux factorisations du type envisagé dans la définition 2.5.4, alors 

les deux morphismes suivants dans la catégorie D + (Xét ,A) sont égaux : 

C W = C V , * : A - > / ? A . 

La notation suivante s'avère assez commode pour cette démonstration : 

2.5.6. Définition. — Si / : Z —> Y et g: Y X sont des morphismes composables 

dans y i c , a: A —> g?A et b: A —> f?A des morphismes dans D + (Yé t , A) et D + ( Z é t , A) 

respectivement, on pose a+b — / ? ( a ) o b: A —» (go / ) ? A . 

Cette loi ^ vérifiant une propriété d'associâtivité évidente, on omettra les paren­

thèses. 

Par définition, on a ainsi : Clp^ = C l p ^Cl i . On veut vérifier l'égalité C l p ^Cl i = 

Clp/^Cl*. Quitte à introduire le produit fibre de Y et de Y' au-dessus de 5, on peut 

supposer que « Y' coiffe Y » , à savoir qu'il existe un morphisme lisse q : Y1 —» Y tel 

que i = q o i' et p' = p o q : 

Y' 

ï / \ v' 
/ q \ 

X Y — ^ S. 

(flK)\jj. (—2i] sur les ouverts-fermés disjoints Ui := {x G X,d(x) = i} où / est de dimension 
relative virtuelle i, pour tout i £ Z . 
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On a ainsi 

Clp',2' — Clp/^Cl^' — Clp^Clg^Cl^' 5 

la dernière égalité résultant de la proposition 2.4.2. On est ramené à montrer l'égalité 

OU = Clg^Cl^. Pour cela, on introduit le produit fibre X' de X et Y' au-dessus de 

Y : 

X' - ^ Y f 

s : q' / q 

X *~Y. 
i 

Le morphisme i' donne naissance à la section 5 de la projection q' : X' —• X. Le mor­

phisme q étant lisse, l'immersion j : X' —> Y' est régulière. Admettons provisoirement 

les égalités suivantes : 

C V * C 1 S = Id A , C l^Cl , - = C l i * C V . 

Il vient : 

Cl, = 01^*0 v * c i f l 

= Cl g *Cl J -*Cl , . 

On utilise alors la composition des morphismes de Gysin associés aux immersions 

régulières (cf. théorème 2.3.3). Celle-ci donne l'égalité Clj^rCl s = Cl,/ qui permet de 

conclure que Cl, = Cl g ^Cli / . Les deux lemmes qui suivent permettent d'obtenir les 

deux égalités admises ci-dessus : 

2.5.7. Lemme. — Soit un diagramme cartésien dans y : 

X ' - ^ Y ' 

v y 
X—^Y. 

On suppose que q est lisse et que i est une immersion régulière (donc j aussi). Alors 

on a Végalité 

Cl^Cl , - = C l i * ( V 

On peut supposer que i est une immersion fermée. On identifie Cl, (resp. Clj) à une 

classe dans H^(Y, A(d)) (resp. H 2^,(F /, A(c))) où c est la codimension de l'immersion 

régulière i. D'après la proposition 2.3.2, on a </*(Cli) = Clj. 

On peut identifier D +(X'ét ,A) à la sous-catégorie pleine de D +(Y'ét ,A) formée 

des complexes tels K que K ^ j*j*K : le foncteur j * s'interprète alors comme 

un foncteur d'inclusion. On identifie de même D +(Xét ,A) à une sous-catégorie 

pleine de D+(Yét,A). Le foncteur q[: D +(X'ét ,A) —» D + (Xé t ,A) est alors induit 
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par q\ : D +(Y"'ét,A) —• D + ( l é t , A ) et qn est également induit par q\ Notons d la 

dimension relative de q. Le morphisme Trq : (ftAy (d)[2d] —• A y s'étend la formule 

de projection [SGA4 XVII 5.2.9] en un morphisme fonctoriel en K G D b ( y é t , A) : 

L L L 
Trq : qiq*K(d)[2d] ~ q{AY>{d)[2d\ (g) K ' M * AY ® K ~ K. 

La compatibilité du morphisme trace au changement de base par i (propriété (Var 2) 

de [SGA4 x v m 2.9]) revient à dire que pour K = Ax = i*Ax G D b (y é t ,A) , le 

morphisme Trq: q\q*Ax(d)[2d] —> Ax est Trq'. La fonctorialité de la transformation 

naturelle Trq ci-dessus appliquée au morphisme Cl* : Ax —> Ay (c) [2d] fournit alors le 

diagramme commutatif suivant : 

qiq*Ax{d)[2d] — Ax 

q\q* CU CU 
V ' I 

Tr fc)f2cl 
qi q*AY (d + c) [2d + 2c] Ay (c) [2c]. 

Compte tenu de l'identité q*CU = C\j précédemment obtenue, la commutâtivité du 

diagramme ci-dessus signifie précisément que C l q *Cl j = Cl^Clq/ . 

2.5.8. Lemme. — Soit p: X —• S un morphisme lisse dans 5? admettant une section 

s: S —» X (qui est une immersion régulière). Alors, C1 P ^C1 S = M A dans D + (5ét , A). 

Les endomorphismes de A dans D + (5ét , A) étant donnés par des sections du faisceau 

A dans S, il suffit de vérifier que les nombres obtenus en passant aux points génériques 

de S sont égaux à 1. Comme on peut supposer que S est réduit et que la construction 

est compatible avec le passage aux points génériques, on peut supposer que S est le 

spectre d'un corps k. Notons x l'image de Spec(fc) dans X. Quitte à remplacer X par 

un voisinage ouvert, on peut supposer qu'il existe un morphisme étale 7r: X —> AJ? 

identifiant x à l'image inverse de l'origine dans A^. En utilisant l'isomorphisme évident 

H2Q 0)(AJ*, A(d)) H 2 d ( X , A(d)), on se ramène au lemme suivant : 

2.5.9. Lemme. — Pour tout entier naturel d et tout schéma S G 5?, si on note 

p: A $ —• S la projection et s: S —> A | Vinclusion de V origine, on a V égalité 

Clp*Cl a = Id A 

dans D+(5ét, A). 

L'énoncé est évident pour d = 0. Une récurrence évidente s'appuyant sur le théo­

rème 2.3.3 et la proposition 2.4.2 permet de se ramener au cas où d = 1, et comme 

précédemment, on peut supposer que S = Spec(fc) où k est un corps que l'on peut 

supposer séparablement clos. On se ramène finalement au lemme suivant : 
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2.5.10. Lemme. — Pour tout corps séparablement clos k, si on notep: P£ —> Spec(fc) 

la projection et s: Spec(fc) —> P£ l'inclusion de 0, on a l'égalité 

Clp*Cl a = Id A 

dans D+(Spec(fc) é t, A). 

L'idéal de l'immersion fermée s s'identifie au faisceau inversible sur la droite 

projective. L'image Cl S | P i de Cl s dans H 2 (P*,A(1)) est -cx(Û(-l)) = c i ( ^ ( l ) ) (cf. 

définitions 2.1.1 et 2.3.1). Le degré du fibre en droites <^(1) étant 1, on peut conclure 

en utilisant la commutativité du diagramme suivant (cf. [SGA 4 x v m 1.1.6]) : 

P i c ( p i ) - ^ - H 2 ( p i , A ( l ) ) 

deg | 

A. 

2.5.11. Définition. — Soit / : X —> 5 un morphisme dans yic. On note Cl/ : A —> / ? A 

le morphisme Clp^ dans D + ( X e t , A) défini à partir d'une factorisation de / dans 

sous la forme / = poi avec i une immersion régulière et p un morphisme lisse. D'après 

le théorème 2.5.5, cette définition est indépendante de la factorisation. 

2.5.12. Théorème. — Si X Y et Y Z sont des morphismes composables dans 

<y i c , le diagramme suivant est commutatif dans D + (Xét ,A). 

Gif o 
A ^ - / ? A 

c i \ f { C l a ) 

( 9 ° / ) ? A -

Paraphrasant [SGA 6 vin 2.6], on choisit une factorisation Y V Z dans ^ 1 C 

avec j une immersion régulière et p' lisse, et une immersion régulière X A- Py , de 

façon à obtenir le diagramme suivant : 

X — ^ P £ — ^ P£, 

\
p p" 

Y—J—^V 

z. 

En utilisant le théorème 2.3.3 et la proposition 2.4.2, on obtient 

Cl f l o / = ( C V * C V ) * ( C l j ' * C l i ) . 
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Le lemme 2.5.7 donne l'égalité : 

C\p"^Clj' = Clj^Clp, 

ce qui permet d'obtenir : 

Cl Po/ = ( C V * ^ - ) * ^ * ^ ) , 

où l'on reconnaît l'égalité Clgof = C1 P ^C1/. 

2.5.13. Proposition. — Soit f: X —> S un morphisme dans yic. On suppose que 

f est plat de dimension relative d. Alors le morphisme Cl / : A —> / ? A correspond 

par adjonction au morphisme Rf\A(d)[2d] A donné par le morphisme trace 

Trf: R2df\A(d) —> A. 

Compte tenu de la proposition 2.3.7, cela résulte de [SGA4J [Cycle] 2.3.8 (i)]. 

2.5.14. Remarque. — Si / : X —> Y est un morphisme propre dans <5^1C de dimen­

sion relative virtuelle (constante) d, le morphisme Cl/ permet de définir, pour tout 

K G D + ( F é t , A ) , un morphisme /* : E?(X,f*K) W~2d{Y, K(-d)), compatible à 

la composition. On peut aussi en définir une version à supports /* : H^(X, f*K) —• 

B.p^2d(Y, K(—d)) si / : X —• Y est un morphisme dans ,5^ 1 C, que Z et Z' sont des 

sous-schémas fermés de J et F respectivement, que f(Z) C Z' et que morphisme 

induit f\%\ Z —» Z' est propre. 

3. Théorème de pureté 

3.1. Enoncés. — L'objectif de cette section est de donner une démonstration du théo­

rème suivant : 

3.1.1. Théorème. — Soit X un Z [^]-schéma régulier. Soit Y un sous-schéma (fermé) 

de X qui est aussi régulier. On note i: Y —» X l'immersion, et c sa codimension. 

Alors, le morphisme de Gysin Cl,: A —> i1 A = rA(c) [2c] est un isomorphisme dans 

D + ( F é t , A ) . 

