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E X P O S É X I I A  

D E S C E N T E C O H O M O L O G I Q U E O R I E N T É E 

Fabrice Orgogozo 

1. Acyclicité orientée des morphismes propres 

L'objet de cette section est de démontrer le théorème 1.1.2 ci-dessous, qui généralise 

l'invariance cohomologique du voisinage tubulaire, défini à l'aide du produit fibre 

orienté, par éclatement admissible (cf. XI-1.7 et XI-2.8). 

1.1. Notations et énoncé 

1.1.1. — Considérons un diagramme commutatif 

X < X' 

f u f 
( i . i . i . i ) ï r i Qi 

S < Sf <—- Y 

9 

de schémas cohérents — à morphismes nécessairement cohérents ([EGA i' 6.1.10 

(i),(iii)]) —, auquel on associe un morphisme de topos 

Tf = X'^s'Y 

T = X*xsY 

par fonctorialité du produit orienté (XI-1.9). (Abus de notations : X pour X^t, etc.) 
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236 EXPOSÉ XII A . DESCENTE COHOMOLOGIQUE ORIENTÉE 

1.1.2. Théorème. — Si le morphisme r est propre, le morphisme V est acyclique pour 

les faisceaux de torsion : pour tout entier n > 1, l'unité d'adjonction n^- : Id —> 

R V * V * est un isomorphisme entre endofoncteurs de D + (T , Z/raZ). 

1.2. Rappels sur les flèches de changement de base. — Nous conseillons au lecteur de ne 

lire ce paragraphe qu'en cas de nécessité. Rappelons que si 

b' 

В < В' 

a r a ' 

A< A! 
b 

est un diagramme de topos muni d'une 2-flèche r : ab' => ba', correspondant à des 

flèches de transitivité т* : а+Ь'+ b*a+ et r* : a;*6* => &'*a*, la flèche de changement 

de base b*a* —> a+b'* est la composée cbT

BAA,B, = (a'J)'* * ea) 0 (a* * T* • a*) 0 

(7/a/ *6*a*), où 77? (resp. e?) désigne l'unité (resp. la coünité) de l'adjonction ?* 4?*. 

La variante dérivée est définie de même. Notons que dans [SGA4 XII §4] — où le 

diagramme considéré est essentiellement commutatif —, la flèche de changement de 

base est définie comme le composé (еъ * 0 (b* * т* * Ь'*) 0 (&*&* d'après 

P. Deligne, la « perplexité d'Artin » n'a pas lieu d'être : ces deux définitions coïncident 

([SGA4 xvii §2.1]). 

Dans le langage de Joseph Ayoub ([Ayoub, 2007, 1.1.10]), cette 2-flèche de change­

ment de base est obtenue de r* par adjonction suivant (a'*, a*) et (a*, a*). Il montre 

(op. cit., 1.1.9) que, donné un diagramme 

a* a'* 

В A' 
b'* 

dans une 2-catégorie quelconque, la flèche de changement de base définie par la formule 

ci-dessus est l'unique 2-flèche du diagramme obtenu par retournement des flèches 

verticales 

/К /К 

a* a'* 

b'* 

satisfaisant l'une des deux égalités (écrites sous forme simplifiée) r* Or)a = cb 0 r¡a' et 

ea, 0 r * = £ a 0 c b . Il montre également (op. cit., 1.1.11 et 1.1.12), que l'on a la compa­

tibilité attendue avec les compositions horizontales et verticales. (Un cas particulier 
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1. ACYCLICITÉ ORIENTÉE DES MORPHISMES PROPRES* 237 

est énoncé sans démonstration en [SGA4 xn 4.4]; voir aussi [Lipman et al., 2009, 

3.7.2]). 

1.3. — La fin de ce paragraphe est consacrée à la démonstration du théorème 1.1.2. 

1.3.1. Réduction au cas local. — Soit J(f G ObD + (T , Z /nZ) dont on note Jfr' le 

tiré en arrière par V" sur V. Rappelons ([SGA4 VI 2.9.2, 3.10]) que le topos étale 

d'un schéma quelconque (resp. cohérent) est localement cohérent (resp. cohérent) et 

qu'un morphisme cohérent de schémas induit un morphisme cohérent entre les topos 

étales. Il en résulte (XI-2.5) que le topos T est cohérent et par conséquent qu'il 

suffit de vérifier que la fibre en chaque point t —» T de l'unité Jtf —• RV^JÉ^' est 

un isomorphisme. (Localement cohérent suffirait, cf. [SGA4 vi 9.0]). D'après XI-1.8, 

