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E X P O S É X I V 

F O N C T I O N S D E D I M E N S I O N 

Vincent Pilloni et Benoît Stroh 

Nous définissons la notion de fonction de dimension sur un schéma X et nous 

montrons l'existence de telles fonctions localement pour la topologie étale si X est 

quasi-excellent. 

1. Universelle caténarité des schémas henséliens 

Dans cette partie, nous rappelons les notions de caténarité et d'universelle caténa­

rité. Le lecteur pourra consulter l'exposé I pour plus de détails. 

1.1. Schémas universellement caténaires. — Soient S un espace topologique et X cY 

des fermés irréductibles de S. Notons codim(X, Y) la borne supérieure de l'ensemble 

des longueurs des chaînes strictement croissantes de fermés irréductibles X C Z C Y 

(cf. [EGA Oiv 14.2.1 &; 14.1.1]). Si S est un schéma, X et Y des sous-schémas fermés 

intègres et x le point générique de X , on a 

codim(X,y) = àim(ûY,x)' 

1.1.1. Définition ([EGA Orv 14.3.2]). — Un schéma S est caténaire s'il est localement 

nœthérien et si pour toute chaîne X C Y C Z de fermés irréductibles de S, on a 

codim(X, Z) = codim(F, Z) + codim(X, Y). 

Un schéma S est universellement caténaire si tout schéma de type fini sur S est caté­

naire. 

La notion de caténarité est stable par localisation et par restriction à des sous-

schémas fermés. Ainsi, S est universellement caténaire si et seulement si pour tout 

entier n > 0, le schéma Ag est caténaire. 

7.7.2. Lemme. — Un schéma de Cohen-Macaulay est universellement caténaire. 
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278 EXPOSÉ XIV. FONCTIONS DE DIMENSION 

Démonstration. — Si S est Cohen-Macaulay, il est caténaire d'après 

[Matsumura, 1980a, 16.B]. Comme pour tout n > 0, le schéma A g reste Cohen-

Macaulay, le schéma S est bien universellement caténaire. • 

1.1.3. Exemple. — Tout schéma régulier est universellement caténaire car Cohen-

Macaulay. En particulier, le spectre d'un corps, un trait et le spectre d'une algèbre de 

séries formelles sur un corps ou sur un anneau de valuation discrète sont universelle­

ment caténaires. Tout schéma de type fini sur un schéma régulier est universellement 

caténaire. 

1.1.4. Proposition ([Matsumura, 1980a], 28.P). — Un schéma local complet nœthérien 

est universellement caténaire. 

Démonstration. — Le théorème de structure de Cohen [EGA Oiv 19.8.8] permet 

d'écrire tout schéma local complet nœthérien comme fermé dans le spectre d'une 

algèbre de séries formelles sur un anneau de Cohen. L'universelle caténarité résulte 

de l'exemple précédent et de la stabilité de cette notion par passage à un fermé. • 

1.2. Un théorème de Ratliff. — On dit qu'un schéma nœthérien est équidimensionnel 

si toutes ses composantes irréductibles ont même dimension (finie). Soit S un schéma 

local nœthérien. On note S le spectre du complété de l'anneau de S en son idéal 

maximal. 

1.2.1. Définition. — Le schéma local S est formellement équidimensionnel si S est équi­

dimensionnel. Il est formellement caténaire si pour tout s G 5, l'adhérence {s} est 

formellement équidimensionnelle. 

1.2.2. Proposition. — Soit S un schéma local nœthérien. Le schéma S, son complété 

S, son hensélisé Sh et son hensélisé strict ont tous la même dimension. 

Démonstration. — Ceci résulte de l'énoncé général suivant : si A —• A' est un mor­

phisme local et plat entre anneaux locaux nœthériens d'idéaux maximaux respectifs 

m et m' et que m' = mAf, alors pour tout entier naturel n, les longueurs lg^(^4/m n) 

et \gA,(A'/xn,n) sont égales. L'égalité de ces fonctions de Hilbert-Samuel implique 

l'égalité dimA = dirn^' (cf. [Zariski & Samuel, 1975, chap. VIII, §9]). • 

D'après cette proposition, si S est un schéma local nœthérien intègre, les com­

posantes irréductibles de S sont de dimension < dim(5) et une d'entre elles est de 

dimension dim(5). Le schéma S est donc formellement équidimensionnel si et seule­

ment si toutes les composantes irréductibles de S sont de dimension dim(5). 

Soit S un schéma local nœthérien. Ratliff a démontré le théorème fondamental 

suivant, qui a déjà été mentionné dans la proposition 1-7.1.1. 
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1. UNIVERSELLE CATÉNARITÉ DES SCHÉMAS HENSÉLIENS 279 

1.2.3. Théorème ([Matsumura, 1989] 31.7). — Pour un schéma local nœthérien S, les 

conditions suivantes sont équivalentes : 

— S est formellement caténaire, 

— S est universellement caténaire, 

— est caténaire, 

— S est caténaire et pour tout s G S, tout schéma intègre S' muni d'une flèche finie 

et dominante S' —• { 5 } et tout point fermé s' de S', on a à\m(&sr,s') = dim { s } . 

On a ajouté une quatrième condition équivalente à l'énoncé [Matsumura, 1989, 

Theorem 31.7]. Il résulte de [EGA IV2 5.6.10] que les trois premières conditions équi­

valentes impliquent la quatrième. La réciproque est démontrée au cours de la démons­

tration de [Matsumura, 1989, Theorem 31.7] (au second paragraphe de la page 255). 

