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EXPOSE XII,

DESCENTE COHOMOLOGIQUE ORIENTEE

Fabrice Orgogozo

1. Acyclicité orientée des morphismes propres

L’objet de cette section est de démontrer le théoréme 1.1.2 ci-dessous, qui généralise
Pinvariance cohomologique du voisinage tubulaire, défini & I’aide du produit fibré
orienté, par éclatement admissible (cf. XI-1.7 et XI-2.8).

1.1. Notations et énoncé
1.1.1. — Considérons un diagramme commutatif

,’,/
Xe—X'

(1.1.1.1) fl EI lf '
S P

N

9

Y

de schémas cohérents — & morphismes nécessairement cohérents ([EGA 1 6.1.10
(i),(iil)]) —, auquel on associe un morphisme de topos

T'=X'%gY

g

T=X%sY

par fonctorialité du produit orienté (XI-1.9). (Abus de notations : X pour Xg, etc.)
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236 EXPOSE XII,. DESCENTE COHOMOLOGIQUE ORIENTEE

1.1.2. Théoréme. — Si le morphisme r est propre, le morphisme v est acyclique pour
les faisceauz de torsion : pour tout entier n > 1, l'unité d’adjonction ne : Id —
R7 .7 * est un isomorphisme entre endofoncteurs de DY (T, Z/nZ).

1.2. Rappels sur les fleches de changement de base. — Nous conseillons au lecteur de ne

lire ce paragraphe qu’en cas de nécessité. Rappelons que si
/
B«——DB

A#A’

est un diagramme de topos muni d’une 2-fléche 7 : ab’ = ba’, correspondant & des
fleches de transitivité 7, : a,b, = b,a’ et 7* : a’*b* = b'*a*, la flécche de changement
de base b*a, — a,b'™ est la composée cbp a5 = (aLb™ x&,) © (@, * T* x a,) ®
(nar * b*ay), ol 17 (resp. €7) désigne l'unité (resp. la coiinité) de Padjonction ?7* H7,.
La variante dérivée est définie de méme. Notons que dans [SGA 4 x11 §4] — ou le
diagramme considéré est essentiellement commutatif —, la fleche de changement de
base est définie comme le composé (g * a’b’™) ® (b* x 7, x b'*) @ (b*ay, * my ) ; d’aprés
P. Deligne, la « perplezité d’Artin » n’a pas lieu d’étre : ces deux définitions coincident
([SGA 4 xviI §2.1]).

Dans le langage de Joseph Ayoub ([Ayoub, 2007, 1.1.10]), cette 2-fleche de change-
ment de base est obtenue de 7* par adjonction suivant (a'*,a’) et (a*,a,). Il montre
(op. cit., 1.1.9) que, donné un diagramme

*

A—-—-— A

N

BT)AI

dans une 2-catégorie quelconque, la fleche de changement de base définie par la formule
ci-dessus est 1'unique 2-fléche du diagramme obtenu par retournement des fléches
verticales

BTA/

satisfaisant 'une des deux égalités (écrites sous forme simplifiée) 7* @ n, = cb O 7 €t
Ear OT* = £, ®cb. Il montre également (op. cit., 1.1.11 et 1.1.12), que 'on a la compa-
tibilité attendue avec les compositions horizontales et verticales. (Un cas particulier
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1. ACYCLICITE ORIENTEE DES MORPHISMES PROPRES 237

est énoncé sans démonstration en [SGA 4 XII 4.4]; voir aussi [Lipman et al., 2009,
3.7.2)).

1.3. — La fin de ce paragraphe est consacrée i la démonstration du théoréme 1.1.2.