tout tel point t provient d'une paire de points (géométriques) x,y de X et Y, munis 

d'un morphisme de spécialisation g(y) ^ f(x) = s. D'autre part, on vérifie comme 

en XI-2.7 que si a : (X2 —• S2 <— Y2) -» (X\ - » S\ <— Y{) est un morphisme de 

diagrammes de schémas cohérents, le morphisme induit : X2x s2Y2 —> X\ x s^Yi 

est un morphisme cohérent de topos cohérents et que la fibre en un point t\ d'une 

image directe dérivée par *a~ est naturellement isomorphe au complexe des sections 

globales dérivées du topos X2(Xl) x s2(S1)*2(yi), où x\ et y\ (resp. s\) sont les points 

géométriques de X\ et Y\ (resp. Si) déduits de t\ (resp. est l'image de x\), et où l'on 

pose X2(Xl) = X2 xXl X1{xi), etc. 

Ceci nous amène à considérer les localisés stricts X(xy S(s) et Y^ ainsi que le 

diagramme 

a 

\U N/ N/ 
S < S' < Y 

au-dessus de 1.1.1.1. Le morphisme est local tandis que est propre. Comme 

énoncé ci-dessus, la fibre en t de l'unité rj^- considérée s'identifie au morphisme de 

fonctorialité de la cohomologie : 

Jtt = Rr(T( t), Jff) —• RT(T^, 

où T( t) est le topos X^ x s(s)Y(y) — local (au sens de XI-2.1) par loc. cit., 2.3.2 — 

et est le produit orienté X^ x Sf Y[yy Quitte à remplacer X (resp. 5, Y) par 

X(x) (resp. 5(5), Y(yj), on peut donc supposer les schémas X, Y, S strictement locaux, 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



238 EXPOSÉ XIIA. DESCENTE COHOMOLOGIQUE ORIENTÉE 

ainsi que le morphisme / et le topos T locaux. Nous le faisons pour simplifier les 

notations dans la démonstration ci-dessous. On a vu de plus qu'il est suffisant, sous 

ces hypothèses supplémentaires, de vérifier que le morphisme de complexes 

7 7 : R r ( T , j r ) ^ R r ( T ' , j r ) 

est un isomorphisme. 

1.3.2. Cas d'un complexe provenant du second facteur. — Dans ce paragraphe, on 

montre que la flèche rj : RT(T, —» R T ( T f e s t un isomorphisme lorsqu'il 

existe un complexe Jiïy G D + (Y, Z /nZ) tel que = p2Jèy. Cela revient à montrer 

que la flèche de fonctorialité RT(T,p\—) = RT(X,Rpi+p2*-) -* RT(T , , p /

2 *- ) = 

R r ( X ' , l V u P 2 * - ) e s t u n isomorphisme (pour tout objet Jèy € Ob D + (F , Z /nZ) ) . 

Les différents morphismes sont représentés dans le diagramme cubique suivant : 

Y < ^ — T 

Y<- ! — T p[ 
(1.3.2.1) g' \ P l 

9 S' <• ~ X' 

y • j y 

Pour montrer que RI\X, Rp\^p2* —) —> RT(Xf, Rp'i+p2*—) est un isomorphisme, il 

suffit d'établir le résultat a priori plus fort suivant : le diagramme 

PUP2 > ̂ Pl*P2 

(1.3.2.2) K r , iV 
CÜYSXT R* * CÜYS'X'TF 

f g* > Kf g* 

est un diagramme commutatif d'isomorphismes, où r : gp2 fpi et r' : g'p'2 f'p'x 

sont comme en XI-1.3. On sait déjà que les flèches verticales sont des isomorphismes 

(XI-2.4) ; par propreté de r, il en est de même de la flèche horizontale inférieure. 

1.3.3. Commutativité. — Faute d'un métathéorème (à énoncer) garantissant la com-

mutativité du diagramme 1.3.2.2, nous allons procéder de manière ad hoc pour dé­

montrer un résultat un peu plus général. Pour alléger les notations, nous omettons 
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1. ACYCLICITÉ ORIENTÉE DES MORPHISMES PROPRES 239 

dorénavant les compositions avec les 1-flèches. Soit 

Y' ^ El j " 

(1.3.3.1) / 

7 

un diagramme cubique de topos dont quatre faces sont (essentiellement) commutatives 

et deux (celles dans le plan du texte) munies de 2-flèches r et r'. On suppose que ces 

flèches sont compatibles au sens suivant : les deux 2-flèches induites par r et T' dans 

le carré diagonal en traits pleins Y'SXTf coïncident. Cela revient à dire que l'on a 

l'égalité r-kr' = r*h!; sous les hypothèses du paragraphe précédent (voir diagramme 

1.3.2.1), on la vérifie directement sur les sites de définition des topos. 

