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EXPOSE XIIy

ON HYPER BASE CHANGE

Weizhe Zheng ()

In this note, we sketch a short proof of Gabber’s hyper base change theorem
XIIa-2.2.5 without using oriented products. We will first treat the Abelian case
and then briefly comment on the non-Abelian case. We also include an analogue, due
to Gabber, for topological spaces.

1. A descent formalism

We let . denote the category of schemes. We fix a diagram X — S « Y in . and
a complex K € D% (Y, Z) whose cohomology sheaves are torsion (see [SGA 4 1x 1.1]
for the definition of torsion sheaves).

We regard X — S «— Y as an object of the category of functors Fun(V,.”),
where V' denotes the diagram category ¢ — e «— o. We let & denote the full sub-
category of Fun(V,.%) spanned by diagrams X’ — S’ «— Y’ such that Y/ — §’ is
coherent (namely, quasi-compact quasi-separated). We let € denote the overcategory
#/(x—5—v)- We will drop the letter R in derived direct image functors.

() Partially supported by China’s Recruitment Program of Global Experts; National Natural Science
Foundation of China Grant 11321101.
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252 EXPOSE XIIg. ON HYPER BASE CHANGE

1.1. Definition. — (i) We say that an augmented simplicial object f, in & corre-
sponding to the diagram

(1.1.1) X, Se<2v,

Y,
onl/ Lfs. LfYo
a1 b_ 1

X_lﬁs_lby 1

X S

Qe

is of descent (relative to K) if the composite map

A
(112) a:*a*_lb_l*y*K =Y, a:*ailb_ufy.*f;*/.y*K ~ -'L'*atlfSo*bo*f)t'oy*K
C—x’ x*fx.*a:b.*f{z,y*K

is an isomorphism in D% (X, Z), where Ay is the adjunction map induced by
fye and Cx is the base change map induced by the top left square of (1.1.1).

(ii) We say that a morphism f: Ty — T_; in ¥ is of descent if its Cech nerve
(coskg“TO). — T_; is of descent. We say that f is of universal descent if it is of
descent after arbitrary base change in %.

(iii) We say that an augmented simplicial object Ty — T_1 in € is a hypercovering
for universal descent if for every n > 0, the morphism T,, — (cosk 1Te)rn is of
universal descent.

1.2. Remark. — The map (1.1.2) is equal to the composite map
g A
x*ailb—l*y K= -'E*on*f;(.a:lb—l*y*K ~ z*on*a:fg'.b—l*y*K

C
= x*fX.*aﬁb.*f;*/.y*K,

where Ax is the adjunction map induced by fx. and Cy is the base change map
induced by the transpose of the top right square of (1.1.1). In fact, the diagram

$*at1b—l*fYo*f;f.y*K ;1‘* *1fSc* o*f;.y*

//\

z,0 b1,y K A5 * fsefsb-1:y" K Ty fX 0xUebes [y oy K

$*on*fx. _1b—1*y K %I*ch*a.fs.b—I*y K

is commutative, where Ag is the adjunction map induced by fs,.
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1. A DESCENT FORMALISM 253

We say that a morphism g: Zo — Z in % is of cohomological descent relative to
L € D% (Zg, Z) if the adjunction map L — ge+gs L is an isomorphism, where g, is the
Cech nerve of g. By classical cohomological descent [SGA 4 vPs 4.3.2, 4.3.3], g is of
cohomological descent relative to L if either g is proper surjective and the cohomology
sheaves of L are torsion or g is flat surjective locally of finite presentation.

1.3. Proposition. — Let f be a morphism in € corresponding to the diagram

ao bo

(1.3.1) Xo So Yo
Lfs l/fy
b1

fxt
a—1 -

X_1 —“‘>S_1 ~ Y—l

b

X S Y.

Then f is of descent if it satisfies either of the following conditions:

(i) fy is of cohomological descent relative to y*K, fs is proper, and the top left
square of (1.3.1) is Cartesian;

(if) fx is of cohomological descent relative to a* 1b_1,y*K, fs is étale, and the top
right square of (1.3.1) is Cartesian.

Note that the assumption that b, is coherent implies that b, I3.,y*K has torsion
cohomology sheaves.

Proof. — In case (i), Ay is an isomorphism by assumption and Cx is an isomorphism
by the proper base change theorem [SGA 4 x11 5.1]. In case (ii), Ax is an isomorphism
by assumption and Cy is an isomorphism by étale base change, and we conclude by
Remark 1.2. O

The following lemma on comparison of augmentations is similar to [SGA 4 vbis
3.1.1].

