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EXPOSE I

ANNEAUX EXCELLENTS

Michel Raynaud, rédigé par Yves Laszlo

Ce texte est une version un peu modifiée d’un exposé de Michel Raynaud.

1. Introduction

Le but est de familiariser le lecteur avec la notion d’excellence et de lui donner un
fil d’Ariane pour se repérer dans EGA IV ou ’on trouve les principales propriétés
des anneaux excellents. Son ambition n’est certainement pas de donner une exposi-
tion compléte de la théorie, mais une idée de la stratégie qui raméne pour ’essentiel
les preuves a des énoncés, souvent difficiles, dans le cas complet. Dans un second
temps, on montre que toutes les propriétés définissant les anneaux excellents peuvent
étre mises en défaut, méme en petite dimension. Notamment, il existe des anneaux de
valuation discréte non excellents ainsi que des anneaux noethériens intégres de dimen-
sion 1 dont le lieu régulier n’est pas ouvert. Ce dernier exemple est un sous-produit
d’une construction proposée par Gabber (XIX-2.6). Elle montre que le théoréme de
constructibilité des images directes (XIII-1.1.1) n’est plus vrai si on omet la condition
de quasi-excellence.

2. Définitions

Soit A un anneau noethérien et X = Spec(A) son spectre. On va s’intéresser & des
conditions sur X de deux sortes.
e Conditions globales :

2.1. Condition 1 : conditions d’ouverture. — Tout schéma intégre Y fini sur X contient
un ouvert dense

l.a) régulier.
1.b) normal.
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2 EXPOSE I. ANNEAUX EXCELLENTS

2.2. Remarque. — La condition 1.a) entraine d’apreés le critére d’ouverture de Nagata
que le lieu régulier de tout schéma fini sur X est ouvert ([EGA 1V, 6.12.4]). De méme,
la condition 1.b) entraine que le lieu normal de tout schéma fini sur X est ouvert
(IEGA 1v5 6.13.7]) ©. Ces critéres d’ouverture assurent en outre que pour tester 1.a)
ou 1.b) on peut se limiter & des schémas intégres Y qui sont de plus finis et radiciels
sur X.

e Conditions locales.
Elles sont de deux types.

2.3. Condition 2 : Conditions sur les fibres formelles. — Pour tout point fermé = de X,
le morphisme de complétion® Spec(&,) — Spec(O,) est

2.a) régulier.
2.b) normal.
2.c) réduit.

Un anneau vérifiant 2.a) est dit « G-ring » en anglais, ce en ’honneur de Grothen-
dieck qui a dégagé I'importance de la notion et étudié ses propriétés.

2.4. Remarque. — Rappelons qu’un morphisme de schémas noethériens est dit régu-
lier (resp. normal, réduit) respectivement s’il est plat et si les fibres géométriques en
tout point de la base sont réguliéres (resp. normales, réduites). On dit que les fibres
formelles de X en z sont géométriquement réguliéres, géométriquement normales ou
géométriquement réduites si le morphisme de complétion Spec(@) — Spec(O,) est
régulier, normal ou réduit. Bien entendu, il suffit de tester la régularité, normalité, ou
réduction des fibres aprés changement de base radiciel fini ([EGA 1v5 6.7.7]). Notons
que la fibre fermée de Spec(@) — Spec(&;) est le spectre du corps résiduel k(z) : elle
est toujours géométriquement réguliére. La fibre formelle en y € Spec(&,) s’identifie
a la fibre formelle générique du sous-schéma fermé {y} (muni de sa structure réduite),
adhérence de y dans Spec(&;) ; ceci explique qu’on s’intéresse dans la littérature aux
fibres formelles génériques des anneaux intégres. Dans le cas ou A est local mais pas
un corps, elles peuvent avoir des dimensions arbitraires entre 0 et dim(A) — 1 et
contenir des points fermés de hauteurs différentes, méme dans le cas excellent (2.10)
régulier ([Rotthaus, 1991]). Dans le cas ou A est un localisé d’une algébre intégre de
type fini sur un corps, la dimension de la fibre formelle générique est bien dim(A) — 1
([Matsumura, 1988]).

() Et en fait, 1.a) (resp. 1.b)) entraine que le lieu régulier (resp. normal) de tout schéma intégre de
type fini sur X est ouvert
(i) Ses fibres sont appelées les fibres formelles (de X ou A) en z.
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2. DEFINITIONS 3

2.5. Condition 3 : condition de caténarité formelle. — Pour tout point fermé y d’un
sous-schéma fermé irréductible Y de X, le complétéid 5’3/\@ est équidimensionnel.

On dit alors que X est formellement caténaire. Par exemple, si X est de dimension 1,
X est formellement caténaire.

2.6. Exemple. — Tout anneau local noethérien complet est formellement caténaire.

Rappelons que X est dit caténaire si toutes les chaines saturées de fermés irréduc-
tibles de X ayant mémes extrémités ont méme longueur, universellement caténaire (")
si tout schéma affine de type fini sur X est caténaire. La caténarité est une notion
locale. La terminologie de caténarité formelle est alors justifiée par la proposition élé-
mentaire suivante ([EGA 1vy 7.1.4]), proposition qui résulte de la fidéle platitude du
morphisme de complétion

2.7. Lemme. — Soit A local noethérien de complété équidimensionnel. Alors

(i) A est équidimensionnel et caténaire.
(ii) Pour tout idéal I de A, le quotient A/I est équidimensionnel si et seulement si
son complété lest; en particulier, A/I est formellement caténaire.
(iii) En particulier, un schéma affine X noethérien formellement caténaire est caté-
naire et méme universellement caténaire.

Notons que (iii) découle immédiatement de (i) puisque X est caténaire si et seule-
ment si ses composantes irréductibles le sont. On verra plus bas dans la section 5
que la propriété de caténarité formelle est notamment stable par extension finie d’oit
l'universelle caténarité annoncée (cf. la preuve de la proposition 7.1 et, pour une
réciproque, voir (7.1.1)).

2.8. Exemple. — Soit alors B — A un morphisme local surjectif d’anneaux noethé-
riens et supposons B de Cohen-Macaulay (par exemple régulier). Comme B est de
Cohen-Macaulay, il est équidimensionnel de sorte que A est formellement caténaire
d’apres (2.7).

(if}) Bien entendu, méme si Oy, est intdgre, son complété n’est en général pas intdgre : penser & une
courbe nodale.

