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EXPOSE X

GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

Luc Illusie and Michael Temkin

In this exposé we state and prove a variant of the main theorem of VIII (see
VIII-1.1) for schemes X which are log smooth over a base S with trivial G-action.
See 1.1 for a precise statement. The proof is given in §1 and in the remaining part
of the exposé we deduce refinements of classical theorems of de Jong, for schemes of
finite type over a field or a trait, where the degree of the alteration is made prime to
a prime / invertible on the base. Sections 2 and 3 are independent and contain two
different proofs of such a refinement, so let us outline the methods briefly.

For concreteness, assume that k is a field, S = Spec(k), and X is a separated
S-scheme of finite type. Two methods to construct regular ¢’-alterations of X are:
(1) use a pluri-nodal fibration to construct a regular G-alteration X’ — X and then
factor X’ by an ¢-Sylow subgroup of G, and (2) construct a regular ¢-alteration
by induction on dim(S) so that one factors by an ¢-Sylow subgroup at each step
of the induction. The first approach is presented in §2. It is close in spirit to the
approach of [de Jong, 1997] and its strengthening by Gabber-Vidal, see [Vidal, 2004,
§4]. The weak point of this method is that one uses inseparable Galois alterations.
In particular, even when k is perfect, one cannot obtain a separable alteration of X.

The second approach is realized in § 3, using [Temkin, 2010]; it outperforms the
method of § 2 when & is perfect. Moreover, developing this method the second author
discovered Theorem 3.5 that generalizes Gabber’s theorems 2.1 and 2.4 to the case
of a general base S satisfying a certain resolvability assumption (see §3.3). In addi-
tion, if S is of characteristic zero then the same method allows to use modifications
instead of ¢'-alterations, see Theorem 3.9. As an application, in Theorem 3.10 we

() The research of M.T. was partially supported by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 268182.
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168 EXPOSE X. GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

generalize Abramovich-Karu’s weak semistable reduction theorem. Finally, we mini-
mize separatedness assumptions in §3, and for this we show in §3.1 how to weaken
the separatedness assumptions in Theorems 1.1 and VIII-1.1.

1. The main theorem

1.1. Theorem. — Let f : X — S be an equivariant log smooth map between fs log
schemes endowed with an action of a finite group G. Assume that:

(i) G acts trivially on S;

(ii) X and S are noetherian, ge, separated, log regular, and f defines a map of log
regqular pairs (X,Z) — (S,W) (see VI-1.4: (X,Z) and (S,W) are log regular pairs
and (X -2Z)Cc S-W));

(iii) G acts tamely and generically freely on X.

Let T be the complement of the largest open subset of X over which G acts freely.
Then there exists an equivariant projective modification h : X' — X such that, if
Z' = h=Y(ZUT), the pair (X', Z') is log regular, the action of G on X' is very tame,
and (X', Z’) is log smooth over (S,W) as well as the quotient (X'/G,Z'/G) when G
acts admissibly on X ([SGA1 v 1.7]).

1.1.1. Remark. — (a) In the absence of the hypothesis (i) it may not be possible to
find a modification h satisfying the properties of 1.1, as the example at the end of
VIII-1.2 shows.

(b) By [Kato, 1994, 8.2] the log smoothness of f and the log regularity of S imply
the log regularity of X. Conversely, according to Gabber (private communication), if
X is log regular and f is log smooth and surjective, then S is log regular.

(c) We will deduce Theorem 1.1 from Theorem VIII-1.1. Recall that in the latter
theorem we assumed that X is qe, though Gabber has a subtler argument that works
for a general X. This forces us to assume that S (and hence X) is ge in Theorem
1.1. However, our argument also shows that once one removes the quasi-excellence
assumption from VIII-1.1, one also obtains the analogous strengthening of Theorem
1.1.

For the proof of 1.1 we will use the following result on the local structure of equiv-
ariant log smooth maps.

1.2. Proposition (Gabber’s preparation lemma). — Let f : X — Y be an equivariant log
smooth map between fine log schemes endowed with an action of a finite group G. Let
z be a geometric point of X, with imagey inY. Assume that G is the inertia group at
= and is of order invertible on'Y . Assume furthermore that G acts trivially on M, and
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1. THE MAIN THEOREM 169

M, and we are given an equivariant charta : Y — Spec A[Q] aty, modeled on some
pairing X : G ® Q8 — u = un(C) (in the sense of (VI-3.3)), where Q is fine, A =
Z[1/N,p], with N the exponent of G. Then, up to replacing X by an inert equivariant
étale neighborhood of x, there is an equivariant chart b : X — Spec A[P] extending
a, such that Q8P — PEP is injective, the torsion of its cokernel is annihilated by an
integer invertible on X, and the resulting map b’ : X — X' =Y Xgpec ajg)SpeC A[P] is
smooth. Moreover, up to further shrinking X around x, b lifts to an inert equivariant
étale map ¢ : X — X' Xgpec ASpec Sym, (V'), where V' is a finitely generated projective
A-module equipped with a G-action. If X, Y, and Q are fs, with Q sharp, then P can
be chosen to be fs with its subgroup of units P* torsionfree.

Proof of 1.2. — This is an adaptation of the proof of [Kato, 1988, 3.5] to the equiv-
ariant case. Consider the canonical homomorphism of loc. cit.

(1.2.1) k(@) ®oy , Vy/va — k@) @2 M)y,
sending 1 ® dlogt to the class of 1 @ t, where
M)y, = ME,/(Ox o+ Imf (M)

It is surjective, and as G fixes z, it is G-equivariant. As G is of order invertible in k(z)
and acts trivially on the right hand side, (1.2.1) admits a G-equivariant decomposition

(1.2.2) k(z) ®ox ., Qil)(/y,z =V @ (k(z) ®z M%(p/Y,m)’

where Vj is a finite dimensional k(z)-vector space, endowed with an action of G.
Let (t;)1<i<r be elements of MBP such that the classes of 1 ® t; form a basis of
k(z) ®z M:g,?/yyz. By the method of (VI-3.5) we can modify the t;’s to make them
eigenfunctions of G. More precisely, for g € G, we have

gti = zi(g)ti,
with 2;(g9) € O}, and g — 2;(g) is a 1-cocycle of G with values in &;. By reduction
mod m,, it gives a 1-cocycle ¥; € Z'(G, u) = Hom(G, i), as p is naturally embedded
in k(z)* since X is over A. Lifting p in &%, g — 2z;(g)/%:(g) is a 1-cocycle of G with
values in 1 + m,, hence a coboundary 6; € BY(G,1 + m,), g — 8;(9) = gu;/u;, for
u; € 1+ m,. Replacing ¢; by t;u; !, we may assume that z; = ¥;, i.e.

gti = Yi(g)ti,
for characters

Pt G — .

(1) If M is the sheaf of monoids of a log scheme, M denotes, as usual, the quotient M /O*.
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170 EXPOSE X. GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

Let Z be the free abelian group with basis (e;)1<i<r, and h : Z — MZEP the ho-
momorphism sending e; to ¢;. As in the proof of [Kato, 1988, 3.5], consider the
homomorphism

u:Z®Q — MEP
defined by h on Z and the composition Q&P — MEP — MEP on the second factor. We
have

gu(a) = ¥(g9 ® a)u(a)
for some homomorphism

Y:GP®(Z0Q%) - p
extending x and such that ¢¥/(g ® e;)u(e;) = ¥;(g)h(ei). As in loc. cit., if ©@ denotes
the composition
T:Z® QP — MBP — Mo (= M/ 07)

we see that k(z) ® U is surjective, hence the cokernel C of @ is killed by an integer m
invertible in k(). Using that 6% , is m-divisible, one can choose elements a; € M£P
and b; € Z ® Q% (1 < i < n) such that the images of the a;’s generate M- and
a™ = u(b;). Let E be the free abelian group with basis e; (1 < i < n), and let F be

7

the abelian group defined by the push-out diagram
(1.2.3) E—" >E,

|,

Z@Qgpf__)F

where the left vertical arrow sends e; to b;. The lower horizontal map is injective
and its cokernel is isomorphic to E/mE, in particular, killed by m. The relation
a?™ = u(b;) implies that u extends to a homorphism

v:F — MEP

whose composition 7 : F — Mg — M- is surjective. Associated with v is a
morphism

©0:GPQF - pu
extending 1, such that gv(a) = (g9 ® a)v(a) for a € F. Let P := v~ }(M,) C F.
Then P is a fine monoid containing @, P8P = F', and v sends P to M;. Asin VI-3.5,
VI-3.10 we get a G-equivariant chart of X ,) associated with ¢, which, up to replacing
X by an inert equivariant étale neighborhood at z, extends to an equivariant chart

b: X — Spec A[P]

extending the chart a : Y — Spec A[Q]. The homomorphism Q& — P®P is injective,
and the torsion part of its cokernel injects into the cokernel of w : Z @ Q8 — F in
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1. THE MAIN THEOREM 171

(1.2.3), which is killed by m. Consider the resulting map
V: X=X =Y X Spec A[Q] Spec A[P]

This map is strict. Showing that the underlying schematic map is smooth at z is
equivalent to showing that b’ is log smooth at z. To do this, as X and X' are log
smooth over Y, by the jacobian criterion [Kato, 1988, 3.12] it suffices to show that
the map

k(z)® Q}(,/y —k(z)® Q}X/Y
induced by b’ is injective. We have
k(z) ® Qﬁf,/y =k(z) ® Pe?/Q®P = k(z)® Z
(the last equality by the fact that F/(Z & Q®P) is killed by m), and by construction
(cf. (1.2.2)), we have
k(z)® Z = k(z) ® MY y0r

which by the map induced by b’ injects into k(z) ® Q% N

Let us now prove the second assertion. For this, as b’ is strict, we may forget the

log structures of X and X’, and by changing notations, we may assume that X' =Y
and the log structures of X and Y are trivial. In particular, we have

k(z) ® )y = Vo,

with the notation of (1.2.2). As the question is étale local on X, and closed points
are very dense in the fiber X, in particular, any point has a specialization at a closed
point of X, we may assume that z sits over a closed point of X, and even, up to
base changing Y by a finite radicial extension, that x is a rational point of X,. We
then have

k(z) ® Q}(/Y =m,/(m2 +m,O,),

where m denotes a maximal ideal. By a classical result in representation theory (see 1.3
below) there is a finitely generated projective A[G]-module V such that Vo = k(z)®V.
The homomorphism V' — m,/(m2 + m,&,) therefore lifts to a homomorphism of
A[G]-modules

V - my,

inducing an isomorphism k(z) ® V — k(z) ® Q% /y- By the jacobian criterion, it
follows that the (G-equivariant) map

X — Y Xgpec A Spec Sym, (V)

is étale at z, and as in VI-3.10 can be made inert by shrinking X.
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172 EXPOSE X. GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

Let us prove the last assertion. Now X and Y are fs, and Q is fs and sharp. First
of all, as M, is saturated, P = v~!(M,) is fs. Then (cf. [Gabber & Ramero, 2013,
3.2.10]) we have a split exact sequence

0—-H—-P—->PFP—0

with P} torsionfree and H a finite group. As @ is fs and sharp, Q8P is torsionfree,
so the composition Q8P — P8 — PEP ig still injective, as well as the composition
H — P#r — P&P/Q8P hence H is contained in the torsion part of P8P /Q8P, and we

have an exact sequence
0—H-— (ng/Qgp)tOrS - (P()gp/Qgp)tors — 0,

where the subscript tors denotes the torsion part. Thus (POgp /Q8P)iors is killed by
an integer invertible on X. As M, is torsionfree, the composition P — M, — M,
factors through Py, into a map vy : Py — M,. Consider the diagram

M, — MgP

|

vo == =8P
Py —>M, — M>,

where the square is cartesian. As PSP is torsionfree, the map P§¥ — Hip defined by
the lower row admits a lifting s : P§* — MS8P, sending Py to M,. One can adjust
s to make it compatible with the morphism a : Q% — M — MEP given by the
chart a : @ — My. Indeed, if j : Q% < P§® is the inclusion, the homomorphisms
s5j/a : Q8 — O% , can be extended to P;® as the torsion part of P§®/Q# is killed
by an integer invertible on X. Assume that this adjustment is done. As v is a
chart, P/v~1(6%) — M, is an isomorphism, and since H is contained in v~1(&%),
Py/s~Y(0F) — M, is an isomorphism as well, hence s : Py — M, is a chart at z
compatible with a. A second adjustment is needed to make it G-equivariant. To
do so, one can proceed as above, by considering the 1-cocycle z of G with values in
Hom(P§P, 6%) given by
gs(p) = 2(9,p)s(p)-
The image of z in Z'(G, Hom(P§?, k(z)*)) is a homomorphism

@0 : G** ® P8P — p.

The quotient g — (p — z(g,p)/®0(g,p)) belongs to B!(G, Hom(P§’/QEP,1 + m)),
hence can be written g — (p — gp(p)/p(p)) for p : P§*/Q8% — 1+ m,. So, replacing
2z by g+ z(g,p)p(p)~!, we may assume that z = o, in other words, the map

bo : X — Spec A[P]
defined by the pair (s, o) is an equivariant chart of X at z (extending a).
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1. THE MAIN THEOREM 173

One can give an alternate, shorter proof of the last assertion which does not use
the above decomposition of P into H @ Py. Consider again the cokernel C of the map
@ introduced a few lines above diagram (1.2.3). Write C as a direct sum of cyclic
groups of orders m;|m. Choose a; € MEP and b; € Z ® Q% (1 < i < n) such that
a;** = u(b;), and the a;’s induce an isomorphism

Pz/mz=c.
Replace diagram (1.2.3) by the following push-out diagram
(1.2.4) @D, Zei — B, Z(;-e:)
Z o Qe —- F,

where the upper horizontal map is the natural inclusion and the left vertical one sends
e; to b;. In this way, we have F = P8 > Z @ Q®° and P?/(Z & Q8P) > C. As X
is fs, M is torsionfree, so the map 7 : F' — Mip, defined similarly as above (using

T

(1.2.4) instead of (1.2.3)), sends (P&P);ors to 0, hence

(ng)tors = (Z 2] Qgp)tors = (Qgp)torsa

which finishes the proof. O

1.3. Lemma. — Let G be a finite group of exponent n, let A = Z[u,][1/n], let k be
a field over A, and let L be a finitely generated k[G]-module. There ezists a finitely
generated projective A[G]-module V' such that L=k Q5 V.