1.2.4. Corollaire ([Matsumura, 1989] 31.2). — Tout schéma nœthérien de dimension < 

2 est caténaire. Tout schéma nœthérien de dimension < 1 est universellement caté­

naire. 

1.3. Schémas henséliens et caténarité. — Nous avons vu que tout schéma local complet 

nœthérien est universellement caténaire dans la proposition 1.1.4. Les schémas locaux 

henséliens jouissent également de bonnes propriétés de caténarité : 

1.3.1. Proposition. — Tout schéma local hensélien caténaire est universellement caté­

naire. 

Démonstration. — Soit S = Spec (A) un schéma local hensélien caténaire, soit P un 

idéal premier de A, soit L une extension finie de Frac(A/P) et soit B une extension 

finie de A/P contenue dans L. D'après le théorème 1.2.3, il suffit de prouver que 

la dimension du localisé de B en chacun de ses idéaux maximaux est égale à la 

dimension de A/P. Toute algèbre finie sur un anneau hensélien est semi-locale d'après 

[EGA iv 4 18.5] et [EGA iv 4 18.6]. Comme le schéma B est intègre, il est local. 

Le théorème du « going-up » ([Matsumura, 1989, 9.3 et 9.4]) montre qu'on a bien 

dim(£) = dim(A/P). • 

Rappelons également le résultat suivant, conséquence du corollaire 1-6.3 (ii). 

1.3.2. Proposition. — Tout schéma local hensélien quasi-excellent est universellement 

caténaire. 

Ainsi, tout schéma local hensélien quasi-excellent est excellent. 
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280 EXPOSÉ XIV. FONCTIONS DE DIMENSION 

2. Spécialisations immédiates et fonctions de dimension 

2.1. Définitions. — Soit X un schéma. Pour tout point x de X et tout point géo­

métrique x au-dessus de x, on note X(xy X£^ et X^ le localisé, l'hensélisé et le 

complété de X en x. De même, on note Xçx) l'hensélisé strict de X en x. 

Soient x et y deux points de X , et x et y deux points géométriques au-dessus de x 

et y. 

2.1.1. Définition ([SGA 4 vu 7.2]). — Un morphisme de spécialisation x ^ y est la don­

née d'un X-morphisme X^ —• X^ entre hensélisés stricts. 

D'après [SGA 4 vil 7.4], la donnée d'une spécialisation x y est équivalente à la 

donnée d'un X-morphisme x —> X^y 

2.1.2. Définition. — Soit r G N. On dit qu'une spécialisation x ~> y est une spécia­

lisation de codimension r si l'adhérence de l'image de x dans X^ est un schéma de 

dimension r. 

On dit que y est une spécialisation étale immédiate de x s'il existe une spécialisation 

x ~> y qui soit de codimension 1. 

On dit que y est une spécialisation Zariski immédiate de x si y G {x} et si le localisé 

en y de l'adhérence de x est de dimension 1. 

2.1.3. — Si y est une spécialisation étale immédiate de x, on dit également que x est 

une générisation étale immédiate de y. Désignons par / : X^ —> X^ le morphisme 

d'hensélisation stricte. Les générisations étales immédiates de y sont alors les images 

par / des points x' G X^ tels que d im{x '} = 1. 

Avant d'examiner plus en détail ces notions, on rappelle le fait facile suivant 

(II-1.1.3) que nous utiliserons implicitement plus bas : si / : X —> S est un morphisme 

plat, / envoie les points maximaux de X sur des points maximaux de S, autrement 

dit toute composante irréductible de X domine une composante irréductible de S. 

2.1.4- — Si x et y sont deux points d'un schéma nœthérien X tels que y G {x} (au 

sens habituel, c'est-à-dire que y est une spécialisation de x ou encore que x est une 

générisation de y), alors y est une spécialisation Zariski (resp. étale) immédiate de x 

si et seulement si c'est le cas dans {%}(yy Pour certaines considérations, ceci permet 

de supposer que X est local intègre de point générique x et de point fermé y. Dans 

ce cas, y est une spécialisation Zariski immédiate de x si et seulement si dim(X) = 1. 

Dans le cas étale, cela se lit sur l'hensélisé strict : 

2.7.5. Proposition. — Si x et y sont deux points d'un schéma nœthérien X, le point y 

est une spécialisation étale immédiate de x si et seulement si y G {x} et l'hensé­

lisé strict en un point géométrique au-dessus de y de Vadhérence de x possède une 

composante irréductible de dimension 1. 
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2. SPÉCIALISATIONS IMMÉDIATES ET FONCTIONS DE DIMENSION 281 

Démonstration. — On se ramène au cas particulier X = { ^ } ( y ) envisagé plus haut. 

Le point y est une spécialisation étale immédiate si et seulement s'il existe un point x 

de au-dessus de x tel que l'adhérence de x dans X^ soit de dimension 1. Comme 

énoncé ici, cela est équivalent au fait que X^ possède une composante irréductible C 

de dimension 1. En effet, si on note x le point générique de C, par l'argument de plati­

tude énoncé plus haut, C domine X, c'est-à-dire que x est au-dessus de x. Inversement, 

si x est un point au-dessus de x dont l'adhérence dans X^ soit de dimension 1, on 

peut noter C une composante irréductible de X^ contenant x. Le point générique 

de C et x étant tous les deux au-dessus de x, ils sont égaux puisque l'un est une 

générisation de l'autre et que les fibres de X^ —> X sont discrètes. • 

2.1.6. Proposition. — Soit X un schéma nœthérien. Une spécialisation Zariski immé­

diate entre points de X est une spécialisation étale immédiate, et la réciproque est 

vraie si X est universellement caténaire. 

