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E X P O S É X I I B 

O N H Y P E R BASE C H A N G E 

Weizhe Zheng ( i ) 

In this note, we sketch a short proof of Gabber's hyper base change theorem 
XIIA-2.2.5 without using oriented products. We will first treat the Abelian case 
and then briefly comment on the non-Abelian case. We also include an analogue, due 
to Gabber, for topological spaces. 

1. A descent formalism 

We let denote the category of schemes. We fix a diagram X —> S <— Y in 5? and 
a complex K G D + (l^t 7 Z) whose cohomology sheaves are torsion (see [SGA4 ix 1.1] 
for the definition of torsion sheaves). 

We regard X —• S <— Y as an object of the category of functors Fun(V, y), 
where V denotes the diagram category • —••<—• . We let denote the full sub­
category of Fun(V, y) spanned by diagrams X' —> S' <— Y' such that Y' —• S' is 
coherent (namely, quasi-compact quasi-separated). We let ^ denote the overcategory 
3S/(x^>s+-Y)- We will drop the letter R in derived direct image functors. 

W Partially supported by China's Recruitment Program of Global Experts; National Natural Science 
Foundation of China Grant 11321101. 
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252 EXPOSÉ XIIB. ON HYPER BASE CHANGE 

1.1. Definition. — (i) We say that an augmented simplicial object f9 in ^ corre­
sponding to the diagram 

( 1 . 1 . 1 ) x.-^S.+±—Y. 

fx* fs* fy» 
V V V 

X _ ! — - 5 _ ! - — R_I 

a: 2/ 
v y y 

X ^S^ Y 

is of descent (relative to K) if the composite map 

(1.1.2) xita*_1b-1*ykK x*a*_1b-1*fY.*fY.y*K - xirat1fs.irb.icfYmy*K 

^ x*fx.*<b.JY.y*K 

is an isomorphism in D + ( X < § T , Z ) , where Ay is the adjunction map induced by 
fy and Cx is the base change map induced by the top left square of (1.1.1). 

(ii) We say that a morphism f: T0 —• T_i in ^ is of descent if its Cech nerve 
( cosk^ _ 1 T 0 ) . —• T_i is of descent. We say that / is of universal descent if it is of 
descent after arbitrary base change in ^ . 

(iii) We say that an augmented simplicial object Tm —> T_i in ^ is a hypercovering 
for universal descent if for every n > 0, the morphism Tn —> (cosk^I 1

1 T # ) n is of 
universal descent. 

1.2. Remark. — The map (1.1.2) is equal to the composite map 

x+atxb-x^K ^ x+fxmicfx.aLJ-x^K ~ xirfx.*a*fs.b-1*y*K 

x*fx.*CL*mb.*fY.y*K, 

where Ax is the adjunction map induced by fx. and Cy is the base change map 
induced by the transpose of the top right square of (1.1.1). In fact, the diagram 

^ A Y ^ ^ ^ ^ ^ ^ ^ 

x^b-uy^K x*a*_Js.*fs.h-i*y*K xicfx.*ak

%b.itfr9y*K 

^ ^ 4 ^ \ ^ ^ ^ C ^ ^ 

x*fxnfx.a-ib-i*y*K x*fxnQ>*.fs.b-i*y*K 

is commutative, where As is the adjunction map induced by fs.. 
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1. A DESCENT FORMALISM 253 

We say that a morphism g : ZQ —» Z in is of cohomological descent relative to 
L G D +(Zét, Z) if the adjunction map L —> g9*g*L is an isomorphism, where # # is the 
Cech nerve of g. By classical cohomological descent [SGA4 v b l s 4.3.2, 4.3.3], g is of 
cohomological descent relative to L if either g is proper surjective and the cohomology 
sheaves of L are torsion or g is flat surjective locally of finite presentation. 