3.1.2. Corollaire. — Soit f' : X —• S un morphisme de type fini entre Z [ ^ ] -schémas 

réguliers. On suppose que X et S admettent un faisceau ample. Alors, le morphisme 

de Gysin Cl/(d)[2d]: A(d)[2d] —> / ! A est un isomorphisme dans D + ( X é t , A ) ; où d 

désigne la dimension relative virtuelle de f. 

3.1.3. Corollaire. — Soit X un Z [ ^ ] -schéma régulier. Soit D un diviseur régulier 

dans X. On note j : X — D —• X l'inclusion de son complémentaire. Alors, on dispose 

d'isomorphismes canoniques j*A = A, R 1 j^A = Az{—1) et R 9j*A = 0 pour q>2. 
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Ce corollaire résulte du théorème 3.1.1 appliqué à l'immersion fermée i: D —• X et 

de la suite exacte longue de cohomologie appliquée au triangle distingué canonique 

suivant dans D + (Xét ,A) : 

A -> A Rj*A iJlA[l] 

L'isomorphisme A^(—1) ~ R 1 ^A^(—1) est normalisé de façon à ce que le composé 

A z ( - 1 ) ~ R 1 ^ A Z ( - 1 ) A z*R 2rA soit donné par la classe Cl^. Alternativement, cette 

identification est induite par une section globale du faisceau R 1 j ^A( l ) qui est donnée 

localement par l'opposé de la classe du /in-torseur des racines n-ièmes de f où f est 

une équation locale de D dans X. (Voir la démonstration du lemme 3.4.8 pour plus 

de détails sur cette compatibilité.) 

3.1.4. Corollaire. — Soit X un Z [^] -schéma régulier. Soit D un diviseur à croise­

ments normaux dans X. On note j : X — D —• X l'inclusion de son complémentaire. 

Alors, Rj*A appartient à D b

t f (Xét, A). Plus précisément, si D = D\-\ h D n est un 

diviseur à croisements normaux strict, alors R ^ A s'identifie à 0 i < j < n ^ ( ~ ^ ) e ^ 

R*j*A est l'algèbre extérieure sur R 1 j^A. 

Ce corollaire mérite une démonstration. Pour la première assertion, on peut tra­

vailler localement pour la topologie étale sur X ; il suffit donc d'établir la deuxième 

assertion. On suppose que D = D\ H h Dn est un diviseur à croisements normaux 

strict. On note ji'. X — Di —• X l'inclusion du complémentaire de Di pour tout i. 

Nous allons montrer que le morphisme de Kûnneth 

L L 
Rji*A (g)... (g) Rj n *A -> Rj*A 

est un isomorphisme dans DpQt, A), ce qui impliquera le résultat vu que les faisceaux 

R^ '^A sont connus par pureté (corollaire 3.1.3) et qu'ils sont plats. 

On procède par récurrence sur n. Les cas n = 0 et n = 1 sont évidents. On suppose 

n > 2, on pose D' = D2 + • • • + Dn et on fait l'hypothèse que le résultat est connu 

pour D'. Il s'agit donc de montrer que si on note j ' : X — D' —> X l'inclusion du 

complémentaire de D', alors le morphisme de Kûnneth 

R j u A ® Rj*A Rj*A 

est un isomorphisme. Autrement dit, le morphisme canonique 

L 
R H o m ( A X - D 1 , A) (g) R H o m ( A X - D ' , A) R Hom(A X - J D 1 <8> AX-D* , A) 

est un isomorphisme dans D(Xé t , A). À K (resp. L) fixé dans D(Xét, A), la famille des 

L (resp. K) tels que le morphisme 

R Hom(K, A) I R Hom(L, A) -+ R Hom(K ® L, A) 
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soit un isomorphisme, propriété que nous appellerons (Kû), est une sous-catégorie 

triangulée de D(Xét,A). 

Pour K = A ou L = A, la condition (Kù) est évidemment vérifiée, la montrer pour 

( A x - D i 5 A X - D O revient donc, par dévissage, à la montrer pour (AD1^ Ax-DF) O U 

encore pour (A^1, AD*) - Il résulte aussitôt du théorème de pureté et des compatibilités 

obtenues (cf. remarque 2.3.6) que si y et Z sont deux sous-schémas fermés réguliers de 

X s'intersectant transversalement (Le. Y HZ est régulier de codimension la somme des 

codimensions de Y et de Z ) , alors (Ay ,A^) vérifie (Kù). En particulier, (AD1,ADÎ) 

vérifie (Kû) pour i > 2 et plus généralement, pour tout sous-ensemble non vide / de 

{2, . . . , n } , (A^^ADJ) vérifie (Kù) où Dj est l'intersection des Di pour i e I. En 

utilisant la suite exacte standard 

2<i<n 2<i<j<n 

on en déduit par dévissage la condition (Kù) pour ( A ^ , A ^ / ) , ce qu'il fallait démon­

trer. 

3.1.5. Définition. — Un couple régulier est un couple (X, Y) où X est un Z [^]-schéma 

régulier et Y un sous-schéma fermé de X qui est régulier. On dit que (X, Y) est pur 

si la conclusion du théorème 3.1.1 est vraie pour l'inclusion de Y dans X. Si y —> Y 

est un point géométrique de y , on dira que (X, Y) est pur en y si après passage aux 

germes en y, le morphisme Cl* : A —> r A induit un isomorphisme dans la catégorie 

D+(y é t ,A) . 

Le théorème 3.1.1 peut ainsi se reformuler en disant que tout couple régulier est 

pur. Dans la sous-section 3.2 sera introduite la notion de pureté ponctuelle qui consiste 

à étudier les couples réguliers de la forme (X, x) où X est un schéma local régulier 

de point fermé x. Pour démontrer le théorème de pureté, il suffira de savoir que les 

couples réguliers de cette forme sont purs. Dans la sous-section 3.3, on se ramènera au 

cas où l'anneau de coefficients A est 7t/£Z avec £ un nombre premier inversible sur les 

schémas réguliers considérés. Dans la sous-section 3.4, on établira quelques propriétés 

utiles concernant la pureté des couples réguliers donnés par des diviseurs. Comme 

dans la démonstration de [Fujiwara, 2002], la démonstration de la pureté ponctuelle 

pour des schémas réguliers arbitraires se ramènera à celle des schémas réguliers qui 

sont de type fini sur un trait S (d'inégale caractéristique). Dans la sous-section 3.5, 

on obtiendra des conditions suffisantes pour montrer que des schémas réguliers de 

type fini sur S sont ponctuellement purs. La sous-section 3.6 donnera les énoncés de 

géométrie logarithmique permettant d'établir que si (X, M) est un log-schéma log-

lisse sur un trait (muni de sa log-structure canonique) et que le schéma X est régulier, 

alors X est ponctuellement pur. La démonstration du théorème 3.1.1 sera donnée dans 
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la sous-section 3.7. Elle utilisera les résultats des sous-sections précédentes ainsi que 

trois théorèmes de résolution des singularités que l'on peut résumer ainsi : 

— utilisation d'altérations pour obtenir un schéma à réduction semi-stable à partir 

d'un schéma (normal) sur S (cf. [Vidal, 2004, proposition 4.4.1]) ; 

— modification d'une action modérée d'un groupe fini sur un log-schéma log-régulier 

de façon à obtenir une action très modérée (cf. X- l . l ) ; 

— résolution des singularités des log-schémas log-réguliers (théorème de Kato-Niziol, 

cf. [Kato, 1994, 10.3, 10.4] et [Niziol, 2006, 5.7]). 

3.2. Pureté ponctuelle 

5.2.7. Définition. — Soit X un Z [^]-schéma local régulier. On dit que X est ponc­

tuellement pur en son point fermé x si le morphisme Cl̂  : A —> f A est un isomorphisme 

dans D+(#ét>A) où i: x —• X est l'inclusion du point fermé de X. 

Un schéma local régulier est ponctuellement pur en son point fermé si et seulement 

si son hensélisé (resp. son hensélisé strict) l'est. 

3.2.2. Définition. — Soit X un Z [^]-schéma. Si x G X, on dit que X est ponctuelle­

ment pur au point x si le localisé de X en x est ponctuellement pur en son point fermé. 

On dit que X est ponctuellement pur s'il l'est en tous ses points. 

La proposition suivante est [Fujiwara, 2002, proposition 2.2.4]. La démonstration 

de cet article semble compliquée puisqu'elle passe par des résultats plus fins que ceux 

dont nous avons besoin. On en redonne donc une démonstration plus courte. 

3.2.3. Proposition. — Soit i: Y —> X une immersion fermée entre schémas réguliers. 

Le nombre de conditions satisfaites parmi les trois suivantes ne peut pas être deux : 

(a) Le couple régulier (X,Y) est pur; 

(b) Le schéma Y est ponctuellement pur; 

(c) Le schéma X est ponctuellement pur aux points situés dans Vimage de i. 

Soit y e Y, notons V(y) le localisé de Y en y et V(x) celui de l'image x de y 

dans X. On a un diagramme de schémas : 

» — v(y) 

V(x). 
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La composition des morphismes de Gysin donne le diagramme commutatif suivant 

dans D+(2/ét, A) : 

A ^ lyA 

ilA. 

Sur ce diagramme, on voit aussitôt que (a) et (b) impliquent (c) et que (a) et 

(c) impliquent (b). Montrons que (b) et (c) impliquent (a). Il s'agit de montrer que 

pour tout point y de F, le morphisme z*Cl^ est un isomorphisme. On peut procéder 

par récurrence sur la dimension de V(y). On peut ainsi supposer que le support 

d'un cône C du morphisme Cl,' dans D+(V(y)ét, A) est contenu dans {y}. Mézalor, 

le morphisme canonique iyC —> i*C est un isomorphisme; le diagramme ci-dessus 

montre que v C = 0, ce qui permet de conclure que C — 0 et finalement d'obtenir (a). 

Rappelons quelques propriétés importantes concernant la pureté ponctuelle : 

3.2.4. Proposition ([Fujiwara, 2002, proposition 2.2.2]). — Soit X un schéma local stric­

tement hensélien régulier. Le complété X est ponctuellement pur en son point fermé 

si et seulement si X l'est. 

3.2.5. Proposition ([Fujiwara, 2002, corollary 2.2.3]). — Soit k un corps premier. Si X 

est schéma régulier qui est un k-schéma, alors X est ponctuellement pur. 

3.3. Changement de coefficients 

3.3.1. Proposition. — Soit n un entier naturel non nul. Soit n = IljLi ^ ^a fac^or^~ 

sation de n en produit de puissances de nombres premiers distincts. Un couple régulier 

(X, Y) est pur relativement à l'anneau de coefficients Z/nZ si et seulement s'il l'est 

relativement à l'anneau de coefficients Zjt^Z pour tout j G { 1 , . . . , k}. 

