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EXPOSE XIV

FONCTIONS DE DIMENSION

Vincent Pilloni et Benoit Stroh

Nous définissons la notion de fonction de dimension sur un schéma X et nous
montrons 'existence de telles fonctions localement pour la topologie étale si X est
quasi-excellent.

1. Universelle caténarité des schémas henséliens

Dans cette partie, nous rappelons les notions de caténarité et d’universelle caténa-
rité. Le lecteur pourra consulter I’exposé I pour plus de détails.

1.1. Schémas universellement caténaires. — Soient S un espace topologique et X C Y
des fermés irréductibles de S. Notons codim(X,Y) la borne supérieure de I’ensemble
des longueurs des chaines strictement croissantes de fermés irréductibles X C Z C Y
(cf. [EGA Orv 14.2.1 & 14.1.1]). Si S est un schéma, X et Y des sous-schémas fermés
intégres et x le point générique de X, on a

codim(X,Y) = dim(Oy ).

1.1.1. Définition (JEGA Opy 14.3.2]). — Un schéma S est caténaire s’il est localement
noethérien et si pour toute chaine X C Y C Z de fermés irréductibles de S, on a

codim(X, Z) = codim(Y, Z) + codim(X,Y).

Un schéma S est universellement caténaire si tout schéma de type fini sur S est caté-
naire.

La notion de caténarité est stable par localisation et par restriction & des sous-
schémas fermés. Ainsi, S est universellement caténaire si et seulement si pour tout
entier n > 0, le schéma A7 est caténaire.

1.1.2. Lemme. — Un schéma de Cohen-Macaulay est universellement caténaire.
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278 EXPOSE XIV. FONCTIONS DE DIMENSION

Démonstration. — Si S est Cohen-Macaulay, il est caténaire d’aprés
[Matsumura, 1980a, 16.B]. Comme pour tout n > 0, le schéma A% reste Cohen-
Macaulay, le schéma. S est bien universellement caténaire. O

1.1.3. Exemple. — Tout schéma régulier est universellement caténaire car Cohen-
Macaulay. En particulier, le spectre d’un corps, un trait et le spectre d’une algébre de
séries formelles sur un corps ou sur un anneau de valuation discréte sont universelle-
ment caténaires. Tout schéma de type fini sur un schéma régulier est universellement
caténaire.

1.1.4. Proposition ([Matsumura, 1980a], 28.P). — Un schéma local complet nethérien
est universellement caténaire.

Démonstration. — Le théoréme de structure de Cohen [EGA Orv 19.8.8] permet
d’écrire tout schéma local complet noethérien comme fermé dans le spectre d’une
algébre de séries formelles sur un anneau de Cohen. L’universelle caténarité résulte
de ’exemple précédent et de la stabilité de cette notion par passage 4 un fermé. O

1.2. Un théoréme de Ratliff. — On dit qu'un schéma ncethérien est équidimensionnel
si toutes ses composantes irréductibles ont méme dimension (finie). Soit S un schéma
local noethérien. On note S le spectre du complété de I’anneau de S en son idéal
maximal.

1.2.1. Définition. — Le schéma local S est formellement équidimensionnel si S est équi-
dimensionnel. Il est formellement caténaire si pour tout s € S, 'adhérence {s} est
formellement équidimensionnelle.

1.2.2. Proposition. — Soit S un schéma local nethérien. Le schéma S, son complété
S, son hensélisé S et son hensélisé strict ont tous la méme dimension.

Démonstration. — Ceci résulte de I’énoncé général suivant : si A — A’ est un mor-
phisme local et plat entre anneaux locaux noethériens d’idéaux maximaux respectifs
m et m’ et que m’ = mA’, alors pour tout entier naturel n, les longueurs lg 4 (A/m™)
et 1g 4 (A’ /m'™) sont égales. L’égalité de ces fonctions de Hilbert-Samuel implique
légalité dim A = dim A’ (cf. [Zariski & Samuel, 1975, chap. VIII, §9]). d

D’aprés cette proposition, si S est un schéma local ncethérien intégre, les com-
posantes irréductibles de S sont de dimension < dim(S) et une d’entre elles est de
dimension dim(S). Le schéma S est donc formellement équidimensionnel si et seule-
ment si toutes les composantes irréductibles de S sont de dimension dim(S).

Soit S un schéma local noethérien. Ratliff a démontré le théoréme fondamental
suivant, qui a déja été mentionné dans la proposition I-7.1.1.
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1. UNIVERSELLE CATENARITE DES SCHEMAS HENSELIENS 279

1.2.3. Théoréme ([Matsumura, 1989] 31.7). — Pour un schéma local nethérien S, les
conditions suivantes sont équivalentes :

— S est formellement caténaire,

— S est universellement caténaire,

— A} est caténaire,

— S est caténaire et pour tout s € S, tout schéma intégre S’ muni d’une fleche finie
et dominante S' — {s} et tout point fermé s' de S', on a dim(Os: o) = dim {s}.

On a ajouté une quatriéme condition équivalente a 1’énoncé [Matsumura, 1989,
Theorem 31.7]. Il résulte de [EGA 1v4 5.6.10] que les trois premiéres conditions équi-
valentes impliquent la quatriéme. La réciproque est démontrée au cours de la démons-
tration de [Matsumura, 1989, Theorem 31.7] (au second paragraphe de la page 255).