1.3. Proposition. — Let f be a morphism in So corresponding to the diagram 

(1.3.1) X o ^ ^ S o ^ — Y o 

fx fs fy 
V v v 

a_i o_i 
X _ ! 5_i K_i 

X ^ 5 ^ Y. 

Then f is of descent if it satisfies either of the following conditions: 

(i) fy is of cohomological descent relative to y*K, fs is proper, and the top left 
square of (1.3.1) is Cartesian; 

(ii) fx is of cohomological descent relative to a* ib-\±y*K, fs is étale, and the top 
right square of (1.3.1) is Cartesian. 

Note that the assumption that bn is coherent implies that bn±fYny*K has torsion 
cohomology sheaves. 

Proof. — In case (i), Ay is an isomorphism by assumption and Cx is an isomorphism 
by the proper base change theorem [SGA4 XII 5.1]. In case (ii), Ax is an isomorphism 
by assumption and Cy is an isomorphism by étale base change, and we conclude by 
Remark 1.2. • 

The following lemma on comparison of augmentations is similar to [SGA4 v b i s  

3.1.1]. 

1.4. Lemma. — Let fm: Tm —• T_i, f'm\ T'm —> T_i be augmented simplicial objects of 
and let am: Tm —» T'9 be a morphism over T_i. Then the diagram 

**f'x«WJY.y*K ~X x*f'xM<*Y«fY.V*K xJ'xj:as.A*rY.tfK ^ x*fx.MY.y*K 

where the vertical and oblique arrows are given by (1.1.2), is commutative. Moreover, 
the composite rja9 of the horizontal arrows depends only on the simplicial homotopy 
class of am. 
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Proof. — The first assertion is trivial: the diagram 

x±a*_ ib-i+y+K 

xitat1b-iitfY.itfY.y*K —xita*_1b-licfY.*fY.V*K 

cf, ct, 

v*fx.*a'?KJY.VkK x*f'x.*a?b'.*aY.*fY.y*K xirfx.*a£b.irfr9y*K 

is commutative. To show the second assertion, let (3m: Tm —• be a morphism over 

T_i and let /1: a , ft be a simplicial homotopy over T_i. As in the proof of 

[SGA4 v b l s 3.1.1.9], consider the category D whose objects are objects of [1] x A and 

whose morphisms are pairs (£, 5): (m, [n]) —> (ra'Jn']), where £: [n] —» [m,m /] and 

(5: [n] —> [n']. Here [m, TO'] denotes the subset of [1] spanned by i with m < i < m'. 

The homotopy /i defines a functor ThT' : £ ) o p p —> ^ , augmented over T_i. Let J be a 

resolution of (ahaf)*(bhb')*(fhf')Yy*K such that the sheaves ^ are flabby. We let 

rm: A ^ D denote the functor carrying [n] to (TO, [n]). Then J induces a cosimplicial 

homotopy between the maps f'xm^J =3 fxm*r\J of cosimplicial complexes on 

which give rise to rjam and r//3#. Therefore, rya# = 77/3.. • 

The proof of the following proposition is similar to [SGA4 v b l s 3.3.1 a), b)] (see 

also Remark 2.5 below). 

1.5. Proposition. — (i) A morphism f in is of universal descent if it admits a 

section. 

(ii) Let 

T—^U 

be a Cartesian square in such that the base change of f by (Uf/U)n —> U is 

of descent for all n > 1 and the base change of g by (T/U)n —> U is of descent 

for all n>0. Then f is of descent. 

In (ii), the assumptions on / and g are satisfied if g is of descent and / ' , g' are of 

universal descent. In particular, if in (ii) / ' and g are of universal descent, then / is 

of universal descent. 

The following corollary is similar to [SGA4 v b i s 3.3.1 c), d)]. 

1.6. Corollary. — Let T U W be a sequence of morphisms in ^. 

(i) / / gf is of universal descent, then g is of universal descent. 
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1. A DESCENT FORMALISM 255 

(ii) If / is of universal descent and g is of descent, then gf is of descent. 