Par compatibilité avec les compositions verticales des flèches de changement de 

base, rappelée en 1.2, les deux triangles ci-dessous sont commutatifs, où la flèche 

horizontale est la flèche de changement de base induite par le carré diagonal : 

Pi*P2*ft* 

(1.3.3.2) = r f h K

 C ^ I 1 > j ^ * = p M * 

est commutatif Notons que lorsque h est l'identité, la 2-flèche en pointillé n'est 

autre que (la 2-flèche induite par) la coiinité 77̂ /. La commutativité de 1.3.2.2 en 

résulte. 

I.34. — Dans ce paragraphe, on montre que la flèche rj : RT(T, Jf) -+ RT(T", J f ' ) 

considérée à la fin du paragraphe 1.3.1 — dont on conserve les hypothèses — est un 

isomorphisme. On procède par réduction au cas précédent (1.3.2). Le morphisme p2 

a une section, que nous noterons cr, définie en XI-2.2. Posons J£y = a*J(i — cette 

notation est compatible avec celle du paragraphe précédent —, et J(f = p2Jèy. D'après 

W Le rédacteur remercie Joseph Ayoub de son aide sur cette question. 
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240 EXPOSÉ XIIA- DESCENTE COHOMOLOGIQUE ORIENTÉE 

XI-2.3 et XI-2.3.2, le morphisme de changement de base cbrYYY • R]?2* —• déduit 

du diagramme 2-commutatif 

a 
T < Y 

P2 

Y Y 

est un isomorphisme et la coûnité JÉT —> Jtf induit un isomorphisme Rr(T, Jff) ^ 

Rr(T, JÉT). (On rappelle que T est local.) Comme on l'a vu au paragraphe précédent, 

le morphisme de fonctorialité RT(T, Jff) —> YŒ{T',Jff') est un isomorphisme, où jff' 

désigne le tiré en arrière par V " de JÉT (ou encore, par pf

2 de Jèy) sur le topos X". Pour 

conclure, il nous faut montrer que la flèche Rr(T', Jff') —• Rr(T", Jff') déduite de 

Jff —> est un isomorphisme. Calculant ces complexes par projection sur le premier 

facteur X' et utilisant le théorème de changement de base propre pour le morphisme 

X' —» X , il nous suffît de montrer que le morphisme Rpi+Jïf' —>• Rpi^ JÉT' de complexes 

sur X' est un isomorphisme au-dessus du point fermé x de X. L'évaluation en un point 

géométrique x' —> X'x est 

R r ^ ^ ^ ^ R r ^ , ^ ) , 

où T'{xl) = Xf

(x/)*Xs'(s/Y(s')i avec sf S" l'image de xf -> X' et F ( s/) := F X5, S'{s,y 

Comme rappelé ci-dessus, cette flèche s'identifie par projection sur le second facteur 

à la flèche 

^(Y{s')^[x'{^') —• RT(Y(8,),cr( a., )*«^ /), 

où (T(x,j : Yjy) —> -X"^/) x , ^ 0 ' ) e s ^ ^ a section définie en XI-2.2. Nous allons mon­

trer plus précisément que la coûnité J(f —> induit un isomorphisme ^xt*J^' —> 
a{x')k^'' - ^ a r fonctorialité des images inverses, il suffit de montrer que l'on a les 

égalités 

v o p2 o V ( Œ , ) O a[x>) = V ( a . / ) o (j^,) = a o Id ( f l,), 

— la seconde entraînant la première —, où les morphismes sont comme dans le dia­

gramme ci-dessous : 
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2. DESCENTE COHOMOLOGIQUE ORIENTÉE 241 

(x',y) < 1 y 

y(x') Id(s>) 

\ T — >Y I 

(x,2/) < 12/. 

L'identité ^ ( z ' ) 0 ^ / ) = 0"old(s/)
 e s t conséquence du fait que le morphisme X^ —» X 

est /oca/. 