Proof. — First, observe that since n is invertible in A, any A[G]-module which is
finitely generated and projective over A is projective over A[G] [Serre, 1978, §14.4,
Lemme 20].

Suppose first that char(k) = 0, and let k be an algebraic closure of k. Then, L
descends to a Q[u,][G]-module W, as k ® L descends [Serre, 1978, §12.3] and the
homomorphism Ry (G) — R;(G) given by extension of scalars is injective [Serre, 1978,
§14.6]. One can then take for V' a G-stable A-lattice in W (projective over A), which
is necessarily projective over A[G] by the above remark.

Suppose now that char(k) = p > 0. Let I — k be a Cohen ring for k. As A is
étale over Z, A — k lifts (uniquely) to A — I. On the other hand, as L is projective
of finite type over k[G], by [Serre, 1978, § 14.4, Prop. 42, Cor. 3] L lifts to a finitely
generated projective I[G]-module E, free over I. Let K be the fraction field of I.
Then F ® K descends to a Q[un][G]-module E’. Choose a G-stable A-lattice V in E
(projective over A, hence, projective of finite type over A[G]). By [Serre, 1978, §15.2,
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174 EXPOSE X. GABBER’'S MODIFICATION THEOREM (LOG SMOOTH CASE)

Th. 32], k ®5 V has the same class in Rx(G) as L. But, as k[G] is semisimple by
Maschke’s theorem, L and k ® V are isomorphic as k[G]-modules. a

Proof of 1.1 (beginning).

The strategy is to check that, at each step of the proof of the absolute modification
theorem (VIII-1.1), the log smoothness of X/S is preserved, and, at the end, that of
the quotient (X/G)/S as well. For some of them, this is trivial, as the modifications
performed are log blow ups. Others require a closer inspection.

1.4. — Preliminary reductions. We may assume that conditions (1) and (2) at the
beginning of (VIII-4) are satisfied, namely:

(1) X is regular,

(2) Z is a G-strict snc divisor in X.

Indeed, these conditions are achieved by G-equivariant saturated log blow up towers
(VIII-4.1.1, VIII-4.1.6).

We will now exploit Gabber’s preparation lemma 1.2 to give a local picture of f
displaying both the log stratification and the inertia stratification of X. We work
étale locally at a geometric point z in X with image s in S. Up to replacing X by the
G s-invariant neighborhood X’ constructed at the beginning of the proof of VIII-5.3.8,
and G by G, where G is the inertia group at z, we may assume that G = G,.
Indeed, the morphism (X’,G;) — (X, G) is strict and inert, and by VIII-5.4.4 the
tower f(g,x,z) is functorial with respect to such morphisms.

We now apply 1.2. Let N be the exponent of G. Assume S strictly local at s. We
may replace A = Z[1/N, u] by its localization at the (Zariski) image of s, so that A
is either the cyclotomic field Q(u) or its localization at a finite place of its ring of
integers, of residue characteristic p = char(k(s)) not dividing n. Choose a chart

a: S — Spec A[Q)]

with @ fs and the inverse image of 05 ; in Q equal to {1}, so that @ is sharp and
Q = M,. Let C denote k(s) if 05 contains a field, and a Cohen ring of k(s)
otherwise. Let (y;)1<i<m be a family of elements of m; such that the images of the
yi’s in Og /I, form a regular system of parameters, where I, = I(s, M) is the ideal
generated by the image of M, — 0% ; by the canonical map o : My — Os,. By
[Kato, 1994, 3.2], the chart a extends to an isomorphism

(1.4.1) Cllys, - yml[QN/(9) = .o,

where g € C|[y1, ..., yn]][[Q]] is 0 if C = k(s), and congruent to p = char(k(s)) > 0
modulo the ideal generated by @ — {1} and (y1,...,ym) otherwise. By 1.2, up to
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1. THE MAIN THEOREM 175

shrinking X around z, we can find a G-equivariant commutative diagram (with trivial
action of G on the bottom row)

(1.4.2) X\;\)I’ L . Spec (A[P] ®a Sym, (V))
§ ————=— Spec A[Q)],
where:

(i) the square is cartesian;

(ii) a, b, and c are strict, where the log structure on Spec A[Q] (resp. Spec (A[P]®x
Sym, (V))) is the canonical one, given by @Q (resp. P); P is an fs monoid, with P*
torsionfree; G acts on A[P] by g(Ap) = Ax(g,p)p, for some homomorphism

X:Gab®ng—-—>l_¢

(iii) V is a free, finitely generated A-module, equipped with a G-action;

(iv) the right vertical arrow is the composition of the projection onto the factor
Spec A[P] and Spec A[h], for a homomorphisme h : Q — P such that h®P is injective
and the torsion part of Cokerh®P is annihilated by an integer invertible on X

(v) c is étale and inert.

(vi) Consider the map
v:P—> M,
defined by the chart X — Spec A[P] induced by bc. Up to localizing on X’ around z,

we may assume that v factors through the localization P,y of P at the prime ideal p
complementary of the face v‘l(ﬁ}{,z). Replacing P by P(,), P decomposes into

(1.4.3) P=P P,

with P* = v"l(ﬁ’j}yz) free finitely generated over Z, and P, sharp, and the image of
z by be in the factor Spec A[P;] is the rational point at the origin. Then v induces an
isomorphism P; = M,. By the assumptions (1), (2), we have M, = N". One can
therefore choose (e; € P;) (1 <4 < r) forming a basis of P;. Then v(e;) =t; € M, C
Ox 4 is a local equation for a branch Z; of Z at z, (Z;)1<i<, is the set of branches of
Z at x, and G acts on t; through the character x; = x(—,€;) : G — p.

Furthermore:
(vii) The square in (1.4.2) is tor-independent.

Indeed, by the log regularity of S and the choice of the chart a, we have, by
[Kato, 1994, 6.1], Tor? (65 ,, Z[P]) = 0 for i > 0.
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176 EXPOSE X. GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

Though this will not be needed, one can describe the local structure of (1.4.2) more
precisely as follows. Let

(1.4.4) Y := Spec (A[P] @ Sym, (V') = Spec (A[P*] @ A[P1] ®4 Sym, (V))

and let Y’ := Spec C|[[y1, ..., Ym]|[[Q]] Xspeca Y, with the notation of 1.4.1. We may
assume that X = X’. Then the completion of X at z is either isomorphic to the
completion of Y’ at z, or a regular divisor in it, defined by the equation g’ = 0, where
g’ is the image of g in é}/,z, with the notation of 1.4.1.

1.5. — Step 8 and log smoothness (beginning). We will now analyze the modifications
performed in the proof of Step 3 in VIII-4.1.9, VIII-4.2.13. The permissible towers
used in loc. cit. are iterations of operations of the form: for a subgroup H of G, blow
up the fixed point (regular) subscheme X, and replace Z by the union of its strict
transform Z°° and the exceptional divisor E. Though such a blow up is not a log
blow up in general, we will see that it still preserves the log smoothness of X over S.

We work étale locally around z, so we can assume X = X’ in 1.4.2. We then have
a cartesian square

(15.1) xH Y yn
P
b

X

Y,

with Y as in (1.4.4). We also have cartesian squares

(1.5.2) Ay

i

XLty

where T C Y is the snc divisor Y T;, T; defined by the equation e; € P; (1.4.3), and

(1.5.3) ZxxXH — T xyYH
X Y.

1.6. Lemma. — The squares (1.5.1), (1.5.2), and (1.5.3) are tor-independent.

Proof. — For (1.5.2), this is because Z (resp. T) is a divisor in X (resp. Y) (cf.
[SGA 6 vi1 1.2]). For (1.5.1), as the square (1.4.2) is tor-independent (by 1.4 (vii)), it
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1. THE MAIN THEOREM 177

is enough to show that the composite (cartesian) square

YH

|

S — Spec A[Q)]

(1.6.1) XH

is tor-independent. We have a decomposition
(1.6.2) YH = (Spec A[P*])® x (Spec A[P,]) x (Spec Sym, (V))H,

(products taken over Spec A), and the map to Spec A[Q)] is the composition of the
projection onto (Spec A[P*])H x (Spec A[P;])¥ and the canonical map induced by
Spec A[Q] — Spec A[P], which factors through the fixed points of H, G acting triv-
ially on the base. Let us examine the three factors.

(a) We have

(Spec Sym, (V) = Spec Symy (Var),
where Vg is the module of coinvariants, a free module of finite type over A, as H
is of order invertible in A. Therefore Spec A[Q] Xspec o (Spec Sym, (V))H is flat
over Spec A[Q], and its enough to check that (Spec A[P*])¥ x (Spec A[P;])# is tor-
independent of S over Spec A[Q)].

(b) The restriction to P* =v~'(0% ) of the 1-cocycle 2(v) € Z'(H,Hom(P, k(z)*))
associated with v : P — M, (hv(a) = z(v)(h,a)v(a) for h € H, a € P, see the proof
of 1.2 and (VI-3.5), is a l-coboundary, hence trivial, as B!(H,Hom(P, k(z)*)) = 0.
Therefore

(Spec A[P*])# = Spec A[P*].

P = @ Ne;,

1<i<r
with e; sent by v to a local equation of the branch Z; of Z, and that G acts on A[Ne;]
through the character x; : G — u. Let A C {1,...,7} be the set of indices ¢ such
that x;|H is trivial. Then

(Spec A[P1])* = Spec A[@ Ne;].
icA
Let I be the ideal of P generated by {e;};¢4. It follows from (b) and (c) that
(Spec A[P])* = Spec A[P]/(I),

where (I) is the ideal of A[P] generated by I. By [Kato, 1994, 6.1],
Tor?[Q](ﬁs,A[P]/(I)) = 0 for i > 0, and therefore (1.6.1), hence (1.5.1) is tor-
independent. It remains to show the tor-independence of (1.5.3). For this, again it

(c) Recall that
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is enough to show the tor-independence of

(1.6.3) Zxx X? — = TxyYH

| |

§ —— Spec A[Q].
By (a), (b), (c), we have
TxyYH = ZSpec A[P]/(J;) x Spec Sym, (Vy),
€A
where J; C P is the ideal generated by e; € P;, and (J;) the ideal gener-

ated by J; in A[P]. The desired tor-independence follows from the vanishing of
Tor?[Q](ﬁS,A[P] /(JB)), where for a subset B of A, Jp denotes the ideal generated

by the e;’s for i € B. O
1.7. Lemma. — Consider a cartesian square
(1.7.1) Vi—sV

x 2 x,

where the right vertical arrow is a regular immersion. If (1.7.1) is tor-independent,
then the left vertical arrow is a regular immersion, and

Bly/(X') = X’ x x Bly(X).

Let W — X be a second regular immersion, such that V xx W — W is a regular
immersion, and let W' = X' x x W. If moreover the squares

(1.7.2) V —=V
i’ s )jé
and
(1.7.3) Vixx W —=Vxx W

| |

X —7 .X

are tor-independent, then the left vertical arrows are regular immersions, and
W't = X' xx W5,

where WSt (resp. W'st) is the strict transform of W (resp. W') in Bly(X) (resp.
Bly/(X')).
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Proof. — Let I (resp. I') be the ideal of V (resp. V') in X (resp. X'). By the
tor-independence of (1.7.1), if u: E — [ is a local surjective regular homomorphism
[SGA 6 vir 1.4], the Koszul complex g*K(u) is a resolution of &y, hence V' — X’
is a regular immersion. Moreover, by [SGA6 viI 1.2], for any » > 0, the natural
map g*I" — I'™ is an isomorphism, and therefore Bly/(X') = X’ xx Bly(X). The
tor-independence of (1.7.2) and (1.7.3) imply that of

\%4 Xxr WI———>V><XW
w’ w.
The second assertion then follows from the first one and the formulas (VIII-2.1.3 (ii))
W = Blyx,wW,
W' = Bly/ s, w W' O

1.8. — Step 3 and log smoothness (end). As recalled at the beginning of 1.5, we
have to show that, if H is a subgroup of G, then the log regular pair (X;, Z;) is log
smooth over S, where X; := Blyxx (X) and Z; is the snc divisor Z%* U E, Z5* (resp.
E) denoting the strict transform of Z (resp. the exceptional divisor) in the blow-up
h:X; — X.

The question is again étale local above X around z, so we may assume that X = X’
and we look at the cartesian square (1.4.2)

X Y

|

§— SpeC A[Q]a

with Y as in (1.4.4), and the associated cartesian squares (1.5.1), (1.5.2), and (1.5.3).
Claim. We have

(1.8.1) Blxw (X) =X Xy Bly= (Y),
(1.8.2) 7% = X xy T*.