Proof. — Consider the commutative diagram 

T 

\ 9 9 

T—^—^w. 

Since g' admits a section, g' is of universal descent by Proposition 1.5 (i). Case (i) 

then follows from Proposition 1.5 (ii). In case (ii), h is of universal descent by (i), 

and the assertion follows again from Proposition 1.5 (ii). • 

The following analogue of [SGA4 v b i s 3.3.1 f)] is obvious. 

1.7. Proposition. — Let (fa: Ta —> UA)AEA be a family of morphisms offê of descent. 

Then UaeA f<*: LLeA T<* -> LLeA U<* i s °f descent. 

The following is a consequence of Corollary 1.6 and Proposition 1.7, applied to 

constant diagrams of the form Z —> Z <— Z. 

1.8. Corollary. — Let (Za —> Z)A(EA be a covering family for the h-topology 

(XIIA-2.1.3) on 5?. Then the morphism UaeA Z is of cohomological de­

scent relative to every L G D + ( Z é t , Z ) whose cohomology sheaves are torsion. 

We consider the oriented /i-topology on Sê generated by families of types (i) through 

(v) (XIIA-2.1.4). 

1.9. Corollary. — Let (Ta —> T)AEA be a family of morphisms in that is covering 

for the oriented h-topology on 8%. Then the morphism U^eA Ta —> T is of univer­

sal descent. In particular, if f is a morphism in corresponding to the diagram 

(1.3.1) such that both top squares are Cartesian and fs is a covering morphism for 

the h-topology, then f is of universal descent. 

Proof. — The second assertion follows from the first one, as / is a covering family 

of type (iii) for the oriented /i-topology. To show the first assertion, we may assume, 

by Corollary 1.6 and Proposition 1.7, that the family (Ta —• T)AEA is of one of the 

five types in the definition of the oriented /i-topology. Moreover, for type (iii), we 

may assume that the family is induced by either a proper surjective morphism or 

an étale covering. The case of a proper surjective morphism being a composition 

of types (ii) and (iv), we may further restrict to the case of an étale covering. We 

write Ta = (XA -> Sa +- Ya), T = (X' -> S' <- Yf). For type (ii), localizing 
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on S', we may assume that A is finite, because every /i-covering of a quasi-compact 
scheme admits a finite subfamily that is an /i-covering. The finiteness of A implies 
that IJaGA ^ a = 11aeA^f ~^ Sf is proper. We conclude by Proposition 1.3 (ii) for 
types (i), (iii), (v), and by Proposition 1.3 (i) for types (ii) and (iv). • 

The proof of the following proposition is similar to [SGA4 v b l s 3.3.3]. 

1.10. Proposition. — A hypercovering for universal descent in ^ is an augmentation 
of descent. 

2. Variants and counterexamples 

2.1. Remark. — Let A be a ring annihilated by a positive integer. For K G D + (Yé t , A), 
Section 1 holds with 2S replaced by the larger category Fun(V, 5?), and the oriented 
/i-topology in the first assertion of Corollary 1.9 replaced by the restricted oriented 
/i-topology on Fun(V, <5?), generated by families of types (i) through (v), where for 
type (ii) we restrict to families of finite index sets. In view of the second assertion of 
Corollary 1.9, Proposition 1.10 in this setting implies the hyper base change theorem 
XIIA-2.2.5 (without the assumption that g is coherent). 

2.2. Remark. — In Section 1, we may replace K by an ind-finite stack on Yet- For 
proper base change and proper cohomological descent in this setting, we refer to 
XX-7 .1 and [Orgogozo, 2003, Proposition 2.5] (the latter extends easily to stacks not 
necessarily in groupoids). Thus we obtain another proof of the non-Abelian hyper 
base change theorem (see XIIA-2.2.6.2). 

