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E X P O S É X 

GABBER'S M O D I F I C A T I O N T H E O R E M ( L O G S M O O T H CASE) 

Luc Illusie and Michael Temkin ( i ) 

In this exposé we state and prove a variant of the main theorem of VIII (see 

VIII-1.1) for schemes X which are log smooth over a base S with trivial G-action. 

See 1.1 for a precise statement. The proof is given in § 1 and in the remaining part 

of the exposé we deduce refinements of classical theorems of de Jong, for schemes of 

finite type over a field or a trait, where the degree of the alteration is made prime to 

a prime £ invertible on the base. Sections 2 and 3 are independent and contain two 

different proofs of such a refinement, so let us outline the methods briefly. 

For concreteness, assume that & is a field, S = Spec(fc), and X is a separated 

5-scheme of finite type. Two methods to construct regular ^'-alterations of X are: 

(1) use a pluri-nodal fibration to construct a regular G-alteration X' —• X and then 

factor X' by an ^-Sylow subgroup of G, and (2) construct a regular ^-alteration 

by induction on dim(5) so that one factors by an ^-Sylow subgroup at each step 

of the induction. The first approach is presented in § 2. It is close in spirit to the 

approach of [de Jong, 1997] and its strengthening by Gabber-Vidal, see [Vidal, 2004, 

§4]. The weak point of this method is that one uses inseparable Galois alterations. 

In particular, even when k is perfect, one cannot obtain a separable alteration of X. 

The second approach is realized in §3, using [Temkin, 2010]; it outperforms the 

method of § 2 when k is perfect. Moreover, developing this method the second author 

discovered Theorem 3.5 that generalizes Gabber's theorems 2.1 and 2.4 to the case 

of a general base S satisfying a certain resolvability assumption (see §3.3). In addi­

tion, if S is of characteristic zero then the same method allows to use modifications 

instead of ^-alterations, see Theorem 3.9. As an application, in Theorem 3.10 we 

W The research of M.T. was partially supported by the European Union Seventh Framework Pro­
gramme (FP7/2007-2013) under grant agreement 268182. 
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168 EXPOSÉ X. GABBER'S MODIFICATION THEOREM (LOG SMOOTH CASE) 

generalize Abramovich-Karu's weak semistable reduction theorem. Finally, we mini­
mize separatedness assumptions in §3, and for this we show in §3.1 how to weaken 
the separatedness assumptions in Theorems 1.1 and VIII-1.1. 

1. The main theorem 

1.1. Theorem. — Let f : X —• S be an equivariant log smooth map between fs log 
schemes endowed with an action of a finite group G. Assume that: 

(i) G acts trivially on S; 
(ii) X and S are noetherian, qe, separated, log regular, and f defines a map of log 

regular pairs (X,Z) —• (5, W) (see VI-1.4: (X,Z) and (5, W) are log regular pairs 
andf(X-Z)cS-W)); 

(iii) G acts tamely and generically freely on X. 
Let T be the complement of the largest open subset of X over which G acts freely. 

Then there exists an equivariant projective modification h : X' —> X such that, if 
Z' = h~1(ZUT), the pair (X\ Z') is log regular, the action of G on X' is very tame, 
and (X',Zf) is log smooth over (5, W) as well as the quotient {X'/G, Z1 /G) when G 
acts admissibly on X f [SGAl v 1-7}). 

1.1.1. Remark. — (a) In the absence of the hypothesis (i) it may not be possible to 
find a modification h satisfying the properties of 1.1, as the example at the end of 
VIII-1.2 shows. 

(b) By [Kato, 1994, 8.2] the log smoothness of / and the log regularity of S imply 
the log regularity of X. Conversely, according to Gabber (private communication), if 
X is log regular and / is log smooth and surjective, then S is log regular. 

(c) We will deduce Theorem 1.1 from Theorem VIII-1.1. Recall that in the latter 
theorem we assumed that X is qe, though Gabber has a subtler argument that works 
for a general X. This forces us to assume that S (and hence X) is qe in Theorem 
1.1. However, our argument also shows that once one removes the quasi-excellence 
assumption from VIII-1.1, one also obtains the analogous strengthening of Theorem 
1.1. 

For the proof of 1.1 we will use the following result on the local structure of equiv­
ariant log smooth maps. 

1.2. Proposition (Gabber's preparation lemma). — Let f : X —> F be an equivariant log 
smooth map between fine log schemes endowed with an action of a finite group G. Let 
x be a geometric point of X, with image y inY. Assume that G is the inertia group at 
x and is of order invertible on Y. Assume furthermore that G acts trivially on Mx and 

ASTÉRISQUE 363-364 



1. THE MAIN THEOREM 169 

My (") and we are given an équivariant chart a :Y —• Spec A[Q] at y, modeled on some 

pairing x G a b 0 Q g p —» /1 = /XJV(C) fin £/ie sense 0/ (VI-3.3)), where Q is fine, A = 

Z[l/iV, / / ] , with N the exponent of G. Then, up to replacing X by an inert équivariant 

étale neighborhood of x, there is an équivariant chart b : X —> Spec A[P] extending 

a, such that Q g p —> P g p is infective, the torsion of its cokernel is annihilated by an 

integer invertible on X, and the resulting map b' : X —* X' = 7 x S p e c A[Q]Spec A[P] is 

smooth. Moreover, up to further shrinking X around x, b' lifts to an inert équivariant 

étale map c : X —• X'xspec A Spec Sym A (F) , where V is a finitely generated projective 

k-module equipped with a G-action. If X, Y, and Q are fs, with Q sharp, then P can 

be chosen to be fs with its subgroup of units P* torsionfree. 

Proof of 1.2. — This is an adaptation of the proof of [Kato, 1988, 3.5] to the équiv­

ariant case. Consider the canonical homomorphism of loc. cit. 

( 1 . 2 . 1 ) k(x) ®ÛXiX 0 ^ / Y > - > k(x) ®Z ~MJ;/Y,X 

sending 1 0 dlog t to the class of 1 0 t, where 

M*?/YiX = M?iX/(érXiX + I m / - 1 ^ * ? ) ) . 

It is surjective, and as G fixes x, it is G-equivariant. As G is of order invertible in k(x) 

and acts trivially on the right hand side, (1.2.1) admits a G-equivariant decomposition 

(1.2.2) k(x) ®ex%x = V0® (k(x) 0 Z M%/YtX), 

where VQ is a finite dimensional fc(#)-vector space, endowed with an action of G. 

Let (ti)\<i<r be elements of M | p such that the classes of 1 0 U form a basis of 

k(x) 0 Z MX/Y^ B Y t h e method of (VI-3.5) we can modify the V s to make them 

eigenfunctions of G. More precisely, for g G G, we have 

OU = Zi(g)U, 

with ZI(g) G Û*, and g >-> ZI(g) is a 1-cocycle of G with values in Û*. By reduction 

mod m^, it gives a 1-cocycle fa G Z1(G,fi) = Hom(G,//), as /JL is naturally embedded 

in k(x)* since X is over A. Lifting fi in û*, g \-> ZI(g)/'fa(g) is a 1-cocycle of G with 

values in 1 + m x , hence a coboundary Si G B1(G, 1 + m^), g 1—• Si (g) = gui/ui, for 

UI G 1 -h tria;. Replacing U by Uu^1, we may assume that ZI = fa, i.e. 

gU = fa(g)U, 

for characters 

fa: G -+ 11. 

(") If M is the sheaf of monoids of a log scheme, M denotes, as usual, the quotient MJO*. 
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170 EXPOSÉ X. GABBER'S MODIFICATION THEOREM (LOG SMOOTH CASE) 

Let Z be the free abelian group with basis (ei)i<i< r , and h : Z —> M | p the ho­

momorphism sending ei to U. As in the proof of [Kato, 1988, 3.5], consider the 

homomorphism 

u : Z 0 Qgp -+ M g p 

defined by /i on Z and the composition Qgp —• M g p —• M | p on the second factor. We 

have 

gu(a) = ij)(g ® a)u(a) 

for some homomorphism 

^ : G a b 0 ( Z 0 Q g p ) -> /x 

extending x and such that ip(g (g) ei)u(ei) = i^i(g)h(ei). As in Zoc. cit., if ^ denotes 

the composition 

u : Z (B QëP —> M g p M f (= M g p / ^ ) 

we see that &(#) (g) ÏZ is surjective, hence the cokernel C of u is killed by an integer m 

invertible in k(x). Using that Gx is m-divisible, one can choose elements G M | p 

and G Z 0 Q g p (1 < z < n) such that the images of the a^s generate MX

P and 

a?1 = u(bi). Let E be the free abelian group with basis (1 < z < n), and let F be 

the abelian group defined by the push-out diagram 

(1.2.3) E ——^ E , 

Z 0 Q g p ^—^ F 

where the left vertical arrow sends to b{. The lower horizontal map is injective 

and its cokernel is isomorphic to E/mE, in particular, killed by m. The relation 

a™ = u(bi) implies that u extends to a homorphism 

v:F^> M g p 

whose composition v : F —» M | p —• M f is surjective. Associated with v is a 

morphism 

tp : G a b ® F -> /x 

extending ^ , such that gi>(a) = (p(g ® a)i>(a) for a G F. Let P := i ; - 1 ( M x ) C F. 

Then P is a fine monoid containing Q, P g p = P, and i> sends P to M x . As in VI-3.5, 

VI-3.10 we get a G-equivariant chart of associated with (p, which, up to replacing 

X by an inert equivariant étale neighborhood at x, extends to an equivariant chart 

b : X Spec A[P] 

extending the chart a : Y —> Spec A[Q]. The homomorphism Q g p —• P g p is injective, 

and the torsion part of its cokernel injects into the cokernel of w : Z 0 Qgp —• F in 
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1. THE MAIN THEOREM 171 

(1.2.3), which is killed by m. Consider the resulting map 

b' : X - X' = Y x S p e c A [ Q ] Spec A[P]. 

This map is strict. Showing that the underlying schematic map is smooth at x is 

equivalent to showing that b' is log smooth at x. To do this, as X and X' are log 

smooth over Y, by the jacobian criterion [Kato, 1988, 3.12] it suffices to show that 

the map 

k(x) 0 ftx'/Y ~^ k(x) ® ^X/Y 

induced by b' is injective. We have 

k(x) 0 Çll

x,/Y = k(x) 0 P g p / Q g p = k(x) 0 Z 

(the last equality by the fact that F/(Z 0 QëP) is killed by m), and by construction 

(cf. (1.2.2)), we have 

0 Z = k(x) 0 M^/y^, 

which by the map induced by b' injects into k(x) 0 ^X/Y-

Let us now prove the second assertion. For this, as bf is strict, we may forget the 

log structures of X and X', and by changing notations, we may assume that X' — Y 

and the log structures of X and Y are trivial. In particular, we have 

k(x)®Çl\iY = Vb, 

with the notation of (1.2.2). As the question is étale local on X , and closed points 

are very dense in the fiber Xy, in particular, any point has a specialization at a closed 

point of Xy, we may assume that x sits over a closed point of Xy, and even, up to 

base changing Y by a finite radicial extension, that re is a rational point of Xy. We 

then have 

k(x) 0 ttx/Y = TTVR/(m* + rOyûx), 

where m denotes a maximal ideal. By a classical result in representation theory (see 1.3 

below) there is a finitely generated projective A[G]-module V such that Vb = fc(x)®V. 

The homomorphism V —> m x /(m^ + myûx) therefore lifts to a homomorphism of 

A[G]-modules 

V -> m x , 

inducing an isomorphism k(x) 0 V —> k(x) 0 ^ x / y ^ ^ n e J a c ° b i a n criterion, it 

follows that the (G-equivariant) map 

X -> Y xSpec A Spec Sym A (F) 

is étale at x, and as in VI-3.10 can be made inert by shrinking X. 
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172 EXPOSÉ X. GABBER'S MODIFICATION THEOREM (LOG SMOOTH CASE) 

Let us prove the last assertion. Now X and Y are fs, and Q is fs and sharp. First 

of all, as Mx is saturated, P = v~1(Mx) is fs. Then (cf. [Gabber & Ramero, 2013, 

3.2.10]) we have a split exact sequence 

O ^ H ^ P - ^ P Q ^ O 

with PQ torsionfree and H a finite group. As Q is fs and sharp, Q g p is torsionfree, 

so the composition Qgp —> Pgp —• P g p is still injective, as well as the composition 

H pgp _> P g p / Q g p , hence # is contained in the torsion part of P g p / Q g p , and we 

have an exact sequence 

o -> # - (p«7Qgp) t o r s _ ( j « 7 Q 8 P ) T O R S - o, 

where the subscript tors denotes the torsion part. Thus (P g P/Q g p)tors is killed by 

an integer invertible on X. As Mx is torsionfree, the composition P —•> —> 

factors through P 0 , into a map : Po —> Mx. Consider the diagram 

Mx M | p 

P o ^ M x - M f , 

where the square is cartesian. As P g p is torsionfree, the map P 0

S P M™ defined by 

the lower row admits a lifting s : P g p —> M | p , sending Po to M œ . One can adjust 

s to make it compatible with the morphism à : Qgp —> Mgp —» Mgp given by the 

chart a : Q —• My-. Indeed, if j : Q G P C—• -PQP i s the inclusion, the homomorphisms 

sj/a : Qgp -> ^ x can be extended to P 0

g p as the torsion part of P 0

g p / Q g p is killed 

by an integer invertible on X. Assume that this adjustment is done. As v is a 

chart, P/ i> _ 1 (^*) —> Mx is an isomorphism, and since H is contained in v _ 1 (<^*), 

P o / s _ 1 ( ^ * ) —> Mx is an isomorphism as well, hence s : Po —> M x is a chart at # 

compatible with a. A second adjustment is needed to make it G-equivariant. To 

do so, one can proceed as above, by considering the 1-cocycle z of G with values in 

Hom(P 0

g p , ^*) given by 

gs(p) = z(g,p)s(p). 

The image of z in Z1(G, Hom(P g p , k(x)*)) is a homomorphism 

^o : G a b 0 P 0

g p - p.. 

The quotient # ^ (p H-> z(g,p)/(f0(g,p)) belongs to B1(G,Hom(Pgp/(5gp, 1 + tn x)), 

hence can be written g (p gp(p)/p(p)) for p : P g p / Q g p —• 1 + m^. So, replacing 

z by g i—>• z(g,p)p(p)~1, we may assume that z = <po? in other words, the map 

b0 : X -> Spec A[P 0] 

defined by the pair (s, <̂ o) is an equivariant chart of X at x (extending a). 
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1. THE MAIN THEOREM 173 

One can give an alternate, shorter proof of the last assertion which does not use 

the above decomposition of P into H®PQ. Consider again the cokernel G of the map 

u introduced a few lines above diagram (1.2.3). Write G as a direct sum of cyclic 

groups of orders rrii\m. Choose a* G M | p and bi G Z 0 Q S P (1 < i < n) such that 

a™1 = u(bi), and the a^s induce an isomorphism 

Z/m1Z C 

Replace diagram (1.2.3) by the following push-out diagram 

(1-2-4) e . Z e , ^ © . Z ( £ e 0 

Z 0 Q g p — ^ F, 

where the upper horizontal map is the natural inclusion and the left vertical one sends 

d to bi. In this way, we have F = P g p D Z 0 Q g p and P g p / ( Z 0 Q g p ) G. As X 

is fs, M g P is torsionfree, so the map V : F —> M g P , defined similarly as above (using 

(1.2.4) instead of (1.2.3)), sends (P g p ) t 0 rs to 0, hence 

(PgP)tors = (Z 0 QgP)tors = (QgP)tors, 

which finishes the proof. • 

1.3. Lemma. — Let G be a finite group of exponent n, let A = Z[/ / n ] [ l /n] , let k be 

a field over A, and let L be a finitely generated k[G]-module. There exists a finitely 

generated projective A[G]-module V such that L = k 0 A V. 