1.2.4. Corollaire ((Matsumura, 1989] 31.2). — Tout schéma nethérien de dimension <
2 est caténaire. Tout schéma neethérien de dimension < 1 est universellement caté-
naire.

1.3. Schémas henséliens et caténarité. — Nous avons vu que tout schéma local complet
ncethérien est universellement caténaire dans la proposition 1.1.4. Les schémas locaux
henséliens jouissent également de bonnes propriétés de caténarité :

1.3.1. Proposition. — Tout schéma local hensélien caténaire est universellement caté-
nasire.
Démonstration. — Soit S = Spec(A) un schéma local hensélien caténaire, soit P un

idéal premier de A, soit L une extension finie de Frac(A/P) et soit B une extension
finie de A/P contenue dans L. D’aprés le théoréme 1.2.3, il suffit de prouver que
la dimension du localis¢é de B en chacun de ses idéaux maximaux est égale a la
dimension de A/P. Toute algébre finie sur un anneau hensélien est semi-locale d’aprés
[EGA 1v4 18.5] et [EGA 1v4 18.6]. Comme le schéma B est intégre, il est local.
Le théoréme du « going-up » ([Matsumura, 1989, 9.3 et 9.4]) montre qu’on a bien
dim(B) = dim(A/P). O

Rappelons également le résultat suivant, conséquence du corollaire 1-6.3 (ii).

1.3.2. Proposition. — Tout schéma local hensélien quasi-excellent est universellement
caténaire.

Ainsi, tout schéma local hensélien quasi-excellent est excellent.
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280 EXPOSE XIV. FONCTIONS DE DIMENSION

2. Spécialisations immédiates et fonctions de dimension

2.1. Définitions. — Soit X un schéma. Pour tout point z de X et tout point géo-
métrique Z au-dessus de z, on note X(,), X?z) et )?(x) le localisé, I’hensélisé et le
complété de X en z. De méme, on note X(z) ’hensélisé strict de X en Z.

Soient z et y deux points de X, et Z et § deux points géométriques au-dessus de T
et y.

2.1.1. Définition ([SGA 4 vi1 7.2]). — Un morphisme de spécialisation Z ~~ 3 est la don-
née d’un X-morphisme X @ — X (y) entre hensélisés stricts.

D’aprés [SGA 4 vii 7.4], la donnée d’une spécialisation T ~~ §j est équivalente & la
donnée d’un X-morphisme Z — X (3.

2.1.2. Définition. — Soit r € N. On dit qu’une spécialisation Z ~» g est une spécia-
lisation de codimension r si I’adhérence de I'image de T dans X3 est un schéma de
dimension r.

On dit que y est une spécialisation étale immédiate de x s’il existe une spécialisation
Z ~» § qui soit de codimension 1.

On dit que y est une spécialisation Zariski immédiate de z si y € m et si le localisé
en y de ’adhérence de x est de dimension 1.

2.1.3. — Siy est une spécialisation étale immédiate de x, on dit également que x est
une générisation étale immédiate de y. Désignons par f : X(5) — X(,) le morphisme
d’hensélisation stricte. Les générisations étales immédiates de y sont alors les images
par f des points 2’ € X5 tels que dimm =1.

Avant d’examiner plus en détail ces notions, on rappelle le fait facile suivant
(I1-1.1.3) que nous utiliserons implicitement plus bas : si f: X — S est un morphisme
plat, f envoie les points maximaux de X sur des points maximaux de S, autrement
dit toute composante irréductible de X domine une composante irréductible de S.

2.1.4. — Six et y sont deux points d’un schéma noethérien X tels que y € m (au
sens habituel, c’est-a-dire que y est une spécialisation de x ou encore que = est une
générisation de y), alors y est une spécialisation Zariski (resp. étale) immédiate de
si et seulement si c’est le cas dans m(y). Pour certaines considérations, ceci permet
de supposer que X est local intégre de point générique x et de point fermé y. Dans
ce cas, y est une spécialisation Zariski immédiate de z si et seulement si dim(X) = 1.
Dans le cas étale, cela se lit sur I’hensélisé strict :

2.1.5. Proposition. — Si x et y sont deux points d’un schéma neethérien X, le point y
est une spécialisation étale immédiate de x si et seulement si y € {z} et I’hensé-
lisé strict en un point géométrique au-dessus de y de l’adhérence de x posséde une
composante irréductible de dimension 1.
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2. SPECIALISATIONS IMMEDIATES ET FONCTIONS DE DIMENSION 281

Démonstration. — On se rameéne au cas particulier X = {w_}(y) envisagé plus haut.
Le point y est une spécialisation étale immédiate si et seulement s’il existe un point T
de X (5) au-dessus de z tel que ’adhérence de ¥ dans Xy soit de dimension 1. Comme
énoncé ici, cela est équivalent au fait que X5 posséde une composante irréductible C
de dimension 1. En effet, si on note Z le point générique de C, par 'argument de plati-
tude énoncé plus haut, C domine X, c’est-a-dire que Z est au-dessus de z. Inversement,
si Z est un point au-dessus de = dont I’adhérence dans X ;) soit de dimension 1, on
peut noter C' une composante irréductible de X5, contenant Z. Le point générique
de C et Z étant tous les deux au-dessus de z, ils sont égaux puisque l'un est une
générisation de I’autre et que les fibres de X5y — X sont discrétes. O

2.1.6. Proposition. — Soit X un schéma neethérien. Une spécialisation Zariski immé-
diate entre points de X est une spécialisation étale immédiate, et la réciproque est
vraie si X est universellement caténaire.