1.8.1. Réduction au cas local. — Soit # € ObD™(T,Z/nZ) dont on note ¥ le
tiré en arriére par 7 sur 7'. Rappelons ([SGA4 v1 2.9.2, 3.10]) que le topos étale
d’un schéma quelconque (resp. cohérent) est localement cohérent (resp. cohérent) et
qu’un morphisme cohérent de schémas induit un morphisme cohérent entre les topos
étales. Il en résulte (XI-2.5) que le topos T est cohérent et par conséquent qu’il
suffit de vérifier que la fibre en chaque point t — T de l'unité .# — R7 , #" est
un isomorphisme. (Localement cohérent suffirait, cf. [SGA 4 v1 9.0]). D’aprés XI-1.8,
tout tel point t provient d’une paire de points (géométriques) x,y de X et Y, munis
d’un morphisme de spécialisation g(y) ~» f(z) = s. D’autre part, on vérifie comme
en XI-2.7 que si a : (Xg — S3 « Y3) = (X; — S; « Y1) est un morphisme de
diagrammes de schémas cohérents, le morphisme induit ‘@ : XQQSZ Yo — X1(§ s
est un morphisme cohérent de topos cohérents et que la fibre en un point ¢; d’une
image directe dérivée par ‘@ est naturellement isomorphe au complexe des sections
globales dérivées du topos X2(m1)(;52 (o) Y2(1)> Ol 71 et Y1 (resp. s1) sont les points
géométriques de X; et Y7 (resp. Si) déduits de t; (resp. est 'image de 1), et ou I'on
pose Xo(g,) = X2 Xx, X1(s,), €tc.

Ceci nous améne & considérer les localisés stricts X (), S(s) et Y(, ainsi que le
diagramme

7./
Xgy 12— X{,

f) 0 flz)
/

S 0 T(s) s’ I Y(y)

O

S S’ Y
au-dessus de 1.1.1.1. Le morphisme f,) est local tandis que r(,) est propre. Comme

énoncé ci-dessus, la fibre en t de 'unité n¢ considérée s’identifie au morphisme de
fonctorialité de la cohomologie :

H; = RI(T(sy, #) — RL(T(,), X 7)

ott T(y) est le topos X(x)ys(s)Y(y) — local (au sens de XI-2.1) par loc. cit., 2.3.2 —
et T(’t) est le produit orienté X szSés)Y('y)- Quitte & remplacer X (resp. S, Y) par
X(z) (resp. S(s)s Y(y)), on peut donc supposer les schémas X, Y, S strictement locaux,
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238 EXPOSE XII,. DESCENTE COHOMOLOGIQUE ORIENTEE

ainsi que le morphisme f et le topos T locaux. Nous le faisons pour simplifier les
notations dans la démonstration ci-dessous. On a vu de plus qu’il est suffisant, sous
ces hypothéses supplémentaires, de vérifier que le morphisme de complexes

n:RI(T,#) — RI(T', %)

est un isomorphisme.

1.3.2. Cas d’un complexe provenant du second facteur. — Dans ce paragraphe, on
montre que la fleche n : RINT,#) — RI(T',#") est un isomorphisme lorsqu’il
existe un complexe J#y € DT (Y,Z/nZ) tel que ¥ = p5.#y. Cela revient & montrer
que la fleche de fonctorialité RI'(T,p5—) = RI(X,Rp1,p2*—) — RI(T',ph"—) =
RI(X',Rp),pb*—) est un isomorphisme (pour tout objet ¢y € ObD*(Y,Z/nZ)).
Les différents morphismes sont représentés dans le diagramme cubique suivant :

Y P2 T
: —

Y 2 7 P}

(1.3.2.1) e P

v !

g S’ f X’

r O l /
S ¢ f X

Pour montrer que RI'(X,Rp1,p2*—) — RI(X’,Rp},pb*—) est un isomorphisme, il
suffit d’établir le résultat a priori plus fort suivant : le diagramme

D1, * N4 * p2* ’

D1,p2" TiD1,Ps"
1.3.2.2 p. /
( ) CbYSXT ’l",/k * Cb;SIX!TI
cbsisxx! * g,
[« o f" g,

est un diagramme commutatif d’isomorphismes, ou 7 : gps = fp1 et 7' : ¢'ph = f'p}
sont comme en XI-1.3. On sait déja que les fléches verticales sont des isomorphismes
(X1I-2.4) ; par propreté de 7, il en est de méme de la fléche horizontale inférieure.

1.8.8. Commutativité. — Faute d’un métathéoréme (4 énoncer) garantissant la com-
mutativité du diagramme 1.3.2.2, nous allons procéder de maniére ad hoc pour dé-
montrer un résultat un peu plus général. Pour alléger les notations, nous omettons
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1. ACYCLICITE ORIENTEE DES MORPHISMES PROPRES 239

dorénavant les compositions avec les 1-fleches. Soit

(1.3.3.1)

un diagramme cubique de topos dont quatre faces sont (essentiellement) commutatives
et deux (celles dans le plan du texte) munies de 2-fleches 7 et 7’. On suppose que ces
fleches sont compatibles au sens suivant : les deux 2-fleches induites par 7 et 7/ dans
le carré diagonal en traits pleins Y'SXT’ coincident. Cela revient a dire que l'on a
I’égalité rx 7' = Tx h'; sous les hypothéses du paragraphe précédent (voir diagramme
1.3.2.1), on la vérifie directement sur les sites de définition des topos.