Proof — First, observe that since n is invertible in A, any A[G]-module which is 

finitely generated and projective over A is projective over A[G] [Serre, 1978, § 14.4, 

Lemme 20]. 

Suppose first that char(A:) = 0, and let k be an algebraic closure of k. Then, L 

descends to a Q[/xn][G]-module W, as k <S>k L descends [Serre, 1978, § 12.3] and the 

homomorphism Rk(G) —> R^{G) given by extension of scalars is injective [Serre, 1978, 

§ 14.6]. One can then take for V a G-stable A-lattice in W (projective over A), which 

is necessarily projective over A[G] by the above remark. 

Suppose now that char(/c) = p > 0. Let / - » k be a Cohen ring for k. As A is 

étale over Z, A —• k lifts (uniquely) to A —» / . On the other hand, as L is projective 

of finite type over fc[G], by [Serre, 1978, § 14.4, Prop. 42, Cor. 3] L lifts to a finitely 

generated projective 7[G]-module E, free over / . Let K be the fraction field of / . 

Then E®K descends to a Q[/in][G]-module E'. Choose a G-stable A-lattice V in E' 

(projective over A, hence, projective of finite type over A[G]). By [Serre, 1978, § 15.2, 
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174 EXPOSÉ X. GABBER'S MODIFICATION THEOREM (LOG SMOOTH CASE) 

Th. 32], k (g>A V has the same class in Rk(G) as L. But, as k[G] is semisimple by 

Maschke's theorem, L and k ® A V are isomorphic as k[G]-modules. • 

Proof of 1.1 (beginning). 

The strategy is to check that, at each step of the proof of the absolute modification 

theorem (VIII-1.1), the log smoothness of X/S is preserved, and, at the end, that of 

the quotient (X/G)/S as well. For some of them, this is trivial, as the modifications 

performed are log blow ups. Others require a closer inspection. 

1.4. — Preliminary reductions. We may assume that conditions (1) and (2) at the 

beginning of (VIII-4) are satisfied, namely: 

(1) X is regular, 

(2) Z is a G-strict snc divisor in X. 

Indeed, these conditions are achieved by G-equivariant saturated log blow up towers 

(VIII-4.1.1, VIII-4.1.6). 

We will now exploit Gabber's preparation lemma 1.2 to give a local picture of / 

displaying both the log stratification and the inertia stratification of X. We work 

étale locally at a geometric point x in X with image s in S. Up to replacing X by the 

G^-invariant neighborhood X' constructed at the beginning of the proof of VIII-5.3.8, 

and G by Gx, where Gx is the inertia group at x, we may assume that G = Gx. 

Indeed, the morphism (X',GX) —> (X,G) is strict and inert, and by VIII-5.4.4 the 

tower f(G,x,z) is functorial with respect to such morphisms. 

We now apply 1.2. Let N be the exponent of G. Assume S strictly local at s. We 

may replace A = Z[l/N, n] by its localization at the (Zariski) image of s, so that A 

is either the cyclotomic field Q(/x) or its localization at a finite place of its ring of 

integers, of residue characteristic p = char (k (s)) not dividing n. Choose a chart 

a : S -+ Spec A[Q] 

with Q fs and the inverse image of û§ 8 in Q equal to { 1 } , so that Q is sharp and 

Q Ms. Let G denote k(s) if &s,s contains a field, and a Cohen ring of k(s) 

otherwise. Let (yi)i<i<m be a family of elements of ms such that the images of the 

y^s in @s,s/Is form a regular system of parameters, where Is = I(s,Ms) is the ideal 

generated by the image of Ms — û$s by the canonical map a : Ms —> @s,s- By 

[Kato, 1994, 3.2], the chart a extends to an isomorphism 

(1-4.1) C[\yi,...,ym]][[Q]]/(g)^Ûs,., 

where g G C[[yi,... ,2/m]][[Q]] is 0 if G = k(s), and congruent to p = char(fc(s)) > 0 

modulo the ideal generated by Q — { 1 } and (y\,..., ym) otherwise. By 1.2, up to 
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1. THE MAIN THEOREM 175 

shrinking X around x, we can find a G-equivariant commutative diagram (with trivial 
action of G on the bottom row) 

(1.4.2) X — ^ X' Spec ( A [ P ] ® A Sym A (F)) 

5 — ^ Spec A [ Q ] , 

where: 
(i) the square is cartesian; 
(ii) a, 6, and c are strict, where the log structure on Spec A[Q] (resp. Spec ( A [ P ] ® A 

Sym A (V))) is the canonical one, given by Q (resp. P) ; P is an fs monoid, with P* 
torsionfree; G acts on A[P] by g(Xp) = Ax(#,p)p, for some homomorphism 

X : G a b <8> P g p -> /i 

(iii) V is a free, finitely generated A-module, equipped with a G-action; 
(iv) the right vertical arrow is the composition of the projection onto the factor 

Spec A[P] and Spec A[/i], for a homomorphisme h : Q —> P such that hgp is injective 
and the torsion part of Coker/i g p is annihilated by an integer invertible on X ; 

(v) c is etale and inert. 

(vi) Consider the map 

v : P Mx 

defined by the chart X —• Spec A[P] induced by be. Up to localizing on X' around x, 
we may assume that v factors through the localization P( P) of P at the prime ideal p 
complementary of the face v ~ x ^ \ x). Replacing P by P(p), P decomposes into 

(1.4.3) P = P * 0 P i , 

with P* = ^ - 1 ( ^ x x ) f r e e finitely generated over Z , and P\ sharp, and the image of 
x by be in the factor Spec A [Pi] is the rational point at the origin. Then v induces an 
isomorphism Pi ^> Mx. By the assumptions (1), (2), we have Mx ^ N R . One can 
therefore choose (e$ G Pi) (1 < i < r) forming a basis of Pi. Then v(ei) =U G Mx C 
&x,x is a local equation for a branch Zi of Z at x, (Zi)i<i<r is the set of branches of 
Z at x, and G acts on U through the character Xi = x{~?ei)-G— 

Furthermore: 

(vii) The square in (1.4.2) is tor-independent. 

Indeed, by the log regularity of S and the choice of the chart a, we have, by 
[Kato, 1994, 6.1], T o r f [ Q ] ( ^ s , S , Z [ P ] ) = Q for i > 0. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



176 EXPOSÉ X. GABBER'S MODIFICATION THEOREM (LOG SMOOTH CASE) 

Though this will not be needed, one can describe the local structure of (1.4.2) more 
precisely as follows. Let 

(1.4.4) Y := Spec (A[P] ® A SymA(V)) = Spec (A[P*] ® A A[PX] ® A SymA(V)) 

and let Y' := Spec C[[2/i,..., 2/m]][[Q]] x Spec A Y, with the notation of 1.4.1. We may 
assume that X = X'. Then the completion of X at x is either isomorphic to the 
completion of Y' at x, or a regular divisor in it, defined by the equation g' = 0, where 
g' is the image of g in Oy^, with the notation of 1.4.1. 

1.5. — Step 3 and log smoothness (beginning). We will now analyze the modifications 
performed in the proof of Step 3 in VIII-4.1.9, VIII-4.2.13. The permissible towers 
used in loc. cit. are iterations of operations of the form: for a subgroup H of G, blow 
up the fixed point (regular) subscheme XH, and replace Z by the union of its strict 
transform Zst and the exceptional divisor E. Though such a blow up is not a log 
blow up in general, we will see that it still preserves the log smoothness of X over S. 

We work étale locally around x, so we can assume X = X' in 1.4.2. We then have 
a cartesian square 

(1.5.1) x H - ^ Y H 

f 

X—b-^Y, 

with y as in (1.4.4). We also have cartesian squares 

(1.5.2) Z — T 

f 

where T C Y is the snc divisor J2 Ti, Ti defined by the equation € Pi (1.4.3), and 

(1.5.3) ZxxXH ^TxYYH 

X ^Y. 

1.6. Lemma. — The squares (1.5.1), (1.5.2), and (1.5.3) are tor-independent. 

Proof. — For (1.5.2), this is because Z (resp. T) is a divisor in X (resp. V) (cf. 
[SGA6 vil 1.2]). For (1.5.1), as the square (1.4.2) is tor-independent (by 1.4 (vii)), it 
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1. THE MAIN THEOREM 177 

is enough to show that the composite (cartesian) square 

(1.6.1) XH ^YH 

S ^ Spec A[Q] 

is tor-independent. We have a decomposition 

(1.6.2) YH = (Spec A[P*]) H x (Spec A[Pi])H x (Spec SymA(V))H, 

(products taken over Spec A), and the map to Spec A[Q] is the composition of the 
projection onto (Spec A[P*])H x (Spec A[Pi])H and the canonical map induced by 
Spec A[Q] —> Spec A[P], which factors through the fixed points of H, G acting triv­
ially on the base. Let us examine the three factors. 

(a) We have 

(Spec Sym A (V0)" = Spec S y m A ( ^ ) , 

where VH is the module of coinvariants, a free module of finite type over A, as H 
is of order invertible in A. Therefore Spec A[Q] X s p e c A (Spec S y m A ( y ) ) ^ is flat 
over Spec A[Q], and its enough to check that (Spec A[P*])H x (Spec A[Pi])H is tor-
independent of S over Spec A[Q]. 

(b) The restriction to P* = v ' 1 ^ ^ ) of the 1-cocycle z(v) G Z1(ff,Hom(P,fc(x)*)) 
associated with v : P —> Mx (hv(a) = z(v)(h,a)v(a) for h G H, a G P, see the proof 
of 1.2 and (VI-3.5), is a 1-coboundary, hence trivial, as Bl(H,Hom(P,k(x)*)) = 0. 
Therefore 

(Spec A[P*]) H - Spec A[P*]. 

(c) Recall that 
p i = 0 N e -

l<i<r 
with ei sent by v to a local equation of the branch Zi of Z , and that G acts on A[Ne$] 
through the character %% : G ~^ Let A C { 1 , . . . , r } be the set of indices i such 
that Xi\H is trivial. Then 

(Spec A[P!]) f f = Spec A ^ N e J . 
ieA 

Let / be the ideal of P generated by {e^}^A- It follows from (b) and (c) that 

(Spec A[P])H = Spec A[P] / ( / ) , 

where ( / ) is the ideal of A[P] generated by / . By [Kato, 1994, 6.1], 
T o r f [ g ] ( ^ 5 , A [ P ] / ( / ) ) = 0 for i > 0, and therefore (1.6.1), hence (1.5.1) is tor-
independent. It remains to show the tor-independence of (1.5.3). For this, again it 
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is enough to show the tor-independence of 

(1.6.3) Z x x XH ^ T xY YH 

S ^Spec A[Q]. 

By (a), (b), (c), we have 

T x y YH = Spec A[P]/(Ji) x Spec SymA(VH), 
ieA 

where Ji C P is the ideal generated by G Pi, and (Ji) the ideal gener­
ated by Ji in A[P]. The desired tor-independence follows from the vanishing of 
Tor f ^ ' ( ^ s , A[P]/( . /#)) , where for a subset P of A, JB denotes the ideal generated 
by the e '̂s for i G P. • 

/ .7. Lemma. — Consider a cartesian square 

(1.7.1) V ^ V 

X ' — ^ x , 

where the right vertical arrow is a regular immersion. If (1.7.1) is tor-independent, 
then the left vertical arrow is a regular immersion, and 

B V ( X ' ) = X ' xXB\V(X). 

Let W —• X be a second regular immersion, such that V Xx W —* W is a regular 
immersion, and let W = X' Xx W. If moreover the squares 

(1.7.2) V *V 

X ' —g—*X, 

and 

(1.7.3) V'xx'W ^VxxW 

•i 

X' - - ^ X , 

are tor-independent, then the left vertical arrows are regular immersions, and 

W'si = X' xxWst, 
where Wst (resp. W'st) is the strict transform of W (resp. W) in Bly(X) (resp. 
Blv(X')). 
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Proof. — Let J (resp. / ' ) be the ideal of V (resp. V) in X (resp. X'). By the 
tor-independence of (1.7.1), if u : E —• / is a local surjective regular homomorphism 
[SGA6 VII 1.4], the Koszul complex g*K(u) is a resolution of 6y>, hence V —• X' 
is a regular immersion. Moreover, by [SGA6 VII 1.2], for any n > 0, the natural 
map g*In -> J / n is an isomorphism, and therefore B V ( X ' ) = X' x x B\V(X). The 
tor-independence of (1.7.2) and (1.7.3) imply that of 

V'xx> W ^VxxW 

w 

The second assertion then follows from the first one and the formulas (VIII-2.1.3 (ii)) 

Wst = B l y x x ^ , 

W'st = BlViXx,w>W'. • 

1.8. — Step 3 and log smoothness (end). As recalled at the beginning of 1.5, we 
have to show that, if H is a subgroup of G, then the log regular pair {X\,Z{) is log 
smooth over 5, where X\ := BIXH(X) and Z\ is the snc divisor ZST U E, ZST (resp. 
E) denoting the strict transform of Z (resp. the exceptional divisor) in the blow-up 
h:X!->X. 

The question is again étale local above X around x, so we may assume that X = X' 
and we look at the cartesian square (1.4.2) 

X 

S ^Spec A[Q], 

with Y as in (1.4.4), and the associated cartesian squares (1.5.1), (1.5.2), and (1.5.3). 
Claim. We have 

(1.8.1) B\XH(X) = X XY B\YH(Y), 

(1.8.2) ZST = X xY T s t . 