On peut supposer que X = {7}(y) comme précédemment. Pour 'implication, on
suppose que dim(X) = 1 et on veut montrer que X3 posséde une composante irré-
ductible de dimension 1. D’aprés la proposition 1.2.2, X(5) est de dimension 1 et il
est évident que les composantes irréductibles d’un schéma local de dimension 1 sont
toutes de dimension 1.

Pour la réciproque, nous utiliserons deux lemmes :

2.1.7. Lemme. — Soit X un schéma local nethérien hensélien de point ferméy. Soit §
un point géométrique au-dessus de y. Alors, X posséde une composante irréductible
de dimension 1 si et seulement si le hensélisé strict X(y) en posséde une.

Démonstration. — Si C' est une composante irréductible de dimension 1 de Xy, son
image ensembliste dans X est fermée car p: X(5) — X est entier. Comme p est plat,
p(C) est une composante irréductible de X contenant exactement deux points donc
dim(p(C)) = 1. Inversement, la surjectivité et la platitude de p impliquent que si
D C X est une composante irréductible de dimension 1, il existe une composante
irréductible C de X (g telle que p(C) = D. On a bien sar dim(C) > 1. Soit z € C
un point qui ne soit pas le point générique de C. Le point p(z) ne peut pas étre le
point générique de D car sinon la fibre générique de p ne serait pas discréte. C’est
donc que p(z) est le point fermé de C. Le fait que p~!(y) soit discret implique alors
que z ne peut étre que le point fermé de C. Le schéma local intégre C posséde donc
exactement deux points : dim(C) = 1. O

2.1.8. Lemme. — Soit X un schéma local nethérien. Si X posséde une composante
irréductible de dimension 1, alors son complété X aussi et la réciproque est vraie si X
est universellement caténaire.
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Démonstration. — Commencons par le cas ou X est intégre. Si dim(X) = 1, de méme
qu’au début de la démonstration de la proposition 2.1.6, dim()? ) =dim(X) =1et
toutes les composantes irréductibles de X sont de dimension 1. Inversement, si X
est universellement caténaire, d’aprés le théoréme 1.2.3, les composantes irréductibles
de X ont toutes la méme dimension. Si 'une d’entre elles est de dimension 1, le
schéma X est Iui aussi de dimension 1, et alors dim(X) = dim(X) = 1.

Dans le cas général, notons X; les composantes irréductibles de X. Pour tout i,
le produit fibré X; x x X s’identifie & 5(\1 (voir [SGA1 1v 3]). C’est un fait que les
composantes irréductibles des différents 5(: sont exactement les composantes irréduc-
tibles de X : ce sont des parties fermées irréductibles recouvrant X et aucune d’entre
elles n’est contenue dans une autre (ceci se déduit du fait que chaque composante
irréductible de 5(\, domine X;). Il est dés lors évident que I’énoncé pour X résulte de
I’énoncé pour les schémas locaux intégres X;. O

Montrons la réciproque énoncée dans la proposition 2.1.6. Comme observé ci-dessus
(2.1.4), il suffit de montrer que si X est un schéma local ncethérien intégre universel-
lement caténaire de point fermé y et de point générique z (c’est-a-dire X = {x—}), et
si x est une générisation étale immédiate de y, alors dim(X) = 1. D’aprés la proposi-
tion 2.1.5, I’hensélisé strict de X en un point géométrique au-dessus de y posséde une
composante irréductible de dimension 1, ce qui équivaut d’aprés le lemme 2.1.7 & dire
que le hensélisé X® de X posséde une composante irréductible de dimension 1. Le
complété X de X étant aussi celui de XP, le sens facile du lemme 2.1.8 appliqué a Xt
montre que X posséde une composante irréductible de dimension 1. La réciproque de
ce lemme appliquée au schéma universellement caténaire X montre que X posséde
une composante irréductible de dimension 1; on a donc dim(X) = 1 et y est une
spécialisation Zariski immeédiate de x.

On peut lire les spécialisations étales d’un point z de X dans le complété de X
enx:

2.1.9. Proposition. — Soit X un schéma neethérien. Soient x et y deux points de X.
On suppose que y € m Notons c : )?(y) — X(y) le morphisme de complétion. Le
point y est une spécialisation étale immédiate de x si et seulement si c‘l({—m—}—) posséde
une composante irréductible de dimension 1.

Démonstration. — On peut supposer que X = m(y). Le point y est une spécialisa-
tion étale immédiate de X si et seulement si X ;) posséde une composante irréductible
de dimension 1, c’est-a-dire, d’aprés le lemme 2.1.7 que X ?y) en posséde une. On veut
montrer que ceci équivaut a ce que le complété X en posséde une.

