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THEORY OF ^-SPACES FOR CONTINUOUS 
FILTRATIONS IN VON NEUMANN ALGEBRAS 

Marius Junge, Mathilde Perrin 

Abstract. — We introduce Hardy spaces for martingales with respect to continu­
ous filtration for von Neumann algebras. In particular we prove the analogues of 
the Burkholder-Gundy and Burkholder-Rosenthal inequalities in this setting. The 
usual arguments using stopping times in the commutative case are replaced by tools 
from noncommutative function theory and allow us to obtain the analogue of the 
Feffermann-Stein duality and prove a noncommutative Davis decomposition. 

Résumé (Théorie des espaces %p pour des titrations continues dans des algèbres de von 
Neumann) 

Nous introduisons des espaces de Hardy pour des martingales relatives à des ni­
trations continues d'algèbres de von Neumann. Nous démontrons en particulier les 
inégalités de Burkholder-Gundy et de Burkholder-Rosenthal dans ce cadre. Les argu­
ments usuels basés sur des temps d'arrêt dans le cas commutatif sont remplacés par 
des outils de la théorie des fonctions non commutatives, qui nous permettent d'obtenir 
l'analogue de la dualité de Fefferman-Stein et de prouver une décomposition de Davis 
non commutative. 

© Astérisque 362, SMF 2014 
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CHAPTER 1 

INTRODUCTION 

The theory of stochastic integrals and martingales with continuous time is a well-
known theory with many applications. Quantum stochastic calculus is also well devel­
oped with applications reaching into fields such as quantum optics. In the setting of 
von Neumann algebras, many classical martingale inequalities have been reformulated 
for noncommutative martingales with respect to discrete nitrations, see e.g. [40], [27], 
[21], [30]. The aim of this paper is to study martingales with respect to continuous 
filtrations in von Neumann algebras. Our long term goal is to develop a satisfactory 
theory for semimartingales, including the convergence of the stochastic integrals. In 
the noncommutative setting, we cannot construct the stochastic integrals pathwise as 
in [9]. It is unimaginable to consider the path of a process of operators in a von Neu­
mann algebra. However, it is well-known that in the classical case, the convergence 
of the stochastic integrals is closely related to the existence of the quadratic variation 
bracket [.,. ] via the formula 

XtYt 
t 
Xs-dYs 

t 
Ys-dXs X,Y t 

Here the quadratic variation bracket can be characterized as the limit in probability 
of the following dyadic square functions 

X,Y t X0 Y0 lim 
n—>-oo 

2n-l 

k=0 
X k + 1 

2n 
Xt k 

2n 
Yt. k+l 

2n 
Yt k 

2n 

Hence we will first study this quadratic variation bracket in the setting of von Neu­
mann algebras, and then deal with stochastic integrals in a forthcoming paper based 
on the theory developed here. More precisely, we will focus on the Lip-norm of this 
bracket by considering the Hardy spaces Hp defined in the classical case by the norm 

X Hp X, X 
1 
2 1 2 V 
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This paper develops a theory of the Hardy spaces of noncommutative martingales with 
respect to a continuous filtration. One fundamental application is an interpolation 
theory for these noncommutative function spaces which has already found applications 
in the theory of semigroups (see e.g. [22]). 

Let us consider a von Neumann algebra Ai. For simplicity, we assume that Ad 
is finite and equipped with a normal faithful normalized trace r. Fortunately, the 
theory of noncommutative 77p-spaces is now very well understood in the discrete 
setting, i.e., when dealing with an increasing sequence (.M n) n>o of von Neumann 
subalgebras of Ad, whose union is weak*-dense in At. We consider the associated 
conditional expectations Sn : Ai —> Adn. In the noncommutative setting it is well-
known that we always encounter two different objects, the row and column versions 
of the Hardy spaces: 

x\ Hc

p 

n 

in X 
2' 1 

2 
p 

and x Hr

p 

n 

dn x |2' 1 
2 

\p 

where dn(x) — £n(x) — £n-\{x). Here x P T X P 1/p refers to the norm in 
the noncommutative Lp-space. The noncommutative Burkholder-Gundy inequalities 
from [40] say that with equivalent norms fori < p < oo, 

1.0.1 Mp Ad Hp 

where the i/p-space is defined by 

Hp 
H c. 

V 
H r 

P for 1 P 2 

H c 
P H r 

V for 2 V oo. 
Following the commutative theory, we should expect to define the bracket [x, x] for a 
martingale x and then define 

x H c V 
X, X 

1 
2 1 
2 P 

and x H r v 
X x* 1 

2 1 
2 V 

Armed with the definition we may then attempt to prove (1.0.1) for a continuous 
filtration (Adt)t>o- For simplicity, we assume that the continuous parameter set is 
given by the interval [0,1]. We define a candidate for the noncommutative bracket 

following a nonstandard analysis approach. For a finite partition o 0 to ti 
tn : 1 of the interval [0,1] and x G Ad, we consider the finite bracket 

X, X a 
tea 

dt X 
2 

where d^(x) St(x) £t-(a) X Then for p > 2, (1.0.1) gives an a priori bound 

X, X a 
l 
2 1 
2 P 

ap x P 

Hence, for a fixed ultrafilter U refining the general net of finite partitions of [0,1], we 
may simply define 

X, X u w-L 1 
2 
P lim X, X a 
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CHAPTER 1. INTRODUCTION 3 

In fact, in nonstandard analysis, the weak-limit corresponds to the standard part 
and is known to coincide with the classical definition of the bracket for commutative 
martingales. However, the norm is only lower semi-continuous with respect to the 
weak topology and we should not expect Burkholder/Gundy inequalities for contin­
uous nitrations to be a simple consequence of the discrete theory of i/p-spaces. Yet, 
using the crucial observation that the L1 -norms of the discrete brackets f x, x~^ (j are 
monotonous up to a constant, we may show the following result. 

Theorem 1.0.1. — Let 1 P oo and x G M. Then 

x x u 1 2 P 
lim 
r,U 

x, x a 1 2 P 
supa 

x, x cr 1 2 P 
for 1 P 2, 

infa X, X a 1 2 V for 2 P oo. 

In particular, this implies that the Lip-norm of the bracket [x,x]u does not de­
pend on the choice of the ultrafilter U, up to equivalent norm. We will discuss the 
independence of the bracket [x, x]u itself from the choice of U in a forthcoming paper. 
Hence for 1 < p < oo and x G Ai we define the norms 

x H c V 
x, x u 

1 2 1 2 P 
and x H c v 

lim 
e,U X, X a 

1 2 1 2 V 
lim 
c,U X H c v a 

We denote by Tip and 7^ respectively the corresponding completions. Using theo­
rem 1.0.1 we may show that actually 

1.0.2 U c 
V 

H c 
P 

with equivalent norms for 1 P oo. 

Hence this defines a good candidate for the Hardy space of noncommutative martin­
gales with respect to the continuous filtration (A4t)o<t<i- We now want to establish 
for this space the analogues of many well-known results in the discrete setting. For 
doing this, we will use the definition of the space Hp

c, which will be more practical 
to work with. In particular, we may embed l~ic

v into some ultraproduct space, which 
has an Lp-module structure and a p-equiintegrability property. This allows us to con­
sider Hp as an intermediate space of operators between L2(M.) and LP(M). Then, 
by complementation, we can show the following duality result. 

Theorem 1.0.2. Let 1 P oo and l/p+ l/pf 1. Then with equivalent norms 

H c "P 
H c P' 

Note that throughout this paper, following [40] we will consider the anti-linear 
duality, given by the duality bracket (x\y) — r(x*y). Since no confusion is possible, 
we will denote it by (Hp)*. With this convention, the dual space of a column space is 
still a column space. For p = 1, we also establish the analogue of the Fefferman-Stein 
duality in this setting: 

TL c 1 
BMOc with equivalent norms. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



4 CHAPTER 1. INTRODUCTION 

We have to be careful when defining the space BMOc. A naive candidate for the 
BMOc norm is given by 

x BMOc 
lim 
o,U X BMOc 

a where x BMOc G sup 
tea 

Et X xt- 2 1 2 OO 
However, here our restriction to finite partitions (instead of random partitions in the 
classical case) is restrictive. Indeed, if one of the ||^||23>ioc(cr)'s is finite, then x is 
already in M. Definitively, we expect J3MOc to be larger than M. We will therefore 
say that an element x G L2{M) belongs to the unit ball of BAiOc if it can be 
approximated in Z^-norm by elements of the form 

w-L2 
limxa 

o,U 
with lim 

o,U X(j BMOc a 1. 

This definition gives the expected interpolation result 

H •c P 
BMOc H c 1 1/p with equivalent norms for 1 P oo. 

We may define the Hardy space 7-Lp as in the discrete setting by considering the sum 
of the column and row Hardy spaces in Lp{M) for 1 < p < 2, and their intersection 
in L2{M) for 2 < p < oo. The continuous analogue of (1.0.1) is then obtained by 
taking the weak limit of the discrete decompositions for 1 < p < 2. However, the usual 
duality argument used to deduce the case 2 < p < oo may not be directly applied 
in this case. We first need to extend a stronger Burkholder-Gundy decomposition 
introduced by Randrianantoanina to the continuous setting. More precisely, we need 
a Burkholder-Gundy decomposition with a simultaneous control of 7ip and L2 norms. 
This is one of the delicate and key points of this paper. In fact, such decompositions 
with simultaneous control of norms turn out to be essential when dealing with duality 
in the continuous setting. In particular, this was one of the motivations of the recent 
paper [47]. In this paper, we introduce another version of a sum, the EB-sum of 
two spaces, which is obtained as the completion of a normed space equipped with 
a quotient norm. In classical probability, stopping time arguments allow to show 
that there is no "virtual kernel" when trying to embed this abstract space in L\. 
However, in functional analysis and in particular through Grothendieck's formulation 
of the approximation property, we know that hard analysis may be required to decide 
whether for such completions the kernel is automatically trivial. The same remains 
true in our situation, and we have to rely on Randrianantoanina's work to control 
these kernels in some cases. We show that for the Hardy space T~LP we may use either 
the new EB-sum or the usual sum in the definition, and we deduce the continuous 
analogue of (1.0.1) 

Theorem 1.0.3. Let 1 P oo. Then with equivalent norms 

LP(M) Hp. 
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CHAPTER 1. INTRODUCTION 5 

We are also interested in the conditioned Hardy spaces hp, defined in the discrete 
setting by the norms 

x K 
n 

£n-l dn X 2 1 
2 

V 
X hp 

X* K and x K 
n 

dn X 
P 
P 

1/p 

Then the noncommutative Burkholder inequalities proved in [27] state that with 

equivalent norms for 1 P oo 

1.0.3 LP(M) hp, 

where the /ip-space is defined by 

hp 
h d 

v 
h c V 

h r P 
for 1 P 2, 

h d 
V 

h c 
P h r 

P 
for 2 P oo. 

A column version of these inequalities, which also holds true for p — 1, have been 
discovered independently in [22] and [37]: 

1.0.4 H c 
P 

h d 
P 

h c 
P for 1 P 2, 

h m 
P 

h C 
P for 2 P oo. 

In the commutative theory the decomposition for 1 < p < 2 corresponds to a version 
of the Davis decomposition into jump part and conditioned square function. In the 
conditioned case, we still have a crucial monotonicity property, and considering the 
conditioned bracket 

x, x o 
tEo 

Et a d a 
t X 2 

for a finite partition a, we define the conditioned Hardy spaces h£ and hp

c of noncom­
mutative martingales with respect to the filtration (A^t)o<t<i- Then we may adapt 
the theory developed for the H^-spaces to h£ and h£ and obtain that with equivalent 
norms for 1 < p < oo 

1.0.5 H c 
P 

h c 
V 

Sometimes we have to resort the theory of noncommutative functions spaces, in partic­
ular Lp-modules over finite von Neumann algebras for comparing different candidates 
for the hp-norms. Indeed, in (1.0.5) the construction is based on free amalgamated 
products and use the free analogue of Rosenthal inequalities. This complementa­
tion result implies the conditioned analogue of theorem 1.0.2 and injectivity results 
for 1 < p < oo. At the time of this writing we do not know if the injectivity result 
still holds true for p — 1, i.e., if embeds into L\(M). We will need to consider the 
corresponding subspace of L\(M), denoted by LhJ. Note that in this case the space 
bmoc is easier to describe. It is defined as the set of operators x G Li2{M) such that 

sup 
0<t<l 

St x xt 
2 

oo OO. 
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6 CHAPTER 1. INTRODUCTION 

We also prove the expected interpolation result. To obtain the continuous analogue 
of the decompositions (1.0.3) and (1.0.4) for 1 < p < 2 and 1 < p < 2 respectively, 
we need to introduce another diagonal space hpc C hp1, which yields a stronger Davis 
decomposition, closer to the classical one. Then we deduce the continuous analogues 
of (1.0.3) and (1.0.4) for 2 < p < oo by a dual approach. Unfortunately, we cannot 
directly describe the dual space of our continuous analogue of the diagonal space h^. 
We introduce a variant of the Davis decomposition for 1 < p < 2 with simultaneous 
control of hp and L2 norms, based on a deep result of Randrianantoanina. Here we 
use again the EE-sum and we need to show that the kernel is trivial in this situation. 
As a payoff, we find a nice description of the space Hi, and the continuity of the 
maps defined on it can be checked on atoms. For open problems in this direction 
we refer to the appendix. We obtain that for the conditioned Hardy spaces, the two 
sums coincide. Moreover, it is very easy to see that in the Davis decomposition we 
may replace the diagonal space hp1 by a larger, /^-regularized space Kp = hp1 + L2{M). 
That leads to a satisfactory description of the duality for the conditioned Hardy space 

hp h d 
v 

a c P h r P for 1 P 2, 
J d 

P G c P h r P for 2 P oo, 
where J d 

P denotes the dual space of K d 
p' We obtain the continuous analogue of (1.0.4) 

and (1.0.3) respectively: 

Theorem 1.0.4. — Let 1 P ; oo. Then, with equivalent norms: 

i TL c P 

h d 1 Lh c 1 for P 1, 
h d 
p fî c P for 1 P 2, 

J d 
P h c P for 2 V oo, 

ii for 1 P oo, LP(M) hp. 

By approximation, we deduce a new characterization of BM.Oc. 

Theorem 1.0.5. Let 1 < p < oo. Then, with equivalent norms, 

LJM) ΒΜΟ,Τίι l/p-

The paper is organized as follows. In section 2 we recall some necessary preliminar­
ies on ultraproduct of Banach spaces in general, and on ultraproduct of von Neumann 
algebras in particular. We also discuss the finite case, and give some background on 
Lp-modules and free Rosenthal inequalities. The main part of this paper is developed 
in section 3, where we define the Hardy spaces Tip and Hp of noncommutative mar­
tingales with respect to a continuous filtration and prove theorem 1.0.1 and (1.0.2). 
We also transfer injectivity, complementation, duality and interpolation results from 
the discrete setting to this case. The continuous analogue of the noncommutative 
Burkholder-Gundy inequalities (theorem 1.0.3) is proved in section 4, where we intro­
duce a variant way of considering the sum of two Banach spaces. In our setting this 
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CHAPTER 1. INTRODUCTION 7 

corresponds in some sense to focus on the decomposition at the level of L2{M), and 
with the help of Randrianantoanina's results we extend our continuous Burkholder-
Gundy decomposition to this stronger sum. Section 5 is devoted to the study of the 
conditioned Hardy spaces h£. The Davis and Burkholder-Rosenthal inequalities are 
presented in section 6, in which the diagonal spaces hp1, hpc, and Ĵ , for 1 < p < 2 
are defined. At the beginning of each section, we recall the discrete results that we 
want to reformulate in the continuous setting, and add some details on the discrete 
proofs. At the end of this paper, some open problems are collected in the appendix. 

Throughout this paper, the notation ap ~ bp means that there exist two positive 
constants c and C such that 

c 
ap 

bp 

a 

Aknowledgments. — The second named author would like to thank the Math De­
partment of the University of Illinois, where a first version of this paper was done, 
for its warm hospitality. We are grateful to Eric Ricard and Quanhua Xu for nu­
merous fruitful discussions and useful comments, which led to many corrections and 
improvements. 
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CHAPTER 2 

PRELIMINARIES 

2.1. Noncommutative Lp-spaces and martingales with respect to continu­
ous filtrations 

We use standard notation in operator algebras. We refer to [31], [54] for back­
ground on von Neumann algebra theory, to the survey [41] for details on noncom­
mutative Lp-spaces, and to [14], [56] in particular for the Haagerup noncommutative 
Lp-spaces. In the sequel, even if we will define some Lp-spaces in the type III case, we 
will mainly work with noncommutative Lp-spaces associated to semifinite von Neu­
mann algebras. Let us briefly recall this construction. Let Ai be a semifinite von 
Neumann algebra equipped with a normal faithful semifinite trace r. For 0 < p < oo, 
we denote by Lp(Ai,r) or simply Lp(Ai) the noncommutative Lp-space associated 
with (Ai,r). Note that if p = oo, Lp(Ai) is just A4 itself with the operator norm; 
also recall that for 0 < p < oo the (quasi) norm on Lp(Ai) is defined by 

x v T X \P Mv x e LP(M) 

where x * 
X X 

1 
2 is the usual modulus of x. 

Following [40], for 1 < p < oo and a finite sequence a = (a n) n>o in Lp(Ai) we set 

a Lp 
M: l2

c 

n>0 
an 

2 1 2 
P 

and a Lp 
M]£r

2 

* 
a 

Lp 
M-,q 

Then Lp M: lc

2 
resp. Lp M;£r

2 

defines a norm on the family of finite sequences 
of Lp(Ai). The corresponding completion is a Banach space, denoted by L^Af; ¿2) 
(resp. LP(7W;^2))- For p = 00, we define Lo^Al ;^) (respectively L^AA]^)) a s 

the Banach space of the sequences in L00(A4) such that X^n>oxnxn (respectively 
J2n>o xnxn) converges for the weak-operator topology. These spaces will be denoted 
by Lp{Ai]l2^)) a n d Lp(Ai;£2(1)) when the considered sequences are indexed by I. 

Let (A4t)t>o t>e an increasing family of von Neumann subalgebras of Ai whose 
union is weak*-dense in Ai. Moreover, we assume that for all t > 0 there exist 
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normal faithful conditional expectations £t : M —̂  A t̂- Throughout this paper, 
we assume that the filtration (Mt)t>o is right continuous, i.e., Ait 

\s>t Ms for 
all t > 0. A family x — (xt)t>o m L\(M) is called a noncommutative martingale with 
respect to (Ait)t>o if, for all s,t such that 0 < s < t, 

£s(xt) xs. 

If in addition all xt's are in Lp(Ai) for some 1 < p < oo, then x is called an Lp-
martingale. In this case we set 

x v sup 
t>0 

xt P 

If X P oo, we say that x is a bounded Lp-martingale. 

Let x = (xt)t>o D e a noncommutative martingale with respect to (M.t)t>o- We say 
that x is a finite martingale if there exists a finite time T > 0 such that xt = XT for 
all t > T. In this paper, we will only consider finite martingales on [0,1], i.e., T = 1. 

In this case, for a finite partition a 0 ¿0 t1 ¿2 tn 1 of [0,1] we 
denote t+(cr) tj + l the successor of t = t3 and t a tj-1 its predecessor, and 
for t > 0 we define 

d a t X 
xt - xt- a for t 0 

x 0 

for t 0 

In the sequel, for any operator x £ L\(M) we denote #t = St(x) for all t > 0. 

2.2. Ultraproduct techniques 

2.2.0.1. Ultraproduct of Banach spaces. — Our approach will be mainly based on 
ultraproduct constructions. Let us first recall the definition and some well-known 
results on the ultraproducts of Banach spaces. Let hi be an ultrafilter on a directed 
set X. They are fixed throughout all this subsection. Recall that IA is a collection of 
subsets of X such that 

(i) 0 é U; 

(ii) if A, B C X such that A c B and A e U, then B eU; 

(hi) if A, B e U then A n B G U; 

(iv) if A c X, then either AeU or X\A eU. 