(V) Cette derniére notion est utile en théorie de la dimension : si A est intégre universellement
caténaire contenue dans B intégre de type fini sur A, on a pour tout p € Spec(B) au-dessus de
q € Spec(A) la formule

dim By + deg. tr.(q) k(p) = dim Aq + deg. tr. 4 B.

Mais, en pratique, on teste plutét la caténarité formelle qui, comme on le voit juste aprés, entraine
Puniverselle caténarité, et méme lui est équivalente (voir (7.1.1) plus bas)!
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4 EXPOSE I. ANNEAUX EXCELLENTS

Regardons ce qui se passe dans le cas complet. Rappelons pour mémoire le théoréme
de structure de Cohen des anneaux locaux complets noethériens ([EGA Oy 19.8.8)) :

2.9. Théoréme (Cohen). — Soit A un anneau local noethérien complet de corps rési-
duel k.

(i) A est isomorphe & un quotient d’un anneau de séries formelles sur un anneau
de Cohen™). Si A contient un corps, il est isomorphe & un quotient d’un anneau
de séries formelles sur k.

(ii) Si A est de plus intégre, il existe un sous-anneau B isomorphe & un anneav de
séries formelles sur un anneau de Cohen ou un corps™ de sorte que l’inclusion
B — A soit locale, finie et induise un isomorphisme des corps résiduels.

Tout anneau local noethérien complet est donc quotient d’un anneau régulier.

2.10. Définition. — Soit X un schéma (resp. X = Spec(A) un schéma affine) noethé-
rien. On dit que X (resp. A) est

— excellent si X vérifie 1.a) + 2.a) + 3).
— quasi-excellent si X vérifie 1.a) + 2.a).
— universellement japonais ') si X vérifie 1.b) + 2.c).

2.11. — L’existence d’une classe de schémas stable par extension finie pour laquelle
le théoréme de désingularisation est vérifié impose de se limiter aux schémas quasi-
excellents. Précisément, si tous les schémas intégres et finis Y sur X admettent une
désingularisation (au sens de l'existence de Y’ — Y propre et birationnel avec Y’
régulier), alors X est quasi-excellent ([EGA 1v, 7.9.5]) ). Inversement, le théoréme
de désingularisation d’Hironaka se généralise & tout schéma réduit quasi-excellent de
caractéristique nulle ([Temkin, 2008, 3.4.3]) (%)

On regroupe plus bas (11) des exemples de « méchants anneaux ». Commencgons
par un regard plus positif.

(V) Rappelons ([EGA 0y 19.8.5]) que les anneaux de Cohen C sont les corps de caractéristique nulle
et les anneaux de valuation discréte complets d’inégale caractéristique (0, p) non ramifiés. Lorsque
le corps résiduel k de C est parfait, C n’est autre que ’anneau des vecteurs de Witt de x.

(")) Voir (4.2) pour une amélioration.

(vii) Ou Nagata en anglais, voire pseudo-géométrique (chez Nagata notamment).

(viil) Si de plus X peut localement se plonger dans un schéma régulier, alors X vérifie 3) et est donc
excellent.

(ix) Ce résultat a été longtemps considéré comme « bien connu des experts » alors que sa preuve,
tout a fait non triviale, date de 2008.
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4. L’EXEMPLE DE BASE : LES ANNEAUX LOCAUX NOETHERIENS COMPLETS. 5

3. Exemples immédiats.

3.1. Proposition. — Un corps, un anneau de Dedekind de corps des fractions de ca-
ractéristique nulle est excellent.

Démonstration. — Vérifions qu’un corps est excellent. En effet, une algébre finie et
intégre sur un corps est un corps : les propriétés 1.a), 2.a) et 3) sont donc vérifiées ce
qui prouve que tout corps est excellent.

Soit A un anneau de Dedekind de corps des fractions K de caractéristique nulle
est excellent.

— Veérifions 1.a). Soit donc B intégre finie sur A. Soit B est un corps, auquel cas
1.a) est vérifié, soit A se plonge dans B. Comme K est de caractéristique nulle,
B est génériquement étale sur A, prouvant que le lieu régulier de B contient un
ouvert non vide (le lieu étale par exemple).

— Pour 2.a), considérons z fermé dans Spec(A). La fibre formelle non fermée en
z est le complété }'/{\gc de K pour la valuation définie par x. Comme K est de
caractéristique nulle, le corps I/{; est séparable sur K d’ou 2.a).

— La propriété 3) est claire puisque le complété de A en x est intégre donc équidi-
mensionnel. O

On verra plus bas (11.5) qu’il existe de nombreux anneaux de valuation discréte
qui ne sont pas quasi-excellents.

4. L’exemple de base : les anneaux locaux noethériens complets.

Expliquons avec Nagata pourquoi les anneaux locaux noethériens complets sont
excellents ™.

La propriété 2.a) est tautologique. La caténarité formelle a été vue (2.6). Reste 1.a).
Une extension finie d’'un anneau complet étant complet, on doit prouver le résultat
suivant (cf. [EGA 1vy 22.7.6)).

4.1. Théoréme (Nagata). — Si X est local noethérien intégre et complet®d), alors le
lieu régulier est ouvert.

Démonstration. — On va distinguer les cas d’égales et d’inégales caractéristiques.

(*) Ceci permet de construire de nombreux exemples d’anneaux de valuation discréte excellents de
caractéristique positive (par complétion de schémas réguliers aux points de hauteur 1).

(1) D’aprés (2.2), ceci entraine que le lieu régulier d’un schéma local noethérien complet est ouvert,
qu’il soit intégre ou non.
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6 EXPOSE I. ANNEAUX EXCELLENTS

Cas1: (Cf. [EGA Ory 22.7.6].) Supposons que A contienne un corps et notons ko
son corps premier (qui est parfait!) de sorte que le corps résiduel k de A, est
séparable sur ko pour tout p € Spec(A). L’anneau A, est régulier si et seulement
si A, est formellement lisse sur ko (voir dans ce cas [EGA Opy 19.6.4]). D’autre
part, le théoréme de structure de Cohen (2.9) assure que A est isomorphe a
K[[T1,...,T,]]/I de sorte que p s’identifie & un idéal de B = k[[T1, ..., T,]] conte-
nant I. Le critére jacobien de lissité formelle de Nagata ([EGA Ory 22.7.3]) assure
que A, est régulier si et seulement si il existe des ko-dérivations D;, i =1,...,m
de Bdans Bet f;,i = 1,...,m des éléments engendrant I,, tels que dét(D; f;) & p.
Cette condition étant visiblement ouverte, le théoréme suit.