1.4. Lemma. — Let fo: To — T—1, fi: T, — T_1 be augmented simplicial objects of
€ and let ae: Ty — T, be a morphism over T_,. Then the diagram

T,0% 1 b_ 1.y K

I Iyl
x*fX,*a,*b,*fy*,y*K Ay; x*f&.*a/.*b'.*ayo*f}*l.y*K — fv*fﬁ(.*a'.*as.*b.*f;.y*K T w*fx.*aﬁb.*f{/.y*K

where the vertical and obligue arrows are given by (1.1.2), is commutative. Moreover,
the composite 0., of the horizontal arrows depends only on the simplicial homotopy
class of a,.
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254 EXPOSE XIIg. ON HYPER BASE CHANGE

Proof. — The first assertion is trivial: the diagram

z,a* b1,y K

Afye
Af'y.i
Tya* by flru, X *Kﬁ; a* bt frenfo K
*A_10-1xJyexJYe¥ TxG_10-1xJYexJyelY
Crx
Cf&.t ch&. :

T F Yo Sy K 5 0, fle a0l sy s Sy K 2, fasatbos [y o' K
is commutative. To show the second assertion, let 8,: Ty — T be a morphism over
T_, and let h: a4 — (o be a simplicial homotopy over T_;. As in the proof of
[SGA 4 vb® 3.1.1.9], consider the category D whose objects are objects of [1] x A and
whose morphisms are pairs (£,6): (m,[n]) — (m/,[n']), where &: [n] — [m,m'] and
§: [n] — [n']. Here [m,m’] denotes the subset of [1] spanned by ¢ with m < i < m/.
The homotopy h defines a functor ThT': D°PP — %, augmented over T_;. Let J be a
resolution of (aha')*(bhd').(fhf')yy* K such that the sheaves Jr’:;,[n] are flabby. We let
Tm: A — D denote the functor carrying [n] to (m, [n]). Then J induces a cosimplicial
homotopy between the maps fi,,7§J = fxesriJ of cosimplicial complexes on X_1,
which give rise to 74, and 7ng,. Therefore, 7, = 73, . |

The proof of the following proposition is similar to [SGA 4 VP 3.3.1 a), b)] (see
also Remark 2.5 below).

1.5. Proposition. — (i) A morphism f in € is of universal descent if it admits a
section.
(i) Let
T/ __L UI
Aok
f
T—U

be a Cartesian square in € such that the base change of f by (U'/U)™ — U is
of descent for all n > 1 and the base change of g by (T/U)™ — U is of descent
for alln > 0. Then f is of descent.

In (ii), the assumptions on f and g are satisfied if g is of descent and f’, g’ are of
universal descent. In particular, if in (ii) f’ and g are of universal descent, then f is
of universal descent.

The following corollary is similar to [SGA 4 vP® 3.3.1 ¢), d)].

1.6. Corollary. — Let T LULWhea sequence of morphisms in €.

(i) If gf is of universal descent, then g is of universal descent.
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1. A DESCENT FORMALISM 255

(ii) If f is of universal descent and g is of descent, then gf is of descent.

Proof. — Consider the commutative diagram
T
\ f
id T Xw U h—> U
o,
T— w

Since g’ admits a section, ¢’ is of universal descent by Proposition 1.5 (i). Case (i)
then follows from Proposition 1.5 (ii). In case (ii), h is of universal descent by (i),
and the assertion follows again from Proposition 1.5 (ii). O

The following analogue of [SGA 4 v 3.3.1 f)] is obvious.

1.7. Proposition. — Let (fo: To, — Uy)aca be a family of morphisms of € of descent.
Then [1yeca fa: Haca Ta = Laca Ua is of descent.

The following is a consequence of Corollary 1.6 and Proposition 1.7, applied to
constant diagrams of the form Z — Z — Z.

1.8. Corollary. — Let (Z, — Z)ouca be a covering family for the h-topology
(XII4-2.1.3) on #. Then the morphism [[,c4 Za — Z is of cohomological de-
scent relative to every L € DV (Zs, Z) whose cohomology sheaves are torsion.

We consider the oriented h-topology on # generated by families of types (i) through
(v) (X11a-2.1.4).

1.9. Corollary. — Let (T, — T)aca be a family of morphisms in € that is covering
for the oriented h-topology on 9. Then the morphism [[,c 4 Ta — T is of univer-
sal descent. In particular, if f is a morphism in € corresponding to the diagram
(1.3.1) such that both top squares are Cartesian and fs is a covering morphism for
the h-topology, then f is of universal descent.