On peut supposer que X = {%}(y) comme précédemment. Pour l'implication, on 

suppose que dim(X) = 1 et on veut montrer que X^ possède une composante irré­

ductible de dimension 1. D'après la proposition 1.2.2, X^ est de dimension 1 et il 

est évident que les composantes irréductibles d'un schéma local de dimension 1 sont 

toutes de dimension 1. 

Pour la réciproque, nous utiliserons deux lemmes : 

2.1.7. Lemme. — Soit X un schéma local nœthérien hensélien de point fermé y. Soit y 

un point géométrique au-dessus de y. Alors, X possède une composante irréductible 

de dimension 1 si et seulement si le hensélisé strict X^ en possède une. 

Démonstration. — Si C est une composante irréductible de dimension 1 de X^, son 

image ensembliste dans X est fermée car p: X^ —» X est entier. Comme p est plat, 

p(C) est une composante irréductible de X contenant exactement deux points donc 

dim(p(C)) = 1. Inversement, la surjectivité et la platitude de p impliquent que si 

D C X est une composante irréductible de dimension 1, il existe une composante 

irréductible C de X^ telle que p(C) = D. On a bien sûr dim(C) > 1. Soit z e C 

un point qui ne soit pas le point générique de C. Le point p(z) ne peut pas être le 

point générique de D car sinon la fibre générique de p ne serait pas discrète. C'est 

donc que p(z) est le point fermé de C. Le fait que p~1(y) soit discret implique alors 

que z ne peut être que le point fermé de C. Le schéma local intègre C possède donc 

exactement deux points : dim(C) = 1. • 

2.1.8. Lemme. — Soit X un schéma local nœthérien. Si X possède une composante 

irréductible de dimension 1, alors son complété X aussi et la réciproque est vraie si X 

est universellement caténaire. 
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282 EXPOSÉ XIV. FONCTIONS DE DIMENSION 

Démonstration. — Commençons par le cas où X est intègre. Si dim(X) = 1, de même 

qu'au début de la démonstration de la proposition 2.1.6, dim(X) = dim(X) = 1 et 

toutes les composantes irréductibles de X sont de dimension 1. Inversement, si X 

est universellement caténaire, d'après le théorème 1.2.3, les composantes irréductibles 

de X ont toutes la même dimension. Si l'une d'entre elles est de dimension 1, le 

schéma X est lui aussi de dimension 1, et alors dim(X) = dim(X) = 1. 

Dans le cas général, notons Xi les composantes irréductibles de X. Pour tout i, 

le produit fibre Xi x x X s'identifie à Xi (voir [SGAl iv 3]). C'est un fait que les 

composantes irréductibles des différents Xi sont exactement les composantes irréduc­

tibles de X : ce sont des parties fermées irréductibles recouvrant X et aucune d'entre 

elles n'est contenue dans une autre (ceci se déduit du fait que chaque composante 

irréductible de Xi domine Xi). Il est dès lors évident que l'énoncé pour X résulte de 

l'énoncé pour les schémas locaux intègres Xi. • 

Montrons la réciproque énoncée dans la proposition 2.1.6. Comme observé ci-dessus 

(2.1.4), il suffit de montrer que si X est un schéma local nœthérien intègre universel­

lement caténaire de point fermé y et de point générique x (c'est-à-dire X = {x}), et 

si x est une générisation étale immédiate de y, alors dim(X) = 1. D'après la proposi­

tion 2.1.5, l'hensélisé strict de X en un point géométrique au-dessus de y possède une 

composante irréductible de dimension 1, ce qui équivaut d'après le lemme 2.1.7 à dire 

que le hensélisé Xh de X possède une composante irréductible de dimension 1. Le 

complété X de X étant aussi celui de X h , le sens facile du lemme 2.1.8 appliqué à Xh 

montre que X possède une composante irréductible de dimension 1. La réciproque de 

ce lemme appliquée au schéma universellement caténaire X montre que X possède 

une composante irréductible de dimension 1 ; on a donc dim(X) = 1 et y est une 

spécialisation Zariski immédiate de x. 

On peut lire les spécialisations étales d'un point x de X dans le complété de X 

en x : 

2.1.9. Proposition. — Soit X un schéma nœthérien. Soient x et y deux points de X. 

On suppose que y G {x}. Notons c : X^ —» X^ le morphisme de completion. Le 

point y est une spécialisation étale immédiate de x si et seulement si c~1({x}) possède 

une composante irréductible de dimension 1. 

Démonstration. — On peut supposer que X = {x}^yy Le point y est une spécialisa­

tion étale immédiate de X si et seulement si X^ possède une composante irréductible 

de dimension 1, c'est-à-dire, d'après le lemme 2.1.7 que X^ en possède une. On veut 

montrer que ceci équivaut à ce que le complété X en possède une. 