2.3. Remark (Gabber). — Section 1 also holds with 5? replaced by the category of 
topological spaces, 2$ replaced by the category Fun(V, ̂ ) , and K replaced by either 
a complex in D + (Y, Z) (not necessarily of torsion cohomology sheaves), or a stack on 
Y (not necessarily ind-finite), and the oriented /i-topology replaced by the restricted 
oriented h-topology. Proper morphisms are defined to be separated and universally 
closed, and étale morphisms are defined to be local homeomorphisms. The analogue 
of the proper base change theorem for topological spaces in the Abelian case is shown 
in [SGA4 v b i s 4.1.1]. See Section 3 for the case of stacks. 

Note that the first assertion of Corollary 1.9 in this setting does not hold for the 
oriented /i-topology. Indeed, the family (Ti —> T)i>0, where Ti = ({0} —• [0,1] <— 
T = ({0} —• [0,1] <— 1II>O & = i s covering for the oriented /i-topology, but 
the morphism Y[i>0 Ti —> T is not of descent for general K. 
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2.4. Remark. — Classical cohomological descent and the descent formalism in this 

note can be dealt with uniformly using the language of oo-categories. In fact, Proposi­

tion 1.5, Corollary 1.6, and Proposition 1.10 (resp. their non-Abelian analogues in Re­

mark 2.2) incarnate abstract descent properties in oo-categories ([Liu &; Zheng, 2012, 

Lemma 3.1.2], [Liu & Zheng, 2014, Section 4.1]) applied to the functor from the nerve 

of to the derived oo-category ^(X<§ t, Z) (resp. to the 2-category of stacks on X<§t) 

sending an object of ^ corresponding to the commutative diagram 

X' —^ S' Y' 

x y 
v \f ]f 

X ^S* Y 

to x+ofb+ifK. 

2.5. Remark. — We conclude this section by making corrections to [SGA 4 v b l s 3.2.1, 

3.3.1 b)]. As the referee points out, [SGA4 v b i s 3.3.1 b)] would imply, by taking g = f 

and applying [SGA 4 v b l s 3.3.1 a)] to that every morphism of cohomological G-de-

scent is of universal cohomological G-descent. We have the following counterexample. 

We define a category B by taking for objects the pairs (M, w), where M is a set 

and w: M —• {0 ,1 ,2} is a function, and for morphisms (M,w) —> (Mf,wf) the maps 

fi: M —> M' such that w(m) < w'(ii{m)) for all m G M. The category B admits small 

limits and small colimits. Small coproducts in B are disjoint and universal. Consider 

the functor F: B —» Ens to the category of sets carrying (M,w) to M II w~1(l) and 

carrying fi: (M, w) —> (M' ,n / ) to the map MMw~x(l) —> M ' L W _ 1 ( 1 ) induced by the 

maps M A M' —• M ' l l w ' - ^ l ) and w~x(\) ^ wf-1(2)Uwf~1(l) M ' L I w ' - ^ l ) , 

where t: w'~1(2) —> M' is the inclusion. For i G { 0 , 1 , 2 } , we let i denote the object 

( { * } , z ) of B, where {*} denotes a singleton. By construction, F(0) — F(2) = {*} 

and F(l) = {*} II { * } . We define a category £ bifibered in duals of topoi over Ens 

by taking for objects the pairs (N, Ĵ ~), where N is a set and & is a presheaf on the 

discrete category N, and for morphisms the pairs ( ^ , 0 ) : (N,&) —• (N',^'), where 

v. N —> N' is a map and <j>: —> is a morphism of presheaves. Let A be a 

nonzero ring. We consider the category £ x E n s B bifibered in duals of topoi over B 

and the corresponding category G bifibered in the categories of A-modules over the 

opposite of B. Then, in the Cartesian square 

0 — ^ 0 

9 9 
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/ ' is of universal effective cohomological G-descent, g is of effective cohomological 
G-descent, but neither / nor g' is of cohomological G-descent. The constant simplicial 
objects associated to 0 and 1 augmented over 2 also provide a counterexample to 
[SGA4 v b i s 3.2.1]. 