Proof. — The second assertion follows from the first one, as f is a covering family
of type (iii) for the oriented h-topology. To show the first assertion, we may assume,
by Corollary 1.6 and Proposition 1.7, that the family (T, — T)qc4 is of one of the
five types in the definition of the oriented h-topology. Moreover, for type (iii), we
may assume that the family is induced by either a proper surjective morphism or
an étale covering. The case of a proper surjective morphism being a composition
of types (ii) and (iv), we may further restrict to the case of an étale covering. We
write T, = (Xq = Sq « Y,), T = (X' - 8 « Y’). For type (ii), localizing
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256 EXPOSE XIIg. ON HYPER BASE CHANGE

on S’, we may assume that A is finite, because every h-covering of a quasi-compact
scheme admits a finite subfamily that is an h-covering. The finiteness of A implies
that [[,cq Sa = [Iaca S’ — S’ is proper. We conclude by Proposition 1.3 (ii) for
types (i), (iii), (v), and by Proposition 1.3 (i) for types (ii) and (iv). d

The proof of the following proposition is similar to [SGA 4 vP®* 3.3.3].

1.10. Proposition. — A hypercovering for universal descent in € is an augmentation
of descent.

2. Variants and counterexamples

2.1. Remark. — Let A be aring annihilated by a positive integer. For K € D (Y, A),
Section 1 holds with % replaced by the larger category Fun(V,.), and the oriented
h-topology in the first assertion of Corollary 1.9 replaced by the restricted oriented
h-topology on Fun(V,.”), generated by families of types (i) through (v), where for
type (ii) we restrict to families of finite index sets. In view of the second assertion of
Corollary 1.9, Proposition 1.10 in this setting implies the hyper base change theorem
XI14-2.2.5 (without the assumption that g is coherent).

2.2. Remark. — In Section 1, we may replace K by an ind-finite stack on Y. For
proper base change and proper cohomological descent in this setting, we refer to
XX-7.1 and [Orgogozo, 2003, Proposition 2.5] (the latter extends easily to stacks not
necessarily in groupoids). Thus we obtain another proof of the non-Abelian hyper
base change theorem (see XI15-2.2.6.2).

2.3. Remark (Gabber). — Section 1 also holds with % replaced by the category of
topological spaces, & replaced by the category Fun(V,.”), and K replaced by either
a complex in D' (Y, Z) (not necessarily of torsion cohomology sheaves), or a stack on
Y (not necessarily ind-finite), and the oriented h-topology replaced by the restricted
oriented h-topology. Proper morphisms are defined to be separated and universally
closed, and étale morphisms are defined to be local homeomorphisms. The analogue
of the proper base change theorem for topological spaces in the Abelian case is shown
in [SGA 4 vis 4.1.1]. See Section 3 for the case of stacks.

Note that the first assertion of Corollary 1.9 in this setting does not hold for the
oriented h-topology. Indeed, the family (T; — T');>0, where T; = ({0} — [0,1] « &),
T = ({0} — [0,1] « II;50&:), & = {1/i}, is covering for the oriented h-topology, but
the morphism ]_[i>0 T; — T is not of descent for general K.
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2. VARIANTS AND COUNTEREXAMPLES 257

2.4. Remark. — Classical cohomological descent and the descent formalism in this
note can be dealt with uniformly using the language of co-categories. In fact, Proposi-
tion 1.5, Corollary 1.6, and Proposition 1.10 (resp. their non-Abelian analogues in Re-
mark 2.2) incarnate abstract descent properties in co-categories ([Liu & Zheng, 2012,
Lemma 3.1.2], [Liu & Zheng, 2014, Section 4.1]) applied to the functor from the nerve
of € to the derived oo-category 2(Xgs:,Z) (resp. to the 2-category of stacks on Xgt)
sending an object of € corresponding to the commutative diagram

X'—i—>Sl<—b——Y
T

N

~

X—s8~—0

to z,a* b,y K.