Si on fait l'hypothèse supplémentaire que X est quasi-excellent (donc univer­

sellement caténaire d'après la proposition 1.3.2), l'équivalence voulue résulte du 
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2. SPÉCIALISATIONS IMMÉDIATES ET FONCTIONS DE DIMENSION 283 

lemme 2.1.8. Montrons cette équivalence sans l'hypothèse de quasi-excellence. Si 

dim(X) = 0, X(y) et X sont aussi de dimension 0, donc aucun de ces schémas ne 

possède de composante irréductible de dimension 1. Si dim(X) = 1, toutes les com­

posantes irréductibles de X^ et de X sont de dimension 1. On peut donc supposer 

dim(X) = dim(X(£)) = dim(X) > 2. L'inexistence d'une composante irréductible 

de dimension 1 de X^ (resp. de J ) équivaut à dire que toutes les composantes 

irréductibles de X^ (resp. de X) sont de dimension > 2. L'équivalence voulue résulte 

alors de XX-3.3 (ii) ^> (iii) appliqué à l'inclusion du point fermé de X. • 

2.1.10. Définition. — On appelle fonction de dimension sur X toute fonction ô : X —> Z 

telle que pour toute spécialisation étale immédiate x —> y entre points de X , on ait 

ô(y) = 5(x) - 1. 

La notion de fonction de dimension ne voit pas les éléments nilpotents : S est une 

fonction de dimension sur X si et seulement si elle induit une fonction de dimension 

sur le sous-schéma réduit X r e d . De plus si U <^-> X est un morphisme étale et S est 

une fonction de dimension sur X , ô o i définit une fonction de dimension sur U. Plus 

précisément, l'ensemble des fonctions de dimension sur les X-schémas étales définit 

un faisceau étale sur X . La différence entre deux fonctions de dimension sur X est 

une fonction invariante par spécialisations quelconques, donc une fonction localement 

constante. Nous montrerons plus loin que si X est quasi-excellent, des fonctions de 

dimension existent localement pour la topologie étale sur X de sorte que les fonctions 

de dimension forment un Z-torseur étale. 

2.1.11. Proposition. — Soit f' : X —>Y un morphisme entre schémas nœthériens. Sup­

posons donnés x et x' deux points géométriques de X. Notons y (resp. y') le point 

géométrique de Y au-dessus duquel x (resp. x') se trouve. A toute spécialisation étale 

x ^ x' est canoniquement associée une spécialisation étale y y'. Si f est quasi-fini, 

les spécialisations x x' et y ^ y' ont la même codimension. 

Démonstration. — La première partie de l'énoncé est triviale (voir aussi XVII-2.3). 

Il n'y a qu'à montrer l'égalité des codimensions dans le cas où / est quasi-fini. Pour 

cela, d'après le Main Theorem de Zariski, on peut supposer que / est fini et que X 

et Y sont locaux strictement henséliens de points fermés respectifs x' et y'. On peut 

supposer en outre que X et Y sont intègres de points génériques respectifs x et y où x 

et y sont les images respectives des points géométriques x et y. Énoncer l'égalité des 

codimensions de x ^ x' et de y y1 revient alors à dire que X et F sont de même 

dimension, ce qui résulte du « going-up » (cf. [Matsumura, 1980a, 13.C]). • 
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2.1.12. Corollaire. — Soit f:X—*Y un morphisme quasi-fini entre schémas nœthé-

riens. Si S: Y —> Z est une fonction de dimension sur Y, alors f*S := S o / : X —• Z 

est une fonction de dimension sur X. 

2.2. Fonctions de dimension et universelle caténarité. — Le but de ce paragraphe est de 

démontrer le résultat suivant. 

2.2.1. Théorème. — Un schéma nœthérien est universellement caténaire si et seule­

ment s'il possède une fonction de dimension localement pour la topologie de Zariski. 

Le théorème résulte de la conjonction du corollaire 2.2.4 et de la proposition 2.2.6 

ci-dessous. 

2.2.2. Proposition. — Soit X un schéma intègre universellement caténaire. La fonc­

tion S : X —» Z définie par ô(x) = — dim^x^) est une fonction de dimension sur X. 

Démonstration. — En vertu de la proposition 2.1.6, comme X est universellement 

caténaire, il suffit de montrer que 6(y) = ô(x) — 1 pour toute spécialisation Zariski 

immédiate x y. Comme X est caténaire intègre, on a 

dhn(ûx,y) = dim(Ûx,x) + d i m ( ^ J = d i m ( ^ ) + 1. • 

2.2.3. Remarque. — Si X n'est pas supposé intègre, la fonction S(x) = — dim(Ô>x,x) 

n'est pas forcément une fonction de dimension comme le montre l'exemple où X est 

obtenu par recollement en un point d'une droite et d'un plan. 

2.2.4. Corollaire. — Tout schéma universellement caténaire admet des fonctions de 

dimension localement pour la topologie de Zariski. 

Démonstration. — Soit X un schéma universellement caténaire. Soit x G X. Il s'agit 

de montrer qu'il existe un voisinage ouvert de x pouvant être muni d'une fonction 

de dimension. L'espace topologique X est réunion de ses composantes irréductibles 

X i , . . . , X n . Quitte à remplacer X par l'ouvert complémentaire des composantes Xi 

ne contenant pas x, on peut supposer que x appartient à toutes les composantes Xi. 

