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E X P O S É I 

A N N E A U X E X C E L L E N T S 

Michel Raynaud, rédigé par Yves Laszlo 

Ce texte est une version un peu modifiée d'un exposé de Michel Raynaud. 

1. Introduction 

Le but est de familiariser le lecteur avec la notion d'excellence et de lui donner un 

fil d'Ariane pour se repérer dans EGA IV où l'on trouve les principales propriétés 

des anneaux excellents. Son ambition n'est certainement pas de donner une exposi­

tion complète de la théorie, mais une idée de la stratégie qui ramène pour l'essentiel 

les preuves à des énoncés, souvent difficiles, dans le cas complet. Dans un second 

temps, on montre que toutes les propriétés définissant les anneaux excellents peuvent 

être mises en défaut, même en petite dimension. Notamment, il existe des anneaux de 

valuation discrète non excellents ainsi que des anneaux noethériens intègres de dimen­

sion 1 dont le lieu régulier n'est pas ouvert. Ce dernier exemple est un sous-produit 

d'une construction proposée par Gabber (XIX-2.6). Elle montre que le théorème de 

constructibilité des images directes (XIII-1.1.1) n'est plus vrai si on omet la condition 

de quasi-excellence. 

2. Définitions 

Soit A un anneau noethérien et X = Spec(A) son spectre. On va s'intéresser à des 

conditions sur X de deux sortes. 

• Conditions globales : 

2.1. Condition 1 : conditions d'ouverture. — Tout schéma intègre Y fini sur X contient 

un ouvert dense 

l.a) régulier. 

l.b) normal. 
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2 EXPOSÉ I. ANNEAUX EXCELLENTS 

2.2. Remarque. — La condition l.a) entraîne d'après le critère d'ouverture de Nagata 

que le lieu régulier de tout schéma fini sur X est ouvert ([EGA IV2 6.12.4]). De même, 

la condition l.b) entraîne que le lieu normal de tout schéma fini sur X est ouvert 

([EGA IV2 6 . 1 3 . 7 ] ) C e s critères d'ouverture assurent en outre que pour tester l.a) 

ou l.b) on peut se limiter à des schémas intègres Y qui sont de plus finis et radiciels 

sur X. 

• Conditions locales. 

Elles sont de deux types. 

2.3. Condition 2 : Conditions sur les fibres formelles. — Pour tout point fermé x de X, 

le morphisme de complétions S p e c ( ^ ) —> Spec(<^a;) est 

2.a) régulier. 

2.b) normal. 

2.c) réduit. 

Un anneau vérifiant 2.a) est dit « G-ring » en anglais, ce en l'honneur de Grothen-

dieck qui a dégagé l'importance de la notion et étudié ses propriétés. 

2.4. Remarque. — Rappelons qu'un morphisme de schémas noethériens est dit régu­

lier (resp. normal, réduit) respectivement s'il est plat et si les fibres géométriques en 

tout point de la base sont régulières (resp. normales, réduites). On dit que les fibres 

formelles de X en x sont géométriquement régulières, géométriquement normales ou 

géométriquement réduites si le morphisme de complétion Spec(<^x) —> S p e c ( ^ ) est 

régulier, normal ou réduit. Bien entendu, il suffit de tester la régularité, normalité, ou 

réduction des fibres après changement de base radiciel fini ([EGA IV2 6.7.7]). Notons 

que la fibre fermée de S p e c ( ^ ) —> Spec(^ x ) est le spectre du corps résiduel k(x) : elle 

est toujours géométriquement régulière. La fibre formelle en y G S p e c ( ^ ) s'identifie 

à la fibre formelle générique du sous-schéma fermé {y} (muni de sa structure réduite), 

adhérence de y dans S p e c ( ^ ) ; ceci explique qu'on s'intéresse dans la littérature aux 

fibres formelles génériques des anneaux intègres. Dans le cas où A est local mais pas 

un corps, elles peuvent avoir des dimensions arbitraires entre 0 et dim(A) — 1 et 

contenir des points fermés de hauteurs différentes, même dans le cas excellent (2.10) 

régulier ([Rotthaus, 1991]). Dans le cas où A est un localisé d'une algèbre intègre de 

type fini sur un corps, la dimension de la fibre formelle générique est bien dim(yl) — 1 

([Matsumura, 1988]). 

Et en fait, l.a) (resp. l.b)) entraîne que le lieu régulier (resp. normal) de tout schéma intègre de 
type fini sur X est ouvert 
(") Ses fibres sont appelées les fibres formelles (de X ou A) en x. 
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2. DÉFINITIONS 3 

2.5. Condition 3 : condition de caténarité formelle. — Pour tout point fermé y d'un 

sous-schéma fermé irréductible Y de X, le complété^ &y,y est équidimensionnel. 

On dit alors que X est formellement caténaire. Par exemple, si X est de dimension 1, 

X est formellement caténaire. 

2.6. Exemple. — Tout anneau local noethérien complet est formellement caténaire. 

Rappelons que X est dit caténaire si toutes les chaînes saturées de fermés irréduc­

tibles de X ayant mêmes extrémités ont même longueur, universellement caténaire(iv) 

si tout schéma affine de type fini sur X est caténaire. La caténarité est une notion 

locale. La terminologie de caténarité formelle est alors justifiée par la proposition élé­

mentaire suivante ([EGA IV2 7.1.4]), proposition qui résulte de la fidèle platitude du 

morphisme de completion 

2.7. Lemme. — Soit A local noethérien de complété équidimensionnel. Alors 

(i) A est équidimensionnel et caténaire. 

(ii) Pour tout idéal I de A, le quotient A/I est équidimensionnel si et seulement si 

son complété Vest; en particulier, A/I est formellement caténaire. 

(iii) En particulier, un schéma affine X noethérien formellement caténaire est caté­

naire et même universellement caténaire. 

Notons que (iii) découle immédiatement de (i) puisque X est caténaire si et seule­

ment si ses composantes irréductibles le sont. On verra plus bas dans la section 5 

que la propriété de caténarité formelle est notamment stable par extension finie d'où 

l'universelle caténarité annoncée (cf. la preuve de la proposition 7.1 et, pour une 

réciproque, voir (7.1.1)). 

2.8. Exemple. — Soit alors B —> A un morphisme local surjectif d'anneaux noethé-

riens et supposons B de Cohen-Macaulay (par exemple régulier). Comme B est de 

Cohen-Macaulay, il est équidimensionnel de sorte que A est formellement caténaire 

d'après (2.7). 

