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E X P O S É XV 

T H É O R È M E D E L E F S C H E T Z A F F I N E 

Vincent Pilloni et Benoît Stroh 

1. Énoncé du théorème et premières réductions 

1.1. Énoncé 

1.1.1. — Soient X un schéma muni d'une fonction de dimension Sx (XIV-2.1.10) 

et n un entier inversible sur X. Pour tout faisceau étale & de Z/nZ-modules sur X, 

8X(&) = sup {Sx(x) x e X | ^ ^ 0 } . 

Rappelons (XIV-2.5.2) qu'un morphisme de type fini f :Y X induit une fonction 

de dimension sur Y ; nous la noterons ici f*Sx> Le théorème principal de cet exposé 

est le suivant (voir aussi Intro.-7). 

1.1.2. Théorème. — Supposons le schéma X quasi-excellent et le morphisme f :Y —> 

X affine de type fini. Alors, pour tout faisceau constructible ^ de Z/'riZ-modules 

sur Y, on a : 

x (H F P < PX (P-q) 

1.1.3. Remarque. — Ce théorème a été déjà démontré en 1994 par O. Gabber 

lorsque X est de type fini sur un trait, cf. [Illusie, 2003]. La démonstration du 

théorème précédent procède notamment par réduction à ce cas. 

1.2. Reformulation et réductions 

1.2.1. — Soient f et & comme ci-dessus. La conclusion du théorème signifie que pour 

tout point géométrique x de X localisé en un point x et tout entier q > f*5x(<^) — 

ôx(x), on a 

( R / ^ ) s = ^ ( y ( £ ) , ^ ) = o, 

où l'on note Y(x) le produit fibre Y x x X^y Rappelons (XIV-2.4.5) que le schéma 

strictement local X^) peut être muni la fonction de dimension : t \—> dim {t} 
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294 EXPOSÉ XV. THÉORÈME DE LEFSCHETZ AFFINE 

(XIV-2.4.5) ; c'est l'unique fonction de dimension nulle en x. Notons l'inégalité 

f*6x(^) — ôx(x) > triviale dans le cas où ôx(x) = 0, auquel on peut 

se ramener. Ainsi, le théorème 1.1.2 est équivalent à l'énoncé suivant. 

1.2.2. Corollaire. — Soit X un schéma quasi-excellent, strictement local, muni de la 

fonction de dimension Sx ' t \—> dim{£}. Alors, pour tout faisceau constructible & de 

Z/nZ-modules sur Y, on a : 

ïF(Y,&) = 0siq>f*6x(&). 

1.2.3. — Procédant comme en [SGA4 xiv 4.4] pour se ramener au cas d'une 

immersion ouverte affine puis utilisant la méthode de la trace ([SGA4 IX 5.5] 

ou [SGA5 I 3.1.2]) pour se ramener au cas des coefficients constants (voir aussi 

XIII-3.7), on montre que le théorème est également équivalent au corollaire suivant. 

(On pourrait d'ailleurs supposer l'entier n premier.) 

1.2.4. Corollaire. — Soient X un schéma strictement local quasi-excellent de dimen­

sion d, un ouvert affine U de X, et un entier inversible n sur X. Alors, 

Rq(U,Z/nZ) = 0 siq>d. 

1.2.5. Réduction au cas complet. — Supposons dorénavant X strictement local quasi-

excellent, de complété X en le point fermé, et fixons un ouvert affine U de X, dont on 

note U l'image inverse sur X. Le morphisme naturel de X dans X est régulier car X 

est quasi-excellent. En appliquant le lemme de changement de base par un morphisme 

régulier (XIV-2.5.3) au diagramme cartésien 

Û ^ U 

X ^X 

on obtient Rq(Û,Z/nZ) = W(U,Z/nZ) pour tout q > 0. Voir également 

[Fujiwara, 1995, 7.1.1] pour une autre approche, ainsi que XX-4.4. 

1.2.6. — Dans les deux sections qui vont suivre, nous allons démontrer l'énoncé 1.2.4 

dans le cas particulier où X est local nœthérien complet à corps résiduel séparablement 

clos. 

2. Pureté, combinatoire des branches et descente 

2.1. Pureté : rappel et une application 

2.1.1. — Nous rappelons le théorème de pureté absolue démontré par O. Gabber 

([Fujiwara, 2002]). Par convention, on considère le schéma vide comme un diviseur 
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2. PURETÉ, COMBINATOIRE DES BRANCHES ET DESCENTE 295 

à croisements normaux strict dont l'ensemble des branches est indexé par l'ensemble 

vide. 