Pour tout 1 < i < n, notons &i l'ensemble des fonctions de dimension sur Xi. D'après 

la proposition 2.2.2, cet ensemble est non vide et est un torseur sous Z. On choisit 

un élément Si G &i qui vaut 0 sur le point x. Pour tous 1 < i, j < n, la fonction 

Si — ôj est localement constante sur Xi fl Xj et vaut 0 au point x. Soit Fij le fermé 

de X , réunion des composantes connexes de Xi fl Xj ne contenant pas x. Soit U le 

complémentaire dans X de la réunion des Fij. Les fonctions Si se recollent en une 

fonction de dimension sur U. • 

Démontrons une réciproque partielle du corollaire 2.2.4. 
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2. SPÉCIALISATIONS IMMÉDIATES ET FONCTIONS DE DIMENSION 285 

2.2.5. Lemme. — Un schéma nœthérien qui possède une fonction de dimension loca­

lement pour la topologie de Zariski est caténaire. 

Démonstration. — Pour montrer la caténarité, on peut supposer que le schéma S pos­

sède une fonction de dimension S. Supposons que X C Y sont des fermés irréductibles 

de points génériques respectifs x et y. Choisissons une chaîne de spécialisations Zariski 

immédiates y = xo x\ ^ - - • Xd = x de longueur maximale. Par définition de 

la codimension, on a codim(X, Y) = d et par définition des fonctions de dimension, 

compte tenu du sens facile de la proposition 2.1.6, on obtient 6(x) = S(y) — d, d'où 

codim(X, Y) = S(y) - ô(x). 

Maintenant, si X C Y C Z sont des fermés irréductibles, on a : 

S(y)-6(x) = codim(X,y) , 

6(z)-6(y) = codim(F,Z), 

6(z)-6(x) = codim(X,Z). 

On en déduit codim(X, Z) = codim(X, Y) + codim(Y, Z) d'où la caténarité. • 

Grâce au théorème 1.2.3, on peut remplacer « caténaire » par « universellement 

caténaire » dans le lemme 2.2.5 : 

2.2.6. Proposition. — Un schéma nœthérien qui possède une fonction de dimension 

localement pour la topologie de Zariski est universellement caténaire. 

Démonstration. — On peut supposer que S est local et muni d'une fonction de di­

mension S, laquelle induit une fonction de dimension Sh sur le hensélisé Sh, qui est 

donc caténaire d'après le lemme 2.2.5, puis universellement caténaire grâce à la pro­

position 1.3.1 et enfin formellement caténaire d'après le théorème 1.2.3. 

Montrons que S est formellement caténaire. Soit Z un sous-schéma fermé intègre de 

S. Il s'agit de montrer que Z est formellement équidimensionnel. Les schémas locaux 

Z et Zh ayant le même complété, il suffit pour cela de montrer que les composantes 

irréductibles C de Zh sont formellement équidimensionnelles et toutes de la même di­

mension. Comme Zh est un sous-schéma fermé de 5 h qui est formellement caténaire, 

toute composante irréductible C de Zh est bien formellement équidimensionnelle. 

Exprimons maintenant la dimension de C en utilisant les fonctions de dimension. 

Notons s le point fermé de S, r]c (resp. rjz) le point générique de C (resp. Z). On 

a dim(C) = Sh(rjc) — Sh(s) = ô(rjz) — ô(s) = dim(Z). La dimension dim(C) est 

donc indépendante de C. On a ainsi montré que Z est formellement équidimension­

nel. Finalement, S est formellement caténaire et le théorème 1.2.3 montre que S est 

universellement caténaire. • 
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2.3. Existence locale pour la topologie étale. — Dans ce paragraphe nous allons démon­

trer le théorème suivant. 

2.3.1. Théorème. — Tout schéma quasi-excellent possède des fonctions de dimension 

localement pour la topologie étale. 

Une application répétée du lemme suivant (variante de l'argument du corol­

laire 2.2.4) permet de montrer que si l'énoncé du théorème est vrai pour les 

composantes irréductibles d'un schéma nœthérien X , alors le théorème vaut aussi 

pour X. Plus loin, on pourra ainsi supposer que X est intègre. 

2.3.2. Lemme. — Soit X un schéma nœthérien dont l'espace topologique sous-jacent 

soit réunion de deux sous-schémas fermés X\ et X2. Soit x un point géométrique de 

X\ fl X2. On suppose que pour tout i G { 1 , 2 } , il existe un voisinage étale Ui de x 

dans Xi tel que Ui admette une fonction de dimension. Alors, il existe un voisinage 

étale Udex dans X tel que U admette une fonction de dimension. 

Démonstration. — Pour tout i G { 1 , 2 } , on choisit un voisinage étale Ui de x dans Xi 

tel que Ui admette une fonction de dimension Si. On se donne un point géométrique 

distingué v,i au-dessus de x et on peut supposer que 6i(ui) = 0. D'après [EGA IV4 

18.1.1], quitte à remplacer Ui par un voisinage ouvert de Ui, on peut supposer qu'il 

existe un morphisme étale Ui —> X et un isomorphisme Ui Xx Xi ~ Ui. On peut 

former le produit fibre V = U\ X j U2. Notons 7r: V —• X la projection et v un point 

géométrique de V au-dessus de û\ et û2. Pour tout i G { 1 , 2 } , la projection de V 

sur le facteur Ui induit un morphisme étale 7r~1(Xi) —> Ui. Par composition avec ce 

morphisme étale, la fonction de dimension Si sur Ui induit une fonction de dimension 

Si sur le sous-schéma fermé 7r~1(Xi) de V et elle vérifie Si(v) = 0. Ces fonctions de 

dimensions Si pour i G {1 ,2} se recollent sur l'ouvert U complémentaire dans V de la 

réunion des composantes connexes de 7r~1(Xi fl X2) ne contenant pas v. • 

Avant de traiter le cas des schémas intègres, commençons par celui des schémas 

normaux : 

2.3.3. Proposition. — Soit X un schéma normal quasi-excellent. La fonction S : X —• 

Z définie par S(x) = — dim(^x,a:) est une fonction de dimension. 