Proof. — In view of 1.6 and 1.7, (1.8.1) follows from the fact that the immersion 
YH -> Y is regular. For (1.8.2) recall that 

T = T0 x S p ec A Spec Sym A (F) , 

where TQ C Spec A[P] is the snc divisor 

T 0 = d i v ( ^ ) 
l<i<r 
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with zi G A[P] the image of e$ G Pi as in 1.4.3. Hence 

(1.8.3) T= Ti> 
l<i<r 

where Ti = div(*<) x S p e c A Sym A (F) , and Tst = Ei<i<r

Tt- W e h a v e (1-6.2) 

YH = (Spec A [ P ] ) H x Spec SymA(VH), 

with (Spec A[P])H defined by the equations (z{ = 0 ) ^ ^ , with the notations of 1.6 

(c). In particular, the immersion YH Xy Zi —> Zi is regular, hence, by 1.7, we have 

Zf = X xY Tf, hence (1.8.2), which finishes the proof of the claim. • 

Since the map S —» Spec A[Q] is strict, in order to prove the desired log smooth­

ness, we may, by this claim, replace the triple (X,XH,Z) over 5 by (F,Y H ,T) over 

Spec A[Q]. We choose coordinates on P*, Pi = N r , V: 

P* = 0 Z / i ? Pi = 0 Ne<, V = 0 Ayi 
l<i<t l<i<r l<i<s 

A[P) = A ^ f 1 , . . . , ^ 1 , ^ , . . . , ^ ] , Sym A (V) = A[2 / i , . . . ,y s ] , 

with (resp. z*) the image of fa (resp. e^) in A[P], in such a way that 

A[P]H = A[wf \ . . . , uf1, Zm+u ..., zr], 

i.e. is defined in A[P] by the equations (z\ = • • • = zm = 0), for some m, 1 < m < r, 

and 

A[Vtf] = A[y n + i , . . . , 2 / a ] , 

i.e. is defined in A[V] by the equations yi = • • • = yn = 0 for some n, 1 < n < s. 

Then 

c Y = Spec A ^ f 1 , . . . , ^ 1 , ^ , . . . , ^ , 2 / s ] 

is defined by the equations 

¿1 = ' * * = Zm = 2/1 = ' ' • = Vn = 0. 

Then 

Y' := Blyif(F) 

is covered by affine open pieces: 

t/» = Spec A[(uf1)i<j<t,z[,... , z -_ i , ^ , z - + i , . . . , z ^ , 2 m + i , . . . ,2r,yi> • • • »yn>2/n+i, • • • >2/«] 

(1 < z < m), with C/i -> y given by ^ -> z ^ for 1 < j < m, j ^ z, 2/j -> z ^ - , 

1 < j < 77-, and the other coordinates unchanged, and 

Vi = Spec A[(uf1)i<j<tlz[,... , z ^ , z m + i , . . .,zr,y[,.. •, 2/i—1> y*» 2/i+i> • • • >2/n»2/n+i> • • • >2/«] 
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(1 < i < n), with Vi-*Y given by Zj i-> yiz^ for 1 < j < m, yj i-> yiy'^ 1 < j < n, 

j ^ i, and the other coordinates unchanged. Recall that F has the log structure 

defined by the log regular pair ( Y, T), where T is the snc divisor 

T=(z1-'-zr = 0), 

and Y' is given the log structure defined by the log regular pair ( Y ' , T ' ) , where T' is 

the snc divisor 

T' = FU T s t , 

where F is the exceptional divisor of the blow up of YH and T s t the strict transform 

of T. Consider the canonical morphisms 

Y' —b-^ Y -^—^ E := Spec A[Q] . 

They are both morphisms of log schemes. The morphism g is given by the homomor­

phism of monoids 7 : Q —> P, i.e. 

qeQ^ ( 7 i ( ç ) , . . . , 7 t ( ç ) , 7 t + i ( ç ) , . . . , 7 t + r ( ç ) , 0 , . . . , 0 ) 

G A ^ f 1 , . . . , ^ 1 , ^ ! , . . . , ^ , ! / ! , . . . , ^ ] . 

The blow up 6 has been described above in the various charts. Note that b is not log 

étale, or even log smooth, in general. However, the composition gb : Y' —• E is log 

smooth. We will check this on the charts (Ui), (Vi). 

(a) Chart of type Ut. We have F = (zt = 0), T s t = (Ui<j<r,j^i zi = 0)- Hence the 
log strucure of Ui is given by the canonical log structure of A[N r ] in the decomposition 

Ui = Spec A[Z*] x Spec A[N r ] x Spec A[y[,.. .,yf

n,yn+i, ...,y8] 

with the basis element of N r sent to the k-th place in (z[,..., z\__x, z%, z'i+l,..., 

z'm, £ m + i , . . . , £ r ) (and the basis element ft of Z* sent to Uk), the third factor having 

the trivial log structure. Checking the log smoothness of gb : Ui —• E amounts to 

checking the log smoothness of its factor Spec A[P] —> E = Spec A(Q), which is 

defined by the composition of homomorphisms of monoids 

Q I z ^ N ^ Z ^ N ^ , 

where ¡3 is the homomorphism N r —> N r sending to tj + for 1 < j < m, j / z, 

to e ,̂ and to for m + 1 < j < r. Recall ((1.4.2), (iv)) that 7 g p is injective and 

the torsion part of its cokernel is invertible in A. As / ? g p is an isomorphism, the same 

holds for the composition (Id 0/3)7, hence gb : Ui —> E is log smooth. 

(b) Chart of type V{. We have F = (Vi = 0), T s t = Ui<j<m z'j Ylj>m+i zi- H e n c e 

the log structure of Vi is given by the canonical log structure of A [ N r + 1 ] in the 

decomposition 

VL = Spec A[Z*] x Spec A [ N r + 1 ] x Spec A[ (^ ) i<*<n , i* t , y n + 1 , . . . ,ys] 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



182 EXPOSÉ X. GABBER'S MODIFICATION THEOREM (LOG SMOOTH CASE) 

with the basis element of N r + 1 sent to the k-th place in (z[,..., z^, z m + i , . . . , zr) if 
k < r, and e r + i sent to yi (and the basis element fk of Z* sent to i^) , the third factor 
having the trivial log structure. Again, checking the log smoothness of gb : Vi —> E 
amounts to checking the log smoothness of its factor Spec A[Z*] x Spec A [ N r + 1 ] —• 
Spec A(<3). This factor is defined by the composition of homomorphisms of monoids 

Q — ! z* e N r z* e 

where /? : N r —» N r + 1 sends ej to ej + e r + i for 1 < j < m, and to ej for m + 1 < j < r. 
Then / ? g p is injective, and its cokernel is isomorphic to Z, hence (/?7) g p is injective, 
and we have an exact sequence 

0 -> Coker 7

g p -> Coker (/?7) g p Z -> 0. 

In particular, the torsion part of Coker(/?7) g p is isomorphic to that of Coker 7 g p , hence 
of order invertible in A, which implies that gb : Vi —> E is log smooth. 

This finishes the proof that Step 3 preserves log smoothness. 

1.9. — End of proof of 1.1. We may now assume that in addition to conditions (1) 
and (2) of 1.4, condition (3) is satisfied as well, namely 

(3) G acts freely on X - Z (i.e. Z = ZUTinthe notation of 1.1 or (VIII-1.1)), 
and, for any geometric point x —> X, the inertia group Gx is abelian. 

We have to check: 

Claim. If f(o,x,z) : (X'Z') —» (X, Z) is the modification of (VIII-5.4-4), then 
{X',Z') and (X'/G,Z'/G) are log smooth over S. 

Working étale locally around a geometric point x of X, we will first choose a strict 
rigidification (X, Z) of (X, Z) such that (X, Z) is log smooth over S. We will define 
(X, Z) as the pull-back by S -> E = Spec A[Q] of a rigidification (Y, T) of (Y, T) which 
is log smooth over E, with the notation of (1.4.4). Using that G (= Gx) is abelian, 
one can decompose V into a sum of G-stable lines, according to the characters of G: 

l<i<s 

with G acting on Kyi through a character Xi : G —• //A/, i.e. = Xi{9)yi- We define T 
to be the divisor 21 • • • zry\ • • • 2/s = 0 in Y = Spec Afy f 1 , . . . , w ^ 1 , 2 1 , . . . , z r , 2/1,..., ys]. 
The action of G on (Y,T) is very tame at x because the log stratum at x is 
Spec A[ufx,... luf1], hence very tame in a neighborhood of x by (VIII-5.3.2) 
(actually on the whole of V, cf. (VIII-4.6, VIII-4.7(a)). On the other hand, 
(Spec A[2/1,... • • -ys = 0) is log smooth over Spec A, and as Spec A[P] 
is log smooth over E, (Y,T) is log smooth over E. Since / (G,X,Z ) is compat­
ible with base change by strict inert morphisms, it is enough to check that if 
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f(G,Y,T) = /(G,y,T,T) : ( y / > T ' ) -* ( y ' T ) i s t h e modification of (VIII-5.4.4) then 
(Y',Tf) is log smooth over E . Recall (VIII-5.3.9) that we have a cartesian G-equiv-
ariant diagram 

(1.9.1) ( y ; , T 0 — ^ ( y , T ) 

a' a 

where the horizontal maps are the compositions of saturated log blow up towers, 

and the vertical ones Kummer étale G-covers. Prom (1.9.1) is extracted the relevant 

diagram involving h :— f^G YTT)' 

(Y',T)-^{Y,T) 

¡3 

O W ) , 

where T{ = h±l(Ti), with Tx = T/G, V = a'-x(T[), and h (resp. /?) is the restriction 

of hi (resp. a') over (Y, T) (resp. (Y{, T{)). In particular, /3 is a Kummer étale G-cover 

(as Kummer étale G-covers are stable under any fs base change). As G acts trivially 

on 5, this diagram can be uniquely completed into a commutative diagram 

(1.9.2) (Y',T')-£-*(Y,T) 

P f 

( Y / , R ; ) - ^ — E . 

Here / is log smooth and ¡3 is a Kummer étale G-cover. Though hi and h\ are log 

smooth, h and hi are not, in general. However, it turns out that: 

(*) g : (Y{,T{) -* E , hence gfi = fh : (Y',T') - > E , are % sraoot/i, 

which will finish the proof of the claim, hence of 1.1. We first prove 

(**) With the notation of (1.9.2), (Yî,Ti) is log smooth over E . 

Let us write Y = Spec A[P], with 

(1.9.3) P = P x N s = Z* x 1ST x N s . 

As G acts very tamely on (Y,T), the quotient pair (Fi = Y/G,Ti = T/G) is log 

regular. More precisely, by the calculation in (VI-3.4(b)), this pair consists of the log 

scheme Y\ = Spec A[R] with its canonical log structure, where 

R = Ker(P g P -> Hom(G, /JLN)) n P, 
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P S P —• Hom(G,/X7v) being the homomorphism defined by the pairing x : G <g) P g P —> 

liN- The inclusion R C P is a Kummer morphism, and P g P / P g P is annihilated by 

an integer invertible in A. As Qgp —> P s p is injective, with the torsion part of its 

cokernel annihilated by an integer invertible in A, the same is true for Q g p —> P S P , 

hence also for Q g p —» P g P . Thus (Yi,Ti) = Spec A[R] is log smooth over E. 

Finally, let us prove (*). It is enough to work locally on Y[ so we can replace 

the log blow up sequence (Y[,T^) —> (Yî ,Ti) with an affine chart (i.e. we replace 

the first log blow up with a chart, then do the same for the second one, etc.). Then 

Y{ = SpecA[p'], and P g P ^ p ' S P by VIII-3.1.19. Note that R! ^ Za x N b where 

Di,..., D\y are the components of Tx. We can assume that D\,..., Dc C T[ and 

-D c +i , . . . , Dh are not contained in T[. Let R' Za x N c denote the submonoid 

R that defines the log structure of (Y{,T[). Note that R' consists of all elements 

g' G R such that (gr = 0) C T[ (as a set). Also, by v : R —• P we will denote the 

homomorphism that defines (Y{,TX) —» (Yï ,Ti ) . 

We showed in VIII-5.3.9 that T\ =T/G is a Q-Cartier divisor in Yi and observed 

that therefore T[ is a Cartier divisor in Y[. Note that the inclusion R C P, where 

P = Ker(P g p -> Hom(G, /i^)) D P 

defines a log structure on Y\. Denote the corresponding log scheme (Yî,Ti). We 

obtain the following diagram of log schemes (on the left). The corresponding diagram 

of groups is placed on the right; we will use it to establish log smoothness of g. 

Existence of dashed arrows requires an argument; we will construct them later. 

(1.9.4) (Y{,T[) Tx) P , g P R g P ^ ^ 

(Y{, T{) - - ^ (Yu T i ) ^ - ^ E P / g p ^ - ^ P g p ^ Q g p . 

Part (ii) of the following remark clarifies the notation (Yi,Ti). It will not be used 

so we only sketch the argument. 

1.10. Remark. — (i) Note that (Yi,Ti) may be not log smooth over E. For example, 

even when E is log regular, e.g. Spec/c with trivial log structure, (Yi,Ti) does not 

have to be log regular, as T\ may even be non-Cartier. Nevertheless, as h\ is log 

smooth (even log étale), (Y{,T[) is log smooth over E. Moreover, Y[ is regular, and 

T[ an snc divisor in it. 

(ii) Although Ti may be bad, one does have that Râyx = ûYl H for the 

embedding i : Y\ \ T\^Y\. This can be deduced from the formulas for R and R and 

the fact that R0yx = ÛYl H j * ^ ^ by log regularity of (Y1,T1). 
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Note that Q —> P factors through P, hence Q —> R factors through R = P fl P. 

It follows from (1.9.3) that P consists of all elements / G P whose divisor ( / = 0) 

is contained in T (as a set). Therefore g G R lies in R if and only if (g = 0) C Ti 

(as a set). This fact and the analogous description of R' observed earlier imply that 

v : R —> R takes R to R'. Thus, we have established the dashed arrows in (1.9.4). 

Let (p : Q —• R be the homomorphism defining the composition (Y{,T[) —• 

(Yi,Ti) —• E. Since the latter is log smooth, <p is injective, and the torsion 

part of Coker(<£>gp) is annihilated by an integer m invertible in A. Note that 

P g p < - + P / g p ^ P / g P , a n d therefore we also have that Q g p ^ P ' g p and the torsion of its 

cokernel is annihilated by m. Therefore, (Y{,T{) is log smooth over E, which finishes 

the proof of (*), hence of 1.1. 

1.11. Remark. — In the proof of (*) above, we first proved that g is log smooth, and 

deduced that g/3 is, too. In fact, as (3 is a Kummer étale G-cover, the log smoothness 

of g/3 implies that of g. More generally, we have the following descent result, due to 

Kato-Nakayama ([Nakayama, 2009, 3.4]): 

1.12. Theorem. — Let X' — X — Y be morphisms of fs log schemes. If g is 

surjective, log étale and exact, and fg is log smooth, then f is log smooth. 

The assumption on g is equivalent to saying that g is a Kummer étale cover (cf. 

[Illusie, 2002, 1.6]). 

2. Prime to £ variants of de Jong's alteration theorems 

Let X be a noetherian scheme, and £ be a prime number. Recall that a morphism 

h : X' —• X is called an '̂-alteration if h is proper, surjective, generically finite, 

maximally dominating (i.e., (II-1.1.2) sends each maximal point to a maximal point) 

and the degrees of the residual extensions k(xf)/k(x) over each maximal point x of 

X are prime to £. The next theorem was stated in Intro.-3 (1): 

2.1. Theorem. — Let k be a field, £ a prime number different from the characteristic 

of k, X a separated and finite type k-scheme, Z C X a nowhere dense closed subset. 