1.4. Remarques sur le cas non abélien. — En utilisant le théorème de changement de 

base propre non abélien (XX-7.1), la même démonstration devrait permettre de mon­

trer que, sous les hypothèses de 1.1.2, le morphisme V est 1-asphérique : pour tout 

champ ind-fini fé7 sur T, l'unité d'adjonction ^ —> V ^ V * ^ est une équivalence de 

catégories. Signalons cependant que, comme signalé en XI-2.8 (3), nous n'avons pas 

connaissance d'une référence publiée permettant de justifier le passage à la limite 

nécessaire au calcul des fibres. 

2. Descente cohomologique orientée 

2.1. Topologie /i-orientée 

2.1.1. — Notons âê la catégorie dont les objets sont les diagrammes de schémas 

X S Y et les morphismes sont les triplets de morphismes (Xf —> X, Sf —> 

S,Y' —> Y) rendant commutatifs les deux carrés associés. Les limites (projectives) 

finies existent dans Së et se calculent « terme à terme » . Par exemple, le produit fibre 

de Xx -> Sx <- Yx et X2 -» S2 <- >2 au-dessus de X -> 5 <- y est (Xx x x X2) 

(Sx xsS2)^(Yx xYY2). 

2.1.2. — Notons 3è —• 3ê la catégorie bifibrée en duaux de topos induite par le 

pseudo-foncteur « produit orienté des topos étales » de SS vers la 2-catégorie des 

topos, (X -> S <- Y) X*xsY- La condition [SGA 4 v b i s 3.0.0] est satisfaite. Enfin, 

notons que si 3ê est annelé par des coefficients constants, toutes les flèches de B sont 

plates au sens de loc. cit., § 1.3. 

2.1.3. — Nous munissons la catégorie des schémas de la topologie /i, engendrée par 

les morphismes propres et surjectifs ainsi que les recouvrements de Zariski. Dans la 

définition précédente, on peut se restreindre aux morphismes propres et surjectifs 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



242 EXPOSÉ XIIA. DESCENTE COHOMOLOGIQUE ORIENTÉE 

entre schémas cohérents, comme il résulte des faits suivants : tout schéma est Zariski-

localement cohérent ; tout schéma cohérent sur un schéma cohérent est cohérent (voir 

[EGA i' 6.1.10 (ii)] pour la quasi-séparation, l'analogue pour la quasi-compacité étant 

t autologique) ; un morphisme universellement fermé (resp. propre) est quasi-compact 

(resp. cohérent). Rappelons que la topologie h est plus fine que la topologie étale (cf. 

par exemple II-3.1.1). 

2.1.4- — On considère la topologie /i-orientée sur 3ê engendrée par les familles ci-

dessous : 

(i). — ((Xa -+S<-Y)^(X^S+- Y))aeA, où (Xa -> X)aeA est une famille 

couvrante pour la topologie h ; 

(ii). — ((X -+ S <- Ya) -> (X S «- Y))aeA, où (Ya -> Y)aeA est une famille 

couvrante pour la topologie h ; 

(hi). - ( (X x s Sa - Sa <- Y x s Sa)^(X->S^ Y))aeA, où (Sa - S)aeA est 

une famille couvrante pour la topologie h ; 

(iv). — ((X x s S' -* S' <- Y) (X S <- F ) ) , où S' -> S est un morphisme 

propre ; 

(v). — ({X S' <- Y x 5 S') ( X 5 <- F ) ) , où S' -> S est un morphisme 

Remarquons que les propriétés des familles de morphismes (i)-(v) sont stables par 

changement de base dans la catégorie 3ê. 

2.1.5. — Il est formel de vérifier que la topologie /z-orientée est engendrée par : 

— les familles de type (i)-(iii), où les familles /i-couvrantes sont des recouvrements 

de Zariski ; 

— les familles de type (i)-(iii), où les familles /i-couvrantes sont données par un 

seul morphisme propre et surjectif ; 

— les familles de type (iv) et (v). 

On peut également observer que les familles de type (iii) avec (Sa —• S)aeA un 

recouvrement de Zariski (resp. un morphisme propre et surjectif) s'obtiennent par 

composition à partir des types (i) et (v) (resp. des types (iv) et (ii)). 