Let X be a normed vector space. For a family (xi)iex indexed by X in X, we say 
that x — l im^ Xi is the limit of the x^s along the ultrafilter U if 

i e X x - xi £ E U for all e 0 

Recall that this limit always exists whenever the family (xi)i^z is in a compact space. 
If X is a dual space, then its unit ball is weak*-compact, and any bounded family in X 
admits a weak*-limit along the ultrafilter U. If X is reflexive, since the weak-topology 
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2.2. ULTRAPRODUCT TECHNIQUES 11 

coincide with the weak*-topology, we deduce that any bounded family in X admits a 
weak-limit along the ultrafilter hi. 

We now turn to the ultraproduct construction. Let us start with the ultraproduct 
of a family (Xi)iex of Banach spaces. Let £OQ({Xi : i G X}) be the space of bounded 
families (xi)iex £ EL ̂  equipped with the supremum norm. We define the ultraprod­
uct riw^j a ^ s o denoted by WiXi/hi, as the quotient space £oo({Xi : i G X})/A/^, 
where A^1 denotes the (closed) subspace of hi-vanishing families, i.e., 

Nu 

Xi xEI ̂  £00 Xi i G X lim 
i,U 

X{ Xi 
0 

We will denote by (xi)* the element of ] \ u Xi represented by the family (xi)iex-
Recall that the quotient norm is simply given by 

X{ lim 
LU 

Xi Xi 

If Xi = X for all i, then we denote by £00(X'1 X) the space of bounded X-valued 
families and by ] \ u X the quotient space £00(X'1 X)/Afu, called ultrapower in this 
case. We refer to [16], [52] for basic facts about ultraproducts of Banach spaces. 
If (Xi)i£z, {Yi)i£z are two families of Banach spaces and Ti : Xi —>> Yi are linear 
operators uniformly bounded in i G X, we can define canonically the ultraproduct 
map Tu = (Tty as 

Tu 

u 

Xi 

u 
Yi Xi TiXi 

In the sequel we will often use the following useful fact without any further reference. 

Lemma 2.2.1. — Let (Xi)iGX be a family of Banach spaces and let x = (xi)9 G u Xi 
be such that x uuXz limI,U Xi Xz 1 Then there exists a family (xi)iex £ 
£oc ' Xi-.ieT such that 

x Xi and Xi Xi 1 for all i G X. 

Proof. — Setting Xi = Xi if ((xi)) Xi < 1 and Xi = 0 otherwise, we get a family verifying 
11^2< 1 f° r a ^ * ^ 1" Moreover, by the definition of the limit along the ultrafilter 
hi, we have 

lim 
LU 

Xi Xi Xi 0. 

Indeed, if we denote £ — lim^ Xi Xx 1, then for any 5 0 we have 

As i e X l Xi Xz 5 eU. 

Observe that for Ö 1 
2 

l-£ 0 each i G As satisfies Xi Xi £ + 0 1 
2 

i + e 1 
Hence for all e > 0, condition (ii) in the definition of an ultrafilter implies 

A 1 2 
l-l i G X Xi Xi 1 i G X Xi Xi Xz e E U. 

This shows that (x^) Xi and ends the proof. 
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We will need to study the dual space of an ultraproduct. For a family of Banach 

spaces (Xi)iez, there is a canonical isometric embedding J of 
u 

Xi* into lu Xi 
defined by 

x* x lim 
in 

* xi Xi 

for x* = (x*Y G \\u Xi a n ( l x = {xi)* \\u Xi- Hence we may identify Y[u X* with 
a subspace of ( ] \ u Xi) . These two spaces coincide in the following case. 

Lemma 2.2.2 (see [17]). — Let (Xi)iex be a family of Banach spaces. Then 

U Xi lu 
Xi if and only if u Xl is reflexive. 

Even in the non reflexive case, the subspace \\u X* is "big" in {Y\u Xi)* m the 
sense of the following lemma. This is also a well-known fact of the theory of ultra-
products (see [52], section 11), we include a proof for the convenience of the reader. 

Lemma 2.2.3. — Let (Xi)iex be a family of Banach spaces. Then the unit ball of 
YluX* is weak*-dense in the unit ball of (Yin Xi)* -

Proof. — We first prove that for two normed vector spaces X and Y such that Y is 
a norming subspace of X*, the unit ball of Y is weak*-dense in the unit ball of X*. 
Suppose that By is not weak*-dense in Bx*, then by the Hahn-Banach theorem there 
exist x* G Bx* and x G X such that \(x* \x)\ = 1 and for all y G By, \{y\x)\ < S, 
0 < 6 < 1. Since Y is a norming subspace of X* we have 

x X sup 
yeBY 

y x : 6. 

Then 

1 x x * 
X 

X X X 
6, 

which contradicts 5 < 1. It remains to apply this general result to X — \\u Xi and 
Y = [ ] w J*. It suffices to see that [ ] ^ ^ * *s a norming subspace of (Y[u Xi)* • 
Let x = (xi)' G riw^- For each i G X, there exists z* G Bx* such that Hâ Hx* = 

Ha^Hx Multiplying by a complex number of modulus 1, we can assume that 

Xi Xi 
z* 
¿1 

x% Thus 

x IIu Xi 
lim Xi Xi 

lim 
i,U 

z* 
¿1 

x% 

sup 
y*=(y;)*£Bnux* 

lim 
i,U 

Vi Xi sup 
y*E BIIU Xi 

' * 
y 

x 
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2.2.0.2. Ultraproduct of von Neumann algebras : the general case. — We now con­
sider the ultraproduct construction for von Neumann algebras. For convenience we 
will simply consider ultrapowers, but all the following discussion remains valid for ul-
traproducts. It is well known that if A is a C*-algebra, then Y\u A is still a C*-algebra. 
On the other hand, the class of von Neumann algebras is not closed under ultrapow­
ers. However, according to Groh's work [12], we know that the class of the preduals 
of von Neumann algebras is closed under ultrapowers. Let M be a von Neumann 
algebra. Then Y\u AI* is the predual of a von Neumann algebra denoted by 

Mu 

u 

M* 

Moreover, r i w ^ identifies naturally to a weak*-dense subalgebra of Mu- As de­
tailed in [48], we can also see Mu as the von Neumann algebra generated by ] \ u M 
in B(Y[U

/H), where we have a standard ^representation of M over the Hilbert 
space %. Following Raynaud's work [48], for all p > 0 we can construct an isometric 
isomorphism 

p 
u 

LP(M) Lp(Mu), 

which preserves the following structures: 

Conjugation: p 
xi P Xi 

Absolute values: p Xi Xi 
Ylu -M-bimodule structure: p ai xi bi ai p Xi bi 
External product: for 1/r = 1/p+l/q, for all (x¿) E ULP(M), (í,í) \ULq(M) 
and ai bi E u M, 

r Xi Vi P xi 
L<3 Vi 

In the sequel we will identify the spaces \\u Lp(Ai) and Lp(A4u) without any 
further reference. 

2.2.0.3. Ultraproduct of von Neumann algebras : the finite case. — We now discuss 
the finite situation. Let At be a finite von Neumann algebra equipped with a normal 
faithful normalized trace r. In this case the usual von Neumann algebra ultrapower 
is Mu = toc(I; M)/lu, where 

Iu 

Xi iEI E l00 T,M lirtiT 
i,U 

X^ Xi 0 

According to Sakai [51], Mu is a finite von Neumann algebra when equipped with 
the ultrapower map of the trace r, denoted by tu and defined by 

tu Xi lim 
i,U 

rlxi), 

Note that this definition is compatible with Xu, and defines a normal faithful nor­
malized trace on Mu- We may identify Mu as a dense subspace of L\{Mu) via the 
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map 
X G Mu TU(X.) G L1(Mu) 

Then for x = (xi)* G .A/f̂ , we have ||x||i = lim^w ((xi))1. Observe that this does not 
depend on the representing family (x^ of x. Let us define the map 

L Mu L1 Mu x2 T Xi ', 

We see that this map is well-defined, and it is clear that ||^((^)*)||i = lirn̂ w H^Hi-
Hence by density we can extend ¿ to an isometry from Li(Mu) into L\(Mu)-
Since Li(Mu) is stable under Mu actions, theorem III.2.7 of [54] gives a central 
projection eu in Mu such that 

Li(Mu) Li(Mu)eu-

We can see that eu is the support projection of the trace TU- In the sequel we will 
identify Mu as a subalgebra of Mu, by considering Mu = Mu^u- More generally 
we have 

;2.2.i; LP(Mu) Lp(Mu)eu for all 0 ' P oo. 

The subspace Lp(Mu) can be characterized by using the notion of p-equiintegrability 
as follows. Let us recall the definition of a p-equiintegrable subset of a noncommutative 
Lp-space introduced in [54] for p = 1 and by Randrianantoanina [43] for any p. 

Definition 2.2.4. — Let 0 < p < oo. A bounded subset K of LP{M) is called p-
equiintegrable if 

lim 
x—00 

sup 
xeK 

enxen \p 0 

for every decreasing sequences (en)n of projections of M which weak*-converges to 0. 
If p — 1, we say that K is uniformly integrable. 

Recall that finite subsets of LP(M) are p-equiintegrable. We will use the following 
characterization coming from [15, cor. 2.7] in the case 1 < p < oo, and [53, lem. 1.3] 
for 0 < p < 1. 

Lemma2.2.5. — Let 0 < p < oo and (xi)iex be a bounded family in LP(M). Then 
the following assertions are equivalent. 

i Xi iex is p-equiintegrable; 

ii limT->oo sup, distr 
Ljv 

Xi, TBm 0. 

iii limT^oo l im^ Xi Xi T p 0, 

where for a > 07 l(a > T) denotes the spectral projection of a corresponding to the 
interval (T, oo). 

Observe that (2.2.1) implies that for 0 < p < oo and x G Lp(Mu) 

x G Lp(Mu) x — xeu-
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Moreover, in the finite case, eu corresponds to the projection denoted by se in [49]. 
Hence theorem 4.6 of [49] yields the following characterization of Lp(Mu)-

Theorem 2.2.6. — Let 0 < p < oo and x G Lp(Mu)- Then the following assertions 
are equivalent. 

(i) x e Lp{Mu); 

(ii) x admits a p-equiintegrable representing family {xi)iex-

For 0 < p < p < oo, since M is finite we have a contractive inclusion LP{M) C 
LP(M). Let us denote by 

Ip,p 

u 

Lp(M) 

u 

Lp(M) 

the contractive ultraproduct map of the componentwise inclusion maps. 

Note that although the componentwise inclusion maps are injective, the ultraprod­
uct map IPjP is not. However, its restriction to Lp(Mu) is injective. 

Indeed, using the weak*-density of 17̂ -̂  m Mu, we see that Ip^p is bimodular 
under the action of Mu- Hence, if x G Lp(Mu) satisfies x = xeu, then IPiP(x) = 
Ip,P(

xeu) = Ip,p{x)eu £ Lp(Mu)- This shows that Ip,p : Lp(Mu) -» Lp(Mu)-
Moreover, since Mu is finite, the map IPiP coincides on Lp(Mu) with the natural 
inclusion Lp(Mu) C Lp(Mu)-

We deduce from theorem 2.2.6 the following description of the space Lp(Mu), 

viewed as a subspace of Lv(Mu)-

Lemma 2.2.7. — Let 0 < p < oo. Then 

Lp(Mu) 
P>P 

Ip,p Lp Mu 
Lp (MU) 

Proof. — Let us first show that Ip^p(Lp(Mu)) C Lp(Mu) for p > p. Let x = {x%Y 
in Lp(Mu)- By theorem 2.2.6, it suffices to prove that the family (xi)i^x is p-
equiintegrable. For T > 0 and each i G X we have 

Xit Xi T 
v 

Xi Xi p/p-1 rpl-p/p 
V 

rpl-p/p Xi p/p 
V 

Taking the limit along the ultrafilter hi we obtain 

lim 
i,U 

Xit Xi T 
P 

rpl-p/p X \PIP 
Lp 

Mu 

Since 1 — p/p < 0, this tends to 0 as T goes to oo. We conclude that (xi)iex is 
p-equiintegrable by using lemma 2.2.5. Conversely, let x G Lp(Mu)- Since Mu is 
finite, Lp(Mu) is dense in Lp(Mu) for all p > p. Hence for all e > 0 there exists 
y G Lp(Mu) such that \\x — y\\Lp{Mu)

 < e- Since Lp(Mu) is isometrically embedded 
into Lp(Mu) and y = Ip,p(y) G IPiP{Lp{Mu)), this ends the proof. • 
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For p = 1, we can translate the notion of uniform integrability in terms of com­
pactness as follows. 

Theorem 2.2.8 (see [54]). — Let K be a bounded subset of the predual M* of M. Then 
the following assertions are equivalent: 

(i) K is uniformly integrable; 

(ii) K is weakly relatively compact. 

Let us consider the map 

iU 
M, T Mu, Tu X xy 

Since iu is trace preserving, this yields an isometric embedding of L\(M) into 
L\{Mu)- Hence we get natural inclusions 

Li{M) L^Mu) Li(Mu) 

where L\(Mu) represents the bounded families in L\(M), L\{Mu) corresponds to 
the weakly converging families along hi and L\(M) consists of the collection of the 
constants families. 

We end this subsection with the introduction of a conditional expectation. We set 

Su iu Mu M. 

Then Eu is a normal faithful conditional expectation on Mu- Since Eu is trace 
preserving, for all 1 < p < oo we can extend Eu to a contraction from Lp(Mu) onto 
LP(M), still denoted by Eu- Moreover, for 1 < p < oo and x = (xi)* E Lp(Mu) we 
have 

£u(x) w* Lp lim 
i,U 

X{ 

Indeed, for y E LV'(M) and l / p + l / p ' = 1 we can write 

2.2.2 T Su X y ru x*iu ,y lim 
i,U 

r(xi y) 

Note that since in this case LP(M) is a dual space, the weak*-limit of the x^s exists 
for any bounded family (xi). Hence we may extend Eu to Lp(Mu) for 1 < p < oo. 
However this extension, still denoted by Eu in the sequel, is no longer faithful. For 
1 < p < oo, since Lp(M) is reflexive, the weak*-limit corresponds to the weak-limit. 
Recall that by theorem 2.2.8, L\{Mu) corresponds to the weakly converging families. 
Thus (2.2.2) implies that for 1 < p < oo and x — (xi)' E Lp(Mu) we have 

£u(x) • w Lp lim 
i,U 

Xi -
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2.3. Lp M-MODULES 17 

2.3. Lp M-modules 

We will use the theory of Lp-modules introduced in [26]. This structure will help 
us to prove duality and interpolation results for different 'Hp-spaces. We may say 
that Lp-modules are Lp-versions of Hilbert 14/™-modules. Let A4 be a von Neumann 
algebra. 

Definition 23.1. — Let 1 < p < oo. A right M-module X is called a right Lp Ai-
module if it has an Lxp(Ai)-valued inner product, i.e. there is a sesquilinear map 
(.,.) : X x X —> Lip(Ai), conjugate linear in the first variable, such that for all 
x , t / G l and all a e M 

(i) x, x 0, and x, x 0 x 0; 

(Ü) x, y y, x 

(in) x,ya x, y a 
and X is complete in the inherited (quasi)norm 

x x. x 
1 
2 1 
2 P 

We call X a right L^ Ai-module if it has an L00(A4)-valued inner product and is 
complete with respect to the strong operator topology, i.e. the topology arising from 
the seminorms 

x p p x, x 1 
2 p E M*

+ 

The basic example of such a right Lp .M-module is given by the column Lp-space 
Lp (M; l2

c 

Here for a G A4 and x n>0 en>0 
xn-i y n>0 e™>0 Un eLp(M;£c

2) 

we define the right .M-module action by 

x - a 
n>0 

En, 0 X ji O 

Then we define the following Lip(A4)-valued inner product 

x, y Lp M; l2

c 

n>0 
* 

x

nyn 
L 1 

2 P 
M 

Let us highlight another important example of Lp-module introduced in [21]. Let 
£ : M —̂  AT be a normal faithful conditional expectation, where Af is a von Neumann 
subalgebra of the finite von Neumann algebra M. Then for 0 < p < oo and x,y 
in Lp(Ai) we may consider the bracket 

x,y Lx

p [M;S £ x y L i 
2 P 

N 

where £ denotes the extension of £ to Lip(Ai) (see [27] for details on conditional 
expectations). It is clear that this defines an Lip(Af)-valued inner product, and the 
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associated Lp ./V-module is denoted by Lp(M]£). This means that Lp(Ai\£) is the 
completion of Ai with respect to the quasi-norm 

x L c V M; E £ X* X 1 
2 1 2 P 

For p = oo we denote by L(^t(Ai; £) the closure with respect to the strong operator 
topology. Recall that for p > 2 the space Lp(Ai] £) can also be defined as the closure 
of LP(A4). It is proved in proposition 2.8 of [21] that this latter example is similar to 
the former one. More precisely, this proposition shows that Lp(Ai]£) is isometrically 
isomorphic, as a module, to a complemented subspace of LP(N; £2). As a consequence, 
we obtain that ||.||LC(.M;£) is a norm. We also deduce from the well-known duality and 
interpolation results for the column Lp-space Lp(Af; £2) the same results for Lp(Ai] £). 

Proposition 2.3.2. — Let 1 < p < oo. 
(i) Let l/p+l/pf = 1. Then L c 

P 
Ai;£ L c F Ai:£ isometrically. 

№ We have L c 1 Ai:£ D est 
OO 

M; E isometrically. 

(iii) Let 1 Pi P2 oo and 0 0 1 be such that l/p 1-6] Pi 0/P2. 
Then 

L c 
P 

Ai;E L c 
Pi 

Ai;£ L c 
Pi 

Ai;£ 
e 

with equivalent norms. 

Remark2.3.3. — Since Lp(Ai) is dense in Lp(Ai;£) for p > 2, proposition 2.3.2 (i) 
implies that for 1 < p < 2, Lp(A4;£) embeds into LP(A4). This still holds true for 
p = 1. Indeed, L\(M.\£) is described as a subspace of L\(Ai) in [24, (c), p. 28], as 
follows 

L c 
1 Ai;£ L2(M)L2(M) with equivalent norms. 

Recall that L2(Ai)L2(Af) is defined as the subset of elements x G L\(M) which 
factorizes as x = ya with y G L2(Ai) and a G L2(J\f). The norm is given by 

x L2{M)L2{M) inf 
x=ya 

y L2(M) a MAO 

Proposition 2.8 of [21] has been extended in [26] for any Lp .M-module. By 
theorem 3.6 of [26], a right .M-module X is a right Lp .M-module if and only if X is 
a "column sum of L„-spaces" in the following sense. 

Theorem 2.3.4 (see [26]). — Let X be a right Lp Ai-module. Then X is isometrically 
isomorphic, as an Lp-module, to a principal Lp-module, i.e., there exists a set (qa)aei 
of projections in Ai such that 

X ta aEI ta qaLp(M) 

a 

Sa Sa L1/2p (M) 

This latter set is denoted by j qaLp(Ai) and endowed with the norm Sa a. 

'OL 
SaSa 

1 2 1 2 P 
In the finite case, if we have a projective system of Lp TW-modules in 

the sense of the following corollary with some density property, then we may represent 
this family by using the same set of projections. 
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Corollary 23.5. — Let A4 be a finite von Neumann algebra. Let Xp 1; P oo be a 

family of right M-modules such that 

(i) Xv is an Lp M-module for all 1 P oo. 

(Ü) There exists a family of modular maps Iq^p 
Xq Xp forp q satisfying 

IplP 
idxP 

and Iq,p Ir,q Ir,p for P Q r. 

(iii) The inner products are compatible with the maps Iq^p, i.e., for p q 

and x,y E Xq, 

x, y xq 
Iq,p 'x Iq,p y Xp 

(iv) Ioo«(Xoo) is dense in Xp for all 1 P oo. 

Then there exists a set (qa)aei of projections in M. such that for all 1 < p < oo, Xp 

is isometrically isomorphic, as an Lp-module, to jqaLp{M) 

Proof — Observe that (iii) implies that the maps IqiP are contractive and injective. 
Indeed, for p < q and x £ Xq, since Ai is finite we have 

LqiP(x) 
Xp 

Lq,p(x) Iq,p(x) 
Xp 

1 
2 1 
2 P X, X xq 

1 2 1 2 P X. X xq 

1 
2 1 2 q 

x xq 

For the injectivity, if Iq,p(x) 0 then Iq,p(x) Iq,p(x) Xp 0 in Lip(M) By (iii) 
this implies that (x,x)xq = 0 in Liq(M), hence x = 0 in Xq by (i) of definition 2.3.1. 