Then there exists a finite extension k' of k, of degree prime to £, and a projective 

£'-alteration h : X —• X above Spec k' —• Spec k, with X smooth and quasi-projective 

over k', and h~l(Z) is the support of a relative strict normal crossings divisor. 

Recall that a relative strict normal crossings divisor in a smooth scheme T/S is a 

divisor D = Di, where I is finite, Di C T is an 5-smooth closed subscheme of 

codimension 1, and for every subset J oî I the scheme-theoretic intersection f]ieJ Di 

is smooth over S of codimension \J\ in T. 
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We will need the following variant, due to Gabber-Vidal (proof of [Vidal, 2004, 

4.4.1]), of de Jong's alteration theorems [de Jong, 1997, 5.7, 5.9, 5.11], cf. [Zheng, 2009, 

3.8]: 

2.2. Lemma. — Let X be a proper scheme over S = Spec k, normal and geometrically 

reduced and irreducible, Z C X a nowhere dense closed subset. We assume that a finite 

group H acts on X —> S, faithfully on X, and that Z is H-stable. Then there exists a 

finite extension ki of k, a finite group Hi, a surjective homomorphism Hi —» H, and 

an Hi-équivariant diagram with a cartesian square (where S = Spec k, Si = Spec ki) 

(2.2.1) X Xi ^— X2 

v v / / / / / / / 

S^ Si 

satisfying the following properties: 

(i) Si/Ker(Hi —• H) —» S is a radicial extension; 

(ii) X2 is projective and smooth over Si; 

(hi) a : X2 —> Xi is projective and surjective, maximally dominating and generi-

cally finite and flat, and there exists an Hi-admissible dense open subset W C X2 over 

a dense open subset U of X, such that ifUi = SiXsU andK = Ker(Hi —• Aut(ï7i)), 

W —• W/K is a Galois étale cover of group K and the morphism W/K —• U\ induced 

by a is a universal homeomorphism; 

(iv) (ba)~X(Z) is the support of a strict normal crossings divisor in X2. 

Proof. — We may assume X of dimension d > 1. We apply [Vidal, 2004, 4.4.3] to 

X/S, Z, and G = H. We get the data of loc. cit., namely an équivariant finite 

extension of fields (Si, Hi) —> (S,H) such that Si/Ker(iïi —» H) —• S is radicial, an 

Hi-équivariant pluri-nodal fibration (Yd —> • • • —• Y\ —• Si, {o~ij}, ZQ = 0 ) , and an 

Hi-équivariant alteration ai : Yd —> X over S, satisfying the conditions (i), (ii), (hi) 

of loc. cit. (in particular aj~ 1(Z) c Zd), Then, as in the proof of [Vidal, 2004, 4.4.1], 

successively applying [Vidal, 2004, 4.4.4] to each nodal curve fi'.Yi —> Y^-i, one can 

replace Yi by an Hi-équivariant projective modification Y( of it such that Y( is regular, 

and the inverse image Z[ of Zi := | J . cr^( l i - i ) U/ i ~
1 (Z^_i) in Y( is an Hi-équivariant 

strict snc divisor. Then, X2 := Y'd is smooth over Si and Z'd is a relative snc divisor 

over Si. This follows from the analog of the remark following [Vidal, 2004, 4.4.4] 

with "semistable pair over a trait" replaced by "pair consisting of a smooth scheme 

and a relative snc divisor over a field". In particular, (ba)~1(Z)Ted is a subdivisor 

of Z'd, hence an snc divisor. After replacing Hi by Hi/Ker(Hi —> Aut(X2)) the 

open subsets U and V of (iii) are obtained as at the end of the proof of [Vidal, 2004, 

4.4.1]. • 
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2.3. — Proof of 2.1. There are three steps. 

Step 1. Preliminary reductions. By Nagata's compactification theorem 
[Conrad, 2007], there exists a dense open immersion X C X with X proper 
over S. Up to replacing X by X and Z by its closure Z , we may assume X proper 
over S. By replacing X by the disjoint sum of its irreducible components, we may 
further assume X irreducible, and geometrically reduced (up to base changing by a 
finite radicial extension of k). Up to blowing up Z in X me may further assume that 
Z is a (Cartier) divisor in X. Finally, replacing X by its normalization X ' , which is 
finite over X , and Z by its inverse image in X', we may assume X normal. 

Step 2. Use of 2.2. Choose a finite Galois extension ko of k such that the irreducible 
components of Xo = X Xs So (So = Spec ko) are geometrically irreducible. Let 
G = Gal(fco/fc) a n d H C G the decomposition subgroup of a component Y 0 of X 0 . 
We apply 2.2 to ( Y 0 / S 0 , Z0 H Y 0 ) , where ZQ = S0 xSZ. We find a surjection Hi -> H 
and an Hi-equivariant diagram of type 2.2.1: 

(2.3.1) Y o ^ — Y 1 ^ — Y 2 

So ^ Si, 

satisfying conditions (i), (ii), (iii), (iv) with S replaced by So, and X2 —» X\ —* X 
by Y2 —• Y\ —• Yb- As G transitively permutes the components of XQ , XQ is, as a 
G-scheme over So, the contracted product 

X O ^ Y Q X ^ G , 

i.e. the quotient of Yo x G by H acting on Y0 on the right and on G on the left (cf. 
proof of VIII-5.3.8), and similarly Z = ZQ xH G. Choose an extension of the diagram 

Hi — H — G into a commutative diagram of finite groups 

U V 

with i\ injective and v surjective (for example, take i\ to be the graph of iu and v 
the projection). Define 

X i := Fi xHl d , X2 := Y2 x f f l G i . 
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Then (2.3.1) extends to a G\-equivariant diagram of type 2.2.1 

(2.3.2) X 0 ^— X1 ^— X 2 

So -< S\, 

satisfying again (i), (ii), (iii), (iv). In particular, the composition h : X 2 —> X\ —> 

Xo X is an alteration above the composition Si —• So —• S, X2 is projective and 

smooth over S i , and h~1(Z) is the support of an snc divisor. However, as regard to 

2.1, the diagram 

X ^ - X 2 

S ^ Si 

deduced from (2.3.2) has two defects: 

(a) the extension Si —> S is not necessarily of degree prime to £, 

(b) the alteration h is not necessarily an ^'-alteration. 

We will first repair (a) and (b) at the cost of temporarily losing the smoothness of 

X2/Si and the snc property of h~1(Z). By (i), Si/Ker(Gi —> G) —> So is a radicial 

extension, hence S\/G\ —• S = So/G is a radicial extension, too. Similarly, by (iii), 

X2/Gi —• X is an alteration over S\/G\ —> S, which is a universal homeomorphism 

over a dense open subset. Now let L be an ^-Sylow subgroup of G\. Then Si/L —> 

Si/Gi is of degree prime to I, and X2/L —> X2/Gi is a finite surjective morphism 

of generic degree prime to £ Let S" := Spec /c; = S i / L , X 7 = 5' x# X . We get a 

commutative diagram with cartesian square 

(2.3.3) X -< X' ^ X2/L -< X 2 

S^ S' ^ S i , 

where S' —> S is an extension of degree prime to £, Si —> Sf a Galois extension of 

group L, 

h2 : X2/L —> X 

an ^'-alteration, X2/Si is projective and smooth, and if now h denotes the composition 

X2 —• X , Zi := h~1(Z) is an snc divisor in X 2 . If X2/L was smooth over S ' and 

Z i / L an snc divisor in X2/L, we would be finished. However, this is not the case in 

general. We will use Gabber's theorem 1.1 to fix this. 

Step 3. Use of 1.1. Let Y be a connected component of X 2 , {Z\)y — h~1(Z) fl Y, 

D the stabilizer of Y in L, / C D the inertia group at the generic point of Y. Then D 
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acts on Y through K := D/I, and this action is generically free. As Y is smooth over 

Si and (Z\)y is an snc divisor in Y, (Y, (Zi)y) makes a log regular pair, log smooth 

over Si, hence over Sf = S\/L (equipped with the trivial log structure). We have a 

K-equivariant commutative diagram 

(2.3.4) (Y/K, (Zi)Y/K) - (Y, (Zi)Y) 

where K acts trivially on S1, and / is projective, smooth, and log smooth (Sf having 

the trivial log structure). We now apply 1.1 to ( / : (Y, (Zi)Y) - » S' = (S',0),K), 

which satisfies conditions (i)-(iii) of loc. cit. We get a D-equivariant projective 

modification g : Y\ —• Y (D acting through K) and a D-strict snc divisor E\ on Y\, 

containing Zi := g _ 1 ( ( Z i ) y ) as a subdivisor, such that the action of D on (Y\,Ei) is 

very tame, and (Yi,Ei) and (Yi/D,Ei/D) are log smooth over 5'. Pulling back g to 

the orbit Y xD L of Y under L, i.e. replacing g by g xD L, and working separately 

over each orbit, we eventually get an L-equivariant commutative square 

(2.3.5) (Y2/L, E2/L) ^ (Y2, E2) 

V U 

{X2/L,Zl/L)^ (X2,ZX), 

where ^, v are projective modifications (and Zi = h~1(Z), Z\/L = / i 2 "
1 (Z) as above), 

with the property that the pair (Y2/L, E2/L) is an fs log scheme log smooth over Sf  

(= Si/L), and v-1{h^1(Z)) c E2/L). Let w : (X,Ë) -+ (Y2/L,E2/L) be a projec­

tive, log étale modification such that X is regular, and E = w~1(E2/L) is an snc 

divisor in X. For example, one can take for w the saturated monoidal desingulariza­

tion # l o g of (VIII-3.4.9). We then apply 1.2 to the log smooth morphism X Sf. 

By a special case of the (1.4.2), with Q = { 1 } , G = { 1 } , as P* is torsion free, X is 

not only regular, but smooth over Sf, and E a relative snc on X. Let 

h-.X-±X 

be the composition 

X —^ Y2/L X2/L X . 
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This is a projective ^'-alteration, and it fits in the commutative diagram 

X^—X 

5', 

where Sf is an extension of S of degree prime to £, X is projective and smooth over 

5', and h~1(Z)red is a sub-divisor of the S"-relative snc divisor E, hence a relative 

snc divisor as well. This finishes the proof of 2.1. 

Recall now the theorem stated in Intro.-3 (2): 

2.4. Theorem. — Let S be a separated, integral, noetherian, excellent, regular scheme 

of dimension 1, with generic point rj, X a scheme separated, flat and of finite type over 

S, £ a prime number invertible on S, Z c X a nowhere dense closed subset. Then 

there exists a finite extension rjf ofrj of degree prime to £ and a projective £'-alteration 

h : X —• X above S' —> S, where S' is the normalization of S in rjf, with X regular 

and quasi-projective over S', a strict normal crossings divisor T on X, and a finite 

closed subset E of Sf such that: 

(i) outside E, X —> Sf is smooth and T —> S' is a relative divisor with normal 

crossings; 

(ii) étale locally around each geometric point x of X3r, where sf = Spec k' belongs 

to E, the pair (X,T) is isomorphic to the pair consisting of 

X' = S'[uf\ ..., uf1, t u ..., tn]/(ubS • • • ub

8-t? • • • t? - IT), 

T' = v(tr+1...trn)cx, 

around the point (ui = l),(tj = 0), with 1 < r < m < n, for positive integers 

a\,...,ar,bi,...,bs satisfying gcd(p,a\ , . . . ,ar,b\,... ,bs) = 1, p the characteristic 

exponent of k', TT a local uniformizing parameter at s' ; 

(iii) h~1(Z)Ted is a sub-divisor of[js,eE(Xs')Ted UT. 

The proof follows the same lines as that of 2.1. We need again a Gabber-Vidal 

variant of de Jong's alteration theorems (cf. [Zheng, 2009, 3.8]). This is essentially 

[Vidal, 2004, 4.4.1]), except for the additional data of Z C X and the removal of the 

hypothesis that 5 is a strictly local trait: 

2.5. Lemma. — Let X be a normal, proper scheme over S, whose generic fiber is 

geometrically reduced and irreducible, Z C X a nowhere dense closed subset. We 

assume that a finite group H acts on X —• S, faithfully on X, and that Z is H-stable. 

Then there exists a finite group Hi, a surjective homomorphism Hi —» H, and an 
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Hi-équivariant diagram with a cartesian square 

(2.5.1) X ^ ^ X i ^ ^ X 2 

S -< Si, 

satisfying the following properties: 
(i) Si —• S is the normalization of S in a finite extension rji of n such that 

rji/Kei(Hi —• H) —• rj is a radicial extension (where rj is the generic point of S); 
(ii) X2 is projective and strictly semistable over Si (i.e. is strictly semistable over 

the localizations of Si at closed points [de Jong, 1996, 2.16],); 
(iii) a : X2 —> X\ is projective and surjective, maximally dominating and 

generically finite and flat, and there exists an Hi-admissible dense open subset 
W C X2r}1 over a dense open subset U of Xv, such that if Ui = rji xv U and 
K = Ker(#i —> Aut(C/i)), W —• W/K is a Galois étale cover of group K and the 
morphism W/K —> U\ induced by a is a universal homeomorphism; 

(iv) (ba)~1(Z) is the support of a strict normal crossings divisor in X2, and 
(X2, (ba)~1(Z)) is a strict semistable pair over Si (i.e. over the localizations of Si at 
closed points [de Jong, 1996, 6.3],). 

Note that (ii) and (iv) imply that there exists a finite closed subset E of Si such 
that, outside E, the pair (X2, (ba)~1(Z)) consists of a smooth morphism and a relative 
strict normal crossings divisor. 

Proof. — Up to minute modifications the proof is the same as that of 2.2. We may 
assume the generic fiber Xv is of dimension d > 1. We apply [Vidal, 2004, 4.4.3] to 
X / S , Z, and G = H. We get the data of loc. cit., namely an équivariant finite surjec­
tive morphism (Si, Hi) —• (S,H), with Si regular (hence equal to the normalization 
of S in the extension r/i of the generic point n of S) such that 77i/Ker(#i —> H) —> rj 
is radicial, an Hi-équivariant pluri-nodal fibration (Yd — • • • • — » Yi Si, {oij},Zo), 
and an Hi-équivariant alteration ai : Yd —• X over S, satisfying the conditions (i), 
(ii), (iii) of loc. cit. (in particular a^1(Z) C Zd). Then, as in the proof of [Vidal, 2004, 
4.4.1], successively applying [Vidal, 2004, 4.4.4] to each nodal curve fi : Yi —• Y^_i, 
one can replace Yi by an H i-équivariant projective modification Y/ of it such that Y( is 
regular, and the inverse image of Zi := [jj <7jj(Yi_i)U/~ 1(Zi_i) in Y( is an iJi-equiv-
ariant strict snc divisor. Then, by the remark following [Vidal, 2004, 4.4.4] X2 := Y'd 

is strict semistable over Si and (X2, Zd) is a strict semistable pair over Si. In particu­
lar, (ba)~1(Z)red is a subdivisor of Zd, hence an snc divisor, and (X2, (ba)~1(Z))re(i is 
a strict semistable pair over Si. The open subsets U and W as in (iii) are constructed 
as at the end of the proof of [Vidal, 2004, 4.4.1]. • 
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2.6. — Proof of 2.4- It is similar to that of 2.1. There are again three steps. We will 

indicate which modifications should be made. 