2.5. Remark. — We conclude this section by making corrections to [SGA 4 Vb 3.2.1,
3.3.1 b)]. As the referee points out, [SGA 4 vP¥* 3.3.1 b)] would imply, by taking g = f
and applying [SGA 4 vP*® 3.3.1 a)] to f’, that every morphism of cohomological G-de-
scent is of universal cohomological G-descent. We have the following counterexample.
We define a category B by taking for objects the pairs (M,w), where M is a set
and w: M — {0,1,2} is a function, and for morphisms (M, w) — (M’,w’) the maps
w: M — M’ such that w(m) < w’(u(m)) for all m € M. The category B admits small
limits and small colimits. Small coproducts in B are disjoint and universal. Consider
the functor F': B — Ens to the category of sets carrying (M,w) to M I w~!(1) and
carrying u: (M, w) — (M’,w’) to the map MIw~*(1) — M'Ilw'~!(1) induced by the
maps M 5 M’ — M'TIw/=1(1) and w=1(1) £ w'~1(2)Mw'~1(1) ‘24 M/ ITw/~1(1),
where ¢: w'~1(2) — M’ is the inclusion. For i € {0,1,2}, we let i denote the object
({x},4) of B, where {x} denotes a singleton. By construction, F(0) = F(2) = {x}
and F(1) = {x} I {x}. We define a category & bifibered in duals of topoi over Ens
by taking for objects the pairs (N,.%), where N is a set and % is a presheaf on the
discrete category N, and for morphisms the pairs (v, ¢): (N, %) — (N', #’'), where
v: N — N'is a map and ¢: #' — v, % is a morphism of presheaves. Let A be a
nonzero ring. We consider the category & xgns B bifibered in duals of topoi over B
and the corresponding category G bifibered in the categories of A-modules over the
opposite of B. Then, in the Cartesian square
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258 EXPOSE XIIg. ON HYPER BASE CHANGE

f' is of universal effective cohomological G-descent, g is of effective cohomological
G-descent, but neither f nor g’ is of cohomological G-descent. The constant simplicial
objects associated to 0 and 1 augmented over 2 also provide a counterexample to
[SGA 4 vbis 3.2.1].

In [SGA 4 vbis 3.2.1], one should make the additional assumption that v remains
an augmentation of cohomological G-descent after every base change X, — S, n >
0. In [SGA 4 vbis 3.3.1 b)], g should be assumed to be of universal cohomological
G-i-descent.

3. Appendix: Proper base change for stacks on topological spaces

The results and proofs in this section are completely due to Gabber. Recall that
a continuous map f: X — Y between topological spaces is said to be separated if the
diagonal embedding X — X xy X is closed. We say that a continuous map between
topological spaces is proper if it is separated and universally closed, or, equivalently,
separated and closed with compact fibers. We do not assume stacks to be in groupoids.

3.1. Theorem. — Consider a Cartesian square

x -2 x

f'i lf
y .y
in the category of topological spaces with f proper. Then, for every stack € on X,
the base change morphism
g€ — f.9*C

is an equivalence.

For a generalization to higher stacks in the case of locally compact Hausdorff spaces,
we refer to [Lurie, 2009, Corollary 7.3.1.18].

The first reduction steps for Theorem 3.1 are similar to the Abelian case [SGA 4 Vb
4.1.1]. Theorem 3.1 is equivalent to Corollary 3.2 below. We obtain the corollary by
taking Y’ to be a point in the theorem. By [Giraud, 1971, II1.2.1.5.8], to show the
theorem, it suffices to show that the base change morphism is an equivalence after
taking stalks, which follows from the corollary applied to f and f’ by considering
the sequence (f.€)y — (flg™*€)y — (7*€)(f'(y)), where ¥ is a point of Y’ and
y=9@)

3.2. Corollary. — Let f: X — Y be a proper map between topological spaces and let y
be a point of Y. Then, for every stack € on X, the functor (f,€)y, — (3*€)(f~1(v))
is an equivalence. Here j: f~1(y) — X denotes the inclusion.
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3. APPENDIX: PROPER BASE CHANGE FOR STACKS... 259

We have (cf. [Giraud, 1971, VII.2.1.5.2]) (f.%), =~ colimy € (f~!(V')), where colim
means 2-colimit, and V runs through open neighborhoods of y in Y. Since f is
closed, the f~!(V) form a fundamental system of neighborhoods of f~!(y). Therefore,
Corollary 3.2 follows from case (i) of the following theorem.

3.3. Theorem. — Let X be a topological space and let K be a topological subspace
satisfying any of the following conditions:

(i) K is compact and every pair of distinct points of K have disjoint neighborhoods
in X;
(ii) X is paracompact Hausdorff and K is closed in X ;
(iif) X s metrizable.

We let j: K — X denote the inclusion. Then, for every stack € on X, the functor
a: colimy € (U) — (7€) (K),

induced by the restriction functors €(U) — (j*%€)(K), where U runs through open
neighborhoods of K in X, is an equivalence.