We now turn to the proof of the corollary. We first apply theorem 2.3.4 to the 
£oo A4-module Xoo and obtain a set (qa)aei °f projections in M and an isometric 
isomorphism of Lp-modules 0oo X00 Iq0cL00{M). We may extend this isomor­
phism to Xp by density as follows. For 1 P oo and x 

Ioo,p(y) Ioo,p(Xoo) we 
set 

(pp{x) (poo(y) 

I 

qaLoo{M) 

Since M. is finite, we have a contractive inclusion qaLoo(M) qaLp{M) 
and <j)p preserves the Lip(Ad)-valued inner product. Indeed, for x\ = loo,p(z/i), 
x2 = locpiVz) € ^oo,P№oo), the modularity of ^ implies 

\<$>V Xl $P x2 qaLp{M) 4>oc{yi) 0oo(y2) j q^Loo^M) #1,2/2 X00 

IooiP(yi) LooAyi) Xp by iii 

Xl,X2 Xp 

Hence by the density assumption (iv) we can extend (f)p to an isometric homomorphism 
of Lp-modules on Xp to Q) qaLp(M). Since Q)qaLoo{M) is dense in Q) qaLp(M), 
by the same way we can construct <fipl. Thus we obtain an isometric isomorphism of 
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Lp-modules 0 P which makes the following diagram commuting 

A"oo 
0oo 

Qcy. Loo M 

I00,p id 

Xp 
Øp 

QaLp 

In this situation, we may deduce the following results from some well-known facts 
on the column Lp-spaces (BqaLp(Ad). 

Corollary 2.3.6. — Let Ad be a finite von Neumann algebra. Let (Xp)i<v<oo be a 
family of right Ad-modules as in corollary 2.3.5. 

0) Let 1 P oo and l/p+ l/pf 

1. Then (Xp)* Xp' isometrically. 

(ü) Let 1 Pi P P2 oo and 0 9 - 1 be such that 1/p 1-0 Pi -0 fa-
Theri 

Xp Xpi 7 Xp2 0 

2.4. Free Rosenthal inequalities 

Amalgamated free products and the free analogue of Rosenthal inequalities 
(see [25]) will be key tools needed for the study of the continuous analogue of the 
conditioned Hardy spaces hp. After briefly recalling the notations, we will present the 
Rosenthal-Voiculescu type inequality stated in [25] in the amalgamated free product 
case. Then we will extend it by duality to the case 1 < p < 2. 

Voiculescu [57] introduced the notion of amalgamated free product of C*-algebras, 
and we refer to [25] and [24] for the construction in the von Neumann setting. Let 
Ao, Ai , . . . , An be a finite family of von Neumann algebras having A4 as a common 
von Neumann subalgebra. Suppose that M is finite and equipped with a normal 
faithful normalized trace r. We also assume that £n = £.M|An are faithful conditional 
expectations. Recall that the amalgamated free product Af = * x A n can be seen as 

*A4 A n M 

m 1 j1 '--32 Jrr 

O 
J1 

o 
'J2 

O 
jm 

O 
where An denotes the mean-zero subspace 

o 
An 

CLn G A n £-n (&n) 0 

We denote by p : M —> Af the *-homomorphism which sends M to the amalgamated 
copy, and by Em Af Ad the normal faithful conditional expectation onto the 
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2.4. FREE ROSENTHAL INEQUALITIES 21 

amalgamated copy. The von Neumann algebra A n can be identified as von Neumann 
subalecebra of N via the *-homomorphism 

Pn A n 

N 

which sends A n to the n-th copy of N — *M^n- With this identification, we may 
use either Em or EN (= Em o pn rigorously) indistinctively over A n . In the sequel we 
will always use the notation Em- Moreover, we may equip the von Neumann algebras 
Aq, Ai , . . . , An and N with the normal faithful normalized trace defined by 

tr r o Em-

We denote by £/\n : N —> An the conditional expectation onto A n . It turns out that 
Ao, . . . , Â v are freely independent over Em- For a given nonnegative integer d, we 
denote the homogeneous part of degree d of the algebraic free product by E^ 

Ed 

3i j2 '--3d 

o o 
Aji Aj2 

o 

For d — 0, Ed is simply M. We define Ma as the weak*-closure of E^ in N. This 
means that Nd is the subspace of N of homogeneous free polynomials of degree d. 
We also define XP as the closure of E^ in LP(N), and YP

D

C (resp. YP

D

R) as the closure 
of E^ in LP(N;Em) (resp. LP(N',£m))- We will need the complementation result 
below. 

Proposition 2.4.1 - Let 1 : V OO and d be a nonnegative integer. Let 

Pd M 

m 1 31 32 3m 

O 
'3i 

o 
2̂ 

O 
Jm 

Ed 

be the natural projection. Then 

0) Vd extends to a bounded projection [of norm less than max(4d, 1)) from Lp(N) 
onto X d 

(Ü) Vd extends to a contractive projection from Lp(N] Em) {respectivly Lr{N; Em)) 

onto Y d 
p,c 

resp. Y d 
p,r 

Proof. — Assertion (i) is stated in [25]. It can be deduced from the case p = oo 
proved in [50] by transposition and complex interpolation. The second point follows 

easily from orthogonality. Indeed, let x G M 
m>l 3i 32 '--3m 

c 
31 

o 
72 

c 
jm 

We can write x — ^2m>0 Vm(x)- Then by orthogonality we get 

EM * 
X X m>0 

EM Vm(x) Vm{x) EM Vd(x) Vd(x) 

Hence 

Vdix) Lc

p (N;EM) 
EM Vd(x) VAx) 1 

2 1 2 V 
EM X* X i 2 1 

2 P X L c V N;EM 

and (ii) is proved. 
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In the sequel we will only consider the case of words of length 1, i.e., d = 1. We 
also introduce the space Z p , defined for 1 < p < oo as the completion of Ei with 
respect to the norm 

N 

n=0 

an 

zP n 
an 

IP 
P 

1/p 

We may naturally define the map 

N 

n=0 

an e Ei 
N 

n=0 
En,n an e B £ N+l 

2 
Af. 

This map extends to an isometry from Zp to Lp B £ N+l 
2 

AT and allows to consider 

Zp as a subspace of Lp B '£ N+l 
2 Af Moreover, this inclusion is complemented. 

Lemma 2.4.2. — Let 1 P oo. Then Zp is 2-complemented into Lp B £ N+l 
2 M 

Proof. — We consider the projection Q Lp B £ N+l 
2 Af Zp defined by 

Q 
N 

n,k=0 
^•n.k %n,k 

N 

n=0 

EAn xn, n £m EAn xn,n 

The contractivity of the conditional expectations in Lp yields 

Q 
N 

n7k=0 
£n,k %n,k Tp 

N 

n=0 

EAn xn,n 
£m Sa xn,n 

r 
P 

1/p 

2 
N 

n=0 
xn,n 

P 
p 

1/p 
2 

N 

n=0 
xn,n xn,n 

Lp B Z2 AT 

2 
N 

n,k=0 
&n,k %n,k 

Lp B l N + l 
2 N 

The last inequality comes from the boundedness of the diagonal projection in 
Lp B £ N+l 

2 N 

We now recall the Rosenthal-Voiculescu type inequality in the amalgamated free 
product case proved in [25]. We present these inequalities as they are stated in [24] 
for d = 1 and 2 < p < oo, and extend them by duality to the case 1 < p < 2. 

Theorem 2.4.3. — Let ach&i · · · ,cln E ̂ (*yviAn)- Then the following equivalence of 
norms holds with relevant constants independent of p or N. 

(i) For 2 P oo, if an E Lv An forO n N then 

N 

n=0 
an 

V 

N 

n=0 
an 

V 
v 

1/p N 

n=0 

£m 0,n(ln 

1 
2 

P 

N 

71 = 0 

EM an an 

1 2 
P 
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2.4. FREE ROSENTHAL INEQUALITIES 23 

(ü) For 1 P 2 o 
if an G An for 

0 : n N then 
N 

n=0 
an 

p 
inf 

N 

n=0 
dn 

P 
P 

1/p N 

n=0 
EM cncn 

1 2 
P 

N 

71 = 0 
EM pnrn 

1 2 
P 

where the infimum is taken over all the decompositions an dn 
En • rn 

with 

dn i Cn 1 l'n G An · 

Throughout all this paper, we consider a finite von Neumann algebra M. equipped 
with a normal faithful normalized trace r and we restrict ourselves to finite martingales 
on the interval fO, 1]. 
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CHAPTER 3 

THE ^-SPACES 

In this section we study the column Hardy space Hp associated to the continuous 
filtration (A4t)o<t<i- We start by defining the two candidates Hp and Hp. The crucial 
monotonicity property will imply that these two candidates for the Hardy space in the 
continuous setting are in fact equivalent. In the sequel we will focus on Hp, and embed 
this space into a regularized version of an ultraproduct space, called Kp(U). This 
larger space satisfies a p-equiintegrability property which gives it a structure of Lp-
module over a finite von Neumann algebra. We then check that Hp is an intermediate 
space between L2(M.) and LP(A4), to ensure that we are well dealing with operators. 
By complementing the continuous Hardy space Hp in Kp(U), we deduce the expected 
duality and interpolation results for 1 < p < oo. We will then describe the associated 
BMO spaces, and establish the analogue of the Fefferman-Stein duality in this setting. 
The end of this section is devoted to the expected interpolation result involving the 
column spaces Hi and BAiOc. 

3.1. The discrete case 

Let us first recall the definitions of the Hardy spaces of noncommutative martingales 
in the discrete case and some well-known results. Let (A4n)n>o be a discrete filtration 
of A4. Following [40], we introduce the column and row versions of square functions 
relative to a (finite) martingale x = (xn)n>o: 

Sc(x) 
oo 

n=0 
dn 

X 2 1 
2 and St X 

oo 

n=0 
dn(x) 2 1 

2 

where 

dn(x) xn - xn-1 
for n > 1, 

Xq for n = 0, 
denotes the martingale difference sequence. For 1 < p < oo we define Hi2 (resp. HV) 
as the completion of all finite Lp-martingales under the norm x H c P 

Sc(x) P resp. 
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X Hp

r Sr x P. The Hardy space of noncommutative martingales is defined by 

Hp 

H c 
P 

H r 
P 

for 1 P 2, 

H c 
P 

H r 
P 

for 2 P oc. 

We now recall some known facts on the column Hardy spaces. For 1 < p < oo, 
Hp

c embeds isometrically into Lp^jVl^l^) and the noncommutative Stein inequality 
(see [40]) implies the following complementation result. 

Proposition 3.1.1. — Let 1 < p < oo. Then the discrete space Hp is 7P-complemented 
in Lp(M'Ac

2). 

Remark 3.1.2. — Recall that as p -» 1 or p —> oo, 

7p max PiP' 

where p' denotes the conjugate index of p. 

Since Lp M;£c

2 Lp' [M;£c

2 isometrically for l/p + l/p' 1 and the family 
of column Lp-spaces forms an interpolation scale, we deduce the similar duality and 
interpolation results for H c P 

Corollary 3.1.3. — Let 1 < p < oo. Then the discrete spaces satisfy 

(i) Let l/p -l/p' 1. Then, with equivalent norms, 

H r. 
V 

H c 
P 

(Ü) Let 1 p1, p2 oo and 0 0 1 be such that l/p 1-6 'Pi 9/P2 Then, 
with equivalent norms, 

H c P H c 
Pi 

H c 
P2 e 

In the sequel, we will always denote the conjugate of p by p'. 

For the case p — 1, Pisier and Xu [40] described the dual space of H{ as a 
6.MC>c-space. This noncommutative analogue of the Fefferman-Stein duality has 
been extended by the first author and Xu in [27] to the case 1 < p < 2 as follows. 
Recall that for 1 < p < oo, we say that a sequence (xn)n>o hi LP(M) belongs to 
LP(M;£oo) if (xn)n>o admits a factorization xn — aynb with a,b G L2p(M) and 
{yn)n>o G i<x>(Loo(M)). The norm of (x n ) n >o is then defined as 

xn n>0 Lp M;£oo 
inf 

xn=aynb 
a \2p sup 

n>0 
Vn oo b 2p-

It was proved in [21], [29] that if (xn)n>o is a positive sequence in Lp(M'1£00)1 then 

Xn n>0 Lp 'M;£oo sup 
n>0 

r ÌJn Vn E Lp(M). 

n>0 
yn 

p' 
I 
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3.1. THE DISCRETE CASE 27 

The norm of Lp(M; £00) will be denoted by || sup+ xn\\P- We should warn the reader 
that || sup+ Xn\\P is just a notation since supn xn does not make any sense in the 
noncommutative setting. For 2 < p < 00 we define 

Lc

pMO x e L2(M) x L$MO OO 

where 

x LpMO sup 
n>0 

f X Xji — 1 2 1 
2 1 
2 
P 

Here we use the convention x_i =0 . For p — 00 we denote this space by BMOc. 

Theorem 3.1.4 (see [40], [27]) Let 1 V 2. Then the discrete spaces satisfy 

H c 
P 

L c 
p/ 

MO with equivalent norms. 

Moreover, 

X -1 
p 

X v MO X Np

c 2 x v' MO 
where Xp remains bounded as p —ï 1. 

Combining corollary 3.1.3 (i) with theorem 3.1.4 we obtain 

Proposition 3.1.5. Let 2 P 00. Then the discrete spaces satisfy, with equivalent 

norms, 
H c 

P 
LP MO. 

The Burkholder-Gundy inequalities have been extended to the noncommutative 
setting by Pisier and Xu in [40]. 

Theorem 3.1.6. Let 1 V 00 Then the discrete spaces satisfy 

Lp M Hp with equivalent norms. 

Moreover, p X Hp 
X P ßP 

X \Hp-

Remark3.1.7. — According to [39], [28] and [45] we know that 

Op 
p - 1 •1 

ßp 1 

as p 1, 

as p 1, 

OLp p as p 00, 

ßp ' p as p 00. 

In particular, for p = 1 we have a bounded inclusion Hi C Li(Ai). Throughout this 
paper we will always denote by 7 P, Ap, ap and fip the constants introduced previously. 
We will also frequently use the noncommutative Doob inequality 

sup 
n 

£n(a) 
\p 

Op a \p 
for 1 P 00, a E Lp M a 0, 

and its dual form 

n 

£ji ifln) 
p 

6p 

n 

an 

P 
for 1 P 00, 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



28 CHAPTER 3. THE H^-SPACES 

for any finite sequence (an)n of positive elements in Lp(M). These inequalities were 
proved in [21], and we will always denote by Sp and S' respectively the constants 
involved there. Recall that 5' = 5P' for 1 < p < oo. Moreover, we have 

Ôp p-1 2 as p 1 and Op 1 as p oo. 

We end this collection of results with the interpolation theorem due to Musat in [34] 
(see also [23] for a different proof with better constants). 

Theorem 3.1.8. Let 1 P oo. Then the discrete spaces satisfy, with equivalent 

norms, 

(i) H c 
P 

[BMOc H c 1 l/p 
(h) Lp(M) BMO, Hi l/p-

Remark 3.1.9. — Observe that if we consider a finite filtration Mn 
N 
>n=0' 

then the 
Hp-novm is equivalent to the Lp-norm for 1 < p < oo. This comes directly from the 
triangle inequality in LP{M) for 2 < p < oo, and from the fact that | | . | | i p is a ^p-norm 
for 1 < p < 2. 

3.2. Definitions of Hc

p and Hc

p 

We fix an ultrafilter U over the set of all finite partitions of the interval [0,1] 
denoted by PfinffO, 1]), such that for each finite partition a of [0,1] the set 

Uo a1 O, 1 0,1 G a' eu. 

Let us point out that in what follows, all considered partitions will be finite. We start 
by introducing a candidate for the bracket [.,. ] in the noncommutative setting. For 
o~ £ Pfin([0,1]) fixed and x £ A4, we define the finite bracket 

x, x a 
tea 

dt

0 (x) 2 

Observe that x, x a 
1 
2 1 2 P X H c v a 

where H r. 
p 

G denotes the noncommutative 

Hardy space with respect to the discrete filtration (Adt)tea- Hence the noncom­
mutative Burkholder-Gundy inequalities recalled in theorem 3.1.6 and the Holder 
inequality imply for each finite partition G and x £ A4 

3.2.1 
/3 •1 

p X P X, X a 
1 
2 1 
2 P X 2 for 1 P 2, 

x 2 x, x a 
l 2 1 2 p OLp X P for 2 P 00. 

We deduce that for 1 < p < oo, ([x.x}^)* £ Lip(Mu). Indeed, we see that the family 
{\x,x](r)cr is uniformly bounded in Lip(M) and in Lp/2(M) for any p > max(p, 2) 
(by ap||x||p < ap||x||oo)- Hence by lemma 2.2.7 this means that the associated el­
ement in the ultraproduct is in the regularized part. In particular for x £ M and 
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p 29 

1 < p < oo, we have ([#, x]a)* G Lp/2(Mu) for any p > max(p, 2). Thus we can apply 
the conditional expectation Eu to this element and set 

x, x u Eu X, X a 

Since this bracket is in Lp/2(M) for any p > max(p, 2), it is also in L^p(M) and we 
may define 

x u ' c P 
x, x u 

1 
2 1 2 V 

Note that for any p > max(p, 2), this coincides with the weak-limit in Lp/2(M), and 
we can write 

x H c 
P 

W m 1 
2 P 

lim 
o,U 

X, X a 
1 
2 1 2 P 

In particular, for 2 < p < oo we simply have 

x, x u w L 1 2 P 
lim 
x,U 

x, x (T and x H c P 
w L 

1 2 P 
lim 
x,U 

x, x cr 
1 
2 1 2 
P 

This definition depends a priori on the choice of the ultrafilter ZY, and we should 
write ||.||^c,w. However, we will show in the sequel that in fact this quantity does not 
depend on U up to equivalent norm. Hence for the sake of simplicity we will omit the 
power U and simply denote II-||-£7C -

p 

We also introduce the following natural candidate for the norm of the Hardy space 
in the continuous setting. For x G M. and 1 < p < oo we define 

x H c 
P 

lim 
a,U 

X, X O 
1 2 1 
2 P 

lim 
x,U 

x H c P a 

The family x, x a 
1 
2 1 9. P '(J is uniformly bounded by (3.2.1), hence the limit with respect 

to the ultrafilter IA exists. Taking the limit in (3.2.1) we get for x G Ai 

(3.2.2) 
0, 1 

p X P X Hp X 2 for 1 P 2, 

x 2 X ^p ap x p 
for 2 P · oo. 

This shows that ||.||-Hc defines a norm on M. As for ||.||# c, the norm ||. | |H c depends 
P rtp P 

a priori on the choice of the ultrafilter U, but we will show that it does not (up to a 
constant) and hence simply denote ((.)) Hp

c Moreover, the properties of the conditional 
expectation Eu imply the following estimates forxeM 

(3.2.3) 
0 •1 

p X P X ni X u% X 2 for 1 P 2, 

x 2 X Hc

p 

X ™p a. x P for 2 V 00. 

Here for 2 < p < oo we used the contractivity of Eu for the Lip-norm, and for 
1 < P < 2 we need the following well-known result due to Hansen. 
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30 CHAPTER 3. THE 7^-SPACES 

Lemma 3.2.1. — Let A be a semifinite von Neumann algebra and T : A —> A be a 
trace preserving, completely positive linear contraction. Let 0 < p < I. Then, for each 
positive element x G A, 

T xp T(x) V and x p 
T(x) 

P 

Then (3.2.3) shows that ||.||^7C defines a quasinorm on Ai. 

Definition 3.2.2. — Let 1 < p < oo. We define the spaces Hp and Hp as the comple­
tion of Ai with respect to the (quasi)norm ||.||^c and \\.\\n^ respectively. 

We may check that for x G Ai and 1 V OO, x, x Hc

p 
x, x u extends to 

an L\p(M)-valued inner product on Hp, which endows Hp with an Lp .A/f-module 
structure. Hence theorem 2.3.4 implies that ||.||^ c is a norm for 1 < p < oo. 

Remark 3.2.3. — Note that thanks to (3.2.3), I / m a x ( p 2 ) AT is dense in H c 
P 

and H c 
P 

for 1 < p < oo. 

By definition, we deduce from the discrete case the following 

Lemma 3.2.4. Let 1 V oo. Then Hp is reflexive. 