2.2. Énoncés 

2.2.1. — Fixons un objet B = (X —> S <— Y) de 8ë. Conformément aux définitions 

générales, on dit qu'un objet simplicial augmenté (Xm —• Sm <— Y») —• B de 3ê est 

un hyperrecouvrement pour la topologie -̂orientée si tout entier i > — 1, le morphisme 

canonique (Xi+i —* S^+i <— Yi+i) —> (cosq^(X # —• S. <— Y0)) de la catégorie 3èjB 
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2. DESCENTE COHOMOLOGIQUE ORIENTÉE 243 

est couvrant pour la topologie /i-orientée définie en 2.1.4 ci-dessus. Les termes du 

cosquelette, qui sont des limites finies, existent et sont calculés dans âS/B-

2.2.2. — Aux données précédentes est associé un topos simplicial — c'est-à-dire 

fibre sur A, cf. [SGA4 v b i s § 1.2] —, que nous notons X. x 5. Y., et son topos total 

Tot(xJxs.Y.). Nous renvoyons le lecteur à [Illusie, 1972, VI, §5.1] et [SGA4 VI §7] 

pour des définitions générales sur le topos total, ainsi que [Deligne, 1974, §5.1] pour 

un résumé dans le cas particulier des espaces topologiques simpliciaux. On a le résultat 

suivant de descente cohomologique. 

2.2.3. Théorème. — Soit (Xm —> S. <— Y.) —• (X —• S <— Y) un hyperrecouvre-

ment pour la topologie h-orientée et soit e : Tot(X # x s. Y») —• X x s Y le mor­

phisme d'augmentation associé. Pour tout entier n > 1 et tout complexe G 

Ob D+(X x $ y , Z/nZ), l'unité d'adjonction —• R V ^ ^ J É T est un isomorphisme. 

2.2.4. Remarque. — Prendre garde au fait que, contrairement au cas usuel (non 

orienté), un objet cartésien de Tot(X, x s9Ym) ne provient pas nécessairement d'un 

objet de X x 5 y : le morphisme V n'est en général pas de 2-descente cohomologique 

au sens de [SGA4 v b i s 2.2.6]. 

La principale application que nous ferons du théorème précédent est la formule 

de changement de base suivante, dont on trouvera une autre démonstration dans 

XIIB-2.1. 

2.2.5. Théorème (« hyper-changement de base »). — Soient X S +-Y un objet de 3è 

avec g cohérent, et S% —• S un hyperrecouvrement pour la topologie h. Notons res­

pectivement fm : X% —> S . et g9 : Y, -+ 5 # les morphismes déduits de f et g par le 

changement de base 5 . —• S, et Xm —-> X l'hyperrecouvrement de X pour la topologie h 

déduit de Sm —> S. Enfin, notons ex le morphisme de topos Tot (X # ) —• X. Pour tout 

entier n > 1 et tout complexe ^ G Ob D + (Y, Z/nZ), le morphisme 

f*Rr X Re X feRg * HV 

est un isomorphisme. 

On note / # , etc., pour ce que l'on aurait pu noter Tot ( / # ) , etc. Cela ne devrait pas 

prêter à confusion. 

L'hypothèse de cohérence sur g est faite pour pouvoir appliquer le théorème XI-2.4, 

qui peut être mis en défaut sans cette hypothèse ( i i ). (Par exemple, si S est un schéma 

de Dedekind possédant une infinité de points fermés £o5£i> • • • » si l'on pose X = £0 

(") Il est vraisemblable que les techniques de l'exposé XIIB permettent de démontrer le théorème 
précédent sans supposer g cohérent. 
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244 EXPOSÉ XIIA. DESCENTE COHOMOLOGIQUE ORIENTÉE 

et Y = Iii>o ^ e topos X x sY — où f et g sont les morphismes évidents — est le 

topos vide tandis que le faisceau f*g±Z/nZ est non nul pour tout n > 1.) 

Démonstration. — Admettant le théorème de descente précédent (2.2.3), il n'est pas 

difficile de démontrer la formule de changement de base ci-dessus. Soit un com­

plexe sur Y comme dans l'énoncé dont on note le tiré en arrière par la se­

conde projection p2 : X x SY —• Y. Il résulte du théorème 2.2.3 (i) que l'unité 

—> R V * V * J É T est un isomorphisme, où V désigne le morphisme d'augmenta­

tion Tot(X. x s.Ym) X x sY. La conclusion résulte de la chaîne d'isomorphismes 

ci-dessous, les premier et dernier résultant de XI-2.4, le troisième de la fonctorialité 

des images directes, et le second — comme on l'a vu — de la descente cohomologique 

/i-orientée. 