Cas II : Supposons que A est d’inégale caractéristique, et donc de corps des fractions
K de caractéristique nulle. D’aprés le théoréme de structure de Cohen (2.9), A
contient un sous-anneau régulier (et complet) B faisant de A une B-algébre de
finie. Le corps des fractions L de B est de caractéristique nulle comme K. Quitte
a remplacer A par un localisé A[l/a], on peut supposer que B est libre de rang
fini sur A de base y1,...,ym. Mais Spec(A) — Spec(B) est étale en dehors
du fermé d = déts;p(Tr(yiy;)) # 0 de Spec(B), qui est non trivial puisqu’il
contient le point générique, extension Frac(B)/Frac(A) étant séparable — de
caractéristique nulle —! Comme B est régulier, le théoréme suit. O

4.2. Remarque. — Ainsi, un anneau de séries formelles sur un corps est excellent.

Notons que la preuve se simplifie si on connait I’amélioration de Gabber du théo-
réme de structure de Cohen (IV-2.1.1 et IV-4.2.2) : si A noethérien est local complet
et intégre, il contient un anneau B isomorphe & un anneau de séries formelles sur un
anneau de Cohen ou un corps tel que Spec(A) — Spec(B) est fini et génériguement
étale. On n’a alors pas besoin de distinguer les caractéristiques des corps de fractions
dans la preuve. Mais la preuve de cette amélioration est difficile.

5. Permanence par localisation et extension de type fini
La notion de (quasi) excellence est remarquablement stable. Précisément, on a

5.1. Théoréme. — Toute algébre de type fini ou plus généralement essentiellement de
type fini sur un anneau excellent (resp. quasi-excellent) est excellente (resp. quasi-
excellente). En particulier, tout localisé d’algébre de type fini sur un corps ou sur un
anneau de Dedekind (Z par exemple) de corps des fractions de caractéristique nulle
est excellent.

(Rappelons que, dans ce contexte, un morphisme Spec(B) — Spec(A) est dit es-
sentiellement de type fini si B est une localisation d’une A-algébre de type fini par un
systéme multiplicatif.)
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5. PERMANENCE PAR LOCALISATION ET EXTENSION DE TYPE FINI 7

Expliquons les grandes lignes de la preuve.

5.2. Condition 1). — Le passage au localisé ne pose pas de probléme. Soit B de type
fini sur A. Si A vérifie 1.a) ou 1.b), les critéres d’ouverture de Nagata ([EGA 1v,
6.12.4 et 6.13.7]) entrainent qu’il en est de méme de B.

5.3. Condition 2). — C’est la partie la plus difficile de la théorie ([EGA 1v, 7.4.4]),
entiérement due 4 Grothendieck. Le point le plus délicat est la localisation :

5.3.1. Théoréme. — Si A vérifie 2.a) (resp. 2.b) ou 2.c)), alors pour tout p € Spec(A),
Uanneau A, vérifie 2.a) (resp. 2.b) ou 2.c)), autrement dit les fibres formelles en tout
point de Spec(A) sont géométriqguement réguliéres (resp. géométriquement normales
ou géométriquement réduites).

Démonstration. — La preuve se fait par réduction au cas complet. On se limite & la
propriété 2.a), le cas de 2.b) ou 2.c) se traitant de méme. Soit m maximal contenant
p € Spec(A) et soit B le complété m-adique de A. Comme Ay, — B est fidélement
plat, il existe q € Spec(B) au-dessus de p. Par hypothése, Ay, — B est régulier. Les
morphismes réguliers étant stables par localisation, A, — By est régulier. On regarde
alors le diagramme commutatif

4,——~B,.

|,

4y, — B,

Supposons que 3 soit régulier. Alors, f o a est régulier comme composé de deux
morphismes réguliers. Comme f est fidélement plat (comme morphisme local complété
du morphisme plat f), on déduit que a est régulier (exercice ou [EGA 1v, 6.6.1]) ce
qu’on voulait. On est donc ramené & 3, donc au cas complet. La régularité de § résulte
alors de

5.3.2. Théoréme. — Soit B un anneau local noethérien complet B. Alors, les fibres
formelles de B en q € Spec(B) sont géométriquement réguliéres.

Ce théoréme est le noyau dur de la théorie. On se rameéne (2.4) a étudier les fibres
formelles génériques. On montre donc dans un premier temps ([EGA Opy 22.3.3])
que si p est un idéal premier de A local noethérien complet intégre, la fibre formelle
générique ;l\p ®a4, Frac(Ap) de A, est formellement lisse sur Frac(A,) = Frac(A)
en tout point. Dans un second temps, on montre ([EGA Opy 22.5.8]) qu’une algébre
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8 EXPOSE I. ANNEAUX EXCELLENTS

locale noethérienne sur un corps est formellement lisse *) si et seulement si elle est
géométriquement réguliére (xiid), O

Une fois prouvée la permanence par localisation, on peut montrer :

5.3.3. Théoréeme. — Soit B une A-algébre de type fini. Si A vérifie 2.a) (resp. 2.b) ou
2.c)), alors B vérifie 2.a) (resp. 2.b) ou 2.c)).

La preuve se fait par récurrence sur le nombre de générateurs de B. Grace a l'in-
variance par localisation, on se raméne aisément & 1’étude des fibres formelles de B
en un idéal maximal dans le cas ou B engendré par un élément et A est complet. La
preuve n’est pas facile, mais beaucoup plus simple que celles de ([EGA Orv 22.3.3 et
0.22.5.8]).

5.4. Condition 3).— De méme que pour les conditions de type 2), la stabilité par loca-
lisation et extension finie résulte comme plus haut ([EGA 1v; 7.1.8]) du cas complet,
la platitude du morphisme de localisation permettant de descendre du complété a
I’anneau — ce n’est pas immédiat malgré tout —. Le cas complet est facile comme
on a vu (2.6).

5.5. Application au cas local. — Dans le cas local, la condition d’ouverture du lieu
régulier découle de 2.a). Précisons.

5.5.1. Proposition. — (i) Le lieu régulier d’un anneau local noethérien vérifiant 2.a)
est ouvert.
(ii) En particulier, un anneau local noethérien est quasi-excellent (resp. excellent) si
et seulement s’il vérifie 2.a) (resp. s’il vérifie 2.a) et 3)).