Proof — It suffices to observe that the 'Hp-norm satisfies the Clarkson inequalities. 
Then we will deduce that Hp is uniformly convex, so reflexive. Note that for each cr, 
the JLp(cr)-norm satisfies the Clarkson inequalities with relevant constants depending 
only on p. This comes from the fact that the noncommutative Lp-spaces do (see [41]), 
and recall that for x E Ai we have 

x Hp

c 

a 
tea 

Et,0 dt X 
Lp{B{í2{a)) M 

Taking the limit over a yields the desired Clarkson inequalities for the %£-norm. 

3.3. Monotonicity and convexity properties 

The crucial observation for the study of the spaces H c P and H c 
p 

is that the H c 
P a 

norms verify some monotonicity properties. 

Lemma 3.3.1. — Let 1 < p < oo and a G PfmQO, 1]). 

(i) Let 1 P 2,xe L2(Ai) and O a Then x Hp

x (o) ßp x\ Hc 

cr' Hence 

x ni sup 
cr 

X HC

P{<?) ßp X 7-Lp 

(Ü) Let 2 < p < oo. Let cr 1,... , a M be partitions contained in a, let ( a m ) i < M < M 

be a sequence of positive numbers such that m a m = 1, and let x 1 , . . . , xM be 
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elements of LP(M) Then for x 
'771 

arnx
rn we have 

x H c V a ap 

M 

m—l 
am 

xm,xm 

om 

1 
2 
1 2 P 

In particular for x G Lp(M) and ado-' we have x H c V a' Cip X H c P a 
Hence 

a i 
p x n ' c P 

inf 
a 

X H c P a X H c 
p 

Proof — Let 1 < p < 2, x G L2(M) and a C a'. Applying the noncommutative 
Burkholder-Gundy inequalities to 

y 
tea 

Et,0 
d o 
t X 

in Lp\ B(£2(o-) M for the finite partition cr7, we get 

y \Lp(B(e2W M ßp y HP a' B^2{a) M 

Here we consider the discrete filtration of B(£2 (&) M given by (B(£2(a) Mt)tea> 
Note that 

y Hc

p (o) B(£2(a). M 
sea' tea 

es,o 1 e*,o da

s 
d?(x) 

Lp B(£2(a') B e?.(a) M 

An easy computation gives that for s G a7, t G a 

d a 
s 

d a 
t X 

d a 
s X if T a s a s t, 

0 otherwise. 

Hence for s G a' fixed, only one term does not vanish in the sum over t G a and we 
get 

y HCp a' B(l2(o)) M 
sea' 

es,o d a 
s X 

Lp 
B(£2(a') M 

X H c p a
1 

The result follows from the fact that y Lp BU2(a) M X Hp a 
We now consider 2 < p < oo. Let us first assume that the partitions a m are 

disjoint. Denote a' the union of cr 1,... ,crM. Again, we apply the noncommutative 
Burkholder-Gundy inequalities to 

y 

M 

rn=l team 

et,o am 
d am 

t 
xm 

in Lp B(£2(a') M for the finite partition cr. We get 

y H c P a B(£2(a') M ap y Lp B(t2{a') M 

On the one hand, since the partitions a171 are disjoint we have 

y Lp BU2(a') M 

M 

ni — 1 team 

dm d m 
t xm 2 1 

2 
1 
2 
P 

M 

m—l 
dm x

m,xm 

om 

1 
2 
1 
2 P 
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On the other hand, 

y H c P a B (l2(o) M 

s£<r 

M 

rn = 1 tecrrn 

Es,0 Et,0 am 
d a 

s 
d cr"* 

t 
xm 

Lp B(l2(o) B l2 (o) M 

Again, for 5 G a and m G { 1 , . . . , M} fixed, since a771 C cr, only one term does not 
vanish in the sum over t G crm, and it is equal to dc^(xrn). Hence 

y H p a B l2(o) M 
s£cr 

m 

m=l 
am 

d cr 
s 

Xm 2 1 
2 
1 2 P 

By the operator convexity of 2 we obtain 

x Hc 

P 
[a 

sGcr 

M 

m=l 

am d c 
s 

xm 
2 1 

2 
1 2 P 

ap y Hp

c(o) B l2(o) M 

which yields the required inequality. In the general case, when the partitions are not 
disjoint, the result still holds by approximation, thanks to the fact that the filtration 
is right continuous. Indeed, if there exists a common point t which is both in am 

and an (for n ^ m), then we can replace t by t + e in a771 (for e small enough), which 
does not change the considered norms when passing to the limit as e —> 0. • 

This monotonicity property immediately implies the following crucial result, men­
tioned previously. 

Theorem 3.3.2. — For 1 < p < oo the space TLp is independent of the choice of the 
ultrafilter U, up to equivalent norm. 

3.4. The spaces Tic

v and Tic

v coincide 

In this subsection we show that the two candidates Tic

v and Tip introduced previ­
ously for the Hardy space of noncommutative martingales with respect to the contin­
uous filtration (A^t)o<t<i actually coincide. In particular we will deduce that, up to 
an equivalent constant, these spaces do not depend on the choice of the ultrafilter U. 

Theorem 3.4.1. Let 1 P oo. Then, with equivalent norms, 

H c 
P 

H c -P-

Theorem 3.3.2 yields immediately 

Corollary 3.4.2. — For 1 < p < oo the space Tip is independent of the choice of the 
ultrafilter U, up to equivalent norm. 

The case 2 < p < oo is an easy consequence of the convexity property proved in 
lemma 3.3.1, as detailed below. 
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Proof of theorem 3.4-1 for 2 < p < oo. — It suffices to show that the T^-norm and 
the Ήρ-norm are equivalent on A4. Let χ e A4, by (3.2.3) we have χ 7-Lp 

X T-Lc 

Now assume that 
χ ttp 

x, x U 
1 2 1 
2 Ρ 

1. 

Since the two spaces coincide with L2{A4) for p = 2, we consider 2 < p < oo. In that 
case we have 

χ, χ u w L ι 2 Ρ lim 
σ,ΙΛ 

χ, χ σ 

We can find a sequence of positive numbers am 
M 
m=l 

such that 
m Οίτη 1 and finite 

partitions σ 1 , . . . , σΜ satisfying 
M 

ra=l 
Cirri x, x om 

ι 2 p 
1. 

Applying lemma 3.3.1 (ii) to σ 
m 

om 

we get χ Η c Ρ σ Οίρ 
Then 

χ η c Ρ αρ χ Η c Ρ σ α 
2 
Ρ 

For 1 < p < 2, it is more complicated to explicit the bracket [x,x]u. This is why 
we will use a dual approach. The trick is to embed V,p into a larger ultraproduct 
space defined as follows. Let us fix q > 2. We define the set 

I Pfin (M) Pfin 0,1 R+ 

where V^n(A4) denotes the set of all finite families in A4. Then 1 is a partially ordered 
set by the natural order. We define an ultrafilter V on X as follows. For G G V^n(A4) 
we define 

SG 
FGPfin A4 G C F 

and consider the filter base on Vf\n(A4) 

T SG 
GeVûn A4 

On R+ we consider the filter base given by 

W 0, 6 δ 0 

Then the product V' = T x Z i x W i s a filter base on X, and we consider V an 
ultrafilter on X refining V'. Let us now fix an element i = (F, o~i,e) G X. For each 
xGF , the Burkholder-Gundy inequalities applied to each a for c/ > 2 yields that the 
family ([x,xjo-)^ is uniformly bounded in Liq(A4). Since Liq(wM) is reflexive, the 
weak-limit exists and 

x, x \u w D ι 2 <7 lim 
o,U 

x, x σ 
The same holds for the finite family F, i.e., the family ([X,X]o-)XGF is uniformly 
bounded in ^ ^ ( A ^ ) 0 · · · ® Li g(A /l). By reflexivity, the weak-limit exists and can 
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be approximated by convex combinations in Lig-norm. Hence we can find a se­
quence of positive numbers Urn 1 MU) 

>m=l such that m OLm(l) 1 and finite partitions 
σ .1 
i , o MU) 

i satisfying for all x G F 

3.4.1 x, x u 
M(i) 

rn = 1 
am (i) X, X ai

m 

ι 
2 q 

ε. 

We may assume in addition that Oi is contained in cr™ for all m. We consider the 
Hilbert space Hi ¿2 m,tEom t equipped with the norm 

Em,t 1 777 M(i),tealn 

Ui 

MU) 

m—1 

Οίτη i 
tea™ 

Em,t 2 
ι 
2 

For 1 < p < oo and i G l w e consider the column space Lp(M'1TL({). Recall that for 
any sequence (£m,0i<m<M(7),te<1 i n LP(M) we have 

M(i) 

rn= 1 tEom 

em,o Et,0 
Em,t 

Lp 
M; Hc

i 

MU) 

rn = 1 
«mW 

tEoi

m 

Em,t 
|2 ι 2 

lp 

Then for 1 < ρ < oo we have 

Lp M H er i Lp' M η c i 
isometrically, 

via the duality bracket 

E/n Lp 
M; Hc

i Lp M:W: 
M(i) 

rn = 1 tea™ 
am (i)t Em,t nm,t 

Lemma 3.4 3. Letl<p<2. Then η c Ρ embeds isometrically into ν Lp M; Hc

i 

Proof. — By density it suffices to consider an element x G M. We associate x with 
x = (x{i)Y in Y\v Lp(Ai]TLi) defined as follows. For each index i = (F, cr^) G 1 
such that x G F we set 

x{i) 
M(i) 

rn = 1 ι^σΤ 
βτη,Ο Et,0 d π­m ι t Χ 

and x(i) = 0 otherwise. Then we claim that 

(3.4.2) χ • vLp m; Hc

i 
lim 
2,V 

x(z) Lp 
M; Hc

i 
[χ, X u 

ι 
2 1 9 Ρ X η c ρ 
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Indeed, for S > 0, we observe that for i = (F.cfj.E) such that x G F and ε 1 2 p J we 

have by the triangle inequality applied to the norm 1 2 Ρ 
ι 2 p 

and 3.4.1 

x, x u 
ι 2 Ρ 
ι 2 Ρ 

x i Ρ 
Lp M;Hc

t 

x, x U 
ι 2 Ρ 
ι 2 Ρ 

M(z) 

m=l 
am 

i 
tea m i 

d σ m f t Χ 
2 1 

2 Ρ 
ι 2 Ρ 

χ, χ u 
ι 2 Ρ 
ι 2 Ρ 

Μ(ζ) 

Π Ι=1 
Cirri i x, x σ m i 

ι 2 Ρ 
ι 2 Ρ 

χ, χ u 
M(i) 

771=1 
am (i) x, x ο­m i 

ι 2 Ρ 
ι 2 Ρ 

x, x u 
Μ (ι) 

m—l 
OLm{Ì) x, x σ m i 

ι 2 Ρ 
1 
2 q 

ε 1 2 Ρ δ. 

This means that 

SV*} Pfin 0,1 0 , ^ i E I x, x u 
ι 2 Ρ 1 
2 Ρ 

x(ì) Ρ 
Lp M;nf δ 

Since by construction, the set S(x) x PfinQO, 1]) x ]0,(52/p] G T x W x W is in the 
ultrafilter V, we deduce that the set in the right hand side is also in V for all 5 > 0. 
Thus by the definition of the limit with respect to an ultrafilter we get 

lim 
i,v 

x(i) \P 
Lp M; Hc

i 
x, x u 

1 
2 Ρ 
1 2 Ρ 

This concludes the proof of (3.4.2) and shows that the map x G M M> x extends to 
an isometric embedding of H c Ρ into V Lp M;Hf 

This embedding will be useful to describe the dual space of H C Ρ 
Lemma 3.4.4. Let 1 Ρ 2. Then H r Ρ 

H c Ρ 
Proof. — Let Lp G (J-LpY be a functional of norm less than one. By lemma 3.4.3 and 
the Hahn-Banach theorem we can extend <p to a linear functional on Y[v Lp(M.]Hl) of 
norm less than one, also denoted by ip. Lemma 2.2.3 implies that cp is the weak*-limit 
of elements £A in the unit ball of Y\v(Lp(M'1H^)y = Y[v Lpf(M\/H<l). F o r e a c n ^ 
we will prove that there exists z\ G L2(M) such that 

EA / x Τ zAx Vx M and zA Hc

p 
hp, 

where x denotes the element in J|v LP(M] TL^) corresponding to x via the embedding 
given by lemma 3.4.3. Then we will set z — w-L2-X\v&\Z\ and get an element z G 
LoiM) such that 

φ(χ) lim 
λ 

6 χ - lim τ 
λ 

* 
ζλχ 

τ ζ χ Vx G Μ and v η- kp. 

Finally we will conclude the proof using the density of M in H c Ρ 
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We now consider an element E E(i) g v 
Lp' \M\U\ of norm less than 1, 

with 

E(i) 
MU) 

m*1 tea™ 
em,o Et,0 

Em,t (i) 

Fix i T, oi, E G X and 1 m M(i) Then 

fm(«) 
tea™ 

vm,0 
Et,0 WOO Lp 'M-,ec

2 a m 
i 

We set 
zm (i) 

tea™ 

d a i t 
Em,t i 

where d a m i 't 
Em,t (i) St Em,t (i) £t- om

i 
£,m,t(i) for t 0 and d a i 0 £m,o(0 

Et £m,o(«) Note that since the partition o m i is finite, we have zm (i) g LP>(M). 
Then we consider 

z(i) 

rn 
am 

i Zm i eLp,(M). 

We first show that z(i) L 
p 

MO(a[) hp for oi o1

i a 
MU) 
i 

Let s G cr. Then for m fixed, we denote by tm(s) the unique element in a™ 
satisfying £m(s)-(<7™) < s~(cr̂ ) < s < tm(s). The operator convexity of the square 
function | . | 2 yields 

(3.4.3^ Es z(i) -es-(a>) \z{i) |2 Ss 
m 

C*m{i) (Zm{i) Ss di

t zm (i) 2 

rn 

am (i)Es Zm(i) Es-(o) Zm(i) 
i2 

On the other hand we can write 

Ss zm (i) Ss-(a>) Zm(i) 2 
Ss 

t>tm(s) 
tea™ 

d a™ 
Jt 

zm (i) 2 Stm{s) Zm(i) Ss di

t Zm{i) 
2 

Es 

t>tm(s) 
tea™ 

d a m 
i t 

Em,t (i) 2 Stm(s) £>m,tm(s) I E1

s a'i £m,£m(s) i 
2 

4Es 

t>tm(s) 
tea™ 

Em,t 1 2 2SS £m,tm(s) 1 2 28s a'-^m,tm(s) i 2 

4£ s 

iEom 

Em,t 2 2 2£s oi 

tea™ 

Em,t (i) 2
V 

Here the second identity comes from the fact that for t G cr™ 

£tm(s) d (7 m i t £,m,t i 
d a rn c t £>m,t i if t tm (s), 

0 if t tm (s) 
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and 

Ss oi 
d a™ 

t 
Em,t (i) 

d cr m i Em,t (i) 1 

Es- (oi) Em,t (i) £tm(s) a m i 
Em,t (i) 

0 

if t tm (s) 

if t tm (s), 

if t tm{s). 

Then (3.4.3) gives 

ES 
z{t) Es- (oi) z{i) 2 4£ s 

m,teer™ 

am (i) Em,t (i) 
2 2£s 

ra,££cr™ 

am (i) Em,t (i) 
2 

By the noncommutative Doob inequality we obtain 

z{i) 
2 

L c 
p 

MO(a'z) sup 
sEoi 

Ss z(i) Es- (oi) z(i) 
2 

i 
2 p 

4 sup 
xEoi 

Es 

ra,£Ecr™ 
Cirri i Em,t i 2 

i 2 p 

2 sup 
sEoi 

Es oi 

ra,£Ecr™ 

am (i) Em,t i 
2 

i 
2 
p 

6(5 1 
2 
P' 

m,£Ecr™ 

am (i) Em,t (i) 2 

i 
2 p' 

65 1 2 p' 
E (i) 2 

Lp 
M; Hc

i 

Hence 

3.4.4 z(i) L c 
P 

MO(a[) 3<5 i 2 1 2 
P' 

E(i) 
V M;Hï 3 (5 1 

2 1 2 P' 
In particular, we see that the family (z(i))i is uniformly bounded in L2(M). We set 

z w-L2 lim 
i.V 

z(i). 

By the density of L2(M) in Ml we have 

z Hc

p 
sup 

xeL2(M) 
x T-Lc :i 

r(z*y) 

Then for x G L 2 ( jM) and x Hp 
1 lemma 3.3.1 and (3.4.4) imply 

T{Z*X) lim 
2,V 

T z(i)*x 2 lim 
i,v 

z(i) L^MO{a't) 
X H2

p(oi) 

3 2 5 1 2 
1 2 P' 

y3p X Hc

p 
3 2 5 1 

2 1 2 p
y 
Bp. 

Hence we get z u c 
p 

kp with kp 3 2 Ö 1 
2 1 2 p' 

ßp Finally, it remains to check that 

for all x G M, z satisfies 

3.4.5 E x' 
nvLp,(M;n<r) VLP(M;HC

Z) 
T(Z*X). 

We first verify that for each i F, oi, E G X such that x G F we have 

E(i) x(0 V M; Hi

c >-̂p M; Hi

c t z(i)*x 
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For each m we have 

T Z'TTl i X 
tea™ 

T d a m i 
t £,m,t 1 X 

tea™ 
T £,m,t 1 d a m i t X 

Then 

T z i X 
M(i) 

rn=l 
dm i T %m 1 X 

M(i) 

771=1 tea™ 

am(z)7 Em,t (i) d oi

m 

t X 
E(i) x(i) 

By the construction of the ultrafilter V this is sufficient to show that the limits along V 
coincide, and (3.4.5) follows. This concludes the proof of the lemma. • 

Proof of theorem 3.4-1 for 1 < p < 2. — By density, it suffices to prove the equiva­
lence of the norms on A4. This follows from (3.2.3), and we prove the reverse inequality 
by duality by using lemma 3.4.4. • 

In the sequel, we will use the definition of Hp to transfer the results from the 
discrete case to the continuous setting. Indeed, this construction seems more natural 
for taking the limit in the classical results. 

3.5. Ultraproduct spaces and Lp-modules 

In this subsection we introduce the ultraproduct of the column Lp-spaces and its 
regularized version, into which we will isometrically embed the Hardy space Tip. We 
will equip these ultraproduct spaces with some Lp-module structure. 

Definition 3.5.1. Let 1 P oo. We define 

K c 
P 

U 
u 

Lp M; l2

c(o) and K c 
P' 

U K c 
p 

u eu, 

where • denotes the right modular action of Mu on K^iU). For p = oo we set 

K c 
oo 

U 
U 

L00 M; l2

c(o) 
-so 

and K c 
oo 

u K c 
• oo 

u eu 

where the strong operator topology is taken in the von Neumann algebra generated by 

u B(l2(o)) M. and coincides with the topology arising from the seminorms 

E m lim T 
a,U 

Va 
tea 

Eo (t) 2 1 
2 for Tj Va E Mu 

u 

L1 M 

The right .M^-module structure of K r. 
p 

U is given for x %a G u M and 

E = (Eo) G K c 
V U by 

E . x £,a ' %a, 

It is easy to see that this does not depend on the chosen representing families. More­
over, by proposition 5.2 of [26], this module action extends naturally from n^-^ 
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to Mi(. Similarly, for £ = (£<7)* and r\ = (rja)
m G Kp(hl) we consider the component­

wise bracket 

E,n Kp

c (u) Eo, no Lp M; l2

c(o) 
tea 

Ut) Va(t) G 
U 

L 1 
2 p 

M L 1 
2 l 

Mu 

where £ a tEo Et,0 
Eo (t) no tEo Et,0 no 

t G Lp X;^ (<r ) This defines an 

L ip(Mu)-valued inner product which generates the norm of Kp(U) and is compatible 
with the module action. Hence Kp{U) is a right Lp .A/f ̂ -module for 1 < p < oo. In the 
sequel, the regularized spaces will be crucial tools to study TLp. We may equip Kp(U) 
with an Lp-module structure over the finite von Neumann Mu thanks to the following 
observation. 