FRg+Jêr ^ RpuJT 

Rp\+J(f ̂  R p i ^ R V ^ V * ^ 

Rpi*RV*V*J^ = R £ x * R p i « * ^ « , où JÉT# = V * J ^ 

R e x * R p i . * ^ . ^ RexJlRg.^.. • 

2.2.6. Remarques 

2.2.6.1. — Dans les deux théorèmes précédents, on pourrait remplacer l'anneau 

Z / n Z par un anneau de torsion A quelconque; la démonstration donnée ci-dessous 

s'applique sans changement. Plus généralement, on pourrait considérer des complexes 

de D+(X x sY, A) ou D + (Y, A) à cohomologie de to r s ion lo r sque A est un anneau 

quelconque. Dans ce cadre, l'hypothèse [SGA 4 v b l s 2.4.1.1] de stabilité par image 

directe n'est pas toujours satisfaite; ceci explique pourquoi il semble parfois utile 

de se restreindre à la catégorie des schémas à morphismes cohérents (cf. XIIB-1 et 

[SGA 4 v b l s 4.3.1]). Il est cependant vraisemblable qu'une analyse précise des démons­

trations de op. cit. permette de s'affranchir de cette hypothèse et par conséquent de 

démontrer les théorèmes précédents avec des hypothèses de torsion plus faibles. 

2.2.6.2. — Utilisant 1.4 et [Orgogozo, 2003, 2.5, 2.8] il est vraisemblable que l'on 

puisse adapter les démonstrations données ci-dessous pour obtenir les énoncés de 

cohomologie non abélienne suivants : 

— (sous les hypothèses de 2.2.3) l'unité d'adjonction ^ —> V * ^ * ^ est une équiva­

lence pour tout champ fé7 ind-fini sur X x sY ; 

— (sous les hypothèses de 2.2.5) f^g^ —> £x*(/»*#»* c^jy.) est une équivalence 

pour tout champ ind-fini ^ sur Y. 

(in) Un faisceau abélien & est de torsion si la flèche colimn Ker([n] : & —• —*• & est un isomor­
phisme, où n parcourt les entiers non nuls ordonnés par divisibilité; voir ([SGA4 ix § 1]). 
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Pour le sens à donner à ces énoncés voir [Giraud, 1971] (spécialement chap. VII, 

§ 2.2) et [Orgogozo, 2003, § 2]. Voir aussi XIIB-2.2 pour une autre esquisse de démons­

tration du second énoncé. 

2.3. 

Le reste de cet exposé est consacré à la démonstration du théorème 2.2.3. 

2.3.1. Réductions 

2.3.1.1. — D'après la théorie générale de la descente — cf. [SGA4 v b i s §3.3] ou 

[Deligne, 1974, 5.3.5] pour un résumé —, il suffit de démontrer qu'un morphisme Bf = 

d J X a —> ]JSa «— IJ^a) —> B déduit d'une famille de type (i) à (v) est de descente 

cohomologique. (Par stabilité par changement de base, on aura automatiquement 

descente cohomologique universelle.) De plus, et pour la même raison, on peut se 

contenter du cas particulier où les familles /i-couvrantes de X, Y et S considérées en 

(i)-(iii) sont, soit un recouvrement de Zariski, soit un morphisme propre et surjectif. 

2.3.1.2. — Soient S? un site, de topos associé 2T et le pseudo-foncteur V i—» 2?/y. 

Pour tout recouvrement V —• U, on a descente cohomologique pour Tôt 2Fjym —» 

2Fju, où 2F/ym est le topos simplicial déduit du cosquelette de V sur U. Ceci résulte 

par exemple de l'existence locale d'une section au morphisme V —> U. Appliquant 

cette observation à notre catégorie 28, on constate que l'on a descente cohomologique 

(universelle) pour les familles de type (i), (ii), (iii) et (v) lorsque l'on suppose les 

morphismes Xa —» X, Ya —> Y et Sa —+ S étales. D'après l'observation 2.1.5, ceci nous 

permet de nous ramener au cas où les familles ^-couvrantes de 2.1.4 sont données par 

un seul morphisme, propre et surjectif. Ceci nous permet aussi de supposer les schémas 

cohérents et, par conséquent, d'utiliser le théorème 1.1.2 dont la démonstration donnée 

utilise des hypothèses de finitude (permettant le calcul de fibres d'images directes). 