Cela résulte aussitôt du lemme chinois et du fait que si m est un entier naturel 

divisant n, alors pour toute immersion fermée régulière i: Y —> X , le diagramme 

évident commute dans D + ( l é t ?Z/nZ) : 

Z/nZ—^fZ/nZ 

v v 
Cl • 

Z/raZ > r Z / m Z . 

3.3.2. Proposition. — Soit £ un nombre premier. Pour tout entier v > 1, un couple 

régulier (X, Y) est pur relativement à l'anneau de coefficients Z/£Z si et seulement 

s'il l'est relativement à l'anneau de coefficients Zj£vZ. 
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En utilisant la résolution de Godement des faisceaux Z/£vZ(c) (où с est la codi­
mension de l'immersion i : Y —> X) pour tout z/, on peut représenter les morphismes 

de Gysin Cl»: Z/£»Z r Z / f Z dans D + ( r é t , Z / r Z ) par des cocycles. Un tel co-

cycle pour щ fixé induit pour tout entier v < щ un cocycle représentant le morphisme 

de Gysin à coefficients dans Zj£vZ. Les propriétés élémentaires de la résolution de 

Godement font que, si on le souhaite, on peut en fait trouver une famille compatible 

de cocycles pour tout v G N. 

Compte tenu de ces observations, une fois ces cocycles convenablement choisis, 

on dispose d'un cône privilégié C(y) du morphisme Cl^: Z/£VZ —• rZ/fZ dans 

D+(y é t , Z / f Z ) pour tout v G N et de triangles 

ОД С {ii + v) С {y) ОД[1] 

dans D+{YéuZ/^+»Z) pour tous (/x,z/) G N 2 . 
Par conséquent, si C( l ) = 0, il vient que pour tout v > 1, C(v) = 0. Inversement, 

si C ( l ) est non nul, son premier objet de cohomologie non nul s'injecte dans celui de 
C(v) pour tout V > 1. 

3.4. Diviseurs réguliers 

3.4.1. Définition. — Si X est un schéma et x —> X un point géométrique, on note 
V(x) l'hensélisé strict de X en x et %x : V(x) —> X le morphisme canonique. 

3.4.2. Proposition. — Soit X un schéma régulier. Soit D un diviseur régulier de X ( x ) . 
Le couple régulier (X, D) est pur si et seulement si pour tout point géométrique x —» D, 
on a Rq

ét(V(x) - ç 1 ^ ) , A) = 0 pour tout q>2. 

Cela résulte du calcul de Я%{У{х) - Ç\D),A) pour q G {0,1} (cf. [SGA% [Cycle] 2.1.4]). 

3.4.3. Proposition. — On suppose que Vanneau de coefficients est Z/£Z où £ est un 

nombre premier. Soit f : Y —» X un morphisme fini et plat de degré constant premier 

à £ entre Z [j]-schémas réguliers. Soit D un diviseur régulier de X. On suppose que 

D' = f~1(D)Téd est un diviseur régulier de Y. Si le couple régulier (Y,Df) est pur, 

alors (X, D) aussi. 

Grâce à la proposition 3.4.2, on peut choisir un point géométrique de D et rem­

placer X par son hensélisé strict en ce point. On suppose donc que X et D sont 

locaux strictement henséliens et on se concentre sur la pureté du couple (X, D) en le 

point fermé de D. Le schéma Y est alors réunion disjointe finie de schémas locaux 

strictement henséliens ; au moins un de ceux-ci est de degré premier à £ sur X . On 

(x) On veut dire par là que D est un sous-schéma fermé de X qui est régulier et purement de 
codimension 1. Ceci n'exclut pas le cas où D serait vide. 
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peut donc supposer que Y aussi est local strictement hensélien. Il suffit alors de mon­

trer que W(X - D, Z/£Z) s'injecte dans RQ(Y - D', Z/£Z), ce qui résulte du lemme 

suivant : 

3.4.4. Lemme. — On suppose que Vanneau de coefficients A est Z/£Z où £ est un 

nombre premier. Soit f: Y —• X un morphisme de présentation finie, fini et plat de 

rang d premier à £ entre Z [ | ] -schémas. Alors, le morphisme canonique A —> /*A est 

un monomorphisme scindé dans D + (Xét ,A) . 

D'après [SGA 4 xvn 6.2.3], on a un morphisme Tr/ : /*A —> A tel que la composée 

A - / . A - A 

soit la multiplication par d, ce qui donne le scindage voulu puisque d est inversible 

dans A. 

3.4.5. Proposition. — On suppose que Vanneau de coefficients A est Z/£Z où £ est 

un nombre premier. Soit X un Z[j] -schéma régulier. Soit f une fonction sur X 

dont le lieu des zéros D = V(f) soit un diviseur régulier de X. On pose X' = 

Spec(ûx[T\/(T£ - f)). On note n: X' -> X la projection, D' = TT'^D)^ (no­

ter que D' —• D est un isomorphisme). Alors, X' est un schéma régulier, et le couple 

régulier (XF ,D') est pur si et seulement si le couple régulier (X,D) Vest. 

Soit x un point géométrique de D (on identifiera aussi x à un point géométrique 

de D'). On va en fait montrer que (X,D) est pur en x si et seulement si (X',D') 

l'est. On peut supposer que X est le spectre premier d'un anneau local strictement 

hensélien A d'idéal maximal m et que x est au-dessus du point fermé de X. On a 

évidemment / G m ; le fait que D = V(f) soit régulier revient à dire que / £ m 2 . 

Notons A' — A[T]/(T£ — f). En considérant le déterminant de l'endomorphisme 

de A! comme ^-module donné par la multiplication par un élément b G A!, on 

observe que b est inversible dans A! si et seulement si son image dans l'algèbre 

locale (A/m)[T]/(T£) est inversible. Il en résulte que A' est local d'idéal maximal 

m' = (T) + m i ' . Par ailleurs, on a un isomorphisme A/(f) ^ A!/(T) (i.e. D' —> D 

est un isomorphisme). L'anneau A^[T]/(T£ — f) est un anneau de valuation discrète 

d'uniformisante T ; on en déduit un isomorphisme A^[T]/(Te — f) A'^ dont il 

découle que le localisé de A' par rapport à l'idéal (T) est un anneau de valuation 

discrète. La codimension de l'idéal premier (T) dans A' est donc 1. On en déduit que 

dim A' > 1 + dim Af/(T) = 1 + dim A/(f) = dim A. Comme / G m — m 2 , on peut 

introduire des éléments (g\,..., g^) de m tels que les classes des éléments / , g\,..., g^ 

forment une base de m/m 2 comme A/m-espace vectoriel. On a alors m = (f,gi,..., g^) 

et dim A = d+1 car A est régulier. L'idéal maximal (T) + mAf de A' est engendré par 

(T,gi,..., ga), donc dim A! < d+1 = dim A. Comme on sait déjà que dim A! > dim A, 
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il vient que dim A' = d + 1 et que l'idéal maximal de A' est engendré par dim A' élé­

ments, donc A' est régulier. 

On peut considérer, pour tout entier v > 0, le X-schéma affine Xv — 

Spec (A[T]/(Tr - / ) ) . En élevant T à la puissance £, on obtient une tour de 

morphismes 

> X»+1 -+ Xv -> • X1 x ° , 

le dernier morphisme X1 —» X° s'identifiant à TT: X' —» X. Pour tout entier n in­

versible dans A, on note pn := / / n ( A ) . Pour tout v > 0, on munit la A-algèbre 

J4[T]/(T £ " — / ) de l'action à gauche de p^ telle que £ G / / ^ agisse en envoyant T sur 

ÇT. Le schéma Xv hérite ainsi d'une action à droite de p^ et Xv X j (X — D) est 

muni d'une structure de /x^-torseur à droite au-dessus de (X — D)ét- D'après 4.6.2, on 

dispose pour tout v > 0 d'un morphisme de topos (X — D)ét —> B/z^ tel que l'image 

inverse du p^-torseur à droite E/x^ (cf. 4.6.1) s'identifie à Xv. Les compatibilités évi­

dentes entre les revêtements constituant cette tour font que si on note Z^(l) = lim p,^, 

alors on dispose en fait d'un morphisme de topos pf. (X — D)ét —> BZ^( l ) tel que 

le foncteur p*j envoie le système projectif EZ^(l) := (E/i^)^ sur (Xv Xx (X — D))u, 

et ce de façon équivariante pour les actions à droite des groupes p^. (Si on a choisi 

un système compatible de points géométriques yv des schémas Xv X j (X — D) , la 

construction 4.6.3 donne un système compatible de morphismes ^(X — D,y0) —> pu». 

Par passage à la limite projective on obtient un morphisme ^(X — D^y^) —> Z^( l ) . Le 

morphisme de topos pf s'identifie alors au composé evident Xét —> B7rft(X —D,^ 0 ) —• 

BZ,(1) .) 

Dans la suite, le //^-torseur étale à droite Xf — D = X1 — D au-dessus de X — D 

sera aussi considéré comme un //^-torseur à gauche (sans passage à l'inverse, ce qui 

est possible parce que pe est commutatif) : c'est le /i^-torseur des racines ^-ièmes de / . 

3.4.6. Lemme. — Le couple régulier (X, D) est pur en x si et seulement si le mor­

phisme 

RT(BZ<(1) ,^ ) - RT((X - D)éupe) 

induit par le morphisme de topos pf est un isomorphisme dans la catégorie dérivée 

des groupes abéliens. 

Ce lemme découle des deux lemmes suivants : 

3.4.7. Lemme. — Pour tout entier q > 2, H 9 (BZ^(1), pi) = 0 et on a des isomor-

phismes canoniques 

H°(BZ*(1 ) , ^ ) - M, H ^ B Z ^ l ) , ^ ) - H o n w ( Z ^ l ) , / ^ ) ~ Z/IZ. 

Pour obtenir l'identification H 1(BZ^(1),pi) ~ Hom c o n t (Z^( l ) ,pi ) , on utilise des 

conventions de signes compatibles avec 4.6.1. Pour le reste, il s'agit de montrer que 
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Ze(l) est de ^-dimension cohomologique 1. Pour cela, voir par exemple [Serre, 1994, 

§3.4, chapitre 1]. 