Lemma 3.5.2. Let 1 P oo. Let £ G K c 
V 

U Then the following assertions are 

equivalent: 

'Si Z e Kc

p{U); 

(ii) E, E Kp

x (U) e Lhp{Mu) 

Proof. — By (2.2.1), it suffices to show that for £ G Kp(U) we have 

E £ · eu 
e, E K!piU) 

E, E Kp

c (u) eu 

This comes from definition 2.3.1 and the fact that eu is a central projection. Indeed, 
we can write 

E E .eu 
E 1-eu 0 E 1 - eu 

E 1 - eu Kp

c(u) 0 

'1 - eu 
E, E Kp

c(U) 1 - eu 0 E, E KCp{U) 1 - eu 
0 

E, E KCpiU) E, E Kp

c (U)eu. 

Lemma 3.5.2 implies that Kp(U) is an Lp A^^-module. Moreover, the fam­
ily (Kp(U))i<p<oo forms a projective system of Lp .A/f^-modules. Indeed, for 
1 < p < q < oo we may consider the contractive ultraproduct of the componentwise 
inclusion maps IQiP : K^(U) —> Kp(U). By modularity, this map preserves the reg­
ularized spaces, i.e., Iq^p : K^(U) Kp(U). Then we observe that the assumptions 
(i)-(iii) of corollary 2.3.5 are satisfied. In particular, we deduce that the map LqiP 

is injective on K^(U). Hence for 1 < p < q < oo we may identify Kq(U) with a 
subspace of Kp(U). We can prove the density assumption (iv) of corollary 2.3.5 by 
using the p-equiintegrability as follows. 

Lemma 3.5.3. Let 1 P oo. Then K^ilA) is dense in Kp(U). 

Proof. — Let £ G i^p(W), then lemma 3.5.2 yields that (E, E)Kp

c(u) € Lip(Mu)-
Combining theorem 2.2.6 with lemma 2.2.5 we deduce that 

(3.5.1) lim 
t—oo 

E, E Kì U 1 E, E Kp

c(u) T 
Li Mu 0. 
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We set r]T E . 1 E, E Kp

c(u) T Then 

nT, nT Kp

c(u) E, E Kp

c(U) 1 E, E Kp

c(u) T E Mu 

and 77T G K^U) Moreover, by (3.5.1) we have 

E - nT Kp

c(u) E. 1 E, E Kp

c(u) T Kp

c(u) 

£ . 1 E, E Kp

c(u) T £ • 1 E, E Kp

c(u) T Kp

c(u) 
1 
2 1 2 P 

E, E Kp

c 

u 
1 E, E Kp

c(u) T 
1 
2 1 2 P 7 oo 

0. 

This ends the proof of the lemma. 

Since Mu is finite, we deduce duality and interpolation results from corollary 2.3.6. 

Corollary 3.5.4. — Let 1 < p < oo. Then 

(i) Kc 

. p 
u Kc, U isometrically. 

(n) Let 1 Pi V P2 OO and 0 0 1 6e swc/i that 1/p [i-e Pi •0/P2. 
Then 

K c 
P 

U K c 
Pi 

u K c 
P2 

U 
e 

isometrically. 

(m) K c 
V 

u P>P Ip,p K c 
P 

U Kp

c(u) 

Proof. — The assertions (i) and (ii) follow directly from corollary 2.3.6. For (iii), let 
p > p and £ € IpiP(K£(U)). There exists n G K^{U) such that £ = Ip,p{rj). Then by 
lemma 2.2.7 we have 

E, E K c v 
U 

Ip,p n, n K c P u 
G Ip,p Lp/2 Mu L 1 

2 n Mu 

and lemma 3.5.2 yields £ G K c 
P 

U Conversely, let £ G K c P U Then by 
lemma 3.5.3 we can approximate £ in i\̂ (ZY)-norm by an element n G K^U), 

which is in Ip^p(K~(U)) for all p > p. This concludes the proof of the corollary. • 

The finiteness of Mu also implies the following useful result. 

Lemma 3.5.5. Let 1 P oo and £ G K c 
P 

U Then 

E K c 
P u lim 

9->P K E u 

Proof. — For £ G Kp(U), we have (E, E) KC(U) £ L\p(Mu) by lemma 3.5.2. Since A4w 
is finite we may write 

CI Kp

c(u) E, E Kp

c(u) 
1 
2 
L 1 2 rP 

Mu 

lim 
q^p 

te KC

P(U) 
1 
2 L 

2 q Mu lim 
q—p 

E Kp

c(u) 
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We may isometrically embed Hc into Kp(pi) for every 1 < p < oo via the map 

L h c 
P 

K c 
P 

U 

defined for x G Ai by 

(3.5.2) L X 
tea 

Et,0 
d a 

t 
X 

Indeed, for x G M there exists p > p such that 

L(X)1 L(X) Kp

c(u) 
k tea 

d a t X 
2 G I 1 

2 P 1 
2 P 

L 1 2 P A ^ 

Then (L(X), L(X))KC(U) ^ ^|p(A^w) by lemma 2.2.7, which ensures that t(x) belongs 
to Kp(U) by lemma 3.5.2. Observe that lemma 3.5.5 still holds true for the Hp-norm. 

Lemma 3.5.6. Let 1 P oo 2nd x G Ai. Then 

x Hp

c lim 
q->p 

x 1-LC · 

Proof. — For x G Ai, i{x) G K^(JA) and by lemma 3.5.5 we can write 

x H c V 
k X 

K c v 
u lim 

q p 
i x K c p u 

lim 
q—p 

X H c p 

3.6. Injectivity results 

In this subsection we check that the Hardy spaces defined above are well interme­
diate spaces between L2(Ai) and Lp(Ai) as expected. The inequalities (3.2.2) allow 
to define by density natural bounded maps from Hp to Lmin(p^)(Ai) for 1 < p < oo. 
Since it is not clear a priori, we need to prove that these maps are injective. 

Proposition 3.6.1. Let 1 P oo. Then 

-̂ max(p,2) M H c 
P 

Anin(p,2) Ai 

i.e., Hp embeds into Lmìn(Pì2)(Ai). 

We first prove the following direct consequence of the monotonicity property. 

Lemma 3.6.2. Let 1 P 2. Then the space x e LJM) X Hp

c oo is 
complete with respect to the norm Hc

p 

Proof — The argument we will use to prove the completeness of the space 

x e LP{M) X Hc

p 
oo 

relies on the fact that the discrete i^(cr)-norms are increasing in a (up to a constant) 
for 1 < p < 2, and on the completeness of the discrete spaces Hp(a). Let (xn)n>i C 
{x G Lp(Ai) : \\x\\uc < 0 0 } be a Cauchy sequence with respect to ((.)) Hp

c Recall that 
for x G {x G Lp(Ai) : \\x\\n^ < °°} w e have \\x\\p < Pp\\x\\n^- Then we deduce that 
(%n)n>i is a l s o a Cauchy sequence in Lp(Ai). Hence (xn)n>i converges in Lp(A4) to 
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an element x G Lp(M). Since for a finite partition cr, the norms ||.||p and ||.||//g(<7) 
are equivalent, the convergence is in Hp(a) for each cr. It remains to prove that the 
convergence is also with respect to the 'Hp-norm, and then we will conclude that 
x G {x G Lp(M) : Haling < 00}. Fix e > 0. By the Cauchy property with respect to 
the Hp-norm, there exists no G N such that for all n > no, 

lim 
777.—» 00 

<Kjn 7̂1 Kg e 

For a fixed partition cr, since -£77, x in H c 
P CT we have 

X X y i H c p CT lim 
rn 00 

771 '̂ 'n H p P a 
Bp lim 

m—>-oo 
xm - xn H c P 

e. 

Note that here no does not depend on the partition cr, hence taking the limit in cr we 
obtain the required convergence in Hp-norm. • 

Proof of proposition 3.6.1. — For 1 < p < 2, by lemma 3.6.2 and density we can 
isometrically embed Hp into {x G Lp(Ai) : ||x||"HC < 0 0 }> which is clearly a sub-
space of LP(M). Hence the natural map which sends Hp to Lp(A4) is injective. For 
2 < p < 00, the injectivity of Tip into ^ ( -M) directly comes from the Lp-module 
structure of the spaces Kp{lX) introduced in subsection 3.5. Indeed, if 2 < p < 00, 
this structure implies the injectivity of the map Ip,2' Kp(U) —» K^iU). Hence the 
following commuting diagram yields the required injectivity result: 

7i c 
P 

H c -2 L2(M) 

i i 

K c P U 
Ip,2 

K c 2 u 

3.7. Complementation results 

The aim of this subsection is to obtain the analoguous results of proposition 3.1.1 
and corollary 3.1.3 in the continuous setting. Here the space Kp(U) will play the role 
of the space Lp{M.\i^) in the discrete case. 

Proposition 3.7.1. — Let 1 < p < 00. Then Lip is complemented in K^iJA). 

Proof. — We first describe the projection V K c 
P 

U u c 
p 

for an element 

E Eo 

tea 
Et,0 

Ut) G K c 
00 

u 

For each a we set 

xG 

tea 
d a 

t Ut) 
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where d cr t Ut) Et Ut) £t G Ut) for 0 < t G G and d G 
0 6t(*) E0 Ut) 

Since K c 
oo 

u K r. 2 U we have xCT G L2{M) and xo 2 6x L2 
M; l2

c(o) is uni­
formly bounded. Hence we can consider the weak-limit in L2{M) of the xCT's and we 
set 

D(E) w-L2 lim 
G,U 

Xq. 

We will show that this construction defines well an element V{£) G Tip with 
11 £>(011 Hc < MI£||kc(z-0 f ° r 1 < P < 0 0 • Then we will conclude by density (see 
lemma 3.5.3) that Tip is complemented in Kp{U). 

Let £ G K^{U) be such that ||£||/<:c(W) = l i m ^ \\£g\\lp{m-^)) < 1- W e m a y 
assume that \\£q\\lp{m^{g)) < 1 f° r a i l 0"· Let 1 < p < 2 and fix a finite partition cr0. 
In this case we clearly have £>(£) G L 2(jM) C Hc

p. By lemma 3.3.1 and the non­
commutative Stein inequality in the discrete case (proposition 3.1.1), for cr0 C cr we 
have 

Xq H C V CO 
Bp Xq H c 

v G 
npBp 

Eo Lp 
M;£c

2(g) Ipfip 

We see that (xa)aD(7Q is uniformly bounded in i^(cr 0) 7 and we deduce that the weak-
limit of the Xer's (for a D (To) exists in Hp(a0). This weak-limit coincides with the 
weak-limit in L 2, i.e., 

D(E) w H C 
P O-Q lim 

gDgq 
U 

X(j 

Then we can write 

D(E) 
Kp

c(o0) 
lim 
gDgq 

U 

xa Hcp{o0) ^pfip-

Since this holds true for every partition ctq, taking the limit we obtain 

v(0 
u c v 

tpBp E Kp

c(u) 

Let 2 < p < oo. lemma 3.3.1 and proposition 3.1.1 imply that for each cr, 

Xq hi ap Xq Kp

c(o) ypap 

Eo Lp M;q(G) 'jpCYp. 

Hence the family (xa)a is uniformly bounded in H c P 
The reflexivity of H c 

P 
(lemma 3.2.4) yields that the weak-limit of the x a 's exists in H c P 

Since H c P 
embeds into L2(M) by proposition 3.6.1, we deduce that these two weak-limits 
coincide, i.e., 

D (E) w H C 
P 

lim Xq 
o,u 

G u c 
P' 

Then we can write 

D(E) 
H c P 

lim 
gM 

Xq n C V Ip^P E K c P U 

This complementation result allows to transfer the duality and interpolation results 
proved for Kp(U) in corollary 3.5.4 to the spaces Hp. 
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Corollary 3.7.2. — Let 1 < p < oo. 

(i) Then, with equivalent norms, 

U c 
'P 

H re 
p' 

(ii) Let 1 Pl,P2 oo and 0 : 6> 1 be such that 1/p 1 - 0 Pi 0/p2 Then, 

wif/i equivalent norms, 

H C 
P 

U c 
Pi 

H c 
p e 

A direct approach of the duality between Hp and Tip, by simply using the discrete 
duality, yields instead the following duality result. 

Lemma 3.7.3. Let 1 P 2 Then, with equivalent norms, 

H c 
P 

x e Lp(M) x u c v 
OO 

Proof. — Let x e {x e Lp(M) x Hp

c oo and y G M. For a fixed partition a, 
the Holder inequality implies 

r(x*y) 

tea 
T d a 

t X d a t y 
tea 

d a 
t X 2 1 

2 
P tea 

d a 
t y i2 1 

2 
p' 

X H p v a y H c 
P 

a 
Passing to the limit yields 

T x*y X u c P 
y Ti c P 

Since M is dense in Ti c p this shows that x G TL 'C 
V and 

x Hcp' X Hp 

Conversely, let <p G (Hp

c) be of norm less than one. Since LP'(M) is dense in Tip/, 
Lp is represented by an element x G LP(M) such that cp(y) — r(x*y) for all y G Lpi(M). 
It remains to show that ||#||kc < oo. For a fixed partition a, by corollary 3.1.3 and 
the density of Lpr(M) in Hp (a), we get 

x\ H c p a 2 7 P X H c 
v' a 2 yp 

sup 
y£Lp,(M) 
y H c 

p a 1 

r x*y] 

For y G Lpf(M) with y H c 
p a 1 we have 

r x y, p y y H c 
P' 

Ctp> y H c 
p a Cïp> 

Hence we get 

x n c P 
2 7 P cv x H c 

P 
and deduce that x G x G Lp i M x Hc OO 

Hence, combining lemma 3.7.3 with assertion (i) of corollary 3.7.2 we obtain 

Corollary 3.7.4. Let 1 V : 2 Then TL <c "P 
x G L p(A^) \x ' Lp : oo 
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Remark 3.7.5. — We have to be careful when considering the duality bracket between 
Hp and Hp. Indeed, we can not always write it explicitly. For 1 < p < oo and x eHp, 
y G Hp, we can write 

x V H c p H c 
P 

T * 
x y 

when either x G £max(pJ2)CA/0 or y G £max(p',2)(A1). We first suppose that 
x € £max(P,2)01) and y G L m a x ( p / j 2 ) ( X ) . Then 

x 2/ H c P H c P 
t(x) v(y) 

K c p U K c 
p 

u 

tea 
Et,0 

d a 
't X 

tea 
et,o d a t y 

K c P U K c 
p 

u 

lim 
a,U tea 

T d a 
t X d a 

t y lim 
a,U 

T * 
x y 

T x y 

We now consider x G Lm8L^P:2)(M) and y = Hp,-limnyn with yn G L m a x ( p / i 2 )(M). 
the other case being similar. Then 

x y u c p 
U c 

P 
lim 
n 

X yn H c 
P 

H c 
p 

lim 
n 

T x*yn 

Since H c p ^min(y ,2) M the sequence (yn)n also converges in I/min(p/î2) to y and 

we get x y u c P 
u c 

P 
T x*y 

3.8. Fefferman-Stein duality 

In this subsection we establish the analogue of the Fefferman-Stein duality in the 
continuous setting. The difficulty here is to find the right description of the spaces 
LpMO to get the expected duality. 

Definition 3.8.1. — (i) Let 2 < p < oo. We define L^AiO as the space of all elements 
x G L2(M) oftheformx = w-L2-limaju xa withlima,i{ \\xct\\lc MO(a) < °°- ^ e equip 
LpMO with the norm 

x L c p MO inf lim 
a,U 

Xa L c p MO (a) 

where the infimum is taken over all the descriptions x — w-L2-\im.<j,u %a-

(ii) We define BAAOc as the space whose closed unit ball is given by the absolute 

convex set 

Bbmoc x w-L2 limier 
aU 

lim 
a,U 

Xçj BMOc{a) 1 2 

We equip BMOc with the norm 

x\ BMOc inf C > 0 X G CBt3MO° 

Lemma 3.8.2. The spaces LpMO for 2 < p < oo and BMOc are Banach spaces. 

To prove that BMOc is complete we will need the following general fact. 
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Lemma 3.8.3. — Let X be a Banach space and B be an absolutely convex subset of X 
satisfying 

(i) B is continuously embedded into the unit ball of X, i.e., there exists D > 0 
such that 

B c DBX 

(ii) B is closed with respect to the norm \x-
Then the space Y whose unit ball is B, equipped with the norm 

x y inf C 0 xeCB 

is a Banach space. 

Proof. — It is a well-known fact that defines a norm. Let xn>\ be an abso­

lutely converging series in (Y, ||.||y). We may assume that xn Y 1 
on for all n 1. 

We want to show that this series converges in Y. We first remark that the series J2n

Xn 

is absolutely converging, and hence converging, in X. Then there exists x G X such 
that x = Y^nxn, where the convergence is with respect to \\.\\x- Thus 

N 

71=1 
Xn 

TV̂ oo 
X in X and 

N 

71=1 
Xn G B. 

Indeed, we have 
N 

n=l 
XfL 

Y 

N 

n=l 
xn Y 

N 

71=1 

1 
2 n 

1. 

Using (ii), this shows that x G B. It remains to see that the convergence also holds 
for the norm ||.||y. Let e > 0. Let 7V0 be such that 2^° > e - 1 . We claim that for all 
M > N > N0 

UN,M 
1 

e 

M 

71=1 
xn 

N 

71=1 
Xn G B. 

Indeed, we have 

UN,M Y 
1 

E 

M 

n=N+l 
xn 

Y 

1 

£ 

M 

n=7V+l 
xn Y 

1 

£ 

M 

n=N+l 

1 
2 n 

1 

£2N 

1 

£2No 
1 

Moreover, for N > No fixed we have 

VN,M 
M • oc 

1 

£ 
X 

N 

71=1 

3̂71 in X. 

Hence (ii) yields that 1 
£ X N 

71=1 xn 
belongs to B, i.e., 

x 
N 

71=1 

xn 
Y 

£ for all N No. 

This proves that the series converges with respect to \\.\\y and ends the proof. 
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Proof of lemma 3.8.2. — We start with the case p = oo. We apply lemma 3.8.3 to 
X = L2(.M) and B = B&MOC' Then by the definition of B&MOC, it is clear that 
condition (ii) of lemma 3.8.3 is satisfied. Moreover, since for x G L2(M) and each a we 

have x 2 2 x BMOc(a) condition (i) holds for D 2 Hence the construction 
of the space BAiOc defines a Banach space. 

For 2 < p < oo, we observe that LpAiO is the range of the bounded map 

Ø 
u 

L c 
P 
MO G L2{M) XQ- w-L2 

lim 
GU 

XQ . 

Indeed, since for each G we have XQ 2 2 XQ L-MO(a): the family \XQ)Q is uni­
formly bounded in L 2 and hence the weak-limit in L 2 exists. Moreover, it is easily 
checked that the map 0 is well-defined, i.e., if (xa) yo E U c 

P MO(G) then 

w-L2 lim XQ 
<T,U 

w-L2 lim VQ 
G,U 

Since Y\u LpMO((j) is a Banach space, the boundedness of (j) implies that Lc

pMO — 
4>(J\U L

cMO(G)) equipped with the quotient norm 

x L-VMO inf 
x 0 xo 

XQ \TIuL
c

pMO(G) 

is a Banach space. 

We can now state the continuous analogue of the noncommuative Fefferman-Stein 
duality. 

Theorem 3.8.4. Let 1 P 2 Then, with equivalent norms, 

H c V 
Lp

c 

MO. 