(m) Bien entendu, même si &Y,y e s t intègre, son complété n'est en général pas intègre : penser à une 
courbe nodale. 
(1V) Cette dernière notion est utile en théorie de la dimension : si A est intègre universellement 
caténaire contenue dans B intègre de type fini sur A, on a pour tout p G Spec(S) au-dessus de 
q G Spec(A) la formule 

dimBp + deg. tr.fc(q) k(p) = dim Aq + deg. tr.A B. 

Mais, en pratique, on teste plutôt la caténarité formelle qui, comme on le voit juste après, entraîne 
l'universelle caténarité, et même lui est équivalente (voir (7.1.1) plus bas) ! 
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4 EXPOSÉ I. ANNEAUX EXCELLENTS 

Regardons ce qui se passe dans le cas complet. Rappelons pour mémoire le théorème 

de structure de Cohen des anneaux locaux complets noethériens ([EGA Oiv 19.8.8]) : 

2.9. Théorème (Cohen). — Soit A un anneau local noethérien complet de corps rési­

duel k. 

(i) A est isomorphe à un quotient d'un anneau de séries formelles sur un anneau 

de Cohen^\ Si A contient un corps, il est isomorphe à un quotient d'un anneau 

de séries formelles sur k. 

(ii) Si A est de plus intègre, il existe un sous-anneau B isomorphe à un anneau de 

séries formelles sur un anneau de Cohen ou un corps(vi) de sorte que l'inclusion 

B —> A soit locale, finie et induise un isomorphisme des corps résiduels. 

Tout anneau local noethérien complet est donc quotient d'un anneau régulier. 

2.10. Définition. — Soit X un schéma (resp. X = Spec(A) un schéma affine) noethé­

rien. On dit que X (resp. A) est 

— excellent si X vérifie l.a) + 2.a) + 3). 

— quasi-excellent si X vérifie l.a) + 2.a). 

— universellement japonais(vii) si X vérifie l.b) + 2.c). 

2.11. — L'existence d'une classe de schémas stable par extension finie pour laquelle 

le théorème de désingularisation est vérifié impose de se limiter aux schémas quasi-

excellents. Précisément, si tous les schémas intègres et finis Y sur X admettent une 

désingularisation (au sens de l'existence de Y' —• Y propre et birationnel avec Y' 

régulier), alors X est quasi-excellent ([EGA IV2 7.9.5]) ( v i i i ) . Inversement, le théorème 

de désingularisation d'Hironaka se généralise à tout schéma réduit quasi-excellent de 

caractéristique nulle ([Temkin, 2008, 3.4.3]) <ix) 

On regroupe plus bas (11) des exemples de « méchants anneaux » . Commençons 

par un regard plus positif. 

(v) Rappelons ([EGA Oiv 19.8.5]) que les anneaux de Cohen C sont les corps de caractéristique nulle 
et les anneaux de valuation discrète complets d'inégale caractéristique (0,p) non ramifiés. Lorsque 
le corps résiduel K de C est parfait, C n'est autre que l'anneau des vecteurs de Witt de K. 
(vi) Voir (4.2) pour une amélioration. 
(V10 Ou Nagata en anglais, voire pseudo-géométrique (chez Nagata notamment). 
(viii) Si (je piu s x peut localement se plonger dans un schéma régulier, alors X vérifie 3) et est donc 
excellent. 
(ix) Ce résultat a été longtemps considéré comme « bien connu des experts » alors que sa preuve, 
tout à fait non triviale, date de 2008. 
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4. L'EXEMPLE DE BASE : LES ANNEAUX LOCAUX NOETHÉRIENS COMPLETS. 5 

3. Exemples immédiats. 

3.1. Proposition. — Un corps, un anneau de Dedekind de corps des fractions de ca­

ractéristique nulle est excellent. 

Démonstration. — Vérifions qu'un corps est excellent. En effet, une algèbre finie et 

intègre sur un corps est un corps : les propriétés l.a), 2.a) et 3) sont donc vérifiées ce 

qui prouve que tout corps est excellent. 

Soit A un anneau de Dedekind de corps des fractions K de caractéristique nulle 

est excellent. 

— Vérifions l.a). Soit donc B intègre finie sur A. Soit B est un corps, auquel cas 

l.a) est vérifié, soit A se plonge dans B. Comme K est de caractéristique nulle, 

B est génériquement étale sur A, prouvant que le lieu régulier de B contient un 

ouvert non vide (le lieu étale par exemple). 

— Pour 2.a), considérons x fermé dans Spec(A). La fibre formelle non fermée en 

x est le complété Kx de K pour la valuation définie par x. Comme K est de 

caractéristique nulle, le corps Kx est séparable sur K d'où 2.a). 

— La propriété 3) est claire puisque le complété de A en x est intègre donc équidi-

mensionnel. • 

On verra plus bas (11.5) qu'il existe de nombreux anneaux de valuation discrète 

qui ne sont pas quasi-excellents. 

4. L'exemple de base : les anneaux locaux noethériens complets. 

Expliquons avec Nagata pourquoi les anneaux locaux noethériens complets sont 

excellents ( x ). 

La propriété 2.a) est tautologique. La caténarité formelle a été vue (2.6). Reste l.a). 

Une extension finie d'un anneau complet étant complet, on doit prouver le résultat 

suivant (cf. [EGA iv 2 22.7.6]). 

4.1. Théorème (Nagata). — Si X est local noethérien intègre et complet^, alors le 

lieu régulier est ouvert. 

Démonstration. — On va distinguer les cas d'égales et d'inégales caractéristiques. 

(x) Ceci permet de construire de nombreux exemples d'anneaux de valuation discrète excellents de 
caractéristique positive (par complet ion de schémas réguliers aux points de hauteur 1). 
(xl) D'après (2.2), ceci entraîne que le lieu régulier d'un schéma local noethérien complet est ouvert, 
qu'il soit intègre ou non. 
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6 EXPOSÉ I. ANNEAUX EXCELLENTS 

Cas I : (Cf. [EGA Oiv 22.7.6].) Supposons que A contienne un corps et notons fco 

son corps premier (qui est parfait !) de sorte que le corps résiduel k de Ap est 

séparable sur k0 pour tout p G Spec(A). L'anneau Ap est régulier si et seulement 

si Ap est formellement lisse sur k0 (voir dans ce cas [EGA Oiv 19.6.4]). D'autre 

part, le théorème de structure de Cohen (2.9) assure que A est isomorphe à 

k[[Ti,..., Tn]]/I de sorte que p s'identifie à un idéal de B = fc[[Ti,..., Tn]] conte­

nant / . Le critère jacobien de lissité formelle de Nagata ([EGA Oiv 22.7.3]) assure 

que Ap est régulier si et seulement si il existe des fco-dérivations Di, i = 1,..., m 

de B dans B et fi, i = 1,..., m des éléments engendrant Ip tels que dét(Difj) £ p. 