3.4.8. Lemme. — Le morphisme composé 

Z/£Z ~ H ^ B Z ^ l ) , ^ ) PX 1SL\{X - D)ét^e) ± R2

D(X^£) 

envoie 1 sur — C\D<ZX-

Grâce à 4.6.1, on obtient que le générateur canonique de H ^ B Z ^ l ) , / ^ ) s'envoie 

par p*j sur la classe du ^-torseur X' — D —• X — D qui d'après la construction 4.3.1 

est égale à 5KU) OÙ 8K ' EP(X — D, G m ) —• W+1{X — D, fie) est le morphisme de bord 

associé à la suite exacte de Kummer. Si on note SX-D • H*(X — —» H^" 1 (X, 

les morphismes de bord reliant la cohomologie et la cohomologie à supports (cf. 4.7.6), 

comme dans [SGA4J [Cycle] 2.1.3], 4.7.5 fournit la relation suivante dans H2

D(X,iit) : 

6x-D(SK(f)) = SK(SX-D(f)) 

= - c i d ' a p r è s 4.7.6 

= c.iûxj-1) 

= c^fûxA) 

= —C\DCX> 

On peut appliquer le lemme 3.4.6 à X' : il vient que le couple régulier (X', D') est 

pur en x si et seulement si le morphisme 

RT(BZ*(1), m) - RT((A" - D'U^i) 

induit par le morphisme de topos PT'- (Xf — Df)ét —> BZ^(l ) est un isomorphisme. 

On dispose d'un carré commutât if de topos : 

(X'-D')ét^^BZ£(l) 

a g' 

V V 
( X - L > ) é t - ^ - B Z , ( l ) 

où g est induit par n: X' —> X et g' par la multiplication par £ sur Z^(l) . Le faisceau 

g+Z/£Z s'identifie canoniquement à p*jgf

k(Z/£Z). Il en découle aisément que le couple 

régulier (X ' , D') est pur en x si et seulement si le morphisme canonique 

Rr (BZ , ( l ) , f f ; (Z /€Z) ) - RT((X - D)ét,p}gi(Z/eZ)) 

est un isomorphisme. 
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La cohomologie relative du morphisme de topos pf. (X — D)ét —> BZ^(l ) définit 

un foncteur triangulé 

F: D + ( B Z ¿ ( 1 ) , Z / ¿ Z ) -> D+(Z/¿Z) 

tel que pour tout K G D+(BZ¿(1), Z/ÍZ), F(K) soit isomorphe à un cône du mor­

phisme canonique RT(BZ¿(1), K) -> Rr ( (X - D)éup*fK). 

Le lemme suivant découle de ce qui précède : 

3.4.9. Lemme. — Le couple régulier (X, D) est pur en x si et seulement si F(Z/£Z) = 

0 tandis que (X\Df) est pur en x si et seulement si F(g^(Z/£Z)) — 0. 

Comme Z¿(1) est un pro-£-groupe, le faisceau g/

k(Z/£Z) est une extension successive 

de £ copies de Z/£Z. Le foncteur F étant triangulé, on en déduit aussitôt que si 

F(Z/£Z) est nul, alors F(gf

kZ/£Z) aussi et que si F(Z/£Z) est non nul, son premier 

objet de cohomologie non nul s'injecte dans celui de F(g!k(Z/£Z)). Ceci achève la 

démonstration de la proposition 3.4.5. 

3.5. Schémas sur un trait. — Soit S un trait (dans lequel les nombres premiers divisant 

le cardinal de A sont inversibles). On note s son point fermé, r\ son point générique 

et 7T une uniformisante. 

3.5.1. Proposition. — Le trait S est ponctuellement pur. 

Il s'agit de montrer que 5 est ponctuellement pur en son point fermé. On peut 

supposer que S est strictement hensélien; d'après la proposition 3.4.2, cela résulte 

alors du fait que le corps des fractions de S soit de ̂ -dimension cohomologique 1 pour 

tout nombre premier £ inversible sur S (cf. [SGA 4 X 2.2]). 

3.5.2. Proposition. — Pour tout entier naturel n, l'espace affine A g est ponctuelle­

ment pur. 

D'après la proposition 3.2.5, les schémas A™ et A™ sont ponctuellement purs. Ainsi, 

Ag est ponctuellement pur en les points de la fibre générique. Pour établir la pureté 

ponctuelle de A ^ en les points de la fibre spéciale, on utilise la proposition 3.2.3 : il 

suffit de montrer que le couple régulier (Ag, A™) est pur. Le cas n = 0 résulte de la 

proposition 3.5.1 et le cas général en découle en vertu du théorème de changement de 

base lisse. 

3.5.3. Corollaire. — Un S-schéma lisse est ponctuellement pur. 

3.5.4. Définition. — Soit p: X —> S un morphisme de type fini, avec X régulier et 

admettant un faisceau ample. On pose Kx — P?^s et on dispose d'un morphisme de 

Gysin ClX/s' A x Kx dans D + ( X é t , A ) (cf. définition 2.5.11). 
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3.5.5. Proposition. — Soit p: X —> S un morphisme de type fini, avec X régulier et 

admettant un faisceau ample. Le schéma X est ponctuellement pur si et seulement si 

le morphisme Clx/s: ^x —> Kx est un isomorphisme dans D + (Xét ,A). 

On choisit une factorisation X A Y S de p (dans la catégorie yic) avec Y lisse 

sur S et i une immersion fermée (régulière). D'après le théorème 2.5.12 (ou plutôt par 

définition de Clx/s) , le diagramme suivant est commutatif : 

^ v A 

N. ~ i?C\q 

iqA. 

Le morphisme q étant lisse, le morphisme de Gysin Clq est un isomorphisme. Par 

conséquent, C\x/s e s ^ u n isomorphisme si et seulement si Cl^: A —» z ?A en est un. 

D'après la proposition 3.2.3 et compte tenu du fait que Y soit ponctuellement pur (cf. 

corollaire 3.5.3), ceci équivaut encore à dire que X est ponctuellement pur. 

3.5.6. Corollaire. — Soit X un S-schéma de type fini qui est régulier. Soit Y un 

X-schéma lisse. Si X est ponctuellement pur, alors Y aussi. 

3.5.7. Proposition. — Soit f:X—>Y un morphisme propre et dominant de S-sché­

mas où X et Y sont supposés de type fini sur S, intègres, réguliers et admettant 

des faisceaux amples. On suppose de plus que f est génériquement étale de degré d 

inversible dans A. Alors, la pureté ponctuelle de X implique celle de Y. 

Le morphisme / est localement d'intersection complète lissifiable de dimension re­

lative virtuelle zéro, d'où f? — f. Le morphisme de Gysin relatif à / est un morphisme 

Cl/ : A - > / ! A . 

3.5.8. Lemme. — On peut généraliser le morphisme Cl/ : A —> / ! A en des morphismes 

f*M -> fM, fonctoriellement en M e D + (F é t , A). 

Le morphisme Cl / : A —• / ! A correspond par adjonction à un morphisme R/jA —» 

A, que l'on peut tensoriser avec M pour obtenir (via la formule de projection) un 

morphisme Rf\f*M —> M qui correspond lui-même par adjonction au morphisme 

f*M —> f'M du type recherché. 
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En appliquant la fonctorialité de la construction du lemme au morphisme 

Cly/5: A y —• Ky, on obtient un diagramme commutatif dans D + (Xét, A). 

T A y / ! A y 

/*(Cly/s) fl(C\Y/s) 

f*KY ^fKy. 

Via l'isomorphisme canonique /*Ay ~ Ax , le morphisme du haut s'identifie 

au morphisme Cl / : Ax —• / ! A y ; celui de droite est / ! (C ly / s ) . D'après le théo­

rème 2.5.12, il vient que le morphisme composé Ax — /*Ay —• f'Ky ~ Kx est 

le morphisme de Gysin Clx/s- On déduit de ceci un diagramme commutatif de la 

forme suivante dans D + (Xét ,A) : 

r A y - ^ A x - ^ / ! A y 

f*(C\Y/s) C\x/S flC\Y/s 

Ï*KY ^Kx-^fKy. 

Comme / est propre, on obtient par adjonction un nouveau diagramme commutatif 

dans D+(Yét, A) : 

Ay ^ R/*Ax ^ Ay 

Cly/s R/*(ClX/s) c i y / s 

Ky Rf*Kx Ky. 

Le diagramme ci-dessus met en évidence une relation entre les morphismes Cly/s 

et R / ^ C l x / s ) - Comme va le montrer le lemme suivant, le premier morphisme est un 

facteur direct du second, ce qui montre que la pureté ponctuelle de X implique celle 

de y, achevant la démonstration de la proposition 3.5.7. 

3.5.9. Lemme. — Sur le diagramme précédent, les morphismes composés Ay —• Ay 

et Ky —» Ky sont les multiplications par le degré d (en particulier, ce sont des 

isomorphismes). 

Comme Y est connexe (non vide), on a un isomorphisme évident A ^ 

End D +(y é t j A ) (Ay) . D'après le théorème de bidualité locale (cf. [SGA4J [Th. fi­

nitude] 4.3]), on a aussi un isomorphisme A ^ EndD+(y é t )A)(^y)- H suffit donc 

d'obtenir la conclusion au-dessus d'un ouvert non vide de Y. Quitte à remplacer Y 

par un ouvert non vide convenable, on peut supposer que / est un revêtement étale. 

On est ainsi ramené au lemme suivant : 
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3.5.10. Lemme. — Soit f : X —+ Y un morphisme de schémas fini étale de degré 

constant d. Pour tout objet M G D + ( l é t , A), le morphisme composé 

M -> / * / * M M 

déduit des adjonctions canoniques (/*,/*) et (/*,/*) est la multiplication par d. 

Grâce aux formules de projection, on peut supposer que M = Ay. Il suffit alors 

d'établir le résultat après un changement de base étale (non vide) trivialisant le revê­

tement X —» Y (par exemple une clôture galoisienne de ce revêtement). Bref, on peut 

supposer que X est une réunion disjointe de d copies de Y, auquel cas le résultat est 

trivial. 

3.5.11. Définition. — Soit ( e i , . . . , en) G N n . On définit un 5-schéma : 

V (S, n,eu...,en) = Spec (0S[TU..., T„] / (U7=i ?ï - *)) • 

Pour tout on note Hi le sous-schéma fermé de V(S, 7r, e i , . . . , en) défini par l'équa­

tion Ti = 0. 

3.5.12. Proposition. — Soit ( e i , . . . , e n ) un n-uplet d'entiers naturels non tous nuls. 

Alors, le schéma V(S, 7r, e i , . . . , en) est régulier et ponctuellement pur. 

On peut supposer que l'anneau des coefficients est Z/^Z où £ est un nombre premier 

inversible sur S. 