Démonstration. — Soit f : X — Y un morphisme fidélement plat de schémas noe-
thériens a fibres réguliéres (resp. normales ou réduites). Alors, &, est régulier (resp.
normal ou réduit) si et seulement si & ;) I'est ((EGA 1v; 6.4.2, 6.5.1]). Notons Ur(X)
Pensemble des = € X tel que R(&,) est régulier (resp. normal ou réduit). Autrement
dit, on a f~1(Ur(Y)) = Ugr(X). Or le lieu régulier ou normal d’un anneau complet
intégre est ouvert (4.1). De plus, le morphisme de complétion d’un anneau local noe-
thérien A est régulier si et seulement si A vérifie 2.a) d’aprés (5.3.2). Il suit que 2.a)
entraine 1.a) (resp. 2.b) entraine 1.b)) dans le cas local. d

(xii) Rappelons qu’une k-algébre locale B (muni de la topologie adique) est formellement lisse sur k
si tout k-morphisme continu d’algébre B — C/I avec I? = 0 se reléve continiment & la C-algébre
discréte C.

(xiii) En fait, on n’a visiblement besoin que du sens formellement lisse entraine géométriquement
régulier, qui est le plus facile. Notons que la preuve de I’équivalence a été considérablement simplifiée
par Faltings ([Faltings, 1978] ou pour le lecteur non germaniste [Matsumura, 1989, 28.7]).
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6. Comparaison avec EGA IV : le cas des anneaux universellement japonais

Rappelons la définition usuelle des anneaux universellement japonais ([EGA 0;,
23.1.1]).

6.1. Définition. — X est dit

(i) japonais s’il est intégre et si la cloture intégrale de A dans toute extension finie *i*)
de son corps des fractions est finie sur A®v);

(i) universellement japonais si tout anneau intégre qui est extension de type fini de
A est japonais V),

La définition d’anneau japonais n’est que technique en ce qu’elle ne sert qu’a définir
la seule notion véritablement utile (et vérifiable & vrai dire) : celle d’anneau univer-
sellement japonais. Cette définition est compatible avec 2.10. Expliquons pourquoi.
D’aprés Nagata, X est universellement japonais au sens de 6.1 si et seulement si X
vérifie 1.b) et si tous les quotients intégres des localisés Ox , en les points fermés
x € X sont japonais ([EGA 1vy 7.7.2]). Or, le théoréme de Zariski-Nagata ([EGA 1v2
7.6.4]) assure que les quotients intégres de O'x , sont japonais si et seulement si les
fibres formelles de Ox , sont géométriquement réduites *¥i). D’ou I’équivalence entre
les deux définitions des anneaux universellement japonais.

Si on renforce la condition 2.c) en 2.b) (fibres formelles géométriquement normales),
le passage a la cloture intégrale commute & la complétion. Précisément, on a ([EGA
vy 7.6.1 et 7.6.3])

6.2. Proposition. — Supposons que A local noethérien vérifie 2.b) et soit réduit. Alors,
la cléture intégrale A’ de A dans son anneau total des fractions est finie sur A et son
complété est isomorphe a la cléture intégrale de ACi®) dans son anneau total des
fractions.

On déduit 'important critére d’intégrité du complété.

6.3. Corollaire. — Soit A local noethérien.

(i) Supposons A intégre et vérifiant 2.b). Alors, A est intégre si et seulement si A
est unibranche (i.e. A’ local).

(*iv) On peut se contenter des extensions finies radicielles si 'on veut : exercice ou [EGA 1vy 23.1.2].
(*v) Comme module ou comme algébre : c’est la méme chose car la cloture intégrale est entiére sur
A par construction.

(1) Qu, ce qui est équivalent ([EGA 1va 7.7.2]), si tout quotient intégre est japonais.

(vil) Oy, de fagon équivalente, que le complété de toute Ox ,-algébre finie et réduite est réduit.
Comme d’habitude, la preuve se fait par réduction au cas complet, et méme régulier complet grace
au théoréme de structure de Cohen. Le caractére japonais de tels anneaux est garanti par le théoréme
de Nagata ([EGA Opy 23.1.5)).

(xviil) Qui est réduit puisque A est japonais (cf. note xvii).
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10 EXPOSE I. ANNEAUX EXCELLENTS

(ii) Supposons A hensélien. Alors A est excellent si et seulement s’il vérifie 2.a). Si
A est de plus intégre, il en est de méme de son complété.

Démonstration. — Prouvons (i). Comme A est unibranche, la cloture intégrale A’ de
A est locale : il en est de méme de son complété A’. D’aprés (6.2), on a A= (A) et
donc est normal. Or, un anneau normal et local est intégre. Comme A’ contient ;f, le
résultat suit.

Prouvons (ii). D’aprés (5.5.1), on doit seulement se convaincre qu’un anneau local
hensélien vérifiant 2.a) vérifie aussi 3), i.e. est formellement caténaire. On peut sup-
poser A intégre et on doit prouver que A est équidimensionnel. Mais comme A est
hensélien intégre, il est unibranche [EGA 1v, 18.8.16], donc A est intégre d’apreés le
premier point, ce qui assure ’équidimensionalité. O

7. Comparaison avec EGA IV : le cas des anneaux excellents

La définition des anneaux noethériens excellents de Grothendieck est a priori
différente de celle donnée ici. Notamment, elle fait intervenir, un peu bizarrement,
Puniverselle caténarité en lieu et place de la caténarité formelle. Précisément, elle
fait intervenir trois propriétés. Dans cette partie A désigne un anneau noethérien et
X = Spec(A) le schéma affine correspondant.

1EGA) : Pour tout quotient intégre B de A et toute extension finie radicielle K’ du
corps des fractions K de B, il existe une sous-B-algébre finie B’ de K’ contenant
B, de corps des fractions K’ telle que le lieu régulier de Spec(B’) soit un ouvert
dense.

2EGA) : Les fibres formelles de X en tout point (fermé ou non) sont géométrique-
ment réguliéres.

3EGA) : A est universellement caténaire.

Les anneaux excellents au sens des EGA sont les anneaux noethériens vérifiant les
trois propriétés précédentes ([EGA 1vy 7.8.2]).

Notons tout de suite, ce qui est élémentaire, que 'universelle caténarité de A équi-
vaut & celle des anneaux locaux de Ox , en tous ses points fermés — ou tous ses
points si on préfére — ([EGA 1V, 5.6.3]).