2.3.1.3. — Dans les paragraphes suivants, on fixe un objet B = (X —» S <— Y) de 28 

à objets (et morphismes) cohérents, et on note T le topos X x $Y. Donné un objet 

simplicial B. = (X9 —> Sm <— Ym) augmenté vers B, on note T. le topos total du 

topos simplicial X9 x g9Y9 : pour alléger les notations, nous omettons dorénavant le 

« Tôt » . On fixe également un entier n > 1 et un complexe J€ G Ob D + (T , Z /nZ) , 

dont on note J£ le tiré en arrière par le morphisme de topos V : T. —» T. On souhaite 

montrer que si B9 est le 0-cosquelette d'une flèche B' —> B comme en 2.3.1.1 ci-dessus 

et à objets cohérents, l'unité d'adjonction 

Jtff —> R £ 

est un isomorphisme. 
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2.3.2. Famille de type (i) : (X' -> S ^ Y)-+(X ^ S ^ Y). — Soit rf : X' ^ X un 

morphisme cohérent couvrant pour la topologie h, et Xm = cosqjf ( X ' ) son cosquelette. 

(Comme expliqué en 2.3.1, on pourrait supposer r' propre et surjectif; ce n'est pas 

nécessaire.) Par cohérence et passage aux fibres en les points du topos T, il suffit de 

montrer que le morphisme de fonctorialité 

RT (T , j r ) ^ R r ( T . , X ) 

est un isomorphisme, lorsque les schémas F, X , 5, et le morphisme / : X —» S, 

sont locaux (pour la topologie étale). Comme en §1, calculons l'unité d'adjonction 

par projection sur le premier facteur, c'est-à-dire sur la ligne horizontale inférieure du 

diagramme 2-commutatif 

T < T. 

Pi Pi. 

X ^ - X . 

On veut montrer que la flèche 

Rr(X ,Rp U J*T) RT(X.,RPl.^X.) 

est un isomorphisme. Comme, par descente cohomologique usuelle, le morphisme 

Rr(X, Rpi+Jtf) —• Rr (X # , (Rpi^JÉT).) est un isomorphisme, il suffit de montrer que 

la flèche de changement de base e^Rpi+Jtf —> Rpi.+ e *Jtf induit un isomorphisme 

sur les sections globales (sur X # ) . Les images directes et inverses simpliciales se calcu­

lant étage par étage, il suffit donc de montrer que, pour chaque i > 0, les morphismes 

de changement de base e^Rpi+Jtf —> Rpu+Si* J(f associés aux diagrammes 2-commu-

tatifs 

T <—- Ti = X{xsY 

Pi Pu 
^ Si ^ 
X< - Xi 

sont des isomorphismes. Cela résulte du lemme ci-dessous (i), appliqué à Si : Xi —» X. 

2.3.3. Lemme. — Considérons un objet X —> S <— Y de Sè et un complexe comme 

en 2.3.1.3. 

(i) Soit 7 : Z —> X un morphisme cohérent, faisant de Z un S-schéma. Notons 7 : 

Z x sY - > I x 5 y le morphisme induit entre les topos orientés. Le morphisme 

de changement de base 

R (Rp1 *H) Rpz y H 
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associé au diagramme 

X*x~sY < - Z*x~sY 

Pi Pi 
4- 7 ^ 
X < - Z 

est un isomorphisme. 

(ii) Soit ô : Z —> Y un morphisme cohérent, faisant de Z un S-schéma. Notons ô : 

X x sZ —» X x s Y le morphisme induit entre les topos orientés. Sous l'hypothèse 

supplémentaire que X —> S est un morphisme local entre schémas strictement 

locaux, le morphisme de changement de base 

associé au diagramme 

V <-
I x 5 7 < I x 5 Z 

^ ô ^ 
Y < Z 

est un isomorphisme. 

Démonstration. — (i) Par passage aux fibres en un point géométrique de Z et son 

image par 7, il suffit de montrer que le morphisme 7" induit un isomorphisme sur les 

sections globales lorsque Z —> X est un morphisme local entre schémas strictement 

locaux. Soit s le point géométrique de S image des points centraux de Z et X ; les 

morphismes de topos Z x $ Y^ —» Z x s Y et X x g Y(5) —* X x 5 Y étant des équi­

valences (XI-1.11), on peut supposer de plus que les morphismes Z —> S et X —> S sont 

locaux (entre schémas strictement locaux). Notons ox et oz les sections canoniques 

des secondes projections Z x $Y —• Y et Z x sY —• Y. Pour conclure, on observe que 

les flèches verticales de restriction du diagramme ci-dessous sont des isomorphismes 

par les égalités p2+ = o* déjà utilisées. 

RT(X*xsY,<iï) R I ^ 7 , J ^ — > KTiZxsY^) 

KT(ox,X) Rr{oY,X) 

RT(y, X) RI\Y, X). 