Cette condition étant visiblement ouverte, le théorème suit. 

Cas II : Supposons que A est d'inégale caractéristique, et donc de corps des fractions 

K de caractéristique nulle. D'après le théorème de structure de Cohen (2.9), A 

contient un sous-anneau régulier (et complet) B faisant de A une 5-algèbre de 

finie. Le corps des fractions L de B est de caractéristique nulle comme K. Quitte 

à remplacer A par un localisé A[l /a] , on peut supposer que B est libre de rang 

fini sur A de base 2/1,..., y m . Mais Spec(A) —• Spec(i?) est étale en dehors 

du fermé d = détA/B(Tr(yiyj)) ^ 0 de Spec(5), qui est non trivial puisqu'il 

contient le point générique, l'extension Frac(i?)/Prac(A) étant séparable — de 

caractéristique nulle —! Comme B est régulier, le théorème suit. • 

4.2. Remarque. — Ainsi, un anneau de séries formelles sur un corps est excellent. 

Notons que la preuve se simplifie si on connaît l'amélioration de Gabber du théo­

rème de structure de Cohen (IV-2.1.1 et IV-4.2.2) : si A noethérien est local complet 

et intègre, il contient un anneau B isomorphe à un anneau de séries formelles sur un 

anneau de Cohen ou un corps tel que Spec(A) —> Spec(i?) est fini et génériquement 

étale. On n'a alors pas besoin de distinguer les caractéristiques des corps de fractions 

dans la preuve. Mais la preuve de cette amélioration est difficile. 

5. Permanence par localisation et extension de type fini 

La notion de (quasi) excellence est remarquablement stable. Précisément, on a 

5.1. Théorème. — Toute algèbre de type fini ou plus généralement essentiellement de 

type fini sur un anneau excellent (resp. quasi-excellent) est excellente (resp. quasi-

excellente). En particulier, tout localisé d'algèbre de type fini sur un corps ou sur un 

anneau de Dedekind (Z par exemple) de corps des fractions de caractéristique nulle 

est excellent. 

(Rappelons que, dans ce contexte, un morphisme Spec(B) —• Spec(A) est dit es­

sentiellement de type fini si B est une localisation d'une A-algèbre de type fini par un 

système multiplicatif.) 
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5. PERMANENCE PAR LOCALISATION ET EXTENSION DE TYPE FINI 7 

Expliquons les grandes lignes de la preuve. 

5.2. Condition 1). — Le passage au localisé ne pose pas de problème. Soit B de type 

fini sur A. Si A vérifie l.a) ou l.b), les critères d'ouverture de Nagata ([EGA IV2 

6.12.4 et 6.13.7]) entraînent qu'il en est de même de B. 

5.3. Condition 2). — C'est la partie la plus difficile de la théorie ([EGA iv 2 7.4.4]), 

entièrement due à Grothendieck. Le point le plus délicat est la localisation : 

5.5.7. Théorème. — Si A vérifie 2. a) (resp. 2.b) ou 2.c)), alors pour tout p G Spec(A), 

Vanneau Ap vérifie 2. a) (resp. 2.b) ou 2.c)), autrement dit les fibres formelles en tout 

point de Spec(.A) sont géométriquement régulières (resp. géométriquement normales 

ou géométriquement réduites). 

Démonstration. — La preuve se fait par réduction au cas complet. On se limite à la 

propriété 2.a), le cas de 2.b) ou 2.c) se traitant de même. Soit m maximal contenant 

p G Spec(A) et soit B le complété m-adique de A. Comme Am —• B est fidèlement 

plat, il existe q G Spec(B) au-dessus de p. Par hypothèse, Am —• B est régulier. Les 

morphismes réguliers étant stables par localisation, Ap —> Bq est régulier. On regarde 

alors le diagramme commutatif 

a (3 

A p - ^ B q 

Supposons que {3 soit régulier. Alors, / o a est régulier comme composé de deux 

morphismes réguliers. Comme / est fidèlement plat (comme morphisme local complété 

du morphisme plat / ) , on déduit que a est régulier (exercice ou [EGA IV2 6.6.1]) ce 

qu'on voulait. On est donc ramené à /3, donc au cas complet. La régularité de /3 résulte 

alors de 

5.5.2. Théorème. — Soit B un anneau local noethérien complet B. Alors, les fibres 

formelles de B en q G Spec(i?) sont géométriquement régulières. 

Ce théorème est le noyau dur de la théorie. On se ramène (2.4) à étudier les fibres 

formelles génériques. On montre donc dans un premier temps ([EGA Orv 22.3.3]) 

que si p est un idéal premier de A local noethérien complet intègre, la fibre formelle 

générique Ap <S)AP Frac(A p) de Ap est formellement lisse sur Prac(A p) = Frac(A) 

en tout point. Dans un second temps, on montre ([EGA Orv 22.5.8]) qu'une algèbre 
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8 EXPOSÉ I. ANNEAUX EXCELLENTS 

locale noethérienne sur un corps est formellement lisse ( x i i ) si et seulement si elle est 

géométriquement régulière ( x i i i ). • 

Une fois prouvée la permanence par localisation, on peut montrer : 

5.3.3. Théorème. — Soit B une A-algèbre de type fini. Si A vérifie 2.a) (resp. 2.b) ou 

2.c)), alors B vérifie 2.a) (resp. 2.b) ou 2.c)). 

La preuve se fait par récurrence sur le nombre de générateurs de B. Grâce à l'in­

variance par localisation, on se ramène aisément à l'étude des fibres formelles de B 

en un idéal maximal dans le cas où B engendré par un élément et A est complet. La 

preuve n'est pas facile, mais beaucoup plus simple que celles de ([EGA Orv 22.3.3 et 

0.22.5.8]). 

5.4. Condition 3).— De même que pour les conditions de type 2), la stabilité par loca­

lisation et extension finie résulte comme plus haut ([EGA IV2 7.1.8]) du cas complet, 

la platitude du morphisme de localisation permettant de descendre du complété à 

l'anneau — ce n'est pas immédiat malgré tout —. Le cas complet est facile comme 

on a vu (2.6). 

5.5. Application au cas local. — Dans le cas local, la condition d'ouverture du lieu 

régulier découle de 2.a). Précisons. 

5.5.1. Proposition. — (i) Le lieu régulier d'un anneau local noethérien vérifiant 2.a) 

est ouvert. 

(ii) En particulier, un anneau local noethérien est quasi-excellent (resp. excellent) si 

et seulement s'il vérifie 2.a) (resp. s'il vérifie 2.a) et 3)). 