Si on fait ’hypothése supplémentaire que X est quasi-excellent (donc univer-
sellement caténaire d’aprés la proposition 1.3.2), I’équivalence voulue résulte du
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2. SPECIALISATIONS IMMEDIATES ET FONCTIONS DE DIMENSION 283

lemme 2.1.8. Montrons cette équivalence sans I’hypothése de quasi-excellence. Si
dim(X) = 0, X5 et X sont aussi de dimension 0, donc aucun de ces schémas ne
posséde de composante irréductible de dimension 1. Si dim(X) = 1, toutes les com-
posantes irréductibles de X () et de X sont de dimension 1. On peut donc supposer
dim(X) = dim(X(g)) = dim(X) > 2. L’inexistence d’une composante irréductible
de dimension 1 de X3 (resp. de X ) équivaut & dire que toutes les composantes
irréductibles de X5 (resp. de X ) sont de dimension > 2. L’équivalence voulue résulte
alors de XX-3.3 (ii) < (iii) appliqué & l'inclusion du point fermé de X. O

2.1.10. Définition. — On appelle fonction de dimension sur X toute fonction d : X — Z
telle que pour toute spécialisation étale immédiate x ~» y entre points de X, on ait

6(y) = 6(x) — 1.

La notion de fonction de dimension ne voit pas les éléments nilpotents : § est une
fonction de dimension sur X si et seulement si elle induit une fonction de dimension
sur le sous-schéma réduit X*éd. De plus si U <5 X est un morphisme étale et ¢ est
une fonction de dimension sur X, é o i définit une fonction de dimension sur U. Plus
précisément, ’ensemble des fonctions de dimension sur les X-schémas étales définit
un faisceau étale sur X. La différence entre deux fonctions de dimension sur X est
une fonction invariante par spécialisations quelconques, donc une fonction localement
constante. Nous montrerons plus loin que si X est quasi-excellent, des fonctions de
dimension existent localement pour la topologie étale sur X de sorte que les fonctions
de dimension forment un Z-torseur étale.

2.1.11. Proposition. — Soit f: X — Y un morphisme entre schémas neethériens. Sup-
posons donnés T et T' deux points géométriques de X. Notons § (resp. §') le point
géométrique de Y au-dessus duquel T (resp. T') se trouve. A toute spécialisation étale
T ~ T’ est canoniquement associée une spécialisation étale § ~ 7. Si f est quasi-fini,
les spécialisations T ~~ I’ et §j ~ § ont la méme codimension.

Démonstration. — La premiére partie de ’énoncé est triviale (voir aussi XVII-2.3).
Il n’y a qu’a montrer I’égalité des codimensions dans le cas ou f est quasi-fini. Pour
cela, d’aprés le Main Theorem de Zariski, on peut supposer que f est fini et que X
et Y sont locaux strictement henséliens de points fermés respectifs Z’ et . On peut
supposer en outre que X et Y sont intégres de points génériques respectifs z et y ou
et y sont les images respectives des points géométriques Z et 7. Enoncer P’égalité des
codimensions de T ~» &’ et de § ~ ¢’ revient alors & dire que X et Y sont de méme
dimension, ce qui résulte du « going-up » (cf. [Matsumura, 1980a, 13.C]). O
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284 EXPOSE XIV. FONCTIONS DE DIMENSION

2.1.12. Corollaire. — Soit f: X — Y un morphisme quasi-fini entre schémas neethé-
riens. Si 0: Y — Z est une fonction de dimension surY, alors f*6 ;=00 f: X - Z
est une fonction de dimension sur X.

2.2. Fonctions de dimension et universelle caténarité. — Le but de ce paragraphe est de
démontrer le résultat suivant.

2.2.1. Théoréme. — Un schéma neethérien est universellement caténaire si et seule-
ment s’il posséde une fonction de dimension localement pour la topologie de Zariski.

Le théoréme résulte de la conjonction du corollaire 2.2.4 et de la proposition 2.2.6

ci-dessous.

2.2.2. Proposition. — Soit X un schéma intégre universellement caténaire. La fonc-
tion 6 : X — Z définie par 6(z) = — dim(Ox ;) est une fonction de dimension sur X.
Démonstration. — En vertu de la proposition 2.1.6, comme X est universellement

caténaire, il suffit de montrer que §(y) = §(z) — 1 pour toute spécialisation Zariski
immeédiate  ~» y. Comme X est caténaire intégre, on a

dlm(ﬁx’y) = dlm(ﬁx,z) + dlm(ﬁmw) = dlm(ﬁx,z) + 1. O

2.2.3. Remarque. — Si X n’est pas supposé intégre, la fonction 6(z) = —dim(Ox )
n’est pas forcément une fonction de dimension comme le montre I’exemple ou X est
obtenu par recollement en un point d’une droite et d’un plan.

2.2.4. Corollaire. — Tout schéma universellement caténaire admet des fonctions de
dimension localement pour la topologie de Zariski.