3.5.13. Lemme. — (i) Si ( e i , . . . , e n ) est un n-uplet d'entiers non tous nuls dont 

au moins un est inversible dans n, le S-schéma V(S, 7r, e±,..., e n ) est intègre, 

régulier et de fibre générique lisse ; 

(ii) Soit d > 1, si S' est le trait obtenu en extrayant une racine d-ième 7r' de l'unifor­

misante 7T (cf. [Serre, 1968, Proposition 17, §6, Chapitre ï\), pour tout n-uplet 

( e i , . . . , en), on a un isomorphisme de schémas 

V r (5 / ,7r / ,ei , . . . , e n ) = V(5 ,7r ,dei,. . . , de n ) ; 

(iii) Si ( e i , . . . , e n ) est un n-uplet d'entiers non tous nuls, le schéma V(S, 7r, e i , . . . , en) 

est régulier et intègre ; 

(iv) Si ( e i , . . . , en) est un n-uplet d'entiers non tous nuls, le schéma V(S, 7r, e i , . . . , en) 

est ponctuellement pur si et seulement si pour tout i tel que e* > 0, le couple 

régulier (V(S, n, e i , . . . , en),Hi) est pur^ ; 

(v) Soit ( e i , . . . , e n ) un n-uplet d'entiers non nuls, soit e le p.p.cm. des ei ; on 

suppose que £ ne divise pas e ; si V{S, 7r, e , . . . , e) est ponctuellement pur, alors 

V(S,7T, e i , . . . , en) aussi; 

(xi) si a = 0, c'est vrai aussi : c'est un cas particulier du théorème de pureté relatif, cf. [SGA 4 xvi 3.7]. 
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(vi) Si ( e i , . . . , e n ) est un n-uplet d'entiers tel que e\ ^ 0, V(S, n, e\,..., en) est 

ponctuellement pur si et seulement si V(S, ir, £e\, e2,..., en) est ponctuellement 

pur. 

Les assertions (i) et (ii) sont laissées en exercice au lecteur. L'assertion (iii) résulte 

aussitôt de (i) et de (ii). 

Pour montrer l'assertion (iv), il suffit d'observer que les diviseurs Hi pour > 0 

sont ponctuellement purs (ce sont des espaces affines sur le corps résiduel de S) et 

forment un recouvrement de la fibre spéciale de V(S, TT, e i , . . . , en). La fibre géné­

rique du schéma V(Sn, e i , . . . , en) étant ponctuellement pure (puisque lisse sur une 

extension de 77), on peut conclure en utilisant la proposition 3.2.3. 

Concernant l'assertion (v), l'élévation des Ti à la puissance — définit un morphisme 

fini et plat V(S, 7r, e , . . . , e) —> V(S, 7r, e i , . . . , en) de degré e

 e " e (premier à £) ; compte 

tenu du critère (iv), la proposition 3.4.3 permet de conclure. 

Pour établir (vi), remarquons que l'élévation de Xi à la puissance £ définit 

un morphisme fini et plat V(S,7r,£ei,e2,... ,en} —> V(S,TT, e\,..., en ) de degré 

£ et étale en dehors du lieu d'annulation de Ti. Il suffit donc de montrer que 

(V(S, 7r,£ei, e 2 , . . . , en), Hi) est pur si et seulement si (V(S, n, e\,..., en), Hi) l'est, 

ce qui résulte de la proposition 3.4.5. 

Établissons la proposition 3.5.12. D'après l'assertion (iii), les schémas considé­

rés sont réguliers. Pour établir leur pureté ponctuelle, d'après le corollaire 3.5.6, on 

peut supposer qu'aucun des exposants n'est nul. Dans le cas où les tous les en­

tiers ei valent 1, le résultat est établi dans [Illusie, 2004, theorem 1.4] (voir aussi 

[Rapoport & Zink, 1982, Satz 2.21]). Grâce à l'utilisation d'un trait auxiliaire, l'as­

sertion (ii) permet d'en déduire que pour tout entier d > 1, V(S, ir, d,..., d) est 

ponctuellement pur. En utilisant l'assertion (v), on obtient que V(S, 7r, e i , . . . , e n ) est 

ponctuellement pur si £ ne divise aucun des entiers e*. L'assertion (vi) permet de 

passer au cas général. 

3.6. Géométrie logarithmique 

3.6.1. Définition. — Soit S un trait, de point générique rj. La log-structure canonique 

sur S est la log-structure image directe de la log-structure triviale sur r]. Toute uni­

formisante de S définit un morphisme de monoïdes N —> T(5, ûs) donnant naissance 

à une carte S —> Spec(Z[N]) du log-schéma S. 

L'objectif de cette sous-section est d'établir le théorème suivant : 

3.6.2. Théorème. — Soit S un trait muni de sa log-structure canonique. Soit 

(X, M) —> S un morphisme log-lisse de log-schémas fs. Si le schéma X est ré­

gulier, alors il est ponctuellement pur. 
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La proposition suivante précise [Kato, 1988, theorem 3.5] dans le cas des log-

schémas fs : 

3.6.3. Proposition. — Soit (X, M) —> (Y, N) un morphisme log-lisse entre log-schémas 

fs. On suppose donnée une carte Y —• Spec(Z[Q]) de (Y,N) où Q est un monoïde 

fs sans torsion^. Pour tout point géométrique x de X, il existe un voisinage étale 

U de x, un morphisme injectif de monoïde Q —> P avec P fs sans torsion et une 

carte U —• Spec(Z[P]) tels que la partie de torsion de Coker(Q g p —> P S P ) soit d'ordre 

inversible sur U et que le morphisme de schémas U —> Y ^spec(z[Q)) Spec(Z[P]) soit 

étale. 

Dans la démonstration du critère de log-lissité de [Kato, 1988, theorem 3.5], des 

éléments t i , . . . , t r de sont choisis de sorte que la famille (dlog t i , . . . , dlog tr) 

forme une base du faisceau des log-différentielles wX/Yx' ^ n c o n s i d è r e ensuite le 

morphisme de monoïdes évident N r 0 Q ^ Mx donné sur la composante N R par les 

ti,...,tr. Il est tel que le conoyau de Z R 0 Q g p - » M§p/Ûx- soit fini d'exposant 

n inversible dans l'anneau Gx& (en particulier, & X x - est n-divisible). Il existe un 

morphisme injectif Z R 0 Qgp —> G de conoyau tué par une puissance de n et un 

prolongement h: G -> M | p de Z R 0 Q g p M | p tel que G M§p/Ûx- soit surjectif. 

Comme M | p / 6 X - est un groupe abélien de type fini et sans torsion, le lemme suivant 

montre que l'on peut s'arranger pour que G soit un groupe abélien libre. Dans la 

démonstration de [Kato, 1988, theorem 3.5], on pose ensuite P = h~1(Mx) et il est 

montré que sur un voisinage étale U dex,P engendre la log-structure de (X, M) et 

que le morphisme de schémas U —> S Xspec(z[Q]) Spec(Z[P]) est étale en x. Le monoïde 

P ainsi construit est fs et sans torsion. 

3.6.4. Lemme. — Soit n un entier naturel non nul. Soit A un groupe abélien libre de 

type fini. Soit (p: A B un morphisme de groupes abéliens. Soit U C B un sous-

groupe n-divisible. On suppose que B/U est sans torsion et que Cokev(A —> B/U) est 

fini et tué par n. Alors, il existe un groupe abélien A! libre de type fini, un morphisme 

injectif A —> A! de groupes abéliens tel que A!/A soit tué par une puissance de n et une 

extension A' —> B du morphisme A—> B telle que le morphisme composé A! —> B/U 

soit surjectif. 

Grâce à une récurrence sur l'ordre de Coker(A —> B/U), on peut supposer que 

Coker(A —> B/U) est cyclique d'ordre d > 2, engendré par la classe d'un élément 

b G B. Il existe donc a e A et u e U tels que db = (p(a)+u. Comme u est n-divisible, 

(X11) Si y est un point géométrique de Y, il existe un voisinage étale de y admettant une telle carte 
avec Q = My/Ûy- qui est fs saillant (cf. [Kato, 1994, Lemma 1.6]). 
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il existe u E U tel que u = dû. Quitte à remplacer b par b — û, on peut supposer que 

u = 0. On forme le carré cocartésien suivant dans la catégorie des groupes abéliens : 

Z —^—^ A 

2* 

En raison de la relation db = (p(a), on peut définir un unique morphisme de groupes 

abéliens (pf : A' —> B induisant cp : A —• B et envoyant ^ sur b. On obtient ainsi une 

surjection A' —* B/U induisant un isomorphisme A'/A ^ Coker (A —• B/U). Il reste 

à vérifier que A1 est sans torsion. Soit a' un élément de torsion de A!. L'image de a' 

dans B/U via cpf est de torsion, mais B/U étant sans torsion, on a (f'(af) € U. Comme 

<p' induit un isomorphisme A!/A Coker(A —» B/U), on en déduit que a' e A, mais 

A est sans torsion, donc a' = 0. 

5.6.5. Proposition. — (X, M ) —* S un log-schéma j s log-lisse sur un trait S (muni 

de sa log-structure canonique). On suppose que le schéma X est régulier. Alors, 

localement pour la topologie étale, X admet un morphisme étale vers un schéma 

V(S, 7T, e i , . . . , en) où ( e i , . . . , e n ) est un n-uplet d'entiers non tous nuls (cf. défi­

nition 3.5.11). 

Soit 7T une uniformisante de S ; elle donne naissance à une carte S —> Spec(Z[N]). 

D'après la proposition 3.6.3, on peut supposer qu'il existe un monoïde P fs sans tor­

sion, un morphisme injectif N —* P, une carte X —• Spec(Z[P]) telle que le morphisme 

de schémas X —> S Xspec(z[N]) Spec(Z[P]) soit étale. Soit x un point géométrique de 

X. On note P' le sous-monoïde de P formé des éléments dont l'image dans T(X, ûx) 

soit inversible au point x. 

On peut supposer que P' est un groupe. En effet, si A est un sous-ensemble fini de 

P' qui engendre le groupe abélien (libre de type fini) P'SPC*"*^ o n p e u t remplacer X 

par le voisinage ouvert de x sur lequel les images des éléments de A (et donc de P') 

sont inversibles dans le faisceau structural et par suite, remplacer P par P[—Pf] qui 

est encore fs et sans torsion. 

Le fait que X —• Spec(Z[P]) soit une carte implique alors que P' est le noyau de 

P g p —• M | p / ^ - . En particulier, on obtient un isomorphisme 

P/P' - M^IÛI-. 