Démonstration. — Soit / : X —» Y un morphisme fidèlement plat de schémas noe-

thériens à fibres régulières (resp. normales ou réduites). Alors, ÛX est régulier (resp. 

normal ou réduit) si et seulement si 0f(x) ! ' e s t ([EGA iv 2 6.4.2, 6.5.1]). Notons UR(X) 

l'ensemble des x G X tel que R(&X) est régulier (resp. normal ou réduit). Autrement 

dit, on a f~1(UR(Y)) = UR(X). Or le lieu régulier ou normal d'un anneau complet 

intègre est ouvert (4.1). De plus, le morphisme de complétion d'un anneau local noe­

thérien A est régulier si et seulement si A vérifie 2.a) d'après (5.3.2). Il suit que 2.a) 

entraîne l.a) (resp. 2.b) entraîne l.b)) dans le cas local. • 

(x n) Rappelons qu'une fc-algèbre locale B (muni de la topologie adique) est formellement lisse sur k 
si tout fc-morphisme continu d'algèbre B —+ C/I avec I2 = 0 se relève continûment à la C-algèbre 
discrète C. 
(xiii) E n fait 

on n'a visiblement besoin que du sens formellement lisse entraîne géométriquement 
régulier, qui est le plus facile. Notons que la preuve de l'équivalence a été considérablement simplifiée 
par Faltings ([Faltings, 1978] ou pour le lecteur non germaniste [Matsumura, 1989, 28.7]). 
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6. COMPARAISON AVEC EGA IV : LE CAS DES ANNEAUX UNIV. JAPONAIS 9 

6. Comparaison avec EGA IV : le cas des anneaux universellement japonais 

Rappelons la définition usuelle des anneaux universellement japonais ([EGA 0j v 

23.1.1]). 

6.1. Définition. — X est dit 

(i) japonais s'il est intègre et si la clôture intégrale de A dans toute extension finie(xiv) 

de son corps des fractions est finie sur A(xv) ; 

(ii) universellement japonais si tout anneau intègre qui est extension de type fini de 

A est japonais ( x v i ) . 

La définition d'anneau japonais n'est que technique en ce qu'elle ne sert qu'à définir 

la seule notion véritablement utile (et vérifiable à vrai dire) : celle d'anneau univer­

sellement japonais. Cette définition est compatible avec 2.10. Expliquons pourquoi. 

D'après Nagata, X est universellement japonais au sens de 6.1 si et seulement si X 

vérifie l.b) et si tous les quotients intègres des localisés &x,x en les points fermés 

x e X sont japonais ([EGA IV2 7.7.2]). Or, le théorème de Zariski-Nagata ([EGA IV2 

7.6.4]) assure que les quotients intègres de &x,x sont japonais si et seulement si les 

fibres formelles de 0x,x s o n t géométriquement réduites(x v i i). D'où l'équivalence entre 

les deux définitions des anneaux universellement japonais. 

Si on renforce la condition 2.c) en 2.b) (fibres formelles géométriquement normales), 

le passage à la clôture intégrale commute à la complet ion. Précisément, on a ([EGA 

IV2 7.6.1 et 7.6.3]) 

6.2. Proposition. — Supposons que A local noethérien vérifie 2.b) et soit réduit. Alors, 

la clôture intégrale A' de A dans son anneau total des fractions est finie sur A et son 

complété est isomorphe à la clôture intégrale de Â ( x v i i i ) dans son anneau total des 

fractions. 

On déduit l'important critère d'intégrité du complété. 

6.3. Corollaire. — Soit A local noethérien. 

(i) Supposons A intègre et vérifiant 2.b). Alors, A est intègre si et seulement si A 

est unibranche (i.e. A' local). 

(xiv) Q n p e ut s e contenter des extensions finies radicielles si l'on veut : exercice ou [EGA ivi 23.1.2]. 
(xv) Comme module ou comme algèbre : c'est la même chose car la clôture intégrale est entière sur 
A par construction. 
(xvi) Qu^ c e qUj e s^ équivalent ([EGA IV2 7.7.2]), si tout quotient intègre est japonais. 
(xvn) Qu^ de f aç 0 n équivalente, que le complété de toute x̂,x"algèbre finie et réduite est réduit. 
Comme d'habitude, la preuve se fait par réduction au cas complet, et même régulier complet grâce 
au théorème de structure de Cohen. Le caractère japonais de tels anneaux est garanti par le théorème 
de Nagata ([EGA 0iV 23.1.5]). 
(xvm) Qui e s t réduit puisque A est japonais (cf. note xvii). 
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10 EXPOSÉ I. ANNEAUX EXCELLENTS 

(ii) Supposons A hensélien. Alors A est excellent si et seulement s'il vérifie 2.a). Si 

A est de plus intègre, il en est de même de son complété. 

Démonstration. — Prouvons (i). Comme A est unibranche, la clôture intégrale A' de 

A est locale : il en est de même de son complété A!. D'après (6.2), on a A' = (A)' et 

donc est normal. Or, un anneau normal et local est intègre. Comme A' contient A, le 

résultat suit. 

Prouvons (ii). D'après (5.5.1), on doit seulement se convaincre qu'un anneau local 

hensélien vérifiant 2.a) vérifie aussi 3), i.e. est formellement caténaire. On peut sup­

poser A intègre et on doit prouver que A est équidimensionnel. Mais comme A est 

hensélien intègre, il est unibranche [EGA iv 4 18.8.16], donc A est intègre d'après le 

premier point, ce qui assure l'équidimensionalité. • 

7. Comparaison avec EGA IV : le cas des anneaux excellents 

La définition des anneaux noethériens excellents de Grothendieck est a priori 

différente de celle donnée ici. Notamment, elle fait intervenir, un peu bizarrement, 

Vuniverselle caténarité en lieu et place de la caténarité formelle. Précisément, elle 

fait intervenir trois propriétés. Dans cette partie A désigne un anneau noethérien et 

X = Spec (A) le schéma affine correspondant. 

1EGA) : Pour tout quotient intègre B de A et toute extension finie radicielle K' du 

corps des fractions K de B, il existe une sous-5-algèbre finie B' de K' contenant 

B, de corps des fractions K' telle que le lieu régulier de Spec(£?') soit un ouvert 

dense. 

2ÉGA) : Les fibres formelles de X en tout point (fermé ou non) sont géométrique­

ment régulières. 

3ÉGA) : A est universellement caténaire. 

Les anneaux excellents au sens des EGA sont les anneaux noethériens vérifiant les 

trois propriétés précédentes ([EGA IV2 7.8.2]). 

Notons tout de suite, ce qui est élémentaire, que l'universelle caténarité de A équi­

vaut à celle des anneaux locaux de ûx,x en tous ses points fermés — ou tous ses 

points si on préfère — ([EGA iv 2 5.6.3]). 