The Abelian analogue of the theorem was proved in [SGA 4 vP* 4.1.3] for case (i)
and in [Godement, 1973, Théoréme I1.4.11.1] for cases (ii) and (iii).

Proof. — The theorem holds for sheaves of sets: for cases (ii) and (iii), this is
[Godement, 1973, Théoréme I1.3.3.1, Corollaire 1]; for case (i), the proof for H? of
Abelian sheaves given in [SGA 4 Vb 4.1.3] works in general. Since taking sheaves of
morphisms commutes with direct and inverse images [Giraud, 1971, 11.3.1.5.3, 11.3.2.8]
and filtered colimits, it follows that « is fully faithful. Thus it suffices to show that o
is essentially surjective.

Next we perform two reduction steps similar to XX-6.2. A given section s of j*¢
generates a maximal subgerbe, corresponding to a section of the sheaf of maximal
subgerbes Ger(j*%). By [Giraud, 1971, I11.2.1.5.5], Ger(j*%) ~ j*Ger(¥). By the
known case of sheaves of sets of the theorem, the section of j*Ger(%) extends to a
section of Ger(%) on an open neighborhood U, corresponding to a maximal subgerbe
& of the restriction of ¥ to U such that s is a section of the restriction of 4 to K.
If the theorem holds for ¢, then we obtain the desired extension of s. Therefore, we
may assume that % is a gerbe.

We claim that if 3: € — %" is a faithful morphism of stacks on X and the theorem
holds for €”, then the theorem holds for ¢. Let s € (j*%)(K) be a section. By the
theorem for ¢, the image of s in (*¢”)(K) extends to a section of 4’ on an open
neighborhood U. The stack of liftings U X % is a sheaf by the faithfulness of 3. Thus,
by the known case of sheaves of the theorem, the section of j*(U x4/ €) ~ K X jx/ j*€
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260 EXPOSE XIIg. ON HYPER BASE CHANGE

defined by s extends to a section of U X4 % on an open neighborhood of K in U,
which gives an extension of s as claimed.

Let X% be X with the discrete topology and let €: X4 — X be the identity map.
For any sheaf of sets # on X, the adjunction map % — €,£*.% is a monomorphism.
Since taking sheaves of morphisms commutes with £, and €*, the adjunction morphism
€ — €,e*%¥ is faithful. By the above claim, it is enough to prove the theorem for
£4.€*%. The gerbe e*% on X? is necessarily equivalent to the gerbe of G-torsors for a
sheaf of groups G on X°. Then €,£*% is equivalent to the gerbe of £,G-torsors, and it
suffices to show that every j*e,G-torsor on K is trivial. Since €,G is flabby, j*¢,.G is
soft in cases (i) and (ii) by [SGA 4 VP 4.1.5] and [Godement, 1973, Théoréme I11.3.4.2]
and flabby in case (iii) by [Godement, 1973, Théoréme I1.3.3.1, Corollaire 2|. We
conclude by the following lemma. O

3.4. Lemma. — Let G be a flabby sheaf of groups on a topological space X, or a soft
sheaf of groups on a paracompact Hausdorff space X. Then any G-torsor P on X has
a section.

Proof. — Consider an open covering (U;);cs such that P(U;) is nonempty for all ¢ € I.

In the flabby case,-consider the set of pairs (J, o), where J C I and o € P(U,; Us),
ordered by extension. By Zorn’s lemma, there exists a maximal element (Jy, 0¢). Let
Uo = Uicy, Ui- Let i € I. Choose o; € P(U;). The element of G(UpNU;) carrying the
restriction of o; to the restriction of oy extends to an element g; € G(U;). Patching
oo and o0;g; produces an extension of gg to Uy U U;. By the maximality of Jy, we get
1 € Jo. Therefore, Jo = I and o9 € P(X).

The soft case is similar. Since X is paracompact, we may assume (U;);cr locally
finite. By a usual lemma on normal spaces, there exists an open covering (V;);er
with V; € U; for all i € I. Consider the set of pairs (J,0), where J C I and o is
a section of P restricted to (J;c, V;, ordered by extension. By local finiteness, the
hypothesis of Zorn’s lemma is verified. Thus there exists a maximal element (Jy, 0g).
Let V = U,cy, V;, which is closed in X. Let i € I. Choose o; € P(V;). The element of
G(V NV;) carrying the restriction of o; to the restriction of oy extends to an element
gi € G(V;). Patching oy and o,g; produces an extension of oo to V U V;. By the
maximality of Jy, we get i € Jg. Therefore, Jo = I and o¢ € P(X). O
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