Proof. — In view of 1.6 and 1.7, (1.8.1) follows from the fact that the immersion
Y# — Y is regular. For (1.8.2) recall that

T= TO XSpec A Spec SymA(V)v
where Ty C Spec A[P] is the snc divisor
To = Z div(z;)

1<i<r
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with z; € A[P] the image of e; € P; as in 1.4.3. Hence

(1.8.3) T= > T,

1<i<lr
where T; = div(2;) Xspec o Symy(V), and T5¢ = leigr Trt. We have (1.6.2)
Y# = (Spec A[P])¥ x Spec Sym, (Vi),
with (Spec A[P])¥ defined by the equations (z; = 0);¢4, with the notations of 1.6

(c). In particular, the immersion Y¥ xy Z; — Z; is regular, hence, by 1.7, we have
Z5* = X xy T§*, hence (1.8.2), which finishes the proof of the claim. d

Since the map S — Spec A[Q)] is strict, in order to prove the desired log smooth-
ness, we may, by this claim, replace the triple (X, X" Z) over S by (Y,Y¥ T) over
Spec A[Q]. We choose coordinates on P*, P, = N", V:

P =@ zfi, A= P Nei, V= P Ay

1<i<t 1<i<r 1<i<s

A[P] = Al uF 21,0 2], Syma (V) = Afys, - -, ¥s),
with u; (resp. z;) the image of f; (resp. e;) in A[P], in such a way that

AP = Al . uf 2, 2],
i.e. is defined in A[P] by the equations (z; = -+ = z,,, = 0), for some m, 1 <m < r,
and
A[VH] = A[y'n+1’ ce 1y3]7
i.e. is defined in A[V] by the equations y; = -+ =y, = 0 for some n, 1 < n < s.
Then

YH c Y = Spec A[ulil,...,u;tl,zl,...,zr,yl,...,ys]
is defined by the equations
zl=...=zm=y1=...=yn=0.
Then
Y’ :=Blyx(Y)
is covered by affine open pieces:
Ui = Spec A[(u;‘tl)ls_iﬁta 21, ceey zz{_laz'hz;-pl) CRER z:nyzm-l-h ERR) zr’y;) e 7y:7,7yn+17 s ,ys]

(1 < i < m), with U; — Y given by 2; — 22} for 1 < j <m, j # 4, y; — 2y,
1 < j < n, and the other coordinates unchanged, and

+1 / ! ! / / /
‘/i = Spec A[(’U,J )ISjStazlw o Zma BmAly e 2 Y1 s YicH Y Y1y - - - yYns Yn+1, - - '3ys]

ASTERISQUE 363-364



1. THE MAIN THEOREM 181

(1 <4< n), with V; - Y given by z; — y;2} for 1 < j <m, y; = yiy;, 1 <j<m,
j # i, and the other coordinates unchanged. Recall that Y has the log structure
defined by the log regular pair (Y,T), where T is the snc divisor

T=(z1-2=0),

and Y’ is given the log structure defined by the log regular pair (Y',T"), where T" is
the snc divisor

T =FUT*,
where F is the exceptional divisor of the blow up of Y# and T the strict transform
of T'. Consider the canonical morphisms

Y 2y -2 ~ 5% :=Spec A[Q] .

They are both morphisms of log schemes. The morphism g is given by the homomor-
phism of monoids v: @ — P, i.e.

g€ Q@ (m(q),. .- 7’Yt(Q)a7t+1(Q)> cee a7t+7‘(q)’0’ e 70)

+1 +1
€A . U, 21,y 2y YLy ey Ys)e

The blow up b has been described above in the various charts. Note that b is not log
étale, or even log smooth, in general. However, the composition gb : Y/ — ¥ is log
smooth. We will check this on the charts (U;), (V).

(a) Chart of type U;. We have F = (2; = 0), T*" = ([I,<;<, ji % = 0)- Hence the
log strucure of U; is given by the canonical log structure of A[N"] in the decomposition

U; = Spec A[Z'] x Spec A[N"] x Spec A[y}, .., UnsYnt1y---»Ys]

with the basis element e, of N" sent to the k-th place in (21,...,2{_1,%,2{ 15+,
2y Zm+1,- -+ 2r) (and the basis element fi of Z® sent to ug), the third factor having
the trivial log structure. Checking the log smoothness of gb : U; — ¥ amounts to
checking the log smoothness of its factor Spec A[P] — ¥ = Spec A(Q), which is
defined by the composition of homomorphisms of monoids

Q;Y>Zt®N’ﬂZt@N’,

where § is the homomorphism N — N" sending e; to e; +¢; for 1 < j < m,j # i,
e; to e;, and e; to e; for m+1 < j < r. Recall ((1.4.2), (iv)) that 8P is injective and
the torsion part of its cokernel is invertible in A. As (3P is an isomorphism, the same
holds for the composition (Id & 3)y, hence gb: U; — ¥ is log smooth.

(b) Chart of type V;. We have F' = (y; = 0), T = [, <y, 25 [ ;5m 11 2 Hence
the log structure of V; is given by the canonical log structure of A[N"*!] in the
decomposition

V; = Spec A[Z*] x Spec A[N""'] x Spec A[(y})1<j<n jzi Uns1, - - - Us]
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with the basis element e;, of N1 sent to the k-th place in (21, ..., 2., Zm+1, - - -, 2r) if
k <r, and e, sent to y; (and the basis element fi of Z! sent to u;), the third factor
having the trivial log structure. Again, checking the log smoothness of gb : V; — X
amounts to checking the log smoothness of its factor Spec A[Z!] x Spec A[N"!] —
Spec A(Q). This factor is defined by the composition of homomorphisms of monoids

Q 'Y; Zt ® N7 Id@gﬂ zt ® Nr+1
where 8 : N” — N”*1 gends ejtoejt+eryiforl <j<m,andtoejform+1<j5<r.
Then (%P is injective, and its cokernel is isomorphic to Z, hence (37)8P is injective,
and we have an exact sequence

0 — Coker v8° — Coker (57)8 — Z — 0.

In particular, the torsion part of Coker(/3v)&P is isomorphic to that of Coker 8P, hence
of order invertible in A, which implies that gb: V; — ¥ is log smooth.
This finishes the proof that Step 3 preserves log smoothness.

1.9. — End of proof of 1.1. We may now assume that in addition to conditions (1)
and (2) of 1.4, condition (3) is satisfied as well, namely

(3) G acts freely on X — Z (i.e. Z=Z UT in the notation of 1.1 or (VIII-1.1)),
and, for any geometric point x — X, the inertia group G, is abelian.

We have to check:

Claim. If fg x,z) : (X',2") — (X, Z) is the modification of (VIII-5.4.4), then
(X',Z") and (X'/G,Z'/G) are log smooth over S.

Working étale locally around a geometric point z of X, we will first choose a strict
rigidification (X, Z) of (X, Z) such that (X, Z) is log smooth over S. We will define
(X,Z) as the pull-back by S — ¥ = Spec A[Q] of a rigidification (Y, T') of (Y, T') which
is log smooth over X, with the notation of (1.4.4). Using that G (= G) is abelian,
one can decompose V into a sum of G-stable lines, according to the characters of G:

with G acting on Ay; through a character x; : G — uy, ie. gy; = xi(9)y;. We define T
to be the divisor 21 -+- 2,41 -+ ys = 0 in Y = Spec A[uzltl,...,ufl,zl,...,zr,yl,...,ys].
The action of G on (Y,T) is very tame at x because the log stratum at z is
Spec A[uf',...,ui"], hence very tame in a neighborhood of z by (VIII-5.3.2)
(actually on the whole of Y, cf. (VIII-4.6, VIII-4.7(a)). On the other hand,
(Spec Aly1,--.,Ys],¥1---ys = 0) is log smooth over Spec A, and as Spec A[P]
is log smooth over ¥, (Y,T) is log smooth over ¥. Since fe,x,z) is compat-

ible with base change by strict inert morphisms, it is enough to check that if
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feyr = feyrr : (Y',T") — (Y,T) is the modification of (VIII-5.4.4) then
(Y',T") is log smooth over 3. Recall (VIII-5.3.9) that we have a cartesian G-equiv-
ariant diagram

(1.9.1) ', T - (v,T)

lal La
— W _
(YilaT{) : (lfl’Tl)v
where the horizontal maps are the compositions of saturated log blow up towers,

and the vertical ones Kummer étale G-covers. From (1.9.1) is extracted the relevant
diagram involving h := f(G‘ny‘T),

', T') 2~ (V,T)

E

(Y1,T7),

where T! = hy ' (T1), with Ty = T/G, T" = o/~(T}), and h (resp. ) is the restriction
of B/ (resp. o') over (Y, T) (resp. (Y{,T})). In particular, 3 is a Kummer étale G-cover
(as Kummer étale G-covers are stable under any fs base change). As G acts trivially
on S, this diagram can be uniquely completed into a commutative diagram

(1.9.2) ', T) "= (Y, T)
bl
(Y{, 1) =——=.

Here f is log smooth and 3 is a Kummer étale G-cover. Though &’ and h; are log
smooth, h and h; are not, in general. However, it turns out that:

(%) g: (Y{,T{) = X, hence g8 = fh: (Y',T') — X, are log smooth,
which will finish the proof of the claim, hence of 1.1. We first prove
(xx) With the notation of (1.9.2), (Y1,T1) is log smooth over .
Let us write Y = Spec A[P], with
(1.9.3) P=PxN*=2Z"'xN"x N°.

As G acts very tamely on (Y,T), the quotient pair (Y; = Y/G,T1 = T/G) is log
regular. More precisely, by the calculation in (VI-3.4(b)), this pair consists of the log

scheme Y; = Spec A[R] with its canonical log structure, where

R = Ker(P® — Hom(G, uy)) N P,
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P* — Hom(G, pn) being the homomorphism defined by the pairing x : G ® P*° —
pn. The inclusion R C P is a Kummer morphism, and P /Rgp is annihilated by
an integer invertible in A. As Q% — P®P is injective, with the torsion part of its
cokernel annihilated by an integer invertible in A, the same is true for Q& — P,
hence also for Q% — R®. Thus (Y;i,T7) = Spec A[R] is log smooth over .

Finally, let us prove (). It is enough to work locally on Y] so we can replace
the log blow up sequence (Y{ ,T’l) — (Y1,T:) with an affine chart (i.e. we replace
the first log blow up with a chart, then do the same for the second one, etc.). Then
Y/ = SpecA[R], and B** 5 R*" by VIII-3.1.19. Note that B = Z* x N® where
Dy, ..., Dy are the components of T’l. We can assume that Di,...,D. C T{ and
D.y1,...,Dy are not contained in Tj. Let R’ = Z® x N¢ denote the submonoid
R that defines the log structure of (Y{,T]). Note that R’ consists of all elements
¢’ € R such that (¢ = 0) C T/ (as a set). Also, by v: B — R we will denote the
homomorphism that defines (Y/,T;) — (Y1,T1).

We showed in VIII-5.3.9 that Ty = T'/G is a Q-Cartier divisor in Y; and observed
that therefore T/ is a Cartier divisor in Y]. Note that the inclusion R C R, where

R = Ker(P® — Hom(G, un)) NP

defines a log structure on Y;. Denote the corresponding log scheme (Y7,77). We
obtain the following diagram of log schemes (on the left). The corresponding diagram
of groups is placed on the right; we will use it to establish log smoothness of g.
Existence of dashed arrows requires an argument; we will construct them later.

(1.9.4) (Y1,T)) —2~ (v1,T)) Rj’gp - R”
Y], T])) - - =~ (\1,T1) —= % ReP < — OReP — (QeP,

Part (ii) of the following remark clarifies the notation (Y71,71). It will not be used
so we only sketch the argument.

1.10. Remark. — (i) Note that (Y1, T1) may be not log smooth over ¥. For example,
even when ¥ is log regular, e.g. Speck with trivial log structure, (Y1,71) does not
have to be log regular, as 77 may even be non-Cartier. Nevertheless, as h1 is log
smooth (even log étale), (Y{,T}) is log smooth over ¥. Moreover, Y is regular, and
T/ an snc divisor in it.

(ii) Although 71 may be bad, one does have that RO}, = Oy, Ni.0%, 7, for the
embedding i : Y3 \ 71—Y;. This can be deduced from the formulas for R and R and

the fact that ROy, = Oy, N j.0;

AT by log regularity of (Y1,T1).
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Note that Q — P factors through P, hence Q — R factors through R = RN P.
It follows from (1.9.3) that P consists of all elements f € P whose divisor (f = 0)
is contained in T (as a set). Therefore g € R lies in R if and only if (g = 0) C T}
(as a set). This fact and the analogous description of R’ observed earlier imply that
v:R — R takes R to R'. Thus, we have established the dashed arrows in (1.9.4).

Let o : Q@ — R be the homomorphism defining the composition (Y{ ,JTl’) —
(Y1,T;) — X. Since the latter is log smooth, ¢ is injective, and the torsion
part of Coker(y®P) is annihilated by an integer m invertible in A. Note that
RgPC—-»R’gPHEIgp, and therefore we also have that Q8°— R8P and the torsion of its
cokernel is annihilated by m. Therefore, (Y{,T7) is log smooth over £, which finishes
the proof of (*), hence of 1.1.

1.11. Remark. — In the proof of (x) above, we first proved that g is log smooth, and
deduced that g8 is, too. In fact, as § is a Kummer étale G-cover, the log smoothness
of g implies that of g. More generally, we have the following descent result, due to
Kato-Nakayama ([Nakayama, 2009, 3.4]):

1.12. Theorem. — Let X' —2 = X LN Y be morphisms of fs log schemes. If g is
surjective, log étale and exact, and fg is log smooth, then f is log smooth.

The assumption on g is equivalent to saying that g is a Kummer étale cover (cf.
[Illusie, 2002, 1.6]).

2. Prime to / variants of de Jong’s alteration theorems

Let X be a noetherian scheme, and ¢ be a prime number. Recall that a morphism
h : X' — X is called an {'-alteration if h is proper, surjective, generically finite,
maximally dominating (i.e., (II-1.1.2) sends each maximal point to a maximal point)
and the degrees of the residual extensions k(z’)/k(z) over each maximal point z of
X are prime to £. The next theorem was stated in Intro.-3 (1):

2.1. Theorem. — Let k be a field, £ a prime number different from the characteristic
of k, X a separated and finite type k-scheme, Z C X a nowhere dense closed subset.
Then there erists a finite extension k' of k, of degree prime to £, and a projective
' -alteration h : X — X above Spec k' — Spec k, with X smooth and quasi-projective
over k', and h™'(Z) is the support of a relative strict normal crossings divisor.