Par compatibilité avec les compositions verticales des fléches de changement de
base, rappelée en 1.2, les deux triangles ci-dessous sont commutatifs, ou la fléche
horizontale est la fleche de changement de base induite par le carré diagonal :

D1, 02" P

cbysxr ~~__ cbyryrr

(1.3.3.2) Frogl = Faihs cby sx1 o

=~
) /) *
TD1,P2 =p1*h*p2
r S g

est commutatif . Notons que lorsque h est I'identité, la 2-fleche en pointillé n’est
autre que (la 2-fleche induite par) la coiinité 7,/ . La commutativité de 1.3.2.2 en
résulte.

1.3.4. — Dans ce paragraphe, on montre que la fleche 5 : RI'(T, #) — RI'(T", %)
considérée 4 la fin du paragraphe 1.3.1 — dont on conserve les hypothéses — est un
isomorphisme. On procéde par réduction au cas précédent (1.3.2). Le morphisme po
a une section, que nous noterons o, définie en XI-2.2. Posons J#y = o*# — cette
notation est compatible avec celle du paragraphe précédent —, et H = p3 Xy . D’aprés

() Le rédacteur remercie Joseph Ayoub de son aide sur cette question.
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240 EXPOSE XII,. DESCENTE COHOMOLOGIQUE ORIENTEE

XI-2.3 et XI-2.3.2, le morphisme de changement de base cbryyy : Rps, — o* déduit
du diagramme 2-commutatif

T—7 vy

SN

Y ———

est un isomorphisme et la coiinité ¢ — ¥ induit un isomorphisme RI'(T, 1’7) -
RI(T, 2¢). (On rappelle que T est local.) Comme on I’a vu au paragraphe précédent,
le morphisme de fonctorialité RI‘(T H ) — RINT", % 7 ) est un isomorphisme, ot ¥ 7
désigne le tiré en arriére par T de H (ou encore, par py de Jy) sur le topos T”. Pour
conclure, il nous faut montrer que la fleche RT'(7” A ) — RI(T',#") déduite de
H — X est un isomorphisme. Calculant ces complexes par projection sur le premier
facteur X' et utilisant le théoréme de changement de base propre pour le morphisme
X’ — X, il nous suffit de montrer que le morphisme RpliJ?’ — Rp1, A" de complexes
sur X’ est un isomorphisme au-dessus du point fermé = de X. L’évaluation en un point
géométrique ' — X est

RT(T(,), ") = RL(T{y), ),

ol T(’z,) = sz/)g?sgsl)y(s/)v avec s’ — S’ 'image de z’ — X' et Yy :=Y x g SES,).
Comme rappelé ci-dessus, cette fléche s’identifie par projection sur le second facteur
a la fleche

RT(Y(sy, 0" H ") = RL(Y(s1y, 0" H "),
ol a(z,) 1Yy — X{m,)‘;sé ,)Y(s/) est la section définie en XI-2.2. Nous allons mon-
trer plus précisément que la coiinité X — X induit un isomorphisme O'Ez,)*,%/;; —
azm,)*% ’. Par fonctorialité des images inverses, il suffit de montrer que l'on a les
égalités

0 O0pg O (F(:z:’) [e] O'EI/) = 4;‘—(1:') o} UEI/) = 0o Id(s/),

— la seconde entrainant la premiére —, ol les morphismes sont comme dans le dia-
gramme ci-dessous :
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2. DESCENTE COHOMOLOGIQUE ORIENTEE 241

(z',y) «——y

/U(QL\

T(/I,) —pl—“—) )/(s’)
- 2(z’)
T () Id(s/)
D2

T ————Y

N

ag
(z,y) e—y.

L’identité (F(w/) oaéz,) = oold s est conséquence du fait que le morphisme X éz,) - X
est local.