Moreover, A 1 
v 

X v' MO X Hp

c 2 x Lp MO-

Proof. — We first prove the inclusion Lc

p,MO C (Hp)* for 1 < p < 2. We consider 
x G Lp,AiO with ||a;||JL

c

/.Me> < 1. Then there exists a sequence (xa)a such that 
linicr^ \\XG\\LC,MO(G) < 1 and x = ^-L 2 -l im a ^ x a . Hence for y G A4 we have r(x*y) — 
linv^ r(xay). Recall that the discrete Fefferman-Stein duality for a fixed partition G 
implies 

r *GV 2 XQ p MO (a) y Hp

c(o) 
Taking the limit we get 

r x y 2 lim 
G,U 

XQ p MOM y Hc 

p G 

2 lim 
GU 

XQ p MOM lim 
o,E 

y HiM 2 y 7~LP 

Since Ai is dense in TL c 
P 

this shows that x G H c. 
P 

and 

x n c P 
2 x L c 

P' 
MO-
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The proof of this inclusion in the case p = 1 is similar. Indeed, let x G Bbmoc • Then 
there exists a sequence (xx)\ such that x = L2-limA:r

A and xx = W-L2- l ini^ x A , 
with l i m ^ xo

A|| &moc(o-) < 1 for all A. For y G Ai we have 

r x*y lim 
A 

T x A 

y 2 lim 
A 

lim 
ali 

4 BMOc(a) lim 
o,U 

y Hf(a) 2 y C1 

We deduce that BMOc H c 1 by density as above. 
To prove the converse inclusion, we first embed % p into an ultraproduct space 

as follows. Note that the map iu ' x G Ai ·->· (x)9 G \\u Hp (a) is isometric with 
respect to the norms ((.)) Hp

c and ||.||nwif^(a)- Hence by the density of Ai in T~ip we 
can extend iu to an isometric embedding of T~Lp into Ylu Hp(cr). Let (/? G {T~LpY be 
a functional of norm less than one. By the Hahn-Banach theorem we can extend ip 
to a functional on Y\uHp{a) of norm less than one. We now need to consider the 
dual space of an ultraproduct. Recall that the situation is much easier in the reflexive 
case (see subsection 2.2), hence we start with the case 1 < p < 2. In this situation 

ILL H c 
V a is reflexive, and lemma 2.2.2 gives 

u 

H c 
V G 

U 

B c 
V G 

U 
L r 

p MO(ó), 

where the constants in the equivalence of the norms come from the discrete case (see 
theorem 3.1.4). Then there exists z = (zay G Y\u LP,MO(G) of norm < Xp such that 
for all y G Hc

p 

v{y) z iu{y) 

Applying this to y e A4 we get 

p(y) z y lim 
a,U 

T Eoy r(x*y), 

where x — W-L2- linic^ za is in LPF A4G. By the density of A4 in 7ip this proves that 
ip is represented by x and 

x v MO lim 
o,U 

Za p MO (a) Xp x Hp

c 

For p = 1, lemma 2.2.3 says that the unit ball of 
u 

H c. 
1 G U 

BMOc 
G is 

weak*-dense in the unit ball of U m G Then there exists a sequence zx 

'A 
where zx zx 

G u BAiOc 
G is of norm less than 3 for all A, such that 

P(y) lim 
A 

zx 

iu{y) Vy G % { . 

Applying this to y G A4 we get 

v(y) lim 
A 

zx y lim 
A 

lim 
ahi 

T ¿(7 y lim r 
A 

xx 

y 

where xx = W-L2- hnv u zx is in BA40C of norm less than 3 Since for all A we have 
zx 

\nuL2(M) 2 zx 

UuBMOc(a) 6 the sequence (xx 

'A is uniformly bounded 
in L,2{M). Setting x = W-L2-liniA xx we obtain cp(y) = r(x*y) for all y G A4. We 
can approximate the weak-limit x by convex combinations of the x A ,s in the L2-norm. 
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Since xx G \f^BsMOc f ° r all \ the convexity of the unit ball of BM.OC implies that 
any convex combination Em amxAm is still in y/3 BSMOC- Thus by the definition of 
BJ3MOC, we obtain that x G v3 B^MOC- By the density of M. in H\ this proves that 

is represented by x and 

x BMOC 3 x Hc

1 

This duality implies the following property. 

Corollary3.8.5. — Let 2 < p < oo. Let (x\)\ be a sequence in L2(M) such 
that \\X\\\L^MO < 1 for att A and x — w-L2-\\m\x\. Then x G L^MO with 
x T c MO 2 Ap 

Proof. — Using theorem 3.8.4 and the density of L2(.A/f) in Hp, we can write 

x L^MO Xp sup 
yEL2 

M 
y H c P 

;i 

r x y. 

Note that for ail y G L 2 
M y ft rc p 

1 we have 

r # y, lim sup 
A 

T xly 2 lim sup 
A 

xA LC

PMO y n 'C P 
2. 

Thus x G LpMO with x Lp

cMo 2 Xp. 

Combining theorem 3.8.4 with corollary 3.7.2 (i) we immediately get the 

Corollary 3.8.6. — Let 2 P oo. Then, with equivalent norms. 

LCpMO Hp 

Remark 3.8.7. — In particular, we deduce the following properties for L^MO, 
2 P oo: 

(i) L\IM.O is independent of the choice of the ultrafilter U, up to equivalent norm. 

(Ü) Lp(M) is norm dense in L^MO. 
(üi) For x G LP(M) and every ultrafilter U, 

x L c P MO lim 
q^p 

X Lq 
AAO lim 

o,U 
X L-MO(a) 

In particular, up to equivalent norms, Lc J\AO is the completion of LP(A4) with respect 
to the norm lim a^ L-MO(a) 

(iv) The LcpMO(a) norm is decreasing in a (up to a constant) 

Note that for (iii), if x G LP(M) the fact that H^HL^O — \\x\Wc

p combined with 
lemma 3.5.6 ensures that limq_>p ||X||L^.M<D exists. Since for 2 < q < p < r we have 

x LCMO X LIMO X LC

RMO 

sending q and r to p we obtain that the limit is in fact equal to x L-MO 
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Concerning the case p — oo, we can also deduce some nice properties for BAiOc 

from theorem 3.8.4. 

Corollary 3.8.8. — (i) BMOc is independent of the choice ofU, up to equivalent norm. 

(Ü) Ai is weak*-dense in BMOc. 
(m) For x e A4 and every ultrafilter U, 

x \BMOc sup 
2 •P oo 

X LIMO lim 
o,U 

X BMOc 

o 

(iv) The ||-\\BMOc(a)-norm is decreasing in cr (up to a constant). More precisely, 
for x e Ai and a C a' we have 

x BMOc a' 2 x BMOc 

CT 

Proof. — Assertions (i) and (ii) follow directly from theorem 3.8.4 and theorem 3.3.2, 
proposition 3.6.1 respectively. For x G Ai and 2 < p < oo, one has ||#|| Lg.Me> < 

2 Xp x BMOc from corollary 3.8.5. Conversely, by the density of Ai in H1

c we have 

x BMOc 3 x\ HI 3 sup 
yEM 

y HC 1 

r x y 

Let e > 0. By lemma 3.5.6, for each y e Ai, y ni 1 there exists 1 p(y) : 2 
such that y n c 

p(y) 
l+e. Applying theorem 3.8.4 to 1 p(y) 1/P(î/)' 1 we get 

r(x*y) 2 X L 
PKV) 

MO y p(v) 2 1 • e sup 
2 P oo 

X L^MO-

Sending e to 0, we obtain 

2 Xp •1 sup 
2<p<oo 

X L^MO X BMOc 6 sup 
2<p<oo 

\x LvMO-

Then by remark 3.8.7 (iii) we deduce 

x BMOc sup 
2 P 'oo 

X L<pMO sup 
2 P '.oo 

lim 
oli 

X L-MO(a) lim 
Cr,W 

X BMOc{a) 

Finally, (iv) comes from the reversed monotonicity result for the BL\(cr)-norms by 
duality. But this approach yields a constant 12, which can be improved by a direct 
proof that we include below. Let x G Ai and ado'. Fix w G d', there exists a 
unique element s(u) G cr, satisfying s(u)~(a) < u~(af) < u < s(u). Observe that for 
b G B(^2{o~)) <8> Ai we have by contractivity of the conditional expectation 

Eu b - Eu-(o) b 2 
oo 

2 Eu 6 2 
oo 

su 
Eu a' b |2 

oo 
4 f Es(u) b 2 

oo 
4 Es(u) b 2 

oo 
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Applying this to b sEo,s s(u] es,o d (T 
s 

X g B hi*) M we get 

P b - Eu-(o) b 2 
B\ l2(o) M 

Eu 

uEo 
v>u 

d a 
v 

b 2 
"fi l2(o) M 

4 Es(u) b 2 
B l2(o) M 

4 £s(u) 
SG<7 

S s(u) 

d cr 
s 

X 
|2 

I oo 
Recall that 

d rcr 
V 

d a 
s 

X 
d (T 
V 

X if S cr v G V S 

0 otherwise. 
Note that s(.) is monotonous, i.e., for u,v G cr', i; u implies s(v) s(u). Hence 

d a 
v 

b 
sGcr 

s s(u) 

es,o d a 
v 

d 
s 

X es(v),0 d a 
v 

X 

and 
P 

vGcr 
v>u 

d a 
v 

b 2 
B l2(o) M 

P 

vRo 
v>u 

d Cr 
V 

X 2 

oo 

At the end we showed that for each u G a''. 

p x Su a' x |2 1 
2 
OO 

2 X BMOc 

[a 
which yields the required result by taking the supremum over u G a'. 

We end this subsection with the following characterization of the L£„A/f(9-spaces. 
Observe that this characterization also holds true for p = oo, hence this allows us to 
consider the spaces LpMO and BMOC in a similar way. 

Proposition 3.8.9. Let 2 P oo. Then the unit ball of L^AiO is equivalent to 

BP xeL2(M) lim 
o,U 

X L-MO{a) 1 2 

Proof. — For p = oo, it is obvious that B^ is a subset of BQMOC- For 2 < p < oo, 
corollary 3.8.5 implies that BP 2 XpBLcMO' Conversely, let x G Bl,CMq for 
2 < p < oo. It suffices to consider x = w-L2-lim^ xa with l i m ^ \\XO\L%MO(O) < 1· 
Let e > 0. We may assume that ||#o-||L£A/O(o-) < 1 + £ for each cr. For a fixed 
partition cr7, since the Li1 MO (a)-norms are decreasing we have 

lim 
o,M 

XQ' Lc

pMO{a kp XQ L^MO(a') kp l + e 

Moreover, the family (xa)a is uniformly bounded in L2(M). Then x is the limit in 
L2-norm of convex combinations of the xa's. Let y = ^2m amxo 
be such a convex 
combination, then 

lim 
aU 

y L-MO(a) 
m 

am 
lim 
aU 

X(jrn 

Lc

pMO(a) kp l + e 

Sending e to 0 we get x G kPBP. 
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3.9. Interpolation 

We end the study of the U c 
V spaces with the continuous analogue of the interpolation 

theorem 3.1.8 (i). We will deal with the complex method of interpolation, and we 
refer to [3] for informations on interpolation. This interpolation result has already 
been used in the literature and is particularly important in abstract semigroup theory. 

Theorem 3.9.1. Let 1 V oo. Then, with equivalent norms, 

H c 
V 

BMOc,U\ 1/p 

Proof. — By definition BMOc C L2(M) C U\, hence the couple [BMOc,H$] is 
compatible. Recall that Tic

v embeds isometrically into K^(JA) via the map i defined 
by (3.5.2) for 1 < p < oo, and this inclusion is complemented for 1 < p < oo by 
proposition 3.7.1. Then the fact that the spaces K^i/LA) form an interpolation scale for 
1 < p < oo (by corollary 3.5.4 (ii)) clearly implies for for 1 < p < 2 and 1/p = 1 — 0/2 
the inclusion 

(3.9.1) H c 
1 L2\ M) 

e 
H c 

P 

Conversely, we will prove that with equivalent norms for 2 < p < oo, 

(3.9.2) BMOc,L2 'M 
2/p 

H c 
p 

In fact, we will first show that 

(3.9.3) BMO c 
¿ 2 M 2/p 

H C 
pi 

where 

BMO c x G L2 M x BMO c lim 
o,U 

X BMOc(a) OO BAAO c M cMO c 

Then we will use the following fact from [3]. 

Fact 3.9.2. — Let Aq,A\ be a compatible couple such that Aq n A\ is dense in Ao 
and A\. Let Aq be such that B^Q — Ba0^'^Aq+Ai · Then for any 0 < 9 < 1 we have 
isometrically 

A1 e A0,A1 e 

We will apply this fact to A0 = BMO\ AX = L2(M), and (3.9.2) will follow 
from (3.9.3). Indeed, BMO 'r\L2(M) D M is clearly dense in BMO and in L2(M). 

Moreover, Aq — BMOc with equivalent norm. More precisely, we have 

3.9.4 B 
BMO 

2 BBMOC 2B 
BMO c 2 

Indeed, since 

B BMO c 2 x G L2 M x BMO c 1 2 

the first inclusion of (3.9.4) is obvious by the definition of BMOc. Conversely, if x = 
w-L2- \imaiu

 xa with lim a^ Xu BMOc{cr) 1 we may assume that X(j BMOc 

G 1 
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for every a), then for all e > 0 we can find a convex combination x£ = ̂ m amxam G 
1/2(AI) such that liar — x£\\2 < e. By corollary 3.8.8, for a D LL cr171 we may write 

x£ BMOc\ σ 
m 

am 

X(Tm BMOc 

σ 2 
m 

am 

XCTm BMOc om 2. 

Then x£ BMO c 2 and x G 2B 
BMO c 2 which proves the second inclusion 

of (3.9.4). 
It remains to prove (3.9.3). Observe that we have an isometric embedding 

iu BMO c 

U 
BMOc 

σ 

given by iu(x) = (x)* for x G M. This map satisfies (j) o iu(x) = x for all x G At, 
where 

φ 
u 

BMOc 

σ L2(M) xo 
w-L2 lim 

o,U χσ 

Let x G Al be such that χ BMO c L2(M)]2/P 

1. Then there exists an analytic 

function / in F(BMO c L2(M) such that x f(2/p) and 

f 
TiBMO c L2(M] - max sup 

tER 
im BMO c sup 

teR 
f 1 + 

2 
1. 

By setting g = %u ° / , since is also isometric from L2(M) to n^^2(Al), we get 
a function # in ̂ dlw BMOc(a)1 Y[u L2(M)) of norm < 1 such that iu(x) = g(2/p). 
Hence by using ultraproduct techniques and the discrete case we may write 

iu(x) E 
u 

BMOc 

σ 
u 

L2(M) 
2/p U 

BMOc 

σ L2{M) ι 2/p 
u 

Lc

pMO(a) 

with \\iu(x)\\uuLcMO(a) ^ Cp. Recall that in the proof of lemma 3.8.2 we have 
seen that LcMO Φ u L

c

pMO[ σ hence x φ iu X e Lc

pMO η c Ρ by 
corollary 3.8.6. Moreover we obtain 

χ Hp

c Φ iu(X) Lc

pMO iu X [uL^MO(a) 
Cp χ \BMO c L2(M))2/p' 

By density this shows (3.9.3) and ends the proof of (3.9.2). By duality, since L2{M) 
is reflexive and (HI)* = BMOc by theorem 3.8.4, by combining (3.9.1) and (3.9.2) 
we obtain \K\, L2(M)]e = Hp with equivalent norms for 1 < p < 2 and 1/p = 
1 — 6/2. Finally, by using the reiteration theorem, Wolff's theorem, duality and 
corollary 3.7.2 (ii), we conclude the proof with the usual interpolation techniques. • 
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CHAPTER 4 

BURKHOLDER-GUNDY INEQUALITIES 

The aim of this section is to establish the analogue of the noncommutative 
Burkholder-Gundy inequalities in the continuous setting. The theory developed 
previously for the column spaces still holds true for the row spaces. Indeed, by 
considering the adjoint we may define the row Hardy space Hp and obtain the 
analoguous results. By proposition 3.6.1 we can naturally define the Hardy space for 
continuous filtrations Hp as follows. 

Definition 4.0.1. — Let 1 < p < oo. We define 

Hp 
H c P H r P for 1 V 2, 
h c. P H r P for 2 P oo, 

where the sum is taken in LP(A4) and the intersection in Z/2(A4). 

Observe that for 2 < p < oo, by applying the noncommutative Burkholder-Gundy 
inequalities in the discrete case for each partition a and taking the limit in a we 
immediately obtain 

x \P max x Hc

p 
x Hi for x e LJM). 

This means that 

Lp M Lp M kp

c 

Hr

p for 2 : P oo. 

However this result is too weak, we would like to prove that Lp M H C V H r P for 
2 < p < oo. To obtain this stronger result, we use a dual approach and first consider 
the case 1 < p < 2. The discrete noncommutative Burkholder-Gundy inequalities 
(theorem 3.1.6) applied to each partition and the monotonicity lemma 3.3.1 imme­
diately imply the required Burkholder-Gundy inequalities in the continuous setting, 
as detailed in subsection 4.1. However, this result won't be sufficient to apply the 
classical duality argument and get the continuous analogue of the noncommutative 
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Burkholder-Gundy inequalities for 2 < p < oo. We will need a stronger decomposi­
tion introduced by Randrianantoanina and recalled in subsection 4.2, which will be 
formalized in subsection 4.3 by defining another construction for the sum of Banach 
spaces. After extending Randrianantoanina's result for 1 < p < 2 to the continuous 
setting, we will be able to deduce by duality the continuous analogue of the non­
commutative Burkholder-Gundy inequalities for 2 < p < oo. We then discuss the 
case p = 1, and establish a Fefferman-Stein duality result for Tii. We end this section 
with the expected interpolation result involving our spaces TLi and BMO. 

4.1. Burkholder-Gundy inequalities for 1 < p < 2 

We may obtain the Burkholder-Gundy inequalities for 1 < p < 2 by a direct 
approach, as we will detail below. Indeed, the proof presented here only uses the 
discrete Burkholder-Gundy inequalities and the crucial monotonicity property proved 
in lemma 3.3.1. Let us first state the result in this case. 

Theorem 4.1.1. Let 1 V 2 Then, with equivalent norms, 

Lp M Tip H c 
P 

7i tr 
'P 

Proof. — The inclusion TLP C LP(M) is obvious, and for x G TLP we have \\x\\p < 
PP\\x\\hP' NOW let x G LP(M). Then by the discrete Burkholder-Gundy inequalities, 
for each a we may decompose x = aa + ba where aa G Hp(cr), ba G Hp{o~) and 

ao H c 
V a 

bo H c p CT ap x p-
Moreover, for each a we have 

aj p 
Bp Ax Hp a Pp ao H c 

P a fipCïp X P 

Hence the family (aa)a is uniformly bounded in LP(M), and since 1 < p < 2 the 
weak-limit of the aa^s exists in Lp. The same holds for (ba), and we set 

a w-Lp lim 
o,U 

ao 
and b w-Lp lim 

o,U 
o 

Then x = a + b. It remains to prove that a G Tip and b G Tip. Recall that by 
corollary 3.7.4, since a G LP(M) it suffices to estimate ||a||̂ c = l i m ^ |M|tf£(cr) a n d 
||6||^r = lhrv^ ||&||#£((7). Fix £ > 0 and a finite partition a of [0,1]. We can find 
positive numbers (a m )^f = 1 verifying Y^m am = 1 and partitions cr 1,..., aM containing 
a such that 

(4.1.1) a 

M 

m=1 
am aom 

\p 
£ and b 

M 

m=l 
Cumber"1 

P 
e. 

On the one hand, note that for y G LP(M) we have 

(4.1.2) y Hp

c 

a 2 O 1/p y p 
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Indeed, we may write 

y ρ 
Η c Ρ σ 

tea 
d σ t y 2 ι 2 P 

1 
2 P tEo 

d σ t y 2 ι 2 P 
ι 2 p 

tEo 
d σ t y p 

p tea 
2 y p 

P 2P σ y p p 

Taking the adjoint we obtain 

(4.1.3) y H c p σ 2 σ l/p y p 
Then combining (4.1.1) with (4.1.2) and (4.1.3) we get 

(4.1.4) a 
M 

m—l 
am aom 

Η c ρ σ 
2 σ 1/ρ ε and b 

M 

πι = 1 
Oimbam 

Η c Ρ σ 
2 σ ØpE 

On the other hand, since a C a171 for all m, lemma 3.3.1 yields 

(4.1.5) 
M 

rn — 1 
(ϊηιασπι 

Η c Ρ σ 

Μ 

m—l 
ambam 

Η c Ρ σ Μ 

m—l 
G πι ao

m Η c ρ σ bam Η c Ρ σ 

Bp 

Μ 

m—l 
πι αστη Η c Ρ o

m bfjin Η c ρ o
m βρΟίρ Χ Ρ 

Finally by (4.1.4) and (4.1.5) we get 

a Η c P σ b H c Ρ σ a 
M 

πι—1 
αηιαστη Η c P σ 

Μ 

m—l 
am ao

m 

Η c Ρ σ 

b 
Μ 

πι = 1 
Cïmba^ 

Η c ρ σ 

Μ 

m—l 
Cïmbarn 

Η c ρ σ 
4 σ 1/Ρε βραρ χ Ρ 

Sending ε to 0 we obtain α Η c Ρ σ b Η c ρ σ βρ&ρ Χ Ρ for all a. Taking the limit 
over a we get 

a η c ρ 
b η c ρ βρ&ρ Χ Ρ' 

Recalling that (Hp)* — Hc

v, by corollary 3.7.2 (i), we would like to deduce, as usual, 
the Burkholder-Gundy inequalities for 2 < p' < oo by duality from the case 1 < p < 2. 
However, as detailed in Remark 3.7.5, the duality bracket between Hp and Hp, is not 
always explicit. At one point we will need that the elements in the decomposition 
Lp(M) =Hp + Hp lie in L2(M) when x G L2(M). This is why we need a stronger 
result due to Randrianantoanina in the discrete setting. 
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4.2. Randrianantoanina's result in the discrete case 

Let (A4n)n>o be a discrete filtration. Randrianantoanina [45] gives another proof 
of the Burkholder-Gundy inequalities based on weak-type (1,1) estimates. This ap­
proach yields a better decomposition at the L2-level in the sense of the following 
theorem. 