2.1.2. Théorème (XVI-3.1.1). — Soient X un schéma régulier, Z un diviseur à croise­

ments normaux strict de complémentaire j : U = X — Z X et de branches {Zi}iei, 

et n un entier inversible sur X. Il existe des isomorphismes canoniques 

R ^ ( Z / n Z ) 0 ( Z / n Z ) z , ( - l ) 
iei 
Q 

R ^ ( Z / n Z ) ^ / \ R1.?* (Z/nZ) 

2.1.3. Combinatoire des branches : définitions. — Soient g : X' —• X un morphisme 

entre schémas, et U un ouvert rétrocompact de X. Notons j : U ^ X l'immersion 

ouverte, f : U' X' l'immersion ouverte qui s'en déduit par changement de base, 

et Z et Z1 les fermés complémentaires respectifs. Enfin on se donne un fermé F C Z 

dont on note F' l'image inverse. (L'hypothèse de rétrocompacité de U — c'est-à-

dire de quasi-compacité de j — est automatiquement satisfaite si X est localement 

nœthérien ; elle permet le calcul des fibres des images directes R p j * ci-dessous.) 

2.1.4. Définition. — On dit que {Z <-» X) et {Z' ^ X') ont même combinatoire le long 

de F si pour tout point géométrique zf de F' d'image le point géométrique z de F, 

les propriétés suivantes sont satisfaites : 

(i) les schémas X^) et X'^ sont réguliers ; 

(ii) (i) soit Xç) = %), 

(ii) soit le fermé Z^) est un diviseur à croisements normaux strict, dont les 

composantes sont définies par des équations / i , . . . , / r , et les fonctions 

g*fi,... ,g*fr forment une famille libre de m/m2, où m est l'idéal maximal 

deX'{-z,y 

2.1.5. — Notons que, dans le second cas (Zçz) diviseur), le fermé Z^-,^ est un diviseur 

à croisements normaux dans X[-,y ayant même nombre de branches. 

2.1.6. — Lorsque X est un schéma sur une base 5, et F est un fermé de ce dernier, 

on s'autorise à dire « ... le long de F » pour « ... le long de l'image inverse F x$ X ». 

2.1.7. Proposition. — Supposons que (Z X) et {Z' <̂-> X') aient même combi­

natoire le long d'un fermé F de X. Alors, pour tout entier n inversible sur X, le 

morphisme d'adjonction 

(Rj*Z/nZ) , F , - ( R ^ Z / n Z ) | F / 

est un isomorphisme. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



296 EXPOSÉ XV. THÉORÈME DE LEFSCHETZ AFFINE 

Démonstration. — Quitte à localiser en des points géométriques ~z' et ~z, on peut sup­

poser les schémas strictement locaux et le morphisme X' —> X local. Il faut alors 

montrer que RT(U, Z /nZ) —• RT(Uf ,Z/nZ) est un isomorphisme. D'après le théo­

rème de pureté 2.1.2, il suffit de montrer que le morphisme induit sur le H 1 est un 

isomorphisme, ce qui résulte aussitôt de la structure de ces groupes et de ce que la 

classe associée à une branche Zi = V(fi) de Z est envoyée par restriction sur la classe 

de la branche g-1(Zi) = V(g*fi) (cf. XVI-2). • 

2.2. Application du théorème d'hyper-changement de base 

2.2.1. — Soit X un schéma nœthérien. Dans cet exposé, on utilise une variante de la 

topologie h sur X définie en XIIA-2.1.3 : on ne veut considérer ici que des X-schémas 

de type fini (afin de pouvoir appliquer les résultats de III par exemple) tandis que dans 

X I I A il était nécessaire d'autoriser des coproduits infinis (afin de pouvoir appliquer le 

formalisme de la descente cohomologique ; voir [SGA4 v b l s 3.0.0]). 

On dira donc qu'un morphisme Y' —» Y dans la catégorie Sch.tf/X des X-sché-

mas de type fini est /i-couvrant s'il est dominé par une composition (finie, dans un 

ordre arbitraire) de familles couvrantes (dites « élémentaires » ) d'un des deux types 

suivants (dans Sch.tf/X) : 

— un morphisme propre et surjectif Z' —» Z' ; 

— un recouvrement Zariski (Zi —» Z)iei, où I est un ensemble fini. 

Observons qu'un /i-hyperrecouvrement X # —• X (au sens de la définition ci-dessus) 

est également un hyper recouvrement pour la topologie h (sur Sch/X) de XI IA-

2.2.2. — Supposons maintenant X strictement local (nœthérien) de point fermé x, 

dont on note i x : x X l'immersion fermée. Considérons une immersion ouverte 

j : U X et s : X # —> X un /i-hyperrecouvrement. La proposition suivante — 

où les morphismes obtenus par changement de base sont notés de façon évidente — 

est un corollaire immédiat du théorème d'hyper-changement de base (XIIA-2.2.5, OU 

XIIB-1.10) et du fait que la cohomologie de U est la fibre en x de l'image directe par j . 