1.4. Remarques sur le cas non abélien. — En utilisant le théoréme de changement de
base propre non abélien (XX-7.1), la méme démonstration devrait permettre de mon-
trer que, sous les hypothéses de 1.1.2, le morphisme 7 est 1-asphérique : pour tout
champ ind-fini € sur T, 'unité d’adjonction € — 7,7 *% est une équivalence de
catégories. Signalons cependant que, comme signalé en XI-2.8 (3), nous n’avons pas
connaissance d’une référence publiée permettant de justifier le passage a la limite
nécessaire au calcul des fibres.

2. Descente cohomologique orientée

2.1. Topologie h-orientée

2.1.1. — Notons £ la catégorie dont les objets sont les diagrammes de schémas
X L5 &y etles morphismes sont les triplets de morphismes (X’ — X,S’ —
S,Y’ — Y) rendant commutatifs les deux carrés associés. Les limites (projectives)
finies existent dans % et se calculent « terme & terme ». Par exemple, le produit fibré
de X1 —» 51 « Yy et Xo — Sy « Yo au-dessus de X — S — Y est (X1 xx X3) —
(81 x5 82) «+ (Y1 xy Y2).

2.1.2. — Notons B - Bla catégorie bifibrée en duaux de topos induite par le
pseudo-foncteur « produit orienté des topos étales » de B vers la 2-catégorie des
topos, (X = S« YY)~ X (;SY. La condition [SGA 4 v 3.0.0] est satisfaite. Enfin,
notons que si B est annelé par des coefficients constants, toutes les fleches de B sont
plates au sens de loc. cit., §1.3.

2.1.3. — Nous munissons la catégorie des schémas de la topologie h, engendrée par
les morphismes propres et surjectifs ainsi que les recouvrements de Zariski. Dans la
définition précédente, on peut se restreindre aux morphismes propres et surjectifs
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242 EXPOSE XII,. DESCENTE COHOMOLOGIQUE ORIENTEE

entre schémas cohérents, comme il résulte des faits suivants : tout schéma est Zariski-
localement cohérent ; tout schéma cohérent sur un schéma cohérent est cohérent (voir
[EGA 1’ 6.1.10 (ii)] pour la quasi-séparation, ’analogue pour la quasi-compacité étant
tautologique) ; un morphisme universellement fermé (resp. propre) est quasi-compact
(resp. cohérent). Rappelons que la topologie h est plus fine que la topologie étale (cf.
par exemple I1-3.1.1).

2.1.4. — On considére la topologie h-orientée sur % engendrée par les familles ci-
dessous :

Q). — (Xa=>8«Y)> (X > S«VY))
couvrante pour la topologie h ;

). — - S«<Y,) — — 5 «— ,ou (Y, — acA est une famille
(i) X - 5Y, X = 85<Y)), cA Y, Y famill
couvrante pour la topologie b ;

(iii). — ((X x58q4 = Sa — Y x58,) = (X > S« Y))
une famille couvrante pour la topologie h;

acar Ol (Xa = X)aca est une famille

acar 08 (Sa = S)aca est

(iv). — (X xs8 -8 «Y)—> (X =8« Y)),ouS — S est un morphisme
propre ;

V), — (X =8 «~Yx58) > (X >SS« Y)),onS — S est un morphisme
étale.

Remarquons que les propriétés des familles de morphismes (i)—(v) sont stables par
changement de base dans la catégorie .

2.1.5. — 1l est formel de vérifier que la topologie h-orientée est engendrée par :

— les familles de type (i)—(iii), oit les familles h-couvrantes sont des recouvrements
de Zariski;

— les familles de type (i)—(iii), ou les familles h-couvrantes sont données par un
seul morphisme propre et surjectif;

— les familles de type (iv) et (v).

On peut également observer que les familles de type (iii) avec (Sq — S)aeca un
recouvrement de Zariski (resp. un morphisme propre et surjectif) s’obtiennent par
composition & partir des types (i) et (v) (resp. des types (iv) et (ii)).

2.2. Enoncés

2.2.1. — Fixons un objet B = (X — S « Y) de #A. Conformément aux définitions
générales, on dit qu’un objet simplicial augmenté (X, — S, «— Y,) — B de & est
un hyperrecouvrement pour la topologie h-orientée si tout entier 4 > —1, le morphisme
canonique (X;+1 — Siy1 < Yiy1) — (cosq;(Xe — Se — Y'))i+1 de la catégorie %, p
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2. DESCENTE COHOMOLOGIQUE ORIENTEE 243

est couvrant pour la topologie h-orientée définie en 2.1.4 ci-dessus. Les termes du
cosquelette, qui sont des limites finies, existent et sont calculés dans %, p.