In [SGA4 v b l s 3.2.1], one should make the additional assumption that v remains 
an augmentation of cohomological G-descent after every base change Xn —> 5, n > 
0. In [SGA4 v b l s 3.3.1 b)], g should be assumed to be of universal cohomological 
G-z-descent. 

3. Appendix: Proper base change for stacks on topological spaces 

The results and proofs in this section are completely due to Gabber. Recall that 
a continuous map / : X —> Y between topological spaces is said to be separated if the 
diagonal embedding X ^ X x y X i s closed. We say that a continuous map between 
topological spaces is proper if it is separated and universally closed, or, equivalently, 
separated and closed with compact fibers. We do not assume stacks to be in groupoids. 

3.1. Theorem. — Consider a Cartesian square 

f f 
V V 

in the category of topological spaces with f proper. Then, for every stack on X, 
the base chanqe morphism 

g*fC FG C 

is an equivalence. 

For a generalization to higher stacks in the case of locally compact Hausdorff spaces, 
we refer to [Lurie, 2009, Corollary 7.3.1.18]. 

The first reduction steps for Theorem 3.1 are similar to the Abelian case [SGA 4 v b l s 

4.1.1]. Theorem 3.1 is equivalent to Corollary 3.2 below. We obtain the corollary by 
taking Y' to be a point in the theorem. By [Giraud, 1971, III.2.1.5.8], to show the 
theorem, it suffices to show that the base change morphism is an equivalence after 
taking stalks, which follows from the corollary applied to / and f by considering 
the sequence (/• <^% —• ( / • t f ' ^ V —• C f ^ X / - 1 (y))> where y' is a point of Y' and 

y = g(y')-

3.2. Corollary. — Let f: X —>Y be a proper map between topological spaces and let y 
be a point ofY. Then, for every stack on X, the functor (f^)y —» (j*c&)(f~1(y)) 
is an equivalence. Here j : f~1(y) —• X denotes the inclusion. 

ASTÉRISQUE 363-364 
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We have (cf. [Giraud, 1971, VII.2.1.5.2]) (f*tf)y ^ colimy ̂ (/^(V)), where colim 

means 2-colimit, and V runs through open neighborhoods of y in Y. Since / is 

closed, the f~x(V) form a fundamental system of neighborhoods of f~1(y). Therefore, 

Corollary 3.2 follows from case (i) of the following theorem. 

3.3. Theorem. — Let X be a topological space and let K be a topological subspace 

satisfying any of the following conditions: 

(i) K is compact and every pair of distinct points of K have disjoint neighborhoods 

in X; 

(ii) X is paracompact Hausdorff and K is closed in X; 

(iii) X is metrizable. 

We let j : K —* X denote the inclusion. Then, for every stack ^ on X, the functor 

a: co\imutf(U) -+ ( j* <*?)(#), 

induced by the restriction functors ^(U) —> ( j * ^ ) ( K ) , where U runs through open 

neighborhoods of K in X, is an equivalence. 

The Abelian analogue of the theorem was proved in [SGA4 v b l s 4.1.3] for case (i) 

and in [Godement, 1973, Theoreme II.4.11.1] for cases (ii) and (iii). 

Proof. — The theorem holds for sheaves of sets: for cases (ii) and (iii), this is 

[Godement, 1973, Theoreme II.3.3.1, Corollaire 1]; for case (i), the proof for H° of 

Abelian sheaves given in [SGA4 v b l s 4.1.3] works in general. Since taking sheaves of 

morphisms commutes with direct and inverse images [Giraud, 1971, II.3.1.5.3, II.3.2.8] 

and filtered colimits, it follows that a is fully faithful. Thus it suffices to show that a 

is essentially surjective. 