Pour que la définition des anneaux excellents de Grothendieck ([EGA 1vy 7.8.2])
soit la méme que (2.10), on doit prouver la proposition suivante.

7.1. Proposition. — Pour tout anneau noethérien et i = 1,2,3, les propriétés 1)
et iEGA) sont équivalentes. En particulier, les notions de quasi-excellence et d’excel-
lence de la premiére partie coincident avec celles des EGA.
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8. HENSELISATION ET ANNEAUX EXCELLENTS 11

Démonstration. — La condition 1EGA) équivaut a 1) d’aprés [EGA 1v5 6.12.4] (seule
la partie 1EGA) entraine 1) est délicate méme si elle n’utilise pas le critére de régula-
rité de Nagata mais seulement de 1’algébre commutative standard — essentiellement
le critére de régularité par fibres et la non dégénérescence de la trace des extensions
finies séparables de corps).

Pour ’équivalence de 2) et 2EGA), il faut se convaincre que la régularité géomé-
trique des fibres formelles en tout point fermé entraine la régularité géométrique des
fibres formelles en tout point : c’est un cas particulier des propriétés de permanence
(5).

Ceci prouve la compatibilité des définitions de la quasi-excellence.

Si X vérifie 3), tous ses anneaux locaux sont formellement caténaires (permanence
par localisation, cf. la section 5) et donc sont caténaires (2.7). Comme tout schéma
(affine) de type fini sur X vérifie 3) (permanence par extension de type finie, cf. la
section 5), on déduit que X est universellement caténaire et donc X vérifie SEGA).

La réciproque est due a Ratliff :

7.1.1. Proposition (Ratliff). — Un anneau noethérien universellement caténaire est
formellement caténaire.

Précisément, Ratliff prouve ([Ratliff, 1971, 3.12]) que si A est caténaire, A, est
formellement caténaire dés que p n’est pas maximal **). Pour montrer la proposition,
on peut donc supposer p maximal et A local intégre. Alors, p[X] est premier non
maximal dans A[X] de sorte que le complété p[X]-adique A@X] est formellement
équidimensionnel. Comme A Aﬁ]?[x] est local et plat, Pargument de platitude
([EGA 1vy 7.1.3]) utilisé plus haut assure que A est équidimensionnel. O

8. Hensélisation et anneaux excellents

Rappelons qu’un morphisme d’anneaux noethériens A — B est dit absolument
plat s’il est réduit a fibres discrétes et si les extension résiduelles sont algébriques et
séparables. Ou, de fagon équivalente, s’il est plat ainsi que le morphisme diagonal
B ®4 B — B (cf. [Ferrand, 1972, prop. 4.1] et [Olivier, 1971, 3.1]). Lorsque B est
(localement) de type fini sur A, ceci équivaut au fait que B soit étale sur A. En
particulier, les extensions résiduelles sont séparables de sorte qu’un tel morphisme est
en fait régulier. Par exemple, tout morphisme ind-étale est absolument plat. On a
alors le résultat suivant ([Greco, 1976]).

(*ix) Dans ’étrange terminologie de ’auteur, c’est la condition depth(p) > 0, ce qui signifie donc que
la dimension de A/p est > 0.
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12 EXPOSE I. ANNEAUX EXCELLENTS

8.1. Théoréme. — Soit f : A — B un morphisme absolument plat d’anneauz noethé-
riens. Alors

(i) Si A est vérifie 2.a) (resp. 2.b) ou 2.c)), B un vérifie 2.a) (resp. 2.b) ou 2.c) ).
(ii) Si A est universellement-japonais, B est universellement japonais.
(iii) Si A est quasi-ezcellent, B est quasi-excellent.
(iv) Si A est excellent, B est excellent.
(v) Si f est fidelement plat, la réciproque de i), ii) et iii) est vraie.
(vi) Si f est fidélement plat et B est localement intégre, la réciproque de iv) est vraie.

Comme les morphismes d’hensélisation et de stricte hensélisation sont absolument
plats ([EGA 1v4 18.6.9 et 18.8.12]) et fidélement plats (ils sont locaux), on trouve,
en particulier, que la quasi-excellence et 'excellence sont stables par hensélisation et
hensélisation stricte et que, le caractére quasi-excellent ou universellement japonais
d’un anneau local se teste sur ’hensélisé ou ’hensélisé strict. Dans le cas de ’hensélisé,
ces résultats étaient connus de Grothendieck ([EGA 1v4 18.7]), notamment 18.7.6).

En revanche, on ne peut espérer une propriété de descente de I’excellence comme
en vi) sans condition d’intégrité locale (cf. 11).

9. Complétion formelle et anneaux excellents

Soit I un idéal d’un anneau noethérien A contenu dans son radical de Jacobson et
A sa complétion I-adique. On peut se demander si les propriétés d’excellence passent
au complété. La réponse est oui en général. Précisément, on a :

9.1. Proposition. — Soit I un idéal d’un anneau noethérien A contenu dans son radical
de Jacobson et A sa complétion I-adique.

(i) Si A est (semi)-local quasi-excellent (resp. excellent), il en est de méme de A;
(ii) Si A est une Q-algébre excellente, il en est de méme de A.

La permanence de la quasi-excellence dans le cas (semi)-local, i.e. de la régularité
géométrique des fibres formelles, est due & Rotthaus ([Rotthaus, 1977]), tandis que
celle de I'universelle caténarité est due a Seydi ™V (le théoréme 1.12 de [Seydi, 1970]
prouve qu’un anneau de série-formelles A[[t,...,t,]] est universellement caténaire
dés que A Dest; il suffit alors de considérer des générateurs i1, ...,%, de I définis-
sant une surjection A[[t1,...,t,]] - A). Pour (i), reste a étudier 'ouverture du lieu

(x) Ou plus généralement, si A est un P-anneau au sens de Grothendieck ([EGA 1vg 7.3]), B est un
P-anneau

(xxi) Comme me I’a expliqué Christel Rotthaus (communication privée), si A, B sont locaux tels que
ACBCAetB= ;1\, alors 'universelle caténarité de A entraine celle de B.
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régulier dans le. C’est ce qui est fait dans [Brodmann & Rotthaus, 1980], en utili-
sant le théoréme de désingularisation d’Hironaka de fagon cruciale. Les techniques de
[Brodmann & Rotthaus, 1980] ont d’ailleurs permis de montrer que si le théoréme de
désingularisation était vrai dans le cas local excellent, toute complétion I-adique d’an-
neau excellent comme plus haut serait excellente ([Nishimura & Nishimura, 1987]).