Step 1. Preliminary reductions. Up to replacing X by the disjoint union of the 

schematic closures of the reduced components of its generic fiber, and working sep­

arately with each of them, we may assume X integral (and Xv ^ 0). Applying 

Nagata's compactification theorem, we may further assume X proper and integral. 

Base changing by the normalization of S in a finite radicial extension of rj and taking 

the reduced scheme, we reduce to the case where, in addition, Xv is irreducible and 

geometrically reduced. Then we blow up Z in X and normalize as in the previous step 

1. Here we used the excellency of S to guarantee the finiteness of the normalizations. 

Step 2. Use of 2.5. Let So be the normalization of S in a finite Galois extension 

r]o of 77 such that the irreducible components of the generic fiber of X0 = X x s So 

(So = Spec ko) are geometrically irreducible. Let G = Gal(r]o/rj) and H C G the 

decomposition subgroup of a component Y0 of X 0 . We apply 2.5 to (Y0/So, Z0 fl YQ), 

where Z 0 = So Xs Z. We find a surjection Hi —• H and an Hi-equivariant diagram 

of type (2.5.1) satisfying conditions (i), (ii), (iii), (iv) with S replaced by So, and 

X2 —• Xi —> X by Yz —> Yi —• YQ. We then, as above, extend Hi —> H to a surjection 

Gi —» G and obtain a Gi-equivariant diagram of type (2.5.1) 

(2.6.1) X0 Xi ^— X2 

So -< Si, 

satisfying again (i), (ii), (iii), (iv). In particular, the composition h : X2 —> Xi —* 

Xo —» X is an alteration above the composition Si —> So —> S, X2 is projective and 

strictly semistable over Si and h~1(Z) is the support of an snc divisor forming a 

strict semistable pair with X2/S1. It follows from (i) that S\/G\ —> S = So/G is 

generically radicial, and by (iii) that X2/G1 —• X is an alteration over S\/G\ —> S, 

which is a universal homeomorphism over a dense open subset. As above, choose an 

^-Sylow subroup L of Gi. Then Si/L is regular, Si/L —> S\/G\ is finite surjective 

of generic degree prime to £, and X2/L —• X2/G1 is a finite surjective morphism of 

generic degree prime to £. Putting S' = S\/L, X' = S' X5 X, we get a commutative 

diagram with cartesian square 

(2.6.2) X ^ X' -< X2/L ^ X2 

S ^ S', ^ Si 
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where S' is regular, S' —» S is finite surjective of generic degree prime to £, Si —> Sf 

generically étale of degree the order of L, 

J12 : X2/L —» X 

an ^'-alteration, X2/S1 is projective and strictly semistable, and if /1 denotes the 

composition X2 -* X , Zi := / i _ 1 (Z ) r e d is an snc divisor in X2, forming a strictly 

semistable pair with X2/S1. 

Step 3. Use of 1.1. Defining Y, (Zi)Y, I C D, K = D/I as in the former step 3, K 

acts generically freely on Y. As the pair (Y, (Z\)Y) is strictly semistable over 5i, there 

exists a finite closed subset Ei of Si such that (Y, Y^x U(Zi)y) forms a log regular pair, 

log smooth over Si equipped with the log structure defined by Ei. As Si —» 5' = Si /L 

is Kummer étale, (Y, ( Y s / ) r e d u ( Z i ) y ) (where E' is the image of Ei) is also log smooth 

over 5 ' (equipped with the log structure given by E'), and we get a K-equivariant 

commutative diagram (2.3.4), with trivial action of K on Sr and / projective and log 

smooth over 5'. We then apply 1.1 to / : (Y, (Ys/)r ed U (Zi)Y) —» S", and the proof 

runs as above. We get a D-equivariant projective modification g : Yi —> Y (D acting 

through K) and a D-strict snc divisor Ei on Yi, containing ( ^ _ 1 ( ( Z i ) y ) U (Yi)sOred 

as a subdivisor, such that the action of D on (Yi,Ei) is very tame, and (Yi,Ei) 

and (Yi/D,Ei/D) are log smooth over S'. After extending from D to L we get 

an L-equivariant commutative square of type (2.3.5), with (Y2 /L , E2/L) log smooth 

over S" (= 5 i /L ) , and ( v " 1 ( / i ^ 1 ( Z ) ) U ( Y 2 / L ) S / ) r e d C ^ 2 / ^ - As above, we take a 

projective, log étale modification such that X is regular, and E = w~1(E2/L) is an 

snc divisor in X. 

We now apply 1.2 to the log smooth morphism (X,E) —> 5'. It's enough to work 

étale locally on X around some geometric point x of X3t, with sf G E'. We replace 

Sf by its strict localization at the image of x, and consider (1.4.2), with Q = N , 

G = {1}, A = Z(p) if p > 1 and Q otherwise, and the chart a : N —> M^/, 1 t—> 7r, 7r a 

uniformizing parameter of 5'. In (1.4.3) we have P* — Z ^ , Pi = N ^ , for nonnegative 

integers /x, v, hence 

p = z^ e № \ 

Let ((6i),(ai)) be the image of 1 G N in P in the above decomposition, and let 
(01 , . . . , a r ) , (61,... ,bs) be the sets of those a '̂s and b^s which are ^ 0. We may 
assume bi > 0 if bi ^ 0. As the torsion part of Coker(Z —> P g p ) is annihilated by 
an integer invertible on I , we have gcd(p, 01, . . . , a r , 61, . . . , bs) = 1, where p is the 
characteristic exponent of k. We have P = Z S 0 N R 0 Zv~s 0 N ^ ~ R . Choosing a basis 
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£¿¿+1,..., t n oîV, we get that étale locally around x, X is given by a cartesian square 

X ^ Spec A[uf1,..., uf1, £ i , . . . , tn] 

S' >- Spec A[z] 

with x going to the point (щ = 1), (tj = 0), and z i-> 7r, 2 »-+ uj 1 • • • г ^ 3 ^ 1 • • • t^r, in 
other words, 

x = s'[ut\...,и^,н,.. . ,«„]/(»£ • • 

Finally, is the union of the special fiber Xs> and a horizontal divisor T, étale locally 

given by the equation tr+\ • • • £ m = 0, where m = ¡1 and 1 < r < ra < n. As / i - 1 ( Z ) r e d 

is a sub-divisor of (Xv) r e d U T, this finishes the proof of 2.4. 

3. Resolvability, log smoothness, and weak semistable reduction 

3.1. Elimination of separatedness assumptions. — The main aim of §3.1 is to weaken 

the separatedness assumptions in Theorems 1.1 and VIII-1.1. 

3.1.1. — Recall, see VI-4.1, that if a finite group G acts on a scheme X then the 

fixed point subscheme XG is the intersection of graphs of the translations g: X —» X. 

In particular, XG is closed whenever X is separated. The definition obviously makes 

sense for non-separated schemes, and the only novelty is that XG is a subscheme that 

does not have to be closed. 

3.1.2. Inertia specializing actions. — An action of a finite group G on a scheme X 

is inertia specializing if for any point x G X with a specialization y G X one has that 

Gx С Gy. 

5.7.5. Lemma. — An action of G on X is inertia specializing if and only if for each 
subgroup H С G the subscheme XH is closed. 

Proof. — Note that a subscheme is closed if and only if it is closed under specializa­
tions. If Xй is not closed then there exists a point x G XH with a specialization 
у ф XH. Thus, H С Gx and H Gy, and the action is not inertia specializing. The 
opposite direction is proved similarly. • 

3.1.4. Remark. — (i) A large class of examples of inertia specializing actions can be 
described as follows. The following conditions are equivalent and imply that the action 
is inertia specializing: (a) any G orbit is contained in an open separated subscheme 
of X , (b) X admits a covering by G-equivariant separated open subschemes Xi. In 
particular, any admissible action is inertia specializing. 
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(ii) If (G,X,Z) is as in Theorem VIII-1.1, but instead of separatedness of X one 

only assumes that it possesses a covering by G-equivariant separated open subschemes 

Xi, then the assertion of the theorem still holds true. Indeed, the theorem applies to 

the G-equivariant log schemes (Xi, Zi = Z\xi), and by Theorem VIII-5.6.1 the modifi­

cations f(G,Xi,Zi) agree on the intersections and hence glue to a required modification 

f(G,x,z) of X. 

A quick analysis of the proof of VIII-1.1 is required to obtain the following stronger 

result. 

3.1.5. Theorem. — (i) Theorem VIII-1.1 and its complement VIII-5.6.1 hold true if 

the assumption that X is separated is weakened to the assumption that the action of 

G on X is inertia specializing. 

(ii) Theorem 1.1 holds true if the assumptions that X and S are separated are 

replaced with the single assumption that the action of G on X is inertia specializing. 

Proof. — The construction of modification f(G,x,z) m the proof of VIII-1.1 runs in 

four steps. The first two steps are determined by X and Z, see VIII-4. These steps 

do not use any separatedness assumption. In Step 3, one blows up the inertia strata, 

see VIII-4.1.9. Here one only needs to know that the inertia strata are closed, and by 

Lemma 3.1.3 this happens if and only if the action is inertia specializing. Finally, let 

us discuss the main part of the construction, see VIII-5 and VIII-5.5.5. Using Lemma 

VIII-5.3.8, one finds an appropriate equivariant covering (Xf, Z',G) —• (X, Z, G) with 

an affine X' and reduces the problem to studying the source. Thus, the separatedness 

assumption is only used in Lemma VIII-5.3.8. In fact, the only property of the 

G-action used in the proof of the latter is that for any x G X the set X \ {JH(£G_XH 

is open. Thus, in this case too, one only uses that the action is inertia specializing. 

The proof of Theorem 1.1 runs as follows. One considers the modification f(G,x,z) 

from VIII-1.1 and checks that it satisfies the additional properties asserted by 1.1. 

This check is local on X and hence applies to non-separated schemes as well. Since 

by part (i) of 3.1.5, f(G,x,z) is w e u defined whenever G acts inertia specializing on 

X, we obtain (ii). • 

3.1.6. Pseudo-projective morphisms and non-separated Chow's lemma. — We con­

clude §3.1 with recalling a non-separated version of Chow's lemma due to Artin-

Raynaud-Gruson, see [Raynaud & Gruson, 1971, I 5.7.13]. It will be needed to avoid 

unnecessary separatedness assumptions in the future. We prefer to use the following 

non-standard terminology: a finite type morphism / : X —• S is pseudo-projective if it 

can be factored into a composition of a local isomorphism X -+ X (i.e. X admits an 

open covering X = \Ji Xi such that the morphisms Xi —> X are open immersions) 

and a projective morphism X —» S. 
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3.1.7. Remark. — (i) We introduce pseudo-projective morphisms mainly for termino­
logical convenience. Although pseudo-projectivity is preserved by base changes, it can 
be lost under compositions. Moreover, even if X is pseudo-projective over a field k, 
its blow up X' does not have to be pseudo-pro jective over k (thus giving an example 
of a projective morphism / : X' —> X and a pseudo-project ive one X —> Spec(fc) so 
that the composition is not pseudo-projective). Indeed, let X be an affine plane with 
a doubled origin {01,02}, and let X' be obtained by blowing up o\. By 77 we denote 
the generic point of C\ = / _ 1 ( o i ) . The ring Spec^x ' .^ ) is a DVR and its spectrum 
has two different /c-morphisms to X'\ one takes the closed point to 77 and another 
one takes it to 02. It then follows from the valuative criterion of separatedness that 
any fc-morphism g: X' —• Y with a separated target takes 02 and 77 to the same 
point of Y. In particular, such g cannot be a local isomorphism, and hence X' is not 
pseudo-projective over k. 

(ii) Note that a morphism / is separated (resp. proper) and pseudo-projective if 
and only if it is quasi-projective (resp. projective). So, the following result extends 
the classical Chow's lemma to non-separated morphisms. 

3.1.8. Proposition. — Let f: X —• S be a finite type morphism of quasi-compact and 
quasi-separated schemes, and assume that X has finitely many maximal points. Then 
there exists a projective modification g: X' —> X (even a blow up along a finitely 
generated ideal with a nowhere dense support) such that the morphism X' —» S is 
pseudo-projective. 

Proof — As a simple corollary of the flattening theorem, it is proved in 
[Raynaud & Gruson, 1971, I 5.7.13] that there exists a modification X' —> X 
such that X' —> S factors as a composition of an étale morphism X' —> X that in­
duces an isomorphism of dense open subschemes and a projective morphism X —> S. 
(In loc.cit. one works with algebraic spaces and assumes that / is locally separated, 
but the latter is automatic for any morphism of schemes.) Our claim now follows 
from the following lemma (which fails for locally separated morphisms between 
algebraic spaces). • 

3.1.9. Lemma. — Assume that </>: Y —> Z is an étale morphism of schemes that re­
stricts to an open embedding on a dense open subscheme Yo^Y. Then <j> is a local 
isomorphism. 

Proof. — Let us prove that if, in addition, <\> is separated then (j) is an open immer­
sion. Since Y possesses an open covering by separated subschemes, this will imply 
the lemma. The diagonal : Y —» Y x z Y is an open immersion, and by the sepa­
ratedness of </>, it is also a closed immersion. Thus, Y is open and closed in Y Xz Y, 
and since both Y and Y XzY have dense open subschemes that map isomorphically 
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onto Yb, A<£ is an isomorphism. This implies that 0 is a monomorphism, but any 

étale monomorphism is an open immersion by [EGA IV4 17.9.1]. • 

3.2. Semistable curves and log smoothness 

3.2.1. Log structure associated to a closed subset. — Let 5 be a reduced scheme. 

Any closed nowhere dense subset W C S induces a log structure j+ûfr fl 0s^@s, 

where j : U^S is the embedding of the complement of W. The associated log scheme 

will be denoted (5, W). By VI-1.4, any log regular log scheme is of the form (5, W), 

where W is the non-triviality locus of the log structure. 

3.2.2. Semistable relative curves. — Following the terminology of [Temkin, 2010], by 

a semistable multipointed relative curve over a scheme 5 we mean a pair (C, D), where C 

is a flat finitely presented .S-scheme of pure relative dimension one and with geometric 

fibers having only ordinary nodes as singularities, and D^C is a closed subscheme 

which is étale over S and disjoint from the singular locus of C —• S. We do not 

assume C to be neither proper nor even separated over S. 

3.2.3. Proposition. — Assume that (5, W) is a log regular log scheme and (C, D) is a 

semistable multipointed relative S-curve such that the morphism f:C—*S is smooth 

over S \ W. Then the morphism of log schemes (C,D U f~1(W)) —> (5, W) is log 

smooth. 

Proof. — See VI-1.9. • 

3.3. -̂resolvability 

3.3.1. Alterations. — Assume that S' and S are reduced schemes with finitely many 

maximal points and let rf C S' and 77 C S denote the subschemes of maximal points. 