Next we perform two reduction steps similar to XX-6.2. A given section s of j * ^ 

generates a maximal subgerbe, corresponding to a section of the sheaf of maximal 

subgerbes Ger(j*<^). By [Giraud, 1971, III.2.1.5.5], Ger(j*^) ~ j*Ger(<*f). By the 

known case of sheaves of sets of the theorem, the section of j^Ger^) extends to a 

section of Ger(^) on an open neighborhood U, corresponding to a maximal subgerbe 

£f of the restriction of ^ to U such that s is a section of the restriction of £f to K. 

If the theorem holds for then we obtain the desired extension of s. Therefore, we 

may assume that ^ is a gerbe. 

We claim that if ¡5: ̂  —• is a faithful morphism of stacks on X and the theorem 

holds for then the theorem holds for ^ . Let s e (j*^?)^) be a section. By the 

theorem for c €', the image of s in ( j * ^ ' ) ( i f ) extends to a section of on an open 

neighborhood U. The stack of liftings U x^,^ is a sheaf by the faithfulness of (3. Thus, 

by the known case of sheaves of the theorem, the section of j*(U x^,^) ~ Kx^^fj*^ 
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defined by s extends to a section of U x^/ fé7 on an open neighborhood of K in U, 

which gives an extension of s as claimed. 

Let Xs be X with the discrete topology and let e : Xs —• X be the identity map. 

For any sheaf of sets ^ "on I , the adjunction map & —> s+e*& is a monomorphism. 

Since taking sheaves of morphisms commutes with e+ and e*, the adjunction morphism 

^ —>• s+s*^ is faithful. By the above claim, it is enough to prove the theorem for 

£*£*^. The gerbe s*^ on Xs is necessarily equivalent to the gerbe of G-torsors for a 

sheaf of groups G on X6. Then e+e*^ is equivalent to the gerbe of £*G-torsors, and it 

suffices to show that every j*£*G-torsor on K is trivial. Since £*G is flabby, j*£*G is 

soft in cases (i) and (ii) by [SGA4 v b i s 4.1.5] and [Godement, 1973, Théorème II.3.4.2] 

and flabby in case (iii) by [Godement, 1973, Théorème II.3.3.1, Corollaire 2]. We 

conclude by the following lemma. • 

3.4. Lemma. — Let G be a flabby sheaf of groups on a topological space X, or a soft 

sheaf of groups on a paracompact Hausdorff space X. Then any G-torsor P on X has 

a section. 

Proof. — Consider an open covering (Ui)iei such that P(Ui) is nonempty for all i e I. 

In the flabby case,-consider the set of pairs ( J, a), where J C I and a G P({Jie j Ui), 

ordered by extension. By Zorn's lemma, there exists a maximal element (Jo,0o)- Let 

Uo = UieJo ^* i € I- Choose G P(Ui). The element of G(UoC\Ui) carrying the 

restriction of ai to the restriction of <Jo extends to an element gi G G(Ui). Patching 

CTQ and Gigi produces an extension of <To to UoUUi. By the maximality of Jo, we get 

i G Jo- Therefore, JQ = I and CTQ G P(X). 

The soft case is similar. Since X is paracompact, we may assume (Ui)iei locally 

finite. By a usual lemma on normal spaces, there exists an open covering {Vijic-i 

with Vi C Ui for all i € I. Consider the set of pairs (J, cr), where J C I and a is 

a section of P restricted to \JiejVi, ordered by extension. By local finiteness, the 

hypothesis of Zorn's lemma is verified. Thus there exists a maximal element (Jo, oo). 

Let V = \JieJo Vi, which is closed in X. Let i G / . Choose G P(Vi). The element of 

G(V fl Vi) carrying the restriction of ai to the restriction of cr0 extends to an element 

gi G G(Vi). Patching ao and c r^ produces an extension of ao to V U Vi. By the 

maximality of J0, we get i G Jq. Therefore, J 0 = / and a0 G P(X). • 
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