2.2.3. Proposition. — Sous les hypothèses précédentes, le morphisme d'adjonction 

RT(£7,Z/nZ) -+ ReXir(il.Rj.itZ/nZ) 

est un isomorphisme. 

2.2.4- — Supposons maintenant donné un morphisme local X' —• X de schémas 

strictement locaux nœthériens. Comme précédemment, on note U un ouvert de X , Z 

son complémentaire et x le point fermé de X. À tout /i-hyperrecouvrement X, —> X 

de X est associé par changement de base un hyperrecouvrement de X'. (On utilise 

ici la stabilité par changement de base des familles couvrantes élémentaires de 2.2.1 

ci-dessus.) 
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2.2.5. Proposition. — Supposons que pour chaque entier q > 0 les fermés (Zq <̂-> Xq) 

et (Zf

q

 c—> X'q) aient même combinatoire le long de la fibre spéciale (Xq)x. Alors le 

morphisme d'adjonction 

RT(U, Z /nZ) ^ RT(U', Z/raZ) 

est un isomorphisme. De plus, si Von fait Vhypothèse précédente pour les seuls en­

tiers q < N + 1, où N est un entier quelconque, les morphismes №([/, Z /nZ) —» 
H.q(U', Z/nZ) sont des isomorphismes pour chaque q < N. 

Démonstration. — Le premier point est conséquence immédiate des deux proposi­

tions précédentes. En effet, d'après 2.2.3 et l'invariance de la cohomologie par chan­

gement de corps séparablement clos, soit 

(ReXir(i*a.Rj.ieZ/nZ)) = Re'x,^(ix.*Rj.*Z/nZ)^ ) , 

il suffit de démontrer que pour chaque q, l'adjonction (Rjq^Z/nZ)\Xq —> {Rj'qiZ/nZ)\Xq 

est un isomorphisme. Cela résulte de l'hypothèse combinatoire et de 2.1.7. La va­

riante tronquée est un corollaire de la démonstration précédente et du fait que la 

cohomologie en degré q ne dépend que des étages < q + 1. • 

2.2.6. Remarque. — Dans ce critère, on ne fait d'hypothèses qu'en les points des fibres 

spéciales des hyperrecouvrements ; c'est ce qui en fait toute sa force. 

3. Uniformisation et approximation des données 

3.1. Notations 

3.1.1. — Soient X , U, Z et n comme à la fin du paragraphe 1.2 : le schéma X est 

strictement local complet, U en est un ouvert affine strict (sans quoi il n'y a rien à 

démontrer), Z = X — U (muni de la structure réduite), et n est un entier inversible 

sur X. On veut démontrer 1.2.4 dans ce cas. Fixons un entier N. 

3.1.2. — Il résulte du théorème d'uniformisation (VII-1.1), complété par XIII-2.2.2, 

qu'il existe un /i-hyperrecouvrement e : Xm —> X tel que chaque Xq soit régulier et, 

dans chaque composante connexe de Xq, le sous-schéma fermé Zq = Z x x Xq est soit 

tout, soit un diviseur à croisements normaux strict. 

3.1.3. — Soient k le corps résiduel de X , un anneau de Cohen C de corps résiduel k 

(IV-4.1.7) et S = Spec(C). Il résulte du théorème de structure des anneaux locaux 

nœthériens ([EGA Oiv 19.8.8]) qu'il existe un entier m et une immersion fermée de X 

dans le complété en l'origine (de la fibre spéciale sur S) de l'espace affine A™. No­

tons E ce complété, E son analogue hensélien (hensélisé de l'espace affine en l'origine) 

et enfin e le point fermé de ce dernier. 
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3.I.4. — Le schéma E étant quasi-excellent, le morphisme de complétion É —> E est 

(local) régulier de sorte que, d'après le théorème de Popescu, on peut écrire : 

E = \ima Ea, 

où les Ea —• E sont des morphismes essentiellement lisses entre schémas strictement 

locaux, la limite étant filtrante. Notons que les schémas Ea sont essentiellement de 

type fini sur S. 

3.2. Passage à la limite 

3.2.1. — Quitte à restreindre l'ensemble d'indices, c'est-à-dire à supposer a > ao 

pour ao convenable, les principes généraux de [EGA IV3 §8], joints au fait que les 

schémas X, Z, U et les Xq pour q < N sont de présentation finie sur E, entraînent 

l'existence de diagrammes à carrés cartésiens de E^-schémas de type fini 

U<N,ot ^ X<N^a ^ Z<iV,a 

v | | 
Ua Xa •< Za 

déduits par changement de base Ea —> Eao du diagramme pour a 0 , et dont l'analogue 

sur E se déduit par changement de base E —• Ea. De plus, on peut supposer que pour 

chaque a > ao, Xa —» Ea est une immersion fermée — de sorte que Xa est strictement 

local —, et Ua —> Xa une immersion ouverte affine de complémentaire Za. 