(ii) Par passage aux fibres en un point géométrique de Z et son image par J, il 

suffit de montrer que le morphisme 5 induit un isomorphisme sur les sections globales 

lorsque Z —> Y est un morphisme local entre schémas strictement locaux. Comme 
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on suppose d'autre part que le morphisme X —> S est un morphisme local entre 

schémas strictement locaux, les topos X x $Y et X x sZ sont locaux et le morphisme 

X x sZ —> X x $Y est local. La conclusion est alors immédiate. • 

2.3.4. Famille de type (ii) : (X S <- Y') ( X S <- y ) . — Même argument, 

quitte à échanger pi et p2- Plus précisément : on peut supposer T local, et on projette 

sur y et Y. pour se ramener à montrer, par la descente cohomologique usuelle pour 

Y9 = cosq^fy ') —» y , que le morphisme 

(RP2 H) Rp1* H 

induit un isomorphisme par application du foncteur Rr(Y #,— ). On utilise alors 

le (ii) du lemme ci-dessus dont il résulte que le morphisme de changement de base 

(Rp2*^)« —» R p 2 » * ^ est un isomorphisme. 

2.5.5. Famille de type (iii) ; ( X ' = X x s S' -> S' <- y ' = Y x s Sf) -* (X -> 

S <r— Y). — Notons 5 . = cosqg (S") le cosquelette du morphisme propre et surjectif 

S' —• S et Y. —> y , X # —» X les schémas simpliciaux augmentés qui s'en déduisent. 

(La réduction au cas d'un morphisme propre et surjectif S' —> S résulte de 2.1.5.) 

Factorisons V en 

X.xs.Y. — * x*sY. 

On a vu au paragraphe précédent (2.3.4) que le morphisme —> RSY+SY*^ est un 

isomorphisme. Pour conclure, il suffit de montrer que l'unité Id —> Rr^*f^* est un 

isomorphisme, évalué en un complexe de D + ( X x 5Y., Z /nZ) . Les images directes et 

inverses simpliciales se calculant étage par étage, il suffit de montrer que, pour chaque 

i > 0, le morphisme 

Id RrT*n* 

associé aux morphismes 

X ^ X{ XtXsYi 

• n 

S <— Si < Yi XxsYi 

est un isomorphisme. C'est ce qu'affirme le théorème 1.1.2. 

2.3.6. Famille de type (iv) ; ( X ' = X x s S' S' <- y ) (X -+ S 4 - y ) . — On 

suppose ici que le morphisme Y —• 5 se factorise à travers un morphisme propre 

Sf —> 5, et on définit 5 . et X . comme ci-dessus. Notons que le cosquelette sur 
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B = (X -> S <- Y) de (Xf -> S' <- F) est, à l'étage i, l'objet X , S* <- y , où 

Y ^ Si est le morphisme évident se factorisant à travers la diagonale. Décomposons 

le morphisme V en 

X.xs.Y —(XxsY). > XxsY 

où (X x sY)m est le topos total associé à l'objet simplicial constant de valeur (X —» 

S <— y ) de (Il s'agit du topos des faisceaux cosimpliciaux sur X x $Y.) La des­

cente cohomologique est triviale pour (X x sY)0 —> X x sY : l'identité a une section. 

(Alternativement : le foncteur image directe se dérive en le foncteur complexe simple 

associé, Tôt : D + ( ( X x sY)9, Z /nZ) —> D + ( X x SY, Z/nZ) . ) La conclusion résulte du 

fait que l'unité Id —> Rr^*f^* est un isomorphisme, par une nouvelle application du 

théorème 1.1.2. 

2.3.7. Famille de type (v) : (X -+ S' <- Y' = Y x s S') -+ [X -+ S <- y ) . — 

On suppose ici que le morphisme X —• S se factorise à travers un morphisme é£a/e 

5 ' —> 5. Nous avons déjà donné en 2.3.1 une démonstration du résultat souhaité. 

On peut également procéder comme précédemment ; voici brièvement un argument. 

Notons à nouveau Sm le O-cosquelette du morphisme S' —» 5, et y . = Y Xs S9 le 

schéma simplicial augmenté vers Y qui s'en déduit. Le cosquelette de (X —• Sf <— Yr) 

sur B est, à l'étage i, l'objet X —> Si <— Yi, où X —> est le morphisme évident 

se factorisant à travers la diagonale. Le morphisme I x ^ T j —• X x sY étant une 

équivalence, le topos simplicial X x $9Y9 est constant : son topos total est équivalent 

au topos (total de) (Xx sY).. Comme au paragraphe précédent, on est ramené au 

cas trivial où S1 — S. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 