2.2.2. — Aux données précédentes est associé un topos simplicial — c’est-a-dire
fibré sur A, cf. [SGA4 VP §1.2] —, que nous notons X, X g,Ys, et son topos total
Tot(X.?S. Y,). Nous renvoyons le lecteur & [Illusie, 1972, VI, §5.1] et [SGA 4 vI §7]
pour des définitions générales sur le topos total, ainsi que [Deligne, 1974, §5.1] pour
un résumé dans le cas particulier des espaces topologiques simpliciaux. On a le résultat
suivant de descente cohomologique.

2.2.3. Théoréme. — Soit (X¢ — Se¢ «— Y,) — (X —» S « Y) un hyperrecouvre-
ment pour la topologie h-orientée et soit ‘€ : Tot(X.?S.Y.) — XXgY le mor-
phisme d’augmentation associé. Pour tout entier n > 1 et tout compleze JH €
ObD* (X(;sY, Z/nZ), Vunité d’adjonction X — RT,€*H est un isomorphisme.

2.2.4. Remarque. — Prendre garde au fait que, contrairement au cas usuel (non
. . . — . .

orienté), un objet cartésien de Tot(X, X g,Ye) ne provient pas nécessairement d’un

objet de X ‘;SY : le morphisme ‘Z n’est en général pas de 2-descente cohomologique

au sens de [SGA 4 vbis 2.2.6].

La principale application que nous ferons du théoréme précédent est la formule
de changement de base suivante, dont on trouvera une autre démonstration dans
XI1Ig-2.1.

2.2.5. Théoréme (« hyper-changement de base »). — Soient X Ls&yun objet de B
avec g cohérent, et Sq — S un hyperrecouvrement pour la topologie h. Notons res-
pectivement fo : Xo — So €t go : Yo — S, les morphismes déduits de f et g par le
changement de base Sq — S, et Xq — X ’hyperrecouvrement de X pour la topologie h
déduit de S¢ — S. Enfin, notons ex le morphisme de topos Tot(Xe) — X. Pour tout
entier n > 1 et tout complere ¥ € ObD*(Y,Z/nZ), le morphisme

f*Rg*.)ff - REX* (fo*Rgﬁ*‘jg/lYo)

est un isomorphisme.

On note f,, etc., pour ce que ’on aurait pu noter Tot(f,), etc. Cela ne devrait pas
préter a confusion.

L’hypothése de cohérence sur g est faite pour pouvoir appliquer le théoréme XI-2.4,
qui peut étre mis en défaut sans cette hypotheése®. (Par exemple, si S est un schéma
de Dedekind possédant une infinité de points fermés &g, &;, ..., si I'on pose X = &

() 11 est vraisemblable que les techniques de 'exposé XIIg permettent de démontrer le théoréme
précédent sans supposer g cohérent.
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244 EXPOSE XII,. DESCENTE COHOMOLOGIQUE ORIENTEE

et Y = ]_L.>O &, le topos X st — ou f et g sont les morphismes évidents — est le
topos vide tandis que le faisceau f*g,Z/nZ est non nul pour tout n > 1.)

Démonstration. — Admettant le théoréme de descente précédent (2.2.3), il n’est pas
difficile de démontrer la formule de changement de base ci-dessus. Soit ¥ un com-
plexe sur Y comme dans I’énoncé dont on note j)_if le tiré en arriére par la se-
conde projection py : XX gY — Y. Il résulte du théoréme 2.2.3 (i) que l'unité
KX — RT,E* A est un isomorphisme, ot ‘ désigne le morphisme d’augmenta-
tion Tot(X.(;S,Y.) - X <;SY. La conclusion résulte de la chaine d’isomorphismes
ci-dessous, les premier et dernier résultant de XI-2.4, le troisiéme de la fonctorialité
des images directes, et le second — comme on I’a vu — de la descente cohomologique
h-orientée.