Recall that a relative strict normal crossings divisor in a smooth scheme T'/S is a
divisor D = zie 7 Di, where I is finite, D; C T is an S-smooth closed subscheme of
codimension 1, and for every subset J of I the scheme-theoretic intersection ;. ; D;
is smooth over S of codimension |J| in T
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We will need the following variant, due to Gabber-Vidal (proof of [Vidal, 2004,
4.4.1]), of de Jong’s alteration theorems [de Jong, 1997, 5.7, 5.9, 5.11], cf. [Zheng, 2009,
3.8]:

2.2. Lemma. — Let X be a proper scheme over S = Spec k, normal and geometrically
reduced and irreducible, Z C X a nowhere dense closed subset. We assume that a finite
group H acts on X — S, faithfully on X, and that Z is H-stable. Then there exists a
finite extension ki of k, a finite group H,, a surjective homomorphism H; — H, and
an H;-equivariant diagram with a cartesian square (where S = Spec k, S; = Spec k1)

(2.2.1) X< x <> X,

v

S<—51

satisfying the following properties:

(i) S1/Ker(H; — H) — S is a radicial extension;

(ii) Xo is projective and smooth over Si;

(iii) @ : Xo — X3 is projective and surjective, mazimally dominating and generi-
cally finite and flat, and there exists an Hy-admissible dense open subset W C X5 over
a dense open subset U of X, such that if Uy = Sy XgU and K = Ker(H; — Aut(Uy)),
W — W/K is a Galois étale cover of group K and the morphism W/K — U, induced
by a is a universal homeomorphism;

(iv) (ba)~1(Z) is the support of a strict normal crossings divisor in X,.

Proof. — We may assume X of dimension d > 1. We apply [Vidal, 2004, 4.4.3] to
X/S, Z, and G = H. We get the data of loc. cit., namely an equivariant finite
extension of fields (S, H1) — (S, H) such that Sy /Ker(H; — H) — S is radicial, an
Hj-equivariant pluri-nodal fibration (Yy — --- — Y7 — S51,{0;},Zo = @), and an
Hj-equivariant alteration a; : Y; — X over S, satisfying the conditions (i), (ii), (iii)
of loc. cit. (in particular a;*(Z) C Z;). Then, as in the proof of [Vidal, 2004, 4.4.1],
successively applying [Vidal, 2004, 4.4.4] to each nodal curve f; : ¥; — Y;_;, one can
replace Y; by an Hj-equivariant projective modification Y; of it such that Y; is regular,
and the inverse image Z| of Z; := ;04 (Y1) U fi_l(Zi_l) in Y/ is an Hj-equivariant
strict snc divisor. Then, X, := Y} is smooth over S; and Z} is a relative snc divisor
over S;. This follows from the analog of the remark following [Vidal, 2004, 4.4.4]
with “semistable pair over a trait” replaced by “pair consisting of a smooth scheme
and a relative snc divisor over a field”. In particular, (ba)™!(Z)req is a subdivisor
of Z!, hence an snc divisor. After replacing H; by H;/Ker(H; — Aut(X3)) the
open subsets U and V of (iii) are obtained as at the end of the proof of [Vidal, 2004,
4.4.1]. O
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2.3. — Proof of 2.1. There are three steps.

Step 1. Preliminary reductions. By Nagata’s compactification theorem
[Conrad, 2007], there exists a dense open immersion X C X with X proper
over S. Up to replacing X by X and Z by its closure Z, we may assume X proper
over S. By replacing X by the disjoint sum of its irreducible components, we may
further assume X irreducible, and geometrically reduced (up to base changing by a
finite radicial extension of k). Up to blowing up Z in X me may further assume that
Z is a (Cartier) divisor in X. Finally, replacing X by its normalization X', which is
finite over X, and Z by its inverse image in X', we may assume X normal.

Step 2. Use of 2.2. Choose a finite Galois extension kg of k such that the irreducible
components of Xg = X xg Sy (So = Spec ko) are geometrically irreducible. Let
G = Gal(ko/k) and H C G the decomposition subgroup of a component Y of X.
We apply 2.2 to (Yo/So, ZoNYy), where Zg = Sy xg Z. We find a surjection H; — H
and an H;-equivariant diagram of type 2.2.1:

(2.3.1) Yo —vi<“ v,

e

SO -~ Sla

satisfying conditions (i), (ii), (iii), (iv) with S replaced by Sy, and Xo — X; — X
by Yo — Y7 — Yy. As G transitively permutes the components of Xy, Xg is, as a
G-scheme over Sy, the contracted product

Xo =Yy xH @G,

i.e. the quotient of Yy X G by H acting on Yy on the right and on G on the left (cf.
proof of VIII-5.3.8), and similarly Z = Zy, x¥ G. Choose an extension of the diagram

H —“-H —* > G into a commutative diagram of finite groups

H1L01
H—*+q

with ¢; injective and v surjective (for example, take i; to be the graph of iu and v
the projection). Define

X, =Y, xT Gy, Xy:=Y, xT1 @G;.
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Then (2.3.1) extends to a Gi-equivariant diagram of type 2.2.1

(2.3.2) Xo<2— X; <2 X,

v

SO%SD

satisfying again (i), (ii), (iii), (iv). In particular, the composition h : Xo — X; —
Xo — X is an alteration above the composition S; — Sy — S, X5 is projective and
smooth over S, and h=1(Z) is the support of an snc divisor. However, as regard to
2.1, the diagram

deduced from (2.3.2) has two defects:

(a) the extension S; — S is not necessarily of degree prime to £,

(b) the alteration h is not necessarily an ¢'-alteration.

We will first repair (a) and (b) at the cost of temporarily losing the smoothness of
X3/8; and the snc property of h=1(Z). By (i), S1/Ker(G; — G) — Sy is a radicial
extension, hence S;/G; — S = Sy/G is a radicial extension, too. Similarly, by (iii),
X2/G1 — X is an alteration over S;/G; — S, which is a universal homeomorphism
over a dense open subset. Now let L be an ¢-Sylow subgroup of G;. Then S,/L —
S1/G; is of degree prime to ¢, and Xo/L — X5/G; is a finite surjective morphism
of generic degree prime to £. Let S’ := Spec k' = S;/L, X' = 5’ xg X. We get a
commutative diagram with cartesian square

(2.3.3) T T X,/L X,
s s’ S,

where S’ — S is an extension of degree prime to £, S; — S’ a Galois extension of
group L,

h2 : X2 / L — X
an £'-alteration, X5/5; is projective and smooth, and if now h denotes the composition
Xy, — X, Zy := h™!(Z) is an snc divisor in X,. If X5/L was smooth over S’ and
Z1/L an snc divisor in X5/L, we would be finished. However, this is not the case in
general. We will use Gabber’s theorem 1.1 to fix this.

Step 3. Use of 1.1. Let Y be a connected component of X», (Z1)y = h~1(Z)NY,
D the stabilizer of Y in L, I C D the inertia group at the generic point of Y. Then D
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acts on Y through K := D/I, and this action is generically free. AsY is smooth over
S1 and (Z7)y is an snc divisor in Y, (Y, (Z;)y) makes a log regular pair, log smooth
over S1, hence over S’ = S;/L (equipped with the trivial log structure). We have a
K-equivariant commutative diagram

(2.3.4) (Y/K,(Z1)y /K) =— (Y,(Z1)y)

e

S,

where K acts trivially on S’, and f is projective, smooth, and log smooth (S’ having
the trivial log structure). We now apply 1.1 to (f : (Y,(Z1)y) — ' = (5, 9),K),
which satisfies conditions (i)—(iii) of loc. cit. We get a D-equivariant projective
modification g : Y1 — Y (D acting through K) and a D-strict snc divisor E; on Y1,
containing Z; := g~1((Z1)y) as a subdivisor, such that the action of D on (Y1, E1) is
very tame, and (Y1, E1) and (Y1/D, E;1/D) are log smooth over S’. Pulling back g to
the orbit Y xP L of Y under L, i.e. replacing g by g xP L, and working separately
over each orbit, we eventually get an L-equivariant commutative square

| |

(X2/L’Zl/L) ~ (X2vzl)v

where u, v are projective modifications (and Z; = h~1(Z), Z1/L = h; *(Z) as above),
with the property that the pair (Y2/L, E>/L) is an fs log scheme log smooth over S’
(= 81/L), and v=(h;}(Z)) C Ey/L). Let w : (X,E) — (Y3/L, Ey/L) be a projec-
tive, log étale modification such that X is regular, and E = w~!(E,/L) is an snc
divisor in X. For example, one can take for w the saturated monoidal desingulariza-
tion .#1°8 of (VIII-3.4.9). We then apply 1.2 to the log smooth morphism X — §'.
By a special case of the (1.4.2), with Q = {1}, G = {1}, as P* is torsion free, X is
not only regular, but smooth over $’, and E a relative snc on X. Let

h:X > X
be the composition

X " ¥,)L— =X)L X
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This is a projective £'-alteration, and it fits in the commutative diagram
X X
S<~—9,

where S’ is an extension of S of degree prime to £, X is projective and smooth over
S’, and h™1(Z)eq is a sub-divisor of the S’-relative snc divisor E, hence a relative

snc divisor as well. This finishes the proof of 2.1.
Recall now the theorem stated in Intro.-3 (2):

h
-~

2.4. Theorem. — Let S be a separated, integral, noetherian, excellent, reqular scheme
of dimension 1, with generic pointn, X a scheme separated, flat and of finite type over
S, £ a prime number invertible on S, Z C X a nowhere dense closed subset. Then
there exists a finite extension ' of n of degree prime to £ and a projective £ -alteration
h:X — X above S’ — S, where S’ is the normalization of S in ', with X regular
and quasi-projective over S', a strict normal crossings divisor T on X, and a finite
closed subset ¥ of S’ such that:

(i) outside =, X — S’ is smooth and T — S’ is a relative divisor with normal
CTossings;

(ii) étale locally around each geometric point x of X, , where s’ = Spec k' belongs
to %, the pair (X,T) is isomorphic to the pair consisting of

X' =8uEl, o udt ] (b bt g — ),

T =V(trs1--tm) C X’

around the point (u; = 1),(t; = 0), with 1 < r < m < n, for positive integers
a1y---,0r,b1,...,bs satisfying ged(p,a,...,ar,b1,...,bs) = 1, p the characteristic
exponent of k', ™ a local uniformizing parameter at s';

(iii) A™Y(Z)rea is a sub-divisor of U, cx(Xs)rea UT.

The proof follows the same lines as that of 2.1. We need again a Gabber-Vidal
variant of de Jong’s alteration theorems (cf. [Zheng, 2009, 3.8]). This is essentially
[Vidal, 2004, 4.4.1]), except for the additional data of Z C X and the removal of the
hypothesis that S is a strictly local trait:

2.5. Lemma. — Let X be a normal, proper scheme over S, whose generic fiber is
geometrically reduced and irreducible, Z C X a nowhere dense closed subset. We
assume that a finite group H acts on X — S, faithfully on X, and that Z is H-stable.
Then there ezists a finite group Hy, a surjective homomorphism Hy — H, and an
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H, -equivariant diagram with a cartesian square

(2.5.1) X<t x<* X

v

S(—Sla

satisfying the following properties:

(i) S1 — S is the normalization of S in a finite extension n1 of n such that
m/Ker(H, — H) — n is a radicial extension (where n is the generic point of S);

(ii) X2 is projective and strictly semistable over Sy (i.e. is strictly semistable over
the localizations of S1 at closed points [de Jong, 1996, 2.16]);

(iii) @ : Xo — Xy is projective and surjective, mazimally dominating and
generically finite and flat, and there exists an H;-admissible dense open subset
W C Xy, over a dense open subset U of X, such that if Uy = m X, U and
K = Ker(H, — Aut(U;)), W — W/K is a Galois étale cover of group K and the
morphism W/K — Uy induced by a is a universal homeomorphism;

(iv) (ba)~1(Z) is the support of a strict mormal crossings divisor in X, and
(X, (ba)~1(2)) is a strict semistable pair over Sy (i.e. over the localizations of S1 at
closed points [de Jong, 1996, 6.3]).

Note that (ii) and (iv) imply that there exists a finite closed subset £ of S; such
that, outside X, the pair (X3, (ba)~1(Z)) consists of a smooth morphism and a relative
strict normal crossings divisor.

Proof. — Up to minute modifications the proof is the same as that of 2.2. We may
assume the generic fiber X, is of dimension d > 1. We apply [Vidal, 2004, 4.4.3] to
X/S, Z,and G = H. We get the data of loc. cit., namely an equivariant finite surjec-
tive morphism (51, Hy) — (S, H), with S; regular (hence equal to the normalization
of S in the extension n; of the generic point 7 of S) such that n; /Ker(H; — H) — 7
is radicial, an Hj-equivariant pluri-nodal fibration (Yy — --- — Y1 — S1,{03;}, Zo),
and an H;-equivariant alteration a; : Yy — X over S, satisfying the conditions (i),
(ii), (iii) of loc. cit. (in particular a7 *(Z) C Z,). Then, as in the proof of [Vidal, 2004,
4.4.1], successively applying [Vidal, 2004, 4.4.4] to each nodal curve f; : Y; — Y;_1,
one can replace Y; by an Hj-equivariant projective modification Y} of it such that Y; is
regular, and the inverse image of Z; := J ;04 (Yi-1)U f[l(Z,-_l) in Y/ is an Hy-equiv-
ariant strict snc divisor. Then, by the remark following [Vidal, 2004, 4.4.4] X, :=Y]
is strict semistable over S; and (X2, Z;) is a strict semistable pair over S;. In particu-
lar, (ba)"!(Z);eq is a subdivisor of Z4, hence an snc divisor, and (Xa, (ba) ™1 (Z))req is
a strict semistable pair over S;. The open subsets U and W as in (iii) are constructed
as at the end of the proof of [Vidal, 2004, 4.4.1]. O
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2.6. — Proof of 2.4. It is similar to that of 2.1. There are again three steps. We will
indicate which modifications should be made.

Step 1. Preliminary reductions. Up to replacing X by the disjoint union of the
schematic closures of the reduced components of its generic fiber, and working sep-
arately with each of them, we may assume X integral (and X, # &). Applying
Nagata’s compactification theorem, we may further assume X proper and integral.
Base changing by the normalization of S in a finite radicial extension of  and taking
the reduced scheme, we reduce to the case where, in addition, X, is irreducible and
geometrically reduced. Then we blow up Z in X and normalize as in the previous step
1. Here we used the excellency of S to guarantee the finiteness of the normalizations.