Pour que la définition des anneaux excellents de Grothendieck ([EGA iv*2 7.8.2]) 

soit la même que (2.10), on doit prouver la proposition suivante. 

7.7. Proposition. — Pour tout anneau noethérien et i = 1,2,3, les propriétés i) 

et iÉGA) sont équivalentes. En particulier, les notions de quasi-excellence et d'excel­

lence de la première partie coïncident avec celles des EGA. 
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8. HENSÉLISATION ET ANNEAUX EXCELLENTS 11 

Démonstration. — La condition 1ÉGA) équivaut à 1) d'après [EGA iv 2 6.12.4] (seule 

la partie 1ÉGA) entraîne 1) est délicate même si elle n'utilise pas le critère de régula­

rité de Nagata mais seulement de l'algèbre commutative standard — essentiellement 

le critère de régularité par fibres et la non dégénérescence de la trace des extensions 

finies separables de corps). 

Pour l'équivalence de 2) et 2ÉGA), il faut se convaincre que la régularité géomé­

trique des fibres formelles en tout point fermé entraîne la régularité géométrique des 

fibres formelles en tout point : c'est un cas particulier des propriétés de permanence 

(5). 

Ceci prouve la compatibilité des définitions de la quasi-excellence. 

Si X vérifie 3), tous ses anneaux locaux sont formellement caténaires (permanence 

par localisation, cf. la section 5) et donc sont caténaires (2.7). Comme tout schéma 

(affine) de type fini sur X vérifie 3) (permanence par extension de type finie, cf. la 

section 5), on déduit que X est universellement caténaire et donc X vérifie 3ÉGA). 

La réciproque est due à Ratliff : 

7.1.1. Proposition (Ratliff). — Un anneau noethérien universellement caténaire est 

formellement caténaire. 

Précisément, Ratliff prouve ([Ratliff, 1971, 3.12]) que si A est caténaire, Ap est 

formellement caténaire dès que p n'est pas maximal ( x i x ). Pour montrer la proposition, 

on peut donc supposer p maximal et A local intègre. Alors, p[X] est premier non 

maximal dans A[X] de sorte que le complété p[X]-adique j4[JT]p[x] est formellement 

équidimensionnel. Comme A —> A[X]p[X] est local et plat, l'argument de platitude 

([EGA IV2 7.1.3]) utilisé plus haut assure que A est équidimensionnel. • 

8. Hensélisation et anneaux excellents 

Rappelons qu'un morphisme d'anneaux noethériens A —> B est dit absolument 

plat s'il est réduit à fibres discrètes et si les extension résiduelles sont algébriques et 

separables. Ou, de façon équivalente, s'il est plat ainsi que le morphisme diagonal 

B ®AB B (cf. [Ferrand, 1972, prop. 4.1] et [Olivier, 1971, 3.1]). Lorsque B est 

(localement) de type fini sur A, ceci équivaut au fait que B soit étale sur A. En 

particulier, les extensions résiduelles sont separables de sorte qu'un tel morphisme est 

en fait régulier. Par exemple, tout morphisme ind-étale est absolument plat. On a 

alors le résultat suivant ([Greco, 1976]). 

(X1X) Dans l'étrange terminologie de l'auteur, c'est la condition depth(p) > 0, ce qui signifie donc que 
la dimension de A/p est > 0. 
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12 EXPOSÉ I. ANNEAUX EXCELLENTS 

8.1. Théorème. — Soit f : A —> B un morphisme absolument plat d'anneaux noethé­

riens. Alors 

(i) Si A est vérifie 2.a) (resp. 2.b) ou 2.c)), B un vérifie 2.a) (resp. 2.b) ou 2 . c ) j ( x x ) . 

(ii) Si A est universellement-japonais, B est universellement japonais. 

(iii) Si A est quasi-excellent, B est quasi-excellent. 

(iv) Si A est excellent, B est excellent. 

(v) Si f est fidèlement plat, la réciproque de i), ii) et iii) est vraie. 

(vi) Si f est fidèlement plat et B est localement intègre, la réciproque de iv) est vraie. 

Comme les morphismes d'hensélisation et de stricte hensélisation sont absolument 

plats ([EGA IV4 18.6.9 et 18.8.12]) et fidèlement plats (ils sont locaux), on trouve, 

en particulier, que la quasi-excellence et l'excellence sont stables par hensélisation et 

hensélisation stricte et que, le caractère quasi-excellent ou universellement japonais 

d'un anneau local se teste sur l'hensélisé ou l'hensélisé strict. Dans le cas de l'hensélisé, 

ces résultats étaient connus de Grothendieck ([EGA IV4 18.7]), notamment 18.7.6). 

En revanche, on ne peut espérer une propriété de descente de l'excellence comme 

en vi) sans condition d'intégrité locale (cf. 11). 

9. Completion formelle et anneaux excellents 

Soit / un idéal d'un anneau noethérien A contenu dans son radical de Jacobson et 

A sa completion 7-adique. On peut se demander si les propriétés d'excellence passent 

au complété. La réponse est oui en général. Précisément, on a : 

9.1. Proposition. — Soit I un idéal d'un anneau noethérien A contenu dans son radical 

de Jacobson et A sa completion I-adique. 

(i) Si A est (semi)-local quasi-excellent (resp. excellent), il en est de même de A; 

(ii) Si A est une Q-algèbre excellente, il en est de même de A. 

La permanence de la quasi-excellence dans le cas (semi)-local, i.e. de la régularité 

géométrique des fibres formelles, est due à Rotthaus ([Rotthaus, 1977]), tandis que 

celle de l'universelle caténarité est due à Seydi ( x x i ) (le théorème 1.12 de [Seydi, 1970] 

prouve qu'un anneau de série-formelles A[[ti,..., tn]] est universellement caténaire 

dès que A l'est ; il suffit alors de considérer des générateurs ¿1, . . . ,in de I définis­

sant une surjection A[[t\,... , t n ]] - » A). Pour (ii), reste à étudier l'ouverture du lieu 

(xx) Q u pj u s généralement, si A est un P-anneau au sens de Grothendieck ([EGA IV2 7.3]), B est un 
P-anneau 
(xxi) Comme me l'a expliqué Christel Rotthaus (communication privée), si A, B sont locaux tels que 
ACfîCAetfî = A, alors l'universelle caténarité de A entraîne celle de B. 
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10. APPROXIMATION D'ARTIN ET ANNEAUX EXCELLENTS 13 

régulier dans le. C'est ce qui est fait dans [Brodmann & Rotthaus, 1980], en utili­

sant le théorème de désingularisation d'Hironaka de façon cruciale. Les techniques de 

[Brodmann & Rotthaus, 1980] ont d'ailleurs permis de montrer que si le théorème de 

désingularisation était vrai dans le cas local excellent, toute completion 7-adique d'an­

neau excellent comme plus haut serait excellente ([Nishimura & Nishimura, 1987]). 