Comme X est log-régulier, on reconnaît que X est régulier au fait que M^/ @xx s o ^ 

un monoïde libre (cf. VI-1.7). Par conséquent, il existe un entier r et un isomorphisme 

(xin) g n o n p e ut montrer que P' est un monoïde de type fini (c'est une face de P). 
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de monoïdes N r ^ P/P'. On peut relever ce morphisme en un morphisme N r —• P, 

ce qui permet de construire un isomorphisme N r 0 P ' ^ P. 

Il en résulte que le morphisme de carte X —> Spec(Z[P]) a pour but un schéma 

isomorphe à Spec(Z[N r 0P']) qui est le produit d'un espace affine et d'un tore déployé 

(dont P' est le groupe des caractères). Dans la carte du morphisme (X, M) —• 5 

qui est donnée, l'image de 1 par le morphisme de monoïdes N —» P peut s'écrire 

( e i , . . . , e r ,p ' ) dans N r 0 P' via les identifications ci-dessus. On peut choisir une 

base a i , . . . ,a s de P' comme groupe abélien telle que p' = X ^ = i Ua% a v e c fi £ N. 

On a ainsi construit un morphisme étale X —• V(S, n, e i , . . . , e r , / i , . . . , fs) (avec les 

c i , . • •, er, fi,..., fs non tous nuls). 

Compte tenu de la proposition 3.5.12, le théorème 3.6.2 résulte aussitôt de la pro­

position 3.6.5. 

3.7. Démonstration du théorème de pureté. — Démontrons le théorème 3.1.1. D'après 

les propositions 3.3.1 et 3.3.2, on peut supposer que l'anneau des coefficients A est 

Z/£Z où £ est un nombre premier. D'après la proposition 3.2.3, il s'agit de montrer 

que tout Z [|]-schéma régulier est ponctuellement pur. D'après [Fujiwara, 2002, co­

rollary 6.1.5], on peut supposer que X est un schéma régulier intègre, quasi-projectif et 

plat sur un trait (strictement hensélien) 5, que l'on peut supposer d'inégale caractéris­

tique d'après la proposition 3.2.5. On peut utiliser les notations de la sous-section 3.5. 

Quitte à étendre le trait S, on peut supposer que l'anneau sous-jacent à S est inté­

gralement fermé dans le corps des fonctions rationnelles sur X. La fibre générique Xv 

de X est donc géométriquement intègre. 

En appliquant [Vidal, 2004, proposition 4.4.1] à la normalisation de l'adhérence 

de X dans un plongement projectif, on obtient qu'il existe un groupe fini G et un 

diagramme G-équivariant : 

X' 

v v 
S'—*s 

tels que : 

— G agisse trivialement sur X et S ; 

— Sf —» S soit une extension finie de traits ; 

— X' —• X soit projectif, X' soit régulier, connexe et à réduction semi-stable sur 

S'; 

— G agisse fidèlement sur X' et X' —» X soit génériquement un revêtement étale 

galoisien de groupe G. 

On munit X' de la log-structure dont l'ouvert de trivialité est la fibre générique 

de X' -> Sf. Soit H un ^-Sylow de G. On note T = S'/H. L'extension de traits 
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(strictement henséliens) S' —> T est d'ordre une puissance de £, donc modérément 

ramifiée. Par conséquent, pour les log-structures canoniques, S' —> T est log-étale. 

Comme on sait que X' est log-lisse sur S", il l'est donc aussi sur T . Comme H agit 

trivialement sur T et que son action sur X' est modérée, on peut appliquer le théorème 

de résolution équivariante X- l . l qui donne un morphisme projectif et birationnel 

if-équivariant X" —> X' de log-schémas tel que X" soit log-lisse sur T et que H 

agisse très modérément sur X". Le log-schéma quotient X"/H est aussi log-lisse 

sur T (en particulier, X"/H est log-régulier). D'après le théorème de résolution des 

singularités de Kato-Niziol (cf. [Kato, 1994, 10.3, 10.4] et [Niziol, 2006, 5.7]), il existe 

un log-éclatement (en particulier, log-étale, projectif et birationnel) X"' —• X"/H tel 

que X'" soit régulier. La situation est résumée sur le diagramme suivant : 

H G 

r v . c \ 
•g/1 birat. ^ ^ j£ 

X»'-*™£:X"/H"'G(^S' 

X N N N X T 

Le log-schéma X'" est régulier et log-lisse sur T ; d'après le théorème 3.6.2, X'" est 

ponctuellement pur. Le morphisme évident X'" —• X est projectif et génériquement 

un revêtement étale de degré premier à £ ; d'après la proposition 3.5.7, on peut conclure 

que X est ponctuellement pur, ce qui achève la démonstration du théorème de pureté. 

4. Conventions de signes 

Bien que le rédacteur de cet exposé y répugne, il peut être utile de préciser certaines 

conventions de signe. Nous nous appuierons sur celles de [Conrad, 2000, § 1.3] ; elles ne 

coïncident pas avec celles de [SGA 4 xvn 1.1]. Quelques conventions supplémentaires 

sont précisées ci-dessous. 

4.1. — On rappelle que si K — (• • • —» Kn —• K n + 1 — » • • • ) est un complexe dans une 

catégorie abélienne, pour tout i € Z, le complexe K[i] est tel que K[i]n = KlJrn et 

que les différentielles sur K[i] soient données par les différentielles sur K multipliées 

par ( - 1 ) \ 

Si f: K —» L est un morphisme de complexes, cône(/) est le complexe tel 

que c ô n e ( / ) n := Kn+l 0 Ln et dont la différentielle est représentée par la 
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matrice ( ^ K \ L e s inclusions Ln —> Kn+l 0 L n induisent un mor-
V / dj 

phisme i: L —• cône(/) et les projections i f n + 1 0 Ln —> Kn+l un morphisme 

p: cône(/) —> On décrète que le triangle suivant est distingué ( x i v ) : 

Kl* LÀconeC/-) ^K[l}. 

Si 0 —> M' - i M - ^ M " —» 0 est une suite exacte courte dans une catégorie abélienne 

si, ¡3 induit un quasi-isomorphisme cône (a) —> M" : 

- 1 M' ^ 0 

a 
3 * 

0 M — ^ M " 

cône (a) — ^ M" . 

Dans la catégorie dérivée de si ̂  on obtient ainsi un triangle distingué 

M ' A M A M , , Ì M , [ 1 ] , 

où (5 est le zigzag ainsi décrit : 

- 1 0 ^ M' —^—^ M' 

oc 
V v 

0 M" •< M ^ 0 

M" cone(oj) ^ M' [ l ] . 

4.2. — Si l'on dispose d'un foncteur cohomologique (covariant) Ĵ "0 d'une des va­

riantes de la catégorie dérivée d'une catégorie abélienne si, on peut étendre ce fonc­

teur en une suite de foncteurs ( ^ " n ) n e z en posant &nM := &°(M[n]). À toute suite 

exacte courte 0 —» M' A M M" —> 0 dans si est associée une suite exacte longue : 

> &nM' A &nM 4 &nM" J ^ n + 1 M ' -> • • • 

où les morphismes (5: &nM" —> ̂ n + 1 M ' sont obtenus par l'application du fonc­

teur au morphisme 5[n] : M'[n] —> M"[n + 1]. C'est ainsi que l'on munit par 

exemple la suite des foncteurs H n ( X , — ) pour X un site d'une structure de d-foncteur 

[Grothendieck, 1957, § 2.1], lequel est universel, ce qui permet de comparer des classes 

(xiv) Q n p r e n d r a garde au fait que [SGA 4 xvn 1.1] utilise une convention opposée. 
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de cohomologie construites par des procédés faisant intervenir différentes construc­

tions du d-foncteur universel (cf. §4.8). 

4.3. — Soit 5? est un faisceau de groupes abéliens sur un site X et 3F est un Sf-torseur 

(à gauche). On se propose de définir une classe \SF\ G H 1 (X,^f ) . 

4-3.1. — Il existe un monomorphisme de faisceaux abéliens i: <S —> srf et un 

morphisme Sf-équivariant a: 3F —> où l'on fait agir sur par la formule 

g.a = i(g) + a. L'image de a dans le quotient srfs'identifie à un élément 

s G H ° ( X , O n note [3F] := S (s) G E}(X,&) l'image de s par le morphisme de 

bord S: ïï.°(X,&//&) H ^ X , ^ ) associé à la suite exacte 0 ^ ^ - + ^ - + ^ / ^ - > 0 

(cf. [SGA4j [Cycle] 1.1.1]). 

4-3.2. — Si S —• • est un épimorphisme de faisceaux d'ensembles (où • est l'objet 

final) et s: S —* 3F un morphisme (que l'on considère comme une section de 3F au-

dessus de S), en considérant 3F comme un torseur-^f (i.e. comme un torseur à droite 

sous en faisant agir à droite sur 3? par la formule t.g := g.t (ce qui est possible 

puisque est commutât if), il existe un (unique) morphisme 7: S x S —» tel que 

pr£(s) = prî(s).7 : c'est le 1-cocycle associé au torseur à droite 3F'(xv). En suivant 

les conventions de [Conrad, 2000, § 1.3] convenablement généralisées pour s'appliquer 

aux sites et pas seulement aux espaces topologiques, le 1-cocycle 7 est un 1-cocycle 

de Cech associé au recouvrement S —> • ; il définit donc un élément de H 1 (X , ) dont 

on peut montrer qu'il coïncide avec l'élément \3F\ défini en 4.3.1. 

4.3.3. — Il est également intéressant de disposer d'une troisième construction 

de \3F\, en identifiant cette fois H 1 (X,^f ) au groupe des morphismes Z —• S?[l] 

dans la catégorie dérivée des faisceaux abéliens. Pour cela, avec les mêmes nota­

tions qu'en 4.3.2, on introduit le faisceau d'ensembles simplicial C{<£) défini par 

G(E)n := H o m ( { 0 , . . . , n}, S) ~ S>1+n pour tout n G N, la structure simpliciale 

étant évidente. En notant Z— le foncteur adjoint à gauche du foncteur d'oubli des 

faisceaux abéliens vers les faisceaux d'ensembles, on obtient un faisceau abélien 

simplicial ZC(<?) qui donne naissance à un complexe de faisceaux abéliens (concentré 

en degré négatifs), que l'on notera encore abusivement ZC(<^) : 

> Z(<? 3) d o ~ ^ Z(£2) do^dl Z<f -+ 0 • • • 

La projection § —> • induit le morphisme d'augmentation s: ZC(<?) —> Z, lequel est 

un quasi-isomorphisme. On peut alors décrire [3F] G H 1 (X , Sf) comme étant le zigzag 

(xv) C'est la formule que l'on utiliserait pour définir le 1-cocycle associé à un torseur à droite sous 
un faisceau de groupes non-nécessairement commutatif. 
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suivant : 

- 2 0 -< : ^ 0 

- 1 0 ^ Z{S2) ~ 7 > y 
(e,e') 

i 
V V — e w 

0 Z ^ ZS ^ 0 

Z ^ - ZC{S) ^ [ 1 ] . 