3.2.2. Remarque. — Les schémas Xq et Xqa ont même fibre spéciale pour tout q < N. 

3.2.3. — Il résulte de [EGA i v 3 8.10.5] et de la description (2.2.1) des morphismes 

/i-couvrants que l'on peut supposer que les X<N,a —> Xa sont des /i-hyperrecouvre-

ments (tronqués) pour a > ao-

3.2.4. — Vérifions que l'on peut supposer que pour chaque a et chaque q < iV, le 

« modèle » Xqa de Xq est régulier le long de sa fibre spéciale. Fixons q puis oublions 

le. Le schéma X est donc maintenant régulier, de type fini sur E. Le problème étant 

local pour la topologie de Zariski on peut supposer, par quasi-compacité, que X est un 

sous-schéma de Y = de la forme . . . , fc)nD(g), où / 1 , . . . , / c ,g G T(F, 6y), 

purement de codimension c dans D(gYi\ 

(J) Bien que cela ne soit pas utile ici, notons qu'un tel X a une immersion régulière de codimension c+1 
dans A7^-1"1, où il est défini par les équations /1 , . . . , / c , 1 — ^Tm+i. 

E 
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Pour a suffisamment grand, les fonctions / 1 , . . . , / c , g se descendent en des fonctions 

fia,ga sur Ya = Soit x un point de Y appartenant à la fibre spéciale de X 

et soit xa son image par Y —> Y a . Notons m (resp. m a ) l'idéal maximal de ûy,x 

(resp. ^ y a ) X J . Par régularité de X en les images / 1 , . . . , fc des dans m/m2 sont 

linéairement indépendantes sur K(X) = ^y > a :/m. Le diagramme 

m » m/m2 

/N /N /N 

/z« trie » m^/m2 

étant commutatif, il résulte de l'égalité K(X) = n(xa) que les images fia des fia 

dans m a /m 2 sont linéairement indépendantes sur K>(xa). Le sous-schéma localement 

fermé XA — V ( / i a , . . . , / c a ) H D(ga) de YQ, est donc régulier en xa. 

3.2.5. — On montre de même que l'on peut supposer que pour chaque a et chaque 

q < TV, les immersions (ZQ

 E - » XQ) et ( Z g a . <̂-> ont même combinatoire le long 

du point fermé e G E, c'est-à-dire le long des fibres spéciales. 

3.2.6. — Il résulte de la proposition 2.2.5 que les morphismes d'adjonction 

H.Q{UA, Z/nZ) -> H9(17, Z/nZ) 

sont des isomorphismes pour q < N. Nous allons montrer que si q > d = dim(X) 

et a est suffisamment grand, on a H.Q(UA, Z/nZ) = 0. Ceci achèvera la démonstration 

du théorème de Lefschetz affine. Notons qu'en général les XA sont de dimension bien 

plus grande que d = dim(X). 

3.3. Utilisation d'une section 

3.3.1. — Soient a : E -> Ea une section de Ea —> E et X* (resp. E/£,Z£) le 

E'-schéma déduit de XA (resp. UA, ZA) par changement de base. Notons égale­

ment X<N A le /i-hyperrecouvrement de X° obtenu à partir de X<NI(X —• XA par 

changement de base. Enfin U<N A (resp. Z<N A) est l'ouvert (resp. le fermé) simplicial 

évident. 

3.3.2. — Il résulte de III-5.1 et III-5.4 (voir aussi III-6.2, démonstration) que si a est 

suffisamment grand et a est suffisamment proche de l'identité, alors les immersions 

fermées (ZQA <^-> XQA) et (ZQA <—> XQA) ont même combinatoire le long de la fibre 

spéciale au-dessus de E pour chaque q < N, et dim(X Q

r) = d. Il en résulte comme 

ci-dessus que le morphisme 

H.Q(UA, Z/nZ) ttQ(U°, Z/nZ) 

est un isomorphisme pour q < N. Comme l'ouvert U° est affine dans X° de di­

mension d et essentiellement de type fini sur 5, il résulte par passage à la limite du 
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théorème de Lefschetz sur S que 

Hg(E7£, Z /nZ) = 0 si d < q < N. 

Si S est un trait, le théorème de Lefschetz utilisé est dû à O. Gabber ; voir [Illusie, 2003, 

2.4]. Si S est le spectre d'un corps, voir [SGA4 xiv]. Finalement, H 9 (17,Z/nZ) = 0 

si q > d = dim(X). • 
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