Démonstration. — Soit X un schéma universellement caténaire. Soit € X. Il s’agit
de montrer qu’il existe un voisinage ouvert de z pouvant étre muni d’une fonction
de dimension. L’espace topologique X est réunion de ses composantes irréductibles
X1,...,X,. Quitte & remplacer X par louvert complémentaire des composantes X;
ne contenant pas x, on peut supposer que z appartient a toutes les composantes X;.
Pour tout 1 < i < n, notons .%; 'ensemble des fonctions de dimension sur X;. D’aprés
la proposition 2.2.2, cet ensemble est non vide et est un torseur sous Z. On choisit
un élément §; € %; qui vaut 0 sur le point z. Pour tous 1 < i, j < n, la fonction
d; — &; est localement constante sur X; N X; et vaut 0 au point . Soit F; ; le fermé
de X, réunion des composantes connexes de X; N X; ne contenant pas z. Soit U le
complémentaire dans X de la réunion des F; ;. Les fonctions §; se recollent en une
fonction de dimension sur U. O

Démontrons une réciproque partielle du corollaire 2.2.4.
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2. SPECIALISATIONS IMMEDIATES ET FONCTIONS DE DIMENSION 285

2.2.5. Lemme. — Un schéma neethérien qui posséde une fonction de dimension loca-
lement pour la topologie de Zariski est caténaire.

Démonstration. — Pour montrer la caténarité, on peut supposer que le schéma S pos-
séde une fonction de dimension 8. Supposons que X C Y sont des fermés irréductibles
de points génériques respectifs z et y. Choisissons une chaine de spécialisations Zariski
immédiates y = g ~ 1 ~ -+ ~» x4 = ¢ de longueur maximale. Par définition de
la codimension, on a codim(X,Y) = d et par définition des fonctions de dimension,
compte tenu du sens facile de la proposition 2.1.6, on obtient §(z) = é(y) — d, d’ou
codim(X,Y) = §(y) — 6(x).
Maintenant, si X C Y C Z sont des fermés irréductibles, on a :

(y) —d(z) = codim(X,Y),
6(z) —6(y) = codim(Y,Z),
6(z) —8(z) = codim(X,Z).
On en déduit codim(X, Z) = codim(X,Y’) + codim(Y, Z) d’ou la caténarité. O

Grace au théoréme 1.2.3, on peut remplacer « caténaire » par « universellement
caténaire » dans le lemme 2.2.5 :

2.2.6. Proposition. — Un schéma neethérien qui posséde une fonction de dimension
localement pour la topologie de Zariski est universellement caténaire.

Démonstration. — On peut supposer que S est local et muni d’une fonction de di-
mension 8, laquelle induit une fonction de dimension 6! sur le hensélisé S®, qui est
donc caténaire d’aprés le lemme 2.2.5, puis universellement caténaire grace & la pro-
position 1.3.1 et enfin formellement caténaire d’aprés le théoréme 1.2.3.

Montrons que S est formellement caténaire. Soit Z un sous-schéma fermé intégre de
S. Il s’agit de montrer que Z est formellement équidimensionnel. Les schémas locaux
Z et Z" ayant le méme complété, il suffit pour cela de montrer que les composantes
irréductibles C de Z® sont formellement équidimensionnelles et toutes de la méme di-
mension. Comme Z" est un sous-schéma fermé de S® qui est formellement caténaire,
toute composante irréductible C de ZP est bien formellement équidimensionnelle.
Exprimons maintenant la dimension de C en utilisant les fonctions de dimension.
Notons s le point fermé de S, nc (resp. nz) le point générique de C (resp. Z). On
a dim(C) = 6"(ng) — 6"(s) = 8(nz) — 6(s) = dim(Z). La dimension dim(C) est
donc indépendante de C. On a ainsi montré que Z est formellement équidimension-
nel. Finalement, S est formellement caténaire et le théoréme 1.2.3 montre que S est
universellement caténaire. |
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2.3. Existence locale pour la topologie étale. — Dans ce paragraphe nous allons démon-
trer le théoréme suivant.

2.3.1. Théoréme. — Tout schéma quasi-excellent posséde des fonctions de dimension
localement pour la topologie étale.

Une application répétée du lemme suivant (variante de l’argument du corol-
laire 2.2.4) permet de montrer que si ’énoncé du théoréme est vrai pour les
composantes irréductibles d’un schéma ncethérien X, alors le théoréme vaut aussi
pour X. Plus loin, on pourra ainsi supposer que X est intégre.

2.3.2. Lemme. — Soit X un schéma neethérien dont ’espace topologique sous-jacent
soit réunion de deux sous-schémas fermés Xy et Xo. Soit T un point géométrique de
X1 N X5. On suppose que pour tout i € {1,2}, il existe un voisinage étale U; de T
dans X; tel que U; admette une fonction de dimension. Alors, il existe un voisinage
étale U de T dans X tel que U admette une fonction de dimension.

Démonstration. — Pour tout ¢ € {1, 2}, on choisit un voisinage étale U; de T dans X;
tel que U; admette une fonction de dimension ;. On se donne un point géométrique
distingué u; au-dessus de T et on peut supposer que &;(u;) = 0. D’aprés [EGA 1vy4
18.1.1], quitte a remplacer U; par un voisinage ouvert de u;, on peut supposer qu’il
existe un morphisme étale a’; — X et un isomorphisme ’U\': xx X; ~ U;. On peut
former le produit fibré V = 5; X x [7; Notons 7: V — X la projection et T un point
géométrique de V au-dessus de u; et w,. Pour tout i € {1,2}, la projection de V'
sur le facteur ﬁ: induit un morphisme étale 7r‘1(Xi) — U;. Par composition avec ce
morphisme étale, la fonction de dimension §; sur U; induit une fonction de dimension
6; sur le sous-schéma fermé n~1(X;) de V et elle vérifie §;(v) = 0. Ces fonctions de
dimensions &; pour i € {1,2} se recollent sur Pouvert U complémentaire dans V' de la
réunion des composantes connexes de 7~ !(X; N X3) ne contenant pas v. O

Avant de traiter le cas des schémas intégres, commengons par celui des schémas

normaux :

2.3.3. Proposition. — Soit X un schéma normal quasi-excellent. La fonction 6§ : X —
Z définie par §(x) = —dim(Ox ;) est une fonction de dimension.