En fait, le résultat est général. Plus précisément, Gabber (|Gabber, 2007]) peut
remplacer le théoréme d’Hironaka par son théoréme d’uniformisation (VII-1.1) dans
les arguments de [Nishimura & Nishimura, 1987] pour prouver le résultat suivant

9.2. Théoréme (Gabber). — Soit A un anneau noethérien I-adiquement complet.
Alors, si A/I est quasi-excellent, A est quasi-ezcellent.

On ne peut remplacer quasi-excellent par excellent dans le théoréme précédent. En
effet, Greco ([Greco, 1982]) a construit un idéal I d’un anneau A intégre de dimen-
sion 3, noethérien semi-local I-adiquement complet et séparé qui est quasi-excellent
non excellent alors que A/I est excellent. On peut méme supposer que A est une
Q-algeébre. La construction se fait par pincements d’idéaux maximaux de hauteurs
différentes (cf. 11.1). Malgré tout, comme on vient de le voir, la caténarité formelle
passe aux complétions partielles ([Seydi, 1970]) de sorte que le complété I-adique d’un
anneau excellent A est excellent dés lors que I est contenu dans le radical de Jacobson
de A.

10. Approximation d’Artin et anneaux excellents
Rappelons la définition suivante (cf. [Artin, 1969]).

10.1. Définition (M. Artin). — Un anneau local noethérien (A4, m) a la propriété d’ap-
proximation (AP) si pour toute variété affine X de type fini sur A, ensemble X (A)

-~

est dense dans X (A).

Bien entendu, il revient au méme de dire que pour tout X comme plus haut, on a
X(A) # 2= X(A) + 2.

Si A vérifie AP, A est certainement hensélien. Mais exemple 11.4 prouve qu’il ne
suffit pas que A soit hensélien pour qu’il posséde la propriété d’approximation. En fait,
Rotthaus a observé que ’excellence était une condition nécessaire 4 I’approximation
d’Artin :

10.2. Lemme ([Rotthaus, 1990]). — Un anneau local noethérien vérifiant AP est hen-
sélien et excellent.

SOCIETE MATHEMATIQUE DE FRANCE 2014



14 EXPOSE I. ANNEAUX EXCELLENTS

Soit k un corps de caractéristique nulle muni d’une valuation non triviale & valeurs
réelles. Artin a prouvé ([Artin, 1968]) que les anneaux de séries convergentes a co-
efficients dans k (pas nécessairement complets) ont la propriété d’approximation. Ils
sont donc henséliens et excellents <D,

La situation est maintenant complétement clarifiée grace aux travaux de Popescu
culminant avec le résultat suivant ([Swan, 1998]) :

10.3. Théoréme (Popescu). — (i) Soit A — B un morphisme régulier d’anneauz noe-
thériens. Alors, B est limite inductive filtrante de A-algébres lisses.
(ii) Tout anneau local noethérien hensélien et excellent satisfait la propriété d’ap-
proximation AP 0,

Le fait que i) entraine ii) est un simple exercice. En effet, si A est quasi-excellent,
le morphisme de complétion A — A est régulier et donc on peut écrire A = colim L

-~

o L est lisse sur A. Soit X = Spec(B) avec B de type fini et 4 € X(A) d’image
@(0) € X (k) ou k corps résiduel de A. Il existe donc L lisse sur A tel que a provienne
del € X(L). Comme A est hensélien, il existe a € X (A) (tel que a(0) = a(0)) &=xiv),

11. Exemples de méchants anneaux noethériens

Soit A un anneau noethérien et X = Spec(A) le schéma affine correspondant. Il
ressortira de cet inventaire que les propriétés désagréables des anneaux du point de
vue de excellence n’ont en général pas seulement & voir avec la caractéristique > 0
mais peuvent aussi se produire pour des Q-algébres.

11.1. Caténarité formelle : condition 3). — Regardons d’abord de mauvais anneaux du
point de vue de la caténarité formelle.

(xxi) Dans le méme ordre d’idées, 'anneau k{z1,...,zn} des séries formelles restreintes (séries
dont la suite des coefficients tendent vers 0) & coefficients dans un corps valué complet non ar-
chimédien k est excellent dés que k est de caractéristique nulle ou que k est de degré fini sur
kP,p = car(k) ([Greco & Valabrega, 1974]). Le cas général a été obtenu par Kiehl ([Kiehl, 1969]
et aussi [Conrad, 1999] pour une preuve et des développements). Ceci répond, partiellement, & une
question de Grothendieck ([EGA 1vo 7.4.8 B)]). En revanche, si k est valué non archimédien non
complet de caractéristique positive tel que le morphisme de complétion k£ — ¥ n’est pas séparable,
Gabber sait prouver que k{z1} n’est pas excellent.

(xxiil) yoir [Spivakovsky, 1999, th. 11.3] pour un énoncé un peu plus général.

(xiv) [’argument n’utilise que la régularité géométrique des fibres — et le caractére hensélien —
mais pas la caténarité formelle. Ce n’est pas paradoxal, car un anneau local hensélien est excellent
si et seulement si ses fibres formelles sont géométriquement réguliéres (5.5.1).
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11.1.1. La caténarité n’entraine pas la caténarité formelle.— Dans [EGA 1v3 5.6.11],
Grothendieck construit un exemple d’anneau local noethérien de dimension 2 in-
tégre, caténaire mais non universellement caténaire, donc non formellement caténaire
d’apres 7.1.1 (i.e. ne vérifiant pas 3)).

Expliquons la construction qui consiste & pincer une surface lisse sur un corps k, de
caractéristique nulle si 'on veut, le long de deux points de hauteurs différentes ayant
des corps résiduels isomorphes a k.