En fait, le résultat est général. Plus précisément, Gabber ([Gabber, 2007]) peut 

remplacer le théorème d'Hironaka par son théorème d'uniformisation (VII-1.1) dans 

les arguments de [Nishimura & Nishimura, 1987] pour prouver le résultat suivant 

9.2. Théorème (Gabber). — Soit A un anneau noethérien I-adiquement complet. 

Alors, si A/I est quasi-excellent, A est quasi-excellent. 

On ne peut remplacer quasi-excellent par excellent dans le théorème précédent. En 

effet, Greco ([Greco, 1982]) a construit un idéal / d'un anneau A intègre de dimen­

sion 3, noethérien semi-local 7-adiquement complet et séparé qui est quasi-excellent 

non excellent alors que A/I est excellent. On peut même supposer que A est une 

Q-algèbre. La construction se fait par pincements d'idéaux maximaux de hauteurs 

différentes (cf. 11.1). Malgré tout, comme on vient de le voir, la caténarité formelle 

passe aux complétions partielles ([Seydi, 1970]) de sorte que le complété J-adique d'un 

anneau excellent A est excellent dès lors que / est contenu dans le radical de Jacobson 

de A. 

10. Approximation d'Artin et anneaux excellents 

Rappelons la définition suivante (cf. [Artin, 1969]). 

10.1. Définition (M. Artin). — Un anneau local noethérien (A, m) a la propriété d'ap­

proximation (AP) si pour toute variété affine X de type fini sur A, l'ensemble X(A) 

est dense dans X{A). 

Bien entendu, il revient au même de dire que pour tout X comme plus haut, on a 

X(Â) ¿0=* X(A) ^ 0 . 

Si A vérifie AP, A est certainement hensélien. Mais l'exemple 11.4 prouve qu'il ne 

suffît pas que A soit hensélien pour qu'il possède la propriété d'approximation. En fait, 

Rotthaus a observé que l'excellence était une condition nécessaire à l'approximation 

d'Artin : 

10.2. Lemme ([Rotthaus, 1990]). — Un anneau local noethérien vérifiant AP est hen­

sélien et excellent. 
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14 EXPOSÉ I. ANNEAUX EXCELLENTS 

Soit k un corps de caractéristique nulle muni d'une valuation non triviale à valeurs 

réelles. Artin a prouvé ([Artin, 1968]) que les anneaux de séries convergentes à co­

efficients dans k (pas nécessairement complets) ont la propriété d'approximation. Ils 

sont donc henséliens et excellents ( x x i i ). 

La situation est maintenant complètement clarifiée grâce aux travaux de Popescu 

culminant avec le résultat suivant ([Swan, 1998]) : 

10.3. Théorème (Popescu). — (i) Soit A —• B un morphisme régulier d'anneaux noe-

thériens. Alors, B est limite inductive filtrante de A-algèbres lisses. 

(ii) Tout anneau local noethérien hensélien et excellent satisfait la propriété d'ap­

proximation A P ( x x i i i ) . 

Le fait que i) entraîne ii) est un simple exercice. En effet, si A est quasi-excellent, 

le morphisme de complétion A —> A est régulier et donc on peut écrire A = colimL 

où L est lisse sur A. Soit X = Spec(JB) avec B de type fini et a G X(A) d'image 

a(0) G X(k) où k corps résiduel de A. Il existe donc L lisse sur A tel que â provienne 

de l G X(L). Comme A est hensélien, il existe a G X(A) (tel que a(0) = a(0))( x x i v>. 

11. Exemples de méchants anneaux noethériens 

Soit A un anneau noethérien et X = Spec(A) le schéma affine correspondant. Il 

ressortira de cet inventaire que les propriétés désagréables des anneaux du point de 

vue de l'excellence n'ont en général pas seulement à voir avec la caractéristique > 0 

mais peuvent aussi se produire pour des Q-algèbres. 

11.1. Caténarité formelle : condition 3). — Regardons d'abord de mauvais anneaux du 

point de vue de la caténarité formelle. 

( x x i i) Dans le même ordre d'idées, l'anneau k{x±,..., xn} des séries formelles restreintes (séries 
dont la suite des coefficients tendent vers 0) à coefficients dans un corps value complet non ar-
chimédien k est excellent dès que k est de caractéristique nulle ou que k est de degré fini sur 
kp,p = car(fc) ([Greco & Valabrega, 1974]). Le cas général a été obtenu par Kiehl ([Kiehl, 1969] 
et aussi [Conrad, 1999] pour une preuve et des développements). Ceci répond, partiellement, à une 
question de Grothendieck ([EGA IV2 7.4.8 B)]). En revanche, si k est value non archimédien non 
complet de caractéristique positive tel que le morphisme de complétion k —• k n'est pas séparable, 
Gabber sait prouver que k{x±} n'est pas excellent. 
(xxiii) V o i r [Spivakovsky, 1999, th. 11.3] pour un énoncé un peu plus général. 
(xxiv) L'argument n'utilise que la régularité géométrique des fibres — et le caractère hensélien — 
mais pas la caténarité formelle. Ce n'est pas paradoxal, car un anneau local hensélien est excellent 
si et seulement si ses fibres formelles sont géométriquement régulières (5.5.1). 
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11. EXEMPLES DE MÉCHANTS ANNEAUX NOETHÉRIENS 15 

11.1.1. La caténarité n'entraîne pas la caténarité formelle.— Dans [EGA IV2 5.6.11], 

Grothendieck construit un exemple d'anneau local noethérien de dimension 2 in­

tègre, caténaire mais non universellement caténaire, donc non formellement caténaire 

d'après 7.1.1 (Le. ne vérifiant pas 3)). 

Expliquons la construction qui consiste à pincer une surface lisse sur un corps fc, de 

caractéristique nulle si l'on veut, le long de deux points de hauteurs différentes ayant 

des corps résiduels isomorphes à k. 

On part d'un corps k extension transcendante pure de degré infini sur son corps 

premier par exemple, que l'on peut même supposer être Q. Soit S une surface lisse 

munie d'un morphisme projectif sur T = Spec(k[r]) et t G S(T). On suppose qu'il 

existe un point s G S(k) de la fibre So de S —• T au-dessus de 0 G T qui n'est 

pas dans l'image de t. Par exemple, on peut prendre S = Spec(A:[cr, r]) avec t la 

section d'image a = 0 et s = (1,0). Les corps k(s) = k et k(t) = Prac(A;[r]) sont 

des extensions transcendantes pures de Q de même degré (infini) de sorte qu'on peut 

choisir un isomorphisme de corps k (s) ~ k(t). Ceci permet de définir le sous-anneau 

ÛY, de &s des fonctions qui coïncident en s et t. On dispose donc d'un morphisme 

7r : S —» E qui envoie s,t sur a G E. Posons A = û^a et soit B l'anneau de 

coordonnées de 5 Spec(^£ 5 ( T). Par construction, d im(5 s ) = 2 et àim(Bt) = 1. 