Démonstration. — On peut supposer de plus que X est local. Notons Y son hensélisé

et h: Y — X le morphisme de hensélisation. D’aprés le théoréme I-8.1 et les commen-
taires subséquents, Y est lui aussi quasi-excellent. D’aprés la proposition 1.3.2, Y est
universellement caténaire. Par ailleurs, comme le morphisme Y — X est régulier, la
normalité de X implique celle de Y (cf. [EGA 1v5 6.5.4]). Le schéma local Y est donc
intégre et universellement caténaire, et ’opposé de la codimension définit une fonction
de dimension ¢§’: Y — Z. Comme une spécialisation étale immédiate entre points de
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X se reléve pour ainsi dire par définition en une spécialisation étale immédiate de
points de Y, pour montrer que § est une fonction de dimension sur X, il suffit de
montrer que pour tout y € Y, si on note z = h(y), on a §(z) = §’(y), ce qui résulte
de la proposition 1.2.2. O

Revenons au cas du théoréme 2.3.1 ot X est supposé intégre et quasi-excellent,
et notons Y son normalisé. Le morphisme p : ¥ — X est fini et surjectif, donc de
descente cohomologique universelle. Notons § une fonction de dimension sur Y ; son
existence est assurée par la proposition 2.3.3. Soient p; et py les deux projections
Y xx Y — Y. D’aprés le corollaire 2.1.12 appliqué aux morphismes p; et po, il vient
que pjd := § o p; pour ¢ € {1,2} sont deux fonctions de dimension sur ¥ xx Y. La
différence p7é — p56: Y xx Y — Z est une fonction localement constante qui définit
un 1-cocycle de Cech, donc une classe [pid — p5d] dans Hléech(Y — X,Z). D’aprés la
théorie de la descente cohomologique, il existe une injection naturelle

Hg (Y — X,Z) - H'(X,Z).
La classe [p}d—p3d] définit donc une classe d’isomorphisme de Z-torseurs étales sur X.

Il résulte alors immédiatement de la proposition suivante que X admet une fonction
de dimension localement pour la topologie étale :

2.3.4. Proposition. — Soit U un schéma étale sur X (quasi-excellent). L’annulation de
la classe [p}6 —p5d]|u dans HY(U,Z) entraine l’existence d’une fonction de dimension
sur U.

Démonstration. — En utilisant la compatibilité des constructions au changement de

base étale U — X, on peut supposer que U = X. L’annulation de [pfd — p3d] dans
Héech(Y — X,Z) — H!(X,Z) signifie qu'il existe une fonction localement constante
v:Y — Z telle que pid — p5d = p7y — p3y. Autrement dit, quitte & remplacer § par
& — 7, on peut supposer que p;d = p5d. Ainsi, § : Y — Z se descend en une fonction
§: X -7

Pour conclure, il s’agit de montrer que si p : Y — X est un morphisme fini surjectif
entre schémas quasi-excellents, que §': X — Z est une fonction et § = ¢’ o p, alors
&' est une fonction de dimension sur X si § est une fonction de dimension sur Y.
Pour cet énoncé, on peut supposer que X est local hensélien quasi-excellent, donc
universellement caténaire (cf. proposition 1.3.2). D’aprés le corollaire 2.2.4, il existe
une fonction de dimension §” sur X. On dispose de deux fonctions de dimension § et
p*¢" :=§"opsur Y. La différence § — p*6”: Y — Z est donc une fonction localement
constante. Comme § — p*6” = (6’ — 8”) o p et que p est fini surjectif, on en déduit
facilement que la fonction §' — §”: X — Z est localement constante. Comme 6" est
une fonction de dimension, on en déduit que ¢’ est une fonction de dimension. O
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2.4. Existence globale de fonctions de dimension. — Suivant [EGA Ory 14.2.1], on dit
qu’un schéma ncethérien X est équicodimensionnel si ses points fermés ont tous la
méme codimension (qui est alors égale a dim(X)).

2.4.1. Exemple. — Les schémas de type fini équidimensionnels sur un corps k ou sur
Z sont équicodimensionnels : il est classique que dans cette situation, on a dim(X) =
dim(&x ;) pour tout point fermé z. Les schémas locaux sont équicodimensionnels car
ils possédent un unique point fermé. Si S = Spec(R) est un trait d’uniformisante m,
le schéma A} n’est pas équicodimensionnel. En effet, il existe un point fermé de Ag
au-dessus du point générique de S : il suffit d’écrire A} = Spec(R]t]) et de considérer
m = (mt — 1), qui est un idéal maximal de corps résiduel Frac(R).

Le lemme suivant est inspiré de [EGA Oy 14.3.3]®.

2.4.2. Lemme. — Soit X un schéma neethérien équidimensionnel caténaire dont les
composantes irréductibles sont équicodimensionnelles. Pour tout x € X, on a

dim(X) = dim {z} + dim(Ox ).