Démonstration. — On peut supposer de plus que X est local. Notons Y son hensélisé 

et h: Y —> X le morphisme de hensélisation. D'après le théorème 1-8.1 et les commen­

taires subséquents, Y est lui aussi quasi-excellent. D'après la proposition 1.3.2, y est 

universellement caténaire. Par ailleurs, comme le morphisme Y —» X est régulier, la 

normalité de X implique celle de Y (cf. [EGA iv 2 6.5.4]). Le schéma local Y est donc 

intègre et universellement caténaire, et l'opposé de la codimension définit une fonction 

de dimension S' : Y —» Z. Comme une spécialisation étale immédiate entre points de 
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X se relève pour ainsi dire par définition en une spécialisation étale immédiate de 

points de y , pour montrer que 8 est une fonction de dimension sur X , il suffit de 

montrer que pour tout y E Y, si on note x = h(y), on a, ô(x) = S'{y), ce qui résulte 

de la proposition 1.2.2. • 

Revenons au cas du théorème 2.3.1 où X est supposé intègre et quasi-excellent, 

et notons Y son normalisé. Le morphisme p : Y —> X est fini et surjectif, donc de 

descente cohomologique universelle. Notons 8 une fonction de dimension sur Y ; son 

existence est assurée par la proposition 2.3.3. Soient p\ et P2 les deux projections 

Y Xx Y —• Y. D'après le corollaire 2.1.12 appliqué aux morphismes p\ et P2, il vient 

que p*8 := 8 o p{ pour i G {1 ,2} sont deux fonctions de dimension sur 7 X j 7 . La 

différence p\8 — p^ô: Y Xx Y —» Z est une fonction localement constante qui définit 

un 1-cocycle de Cech, donc une classe \p\8 — p^S] dans H ^ e c h ( F —• X , Z). D'après la 

théorie de la descente cohomologique, il existe une injection naturelle 

H ô e c h ( ^ * ' Z ) ^ H l ( * , Z ) . 

La classe {piô—p^S] définit donc une classe d'isomorphisme de Z-torseurs étales sur X. 

Il résulte alors immédiatement de la proposition suivante que X admet une fonction 

de dimension localement pour la topologie étale : 

2.3.4. Proposition. — Soit U un schéma étale sur X (quasi-excellent). L'annulation de 

la classe \p\8 — p^SWu dans H1(C7, Z) entraîne l'existence d'une fonction de dimension 

sur U. 

Démonstration. — En utilisant la compatibilité des constructions au changement de 

base étale U —• X, on peut supposer que U = X. L'annulation de \p\8 — p%8] dans 

H ^ e c h ( y —• X , Z) ^ H 1 (X , Z) signifie qu'il existe une fonction localement constante 

7 : Y —> Z telle que p\ô — p^S = p*7 — ^ 7 - Autrement dit, quitte à remplacer ô par 

(5 — 7, on peut supposer que p\ô = p^S. Ainsi, ô : Y —• Z se descend en une fonction 

Ô':X^Z. 

Pour conclure, il s'agit de montrer que si p : Y —• X est un morphisme fini surjectif 

entre schémas quasi-excellents, que 8' : X —• Z est une fonction et 8 = 8' o p, alors 

8' est une fonction de dimension sur X si 8 est une fonction de dimension sur Y. 

Pour cet énoncé, on peut supposer que X est local hensélien quasi-excellent, donc 

universellement caténaire (cf. proposition 1.3.2). D'après le corollaire 2.2.4, il existe 

une fonction de dimension 8" sur X . On dispose de deux fonctions de dimension 8 et 

p*6" := 8" op sur Y. La différence 8 — p*8" : Y —• Z est donc une fonction localement 

constante. Comme 8 — p*8" = (S' — 8") o p et que p est fini surjectif, on en déduit 

facilement que la fonction 8' — 8" : X —> Z est localement constante. Comme 8" est 

une fonction de dimension, on en déduit que 8' est une fonction de dimension. • 
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2.4. Existence globale de fonctions de dimension. — Suivant [EGA Oiv 14.2.1], on dit 

qu'un schéma nœthérien X est équicodimensionnel si ses points fermés ont tous la 

même codimension (qui est alors égale à dim(X)). 

2.4.1. Exemple. — Les schémas de type fini équidimensionnels sur un corps k ou sur 

Z sont équicodimensionnels : il est classique que dans cette situation, on a dim(X) = 

dim(^x,rr) pour tout point fermé x. Les schémas locaux sont équicodimensionnels car 

ils possèdent un unique point fermé. Si S = Spec(i^) est un trait d'uniformisante 7r, 

le schéma n'est pas équicodimensionnel. En effet, il existe un point fermé de 

au-dessus du point générique de S : il suffit d'écrire A^ = Spec(iî[t]) et de considérer 

m = (nt — 1), qui est un idéal maximal de corps résiduel Fmc(R). 

Le lemme suivant est inspiré de [EGA Orv 14.3.3] 

2.4.2. Lemme. — Soit X un schéma nœthérien équidimensionnel caténaire dont les 

composantes irréductibles sont équicodimensionnelles. Pour tout x G X, on a 

dim(X) = d im{x} + d im(^x , x ) . 