Theorem 4.2.1. — Let 1 < p < 2 and x G L2(M). Then there exist a, b G L2(M) 
such that 

(i) x a + b, 

(ii) a Hp

c b 
H 

C(P) X P 

(iii) max a 2 6 2 f p x \P \x 2 
Here C(p) Civ-l) 1 as p 1. 

Proof. — We derive the estimate of the L2-norms (iii) from Randrianantoanina's 
construction. The main tool is the real interpolation, more precisely the J-method, 
to deduce this decomposition from a weak type (1, l)-inequality. We refer to [3] for 
details on interpolation. Let x G L2(M) and 1 < p < 2. Let 0 < 0 < 1 be such that 
l/p = 1 — 0 + 6/2. We know that LP(M) = [Li(M), L2(M)]elP]j, hence we may write 

(4.2.1) x 
jEz 

uv 

where 

(4.2.2) 
uEz 

2~vd max uv 
!,2^ uv 2 

P l/p 
C(P) X \P 

We claim that we may in addition suppose that 

(4.2.3; 
uEZ 

uv 2 
f P, \x P X 2J 

For each v G Z we set 

ov 
1 ¿¿4" X \x µ4v-1 X 

where for t > 0, jit{%) denote the generalized singular numbers of x. We refer to [10] 
for details on these generalized numbers. Since Ht{x) —> \\x\\ as t —> 0 and fit(x) -> 0 
as t —>> oo, we see that J2„eZ ev — s(\x\), where s(\x\) denotes the support projection 
of x. Hence we can write 

(4.2.4) x 
vEZ 

xe^. 

Let us first show that the sequence uv = xev satisfy (4.2.2) with C(p) 16 
3 

l/p 

Note that by the definition of Ut(x) we have for all v 

(4.2.5) r(ev) T t(p4»(x) X 4-
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On the other hand, since pt{%) is decreasing we have 

x p P 
oo 

'0 
µt X 

pdt 
vEZ 

4—1 

4̂ -2 
µt X 

Pdt 

vEZ 
4v-1 4v-2 

µ4v-1 X P 

vEZ 
3·4ν-2μ4ν-ι(χ)ρ. 

The inequality (4.2.5) gives 

xev 1 r X 1 /X4-(x) X µ4v-1 x /i4—i x R ev µ4v-1 x 4-

Using p(2 - 6) = 2 we get 

vEZ 
2-v0 

xev 1 
v 

rEz 
2^(2-Ö) µ4v-1 (x)p 

xEZ 

4 µ4v-1 

x P 
16 
3 x P 

P 

The L2-norm can be estimated by 

XCjy 2 T x 2 T /14-(x) X /X4--1 X 
1 
2 /14— 1 X R ev 

1 2 U4--1 x 12" 

hence 

vEZ 

2^(1-0) Xdy 2 
P 

vEZ 

2^P(2-Ö) µ4v-1 X P 
16 
3 x P 

P 

Let us now consider z/0 £ ^- Then, to obtain (4.2.3), we replace (4.2.4) by 

x 
v>v0 

XCis, 

whereHa^HxHa^Hx for v u0 andHa^Hx v<i>q ev l(/i4"o (x) X For a good choice 

of z/0, we can show that this decomposition still satisfy (4.2.2) with C(p) 19 
3 

VP 

Note that 

2 — 0 xe„0 1 
2" X 1 (/i4'

yo (x) X 
1 

2-vo0 

X 2 T l(/i4-o(x) X 
1 
2 2^o(i-ö) X 2, 

2^o(l-0) X6jyQ 2 
2^o(i-ö) X 2 

We can find vo v0 p X \P- X 2 such that 

2"o(i-0) X 12 X 
P 0̂ i - e -1 In 

1 
2 

In x P 
X 2 

We then obtain 

x>v0 

2-v0 

max X€>v i,2" XCi/ 2 
.P 1/P 19' 

3 

1/P 
X P* 

The inequality (4.2.3) follows from the Holder inequality 

V>V() 
XCjy 2 

v>v0 

2^(i-ö) xev 2 p 
1/P 

v>v0 

2~v 1-9 p 
1/p' 

f Pi X P X 2 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



60 CHAPTER 4. BURKHOLDER-GUNDY INEQUALITIES 

where 

f V X P X 2 
2 -Mi-0) 

1 2 l-e p' l/p' 

19 

3 
l/p 

X p-

Now we apply Randrianantoanina's decomposition to the sequence (uu)u satisfying 
(4.2.1), (4.2.2) and (4.2.3). For each v G Z, by theorem 3.1 of [45], we may find an 
absolute constant K > 0 and two martingales av — (an^)n and bv = (b^)n such 
that 

En (Uv) a v n 
b. n 

for all n > 0 and 

da V 
L2 (M;l2

c) db{v) 

L2{M-r2) 
2 uv 2 

n>0 
dn a u 2 1 2 

l,oo n>0 

an 6 
n 

2 
1 
2 

l,oo 
K uv 1-

Recall that x 1 ,oo 
suPt>o tßt(x) Then we set 

a 
vEZ 

a v and 6 
vEZ 

6<"> 

and obtain two martingales a and 6 with x — a + b. Using the following interpo­
lation result of noncommutative Lp-spaces associated to a semifinite von Neumann 
algebra Af 

Lp(M) £l,ooCA0 L2(M) F,kp;J' 
and (4.2.2) we can show that 

n>0 

dn(a) |2~ 
1 
2 

P 
n>0 

dn(b) 2 1 
2 

P 
C p - 1 •1 X p 

It remains to prove the /^-estimate (iii). This comes from (4.2.3) as follows 

a 2 
vEZ 

a v0 2 
vEZ 

da V 
L2 

M;l2

c 2 
vEZ 

uv 2 2/ p U p X 2 

The estimate for b is similar. 

4.3. Sums of Banach spaces 

In this subsection we introduce a notation to formalize the notion of "decompo­
sition at the L2-level" mentioned previously. To do this, we discuss two competing 
constructions of the sum of Banach spaces in a general case. Let X and Y be two Ba­
nach spaces both embedded into a Banach space A\, i.e., the inclusion maps X C A\ 
and Y C A\ are continuous and injective. In interpolation theory one considers the 
sum 

X + Y z G Ai 3x G X yeY such that z x + y 
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equipped with the norm 

z X+Y inf 
Z—X-\-Y 

X X y Y 
The second method we will consider depends on a fourth space Ao, which is also 
injectively embedded into A\. We assume that 

(4.3.1) A* X is dense in X and Aq is dense in Y. 

For z G Aq we set 
z X A0Y inf 

Z=X+Y, 
XEAQ X. YEAU 

X X y \Y 

We clearly have 

(4.3.2) z X + Y z \x A0Y for z g Aq, 

and x AQY defines a norm on Aq. We define the Ao-sum 

X A0 
Y 

as the completion of Aq with respect to the norm x *0r In our context we will 
always consider Aq = L^M), and simply denote X Y. Let us state the following 
basic fact. 

Lemma 4.3.1. — Let Aq,X,Y, A\ be four Banach spaces as above. Then there exists 
a surjective quotient map q : X ERY —± X + Y. 

Proof. — By (4.3.2) we can consider the contractive map q : X\BY —>> X + Y defined 
by q(z) = z for z e Aq. Let us show that q is a quotient map. Let z G X + Y be of 
norm < 1. We can find x G X and y eY such that z — x + y and \\x\\x — A, \\y\\y — JJL 
with A + \i < 1. Since Aq D X is dense in X, we can find a sequence (xn)n in AqH X 
such that the series is absolutely converging and 

n 
3'n X A 1 

4 1 A + µ X 
n 

xn in X. 

Similarly, there exists a sequence (yn)n in Aq such that the series is absolutely con­
verging and 

n 
yn Y µ 1 

4 1 A + /1 y 
n 

Vn in Y. 

Then Zr> %n H~ yn eX Y for all n, and 

n 
Zfi X Y 

n 
%n X yn Y 1 

2 
1 + X + fJL 1. 

Hence the series (zn)n is absolutely converging in X Y and we have 

q 
n 

Zfi Z. 

This ends the proof. 
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The two sums coincide in the following cases. 

Lemma 4.3.2. — Let Aq, X, Y, A\ be four Banach spaces as above. Then the following 
assertions are equivalent. 

(i) X + Y X Y with equivalent norms; 
(ü) X + Y X Y isometrically; 

(iii) X Y embeds injectively into A\. 

Proof. — By lemma 4.3.1, we see that the two sums coincide with equivalent norms 
if and only if they coincide isometrically if and only if the quotient map q is injective. 
Let us consider the following commuting diagram 

X Y q x + Y 

f id 

A1 

It is clear that q is injective if and only if / is injective. This proves the lemma. 

Remark 4.3.3. — These two sums may be seen as quotient of Banach spaces. Indeed, 
on the one hand X -f Y is isometrically isomorphic to the quotient space X (Bi Y/L, 
where 

L ker cf) x, — x G X 'i Y xeX Y 
and (j) : X (Bi Y —>· A\ is the map (x, y) x + y. On the other hand, X ffl Y is 
isometrically isomorphic to the completion of the quotient 

Ao X i An L0 

where 

Lo ker 0 A0nX iA0/ 

L A0 X 1 A0 x, —X E X 1 Y x G A0 
X 

The density assumption (4.3.1) then implies that 

(4.3.3) X Y Ao X T A. L0 X 1 Y Lo-

Hence we can write 

X + Y X IY L Lo Lo is dense in L Ao X is dense in X Y 

As mentioned previously, the introduction of this ffl-sum is motivated by some dual 
arguments. It is well known that the dual of the usual sum X + Y is X*HY* whenever 
XnY is dense in X and Y, but this is not true in general. In some cases, the dual space 
of X EB Y is easier to describe than the dual space of the usual sum X + Y. More 
precisely, the dual spaces of these two constructions are described in the following 
lemma. 
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Lemma 4.3.4. — Let A0, X, Y and A\ be such that Ao OX is dense in X, Ao is dense 
in Y and X, Y embed into A\. Then 

(i) X + Y x* , y* e x* oo 
Y* X X Y y xny 

m X Y x*,y* G x oo r* X A X y A0 N 

Proof. — Since I T F = l 0 i Y/L, we deduce that (X + Y)* = L^ C {X 0i Y)* = 
X*0oo^* and we obtain (i). By (4.3.3) we can write (XfflF)* = (Z^)1- = LQ and (ii) 
follows. 

Remark 4.3.5. — Observe that the definition of the sum X EEU0 Y only relies on the 
space AQ and not on A\. In fact, we do not need that X and Y are embedded into 
a common space A\ to define X EÊ 0 Y. However, in that situation we cannot define 
the usual sum X + Y. 

Theorem 4.2.1 can be reformulated by using the EE-sum as follows. 

Corollary 4.3.6. Let 1 P 2. Then, with equivalent norms, 

LP(M) H c. 
V 

H r 
V 

Proof. — In this application we consider Ao — Li(J^A\X = H^Y = Hr

v and A\ — 
Lp(M). The density assumption (4.3.1) is clearly satisfied. By the density of L2(M), 
it suffices to see that the norm ||.||p is equivalent to the norm ||.||#effl#£ defined 
for x e L2{M) by 

x H 
v 

H c v 
inf 

x = a-\-b. a,bEL2 M 

a H c V 
b H c v 

Theorem 4.2.1 means that x Hp

c Hc

p 
C(P) x \P for x G L2{M) and theorem 3.1.6 

gives the reverse inequality 

x p ßp X Hp

c HI, ßp x Hp

c 

Hp

c 

4.4. Burkholder-Gundy inequalities for 2 < p < oo 

As mentioned previously, we need a stronger version of the Burkholder-Gundy 
inequalities for 1 < p < 2 stated in theorem 4.1.1 before proving the case 2 < p < oo 
by duality. We may extend Randrianantoanina's result recalled in theorem 4.2.1 to 
the continuous setting as follows. 

Proposition 4.4.1. — Let 1 < p < 2 and x G L2(M). Then there exist a, b G L2(M) 
such that 

(i) x a + b, 

(n) a H c V 
b H c 

p 
C(p) X P 

(iii) max a, 2 b 2 f P x P X 2 

Here C(p) C p-1 •1 as p 1 
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Proof. — The proof is similar to that of theorem 4.1.1. In this case, for each a we 
apply theorem 4.2.1 to the discrete Hardy spaces Hp (a) and Hp(cr). We obtain a 
decomposition x = aa + ba with 

ao H c V cr 
bo H r v a C(p) X P and max ao 2 ba 2 f V, x P X 2 

Hence the families (aa)a and (ba)a are uniformly bounded in L2, and we can consider 

a w-L2 lim aa 

o,U 
and b w-L2 lim ba 

o,U 
We obtain x — a + b where a, b G L2(wM) satisfy (iii). The proof of the estimate (ii) is 
even simpler than in the proof of theorem 4.1.1. We use the fact that for y G L2(Ai), 
\\y\\Hc(a) < IIV||2 and the result follows similarly. 

Corollary 4.4.1. — Let 1 < p < 2. Then isometrically 

Tip H r. 
P H r 

P 

Proof. — In terms of EB-sum, proposition 4.4.1 means that with equivalent norms 

Lp(M) H c •P 
H r P' 

Here we consider Ao = L2(M),X — TLp.Y = Tip and A\ — LP(M). Moreover, we 
know by theorem 4.1.1 that with equivalent norms 

LP(M) Hp H c 
P H r P 

We deduce that H c 
V 

H r 'P H c P 
H T 

p with equivalent norms, hence the two sums 
coincide isometrically by lemma 4.3.2. 

We can now apply the duality argument to get the remaining case 2 < p < oo. 

Theorem 4.4.2. — Let 2 < p < 00. Then, with equivalent norms, 

LP(M) Tip Hp njr 
ttp. 

Proof. — In this case the non-obvious inclusion is TLP C LP(M). We detail the 
argument to highlight the need of the decomposition in L2{M). Let y G Tip — 
Hp\nHrp C L2(M) and x G L2(M) be such that \\x\\pr < 1. By proposition 4.4.1, 
there exist a, b G L2(A4) such that x = a + b and 

a u c 
V 

b H p v 
C(P') 

Then r(y*x) = r(y*a) + r(y*b). Moreover, since y G Hp and a G L2(M) we can write 
by corollary 3.7.2 (i) and remark 3.7.5 

T y a y a c V y ni a Hp c{p) y Hp a v 
The same estimate holds true for b and we get 

T M x c V y H a p' b p C{p')c{p) y H X p' 
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By density of L2(A4) in LP>(M) we deduce 

y p C(p')c(p) y Hp 

Remark 4.4.3. — Observe that in this proof, the fact that the decomposition x = a + 6 
is in L2 is crucial. Indeed, if a and b do not lie in L2(A4), then the quantities r(y*a) 
and r(y*b) may not exist, and the duality argument does not work. 

4.5. The space Hi 

We end this section with a discussion on the case p = 1. Inspired by lemma 3.5.6, 
we define for x G Ai 

x Hi lim 
p—>1 

x Hp 

Since the Hp-norm is decreasing in p, the limit is in fact an infimum, which exists for 
(||#||Kp)p>i is then a decreasing family bounded by below. Moreover, the inequalities 

ß 1 
1 X 1 X Hi X 2 

ensure that this defines a norm on Ai. 

Definition 4.5.1. — We define the space Hi as the completion of Ai with respect to 
the norm 

By approximation we can extend corollary 4.4.1 to the case p = 1. 

Proposition 4.5.2. — We have isometrically 

Hi U c 
1 

H ir 
1 

Proof. — In this application we consider Aq L2(Ai) X H1

c, Y H1

r 

and AX 

Li(Ai). The density assumption (4.3.1) is satisfied. By the density of L2(A4), it 
suffices to see that the norms ||.||KI a n d ll-ll-H f̂fi?^ are equivalent on L2(A4). Let 
x G L2(Ai). By corollary 4.4.1 we may write 

x Hi lim 
x—1 

x \Up lim 
x—1 

X Hp

c Hp

c 

lim 
x—1 

inf 
x—a-^b. 
a,beL2 M 

a Wp b Hp

c X Hp

c Hp

c 

On the other hand, assume that x H Hc

1 
1. Then there exist a, b G L2(Ai) such 

that x a + b mm a Hc

1 
b Hm 1 Observe that lemma 3.5.6 still holds true 

for a,b G L2(Ai), thus 

a Hc

1 
lim 
p—>1 

a Hc and 6 H[ lim 
p—1 

6 H-

Hence we can find p > 1 such that x Hp a H£ b Hc

l 
1 Since the Hp-norm 

is decreasing in p we get the reverse inequality x Hi X Hc

1 Hc

1 
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With this decomposition at the Zv2-level we can describe the dual space of "Hi as 
follows. 

Theorem 4.5.1. — We have, with equivalent norms, 

H1 BMO, 

where BMO BMOc BMOr 

Proof. — The proof directly follows from proposition 4.5.2 and theorem 3.8.4 by using 
the same argument than the one detailed in the proof of theorem 4.4.2. • 

4.6. Interpolation 

We end this section with the continuous analogue of the interpolation theorem 3.1.8 
(ii) involving the spaces TL\ and BMO introduced in subsection 4.5. 

Theorem 4.6.1. Let 1 P oo. Then, with equivalent norms, 

LP(M) BMO,Hi l/p 
Proof. — The inclusions BMO C L2{M) C Ux ensure that the couple [BMO,Hi] 
is compatible. As in the proof of theorem 3.9.1, we only need to prove that 
[BMO, L2(M)]2/P — Lp(M) for 2 < p < oo, and we will conclude by using the dual­
ity (TLi)* = BMO established in theorem 4.5.1. On the one hand, by theorem 3.9.1 
we can write 

BMO,L2(M) 
2/p 

BMOc BMOr L2(M) 
2/p 

BMOc L2(M) 2/p 
BMOr L2(M) 2/p 

ri i r n H r 
p 

Lp{M), 

where the last equality is the Burkholder-Gundy theorem 4.4.2 for 2 < p < oo. On 
the other hand, the continuous inclusion M C BMO yields the reverse inclusion 

Lp(M) M,L2{M) 2/p BMO,L2(M) 2/p 
and finishes the proof. 
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CHAPTER 5 

THE h^-SPACES 

In this section we consider the conditioned version of Hardy spaces, and study their 
continuous analogue. Following the case of the Hp-spaces studied in section 3, we de­
fine two conditioned column Hardy spaces h£ and h£ in the continuous setting. In this 
case we still have a crucial monotonicity property, with a reversed monotonicity, which 
will also imply that the two conditioned candidates h£ and h£ coincide. However, the 
conditioned case is more complicated than the Hp-case in the sense that we can not 
prove the injectivity results directly, as we did in section 3. In particular, the fact that 
Hp(cr) = LP(M) with equivalent norms for a finite partition a is no longer true in 
the conditioned case. This is why we will first need to complement the space hp

c into 
some larger space, which also have an Lp-module structure over a finite von Neumann 
algebra. The construction will be based on free amalgamated products. Then we will 
deduce duality, injectivity and interpolation results for 1 < p < oo. We also establish 
the continuous analogue of the Fefferman-Stein duality for h£, where the description 
of the LpVno spaces will be easier than the one of the LpA40 spaces in subsection 3.8. 
The end of this section is devoted to the expected interpolation result involving the 
column spaces h1

c and bmoc. 