Alors, A est noethérien, et B est la normalisation de A et est fini sur A. Comme A 

est de dimension 2 et intègre il est évidemment caténaire. Si A était universellement 

caténaire, la formule de dimension (voir note iv) entraînerait dim(A) = dimi? s = 

dim^t, une contradiction. 

On peut même trouver pour tout n > 2 des anneaux locaux noethériens intègres de 

dimension n vérifiant 2.a), caténaires non universellement caténaires donc ne vérifiant 

pas 3) ([Heinzer et al., 2004]). 

11.1.2. La caténarité formelle ne se teste pas sur l'hensélisé.— Par des techniques 

de pincements analogues de surfaces sur k, donc de caractéristique nulle si on veut, 

comme plus haut, Grothendieck construit en effet un exemple d'anneau local non uni­

versellement caténaire (donc non formellement caténaire) dont l'hensélisé est excellent 

([EGA IV4 18.7.7]). Quitte à changer de base par la clôture séparable, on s'aperçoit 

que la caténarité formelle ne se teste pas plus sur l'hensélisé strict, contrairement à 

la quasi-excellence (8.1). 

11.1.3. La caténarité formelle n'entraîne certainement pas 2.a) (ni même 2.c)).— 

Par exemple, un anneau de valuation discrète A non excellent (cf. la partie 11.5) a une 

fibre formelle générique non géométriquement régulière (en effet, il est formellement 

caténaire (2.8) et 2.a) entraîne l.a) dans le cas local (5.5.1)). Or, cette fibre générique 

formelle est artinienne dans ce cas (elle ne contient pas l'idéal maximal de A) et donc 

la régularité géométrique équivaut ici à la géométrique réduction. 
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16 EXPOSÉ I. ANNEAUX EXCELLENTS 

II.I.4. R existe des anneaux intègres normaux non formellement caténaires.— 

Ogoma ([Ogoma, 1980]) a construit une Q-algèbre locale A intègre normale de 

dimension 3 dont le complété à une composante de dimension 2 et une composante 

de dimension 3 et donc n'est pas équidimensionnel. Pire, cet anneau n'est même pas 

caténaire : il possède une infinité de chaînes saturées d'idéaux premiers de longueur 

2 ou 3. 

11.2. Quasi-excellence : conditions d'ouverture l.a) et l.b). — On s'intéresse ici à des 

anneaux ayant un lieu régulier ou normal non ouvert. 

Comme on le verra plus loin (XIX-2.6), Gabber a construit un exemple de schéma, 

qu'on peut même supposer être un Q-schéma, intègre de dimension 1, dont le lieu régu­

lier (ou normal, c'est la même chose ici) contient une infinité de points et en particulier 

n'est pas ouvert. La construction assure que les fibres formelles sont géométriquement 

régulières. Comme on est en dimension 1, normalité et régularité coïncident de sorte 

qu'on a un exemple vérifiant 2.a) et 3) mais pas l.b). 

Dans [Rotthaus, 1979], Rotthaus construit une Q-algèbre noethérienne locale in­

tègre de dimension 3 qui est formellement caténaire, universellement japonaise mais 

dont le lieu régulier n'est pas ouvert. 

11.3. Quasi-excellence. Fibres formelles : conditions 2a), 2b) et 2c). — On s'intéresse ici 

à des anneaux ayant des fibres formelles non géométriquement régulières voire pire. 

— Rotthaus construit une Q-algèbre locale A noethérienne de dimension 3 régu­

lière (donc formellement caténaire), universellement japonaise mais pas excellente 

([Rotthaus, 1979]). Précisément, la fibre formelle au-dessus d'un point de hauteur 

1 n'est pas régulière. Ainsi, elle vérifie 2.c), 3) car A régulier mais pas 2.a). 

Dans l'exemple d'Ogoma précédent, la fibre formelle générique est connexe 

non intègre (elle a une composante de dimension 1 et une de dimension 2 qui 

se coupent), donc non normale. On a donc un exemple de Q-algèbre locale (de 

dimension 3) noethérienne (intègre et normale) ne vérifiant pas 2.b). 

On peut descendre d'une dimension : Nagata construit ([Nagata, 1962], ex. 

7 de l'appendice A l ) une Q-algèbre locale B qui est intègre normale, formelle­

ment caténaire et de dimension 2 mais dont le complété n'est pas intègre ( x x v ) . 

D'après 6.2, ceci prouve que B ne vérifie pas 2.b) (mais vérifie 3)). 

(xxv) L a construction est la suivante : soient x,y algébriquement indépendants sur Q et w = 
Yl,i>oaix* £ Q[W] transcendant sur K{x). On pose z\ — (y + w)2 et ^+1 = (z — (y + 
J2j<iajxj)2)/xi' S o i t A l e localisé de Q[x,y,ziti > 1] en (x,y,Zi,i > 1). Alors, B = A[X}/(X2-z1) 
est l'exemple cherché. On vérifie facilement que la completion de A est Q [[#,?/]] de sorte que 
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— En caractéristique > 0, Rotthaus construit également ([Rotthaus, 1979]) une al­

gèbre locale noethérienne de dimension 2 régulière universellement japonaise mais 

pas excellente. Dans ce denier cas, comme les fibres formelles sont de dimen­

sion < 2, elles ne sont pas non plus géométriquement normales. Ainsi, elle vérifie 

2.c), 3) mais pas 2.b). 

— En caractéristique nulle, Ferrand et Raynaud ont construit ([Ferrand & Raynaud, 

1970], prop. 3.3 et 3.5) une C-algèbre locale noethérienne A intègre de dimension 2 

telle que 

• le normalisé A' de A est l'anneau des séries convergentes noté C{x, y} (ne 

pas confondre avec l'hensélisé de C[x,2/]) et donc est excellent. 

• A n'est pas japonais (en fait, A! n'est pas fini sur A). 

• Â a des composantes immergées (de sorte que — platitude — la fibre formelle 

générique a des composantes immergées et donc ne vérifie pas 2.c)). 

• Le lieu normal de A[[T]] n'est pas ouvert. D'après [EGA iv 2 6.13.5] son lieu 

régulier n'est donc pas ouvert non plus. 

• L'anneau A est formellement caténaire (le spectre de son complété est irré­

ductible). Il en est donc de même de A[[T}} ([Seydi, 1970]). 