2.4.3. Remarque. — En particulier, cette égalité est vérifiée pour tout schéma intègre 

local caténaire. D'après [Matsumura, 1989, th. 31.4], si X est intègre local nœthérien 

et si pour tout x G X , on a dim(X) = d im{x} + dim(â>x,x), alors X est caténaire. 

Le lemme 2.4.2 et la proposition 2.2.2 impliquent le résultat suivant. 

2.4.4. Corollaire. — Soit X un schéma nœthérien intègre, équicodimensionnel et uni­

versellement caténaire. La fonction ô : X —» Z définie par ô(x) = dim {x} est une 

fonction de dimension sur X. 

Les conclusions du corollaire sont prises en défaut si X n'est pas équicodimen­

sionnel. Soient par exemple S = Spec(R) un trait d'uniformisante 7r et X = A^ = 

Spec(i2[£]). Si l'on note x le point fermé de X correspondant à l'idéal maximal (nt — l) 

et rj le point générique de A^, alors la spécialisation rj ~> x est immédiate et pourtant 

dim {x} = 0 et dim {rj} = 2. 

2.4.5. Corollaire. — Soit X un schéma qui est soit de type fini sur un corps, soit 

de type fini sur Z, ou soit local universellement caténaire. La fonction définie par 

S(x) = d im{x} est une fonction de dimension sur X. 

(*) Gabber remarque que la proposition [EGA Oiv 14.3.3] est fausse. Les assertions a, c et d de loc. 
cit. sont équivalentes entre elles et impliquent b mais ne lui sont pas équivalentes. Il faut remplacer b 
par la condition « X est caténaire équidimensionnel et ses composantes irréductibles sont équicodi­
mensionnelles ». Gabber donne comme contre-exemple le spectre du localisé de k[x, y, z, w]/(xz, xw) 
en le complémentaire de l'union des idéaux premiers (x — 1, y) et (x, z, w) avec k un corps. La même 
erreur a été relevée, indépendamment, par Huayi Chen (courrier à Luc Illusie du 2005-9-26). 
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Démonstration. — Le schéma X est universellement caténaire. D'après le corol­

laire 2.4.4, la fonction S est une fonction de dimension sur chaque composante 

irréductible de X. Cette fonction est définie globalement donc est une fonction de 

dimension sur X. • 

2.5. Fonction de dimension induite. — Soient Y —> X un morphisme de schémas et 

ôx une fonction de dimension sur X. Dans certains cas nous pouvons construire une 

fonction de dimension ôy induite sur Y. On admet la proposition suivante. 

2.5.1. Proposition ([Matsumura, 1980a], 14.C). — Soient X un schéma nœthérien in­

tègre universellement caténaire, Y un schéma intègre et Y —> X un morphisme de 

type fini dominant. Soient k(X) et k(Y) les corps de fractions respectifs de X et Y, 

soient y un point de Y et x son image dans X, et soient k(y) et k(x) leurs corps 

résiduels. On a 

d i m ( ^ ) - deg.tv.{k(Y)/k(X)) = d i m ( ^ ) - deg. tr.(k(y)/k(x)). 

2.5.2. Corollaire. — Soient X un schéma nœthérien qui possède une fonction de di­

mension Sx et f :Y —* X un morphisme de type fini. La fonction ôy : Y —> Z définie 

par 

SY(y) = ôx(f(y))+deg.tv.(k(f(y))/k(y)) 

est une fonction de dimension sur Y. 

Démonstration. — On peut supposer que X et Y sont intègres et que / est dominant. 

D'après la proposition 2.2.6, X est universellement caténaire et d'après la proposi­

tion 2.2.2, X H - dim(ûx,x) est une fonction de dimension sur X. Comme les fonctions 

de dimension forment un Z-torseur, on peut supposer que ôx(x) = — dim(^x,rr) pour 

tout x e X. 

Le corollaire 2.5.1 montre que ôy(y) = — àim{ûy^y) + deg. tv.(k(Y)/k(X)) et la 

proposition 2.2.2 montre que y i—> — âim(ÛY,y) est une fonction de dimension sur Y. 

Ainsi, ôy est une fonction de dimension sur Y. • 

Avant d'établir la fonctorialité des fonctions de dimension vis-à-vis des morphismes 

réguliers entre schémas excellents, démontrons un énoncé de changement de base par 

un morphisme régulier en cohomologie étale. Ce lemme est une simple conséquence du 

théorème de Popescu 1-10.3 et du théorème de changement de base par un morphisme 

lisse [SGA 4 xvi 1.2]. 
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2.5.5. Lemme. — Soient 

S'-Ï-^S 

un diagramme cartésien de schémas, n un entier inversible sur S et & un faisceau 

étale en Z/nZ-modules sur T. Supposons que f est cohérent et que g est un morphisme 

régulier entre schémas nœthériens. La flèche naturelle de changement de base 

Rf F = R f.g (F) 

est un isomorphisme. 

Démonstration. — La question étant locale sur S et S', on peut supposer que S et S' 

sont affines. D'après le théorème de Popescu, il existe un ensemble ordonné filtrant / 

(non vide) et une famille de schémas affines Si indexée par / , tels que Si soit lisse 

sur S pour tout i G I et que S' = lim^ Si. Il existe donc pour tout i G / un diagramme 

commutatif à carrés cartésiens 

T' —^ Ti — ^ T 

f' fi f 

S' 5. s. 