2.4.3. Remarque. — En particulier, cette égalité est vérifiée pour tout schéma intégre
local caténaire. D’aprés [Matsumura, 1989, th. 31.4], si X est intégre local noethérien
et si pour tout z € X, on a dim(X) = dim {z} + dim(&x ), alors X est caténaire.

Le lemme 2.4.2 et la proposition 2.2.2 impliquent le résultat suivant.

2.4.4. Corollaire. — Soit X un schéma ncethérien intégre, équicodimensionnel et uni-
versellement caténaire. La fonction § : X — Z définie par §(z) = dim {z} est une
fonction de dimension sur X.

Les conclusions du corollaire sont prises en défaut si X n’est pas équicodimen-
sionnel. Soient par exemple S = Spec(R) un trait d’uniformisante 7 et X = A} =
Spec(R[t]). Sil’on note z le point fermé de X correspondant & 'idéal maximal (7t —1)
et n le point générique de A}g, alors la spécialisation 7 ~» z est immédiate et pourtant
dim {z} = 0 et dim {n} = 2.

2.4.5. Corollaire. — Soit X un schéma qui est soit de type fini sur un corps, soit
de type fini sur Z, ou soit local universellement caténaire. La fonction définie par
d(z) = dim {z} est une fonction de dimension sur X.

() Gabber remarque que la proposition [EGA Ory 14.3.3] est fausse. Les assertions a, ¢ et d de loc.
cit. sont équivalentes entre elles et impliquent b mais ne lui sont pas équivalentes. Il faut remplacer b
par la condition « X est caténaire équidimensionnel et ses composantes irréductibles sont équicodi-
mensionnelles ». Gabber donne comme contre-exemple le spectre du localisé de k[z,y, z, w]/(zz, zw)
en le complémentaire de 'union des idéaux premiers (z — 1,y) et (z, 2z, w) avec k un corps. La méme
erreur a été relevée, indépendamment, par Huayi Chen (courrier a Luc Illusie du 2005-9-26).
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Démonstration. — Le schéma X est universellement caténaire. D’aprés le corol-
laire 2.4.4, la fonction § est une fonction de dimension sur chaque composante
irréductible de X. Cette fonction est définie globalement donc est une fonction de
dimension sur X. O

2.5. Fonction de dimension induite. — Soient ¥ — X un morphisme de schémas et
dx une fonction de dimension sur X. Dans certains cas nous pouvons construire une
fonction de dimension dy induite sur Y. On admet la proposition suivante.

2.5.1. Proposition ((Matsumura, 1980a], 14.C). — Soient X un schéma neethérien in-
tégre universellement caténaire, Y un schéma intégre et Y — X un morphisme de
type fini dominant. Soient k(X) et k(Y') les corps de fractions respectifs de X etY,
soient y un point de Y et x son image dans X, et soient k(y) et k(z) leurs corps
résiduels. On a

dim(&y,,) — deg. tr.(k(Y)/k(X)) = dim(Ox ;) — deg. tr.(k(y)/k(z)).

2.5.2. Corollaire. — Soient X un schéma nethérien qui posséde une fonction de di-
mension dx et f: Y — X un morphisme de type fini. La fonction dy : Y — Z définie
par

Oy (y) = ox(f(y)) + deg.tr.(k(f(y))/k(y))

est une fonction de dimension surY .

Démonstration. — On peut supposer que X et Y sont intégres et que f est dominant.
D’apreés la proposition 2.2.6, X est universellement caténaire et d’aprés la proposi-
tion 2.2.2, z — — dim(&x ;) est une fonction de dimension sur X. Comme les fonctions
de dimension forment un Z-torseur, on peut supposer que dx (z) = —dim(&x ;) pour
tout x € X.

Le corollaire 2.5.1 montre que dy(y) = —dim(&Oy,y) + deg.tr.(k(Y)/k(X)) et la
proposition 2.2.2 montre que y — — dim(&y,) est une fonction de dimension sur Y.
Ainsi, dy est une fonction de dimension sur Y. O

Avant d’établir la fonctorialité des fonctions de dimension vis-a-vis des morphismes
réguliers entre schémas excellents, démontrons un énoncé de changement de base par
un morphisme régulier en cohomologie étale. Ce lemme est une simple conséquence du
théoréme de Popescu I-10.3 et du théoréme de changement de base par un morphisme
lisse [SGA 4 xvI1 1.2].

SOCIETE MATHEMATIQUE DE FRANCE 2014



290 EXPOSE XIV. FONCTIONS DE DIMENSION

2.5.3. Lemme. — Soient

T’LT

f'[ Lf
;9
S —=8
un diagramme cartésien de schémas, n un entier inversible sur S et F un faisceau

étale en Z/nZ-modules sur T'. Supposons que f est cohérent et que g est un morphisme
régulier entre schémas neethériens. La fleche naturelle de changement de base

9 Rf(F) = RfLg™(F)
est un isomorphisme.

Démonstration. — La question étant locale sur S et S’, on peut supposer que S et S’
sont affines. D’aprés le théoréme de Popescu, il existe un ensemble ordonné filtrant I
(non vide) et une famille de schémas affines S; indexée par I, tels que S; soit lisse
sur S pour tout i € I et que S’ = lim; S;. Il existe donc pour tout i € I un diagramme
commutatif & carrés cartésiens

T,

N

g Mg g

On conclut grace & la suite d’isomorphismes suivante pour tout ¢ > 0 :

Rif[g*(F) < colim;hRIfi gi*(F)
< colim;g*RIf.(F)
« g'RUf(F)
Le premier de ces isomorphismes résulte du théoréme de passage & la limite
[SGA 4 vi1 5.11], et le second du théoréme de changement de base par le morphisme

lisse g; [SGA 4 xv11.2]. O

Nous prouvons a présent qu’un morphisme régulier entre schémas excellents permet
d’induire des fonctions de dimension.