Step 2. Use of 2.5. Let Sy be the normalization of S in a finite Galois extension
1o of n such that the irreducible components of the generic fiber of Xo = X xg S
(So = Spec ko) are geometrically irreducible. Let G = Gal(no/n) and H C G the
decomposition subgroup of a component Yy of Xo. We apply 2.5 to (Yo/So, Zo N Yo),
where Zy = Sy xs Z. We find a surjection H; — H and an H;-equivariant diagram
of type (2.5.1) satisfying conditions (i), (ii), (iii), (iv) with S replaced by Sy, and
X9 — X7 — X by Y, » Y] — Y). We then, as above, extend H; — H to a surjection
G1 — G and obtain a G;-equivariant diagram of type (2.5.1)

(2.6.1) Xo=2— X, <2 X,

e

Sop ~— 51,

satisfying again (i), (ii), (iii), (iv). In particular, the composition h : Xo — X; —
Xo — X is an alteration above the composition S; — Sy — S, X is projective and
strictly semistable over S; and h~!(Z) is the support of an snc divisor forming a
strict semistable pair with X5/S;. It follows from (i) that S;/G1 — S = Sy/G is
generically radicial, and by (iii) that X2/G; — X is an alteration over S;/G; — S,
which is a universal homeomorphism over a dense open subset. As above, choose an
£-Sylow subroup L of G;. Then S;/L is regular, S;/L — S;/G; is finite surjective
of generic degree prime to ¢, and Xo/L — X5/G; is a finite surjective morphism of
generic degree prime to £. Putting S’ = S1/L, X' = 8’ xg X, we get a commutative
diagram with cartesian square

(2.6.2) )L( T Xa/L Xy
S S, S1
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where S’ is regular, S’ — S is finite surjective of generic degree prime to £, S; — S’
generically étale of degree the order of L,

hQIXg/L—)X

an {'-alteration, X,/S; is projective and strictly semistable, and if h denotes the
composition Xy — X, Z; := h™!(Z);eq is an snc divisor in X, forming a strictly
semistable pair with X5/5;.

Step 8. Use of 1.1. Defining Y, (Z1)y, I C D, K = D/I as in the former step 3, K
acts generically freely on Y. As the pair (Y, (Z7)y) is strictly semistable over S7, there
exists a finite closed subset ¥; of S such that (Y, Ys, U(Z1)y) forms a log regular pair,
log smooth over S; equipped with the log structure defined by ;. As S} — S’ = S,/L
is Kummer étale, (Y, (Ys)reaU(Z1)y) (where ' is the image of X;) is also log smooth
over S’ (equipped with the log structure given by ¥’), and we get a K-equivariant
commutative diagram (2.3.4), with trivial action of K on S’ and f projective and log
smooth over S’. We then apply 1.1 to f : (Y, (Ys')rea U (Z1)y) — S’, and the proof
runs as above. We get a D-equivariant projective modification g : Y1 — Y (D acting
through K) and a D-strict snc divisor E; on Y7, containing (¢71((Z1)y) U (Y1)5')red
as a subdivisor, such that the action of D on (Y3, E) is very tame, and (Y3, E;)
and (Y1/D, E1/D) are log smooth over S’. After extending from D to L we get
an L-equivariant commutative square of type (2.3.5), with (Y2/L, E2/L) log smooth
over §' (= S1/L), and (v"'(hy'(Z)) U (Y2/L)s/)rea C E2/L. As above, we take a
projective, log étale modification such that X is regular, and E = w~(Ey/L) is an
snc divisor in X.

We now apply 1.2 to the log smooth morphism (X, E) — S§’. It’s enough to work
étale locally on X around some geometric point z of X/, with s’ € ¥'. We replace
S’ by its strict localization at the image of z, and consider (1.4.2), with Q@ = N,
G = {1}, A = Z, if p > 1 and Q otherwise, and the chart a: N — Mg/,1 — 7w, m a
uniformizing parameter of S’. In (1.4.3) we have P* = Z”, P, = N*, for nonnegative
integers u, v, hence

P=7"¢ N*.

Let ((b;), (a;)) be the image of 1 € N in P in the above decomposition, and let
(a1,-.-,ar), (b1,...,bs) be the sets of those a;’s and b;’s which are # 0. We may
assume b; > 0 if b; # 0. As the torsion part of Coker(Z — P#P) is annihilated by
an integer invertible on X, we have ged(p,ai, ..., ar,b1,...,bs) = 1, where p is the
characteristic exponent of k. We have P = Z* @ N" @ Z¥~* ® N#~". Choosing a basis
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tut1s-.-,tn of V, we get that étale locally around z, X is given by a cartesian square

X —Spec Aufl,. .. uFl ty,... ]

|

S/ ———— Spec A[7]

with z going to the point (u; = 1), (t; = 0), and z = 7, z > u* - -wbetdr ... t%r in

other words,
X =8t . uFt by, )b a8 3 — ),

Finally, E is the union of the special fiber X, and a horizontal divisor T, étale locally
given by the equation ¢,41 -+ ¢, =0, wherem =pand1 <r<m <n. As fz‘l(Z)red
is a sub-divisor of (f(s/)red U T, this finishes the proof of 2.4.

3. Resolvability, log smoothness, and weak semistable reduction

3.1. Elimination of separatedness assumptions. — The main aim of § 3.1 is to weaken
the separatedness assumptions in Theorems 1.1 and VIII-1.1.

3.1.1. — Recall, see VI-4.1, that if a finite group G acts on a scheme X then the
fixed point subscheme X is the intersection of graphs of the translations g: X — X.
In particular, X € is closed whenever X is separated. The definition obviously makes
sense for non-separated schemes, and the only novelty is that X is a subscheme that
does not have to be closed.

3.1.2. Inertia specializing actions. — An action of a finite group G on a scheme X
is inertia specializing if for any point z € X with a specialization y € X one has that
Gy C Gy.

3.1.3. Lemma. — An action of G on X is inertia specializing if and only if for each
subgroup H C G the subscheme X is closed.

Proof. — Note that a subscheme is closed if and only if it is closed under specializa-
tions. If X is not closed then there exists a point z € X¥ with a specialization
y ¢ XH. Thus, H C G, and H ¢ G, and the action is not inertia specializing. The
opposite direction is proved similarly. O

3.1.4. Remark. — (i) A large class of examples of inertia specializing actions can be
described as follows. The following conditions are equivalent and imply that the action
is inertia specializing: (a) any G orbit is contained in an open separated subscheme
of X, (b) X admits a covering by G-equivariant separated open subschemes X;. In
particular, any admissible action is inertia specializing.
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(i) If (G, X, Z) is as in Theorem VIII-1.1, but instead of separatedness of X one
only assumes that it possesses a covering by G-equivariant separated open subschemes
X;, then the assertion of the theorem still holds true. Indeed, the theorem applies to
the G-equivariant log schemes (X;, Z; = Z|x,), and by Theorem VIII-5.6.1 the modifi-
cations f(g,x,, z;) agree on the intersections and hence glue to a required modification

f(G,X,Z) of X.

A quick analysis of the proof of VIII-1.1 is required to obtain the following stronger
result.

3.1.5. Theorem. — (i) Theorem VIII-1.1 and its complement VIII-5.6.1 hold true if
the assumption that X is separated is weakened to the assumption that the action of
G on X is inertia specializing.

(if) Theorem 1.1 holds true if the assumptions that X and S are separated are
replaced with the single assumption that the action of G on X is inertia specializing.

Proof. — The construction of modification f(g x, z) in the proof of VIII-1.1 runs in
four steps. The first two steps are determined by X and Z, see VIII-4. These steps
do not use any separatedness assumption. In Step 3, one blows up the inertia strata,
see VIII-4.1.9. Here one only needs to know that the inertia strata are closed, and by
Lemma 3.1.3 this happens if and only if the action is inertia specializing. Finally, let
us discuss the main part of the construction, see VIII-5 and VIII-5.5.5. Using Lemma
VIII-5.3.8, one finds an appropriate equivariant covering (X', Z’, G) — (X, Z, G) with
an affine X’ and reduces the problem to studying the source. Thus, the separatedness
assumption is only used in Lemma VIII-5.3.8. In fact, the only property of the
G-action used in the proof of the latter is that for any z € X the set X \ |J H{Gs XH
is open. Thus, in this case too, one only uses that the action is inertia specializing.
The proof of Theorem 1.1 runs as follows. One considers the modification f(¢ x,z)
from VIII-1.1 and checks that it satisfies the additional properties asserted by 1.1.
This check is local on X and hence applies to non-separated schemes as well. Since
by part (i) of 3.1.5, fg x,z) is well defined whenever G acts inertia specializing on
X, we obtain (ii). |

3.1.6. Pseudo-projective morphisms and non-separated Chow’s lemma. — We con-
clude §3.1 with recalling a non-separated version of Chow’s lemma due to Artin-
Raynaud-Gruson, see [Raynaud & Gruson, 1971, I 5.7.13]. It will be needed to avoid
unnecessary separatedness assumptions in the future. We prefer to use the following
non-standard terminology: a finite type morphism f: X — S is pseudo-projective if it
can be factored into a composition of a local isomorphism X — X (i.e. X admits an
open covering X = J, X; such that the morphisms X; — X are open immersions)
and a projective morphism X — S.

SOCIETE MATHEMATIQUE DE FRANCE 2014



196 EXPOSE X. GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

3.1.7. Remark. — (i) We introduce pseudo-projective morphisms mainly for termino-
logical convenience. Although pseudo-projectivity is preserved by base changes, it can
be lost under compositions. Moreover, even if X is pseudo-projective over a field k,
its blow up X’ does not have to be pseudo-projective over k (thus giving an example
of a projective morphism f: X’ — X and a pseudo-projective one X — Spec(k) so
that the composition is not pseudo-projective). Indeed, let X be an affine plane with
a doubled origin {o01,02}, and let X’ be obtained by blowing up o;. By n we denote
the generic point of C; = f~!(0;). The ring Spec(&x ;) is a DVR and its spectrum
has two different k-morphisms to X’: one takes the closed point to n and another
one takes it to o;. It then follows from the valuative criterion of separatedness that
any k-morphism g: X’ — Y with a separated target takes o, and n to the same
point of Y. In particular, such g cannot be a local isomorphism, and hence X’ is not
pseudo-projective over k.

(ii) Note that a morphism f is separated (resp. proper) and pseudo-projective if
and only if it is quasi-projective (resp. projective). So, the following result extends
the classical Chow’s lemma to non-separated morphisms.

3.1.8. Proposition. — Let f: X — S be a finite type morphism of quasi-compact and
quasi-separated schemes, and assume that X has finitely many mazimal points. Then
there exists a projective modification g: X' — X (even a blow up along a finitely
generated ideal with a nowhere dense support) such that the morphism X' — S is
pseudo-projective.

Proof. — As a simple corollary of the flattening theorem, it is proved in
[Raynaud & Gruson, 1971, I 5.7.13] that there exists a modification X’ — X
such that X’ — S factors as a composition of an étale morphism X’ — X that in-
duces an isomorphism of dense open subschemes and a projective morphism X — S.
(In loc.cit. one works with algebraic spaces and assumes that f is locally separated,
but the latter is automatic for any morphism of schemes.) Our claim now follows
from the following lemma (which fails for locally separated morphisms between
algebraic spaces). O

3.1.9. Lemma. — Assume that ¢: Y — Z is an étale morphism of schemes that re-
stricts to an open embedding on a dense open subscheme Yo—Y . Then ¢ is a local
isomorphism.

Proof. — Let us prove that if, in addition, ¢ is separated then ¢ is an open immer-
sion. Since Y possesses an open covering by separated subschemes, this will imply
the lemma. The diagonal Ay: Y — Y xz Y is an open immersion, and by the sepa-
ratedness of ¢, it is also a closed immersion. Thus, Y is open and closed in Y xz Y,
and since both Y and Y Xz Y have dense open subschemes that map isomorphically
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onto Yy, Ay is an isomorphism. This implies that ¢ is a monomorphism, but any
étale monomorphism is an open immersion by [EGA 1v4 17.9.1]. O

3.2. Semistable curves and log smoothness

8.2.1. Log structure associated to a closed subset. — Let S be a reduced scheme.
Any closed nowhere dense subset W C S induces a log structure 5,075 N 6s—0Os,
where j: U< S is the embedding of the complement of W. The associated log scheme
will be denoted (S, W). By VI-1.4, any log regular log scheme is of the form (S, W),
where W is the non-triviality locus of the log structure.

3.2.2. Semistable relative curves. — Following the terminology of [Temkin, 2010], by
a semistable multipointed relative curve over a scheme S we mean a pair (C, D), where C
is a flat finitely presented S-scheme of pure relative dimension one and with geometric
fibers having only ordinary nodes as singularities, and D—C is a closed subscheme
which is étale over S and disjoint from the singular locus of C — S. We do not
assume C to be neither proper nor even separated over S.

3.2.3. Proposition. — Assume that (S, W) is a log regular log scheme and (C, D) is a
semistable multipointed relative S-curve such that the morphism f: C — S is smooth
over S\ W. Then the morphism of log schemes (C,D U f~Y(W)) — (S,W) is log
smooth.

Proof. — See VI-1.9. O

3.3. {'-resolvability

8.8.1. Alterations. — Assume that S’ and S are reduced schemes with finitely many
maximal points and let ' C S’ and n C S denote the subschemes of maximal points.
Let f: S’ — S be an alteration, i.e. a proper, surjective, generically finite, and
maximally dominating morphism. Recall that f is an ¢ -alteration if one has that
([k(z) : k(f(x))],!) = 1 for any € n'. We say that f is separable if k(r’) is a
separable k(n)-algebra (i.e. 7’ — 1 has geometrically reduced fibers). If, in addition,
S’ and S are provided with an action of a finite group G such that f is G-equivariant,
the action on § is trivial, the action on 7’ is free, and 1'/G = n, then we say that f
is a separable Galois alteration of group G, or just separable G-alteration.