4.4. — Un bicomplexe est une famille ( i f p ' 9 ) ( p ,g)ez 2 d'objets d'une catégorie abé-

lienne sá munis de différentielles horizontales d^: Kp,q —» Kp~*~1,q et verticales 

dv : KPA —• telles que ¿4 0 4 = 0, d v odv = 0 et dvodh = dhodv. Le complexe 

simple associé à est défini par ( T o t # * ' # ) n := © p + g = n et la différentielle 

( T o t i f ' * ) n -> ( T o t i f ' * ) n + 1 est définie sur le terme Kp>q (pour p + q = n) comme 

étant dh + ( - l ) p d v : 1TP ' 9 Kp+X>q 0 c (Tôt K*')n+1. (Le complexe simple 

défini ci-dessus est celui défini en termes de sommes. Il existe aussi une version définie 

en utilisant des produits plutôt que des sommes. Dans les deux cas, il convient de 

s'assurer que les sommes ou produits considérés sont représentables dans sá 1) 

4.5. — Le produit tensoriel de complexes est défini de la façon habituelle. Si K 

et L sont deux complexes (de modules, ou de faisceaux de modules), (K 0 L)n := 

Ç&p+q=nKp 0 Lq et la différentielle est définie par la formule d(x 0 y ) = dx 0 y + 

où \x\ est le degré de x (autrement dit, K 0 L est le complexe simple 

associé au bicomplexe évident (Kp 0 Lq)(p^ez
2i cf. 4.4). 

4-5.1. — L'automorphisme de symétrie K<g>L ~ L<g)K envoie x<g>y sur (—l)\x\'\y\y®x. 

(L'isomorphisme d'associâtivité (K 0 L) 0 M ~ K 0 (L 0 M ) ne fait en revanche 

pas intervenir de signe.) On peut alors remarquer que si K est un complexe et i G Z , 

alors K 0 (A[i\) s'identifie canoniquement à K décalé de i crans vers la gauche sans 

changement du signe des différentielles. En revanche, on peut observer que A[i] 0 K 

s'identifie tout à fait canoniquement à K[i\. (Ici, A est un anneau (commutatif) de 

coefficients tout à fait arbitraire.) 

4-5.2. — Supposons que a: M' 0 A M" —• M soit un morphisme de complexes de 

A-modules. On définit pour tout G Z 2 un morphisme a: H*(M7) 0 A IP(M") —> 

H Î + J ( M ) de la façon suivante. Si x G MH et y e M / / J sont des cocycles, alors x®yE 

Mn 0 A M"! c (M' 0 A M")l+i est un cocycle dont on peut considérer l'image par 
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a dans M1+j : on définit ainsi l'image de [x] 0 [y]. Avec les notations précédentes, si 

on interprète y et a(x 0 y) comme des morphismes de complexes x: A —> M'[i] = 

A[z] 0 A M ' , y: A -> M"[7] = A[j] 0 A M " et a(x 0 y) : A -> M[i + j ] , le diagramme 

suivant est commutatif : 

A ~ A 0 A A (A[t] 0 A M ' ) 0 A (A[j] 0 A M " ) 

v v 

M[i + J] — A[i] ®A A[j] 0 A M A[i] 0 A A[i] ®A (M ' 0 A M
; / ) . 

(On prendra garde à la présence de la multiplication par ( — e n haut à gauche! 

Elle est liée à l'isomorphisme de symétrie intervenant à droite.) Cette construction 

s'étend formellement au cas où a serait un morphisme M' 0]( M" —• M dans D(A) 

(cf. XVII-8 pour la construction du produit tensoriel dérivé sur la catégorie dérivée 

totale). 

4-5.3. — Soit X un site muni du faisceau d'anneaux constant A. On peut appliquer la 
L 

construction 4.5.2 au morphisme de Kûnneth a: RT(X, A) 0 A RT(X, A) —• RT(X, A) 

(cf. XVII-12.4.2). On définit ainsi le produit ff(X,A) x HP(X,A) -> rP+-?'(X,A). Si 

u G W(X,A) et v e H J (X , A), on note uv (ou uU v) le produit de deux classes. Ce 

produit vérifie la relation vu = (—l)^uv. 

Il est également possible de décrire ce produit en termes de la composition de 

morphismes dans D(X, A). Identifions u G H*(X, A) et v G W(X, A) à des morphismes 
L 

u : A —> A[i] et v : A —> A[j] dans D(X, A). Le morphisme A ~ A 0 A A[i] 0 A[j] ~ 

A[i+j] correspond à une classe dans Hl+i(X, A) qui est égale non pas à uv en général, 
L L L 

mais à (—iy 3uv, c'est-à-dire vu. En utilisant la factorisation u®v = ( Id®v)o(^®Id) , 

on montre que vu = {—l)%3uv peut aussi être décrit comme la composée A A[i] ^ 

A[z + j]. Une description plus élégante peut être obtenue en identifiant u G EP(X, A) 

à un morphisme u' : A[—i] —> A et v G H J '(X, A) à un morphisme Î/: A[—j] —> A. 

Le produit ui> G r P + J ( X , A) correspond alors, sans signe parasite, au morphisme 

A[—(i + j)] ^ A[—i] 0 A[—j] A. (On notera que cette description du U-produit 

est particulièrement adaptée à la définition des variantes à support de ces structures 

multiplicatives.) 

4.6. — On s'intéresse dans ce paragraphe aux conventions portant sur la cohomologie 

des groupes et sur le groupe fondamental étale. 

4-6.1. — Soit G un groupe. Soit A un groupe abélien (que l'on munit de l'action 

triviale de G). Nous avons besoin de préciser l'identification H 1 (G, A) ~ Hom(G, A) 
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pour le premier groupe de cohomologie du groupe (discret) G. On définit ici la coho­

mologie du groupe G comme étant celle du topos BG des G-ensembles (à gauche). 

Soit (p: G —» A un homomorphisme. On définit un ensemble A9 := A que l'on munit 

d'une action à gauche de G par la formule g.a := <p(g) -h a et d'une action à droite de 

A par a.a' := a + a'. L'ensemble A9 muni de l'action à gauche de G peut ainsi être 

considéré comme un faisceau sur le topos BG. Si on tient aussi compte de l'action à 

droite de A, on fait de A9 un torseur à droite sous le faisceau constant A sur le topos 

BG. Comme A est abélien, A? peut aussi être vu comme un torseur à gauche sous 

A sur BG. D'après 4.3, A* possède une classe [A*] G H ^ B G , ^ ) = H 1 (G, A). L'iso­

morphisme canonique Hom(G, A) ^ H 1 (G, A) est celui qui à (p associe [A*]. Via la 

comparaison entre la cohomologie et la cohomologie de Cech (cf. 4.3.2), cette définition 

est compatible avec l'identification de la cohomologie du groupe G calculée en termes 

de cochaînes (cf. [Serre, 1968, § 3, Chapitre VII]) et la cohomologie de Cech associée 

au recouvrement donné par l'épimorphisme EG —> BG où BG est ici l'objet final du 

topos BG et où EG est le faisceau sur BG correspondant à l'ensemble G muni de l'ac­

tion à gauche de G par multiplication. On peut observer que la multiplication à droite 

sur G induit sur EG une structure de torseur à droite sous le groupe constant G dans 

le topos BG. Dans le cas où G est commutatif, la classe de ce torseur [EG] correspond 

à l'identité de G via les identifications Hom(G,G) ~ H 1 (G,G) = H ^ B C G ) . 

4-6.2. — Soit G un groupe fini. Soit X un topos. Soit Si un faisceau d'ensembles 

sur X muni d'une structure de torseur à droite sous le groupe G. Pour tout faisceau 

d'ensembles F sur X , on note u+F := H o m x ( ^ , P ) et cet ensemble hérite d'une 

structure de G-ensemble (à gauche) provenant de l'action sur Si. Ce foncteur u* 

est le foncteur image directe pour un morphisme de topos u: X —> BG et on a un 

isomorphisme canonique de torseurs à droite Si c± ^*EG. Il vient ainsi que la donnée 

d'un morphisme de topos u: X —» BG équivaut à celle d'un torseur à droite sous G 

sur X. 

4.6.3. — Soit X un schéma noethérien connexe muni d'un point géométrique x. 

On dispose du groupe fondamental étale ^ ( X , x ) , cf. [SGA 1 v 7]. La catégorie 

des 7rf* (X, x)-ensembles (à gauche) discrets s'identifie à une sous-catégorie pleine de 

la catégorie des faisceaux d'ensembles sur Xét (cf. XVII-7.2 pour plus de détails). 

Ce foncteur d'inclusion est le foncteur image inverse pour un morphisme de topos 

canonique Xét —• B7rf t(X,x). Soit Y —> X un revêtement étale galoisien. Notons 

G := Aut^x-Algèbre(Gy) : c'est le groupe opposé au groupe des automorphismes du 

X-schéma Y. Le schéma Y est ainsi naturellement muni d'une action à droite de G 

qui en fait un torseur à droite sous G au-dessus de Xét- On dispose donc d'après 

4.6.2 d'un morphisme de topos Xét —» BG, lequel est canoniquement isomorphe au 

composé Xét —> B7rf ( X , x ) - » BG pour p: nf (X,x) —> G un morphisme que nous 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



346 EXPOSÉ XVI. CLASSES DE CHERN, MORPHISMES DE GYSIN, PURETÉ ABSOLUE 

allons maintenant définir et qui dépend du choix d'un point fermé y dans la fibre 

géométrique Yx. Soit 7 G Tcf^X^x). Cet élément 7 agit (à gauche) sur la fibre Yx sur 

laquelle G agit aussi (à droite), et ces deux actions commutent. On note ^(7) G G 

l'unique élément tel que 7.y = y.p(l). 

4.7. — On définit ici le foncteur Hom (hom. interne) sur les complexes (de faisceaux 

étales de A-modules sur un schéma X) comme étant le bifoncteur défini par un iso­

morphisme d'adjonction « cher à Cartan » où le Hom est le hom. dans la catégorie 

des complexes : 

Hom(if, Hom(L, M)) ~ Hom(if 0 L, M ) . 