On part d’un corps k extension transcendante pure de degré infini sur son corps
premier par exemple, que 1’on peut méme supposer étre Q. Soit S une surface lisse
munie d’un morphisme projectif sur T = Spec(k[7]) et t € S(T). On suppose qu'’il
existe un point s € S(k) de la fibre Sy de S — T au-dessus de 0 € T qui n’est
pas dans 'image de t. Par exemple, on peut prendre S = Spec(k[o,T]) avec t la
section d’image 0 = 0 et s = (1,0). Les corps k(s) = k et k(¢) = Frac(k[r]) sont
des extensions transcendantes pures de Q de méme degré (infini) de sorte qu’on peut
choisir un isomorphisme de corps k(s) ~ k(t). Ceci permet de définir le sous-anneau
Os, de Og des fonctions qui coincident en s et ¢. On dispose donc d’un morphisme
w : S — ¥ qui envoie s,t sur 0 € X. Posons A = Oy, et soit B I'anneau de
coordonnées de S xyx Spec(Ox ). Par construction, dim(B;) = 2 et dim(B;) = 1.
Alors, A est noethérien, et B est la normalisation de A et est fini sur A. Comme A
est de dimension 2 et intégre il est évidemment caténaire. Si A était universellement
caténaire, la formule de dimension (voir note iv) entrainerait dim(A) = dim B; =
dim By, une contradiction.

On peut méme trouver pour tout n > 2 des anneaux locaux noethériens intégres de
dimension n vérifiant 2.a), caténaires non universellement caténaires donc ne vérifiant
pas 3) ([Heinzer et al., 2004]).

11.1.2. La caténarité formelle ne se teste pas sur l’hensélisé.— Par des techniques
de pincements analogues de surfaces sur k, donc de caractéristique nulle si on veut,
comme plus haut, Grothendieck construit en effet un exemple d’anneau local non uni-
versellement caténaire (donc non formellement caténaire) dont I’hensélisé est excellent
([EGA 1v4 18.7.7]). Quitte & changer de base par la cloture séparable, on s’apercoit
que la caténarité formelle ne se teste pas plus sur ’hensélisé strict, contrairement a
la quasi-excellence (8.1).

11.1.8. La caténarité formelle n’entraine certainement pas 2.a) (ni méme 2.c)).—
Par exemple, un anneau de valuation discréte A non excellent (cf. la partie 11.5) a une
fibre formelle générique non géométriquement réguliére (en effet, il est formellement
caténaire (2.8) et 2.a) entraine 1.a) dans le cas local (5.5.1)). Or, cette fibre générique

formelle est artinienne dans ce cas (elle ne contient pas I'idéal maximal de A) et donc
la régularité géométrique équivaut ici a la géométrique réduction.
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16 EXPOSE I. ANNEAUX EXCELLENTS

11.1.4. Il existe des anneauz intégres normaux non formellement caténaires.—
Ogoma ([Ogoma, 1980]) a construit une Q-algébre locale A intégre normale de
dimension 3 dont le complété & une composante de dimension 2 et une composante
de dimension 3 et donc n’est pas équidimensionnel. Pire, cet anneau n’est méme pas
caténaire : il posséde une infinité de chaines saturées d’idéaux premiers de longueur
2 ou 3.

11.2. Quasi-excellence : conditions d’ouverture 1.a) et 1.b). — On s’intéresse ici & des
anneaux ayant un lieu régulier ou normal non ouvert.

Comme on le verra plus loin (XIX-2.6), Gabber a construit un exemple de schéma,
qu’on peut méme supposer étre un Q-schéma, intégre de dimension 1, dont le lieu régu-
lier (ou normal, c’est la méme chose ici) contient une infinité de points et en particulier
n’est pas ouvert. La construction assure que les fibres formelles sont géométriquement
réguliéres. Comme on est en dimension 1, normalité et régularité coincident de sorte
qu’on a un exemple vérifiant 2.a) et 3) mais pas 1.b).

Dans [Rotthaus, 1979], Rotthaus construit une Q-algébre noethérienne locale in-
tégre de dimension 3 qui est formellement caténaire, universellement japonaise mais
dont le lieu régulier n’est pas ouvert.

11.3. Quasi-excellence. Fibres formelles : conditions 2a), 2b) et 2¢). — On s’intéresse ici
a des anneaux ayant des fibres formelles non géométriquement réguliéres voire pire.

— Rotthaus construit une Q-algébre locale A noethérienne de dimension 3 régu-
liére (donc formellement caténaire), universellement japonaise mais pas excellente
([Rotthaus, 1979]). Précisément, la fibre formelle au-dessus d’un point de hauteur
1 n’est pas réguliére. Ainsi, elle vérifie 2.c), 3) car A régulier mais pas 2.a).

Dans 'exemple d’Ogoma précédent, la fibre formelle générique est connexe
non intégre (elle a une composante de dimension 1 et une de dimension 2 qui
se coupent), donc non normale. On a donc un exemple de Q-algébre locale (de
dimension 3) noethérienne (intégre et normale) ne vérifiant pas 2.b).

On peut descendre d’une dimension : Nagata construit ([Nagata, 1962], ex.
7 de Pappendice Al) une Q-algébre locale B qui est intégre normale, formelle-
ment caténaire et de dimension 2 mais dont le complété n’est pas intégre V).
D’aprés 6.2, ceci prouve que B ne vérifie pas 2.b) (mais vérifie 3)).

(xxv) La construction est la suivante : soient z,y algébriquement indépendants sur Q et w =
Y is0@it € Qlz]] transcendant sur K(z). On pose z1 = (y + w)? et zip1 = (2 — (y +
qu ajz?)?)/z. Soit A le localisé de Q[z,y, z;,% > 1] en (z,y, 2,4 > 1). Alors, B = A[X]/(X2—21)
est l’exemple cherché. On vérifie facilement que la complétion de A est Q[z,y]] de sorte que
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— En caractéristique > 0, Rotthaus construit également ([Rotthaus, 1979]) une al-
gébre locale noethérienne de dimension 2 réguliére universellement japonaise mais
pas excellente. Dans ce denier cas, comme les fibres formelles sont de dimen-
sion < 2, elles ne sont pas non plus géométriquement normales. Ainsi, elle vérifie
2.c), 3) mais pas 2.b).

— En caractéristique nulle, Ferrand et Raynaud ont construit ([Ferrand & Raynaud,
1970], prop. 3.3 et 3.5) une C-algébre locale noethérienne A intégre de dimension 2
telle que

e le normalisé A’ de A est 'anneau des séries convergentes noté C{z,y} (ne
pas confondre avec I'hensélisé de C[z,y]) et donc est excellent.

e A n’est pas japonais (en fait, A’ n’est pas fini sur A).

o Aades composantes immergées (de sorte que — platitude — la fibre formelle
générique a des composantes immergées et donc ne vérifie pas 2.c)).

e Le lieu normal de A[[T]] n’est pas ouvert. D’aprés [EGA 1v4 6.13.5] son lieu
régulier n’est donc pas ouvert non plus.

e L’anneau A est formellement caténaire (le spectre de son complété est irré-
ductible). Il en est donc de méme de A[[T]] ([Seydi, 1970]).