Let f:S' —> 5 be an alteration, i.e. a proper, surjective, generically finite, and 

maximally dominating morphism. Recall that / is an ^-alteration if one has that 

([k(x) : fc(/(x))],Z) = 1 for any x G n'. We say that / is separable if k(rj') is a 

separable & (^-algebra (i.e. rjf —> rj has geometrically reduced fibers). If, in addition, 

Sf and S are provided with an action of a finite group G such that / is G-equivariant, 

the action on S is trivial, the action on rf is free, and rj'/G ^ 77, then we say that / 

is a separable Galois alteration of group G, or just separable G-alteration. 

3.3.2. Remark. — We add the word "separable" to distinguish our definition from 

Galois alterations in the sense of de Jong (see [de Jong, 1997]) or Gabber-Vidal (see 

[Vidal, 2004, p. 370]). In the latter cases, one allows alterations that factor as S' —> 

S" —> 5, where S' —• S" is a separable Galois alteration and S" —• 5 is purely 

inseparable. 
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3.3.3. Universal £'-resolvability. — Let X be a locally noetherian scheme and let £ 

be a prime invertible on X. Assume that for any alteration Y —• Xred and nowhere 

dense closed subset Z cY there exists a surjective projective morphism f: Yf —+ Y 

such that Y' is regular and Z' = f~x(Z) is an snc divisor. (By a slight abuse of 

language, by saying that a closed subset is an snc divisor we mean that it is the 

support of an snc divisor.) If, furthermore, one can always choose such / to be a 

modification, separable ^'-alteration, ^'-alteration, or alteration, then we say that X 

is universally resolvable, universally separably '̂-resolvable, universally '̂-resolvable, or 

universally Q-resolvable, respectively. 

3.3.4. Remark. — (i) Due to resolution of singularities in characteristic zero, any qe 

scheme over Spec(Q) is universally resolvable. This is essentially due to Hironaka, 

[Hironaka, 1964], though an additional work was required to treat qe schemes that 

are not algebraic in Hironaka's sense, see [Temkin, 2008] for the noetherian case and 

[Temkin, 2012] for the general case. 

(ii) It is hoped that all qe schemes admit resolution of singularities (in particular, 

are universally resolvable). However, we are, probably, very far from proving this. 

Currently, it is known that any qe scheme of dimension at most two admits resolution 

of singularities (see [Cossart et al., 2009] for a modern treatment). In particular, any 

qe scheme of dimension at most two is universally resolvable. 

(iii) One can show that any universally Q-resolvable scheme is qe, but we prefer 

not to include this proof here, and will simply add quasi-excellence assumption to the 

theorems below. 

(iv) On the negative side, we note that there exist regular (hence resolvable) but 

not universally Q-resolvable schemes X. They can be constructed analogously to 

examples from 1-11.5. For instance, there exists a discretely valued field K whose 

completion K contains a non-trivial finite purely inseparable extension Kf/K (e.g. 

take an element y G k((x)) which is transcendental over k(x) and set K = k(x,yp) C 

Kf = k(x,y) C k((x)) with the induced valuation). The valued extension K'/K has a 

defect in the sense that eK>/K = JK'/K = 1. In other words, the DVR's A! and A of 

K' and K, have the same residue field and satisfy TUA' = TUAA' . Since A' is A-flat, it 

cannot be A-finite. On the other hand, A' is the integral closure of A in K\ and we 

obtain that A is not qe. In addition, although X = Spec(A) is regular, any X-finite 

integral scheme X' with K' C k(Xf) possesses a non-finite normalization and hence 

does not admit a desingularization. Thus, X is not universally Q-resolvable. 

Our main goal will be to show that universal ^'-resolvability of a qe base scheme S 

is inherited by finite type S-schemes whose structure morphism X —> S is maximally 

dominating (see Theorem 3.5 below, where a more precise result is formulated). The 
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proof will be by induction on the relative dimension, and the main work is done when 

dealing with the case of generically smooth relative curves. 

3.4. Theorem. — Let S be an integral, noetherian, qe scheme with generic point r\ = 

Spec(K), let f: X —• S be a maximally dominating (II-1.1.2) morphism of finite type, 

and let Z C X be a nowhere dense closed subset. Assume that S is universally £1-re­

solvable (resp. universally separably £'-resolvable), Xv = X Xs r\ is a smooth curve 

over K, and Zv = Z x s rj is étale over K. Then there exist a projective £'-alter­

ation (resp. a separable projective £'-alteration) a: Sf S, a projective modification 

b: X' —> (X x s Sf)pr, where (X x s Sf)pT is the proper transform of X, i.e. the 

schematic closure of Xn Xs S' in X Xs S', 

X1 ^ - i (X x s S / ) p r C ^ X x s Sf ^ X 

and divisors W C S' and Z' C X' such that S' and X' are regular, W and Z' are 

snc, the morphism f':X'—> Sf is pseudo-projective (§3.1.6), (Xf,Zf) —> (S',W) is 

log smooth, and Z' = c~1(Z) U f'^iW'), where c denotes the alteration X' —» X. 

We also note if / is separated (resp. proper) then / ' is even quasi-projective (resp. 

projective) by Remark 3.1.7 (ii). 

Proof. — It will be convenient to represent Z a>s ZhU Zv, where the horizontal com­

ponent Zh is the closure of Z^ and the vertical component Zv is the closure of Z\ Zh-

The following observation will be used freely: if a\: S\ —> S is a (resp. separable) 

projective ^-alteration with an integral 5i and 61: X\ —> (X Xs Si)pr is a projective 

modification, then it suffices to prove the theorem for /1: X\ —> S\ and the preimage 

Z\ C X\ of Z (note that the generic fiber of /1 is smooth because it is a base change 

of that of / ) . So, in such a situation we can freely replace / by /1, and Z will be 

updated automatically without mentioning, as a rule. We will change S and X a few 

times during the proof. We start with some preliminary steps. 

Step 1. We can assume that f is quasi-projective. By Proposition 3.1.8, replacing 

X with its projective modification we can achieve that / factors through a local 

isomorphism X —> X, where X is 5-projective. Let X\ C X be the image of X. 

Then the induced morphism X\ —» S is quasi-projective and with smooth generic 

fiber. If the theorem holds for fi and the image Z\ C X\ of Z, i.e., there exist 

a: S' —• S and 61: X[ —• (Xi X5 S')pT that satisfy all assertions of the theorem, 

then the theorem also holds for / and Z because we can keep the same a and take 
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b = bi Xxx X. This completes the step, and in the sequel we assume that / is quasi-

projective. As we will only use projective modifications bi: Xi —> (X x$ Si)pr, the 

quasi-projectivity of / will be preserved automatically. 

Step 2. We can assume that f and Zh S are flat. Indeed, due to the flatten­

ing theorem of Raynaud-Gruson, see [Raynaud & Gruson, 1971, I 5.2.2], this can be 

achieved by replacing S with an appropriate projective modification S', replacing X 

with the proper transform, and replacing Z with its preimage. From now on, the 

proper transforms of X will coincide with the base changes. 

Step 3. Use of the stable modification theorem. By the stable modification theorem 

[Temkin, 2010, 1.5 and 1.1] there exist a separable alteration a: S —> S with an 

integral S and a projective modification X —> X XsS such that (X, Zh) is a semistable 

multipointed 5-curve (see § 3.2.2), where Zh C X is the horizontal part of the preimage 

Z of Z. Enlarging S we can assume that it is integral and normal. 

X ^X xsS 

S ?—+S. 

Step 4. We can assume that a is a separable projective G-alteration, where G is an 

£-group. Since semistable multipointed relative curves are preserved by base changes, 

we can just enlarge S by replacing it with any separable projective Galois alteration 

that factors through S. Once S —• S is Galois, let G denote its Galois group and let 

G C G be any Sylow ^-subgroup. Since S —> S/G is a separable G-alteration and 

S/G —> S is a separable projective ^'-alteration, we can replace S with S/G, replace 

X with X Xs (S/G), and update Z accordingly, accomplishing the step. 

Step 5. The action of G on X Xs S via S lifts equivariantly to X. In particular, f 

becomes G-equivariant and X —• X becomes a separable projective G-alteration. This 

follows from [Temkin, 2010, 1.6]. 

Step 6. The action of G on X is inertia specializing. Indeed, any covering of X by 

separated open subschemes induces a covering of X by G-equivariant separated open 

subschemes. So, it remains to use Remark 3.1.4 (i). 

Step 7. We can assume that S —• S is finite. By Raynaud-Gruson there exists a 

projective modification S' —> S such that the proper transform S of S is flat over 

Sf. Let 77 denote the generic point of S and 5 ' and let r/ denote the generic point 

of S and S . Since the morphisms S x § S' —> S' and rjf —> n are G-equivariant and 

S is the schematic closure of 77' in S x 5 Sf, we obtain that the morphism S —> S" 

is a separable projective G-alteration. Replacing 5—^5 with S —• S', and updating 

X and X accordingly, we achieve that S —> S becomes flat, and hence finite. All 
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conditions of steps 1-6 are preserved with the only exception that S may be non-

normal. So, we replace S with its normalization and update X . This operation 

preserves the finiteness of S —> 5, so we complete the step. 

Step 8. Choice of W. Fix a closed subset W C 5 such that S —• S is étale over 

S\W, 7(ZV) C W, where Zv is the vertical part of Z and W = a _ 1 (W0, and / is 

smooth over S\W. 

Step 9. We can assume that S is regular and W is snc. Indeed, by our assumptions 

on S there exists a projective ^'-alteration (resp. a separable projective ^'-alteration) 

a: 5' —• S such that S' is regular and a~1(W) is snc. Choose any preimage of rj in 

5' x 5 S and let 5 be the normalization of its closure. Then S —» Sf is a separable 

projective Galois alteration with Galois group G' C G, so we can replace S,S,G and 

X with S',S , G' and I x ^ S ' , respectively, and update W, W and Z accordingly 

(i.e. replace them with their preimages). Note that step 9 is the only step where a 

non-separable alteration of S may occur. 

Step 10. The morphism (5, W) —> (5, W) is Kummer étale. Indeed, S —> S is an 

étale G-covering outside of W, and S is the normalization of S in this covering, so 

the assertion follows from IX-2.1. 

Consider the G-equivariant subscheme T — Z U / (W) of X. The morphism 

( X , T ) —• (S,W) is log smooth by Proposition 3.2.3, hence so is the composition 

( X , T ) —> (S,W) and we obtain that (X,T) is log regular. The group G acts freely 

on S\W and hence also on X\T. Also, its action on X is tame and inertia specializing 

(step 6), hence we can apply Theorem 1.1 to (X, T) —> (£, W) . As a result, we obtain a 

projective G-equivariant modification (X , T ) —> ( X , T ) such that T is the preimage 

of T , G acts very tamely on (x', T ' ) , and (X ' , Z ' ) = (X'/G,T'/G) is log smooth over 

(5, W) (the quotient exists as a scheme as / is quasi-projective by Step 1 and the 

morphisms S —> S and X —» X —> X 5 are projective). Clearly, X ' is a projective 

modification of X and Z ' is the union of the preimages of W and Z , hence it only 

remains to achieve that X ' is regular and Z' is snc. For this it suffices to replace 

(X ' , Z') with its projective modification &lo&(X', Zf) introduced in VIII-3.4.9. • 

3.4.1. Remark. — It is natural to compare Theorem 3.4 and the classical de Jong's 

result recalled in IX-1.2. The main differences are as follows. 

(i) One considers non-proper relative curves in 3.4, and this is the only point that 

requires to use the stable modification theorem instead of de Jong's result. The reason 

is that although the problem easily reduces to the case of a quasi-projective / (see 

Step 2), one cannot make / projective, as the compactified generic fiber X ^ does not 

have to be smooth (i.e. geometrically regular) at the added points. 

(ii) One uses ^'-alterations in 3.4. This is more restrictive than in IX-1.2, but the 

price one has to pay is that the obtained log smooth morphism (X ' , Z') —> (£", W') 
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does not have to be a nodal curve (e.g. X' —• S' may have non-reduced fibers). The 

construction of such b: X' —• X involves a quotient by a Sylow subgroup, and is based 

on Theorem 1.1. (Note also that it seems probable that instead of 1.1 one could use 

the torification argument of Abramovich-de Jong, see [Abramovich & de Jong, 1997, 

§1.4.2].) 

Now, we are going to use Theorem 3.4 to prove the main result of § 3. 

3.5. Theorem. — Let f: X —• S be a maximally dominating (II-1.1.2) morphism of 

finite type between noetherian qe schemes, let Z C X be a nowhere dense closed subset, 

and assume that S is universally £'-resolvable, then: 

(i) X is universally £'-resolvable. 

(ii) There exist projective £'-alterations a: S' —> S and b: X' —• X with regular 

sources, a pseudo-projective (§3.1.6) morphism ff:Xf—> S' compatible with f 

X' —b-^X 

f f 

S'—^S 

and snc divisors W C S' and Z' c X' such that Z' = b~1(Z) U / ' _ 1 ( W ) and the 

morphism (X',Z') —> (S',W) is log smooth. 

(iii) If S = Spec (A;), where k is a perfect field, then one can achieve in addition 

to (ii) that a is an isomorphism and the alteration b is separable. In particular, X is 

universally separably £'-resolvable in this case. 

Proof. — Note that (i) follows from (ii) because any alteration X\ of X is also of 

finite type over S, so we can apply (ii) to X\ as well. Thus, our aim is to prove 

(ii) and its complement (iii). We will view Z both as a closed subset and a reduced 

closed subscheme. We start with a few preliminary steps, that reduce the theorem 

to a special case. We will tacitly use that if Si —•> S and X\ —• X are projective 

^'-alterations, separable in case (iii), and f\: X\ —> Si is compatible with / , then 

it suffices to prove the theorem for / i and the preimage Z\ C X\ of Z. So, in such 

situation we can freely replace / with f\, and Z will be updated automatically without 

mentioning, as a rule. 

Step 1. We can assume that X and S are integral and normal. For a noetherian 

scheme Y, let Ynor denote the normalization of its reduction. Since / is maximally 

dominating, it induces a morphism / n o r : x n o r —> S n o r , and replacing / with / n o r 

we can assume that S and X are normal. Since we can work separately with the 

connected components, we can now assume that S and X are integral. 

Step 2. We can assume that f is projective. By Proposition 3.1.8 there exists 

a projective modification X± —> X such that the morphism X\ —> S factors into a 
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composition of a local isomorphism Xi —> X and a projective morphism / : X —• 

S. Replacing X with X\ we can assume that X itself admits a local isomorphism 

g: X —• X with an ^-projective target. Let Z be the closure of g(Z). Then it suffices 

to solve our problem for / and Z , as the corresponding alteration of X will induce an 

alteration of X as required. Thus, replacing X and Z with X and Z , we can assume 

that / is projective. 

Step 3. It suffices to find f which satisfies all assertions of the theorem except 

the formula for Z1while the latter is weakened as b~1(Z) U f,~1{W) C Zf. Given 

such an / ' note that Z" = b~1(Z) U f'~1(W) is a subdivisor of Z ' , hence it is an 

snc divisor too. We claim that X', Z " , S', W satisfy all assertions of the theorem, 

and the only thing one has to check is that the morphism (Xf, Z") —• (Sr, W) is log 

smooth. The latter follows from Lemma 3.5.3 whose proof will be given below. 