Cette adjonction s'enrichit tautologiquement en un isomorphisme « cher à Cartan » 

énoncé en termes du hom. interne : 

Hom(if, Hom(L, M)) ~ Hom(if 0 L, M). 

4-7.1. — Si if, L et M sont des complexes, l'identité de Hom(if,L) induit par 

adjonction un « morphisme d'évaluation » Hom(K, L) 0 i f —> L auquel on peut 

appliquer M 0 — pour obtenir un morphisme M 0 Hom (if, L) 0 i f —» M 0 L, lequel 

induit par adjonction un morphisme canonique M0Hom ( i f , L) —• Hom(if, M 0 L ) . 

En particulier, pour M = A [m] avec m G Z, ce morphisme est un isomorphisme 

canonique Hom (if, L) [m] ~ Hom (if, L[m]). 

4-7.2. — Si L et TV sont des complexes, on peut définir un morphisme 

7 l : Hom(L, A) 0 N Hom(L, N) 

de la façon suivante. L'identité de Hom(L,A) induit par adjonction un morphisme 

ev: Hom(L, A) 0 L —> A qui permet de définir un morphisme : 

Hom(L, A) 0 N 0 L ^ Hom(L, A) 0 L 0 AT e v®> N A 0 N ^ N, 

lequel définit par adjonction le morphisme voulu Hom(L,A) 0 N —> Hom(L, N). 

Soit m G Z. L'isomorphisme évident Z[—m] 0 Z[m] Z induit par adjonction un 

isomorphisme Z[—m] Hom(Z[m],Z). La construction 7^ précédente appliquée à 

L = Z[m] fournit ainsi un morphisme 7 m : N[—m] —> Hom(A[ra],AT) qui est un 

isomorphisme. Si N = Hom (if, L) avec K et L deux complexes, on obtient un iso­

morphisme (encore noté jm) : 

Hom(if, L)[-m] ^ Hom(A[ra], Hom(if, L)) ~ Hom (A [m] 0 if, L) ~ Hom(if [m], L). 

On définit am: Hom ( i f [m], L) Hom(if, L)[—m] par la formule am := 

/ v m(m+l) _ 1 

(-1) 2 7m • 
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4.7.3. — Dans [Conrad, 2000, § 1.3], Conrad définit explicitement le foncteur Hom. 

Sa construction est compatible à celle définie ici par adjonction puisqu'elle satis­

fait un tel isomorphisme d'adjonction : cet isomorphisme est donné degré par de­

gré par des isomorphismes d'adjonctions chers à Cart an au niveau du hom. interne 

dans la catégorie des faisceaux, et ce sans ajout de signes. Avec ces conventions, 

les isomorphismes de «commutation» de Hom(—,—) aux foncteurs —[m] en les 

deux variables (4.7.1) et 4.7.2 sont les mêmes que ceux de [Conrad, 2000, §1.3]. 

En dérivant ce foncteur (cf. XVII-8 pour plus de détails), on obtient un bifoncteur 

R H o m : D(Xét, A ) o p p x D(Xét, A) —» D ( X é t , A) qui est « triangulé par rapport aux 

deux variables » . Ceci signifie notamment que pour tout K G D(Xét, A), le foncteur 

R H o m ( i i , - ) : D ( X é t , A ) —> D(Xét,A) est triangulé et que pour tout L G D(Xét,A), 

le foncteur R H o m ( - , L ) : D ( X é t , A ) o p p D ( X é t , A ) est triangulé. 

4.7.4- — La dernière assertion de 4.7.3 signifie que si K' K -i> K" est 

un triangle distingué de D(Xét,A), le triangle suivant 

R H o m ( A ' , , L ) [ - l ] i R H o m ( r , L ) £ R H o m ( K , L ) ^ R H o m ( l f , , L ) 

obtenu en appliquant le foncteur RHom(—, L) et en utilisant ai : R H o m ^ ' f l ] , L) 

RHorr^Jff',L)[— 1], est antidistingué dans D(Xét,A), ce qui signifie que le triangle 

suivant est distingué dans D(Xét,A) : 

R H o m ( r , L ) [ - l ] ~-X RHom(K",L) £ R H o m ( K , L ) ^ R H o m ^ ' , L) 

Il est également vrai que le triangle suivant est distingué, où l'on utilise ici implicite­

ment a _ i : R H o m ( r [ - l ] , L ) ^ R H o m ( r , L ) [ l ] : 

RHom(A" ' ,L ) ^ RHom(iT,L) ̂  R H o m ( X , , L ) 7 Ü ] * R H o m ( r , , L ) [ l ] 

Considérons ce morphisme S := 7 [ - l ] * : R H o m ( i T , L ) 7 [-J ]* RHom(K",L)[ï\. 

Pour tout entier n G Z, le morphisme ô induit après application du foncteur H¿ t (X, — ) 

un morphisme de groupes abéliens, où le Hom est le groupe abélien des morphismes 

dans la catégorie D(Xét, A) : 

Sn : Hom(tf', L[n]) Hom(tf", L[n + 1]). 

On peut alors observer que si (f G B.om(K\ L[n]), alors 6n(ip) est le morphisme 

composé K" K'[l] ^ î 1 K[n + 1]. 

4-7.5. — Si V A L L" A L'[l] est un triangle distingué dans D(Xé t ,A), on 

dispose aussi de suites exactes longues pour tout K G D(Xét,A) : 

> Hom(X, L'[n\) aH* Hom(K, L[n}) ^ Hom(K, L"[n]) ^ Hom(tf, L'[n + 1]) -> • • • 
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où pour tout ip G Hom(if, L"[n]), 6(<p) = c[n] o <p. Si K' A K 4 if" A #'[1] est un 

triangle distingué dans D ( X é t , A), on peut considérer le carré suivant : 

Hom(if ", L"[n + 1]) Hom(if ", L'[n + 2]) 

Ó S 

Hom(if', ! / > ] ) ^ Hom(if', L'[n + 1]) 

L'interprétation des morphismes 5 en termes de composition dans D ( X é t , A ) montre 

que ce carré est anticommutatif ! 

4.7.6. — Un cas particulier de 4.7.4 qui nous intéressera est le suivant. Si Z est un 

sous-schéma fermé d'un schéma X et que U = X — Z , on dispose d'une suite exacte 

courte canonique de faisceaux étales sur X : 

0 Zu -> Zx -* Z z -> 0. 

D'après 4.7.4, on dispose d'une suite exacte longue pour tout L G D(Xét,A) : 

• • • -> H | , é t ( X , L) - H? t (X, i ) - H?t(C/, L) H ^ ( X , £ ) - > • • • 

Supposons que L est un complexe borné inférieurement formé de faisceaux injectifs. 

Soit une classe [7] G H? t([/, L) représentée par une section 7 G r(C/, L n ) telle que 

¿/7 = 0 G r([7, L n + 1 ) . Le faisceau L n étant injectif, il existe une section 7 G r (X , L n ) 

telle que — 7. La section (¿7 G r (X , L n + 1 ) s'annule sur /7, donc définit un élément 

¿¿7 G Yz{X,Ln+1) qui est évidemment un (n + l)-cocycle. On a alors ¿([7]) = [dj] G 

Rn

z^(X,L). 

Si on suppose maintenant que L = où <S est un faisceau abélien sur Xét, il est 

utile de connaître une description explicite du morphisme S: H°(U,£f) —•» H^(X^). 

Notons tout d'abord que l'on peut généraliser la construction 4.3.1 : si £F est un 

£f-torseur sur Xét muni d'une section s G &(U), on dispose d'un élément [^*,s] G 

H ^ é t ( X , ^ ) (induisant \&\ G H | t ( X , ^ ) ) . Il est aisé de montrer que si s G êf(£7) = 

i7°(J7, £f), alors, si on note (éf, s) le £f-torseur trivial (èf agissant sur lui-même par 

addition) muni de la section s, on a [¿7, s] = S (s) G ét(X,@). 

4-7.7. — Si K et L sont deux objets de D(Xét,A), on a déjà construit (cf. 4.7.1) 

un morphisme Hom(K, L) (g) K —» L. En utilisant l'isomorphisme de symétrie, on 

en déduit un morphisme K (g) Horn (if, L) —> L qui correspond par adjonction à un 

morphisme i f —> Hom(Hom(if , L), L) dit de « bidualité » . Il satisfait aux mêmes 

règles de signe que celles énoncées dans [Conrad, 2000, § 1.3]. L'objet de l'exposé XVII 

sera d'étudier une version dérivée de cette construction... 
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4.8. — Ce paragraphe est une mise en garde à propos de l'ambiguïté du sens que pour­

rait revêtir un énoncé disant deux constructions cohomologiques utilisant des conven­

tions de signes différentes sont égales ou bien opposées. Considérons par exemple la ca­

tégorie dérivée D + ( X ) des faisceaux abéliens sur un site X. Pour tout faisceau abélien 

on peut noter W(X,J?) := Hom D+(x)(Z,<^[i]). En utilisant la construction 4.2, 

on obtient un d-foncteur (H*(X,-),<5). Posons maintenant, W(X,&) := fP(X, J )̂ 

et notons S := —S. Bien sûr, (H*(X,—),S) est aussi un <9-foncteur : c'est celui que 

l'on obtient naturellement en utilisant les conventions de [SGA 4 xvn 1.1]. 

Le caractère universel de ces deux 9-foncteurs induit un isomorphisme canonique 

de 9-foncteurs (p: (H*(X, — ^> (H*(X, — ),ô) : en degré i, il est donné par la 

multiplication par (—1)*. 

Admettons qu'une certaine construction cohomologique utilisant le premier 9-fonc-

teur produise une classe x G ïï.l(X,&) et qu'une autre construction utilisant le 

deuxième produise une classe y G W{X,<^). L'énoncé « les classes de cohomologie x 

et y sont égales » peut alors raisonnablement prendre deux sens différents : 

(a) Comme ensemblistement, W{X^) et W(X,^) sont tous les deux égaux à 

l'ensemble des morphismes Z —» ^[i] dans D + ( X ) , on peut comprendre que 

y = x-

(b) Si on identifie W(X,<^) et W(X,^) via l'isomorphisme de 9-foncteurs <p, on 

peut comprendre que y = (—l)lx. 

On notera qu'en degré pair, les deux acceptions coïncident. (Sinon, le rédacteur re­

commande d'utiliser le sens (b).) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 