— Dans [Nagata, 1962], ex. 5 de 'appendice Al, Nagata construit méme un an-
neau local noethérien intégre de dimension 3 (de caractéristique > 0) dont la
cloture intégrale n’est méme pas noethérienne; en particulier, cet anneau n’est
pas japonais (),

— Pire, a partir d’anneaux construits par Nagata, Seydi construit ([Seydi, 1972]) un
anneau noethérien intégre normal A de dimension 3 dont le corps des fractions
est de caractéristique nulle et dont le complété n’est pas réduit. En particulier, il
est japonais mais pas universellement japonais. Ogoma construit ([Ogoma, 1980])
une Q-algébre noethérienne normale, donc japonaise, qui n’est ni universellement
japonaise ni caténaire.

— Les fibres formelles peuvent étre épouvantables, méme en dimension 1 : Ferrand
et Raynaud construisent un C-schéma local intégre de dimension 1 dont la fibre
formelle générique est un schéma artinien qui n’est méme pas Gorenstein — donc
certainement non réduit — ([Ferrand & Raynaud, 1970], prop. 3.1) : X ne vérifie

B = Q[[z, y]][X]/(X2 — (y + w)?) n’est pas intégre. Comme d’habitude dans ces constructions, c’est
le caractére noethérien de A qui pose probléme. Une fois ceci acquis, A est régulier de dimension 2
et B normal puisque que Cohen-Macaulay de dimension 2 singulier uniquement a 'origine. Notons
que B est formellement caténaire comme quotient d’un régulier.

(xxvi) L3 construction est du méme type que celle d’un anneau de valuation discréte décrite dans la
note xxvii dont on reprend les notations. On considére cette fois-ci 'anneau B = kP([X,Y, Z]][k] et
d=Y 3,0 X; X'+ Z Yiso X2;4+1X*. L’anneau B[d] convient.
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18 EXPOSE I. ANNEAUX EXCELLENTS

pas 2.c). En particulier, X n’est pas universellement japonais (et donc pas quasi-
excellent). Bien entendu, X vérifie 1.a) et 3) pour des raisons de dimension.

— Les exemples d’anneaux de valuation discréte non excellents (donc de caractéri-
stique positive) donnent des exemples d’anneaux ne vérifiant pas 2.c) (2.a) et 2.c)
sont équivalents en dimension < 1) mais vérifiant 1.a) et 3).

11.4. Remarque. — Nagata a construit ([Nagata, 1962, E3.3]) un anneau de valuation
discréte dont la fibre formelle générique est une extension radicielle non triviale de
son corps des fractions, donc non excellent =i,

On va voir maintenant que de tels anneaux se rencontrent trés facilement.

11.5. Méthode systématique de construction d’anneaux non quasi-excellents. — En fait,
on peut construire (Orgogozo) de fagon systématique de trés nombreux anneaux de
valuation discréte non quasi-excellents. Précisons Vi),

11.6. Proposition. — Soit k((t)) le corps des séries de Laurent & coefficients dans un
corps k de caractéristique p > 0 muni de sa valuation t-adique et L/k une sous-
extension de type fini de k((t))/k de degré de transcendance > 1 sur k. Alors, le sous-
anneau A de L des éléments de valuation > 0 est un anneau de valuation discréte
non excellent.

Démonstration. — Soit L un corps de caractéristique > 0. Le p-rang est la dimension,
finie ou non, de Qz, le module des différentielles absolues. C’est aussi log, ([L : L))
ot [L : LP] est la dimension de L sur L? ([EGA 1v; 21.3.5]). La remarque clef est que
le p-rang croit par extension de corps séparable K /L, finie ou non, puisqu’on a dans
ce cas un plongement K ®; Q; — Qz ([EGA 1v, 20.6.3])

(11.6.1) [L:L*)<[K:KP?].

(xxvii) Voici la construction : soit k le corps des fractions de Fp[Xyn,n > 0] et K celui de A= k[[Y]).
Soit L le sous-corps de K = k((Y')) corps des fractions de A = kP[[Y]][k]. Le complété de A est A.On
montre, et c’est le point délicat, que A est noethérien. L’outil est le critére de Cohen : un anneau semi-
local est noethérien si et seulement si les idéaux maximaux sont de type fini et les idéaux de type fini
fermés ([Nagata, 1962, 31.8]). Son complété étant régulier, il est lui méme régulier donc de valuation
discréte (dimension). Soit L le corps des fractions de A. On vérifie facilement que ¢ = En>0 XY™,
n’est pas dans L. Choisissons une p-base {c;} de K sur L contenant c (ce qui est possible car ¢ ¢ LP,
cf. [EGA 1vy 21.4.3]). Soit Ko le corps engendré sur L par les ¢; distincts de c. L’extension K/Kj
est radicielle de degré p par construction. L’anneau A N K est un anneau de valuation discréte de
complété k[[Y]] de sorte que la fibre formelle générique n’est pas géométriquement réduite.

(xxviii) Cette construction généralise en fait, de facon indépendante, un exemple obtenu par Rotthaus
dans [Rotthaus, 1997]
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Par ailleurs, si L est de type fini sur un corps k de p-rang fini, on a ([Bourbaki,
A, V, §16, n° 6, cor. 3])

(11.6.2) L : LP] = piegtre Dk : k2],

Plagons nous dans la situation du lemme. L’anneau A est de valuation discréte par
construction et son corps des fractions est L. L’hensélisé AP est local régulier de di-
mension 1 donc intégre et son corps des fractions K = Frac(A") contient L = Frac(A).
Le complété Ab est un anneau de séries formelles K = k[[@]], @ uniformisante de AP
(comme complété d’une k-algébre locale réguliére de dimension 1) et son corps des
fractions K est la fibre générique formelle de Spec(AP) — Spec(AP).

Supposons que AP soit quasi-excellent (précisément vérifie 2.a) de sorte que I'ex-
tension K /K est séparable.

On a donc dans ce cas

[K: KP] < [K : KP].
Comme K = k((w)), on a
[K : K?] = plk : kP].
On a donc (11.6.1), I'extension K/L étant séparable,
[K: KP] > [L:LP.
de sorte que, grace a (11.6.2), on a
plk: kP = [K : K?] > [L: L?] > plk : k7],

une contradiction. Ceci interdit & A également d’étre quasi-excellent (8.1). O
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