2.5.4. Proposition. — Soient f : Y — X un morphisme régulier entre schémas quasi-
excellents et dx une fonction de dimension sur X. La fonction dy :' Y — Z définie
par

oy (y) = dx(f(y)) — dim(Oy,,, 4)

est une fonction de dimension surY.
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Démonstration. — Comme la vérification est locale, il n’y a pas de mal & suppo-
ser X et Y strictement locaux et f local. Les schémas quasi-excellents X et Y sont
alors excellents (cf. proposition 1.3.2). Soit § une fonction de dimension sur Y ; son
existence est assurée par le théoréme 2.2.1. Il suffit de montrer que dy — & est une
fonction constante sur Y. Les fibres de f sont réguliéres donc universellement caté-
naires d’aprés 1.1.3. La proposition 2.2.2 montre que la fonction qui &4 y € Y as-
socie —dim(0y,,, ) induit une fonction de dimension sur chacune des fibres de f.
La fonction dy — d est donc localement constante sur chaque fibre de f. Il résulte
du lemme 2.5.3 que ces fibres sont connexes : en effet, on a H(f~!(z),Z/nZ) =
H%(z,Z/nZ) = Z/nZ pour tout = € X et tout entier n inversible sur X. La fonction
dy — 0 est donc constante sur les fibres de f et descend & X. Il suffit de montrer
que v = dy — ¢ est localement constante sur X. Une facon de calculer la valeur de
~ en un point s de X consiste a considérer le point générique 7 du schéma régulier
connexe f~!(s), de sorte que v(s) = dx(s) — §(ns). Soit s’ ~» s une spécialisation
Zariski immédiate entre deux points de X. Il s’agit de montrer que y(s) = v(s'). Vu
que dx et & sont des fonctions de dimension sur X et Y respectivement, pour montrer
cela, il suffit de savoir que 7, est une spécialisation immédiate de 7. Pour montrer
cela, quitte & remplacer X par le localisé en s de ’adhérence de s’, on peut supposer
que X est local intégre de dimension 1, de point générique s’ et de point fermé s. Il
s’agit alors de montrer que la fibre f~1(s) est de codimension 1 dans Y, ce qui résulte
facilement du Hauptidealsatz. O

2.6. Contre-exemple

2.6.1. — Rappelons ’exemple de [EGA 1V, 5.6.11] d’un schéma caténaire non uni-
versellement caténaire. Soient ky un corps et k une extension purement transcendante
de ko de degré de transcendance infini. Notons S = k[X](x le localisé de 'anneau de
la droite affine sur k en lorigine et V = S[T]. Les idéaux maximaux m = (X,T) et
m’ = (XT—1) de V sont respectivement de hauteur 2 et 1, et il existe un isomorphisme
¢ : V/m 5 V/m’. On note v et v’ les points fermés de Spec(V) correspondant aux
idéaux maximaux m et m’. Posons C = {f € V| ¢(f modm) = fmodm’}. C’est un
sous-anneau de V' qui n’est pas de type fini sur k. Le morphisme Spec(V') — Spec(C)
est fini et induit un isomorphisme au-dessus de 'ouvert dense Spec(C) — {c} ou ¢
est le point fermé de C correspondant & I'idéal maximal n = m Nm’ C C. L’espace
topologique Spec(C) s’identifie au quotient de Spec(V') pour la relation d’équivalence
qui identifie v et v'.

2.6.2. Proposition. — Le schéma Spec(C) est neethérien, quasi-excellent, caténaire
mais non universellement caténaire. Le point fermé correspondant a l’idéal mazimal
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n de C est une spécialisation étale immédiate mais non Zariski immédiate du point
générique de Spec(C).

Démonstration. — Le caractére ncethérien est montré dans [EGA 1v, 5.6.11] et le
caractére quasi-excellent dans [EGA 1v, 7.8.4 (ii)]. Le schéma Spec(C) est caténaire
d’apreés le corollaire 1.2.4 car il est de dimension 2. Les points v et v’ s’identifient
aux deux points fermés de Spec(V ®¢ Cy) et les localisés correspondants Spec(Vy,)
et Spec(Vy/) sont de dimensions respectives 2 et 1, ce qui met en défaut la derniére
condition du théoréme 1.2.3 : anneau local C,, n’est pas universellement caténaire.
L’anneau local C,, étant de dimension 2, le point ¢ € Spec(C) n’est pas spécia-
lisation Zariski immédiate du point générique. En revanche, c’en est une spéciali-
sation étale immédiate grace & la proposition 2.1.11 appliquée au morphisme fini
Spec(V) — Spec(C) et a la spécialisation étale immédiate évidente fgpec(v) ~ 7' de
points géométriques de Spec(V). |
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