3.3.2. Remark. — We add the word “separable” to distinguish our definition from
Galois alterations in the sense of de Jong (see [de Jong, 1997]) or Gabber-Vidal (see
[Vidal, 2004, p. 370]). In the latter cases, one allows alterations that factor as S’ —
S"” — S, where S’ — S” is a separable Galois alteration and S” — S is purely
inseparable.
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8.8.8. Universal £’ -resolvability. — Let X be a locally noetherian scheme and let ¢
be a prime invertible on X. Assume that for any alteration Y — X, .q and nowhere
dense closed subset Z C Y there exists a surjective projective morphism f: Y’ — Y
such that Y’ is regular and Z’ = f~!(Z) is an snc divisor. (By a slight abuse of
language, by saying that a closed subset is an snc divisor we mean that it is the
support of an snc divisor.) If, furthermore, one can always choose such f to be a
modification, separable ¢'-alteration, ¢'-alteration, or alteration, then we say that X
is universally resolvable, universally separably ¢'-resolvable, universally ¢ -resolvable, or
universally Q-resolvable, respectively.

3.3.4. Remark. — (i) Due to resolution of singularities in characteristic zero, any ge
scheme over Spec(Q) is universally resolvable. This is essentially due to Hironaka,
[Hironaka, 1964], though an additional work was required to treat qe schemes that
are not algebraic in Hironaka’s sense, see [Temkin, 2008] for the noetherian case and
[Temkin, 2012| for the general case.

(ii) It is hoped that all ge schemes admit resolution of singularities (in particular,
are universally resolvable). However, we are, probably, very far from proving this.
Currently, it is known that any ge scheme of dimension at most two admits resolution
of singularities (see [Cossart et al., 2009] for a modern treatment). In particular, any
qe scheme of dimension at most two is universally resolvable.

(iii) One can show that any universally Q-resolvable scheme is qge, but we prefer
not to include this proof here, and will simply add quasi-excellence assumption to the
theorems below.

(iv) On the negative side, we note that there exist regular (hence resolvable) but
not universally Q-resolvable schemes X. They can be constructed analogously to
examples from I-11.5. For instance, there exists a discretely valued field K whose
completion K contains a non-trivial finite purely inseparable extension K'/K (e.g.
take an element y € k((x)) which is transcendental over k(z) and set K = k(z,y?) C
K’ = k(z,y) C k((x)) with the induced valuation). The valued extension K’/K has a
defect in the sense that ex:/x = fx//x = 1. In other words, the DVR’s A’ and A of
K’ and K, have the same residue field and satisfy ma = m4A’. Since A’ is A-flat, it
cannot be A-finite. On the other hand, A’ is the integral closure of A in K’, and we
obtain that A is not ge. In addition, although X = Spec(A) is regular, any X-finite
integral scheme X’ with K’ C k(X') possesses a non-finite normalization and hence
does not admit a desingularization. Thus, X is not universally Q-resolvable.

Our main goal will be to show that universal £'-resolvability of a ge base scheme S
is inherited by finite type S-schemes whose structure morphism X — S is maximally
dominating (see Theorem 3.5 below, where a more precise result is formulated). The
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proof will be by induction on the relative dimension, and the main work is done when
dealing with the case of generically smooth relative curves.

3.4. Theorem. — Let S be an integral, noetherian, ge scheme with generic point n =
Spec(K), let f: X — S be a mazimally dominating (1I-1.1.2) morphism of finite type,
and let Z C X be a nowhere dense closed subset. Assume that S is universally £ -re-
solvable (resp. universally separably ¢'-resolvable), X, = X xgn is a smooth curve
over K, and Z, = Z xgn is étale over K. Then there exist a projective ¢ -alter-
ation (resp. a separable projective £ -alteration) a: S’ — S, a projective modification
b: X' — (X xg S')P", where (X xg S')P* is the proper transform of X, i.e. the
schematic closure of X, xg 8" in X xg8’,

X — 2 (X xg 8P X xg§' —= X

—~ | )

&2 S

and divisors W' C S’ and Z' C X' such that S’ and X' are regular, W' and Z' are
snc, the morphism f': X' — S’ is pseudo-projective (§3.1.6), (X', Z') — (S',W') is
log smooth, and Z' = ¢c™Y(Z) U f'~Y(W'), where c denotes the alteration X' — X.

We also note if f is separated (resp. proper) then f’ is even quasi-prbjective (resp.
projective) by Remark 3.1.7 (ii).

Proof. — It will be convenient to represent Z as Zy U Z,,, where the horizontal com-
ponent Zj, is the closure of Z, and the vertical component Z, is the closure of Z \ Z,.
The following observation will be used freely: if a;: S; — S is a (resp. separable)
projective ¢'-alteration with an integral S; and b;: X; — (X xg S1)P" is a projective
modification, then it suffices to prove the theorem for fi: X; — S; and the preimage
Z1 C X, of Z (note that the generic fiber of f; is smooth because it is a base change
of that of f). So, in such a situation we can freely replace f by fi, and Z will be
updated automatically without mentioning, as a rule. We will change S and X a few
times during the proof. We start with some preliminary steps.

Step 1. We can assume that f is quasi-projective. By Proposition 3.1.8, replacing
X with its projective modification we can achieve that f factors through a local
isomorphism X — X, where X is S-projective. Let X; C X be the image of X.
Then the induced morphism X; — S is quasi-projective and with smooth generic
fiber. If the theorem holds for f; and the image Z; C X; of Z, i.e., there exist
a: 58" — S and bi: X{ — (X1 xg S')P* that satisfy all assertions of the theorem,
then the theorem also holds for f and Z because we can keep the same a and take
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b =b; xx, X. This completes the step, and in the sequel we assume that f is quasi-
projective. As we will only use projective modifications b;: X; — (X xg S1)P*, the
quasi-projectivity of f will be preserved automatically.

Step 2. We can assume that f and Z, — S are flat. Indeed, due to the flatten-
ing theorem of Raynaud-Gruson, see [Raynaud & Gruson, 1971, I 5.2.2], this can be
achieved by replacing S with an appropriate projective modification S’, replacing X
with the proper transform, and replacing Z with its preimage. From now on, the
proper transforms of X will coincide with the base changes.

Step 3. Use of the stable modification theorem. By the stable modification theorem
[Temkin, 2010, 1.5 and 1.1] there exist a separable alteration @: S — S with an
integral S and a projective modification X — X x 5§ such that (X, Z}) is a semistable
multipointed S-curve (see § 3.2.2), where Z,, C X is the horizontal part of the preimage
Z of Z. Enlarging S we can assume that it is integral and normal.

X— > XxsS—=X
\L tf
§—2—=8.

Step 4. We can assume that @ is a separable projective G-alteration, where G is an
£-group. Since semistable multipointed relative curves are preserved by base changes,
we can just enlarge S by replacing it with any separable projective Galois alteration
that factors through S. Once S — S is Galois, let G denote its Galois group and let
G C G be any Sylow /-subgroup. Since S — S/G is a separable G-alteration and
S/G — S is a separable projective '-alteration, we can replace S with S/G, replace
X with X x5 (S/G), and update Z accordingly, accomplishing the step.

Step 5. The action of G on X xg S via S lifts equivariantly to X. In particular, f
becomes G-equivariant and X — X becomes a separable projective G-alteration. This
follows from [Temkin, 2010, 1.6].

Step 6. The action of G on X is inertia specializing. Indeed, any covering of X by
separated open subschemes induces a covering of X by G-equivariant separated open
subschemes. So, it remains to use Remark 3.1.4 (i).

Step 7. We can assume that S — S is finite. By Raynaud-Gruson there exists a
projective modification S’ — S such that the proper transform S of S is flat over
S’. Let n denote the generic point of S and S’ and let 1’ denote the generic point
of S and §. Since the morphisms S xg S’ — S’ and 7' — n are G-equivariant and
S’ is the schematic closure of n' in S xg S’, we obtain that the morphism Ny
is a separable projective G-alteration. Replacing S — S with S -9 , and updating
X and X accordingly, we achieve that S — S becomes flat, and hence finite. All
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conditions of steps 1-6 are preserved with the only exception that S may be non-
normal. So, we replace S with its normalization and update X. This operation
preserves the finiteness of S — S, so we complete the step.

Step 8. Choice of W. Fix a closed subset W C S such that S — S is étale over
S\W, f(Z,) c W, where Z, is the vertical part of Z and W = @~ (W), and f is
smooth over S\ W.

Step 9. We can assume that S is regular and W is snc. Indeed, by our assumptions
on S there exists a projective £'-alteration (resp. a separable projective ¢'-alteration)
a: 8’ — S such that S’ is regular and a~!(W) is snc. Choose any preimage of 7 in
S’ xg S and let S’ be the normalization of its closure. Then S — §' is a separable
projective Galois alteration with Galois group G’ C G, so we can replace S, S, G and
X with &’ ,—S—’,G’ and X xg §’, respectively, and update W, W and Z accordingly
(i.e. replace them with their preimages). Note that step 9 is the only step where a
non-separable alteration of S may occur.

Step 10. The morphism (S, W) — (S, W) is Kummer étale. Indeed, S — S is an
étale G-covering outside of W, and S is the normalization of S in this covering, so
the assertion follows from IX-2.1.

Consider the G-equivariant subscheme T = Z U T_l(W) of X. The morphism
(X,T) — (S,W) is log smooth by Proposition 3.2.3, hence so is the composition
(X,T) — (S,W) and we obtain that (X,T) is log regular. The group G acts freely
on S\W and hence also on X \T. Also, its action on X is tame and inertia specializing
(step 6), hence we can apply Theorem 1.1 to (X,T) — (S, W). As aresult, we obtain a
projective G-equivariant modification (Y/,T/) — (X, T) such that T is the preimage
of T, G acts very tamely on (7’, TI), and (X', 7') = (71 / GT /G) is log smooth over
(S,W) (the quotient exists as a scheme as f is quasi-projective by Step 1 and the
morphisms § — S and X - X > Xxg8 are projective). Clearly, X’ is a projective
modification of X and Z’ is the union of the preimages of W and Z, hence it only
remains to achieve that X’ is regular and Z’ is snc. For this it suffices to replace
(X', Z") with its projective modification Flog (X', Z") introduced in VIII-3.4.9. O

3.4.1. Remark. — 1t is natural to compare Theorem 3.4 and the classical de Jong’s
result recalled in IX-1.2. The main differences are as follows.

(i) One considers non-proper relative curves in 3.4, and this is the only point that
requires to use the stable modification theorem instead of de Jong’s result. The reason
is that although the problem easily reduces to the case of a quasi-projective f (see
Step 2), one cannot make f projective, as the compactified generic fiber 7,, does not
have to be smooth (i.e. geometrically regular) at the added points.

(ii) One uses ¢'-alterations in 3.4. This is more restrictive than in IX-1.2, but the
price one has to pay is that the obtained log smooth morphism (X', Z') — (S',W’)
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does not have to be a nodal curve (e.g. X’ — S’ may have non-reduced fibers). The
construction of such b: X’ — X involves a quotient by a Sylow subgroup, and is based
on Theorem 1.1. (Note also that it seems probable that instead of 1.1 one could use
the torification argument of Abramovich-de Jong, see [Abramovich & de Jong, 1997,
§1.4.2].)

Now, we are going to use Theorem 3.4 to prove the main result of § 3.

3.5. Theorem. — Let f: X — S be a mazimally dominating (1I-1.1.2) morphism of
finite type between noetherian ge schemes, let Z C X be a nowhere dense closed subset,
and assume that S is universally ¢'-resolvable, then:

(i) X is universally ¢'-resolvable.

(if) There exist projective ¢ -alterations a: 8" — S and b: X' — X with regular
sources, a pseudo-projective (§3.1.6) morphism f': X' — S’ compatible with f

X t.ox

[f’ Lf
o
and snc dwisors W' C S’ and Z' C X' such that Z' = b=1(Z) U f'~Y(W') and the
morphism (X', Z') — (8',W') is log smooth.
(iif) If S = Spec(k), where k is a perfect field, then one can achieve in addition
to (ii) that a is an isomorphism and the alteration b is separable. In particular, X is
universally separably £ -resolvable in this case.

Proof. — Note that (i) follows from (ii) because any alteration X; of X is also of
finite type over S, so we can apply (ii) to X; as well. Thus, our aim is to prove
(ii) and its complement (iii). We will view Z both as a closed subset and a reduced
closed subscheme. We start with a few preliminary steps, that reduce the theorem
to a special case. We will tacitly use that if S; — S and X; — X are projective
¢'-alterations, separable in case (iii), and f1: X; — S; is compatible with f, then
it suffices to prove the theorem for f; and the preimage Z; C X; of Z. So, in such
situation we can freely replace f with f, and Z will be updated automatically without
mentioning, as a rule.

Step 1. We can assume that X and S are integral and normal. For a noetherian
scheme Y, let Y™°T denote the normalization of its reduction. Since f is maximally
dominating, it induces a morphism f™°': X" — §7°" and replacing f with fo°r
we can assume that S and X are normal. Since we can work separately with the
connected components, we can now assume that S and X are integral.

Step 2. We can assume that f is projective. By Proposition 3.1.8 there exists
a projective modification X; — X such that the morphism X; — S factors into a
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composition of a local isomorphism X; — X and a projective morphism X -
S. Replacing X with X; we can assume that X itself admits a local isomorphism
g: X — X with an S-projective target. Let Z be the closure of g(Z). Then it suffices
to solve our problem for f and Z, as the corresponding alteration of X will induce an
alteration of X as required. Thus, replacing X and Z with X and Z, we can assume
that f is projective.

Step 3. It suffices to find f' which satisfies all assertions of the theorem except
the formula for Z', while the latter is weakened as b=1(Z) U f'~1(W') C Z'. Given
such an f’ note that Z” = b~1(Z) U f'~}(W’) is a subdivisor of Z’, hence it is an
snc divisor too. We claim that X', Z"”,S’, W' satisfy all assertions of the theorem,
and the only thing one has to check is that the morphism (X', Z") — (S',W’) is log
smooth. The latter follows from Lemma 3.5.3 whose proof will be given below.