~ —
f*Rgst — Rpy, X
Rpl*% :> Rpl*R?*?*f}?/
Rpl*R?*?*)? = REX*Rpl.*;/., ol j)?/. = ‘?*:7_{
— o —
REX*Rplo*%o — RsX*f:Rgo*fm O

2.2.6. Remarques

2.2.6.1. — Dans les deux théorémes précédents, on pourrait remplacer I'anneau
Z/nZ par un anneau de torsion A quelconque; la démonstration donnée ci-dessous
s’applique sans changement. Plus généralement, on pourrait considérer des complexes
de D+ (XX 5Y,A) ou D¥(Y,A) & cohomologie de torsion (@ lorsque A est un anneau
quelconque. Dans ce cadre, ’hypothése [SGA 4 vP'® 2.4.1.1] de stabilité par image
directe n’est pas toujours satisfaite; ceci explique pourquoi il semble parfois utile
de se restreindre & la catégorie des schémas & morphismes cohérents (cf. XIIp-1 et
[SGA 4 vbis 4.3.1]). Il est cependant vraisemblable quune analyse précise des démons-
trations de op. cit. permette de s’affranchir de cette hypothése et par conséquent de
démontrer les théorémes précédents avec des hypothéses de torsion plus faibles.

2.2.6.2. — Utilisant 1.4 et [Orgogozo, 2003, 2.5, 2.8] il est vraisemblable que 'on
puisse adapter les démonstrations données ci-dessous pour obtenir les énoncés de
cohomologie non abélienne suivants :
— (sous les hypothéses de 2.2.3) 1'unité d’adjonction € — z '€ *% est une équiva-
lence pour tout champ % ind-fini sur X ;SY;
— (sous les hypothéses de 2.2.5) f*g.€ — ex,(fo"ge *%IY.) est une équivalence
pour tout champ ind-fini € sur Y.

(i) Un faisceau abélien F est de torsion si la fléche colim,, Ker([n] : & — F) — F est un isomor-
phisme, ol n parcourt les entiers non nuls ordonnés par divisibilité ; voir ([SGA 4 1x §1]).
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2. DESCENTE COHOMOLOGIQUE ORIENTEE 245

Pour le sens & donner & ces énoncés voir [Giraud, 1971] (spécialement chap. VII,
§2.2) et [Orgogozo, 2003, § 2]. Voir aussi XIIg-2.2 pour une autre esquisse de démons-
tration du second énoncé.

2.3.

Le reste de cet exposé est consacré i la démonstration du théoréme 2.2.3.

2.3.1. Réductions

2.8.1.1. — D’aprés la théorie générale de la descente — cf. [SGA 4 v®® §3.3] ou
[Deligne, 1974, 5.3.5] pour un résumé —, il suffit de démontrer qu’un morphisme B’ =
(JI Xa = 11 Sa < 11 Ya) — B déduit d’une famille de type (i) & (v) est de descente
cohomologique. (Par stabilité par changement de base, on aura automatiquement
descente cohomologique universelle.) De plus, et pour la méme raison, on peut se
contenter du cas particulier ot les familles h-couvrantes de X,Y et S considérées en
(i)—(iii) sont, soit un recouvrement de Zariski, soit un morphisme propre et surjectif.

2.8.1.2. — Soient ¥ un site, de topos associé .7 et le pseudo-foncteur V +— Jy .
Pour tout recouvrement V' — U, on a descente cohomologique pour Tot 7y, —
Ty, o Jyy, est le topos simplicial déduit du cosquelette de V' sur U. Ceci résulte
par exemple de D’existence locale d’une section au morphisme V' — U. Appliquant
cette observation a notre catégorie 9, on constate que 1’on a descente cohomologique
(universelle) pour les familles de type (i), (ii), (iii) et (v) lorsque l'on suppose les
morphismes X, — X, Y, — Y et S, — S étales. D’aprés 'observation 2.1.5, ceci nous
permet de nous ramener au cas ol les familles h-couvrantes de 2.1.4 sont données par
un seul morphisme, propre et surjectif. Ceci nous permet aussi de supposer les schémas
cohérents et, par conséquent, d’utiliser le théoréme 1.1.2 dont la démonstration donnée
utilise des hypothéses de finitude (permettant le calcul de fibres d’images directes).