On conclut grâce à la suite d'isomorphismes suivante pour tout q > 0 : 

fgh = colin h R fg gr 

c o l i m i 5 * R V . ( ^ ) 

g H fg 

Le premier de ces isomorphismes résulte du théorème de passage à la limite 

[SGA4 vil 5.11], et le second du théorème de changement de base par le morphisme 

lisse gi [SGA4 xvi 1.2]. • 

Nous prouvons à présent qu'un morphisme régulier entre schémas excellents permet 

d'induire des fonctions de dimension. 

2.5.4. Proposition. — Soient f :Y —» X un morphisme régulier entre schémas quasi-

excellents et Sx une fonction de dimension sur X. La fonction Sy ' Y —> Z définie 

par 

ôY(y) = Sx(f(y))-dim(ÛYHyhy) 

est une fonction de dimension sur Y. 
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Démonstration. — Comme la vérification est locale, il n'y a pas de mal à suppo­

ser X et Y strictement locaux et / local. Les schémas quasi-excellents X et Y sont 

alors excellents (cf. proposition 1.3.2). Soit <5 une fonction de dimension sur F ; son 

existence est assurée par le théorème 2.2.1. Il suffit de montrer que Ôy — S est une 

fonction constante sur Y. Les fibres de / sont régulières donc universellement caté­

naires d'après 1.1.3. La proposition 2.2.2 montre que la fonction qui à y G Y as­

socie — à\m{0Yf(y),y) induit une fonction de dimension sur chacune des fibres de / . 

La fonction Sy — S est donc localement constante sur chaque fibre de / . Il résulte 

du lemme 2.5.3 que ces fibres sont connexes : en effet, on a H ° ( / - 1 ( # ) , Z/nZ) = 

H°(x, Z/nZ) = Z/nZ pour tout x e X et tout entier n inversible sur X. La fonction 

ôy — S est donc constante sur les fibres de / et descend à X. Il suffit de montrer 

que 7 = SY — S est localement constante sur X. Une façon de calculer la valeur de 

7 en un point s de X consiste à considérer le point générique ns du schéma régulier 

connexe / - 1 ( s ) , de sorte que 7 ( 5 ) = Sx{s) — S(rjs). Soit sf s une spécialisation 

Zariski immédiate entre deux points de X. Il s'agit de montrer que 7 ( 5 ) = 7 ( 5 ' ) . Vu 

que Sx et S sont des fonctions de dimension sur X et Y respectivement, pour montrer 

cela, il suffit de savoir que r)s> est une spécialisation immédiate de rjs. Pour montrer 

cela, quitte à remplacer X par le localisé en s de l'adhérence de s', on peut supposer 

que X est local intègre de dimension 1, de point générique s' et de point fermé s. Il 

s'agit alors de montrer que la fibre f~1(s) est de codimension 1 dans y, ce qui résulte 

facilement du Hauptidealsatz. • 

2.6. Contre-exemple 

2.6.1. — Rappelons l'exemple de [EGA IV2 5.6.11] d'un schéma caténaire non uni­

versellement caténaire. Soient ko un corps et k une extension purement transcendante 

de ko de degré de transcendance infini. Notons S = k[X](X) le localisé de l'anneau de 

la droite affine sur k en l'origine et V = S[T]. Les idéaux maximaux m = (X, T) et 

m' = (XT—1) de V sont respectivement de hauteur 2 et 1, et il existe un isomorphisme 

</> : V/ra V/m!. On note v et v' les points fermés de Spec(V) correspondant aux 

idéaux maximaux m et m'. Posons C = { / G V | 0 ( / m o d m ) = / m o d m ' } . C'est un 

sous-anneau de V qui n'est pas de type fini sur k. Le morphisme Spec(F) —» Spec(C) 

est fini et induit un isomorphisme au-dessus de l'ouvert dense Spec(C) — {c} où c 

est le point fermé de C correspondant à l'idéal maximal n = m D m' C C. L'espace 

topologique Spec(C) s'identifie au quotient de Spec(V) pour la relation d'équivalence 

qui identifie v et v'. 

2.6.2. Proposition. — Le schéma Spec(C) est nœthérien, quasi-excellent, caténaire 

mais non universellement caténaire. Le point fermé correspondant à l'idéal maximal 
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n de C est une spécialisation étale immédiate mais non Zariski immédiate du point 

générique de Spec(C). 

Démonstration. — Le caractère nœthérien est montré dans [EGA iv 2 5.6.11] et le 

caractère quasi-excellent dans [EGA iv 2 7.8.4 (ii)]. Le schéma Spec(C) est caténaire 

d'après le corollaire 1.2.4 car il est de dimension 2. Les points v et v' s'identifient 

aux deux points fermés de Spec(V ® c C n ) et les localisés correspondants Spec(Vm) 

et Spec(Vm/) sont de dimensions respectives 2 et 1, ce qui met en défaut la dernière 

condition du théorème 1.2.3 : l'anneau local C n n'est pas universellement caténaire. 

L'anneau local C n étant de dimension 2, le point c € Spec(C) n'est pas spécia­

lisation Zariski immédiate du point générique. En revanche, c'en est une spéciali­

sation étale immédiate grâce à la proposition 2.1.11 appliquée au morphisme fini 

Spec(V) —> Spec(C) et à la spécialisation étale immédiate évidente r/spec(v) ~> v' de 

points géométriques de Spec(V). • 
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