Step 4. In the situation of (iii) we can assume that the field k is infinite. Assume 

that S = Spec (A:) where & is a finite field and fix an infinite algebraic ^'-prime extension 

k/k (i.e. it does not contain the extension of k of degree £). We claim that it suffices 

to prove (ii) and (iii) for S = Spec(fc) and the base changes X = X Xs S and 

Z = Z Xs S. Indeed, assume that a: X —» X is a separable ^'-alteration with a 

regular source and such that Z = a~l(Z) is an snc divisor (obviously, we can take 

S = S and W = 0) . Since S = lim^ Si where Si = Spec(/^) and ki/k run over finite 

subextensions of k/k, [EGA IV3 8.8.2(h)] implies that there exists i and a finite type 

morphism X[ —> Xi = X x s Si such that X X[ x5. S. For any finite subextension 

ki C kj C k set Xj = X[ xSi Sj and Xj = Xi xSi Sj, and let Zj C Xj be the preimage 

of Z. Then it follows easily from [EGA iv 3 8.10.5] and [EGA iv 4 17.7.8] that X\ -> Xj 

is an ^'-alteration and Xj —• Sj is smooth for large enough kj. In the same manner 

one achieves that Zj is an snc divisor. Now, it is obvious that (X j ,Z j ) —> (5 , 0 ) is 

log smooth and Xj —> X3; —> X is an ^'-alteration. 

Now we are in a position to prove the theorem. We will use induction on d = 

tr.deg.(k(X)/k(S)), with the case of d = 0 being obvious. Assume that d > 1 and 

the theorem holds for smaller values of d. 

Step 5. Factorizing f through a relative curve. After replacing X by a projective 

modification, we can factor / as ho g, where h: Y —> S is projective, Y is integral, 

g: X —> Y is maximally dominating and tr.deg.(A;(X)/A:(F)) = 1. Indeed, one can 

obviously construct such a rational map gf: X Y even without modifying X (i.e. 

g' is well defined on a non-empty open subscheme U C X). Let X' be the schematic 

image of the morphism U^X x Y. Then X' —> X is a projective modification (an 

isomorphism over U), and the morphism X' —• S factors through g: X —• Y. 

Let 77 = Spec(/c(Y)) denote the generic point of Y, Xv = X Xy 77 and Z^ = Z Xy 77. 

We claim that in addition to factoring / through Y one can achieve that the following 

condition is satisfied: 
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(*) Xv and ZV are smooth over rj. 

In general, this is achieved by replacing X and Y by inseparable alterations. Pick 

up any finite purely inseparable extension K/k(Y) such that ZK = (Z x r / S p e c ( K ) ) n o r 

(i.e. just the reduction) and XK — (X xv Spec(lif)) n o r are smooth, extend K/k(Y) 

to a projective alteration Y' —» Y, and replace Y and X with Y' and the schematic 

closure of XK in X xY Y'\ respectively. Clearly, (*) holds after this replacement. 

It remains to deal with the case (iii). This time we should avoid inseparable 

alterations, so g and Y should be chosen more carefully. If k = k is algebraically 

closed and S = Spec(fc) then such g and Y exist by [de Jong, 1996, 4.11], and the 

general assertion of (iii) will be proven similarly. Let us recall the main line of the proof 

of [de Jong, 1996, 4.11]. Fix a closed immersion X^P^ and for each linear subspace 

L of dimension N — d consider the classical projection B l ^ P ^ ) —> Y = P ^ - 1 . If L is 

general then it does not contain X and hence the strict transform X£ c ->Bl L (P^ r ) is 

a modification of X. de Jong shows that if k = k then for a general choice of L the 

projection X'L —> Y satisfies (*). 

In the general case, the schemes X = X 0^ k and Z = Z ®fc k are reduced since 

k is perfect. Hence a general L^-»P^ induces a modification Xj^ —• X and a curve 

fibration g-^: x'^ —> P ^ _ 1 that satisfies (*). Since k is infinite we can choose L to 

be defined over fc, i.e. L = L (g)̂  k for L°->P^. We obtain thereby a modification 

X'L —» X and a curve fibration gz,: X'L —» P ^ - 1 . Since ^ is the flat base change of 

the latter satisfies (*) by descent. 

Step 6. Use of Theorem 3.4- So far, we have constructed the right column of the 

following diagram 

z') # 1 ° g ( L , M L ) > (L, ML) ( X " , Z " ) — X 

( y / ^ / j — L ^ j y ^ y ^ f ^ y / 

h' h" hj 

(Sf, W) — S = s. 

By Theorem 3.4 there exists a projective ^'-alteration c": Y" —> Y with regular 

source, a projective modification X" —> (X Xy y / ; ) p r with regular source, a projective 

morphism g": X" Y" compatible with g, and snc divisors V" C Y" and Z" C X 7 / 

such that {X",Z") (F", V 7 7 ) is log smooth and ft""1^) c Z". In case (iii), y is 

universally separably ^'-resolvable by the induction assumption, hence we can take 

c" to be separable, and then b"': X" X is also separable. In addition, by the 

induction assumption applied to h": Y" S and V" C Y" there exist projective 
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^'-alterations a: Sf —> 5 and d: Y' —> F" with regular sources and snc divisors 
W C S' and V C y' and a projective morphism h! \Y' —> S' compatible with h" 
such that (y ; , V ) -> (5 ' , W ) is log smooth, c ' " 1 ^ " ) C V 7 , and c' is separable if the 
assumption of (iii) is satisfied. 

Set (L, ML) = (X", Z") x^Y„ (Yf, V), where the product is taking place in the 
category of fs log schemes. To simplify notation we will write P s a t instead of ( p i n t ) s a t 

for monoids and log schemes. Recall that (L,ML) = (F, M p ) s a t , where (F,MF) is 
the usual log fibered product, and F = X" xY" Y' by [Kato, 1988, 1.6]. Furthermore, 
we have local Zariski charts for d and g" modeled, say, on Pi —> P[ and Pi —» Qi. 
Hence (F,Mp) is a Zariski log scheme with charts modeled on Ri = P[ 0 p i Qi, 
and (L,ML) is a Zariski log scheme with charts modeled on Pf a t . Furthermore, 
the saturation morphism L —• F is finite hence the composition L —• F —• X" is 
projective. The morphism g': (L,ML) —» (Y',Vf) is a saturated base change of the 
log smooth morphism g": (X", Z") -> (F", F") , hence it is log smooth. As (Y', V) is 
log regular, (L,ML) is also log regular. Applying to (L,ML) the saturated monoidal 
desingularization functor ^ X o g from VIII-3.4.9 we obtain a log regular Zariski log 
scheme (Xf, Z') with a regular X'. Then Z' is a normal crossings divisor, which is 
even an snc divisor since the log structure is Zariski. 

We claim that (X1\Z') and (Sf,W) are as asserted by the theorem except of the 
weakening dealt with in Step 3. Indeed, the morphism (X',Z') —• (S',W) is log 
smooth because it is the composition (X',Z') -* (L, ML) (Y',V) {S',W) 
of log smooth morphisms. The preimage of Z in X" is contained in Z", which is 
the non-triviality locus of the log structure of (X",Z"), hence its preimage in X' 
is also contained in the non-triviality locus of the log structure of (Xf,Z'), which is 
Zf. Clearly, Z' also contains the preimage of W'. By the construction, S' —> S is 
a projective ^'-alteration, and it remains to check that X' —» X is also a projective 
^'-alteration. Since ^ l o g ( L , ML) is a saturated log blow up tower and (L,ML) is log 
regular, the underlying morphism of schemes X' —> L is a projective modification 
by VIII-3.4.6 (i). The projective morphism L —> X" is an ^'-alteration because 
generically (where the log structures are trivial) it is a base change of the projective 
^'-alteration Y' —> Y". And X" —* X is a projective ^'-alteration by the construction. 
It remains to recall that in the situation of (iii) the alterations d :Y' —> Y" and 
6": X" —• X are separable, hence so are (L,ML) —> X" and the total composition 
X'->X. • 

3.5.1. Remark. — The only place where inseparable alterations are used is the argu­
ment at step 5, where we had to choose an inseparable extension K/k(Y) when Xv 

or Zv is not geometrically regular. 
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5.5.2. Remark. — Analogs of Theorems 3.4 and 3.5 hold also for the class of univer­

sally Q-resolvable schemes. In a sense, this is the "£ = 1" case of these theorems. 

One can prove this by the same argument but with £ replaced by 1. In fact, few 

arguments become vacuous (though formally true); for example, in steps 4-6 in the 

proof of Theorem 3.4, an ^-group G should be replaced by the trivial group, so the 

steps 5 and 6 collapse. 

5.5.5. Lemma. — Assume that S and X are regular schemes, W C S and Z C X 

are snc divisors, and f : X —» S is a morphism such that f~1(W) C Z and the 

induced morphism of log schemes h: (X, Z) —» ( 5 , W) is log smooth. Then for any 

intermediate divisor f~1(W) C Z' C Z the morphism h': (X,Zf) —• ( 5 , W) is log 

smooth. 

Proof. — We can work locally at a geometric point x —» X. Let x G X and s G S 

be the images of x, and let qi,..., qr G @s,s define the irreducible components of W 

through s. Set Q = 0 [ = 1 Shrinking S we obtain a chart c: S Spec(Z[Q]) of 

(S,W). By Proposition 1.2 applied to c, ft, and G = 1, after localizing X along x 

one can find an fs chart of ft consisting of c, X —> Spec(Z[P]), and </>: Q —* P such 

that the morphism X —• S x S p e c ( Z [Q]) Spec(Z[P]) is smooth, P* is torsion free, (j) is 

injective, and the torsion of Coker(0 G P ) is annihilated by an integer n invertible on S. 

Let pi,...,pt G @x,x define the irreducible components of Z through x. Our 

next aim is to adjust the chart similarly to 1.4.2 (vi) to achieve that P N = 

0*-=iPf • N o t e t h a t Mx,x N, where Mx^@x is the log structure of (X,Z). 

The homomorphism ij): P —>• Mx,x factors through the fs monoid P = P [ T _ 1 ] where 

T = / 0 _ 1 ( ^ x a r ) - Clearly, R* is torsion free, R iV, and shrinking X around # 

we obtain a chart X —> Spec(Z[P]). Since Spec(Z[P]) is open in Spec(Z[P]) the 

morphism X —* S x S p e c ( Z [Q]) Spec(Z[P]) is smooth. So, we can replace P with R 

achieving that P ^ N, and hence P N * 0 Z W . 

Without restriction of generality Z ' is defined by the vanishing of 115=1 Pj f ° r ^ — 

Since / - 1 ( V F ) C Z 7 , the image of Q in P is contained in p' = 0 * ^ 1 ^ - Hence (j) 

factors through a homomorphism (j)': Q = and we obtain a chart of ft' 

consisting of c, X -> Spec(Z[P']), and 0'. By [Kato, 1994, 3.5, 3.6], to prove that ft' 

is log smooth it remains to observe that (j)' is injective, the torsion of Coker(</>'gp) is 

annihilated by n, and the morphism 

X - S xSpec(z[Q]) Spec(Z[P]) - S x S p e c ( z [ Q ] ) Spec(Z[P']) 

is smooth because Spec(Z[P]) —> Spec(Z[P']) is so. • 

3.5.^. Comparison with Theorems 2.1 and 2.4- — Theorems 2.1 and 2.4 follow by 

applying Theorem 3.5 (ii) to X —> S and Z (where one takes S = Spec(fc) in 2.1). 
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Indeed, the main part of the proofs of 2.1 and 2.4 was to construct ^'-alterations 

X' —» X and Sf —> S with regular sources, snc divisors Zf C X' and W C S", and 

a log smooth morphism / ' : (X',Z') —> ( S ' , W ) compatible with / . Then, in the 

last paragraphs of both proofs, Proposition 1.2 was used to obtain a more detailed 

description of X', Z¡\ and / ' . In particular, for a zero-dimensional base this amounted 

to saying that X' is 5-smooth and Z' is relatively snc over 5, and for a one-dimensional 

base this amounted to the conditions (i) and (ii) of 2.4. 

Conversely, Theorem 2.1 (resp. 2.4) implies assertion (ii) of Theorem 3.5 under 

the assumptions of 2.1 (resp. 2.4) on X and S. Moreover, the non-separated Chow's 

lemma could be used in their proofs as well, so the separatedness assumption there 

could be easily removed. In such case, Theorems 2.1 and 2.4 would simply become 

the low dimensional (with respect to S) cases of Theorem 3.5 (ii) plus an explicit local 

description of the log smooth morphism / ' . The strengthening 3.5 (iii), however, was 

not achieved in 2.1, and required a different proof of the whole theorem. 

3.6. Saturation. — In Theorems 3.4 and 3.5 we resolve certain morphisms / : X —• S 

with divisors Z c l b y log smooth morphisms / ' : (X', Z') —> (S', W). However, as 

we insisted to use only ^'-alterations and to obtain regular X' and snc Z', we had 

to compromise a little on the "quality" of / ' . For example, our / ' may have non-

reduced fibers. Due to de Jong's theorem, if the relative dimension is one, then one 

can make / ' a nodal curve. We will see that a similar improvement of / ' is possible 

in general if one uses arbitrary alterations and allows non-regular X'. The procedure 

reduces to saturating / ' and is essentially due to Tsuji and Illusie-Kato-Nakayama 

([Illusie et al., 2005, A.4.4 and A.4.3]). 

3.6.1. Saturated morphisms. — Recall that a homomorphism P —• Q of fs (resp. 

fine) monoids is saturated (resp. integral) if for any homomorphism P —> P' with fs 

(resp. fine) target the pushout Q 0 p P' is fs (resp. fine). A morphism of fs (resp. 

fine) log schemes / : (Y,My) —• (X, Mx) is saturated (resp. integral) if so are the 

homomorphisms MXj{y) —> MyiV. 

3.6.2. Remark. — (i) Integral morphism were introduced already by Kato in 

[Kato, 1988, § 4]. Kato also introduced the notion of saturated morphisms, which was 

first seriously studied by Tsuji in [Tsuji, 1997]. Actually, one can define saturated 

morphisms for arbitrary fine log schemes, but the definition is more involved than we 

use. For fs log schemes our definition coincides with the usual one due to [Tsuji, 1997, 

II 2.13(2)]. 

(ii) The following two basic properties of saturated morphisms follow from the 

definition: (a) a composition of saturated morphisms between fs log schemes is satu­

rated, (b) if / : Y —» X is a saturated morphism between fs log schemes, then, for any 
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morphism of fs log schemes X' —> X , the base change /':Y f —• X' of / in the cate­
gory of log schemes is a saturated morphism of fs log schemes. (Also, it is proved in 
[Tsuji, 1997, II 2.11] that analogous properties hold for saturated morphisms between 
arbitrary integral log schemes.) 