2.8.1.3. — Dans les paragraphes suivants, on fixe un objet B= (X — S — Y) de #
a objets (et morphismes) cohérents, et on note T le topos X 4;SY. Donné un objet
simplicial By = (Xo — S¢ «— Y,) augmenté vers B, on note T, le topos total du
topos simplicial X.?S.Y. : pour alléger les notations, nous omettons dorénavant le
« Tot ». On fixe également un entier n > 1 et un complexe ¥ € ObD*(T,Z/nZ),
dont on note %, le tiré en arriére par le morphisme de topos € : T, — T'. On souhaite
montrer que si B, est le 0-cosquelette d’une fléche B’ — B comme en 2.3.1.1 ci-dessus
et & objets cohérents, I'unité d’adjonction

H — RE A,

est un isomorphisme.
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2.8.2. Famille de type (i) : (X' > S «<Y)> (X -8 «Y). — Soitr': X’ > X un
morphisme cohérent couvrant pour la topologie h, et X, = cosqf (X’) son cosquelette.
(Comme expliqué en 2.3.1, on pourrait supposer ' propre et surjectif; ce n’est pas
nécessaire.) Par cohérence et passage aux fibres en les points du topos T, il suffit de
montrer que le morphisme de fonctorialité

RI(T,. %) — RI(T., %a)

est un isomorphisme, lorsque les schémas Y, X, S, et le morphisme f : X — S,
sont locaux (pour la topologie étale). Comme en §1, calculons I'unité d’adjonction
par projection sur le premier facteur, c’est-a-dire sur la ligne horizontale inférieure du
diagramme 2-commutatif

On veut montrer que la fléche
RI(X,Rp1,#) — RI'(Xe, Rp1e,He)

est un isomorphisme. Comme, par descente cohomologique usuelle, le morphisme
RI'(X,Rp1,. %) — RI'(X., (Rp1,)e) est un isomorphisme, il suffit de montrer que
la fleche de changement de base e%Rp;, . # — Rpj., s *# induit un isomorphisme
sur les sections globales (sur X,). Les images directes et inverses simpliciales se calcu-
lant étage par étage, il suffit donc de montrer que, pour chaque 7 > 0, les morphismes
de changement de base ¢/Rp;, . % — Rp1i, §; * & associés aux diagrammes 2-commu-
tatifs

o
T T =X, XsY
Pll lpu
€q
Xe— S x

k2
sont des isomorphismes. Cela résulte du lemme ci-dessous (i), appliqué a ¢; : X; — X.

2.3.3. Lemme. — Considérons un objet X — S «— Y de A et un complexre & comme
en 2.3.1.3.

(i) Soity:Z — X un morphisme cohérent, faisant de Z un S-schéma. Notons 5
A (;SY - X (;sY le morphisme induit entre les topos orientés. Le morphisme
de changement de base

7 (Rpi (H) = Rp? YA
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associ€ au diagramme
—

XK L 7Z%sY

o | |#¢
v

X¢e———7

est un isomorphisme. -
(ii) Soit 8 : Z — Y un morphisme cohérent, faisant de Z un S-schéma. Notons 6 :

X QSZ — X (—;gY le morphisme induit entre les topos orientés. Sous [’hypothése

supplémentaire que X — S est un morphisme local entre schémas strictement

locaux, le morphisme de changement de base

—
&*(Rpy , %) — Rp%, 6* %
associé au diagramme
—

s
XXV —— XX sZ

p%”l lpf
5

Y ¢———+Z7

est un isomorphisme.

Démonstration. — (i) Par passage aux fibres en un point géométrique de Z et son
image par v, il suffit de montrer que le morphisme % induit un isomorphisme sur les
sections globales lorsque Z — X est un morphisme local entre schémas strictement
locaux. Soit s le point géométrique de S image des points centraux de Z et X ; les
morphismes de topos Z§S(s) Y — Z(QSY et X‘?S(s) Y5 — X?SY étant des équi-
valences (XI-1.11), on peut supposer de plus que les morphismes Z — S et X — .S sont
locaux (entre schémas strictement locaux). Notons ox et oz les sections canoniques
des secondes projections Z YSY —YetZ (;SY — Y. Pour conclure, on observe que
les fleches verticales de restriction du diagramme ci-dessous sont des isomorphismes
par les égalités pa, = o* déja utilisées.

RI(X X Y, %) RI(Y, %) RI(ZX gY, )
RT(ox, ,zf)l ) lRF(O‘y, #)
RI(Y, %) — RI(Y,.%).