Step 4. In the situation of (iii) we can assume that the field k is infinite. Assume
that S = Spec(k) where k is a finite field and fix an infinite algebraic ¢'-prime extension
k/k (i.e. it does not contain the extension of k of degree £). We claim that it suffices
to prove (ii) and (iii) for § = Spec(k) and the base changes X = X x5 S and
Z = Z xg S. Indeed, assume that a: X 5 Xisa separable ¢'-alteration with a
regular source and such that Z = a~Y(Z) is an snc divisor (obviously, we can take
S =8and W = ). Since S =lim; S; where S; = Spec(k;) and k;/k run over finite
subextensions of k/k, [EGA 1v3 8.8.2(ii)] implies that there exists i and a finite type
morphism X] — X; = X x5 .S; such that X 5 X! xg,S. For any finite subextension
k; C k;j C kset Xj = X]xg,8; and X; = X, xg, Sj, and let Z; C X be the preimage
of Z. Then it follows easily from [EGA 1v3 8.10.5] and [EGA 1v4 17.7.8] that X} — X;
is an ¢'-alteration and X ]’ — S; is smooth for large enough k;. In the same manner
one achieves that Z} is an snc divisor. Now, it is obvious that (X}, Z}) — (S, 9) is
log smooth and X} — X; — X is an £'-alteration.

Now we are in a position to prove the theorem. We will use induction on d =
tr.deg.(k(X)/k(S)), with the case of d = 0 being obvious. Assume that d > 1 and
the theorem holds for smaller values of d.

Step 5. Factorizing f through a relative curve. After replacing X by a projective
modification, we can factor f as h o g, where h: Y — S is projective, Y is integral,
g: X — Y is maximally dominating and tr.deg.(k(X)/k(Y)) = 1. Indeed, one can
obviously construct such a rational map ¢’: X --+ Y even without modifying X (i.e.
g’ is well defined on a non-empty open subscheme U C X). Let X’ be the schematic
image of the morphism U—X x Y. Then X’ — X is a projective modification (an
isomorphism over U), and the morphism X’ — S factors through g: X — Y.

Let n = Spec(k(Y')) denote the generic point of Y, X;, = X xynand Z, = Z xy .
We claim that in addition to factoring f through Y one can achieve that the following
condition is satisfied:
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(¥) X, and Z, are smooth over 7.

In general, this is achieved by replacing X and Y by inseparable alterations. Pick
up any finite purely inseparable extension K/k(Y") such that Zx = (Z x,, Spec(K))"°"
(i.e. just the reduction) and Xx = (X X, Spec(K))"°" are smooth, extend K/k(Y)
to a projective alteration Y/ — Y, and replace Y and X with Y’ and the schematic
closure of Xk in X Xy Y’, respectively. Clearly, () holds after this replacement.

It remains to deal with the case (iii). This time we should avoid inseparable
alterations, so g and Y should be chosen more carefully. If k = k is algebraically
closed and S = Spec(k) then such g and Y exist by [de Jong, 1996, 4.11], and the
general assertion of (iii) will be proven similarly. Let us recall the main line of the proof
of [de Jong, 1996, 4.11]. Fix a closed immersion X <—>P£’ and for each linear subspace
L of dimension N — d consider the classical projection Bl (PY) — Y = PZ—I. If Lis
general then it does not contain X and hence the strict transform X} Bl (PY) is
a modification of X. de Jong shows that if k = k then for a general choice of L the
projection X} — Y satisfies ().

In the general case, the schemes X = X ®x k and Z = Z ®y, k are reduced since
k is perfect. Hence a general ZQPIEV induces a modification 7’3 — X and a curve
fibration g7 : Ylf — P%‘l that satisfies (x). Since k is infinite we can choose L to
be defined over k, i.e. L = L ®; k for L—P¥. We obtain thereby a modification
X} — X and a curve fibration g;.: X, — P{~'. Since g7 is the flat base change of
gL, the latter satisfies (x) by descent.

Step 6. Use of Theorem 3.4. So far, we have constructed the right column of the
following diagram

Z'°8(L, ML)

(XI,Zl) (L ML) s (XII ZII)

Lg/ D

)[
(Y’ v' _c . (Y// V”) ﬁ){ ¥
S.

Lh/ Lh//
a

S ==

(s, w')

By Theorem 3.4 there exists a projective #'-alteration ¢’: Y"” — Y with regular
source, a projective modification X" — (X xy Y )P* with regular source, a projective
morphism ¢”: X" — Y" compatible with g, and snc divisors V" C Y" and Z" C X"
such that (X”,Z") — (Y",V") is log smooth and b"~1(Z) C Z". In case (iii), Y is
universally separably ¢'-resolvable by the induction assumption, hence we can take
¢"” to be separable, and then b”’: X" — X is also separable. In addition, by the
induction assumption applied to A”: Y"” — S and V" C Y” there exist projective
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#'-alterations a: 8’ — S and ¢': Y’ — Y” with regular sources and snc divisors
W' c 8 and V! C Y’ and a projective morphism h’: Y’ — S’ compatible with h”
such that (Y’,V’) — (S’,W’) is log smooth, ¢'~1(V") C V', and ¢’ is separable if the
assumption of (iii) is satisfied.

Set (L, M) = (X",2") xfsy//’v,,) (Y’, V'), where the product is taking place in the
category of fs log schemes. To simplify notation we will write PS¢ instead of (Pint)sat
for monoids and log schemes. Recall that (L, ML) = (F, Mp)%**, where (F, MF) is
the usual log fibered product, and F' = X" xy~ Y’ by [Kato, 1988, 1.6]. Furthermore,
we have local Zariski charts for ¢’ and g” modeled, say, on P, — P/ and P, — Q;.
Hence (F,Mp) is a Zariski log scheme with charts modeled on R; = P} ®p, Q;,
and (L,Mp) is a Zariski log scheme with charts modeled on R5**. Furthermore,
the saturation morphism L — F is finite hence the composition L — F — X" is
projective. The morphism ¢': (L, M) — (Y',V’) is a saturated base change of the
log smooth morphism g”: (X", Z") — (Y",V"), hence it is log smooth. As (Y',V’) is
log regular, (L, M) is also log regular. Applying to (L, My) the saturated monoidal
desingularization functor Z°¢ from VIII-3.4.9 we obtain a log regular Zariski log
scheme (X', Z') with a regular X’. Then Z’ is a normal crossings divisor, which is
even an snc divisor since the log structure is Zariski.

We claim that (X', Z’) and (S’, W’) are as asserted by the theorem except of the
weakening dealt with in Step 3. Indeed, the morphism (X', Z') — (S’',W’) is log
smooth because it is the composition (X’,Z’) — (L,Mr) — (Y, V') — (S',W')
of log smooth morphisms. The preimage of Z in X" is contained in Z”, which is
the non-triviality locus of the log structure of (X”,Z"), hence its preimage in X'
is also contained in the non-triviality locus of the log structure of (X', Z’), which is
Z'. Clearly, Z' also contains the preimage of W’. By the construction, §’ — S is
a projective #'-alteration, and it remains to check that X’ — X is also a projective
¢'-alteration. Since .Z1°8(L, ML) is a saturated log blow up tower and (L, M) is log
regular, the underlying morphism of schemes X’ — L is a projective modification
by VIII-3.4.6 (i). The projective morphism L — X" is an ¢'-alteration because
generically (where the log structures are trivial) it is a base change of the projective
¢'-alteration Y/ — Y. And X" — X is a projective £'-alteration by the construction.
It remains to recall that in the situation of (iii) the alterations ¢: Y’ — Y and
b": X" — X are separable, hence so are (L, M) — X" and the total composition
X — X. O

3.5.1. Remark. — The only place where inseparable alterations are used is the argu-
ment at step 5, where we had to choose an inseparable extension K/k(Y) when X,
or Z, is not geometrically regular.
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3.5.2. Remark. — Analogs of Theorems 3.4 and 3.5 hold also for the class of univer-
sally Q-resolvable schemes. In a sense, this is the “¢ = 1” case of these theorems.
One can prove this by the same argument but with £ replaced by 1. In fact, few
arguments become vacuous (though formally true); for example, in steps 4-6 in the
proof of Theorem 3.4, an ¢-group G should be replaced by the trivial group, so the
steps 5 and 6 collapse.

3.5.3. Lemma. — Assume that S and X are regular schemes, W C S and Z C X
are snc divisors, and f : X — S is a morphism such that f~Y(W) C Z and the
induced morphism of log schemes h: (X,Z) — (S,W) is log smooth. Then for any
intermediate divisor f~Y(W) C Z' C Z the morphism h': (X,Z') — (S,W) is log
smooth.

Proof. — We can work locally at a geometric point Z — X. Let z € X and s € S
be the images of =, and let g1,...,q, € Os s define the irreducible components of W
through s. Set Q@ = @;_, ¢. Shrinking S we obtain a chart c: S — Spec(Z[Q)]) of
(S,W). By Proposition 1.2 applied to ¢, h, and G = 1, after localizing X along T
one can find an fs chart of h consisting of ¢, X — Spec(Z[P]), and ¢: Q — P such
that the morphism X — § Xgpec(z(q)) Spec(Z[P]) is smooth, P* is torsion free, ¢ is
injective, and the torsion of Coker(#®P) is annihilated by an integer n invertible on S.

Let p1,...,pt € Ox, define the irreducible components of Z through z. Our
next aim is to adjust the chart similarly to 1.4.2 (vi) to achieve that P = N =
@;.:1 p}“. Note that Mx , — N, where Mx—&x is the log structure of (X, Z).
The homomorphism ¢: P — Mx , factors through the fs monoid R = P[T"~!] where
T =Y M ;(@) Clearly, R* is torsion free, R = N, and shrinking X around z
we obtain a chart X — Spec(Z[R]). Since Spec(Z[R]) is open in Spec(Z[P]) the
morphism X — § Xgpec(z[q)) SPec(Z[R]) is smooth. So, we can replace P with R
achieving that P = N, and hence P = Nt @ Z*.

Without restriction of generality Z’ is defined by the vanishing of H;I:l p; fort’ <t.

Since f~1(W) C Z', the image of Q in P is contained in P = ED;':I p}}. Hence ¢
factors through a homomorphism ¢’: Q — P’ = Po P*, and we obtain a chart of h'
consisting of ¢, X — Spec(Z[P']), and ¢’. By [Kato, 1994, 3.5, 3.6], to prove that h’
is log smooth it remains to observe that ¢’ is injective, the torsion of Coker(¢'8P) is
annihilated by n, and the morphism

X — 8 Xspec(z(Q)) SPec(Z[P]) = S Xspec(z(q)) SPec(Z[P'])
is smooth because Spec(Z[P]) — Spec(Z[P']) is so. O

3.5.4. Comparison with Theorems 2.1 and 2.4. — Theorems 2.1 and 2.4 follow by
applying Theorem 3.5 (ii) to X — S and Z (where one takes S = Spec(k) in 2.1).
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Indeed, the main part of the proofs of 2.1 and 2.4 was to construct ¢'-alterations
X' — X and S’ — S with regular sources, snc divisors Z’ C X’ and W' C §’, and
a log smooth morphism f’: (X’,Z') — (S’,W’) compatible with f. Then, in the
last paragraphs of both proofs, Proposition 1.2 was used to obtain a more detailed
description of X’, Z’, and f’. In particular, for a zero-dimensional base this amounted
to saying that X’ is S-smooth and Z’ is relatively snc over S, and for a one-dimensional
base this amounted to the conditions (i) and (ii) of 2.4.

Conversely, Theorem 2.1 (resp. 2.4) implies assertion (ii) of Theorem 3.5 under
the assumptions of 2.1 (resp. 2.4) on X and S. Moreover, the non-separated Chow’s
lemma could be used in their proofs as well, so the separatedness assumption there
could be easily removed. In such case, Theorems 2.1 and 2.4 would simply become
the low dimensional (with respect to S) cases of Theorem 3.5 (ii) plus an explicit local
description of the log smooth morphism f’. The strengthening 3.5 (iii), however, was
not achieved in 2.1, and required a different proof of the whole theorem.

3.6. Saturation. — In Theorems 3.4 and 3.5 we resolve certain morphisms f: X — S
with divisors Z C X by log smooth morphisms f': (X', Z') — (S',W’). However, as
we insisted to use only #-alterations and to obtain regular X’ and snc Z’, we had
to compromise a little on the “quality” of f’. For example, our f’ may have non-
reduced fibers. Due to de Jong’s theorem, if the relative dimension is one, then one
can make f’ a nodal curve. We will see that a similar improvement of f’ is possible
in general if one uses arbitrary alterations and allows non-regular X’. The procedure
reduces to saturating f’ and is essentially due to Tsuji and Illusie-Kato-Nakayama
([Mlusie et al., 2005, A.4.4 and A .4.3]).

3.6.1. Saturated morphisms. — Recall that a homomorphism P — Q of fs (resp.
fine) monoids is saturated (resp. integral) if for any homomorphism P — P’ with fs
(resp. fine) target the pushout @Q ®p P’ is fs (resp. fine). A morphism of fs (resp.
fine) log schemes f: (Y, My) — (X, Mx) is saturated (resp. integral) if so are the
homomorphisms M x f(,) — My,y.

3.6.2. Remark. — (i) Integral morphism were introduced already by Kato in
[Kato, 1988, §4]. Kato also introduced the notion of saturated morphisms, which was
first seriously studied by Tsuji in [Tsuji, 1997]. Actually, one can define saturated
morphisms for arbitrary fine log schemes, but the definition is more involved than we
use. For fs log schemes our definition coincides with the usual one due to [Tsuji, 1997,
1T 2.13(2)].

(ii) The following two basic properties of saturated morphisms follow from the
definition: (a) a composition of saturated morphisms between fs log schemes is satu-
rated, (b) if f: Y — X is a saturated morphism between fs log schemes, then, for any
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morphism of fs log schemes X’ — X, the base change f': Y/ — X’ of f in the cate-
gory of log schemes is a saturated morphism of fs log schemes. (Also, it is proved in
[Tsuji, 1997, II 2.11] that analogous properties hold for saturated morphisms between
arbitrary integral log schemes.)

(iii) Let f: Y — X be a morphism of fs log schemes. It is shown in [Tsuji, 1997, II
3.5] that if f can be modeled on charts corresponding to saturated homomorphisms
of fs monoids P; — Q; then f is saturated. Let us remark that the converse is also
true: if f is saturated then it can be modeled on charts corresponding to P, — Q; as
above.