(iii) Let / : Y —• X be a morphism of fs log schemes. It is shown in [Tsuji, 1997, II 
3.5] that if / can be modeled on charts corresponding to saturated homomorphisms 
of fs monoids Pi —• Qi then / is saturated. Let us remark that the converse is also 
true: if / is saturated then it can be modeled on charts corresponding to Pi —» Qi as 
above. 

3.6.3. Integrality and saturatedness for log smooth morphisms. — We recall the fol­
lowing result that relates the notions of integral and saturated morphisms to certain 
properties of the underlying morphisms of schemes. 

3.6.4. Proposition. — Let f: (Y, My) —• (X, Mx) be a log smooth morphism between 
fs log schemes and assume that f is integral. Then, 

(i) the morphism Y —• X is flat, 
(ii) / saturated if and only ifY—>X has reduced fibers. 

Proof. — The first claim is proved in [Kato, 1988, 4.5] and the second one is proved 
in [Tsuji, 1997, II 4.2]. • 

One can also go in the opposite direction: from flatness to integrality. 

3.6.5. Proposition. — Let f: (Y,My) —• (X, Mx) be a log smooth morphism between 
fs log schemes and assume that the morphism Y —> X is flat and (X, M x ) is log 
smooth over a field k with the trivial log structure. Then f is integral. 

Proof. — It suffices to show that if y —• Y is a geometric point and x = f(y) then the 
homomorphism (j>: Mx,x —» MyjV- is integral. By Proposition 1.2 and the argument 
in 1.4 (vi), localizing X and Y along these points we can assume that X possesses 
a chart a: X —> Xo = Spec(ft[Q]) with smooth a and / is modeled on a chart YQ = 
Spec(fc[P]) —> Xo corresponding to a homomorphism (/>: Q —• P so that the morphism 
g: Y —> Z = X Xx0 YQ is smooth (in particular, flat), and (j) has the following 
properties: Q = Mx,x, P is fs, P* is torsion free, the composition Q —• P —> P = 
P/P* coincides with <f>, the kernel of </>gp is finite, killed by an integer invertible at 
x, as well as the torsion part of its cokernel (but we will not need these last two 
properties). Since Q is sharp and saturated, Qgp is torsion free, so (j) is injective. We 
claim that </> is integral if and only if <f> is integral. To see this note that if Q —• R is 
a homomorphism of monoids, then R 0 Q P is isomorphic to the quotient of R 0 Q P 
by the image of P*, and hence either both pushouts are integral or neither of them 
is integral. Thus, we only need to prove that (j) is integral. 
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Note that the morphism h: Z —• X is flat at the (Zariski) image z E Z oiy because 

/ and g are flat. Note that a takes x = h(z) to the origin of XQ and YQ —• X0 is 

flat at the image y0 G YQ of z by flat descent with respect to a. In other words, if 

I (Z k[P] is the ideal corresponding to y0 then the homomorphism k[Q] —> A;[P]j is 

flat. The preimage of ray under fc[P] —• ̂ y ) 2 / contains the set mp = P \ P*, hence 

mp <Z I and we obtain that J contains J = fc[mp]. Note that the ideal J is prime 

as k[P]/J fc[P*] is a domain due to P* being torsion free. Thus, the localization 

k[P]j makes sense, and we obtain a flat homomorphism k[Q] —• k[P]j. 

It is proved in [Kato, 1988, 4.1], that if the homomorphisms K[^>]: K[Q] -> K[P] 

are flat for any field K then 0 is integral. The proof consists of two parts. First one 

checks that 0 is injective, which is automatic in our case. This is the only argument 

in loc.cit. where a play with different fields is needed. We claim that the second part 

of the proof of the implication (iii) (v) in [Kato, 1988, 4.1] works fine with a 

single field k, and, moreover, it suffices to only use that k[Q] —> k[P]j is flat. Let us 

indicate how the argument in loc.cit. should be adjusted. 

Assume that, as in the proof of [Kato, 1988, 4.1], we are given a i ,a 2 G Q and 

61,62 € P such that <j)(ai)bi = (/>(a2)b2. Let & D e t n e kernel of the homomorphism of 

A:[Q]-modules k[Q] 0 k[Q] —> k[Q] given by (x,y) i-> a\x - a2y. By the flatness, the 

kernel of k[P]j®k[P]j —» k[P]j, (x, y) H-> <j>{ai)x — <j>(a2)y is generated by the image of 

5. Hence there exist representations b\ = Y^i=\ 0 ( c i ) ^ a n < i ^2 = YH=i with 

di G fc[Q], /i G fc[P], s G fc[P]\J, and a\Ci = a2di. Moreover, multiplying s and f^s 

by an appropriate unit u G P* we can assume that s = 1 -f 5 ; for s' G Span f c(P \ { 1 } ) . 

Then bi + S ! < a < m A a t a = Ei<i<r^fe)/»' w i t n A « G a n d t n e *a G ^ Pairwise 

distinct and distinct from 61, so we see that there exist 0,3 e Q,b £ P, and 1 < i < r, 

such that G&3 appears in 6 appears in / j , and b\ = <j)(a$)b. The remaining argument 

copies that of the loc.cit. verbatim, and one obtains in the end that 0 satisfies the 

condition (v) from [Kato, 1988, 4.1]. Thus, (j) is integral and we are done. • 

Before going further, let us discuss an incarnation of saturated morphisms in (more 

classical) toroidal geometry. 

3.6.6. Remark. — In toroidal geometry an analog of saturated morphisms was intro­

duced by Abramovich and Karu in [Abramovich & Karu, 2000]. In the language 

of log schemes toroidal morphisms can be interpreted as log smooth morphisms 

/ : (X, Z) —• (5, W) between log regular schemes (with the toroidal structure given 

by the triviality loci of the log structures). If / is a toroidal morphism as above then 

Abramovich-Karu called it weakly semistable when the following conditions hold: S 

is regular, / is locally equidimensional, and the fibers of / are reduced. Furthermore, 

they remarked that the equidimensionality condition is equivalent to flatness of / 
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whenever S is regular, see [Abramovich & Karu, 2000, 4.6]. Thus, the weak semista-
bility condition is nothing else but saturatedness of / and regularity of the target. 
In particular, saturated log smooth morphisms between log regular log schemes may 
be viewed as the generalization of weakly semistable morphisms to the case of an 
arbitrary log regular (or toroidal) base. 

Now, we are going to prove our main result about saturation. 

3.7. Theorem. — Assume that f: (X,Z) —> (S,W) is a log smooth morphism such 
that (S,W) is log regular and S is universally Q-resolvable (§3.3.3). Then there 
exists an alteration h: Sf —» S such that S' is regular, W = g~l(W) is an snc 
divisor, and the fs base change f'\ (Xr,Z') —> (Sf, W) is a saturated morphism. 

Recall that (Xf,Zf) = (X,Z) xfSjW) (S',W') and / ' is log smooth because the 
saturation morphism is log smooth. 

Proof. — By VTII-3.4.9, applying to (S, W) an appropriate saturated log blow up 
tower and replacing (X, Z) with the fs base change we can achieve that S is regular 
and W is normal crossings. By an additional sequence of log blow ups we can also 
make W snc (see VIII-4.1.6), so (S,W) becomes a Zariski log scheme. Now, we can 
étale-locally cover / by charts fi : (Xi, Zi) —• (Si, Wi) modeled on Pi —> Qi such that 
Si are open subschemes in S. By [Illusie et al., 2005, A.4.4, A.4.3], for each i there 
exists a morphism hi : (Sf

{, W() —• (Si, Wi) such that hi is a composition of a Kummer 
morphism and a log blow up, and the fs base change of fi is saturated. (Although the 
proof in loc.cit. is written in the context of log analytic spaces, it translates to our 
situation almost verbatim. The only changes are that we have to distinguish étale 
and Zariski topology on the base (in order to construct log blow ups), and hi does 
not have to be log étale as there might be inseparable Kummer morphisms.) 

Note that W[ = h~1(Wi). In addition, 5^ —> Si is a projective alteration by 
VIII-3.4.6. Extend each hi to a projective alteration ^ : Ti —• S, and let h: Sf —• S be 
a projective alteration that factors through each Ti. By the universal Q-resolvability 
assumption we can enlarge Sf so that it becomes regular and Z' = h~l(Z) becomes 
snc. We claim that h is as claimed. It suffices to check that the fs base change of each 
morphism (Xi,Zi) —» (S,W) is saturated. However, already the fs base change 
of f[ to (Ti,g~x{W)) is saturated by the construction, hence so is its further base 
change to (S',W). • 

3.7.1. Remark. — Our proof is an easy consequence of [Illusie et al., 2005, A.4.4 and 
A.4.3]. The first cited result shows that (locally) any log smooth morphism can be 
made exact by an appropriate log blow up of the base. This result is somewhat 
analogous to the flattening theorem of Raynaud-Gruson. The second cited result 
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shows that by a Kummer extension of the base one can (locally) saturate an exact 
log smooth morphism. It is somewhat analogous to the reduced fiber theorem of 
Bosch-Liitkebohmert-Raynaud ([Bosch et al., 1995]) which implies that if / : Y —> X 
is a finite type morphism between reduced noetherian schemes then there exists an 
alteration X' —» X such that the normalized base change / ' : (Y x x X ' ) 1 1 0 1 " —* X' has 
reduced fibers. Although the proof of the latter is far more difficult. 

3.8. Characteristic zero case. — Theorem 3.5 can be substantially strengthened when 
S is of characteristic zero, i.e., the morphism S —> Spec(Z) factors through Spec(Q). 

3.9. Theorem. — Assume that S is a reduced, noetherian, qe scheme of characteristic 
zero, f' : X —• S is a maximally dominating morphism of finite type with reduced 
source, and Z C X is a nowhere dense closed subset. Then there exist projective 
modifications a: Sf —> S and b: X' —> X with regular sources, a pseudo-projective 
morphism /': X' —» S' compatible with f, and snc divisors W C S' and Z' C X' 
such that Z' = b~x(Z) U f'-l(W) and the morphism (X',Z') (S*\W) is log 
smooth. 

Proof. — The proof is very close to the proof of Theorem 3.5, so we will just say 
which changes in that proof should be made. First, we note that any 5-scheme Y 
of finite type is noetherian and qe. Thus, if Y is reduced and T C Y is a nowhere 
dense closed subset then the pair (Y,T) can be desingularized by [Temkin, 2008] in 
the following sense: there exists a projective modification h: Y' —» Y with regular 
source and such that h~x(T) is an snc divisor. This result replaces the ^'-resolvability 
assumption in Theorem 3.5, and it allows to apply the proof of that theorem to our 
situation with the only changes that one always uses projective modifications instead 
of projective ^'-alterations, and Theorem 3.4 is replaced with Lemma 3.9.1 below. 
(Note that Lemma 3.9.1 is weaker than Theorem 3.9, while Theorem 3.4 does not 
follow from Theorem 3.5.) • 

3.9.1. Lemma. — Let S be an integral, noetherian, qe scheme with generic point 
n = Spec(K), let f': X —> S be a maximally dominating morphism of finite type, 
and let Z C X be a nowhere dense closed subset. Assume that Xv = X x $ n is a 
smooth curve over K, and Zv = Z x$ n is étale over K. Then there exist projective 
modifications a: S' —> S and b: X' —• X with regular sources, a pseudo-projective 
morphism ff:X'—> S' compatible with f and snc divisors W C S' and Z' C X' such 
that Z' = b~l(Z) U f'-l{W) and the morphism (X ' , Z') (5 ' , W) is log smooth. 

Proof. — The proof copies the proof of Theorem 3.4 with the only difference that 
instead of an ^-Sylow subgroup G C G one simply takes G = G. The latter is possible 
because the schemes are of characteristic zero and hence any action of G is tame. • 
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Combining Theorem 3.9 and 3.7 we obtain the following weak semistable reduction 
theorem. 

3.10. Theorem. — Assume that S is a reduced, noetherian, qe scheme of characteristic 
zero, f:X —• S is a maximally dominating morphism of finite type with reduced 
source, and Z C X is a nowhere dense closed subset. Then there exists an alteration 
Sf —• S, a modification I ' ( I x § 5 ' ) p r of the proper transform of X, a pseudo-
projective morphism f':Xf—> Sf compatible with f, and divisors W C S' and Z' C 
X' such that S' is regular, W is snc, Z' = b~l(Z) U f'~1(W/), and the morphism 
(X1 ,Z') —> (5 ' , W) is log smooth and saturated (i.e. X' —> S' is weakly semistable). 

3.10.1. Remark. — (i) In the case when X and 5 are integral proper varieties over 
an algebraically closed field k of characteristic zero, this theorem becomes the weak 
semistable reduction theorem of Abramovich-Karu. Our proof has many common 
lines with their arguments. In particular, the first step of their proof was to make 
/ toroidal, and it was based on de Jong's theorem. (Note also that in a recent 
work [Abramovich et al., 2013] of Abramovich-Denef-Karu, the toroidalization theo­
rem was extended to separated schemes of finite type over an arbitrary ground field 
of characteristic zero.) Our Theorem 3.9 can be viewed as a generalization of the 
toroidalization theorem of Abramovich-Karu. 

(ii) The second stage in the proof of the weak semistable reduction theorem of 
Abramovich-Karu (the combinatorial stage) is analogous to Theorem 3.7. It obtains 
as an input a toroidal morphism / : (X, Z) —• (5, W) between proper varieties of 
characteristic zero and outputs an alteration h: S' —» S such that S' is regular, 
W = h~1(W) is snc, and the saturated base change of / is weakly semistable. The 
proof is similar to the arguments used in the proofs of [Illusie et al., 2005, A.4.4 and 
A.4.3]. First, one constructs a toroidal blow up of the base that makes the fibers 
equidimensional (i.e. makes the log morphism integral), and then an appropriate 
normalized finite base change is used to make the fibers reduced. 

Erratum. — Proof of Theorem 3.4, Step 1: First, one should take Z\ to be the closure of the image 
of Z. Still, there is a gap since the preimage Z C X of Z\ under X —* X\ can be strictly larger 
than Z, while the argument proves the theorem for (X, Z). This can be corrected as follows. In 
the beginning of the step, replace X with the blow up along Z achieving that Z is the support of 
an effective Cartier divisor. By the presented argument, if the theorem holds for X\ and Z\ then 
it holds for (X,Z), i.e. there exist a, 6 such that Z' = c~1(Z) U f'~1(W) is an snc divisor and 
(X, Z') —* (Sf, W) is a log smooth morphism. We claim that the same pair (a, b) works for (X, Z). 
Since Z' = c~x{Z) U f-^iyV') is a subdivisor of Z', it is snc. The morphism (X', Z') -* (S', W) is 
log smooth by Lemma 3.5.3 proved below. 

Proof of Theorem 3.5, Step 2: Same patch as above. Start the step with blowing up X along Z 
so that Z becomes the support of an effective Cartier divisor; this is also needed for Step 3. The 
present argument of Step 2 shows that if the theorem holds for (X, Z) then it holds for (X, Z) where 
Z is the preimage of Z. But then Lemma 3.5.3 implies that the theorem also holds for (X, Z). 
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