(ii) Par passage aux fibres en un point géométrique de Z et son image par 6, il
—

suffit de montrer que le morphisme ¢ induit un isomorphisme sur les sections globales

lorsque Z — Y est un morphisme local entre schémas strictement locaux. Comme
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on suppose d’autre part que le morphisme X — S est un morphisme local entre
. — — .

schémas strictement locaux, les topos X x gY et X X gsZ sont locaux et le morphisme

x% sZ — X (QSY est local. La conclusion est alors immédiate. O

2.8.4. Famille de type (ii) : (X - S «Y') > (X - § « Y). — Méme argument,
quitte a échanger p; et py. Plus précisément : on peut supposer T local, et on projette
sur Y et Y, pour se ramener & montrer, par la descente cohomologique usuelle pour
Y, = cosq} (Y') — Y, que le morphisme

(Rp2*‘%/)0 - RPZO*%

induit un isomorphisme par application du foncteur RI'(Y,,—). On utilise alors
le (ii) du lemme ci-dessus dont il résulte que le morphisme de changement de base
(Rp2,# )e — Rpae,He est un isomorphisme.

2.8.5. Famille de type (iii) : (X' = X x5 8" - § « V' =Y x58) - (X —
S « Y). — Notons S, = cosqj (S’) le cosquelette du morphisme propre et surjectif
S — SetY, - Y, X, —» X les schémas simpliciaux augmentés qui s’en déduisent.
(La réduction au cas d’un morphisme propre et surjectif S’ — S résulte de 2.1.5.)
Factorisons ‘g en

Te — 3%
X X5 Yo — > XXsY, — XX sY.
\/
g

On a vu au paragraphe précédent (2.3.4) que le morphisme .#* — REy &y * # est un
isomorphisme. Pour conclure, il suffit de montrer que 'unité Id — R7,,7.* est un
isomorphisme, évalué en un complexe de Dt (X ‘;SY., Z/nZ). Les images directes et
inverses simpliciales se calculant étage par étage, il suffit de montrer que, pour chaque
i > 0, le morphisme
Id — R¥;, 7
associé aux morphismes
!

XX, X% s.Y;
S i Si Yz X;SYz

est un isomorphisme. C’est ce qu’affirme le théoréme 1.1.2.

2.8.6. Famille de type (iv) : (X' =X x58 -5 «Y)-> (X >S5 «Y) — On
suppose ici que le morphisme Y — S se factorise & travers un morphisme propre
S’ — S, et on définit S, et X, comme ci-dessus. Notons que le cosquelette sur
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B=(X—>S«Y)de (X' > 8 «Y) est, a 'étage 4, 'objet X; — S; < Y, o
Y — S; est le morphisme évident se factorisant & travers la diagonale. Décomposons

le morphisme & en
-

X KsY — (XK sY)e — XK Y

—
[

ou (X (QSY). est le topos total associé a ’objet simplicial constant de valeur (X —
S «—Y) de A. (Il S’agit du topos des faisceaux cosimpliciaux sur X (;SY.) La des-
. . — — . . .
cente cohomologique est triviale pour (X X sY)e — X X gY : l'identité a une section.
(Alternativement : le foncteur image directe se dérive en le foncteur complexe simple
associé, Tot : D* (XX sY)s, Z/nZ) — D+ (XX sY,Z/nZ).) La conclusion résulte du
fait que 'unité Id — R¥,,7¢* est un isomorphisme, par une nouvelle application du
théoréme 1.1.2.

2.3.7. Famille de type (v) : (X - &' « YV =Y xg§) > (X - S «Y) —

On suppose ici que le morphisme X — S se factorise & travers un morphisme étale
S’ — S. Nous avons déja donné en 2.3.1 une démonstration du résultat souhaité.
On peut également procéder comme précédemment ; voici briévement un argument.
Notons & nouveau S, le 0-cosquelette du morphisme S’ — S, et Yo =Y xg S, le
schéma simplicial augmenté vers Y qui s’en déduit. Le cosquelette de (X — S’ « Y”)
sur B est, a I’étage i, Pobjet X — S; «— Y;, ot X — S; est le morphisme évident
se factorisant a travers la diagonale. Le morphisme X (;Sin- — X (;SY étant une
équivalence, le topos simplicial X (_>_<°S. Y, est constant : son topos total est équivalent
au topos (total de) (X (;sY).. Comme au paragraphe précédent, on est ramené au
cas trivial ou S’ = S.
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