3.6.3. Integrality and saturatedness for log smooth morphisms. — We recall the fol-
lowing result that relates the notions of integral and saturated morphisms to certain
properties of the underlying morphisms of schemes.

3.6.4. Proposition. — Let f: (Y,My) — (X, Mx) be a log smooth morphism between
fs log schemes and assume that f is integral. Then,

(i) the morphism Y — X is flat,

(ii) f saturated if and only if Y — X has reduced fibers.

Proof. — The first claim is proved in [Kato, 1988, 4.5] and the second one is proved
in [Tsuji, 1997, II 4.2]. O

One can also go in the opposite direction: from flatness to integrality.

3.6.5. Proposition. — Let f: (Y,My) — (X, Mx) be a log smooth morphism between
fs log schemes and assume that the morphism Y — X is flat and (X, Mx) is log
smooth over a field k with the trivial log structure. Then f is integral.

Proof. — Tt suffices to show that if § — Y is a geometric point and T = f(7) then the
homomorphism ¢: MX,E — Myj is integral. By Proposition 1.2 and the argument
in 1.4 (vi), localizing X and Y along these points we can assume that X possesses
a chart a: X — X, = Spec(k[Q]) with smooth a and f is modeled on a chart Yy =
Spec(k[P]) — X, corresponding to a homomorphism ¢: @ — P so that the morphism
9:Y - Z = X xx, Yy is smooth (in particular, flat), and ¢ has the following
properties: @ = M x z, P is fs, P* is torsion free, the composition @ — P — P =
P/P* coincides with @, the kernel of ¢&P is finite, killed by an integer invertible at
z, as well as the torsion part of its cokernel (but we will not need these last two
properties). Since @ is sharp and saturated, Q8P is torsion free, so ¢ is injective. We
claim that ¢ is integral if and only if ¢ is integral. To see this note that if @ — R is
a homomorphism of monoids, then R @¢ P is isomorphic to the quotient of R @ P
by the image of P*, and hence either both pushouts are integral or neither of them
is integral. Thus, we only need to prove that ¢ is integral.
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Note that the morphism h: Z — X is flat at the (Zariski) image z € Z of § because
f and g are flat. Note that a takes £ = h(z) to the origin of Xy and Yy — X is
flat at the image 5o € Yy of 2 by flat descent with respect to a. In other words, if
I C K[P)] is the ideal corresponding to yo then the homomorphism k[Q] — k[P]; is
flat. The preimage of m, under k[P] — Oy, contains the set mp = P\ P*, hence
mp C I and we obtain that I contains J = k[mp]. Note that the ideal J is prime
as k[P]/J 5 k[P*] is a domain due to P* being torsion free. Thus, the localization
k[P); makes sense, and we obtain a flat homomorphism ¢: k[Q] — k[P];.

It is proved in [Kato, 1988, 4.1], that if the homomorphisms K[¢]: K[Q] — K[P]
are flat for any field K then ¢ is integral. The proof consists of two parts. First one
checks that ¢ is injective, which is automatic in our case. This is the only argument
in loc.cit. where a play with different fields is needed. We claim that the second part
of the proof of the implication (iii) = (v) in [Kato, 1988, 4.1] works fine with a
single field k, and, moreover, it suffices to only use that k[Q] — k[P]; is flat. Let us
indicate how the argument in loc.cit. should be adjusted.

Assume that, as in the proof of [Kato, 1988, 4.1], we are given aj,a2 € @ and
b1, bs € P such that ¢(a;)bs = ¢(az)be. Let S be the kernel of the homomorphism of
k[Q]-modules k[Q] & k[Q] — k[Q)] given by (z,y) — a1z — azy. By the flatness, the
kernel of k[P];®k[P); — k[P],, (z,y) — ¢(a1)x—¢(az)y is generated by the image of
S. Hence there exist representations by = ;_, ¢(ci)% and by = > _, q&(di)% with
ci,d; € k[Q), fi € k[P], s € k[P]\J, and a1c; = asd;. Moreover, multiplying s and f;’s
by an appropriate unit u € P* we can assume that s = 1+’ for s’ € Span, (P \ {1}).
Then b1 + 31 cpcm Aata = D 1<icy (Ci) fi, with X, € k*, and the t, € P pairwise
distinct and distinct from by, so we see that there exist a3 €Q,beP,and1<i<r,
such that as appears in ¢;, b appears in f;, and by = ¢(a3)b. The remaining argument
copies that of the loc.cit. verbatim, and one obtains in the end that ¢ satisfies the
condition (v) from [Kato, 1988, 4.1]. Thus, ¢ is integral and we are done. O

Before going further, let us discuss an incarnation of saturated morphisms in (more
classical) toroidal geometry.

3.6.6. Remark. — In toroidal geometry an analog of saturated morphisms was intro-
duced by Abramovich and Karu in [Abramovich & Karu, 2000]. In the language
of log schemes toroidal morphisms can be interpreted as log smooth morphisms
f:(X,Z) — (S,W) between log regular schemes (with the toroidal structure given
by the triviality loci of the log structures). If f is a toroidal morphism as above then
Abramovich-Karu called it weakly semistable when the following conditions hold: S
is regular, f is locally equidimensional, and the fibers of f are reduced. Furthermore,
they remarked that the equidimensionality condition is equivalent to flatness of f
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whenever S is regular, see [Abramovich & Karu, 2000, 4.6]. Thus, the weak semista-
bility condition is nothing else but saturatedness of f and regularity of the target.
In particular, saturated log smooth morphisms between log regular log schemes may
be viewed as the generalization of weakly semistable morphisms to the case of an
arbitrary log regular (or toroidal) base.

Now, we are going to prove our main result about saturation.

3.7. Theorem. — Assume that f: (X,Z) — (S,W) is a log smooth morphism such
that (S,W) is log regular and S is universally Q-resolvable (§3.3.3). Then there
exists an alteration h: S’ — S such that S is regular, W' = g=Y(W) is an snc
divisor, and the fs base change f': (X', Z’) — (S’,W') is a saturated morphism.

Recall that (X', Z2') = (X, Z) Xf?s*,W) (S',W’) and f’ is log smooth because the
saturation morphism is log smooth.

Proof. — By VIII-3.4.9, applying to (S, W) an appropriate saturated log blow up
tower and replacing (X, Z) with the fs base change we can achieve that S is regular
and W is normal crossings. By an additional sequence of log blow ups we can also
make W snc (see VIII-4.1.6), so (S, W) becomes a Zariski log scheme. Now, we can
étale-locally cover f by charts f;: (X;, Z;) — (Si, W;) modeled on P; — Q; such that
S; are open subschemes in S. By [Illusie et al., 2005, A.4.4, A.4.3], for each i there
exists a morphism h;: (S}, W/) — (S;, W;) such that h; is a composition of a Kummer
morphism and a log blow up, and the fs base change of f; is saturated. (Although the
proof in loc.cit. is written in the context of log analytic spaces, it translates to our
situation almost verbatim. The only changes are that we have to distinguish étale
and Zariski topology on the base (in order to construct log blow ups), and h; does
not have to be log étale as there might be inseparable Kummer morphisms.)

Note that W/ = h;'(W;). In addition, S! — S; is a projective alteration by
VIII-3.4.6. Extend each h; to a projective alteration g;: T; — S, and let h: S’ — S be
a projective alteration that factors through each T;. By the universal Q-resolvability
assumption we can enlarge S’ so that it becomes regular and Z’ = h=1(Z) becomes
snc. We claim that h is as claimed. It suffices to check that the fs base change of each
morphism f/: (X;,Z;) — (S,W) is saturated. However, already the fs base change
of f! to (Ti,g; *(W)) is saturated by the construction, hence so is its further base
change to (S',W'). O

3.7.1. Remark. — Our proof is an easy consequence of [Illusie et al., 2005, A.4.4 and
A.4.3]. The first cited result shows that (locally) any log smooth morphism can be
made exact by an appropriate log blow up of the base. This result is somewhat
analogous to the flattening theorem of Raynaud-Gruson. The second cited result
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shows that by a Kummer extension of the base one can (locally) saturate an exact
log smooth morphism. It is somewhat analogous to the reduced fiber theorem of
Bosch-Liitkebohmert-Raynaud ([Bosch et al., 1995]) which implies that if f: ¥ — X
is a finite type morphism between reduced noetherian schemes then there exists an
alteration X’ — X such that the normalized base change f': (Y xx X')*" — X’ has
reduced fibers. Although the proof of the latter is far more difficult.

3.8. Characteristic zero case. — Theorem 3.5 can be substantially strengthened when
S is of characteristic zero, i.e., the morphism S — Spec(Z) factors through Spec(Q).

3.9. Theorem. — Assume that S is a reduced, noetherian, ge scheme of characteristic
zero, f: X — S is a mazimally dominating morphism of finite type with reduced
source, and Z C X is a nowhere dense closed subset. Then there exist projective
modifications a: S’ — S and b: X' — X with regular sources, a pseudo-projective
morphism f': X' — S’ compatible with f, and snc divisors W' C S’ and Z' C X'
such that Z' = b=1(Z) U f'"Y(W') and the morphism (X', Z') — (S',W’) is log
smooth.

Proof. — The proof is very close to the proof of Theorem 3.5, so we will just say
which changes in that proof should be made. First, we note that any S-scheme Y
of finite type is noetherian and ge. Thus, if Y is reduced and T' C Y is a nowhere
dense closed subset then the pair (Y,T) can be desingularized by [Temkin, 2008} in
the following sense: there exists a projective modification h: Y’ — Y with regular
source and such that h~1(T) is an snc divisor. This result replaces the #'-resolvability
assumption in Theorem 3.5, and it allows to apply the proof of that theorem to our
situation with the only changes that one always uses projective modifications instead
of projective ¢'-alterations, and Theorem 3.4 is replaced with Lemma 3.9.1 below.
(Note that Lemma 3.9.1 is weaker than Theorem 3.9, while Theorem 3.4 does not
follow from Theorem 3.5.) a

3.9.1. Lemma. — Let S be an integral, noetherian, ge scheme with generic point
17 = Spec(K), let f: X — S be a mazximally dominating morphism of finite type,
and let Z C X be a nowhere dense closed subset. Assume that X, = X Xgn is a
smooth curve over K, and Z, = Z xg 1 is étale over K. Then there exist projective
modifications a: S’ — S and b: X' — X with regular sources, a pseudo-projective
morphism f': X' — S’ compatible with f and snc divisors W' C S’ and Z' C X' such
that Z' = b=Y(Z) U f'~Y(W') and the morphism (X', Z') — (S',W') is log smooth.

Proof. — The proof copies the proof of Theorem 3.4 with the only difference that
instead of an /-Sylow subgroup G C G one simply takes G = G. The latter is possible
because the schemes are of characteristic zero and hence any action of G is tame. [J

SOCIETE MATHEMATIQUE DE FRANCE 2014



212 EXPOSE X. GABBER’S MODIFICATION THEOREM (LOG SMOOTH CASE)

Combining Theorem 3.9 and 3.7 we obtain the following weak semistable reduction
theorem.

3.10. Theorem. — Assume that S is a reduced, noetherian, qe scheme of characteristic
zero, f: X — S is a mazrimally dominating morphism of finite type with reduced
source, and Z C X is a nowhere dense closed subset. Then there exists an alteration
S" — S, a modification X' — (X xg S’)P* of the proper transform of X, a pseudo-
projective morphism f': X' — S’ compatible with f, and divisors W' C S’ and Z' C
X' such that S’ is regular, W’ is snc, Z' = b=1(Z) U f'"Y(W'), and the morphism
(X',Z2") — (S',W') is log smooth and saturated (i.e. X' — S’ is weakly semistable).

3.10.1. Remark. — (i) In the case when X and S are integral proper varieties over
an algebraically closed field k of characteristic zero, this theorem becomes the weak
semistable reduction theorem of Abramovich-Karu. Our proof has many common
lines with their arguments. In particular, the first step of their proof was to make
f toroidal, and it was based on de Jong’s theorem. (Note also that in a recent
work [Abramovich et al., 2013] of Abramovich-Denef-Karu, the toroidalization theo-
rem was extended to separated schemes of finite type over an arbitrary ground field
of characteristic zero.) Our Theorem 3.9 can be viewed as a generalization of the
toroidalization theorem of Abramovich-Karu.

(ii) The second stage in the proof of the weak semistable reduction theorem of
Abramovich-Karu (the combinatorial stage) is analogous to Theorem 3.7. It obtains
as an input a toroidal morphism f: (X,Z) — (S,W) between proper varieties of
characteristic zero and outputs an alteration h: S’ — S such that S’ is regular,
W' = h~1(W) is snc, and the saturated base change of f is weakly semistable. The
proof is similar to the arguments used in the proofs of [Illusie et al., 2005, A.4.4 and
A.4.3]. First, one constructs a toroidal blow up of the base that makes the fibers
equidimensional (i.e. makes the log morphism integral), and then an appropriate
normalized finite base change is used to make the fibers reduced.

Erratum. — Proof of Theorem 3.4, Step 1: First, one should take Z; to be the closure of the image
of Z. Still, there is a gap since the preimage Z C X of Z1 under X — X, can be strictly larger
than Z, while the argument proves the theorem for (X, Z) This can be corrected as follows. In
the beginning of the step, replace X with the blow up along Z achieving that Z is the support of
an effective Cartier divisor. By the presented argument, if the theorem holds for X; and Z; then
it holds for (X, Z), i.e. there exist a,b such that Z’ = ¢c~1(Z) U f'~1(W’) is an snc divisor and
(X,Z') — (S',W') is a log smooth morphism. We claim that the same pair (a, b) works for (X, Z).
Since Z' = ¢c=1(Z) U f/~1(W’) is a subdivisor of Z’, it is snc. The morphism (X', Z') — (S, W) is
log smooth by Lemma 3.5.3 proved below.

Proof of Theorem 3.5, Step 2: Same patch as above. Start the step with blowing up X along Z
so that Z becomes the support of an effective Cartier divisor; this is also needed for Step 3. The
present argument of Step 2 shows that if the theorem holds for (X, Z) then it holds for (X, zZ ) where
Z is the preimage of Z. But then Lemma 3.5.3 implies that the theorem also holds for (X, Z).
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