— Dans [Nagata, 1962], ex. 5 de l'appendice Al , Nagata construit même un an­

neau local noethérien intègre de dimension 3 (de caractéristique > 0) dont la 

clôture intégrale n'est même pas noethérienne; en particulier, cet anneau n'est 

pas japonais ( x x v i ) . 

— Pire, à partir d'anneaux construits par Nagata, Seydi construit ([Seydi, 1972]) un 

anneau noethérien intègre normal A de dimension 3 dont le corps des fractions 

est de caractéristique nulle et dont le complété n'est pas réduit. En particulier, il 

est japonais mais pas universellement japonais. Ogoma construit ([Ogoma, 1980]) 

une Q-algèbre noethérienne normale, donc japonaise, qui n'est ni universellement 

japonaise ni caténaire. 

— Les fibres formelles peuvent être épouvantables, même en dimension 1 : Ferrand 

et Raynaud construisent un C-schéma local intègre de dimension 1 dont la fibre 

formelle générique est un schéma artinien qui n'est même pas Gorenstein — donc 

certainement non réduit — ([Ferrand & Raynaud, 1970], prop. 3.1) : X ne vérifie 

B = Q[[x,y]][X]/(X2 — (y + w)2) n'est pas intègre. Comme d'habitude dans ces constructions, c'est 
le caractère noethérien de A qui pose problème. Une fois ceci acquis, A est régulier de dimension 2 
et B normal puisque que Cohen-Macaulay de dimension 2 singulier uniquement à l'origine. Notons 
que B est formellement caténaire comme quotient d'un régulier. 
(xxvi) L a construction est du même type que celle d'un anneau de valuation discrète décrite dans la 
note xxvii dont on reprend les notations. On considère cette fois-ci l'anneau B = kp[[X,Y, Z]][k] et 
d = y^2i>0 XiX% + Z^2i>Q X2i+\X%. L'anneau B[d] convient. 
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pas 2.c). En particulier, X n'est pas universellement japonais (et donc pas quasi-

excellent). Bien entendu, X vérifie l.a) et 3) pour des raisons de dimension. 

— Les exemples d'anneaux de valuation discrète non excellents (donc de caractéri­

stique positive) donnent des exemples d'anneaux ne vérifiant pas 2.c) (2.a) et 2.c) 

sont équivalents en dimension < 1) mais vérifiant l.a) et 3). 

11.4. Remarque. — Nagata a construit ([Nagata, 1962, E3.3]) un anneau de valuation 

discrète dont la fibre formelle générique est une extension radicielle non triviale de 

son corps des fractions, donc non excellent ( x x v i i ) . 

On va voir maintenant que de tels anneaux se rencontrent très facilement. 

11.5. Méthode systématique de construction d'anneaux non quasi-excellents. — En fait, 

on peut construire (Orgogozo) de façon systématique de très nombreux anneaux de 

valuation discrète non quasi-excellents. Précisons ( x x v i i i ) . 

11.6. Proposition. — Soit k((t)) le corps des séries de Laurent à coefficients dans un 

corps k de caractéristique p > 0 muni de sa valuation t-adique et L/k une sous-

extension de type fini de k((t))/k de degré de transcendance > 1 sur k. Alors, le sous-

anneau A de L des éléments de valuation > 0 est un anneau de valuation discrète 

non excellent. 

Démonstration. — Soit L un corps de caractéristique > 0. Le p-rang est la dimension, 

finie ou non, de £7^, le module des différentielles absolues. C'est aussi log p([L : Lp]) 

où [L : Lp] est la dimension de L sur Lp ([EGA iVi 21.3.5]). La remarque clef est que 

le p-rang croit par extension de corps séparable K/L, finie ou non, puisqu'on a dans 

ce cas un plongement K ®£ iïi <̂-> ([EGA iv 2 20.6.3]) 

(11.6.1) [L:LP] < [K : Kp]. 

(xxvn) v 0j ci i a construction : soit k le corps des fractions de Fp[Xn,n > 0] et K celui de A = fe[[y]]. 
Soit L le sous-corps de K = k((Y)) corps des fractions de A = kp[[Y]][k]. Le complété de A est A. On 
montre, et c'est le point délicat, que A est noethérien. L'outil est le critère de Cohen : un anneau semi-
local est noethérien si et seulement si les idéaux maximaux sont de type fini et les idéaux de type fini 
fermés ([Nagata, 1962, 31.8]). Son complété étant régulier, il est lui même régulier donc de valuation 
discrète (dimension). Soit L le corps des fractions de A. On vérifie facilement que c = 5 n̂>o 
n'est pas dans L. Choisissons une p-base {ĉ } de K sur L contenant c (ce qui est possible car c^L p, 
cf. [EGA ivi 21.4.3]). Soit Ko le corps engendré sur L par les distincts de c. L'extension K/KQ 
est radicielle de degré p par construction. L'anneau A PI KQ est un anneau de valuation discrète de 
complété k[[Y]] de sorte que la fibre formelle générique n'est pas géométriquement réduite, 
(xxvm) cette construction généralise en fait, de façon indépendante, un exemple obtenu par Rotthaus 
dans [Rotthaus, 1997] 

ASTÉRISQUE 363-364 



11. EXEMPLES DE MÉCHANTS ANNEAUX NOETHÉRIENS 19 

Par ailleurs, si L est de type fini sur un corps k de p-rang fini, on a ([Bourbaki, 

A, V, § 16, n° 6, cor. 3]) 

(11.6.2) [L : Lp] = pdeë'tT-^[k : kp\. 

Plaçons nous dans la situation du lemme. L'anneau A est de valuation discrète par 

construction et son corps des fractions est L. L'hensélisé Ah est local régulier de di­

mension 1 donc intègre et son corps des fractions K = Prac(^4h) contient L = Frac (A). 

Le complété Ah est un anneau de séries formelles K = w uniformisante de Ah 

(comme complété d'une fc-algèbre locale régulière de dimension 1) et son corps des 

fractions K est la fibre générique formelle de Spec(A h) - » Spec(A h ). 

Supposons que Ah soit quasi-excellent (précisément vérifie 2.a) de sorte que l'ex­

tension K/K est séparable. 

On a donc dans ce cas 

[K : Kp] < [K : Kp}. 

Comme K = /c((tu)), on a 

[K : Kp] = p[k : kp]. 

On a donc (11.6.1), l'extension K/L étant séparable, 

[K : Kp] > [L : Lp]. 

de sorte que, grâce à (11.6.2), on a 

p[k : kp) = [K : Kp] > [L : Lp] > p[k : kp], 

une contradiction. Ceci interdit à A également d'être quasi-excellent (8.1). • 
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