5.1. The discrete case 

As in section 3, we start by recalling the definitions of the conditioned Hardy spaces 
of noncommutative martingales in the discrete case and some well-known results. Let 
(Mn)n>o be a discrete filtration. Following [27], we introduce the column and row 
conditioned square functions relative to a (finite) martingale x — (xn)n>o in LQO(M): 

sc(x) 
oo 

n=0 
En-1 dn(x) 2 1 2 and sr(x) 

oo 

n=0 
£n-l dn(x) 2 1 

2 

where by convention we set £_i = £ 0. For 1 < p < oo we define hp (resp. hr) 
as the completion of all finite Loo-martingales under the norm x hp 

sc{x) \P 
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resp. X K sr(x) P Let us also introduce the diagonal space h d 
V 

defined as the 
subspace of £P(LP(M)) consisting of all martingale difference sequences. Recall that 
£p(Lp(Ai)) is the space of all sequences a = (a n) n>o in Lp(Ai) such that 

a eP(Lp(M) 
oc 

n=0 
an 

p 
p 

l/p 
OO, 

with the usual modification for p — oo. The conditioned Hardy space of noncommu­
tative martingales is defined by 

hp 
h d 

p 
h c P h r P 

for 1 V 2 

h d 
p 

h c P h r p 
for 2 V oo. 

It was proved in [21] that for each n and 0 < p < oo, there exists an isometric 
right A^n-niodule map un,p L r v M;£n 

Lp Mn 

l2 with complemented range 
such that 

(5.1.1) Un,p(X)*Un,q(y) £n(x*y) 

for all x € Lc

p{M.;£n) and y € Lc

q(M;£n). More precisely, for 0 < p < oo there exists 
a contractive projection Qn,p defined from L P ( . M N ; ^2) onto the image of Un, p such 
that for all £ e Lp(Mn;l

c

2) 

(5.1.2) 2n,p (E) 2n,p (E) et 

For 1 < p < oo we know that 

(5.1.3) Q*Lp Sne­

lli the sequel for the sake of simplicity we will drop the subscript p in un^p and Q n , p . 
This proves that hp isometrically embeds into Lp(A4; £2(N

2)) via the map 

u h c 
P Lp M;£c

2 N2 

x 
n>0 

En,0 Un-l dn(x) 

Furthermore, hp is a complemented subspace of Lp M 1%. N2 for 1 < p < oo. Indeed, 

we can define a projection 

P Lp M;£c

2 N2 hp

c 

as follows. For £ n en,0 
£n £ Lp M;£c

2 
N2 for all n ; 0 we have £ n-i(£n) G 

Lv Mn-l l2 N We may apply the projection Qn-i and obtain for each n an 
element yn G L£ M;£n-i satisfying 

(5.1.4) Qn-l £n-l En Un-1 yn 

Then we set 

P(0 
n>0 

^n(?/n) 

It is clear that P o u = id/^, i.e., that P is a projection from LP(A4; £2(N
2)) onto hc

p  

Moreover, we can show that this projection is bounded for 1 < p < oo. 
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Lemma 5.1.1. — Let 1 < p < oo. Then the discrete space hc

v is 7P-complemented in 
Lp(M;l2

c(N2) 

Proof. Let £ !nen,o ) £ n G Lp M l2 N2 First observe that for all n 0 we 
have 

(5.1.5) £n-l dn{yn) 2 £71-1 Vn 2 

Indeed, for n = 0, since by convention E-1 £o and do y0 
£o(yo) we have 

£ 0 do(yo) 2 £o(2/o) 2 0̂ 2/0 |2 

For n > 1, we can write 

£n-l dniVn) 2 £71-1 £n(2/n) 2 En-1 yn 
2 

En-1 £n(yn) 2 £n-i Ê71 |2/n 2̂  En-1 2/n 2 

Moreover by (5.1.4) and (5.1.2), we have for all n 0 

(5.1.6) £n-l yn 2 Un-l yn 2 Qn-1 £71-1 6. 2 En-1 En 
2 

Combining (5.1.5) with (5.1.6) we obtain for all n 0 

(5.1.7) En-1 dn 
P(E) 2 £n-l dn(yn) 

2 £71-1 (£n) 2 

The noncommutative Stein inequality implies 

P(0 hc

p 

n>0 
£n-l dn (yn) 2 1 

2 
P 

n>0 

£n-l(£n) 2 
1 
2 

P 

1P 

77>0 

En 
12 

1 2 
P 

7p E Lp 
M,l2

c 

N2 

We deduce the following duality and interpolation results. 

Corollary 5.1.2. Let 1 p 00. Then the discrete spaces satisfy 

(i) Let 1 p + 1 p' = l Then, with equivalent norms, 

hc 

lip 

hp 

(Ü) Let 1 p1, p2 00 and 0 (9 1 6e s^cA £/ia£ lip 1-0 Pi •0. Pi Then, 

with equivalent norms, 

h C 
P 

h c 
Pi 

h c 
P'2 e 
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Remark 5.13. — Observe that for 1 < p < oo we have P = u*. Indeed, for x e hc

v 

and £ in Lp'(M\ £2(N2)) we may write 

P(0 X 
n 

T dn(yn) dn(x) 
n 

T Vndnix) 

n 
T En-1 yndn(x) 

71 
T Un-l{yn) Un-1 dn(x) by '5.1.1 

71 
T Qn-1 £n-l(£n) Un-1 dn(x) by 5.1.4 

71 
r £n-l(£n) Qn-1 Un-I dn{x) by 5.1.3 

71 
T £n-l(£n) Un-1 dn(x) 

71 
T CnUn-l dn(x) E u(x) 

The analogue of the Fefferman-Stein duality for the conditioned case was estab­
lished independently in [22] and [2]. For 2 < p < oo we introduce 

Lc

pmo xeL2(M) x\ L<pmo OO 
where 

x L(
p77lO max £0(x) p sup 

71 
f x - xn 

2 1 
2 1 2 P 

For p = oo we denote this space by bmoc. 

Theorem 5.1.4. Let 1 P 2. Then the discrete spaces satisfy, with equivalent 
norms, 

h c 
P 

L c P' mo. 
Moreover, one has 

vp x v TTiO X h c p 2 X L c v moi 
where vv remains bounded as p 1 

Combining these two latter results we obtain 

Proposition 5.1.5. — Let 2 < p < oo. Then the discrete spaces satisfy, with equivalent 
norms, 

h c P L c 
P mo. 

Observe that we can extend lemma 5.1.1 to the case p = oo in the following sense. 

Lemma 5.1.6. Let 2 P oo. Then P : L p M l2 № Lpîno is bounded. 

Proof Let £ 71 Cn,0 £ n G Lp MUC

2 № and x P(0 On the one hand, 
by (5.1.7) for /i = 0 we have 

£o(x) 
p 

E0(E0) 
P 

E0 P Co 2 1 
2 P 

n>0 

En 
2 

1 
2 

P 
E Lp M ¿2 N

2 
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On the other hand, note that by (5.1.7), for each n > 0 we have 

5.1.8 p X Xn 

2 P 

k>n 
£k-l dk(x) 2 P 

k > n 
£k-i Es 

2 

EN 

fc>n 

Ek-1 6 2 En 

k>n 

Sk |2 En 

fc>0 
6 2 

Since 1 1 
2 p oo the noncommutative Doob inequality gives 

sup 
n 

En X xn 
2 

1 2 P 
sup 
n 

En 

fc>0 

Sk 
2 

1 2 P 
Ô 1 

2 
P 

/c>0 
6 2 

1 
2 p 

o 1 2 P 
E 2 

I M l2 N2 

Thus we get 

P(0 Lc

pmo X L^mo max £o(x) p sup" 
n 

E X Xfi 2 1 
2 1 
2 P 

max 1 (5 1 
2 1 2 P 

E Lp 
M *2 N2 

The noncommutative Burkholder-Rosenthal inequalities were obtained by the first 
named author and Xu in [27]. 

Theorem 5.1.7. — Let 1 < p < oo. Then the discrete spaces satisfy, with equivalent 
norms, 

Lp M hp 

Moreover, 
K 1 

P X hp 

X P Vp X hp • 
Remark 5.1.8. — It is important to note that r]p remains bounded as p —>• 1, i.e., for 
p = 1 we have a bounded inclusion hi C L\(M). 

We end this subsection with the conditioned analogue of theorem 3.1.8 proved 
in [2]. 

Theorem 5.1.9. — Let 1 < p < oo. Then the discrete spaces satisfy, with equivalent 
norms, 

h c 
P 

bmoc, hi l/p 

5.2. Definitions of h£, h£ and basic properties 

Following section 3, we start by fixing an ultrafilter hi. For a G Pfin([0, 1]) and 
x G M, we define the finite conditioned bracket 

X, X a 
tea 

Et 

[a d a 
t X 

2 

recalling our convention that £o-(a) — £o Observe that x, x 
CT 

1 
2 1 2 P 

x ft c 
V o 

where hc

v\a) denotes the noncommutative conditioned Hardy space with respect to 
the discrete filtration (Ait)tea- Hence the noncommutative Burkholder-Rosenthal 
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72 CHAPTER 5. THE h -̂SPACES 

inequalities recalled in theorem 5.1.7 and the Holder inequality imply for each finite 
partition a and x G Ai 

(5.2.1) 77 1 
P X P x, x a 

1 2 1 2 P 
X 2 for 1 P 2, 

x 2 X, X a 
T 2 1 2 P ftp x P for 2 P oo 

Then, adapting the discussion detailed in subsection 3.2, for x G AA and 1 < p < oo 
we may define 

x, x u Eu X, X a \X K X, X u 
1 
2 1 2 P 

and x h c V 
lim 
o,U 

x h c 
v a 

The properties of the conditional expectation Eu imply the analogue of (3.2.3) 

(5.2.2) 77 1 
p x P X h c p X y p p 

X 2 for 1 P 2, 

x 2 X h c p 
X h c v 

Lp 
X P for 2 P 00. 

Hence hp and hp

c define two (quasi)norms on A4. As for H c 
P 

and H c 
•p' 

these 

(quasi)norms a priori depend on the choice of the ultrafilter hi. We will show that 
they actually do not, up to equivalent norm, and simply denote ||.||rc and ||.||hc-

Definition 5.2.1. — Let 1 < p < 00. We define the spaces h£ and hp as the completion 
of Ai with respect to the (quasi)norms ||.||^c and ||.||hg respectively. 

As we did for ii c 
V we may equip lì c P 

with an Lp A^-module structure and show 
that 

hP 
is a norm for 1 P 00. 

Remark 5.2.2. — In this case we also note that Lma^p^2)(Ai) is dense in h£ and 
for 1 < p < 00. 

The conditioned version of lemma 3.2.4 holds true. 

Lemma 5.2.3. — Let 1 < p < 00. Then h c P is reflexive. 

5.3. Monotonicity and convexity properties 

In the conditioned case we still have some monotonicity properties of the discrete 
norms, but the monotonicity is reversed. 

Lemma 5.3.1. Let 1 P 00 and a G P f i n([0,1]) 

(i) Let 1 V 2 o1 oM 

be partitions contained in r am Km<M be a 

sequence of positive numbers such that rn 0 r n 1, and x 1 x M eL2(A4) Then 
for x m amx

m we have 

x hp a 
2I/P 

M 

m=l 
am 

x m , x m 

dr 
1 
2 
1 
2 P 
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In particular for x G JW-M) and a C o~' we have x hp

c o 2l/p X K a Hence 

inf 
CT 

x hp

c 

a X K 
2 I /P inf 

o 
x hp

c 

CT 

(ii) Let 2 p oo. a 1 oM 

be partitions containing a, am 1 m M fa a 
sequence of positive numbers such that 

m am 
1 and X1 XM e LP(M) Then 

for x m amx
m we have 

x h c P a 
S 1 2 1 2 P 

M 

m=l 
am 

xm,xm 

<7m 

1 
2 
1 
2 P 

In particular for x G Lp(.A/f) and cr a' we have x K a 
ô 1 

2 1 2 P 
x hp CT Hence 

S 1/2 
1 
2 P 

sup 
cr 

x hp

c 

cr x h p P 
sup 

cr 
x P̂ Cr 

Proof — We first consider 1 < p < 2. On the one hand, the operator convexity of 
i2 yields 

x 2 
hp

c a 
sEcr 

£S-(cr) 
m 

(T <7a xm 2 

1 2 P rn,s£cr 

GLm£s~ (cr) d cr 
s 

xm 2 
1 
2 P 

On the other hand, for 1 < m < M and t G crm fixed we denote by It the collection of 
s G cr such that t~ (am) < s~(a) < s <t. Then for m fixed, \Jteam h = o~. Note that 
for 1 < m < M and t G crm, we can split up the interval [t~ (am), t] in the subintervals 
[s~(cr), s] with s G It and by the martingale property (and t~(am) < s~(a)) we have 

(5.3.1) Et-(o
m) d (J™ 

t 
xm 2 St 'crm 

seit 
d o 

s 
xm 

2 
Et om 

seit 
Ss CT 

d er 
s 
xm 2 

Then (5.3.1) implies 

m 

Ĉrn x
m,xm 

om 

m, 
(y 771 

tearn 

Et-(om) 

seit 
£s cr 

d cr 
s 

x771 2 

m,secr 

£tm{s) om C^m£s cr d CT 
s 

xm 2 

where tm(s) denotes the unique t G a771 which satisfies t (a771) < s (cr) < s < t. 

We can rearrange the set { 1 , . . . , M } x cr so that [Mtrll(s)-(arn)) becomes an 
V 171 / (m,s) 

increasing sequence of von Neumann algebras. Thus we can apply the dual form of the reverse noncommutative Doob inequality for 0 1 
2 V 1 theorem 7.1 of [27] 

and obtain 

x 9 
K <J 

m,secr 
Qm£s~ (cr) d

o

p xm 2 
1 
2 P 

22/P 

m,sEcr 

Etm(s) om &m£s a d cr 
s 

xm 2 
1 
2 P 

22/p 

m 
«m x

r, xm 

crrn 

1 
2 P 
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We now turn to assertion (ii). In this case, since a C a m , for t G c and m fixed we 
denote by I™ the collection of s G a771 such that t~ (a) < s~(am) < s < t. Then for 
m fixed, Utecr ̂  = ( j m - We observe that 

Et 

a 
d a t X 2 

M 

m,£ = l 
amae£t a d 'Cr t xm d a 

t 
x2 

By Cauchy-Schwarz, we deduce that 

x\ 2 
K a 

tecr 

E 
a 

d a 
t X 2 

m 
2 P 

tev.m.e 
OttOLmZt G d (J 

t x771 2 
1 
2 
1 
2 P tEo,m,: 

aeamSt a d (J 
t 

xl 2 
1 
2 
1 
2 P 

£Gcr,m 

xmEt cr d (7 
t xm 2 

1 
2 P 

Note that in the first term the summation over £ disappears by using El al — 15 

and in the second one the summation over m disappears similarly. For t G cr and m 
as (5.3.1) we can write 

Et 

a 
d a 
't 

x771 2 

sell7' 
£t cr 

d 7ÌI 
S xrn 2 

By the dual version of the noncommutative Doob inequality for 1 1 
2 V oc we 

deduce that 

tGcr,m 

amEt cr d c 
t x771 2 

1 
2 
P t(z<j,m,s(E:IJn 

OLm^t a 
d crrn 

s 
x771 2 

1 
2 P 

tea 
£t cr 

•m, s G II11 

amEs om d Crni 

S 
x771 2 

i 
2 P 

S 1 
2 P 

tecr m, s G 7t

m 

amEs crm d crm 

s 
xm 2 

I 
2 P 

Af 

m=l 
am 

xm, xm 

crm 

1 
2 P 

The independence (up to a constant) of h£ on U follows immediately. 

Theorem 5.3.2. — For 1 < p < oo the space \\c

p is independent of the choice of the 
ultrafilter U, up to equivalent norm. 

5.4. The spaces hp

c and hp coincide 

In this subsection we show that in the conditioned case the two spaces hp

c and hp

c  

also coincide. In particular we will deduce that, up to an equivalent constant, these 
two spaces do not depend on the choice of the ultrafilter U. 
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Theorem 5.4.1. Let 1 P oc. Then, with equivalent norms, 

h с. 
v h с P 

Theorem 5.3.2 immediately yields 

Corollary 5.4.2. For 1 P oo the space к is independent of the choice of the 
ultrafilter Ы, up to equivalent norm. 

Proof of theorem 5.4-1- — As in proof of theorem 3.4.1, we start with the case 
2 < p < oo, which is an easy consequence of the convexity property proved in 
lemma 5.3.1. It suffices to show that the hp-norm and the hp-norm are equiva­
lent on Ai. Let x G Ai, by (5.2.2) we have \\x\\^c < ||#||h£- Now assume that 

x h c p 
X, X и 

л 2 p 2 P 
1 and fix a. 

Since the two spaces coincide with L2{M) for p = 2, we consider 2 < p < oo. 
In that case we have (x,x)u = w-Lip-limaiu(x,x)a. We can find a sequence of 
positive numbers (a m )^f = 1 satisfying ^ m cvm = 1 and finite partitions al,...,aM 

containing a such that 
M 

m = l 
am x, x om 

1 2 P 
1. 

Lemma 5.3.1 (ii) gives for all a the inequality x К CT S' 1 
2 1 2 P 

Taking the limit over a 
we get 

x h c V 
S 1 2 1 2 P 

We now turn to the case 1 < p < 2. We will use the same trick as in the proof of 
lemma 3.4.4. Let us adapt this argument for h£. We consider the same index set 

1 Pun Ai Pun 0,1 R+ 

and construct similarly the ultrafilter V on 1. As in subsection 3.4, for each i = 
(F,al,e) G T we can find a sequence of positive numbers (o^m(0)m=i s u c n that, 
X]m<^mW = 1 and finite partitions a},..., af1^ containing Oi and satisfying for 
all x G F 

X, X и 
MU) 

m=l 
OLm(l) X, X a™ 1 2 q 

e. 

In this case we consider the Hilbert space Нг l2 m,tGcr?

m t N equipped with 
the norm 

£m,t,j 1 m \M{i) tEom

i, jEN 

MU) 

m=l 

am(i) 

teal11 

7GN 

£m,t<j 12 
1 
2 
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Then h c 
V embeds isometrically into -V 

Lp M; Hc

i via the map 1 6 M x x(i) 
where 

x(i) 
M(i) 

m=1 tea™ 
em,0 o,0 Ut-(aY') d x

m 

•t x 

if i (F, oi, E) is such that x G F and x(i) 0 otherwise. We will show that 

(5.4.1) h c 
'p 

h c 
p 

Let 02 G h c 
p be a functional of norm less than one. We may assume that (f is given 

by an element E E(i) e v hp 
.A4; ft? of norm less than one, with 

E(i) 
Mit) 

m = l tea™ 
Em,0 et,o Em,t (i) 

where U,td) e Lp,{M;£c

2(N)) Fix i F, oi, E G X and 1 m M(i) We set 

zm (i) Pom

i 
Em(i) eLp,(M) 

where £m(i) tea"1 em$ Ei,0 
Em,t (i) G Lp 

M; l2 erf x N and Parn denotes the 

projection from Lp> M;£c

2 Om N onto h c 
'p' 

on described in subsection 5.1. Then 

we consider 
z(i] 

m 

am (i) Zm(i) G LAM). 

We claim that z(i) is a martingale in Lc

plmo(ol). The crucial point here is that 
by lemma 5.1.6 the map Pa™ : Lp> (M; £2{o-™ x N)) —> Lc

pfmo(a7

j

a) is bounded for 
2 < p' < oo. More precisely, on the one hand, (5.1.7) for n = 0 implies 

(5.4.2) So zm (i) |2 ¿0 £m,o(*) |2 So ̂ m,o(«) 2 

On the other hand, by (5.1.8) we have for all s G a™ (and in particular for all 

S G CT?; oi

m 

(5.4.3) Es Zim{ï) Ss Zm{i) 2 S& 

team 

£m,t{i) 2
s 

The operator convexity of the square function 12 yields 

S0(z{i) i2 

m 
am (i) ¿0 2m № 

2 

777 
«mW ¿0 zm (i) 

,9. 

and for each s S cr, we get 

(5.4.4) Es z (i) Es z(i) 2 £s 
777 

am (i) ¿777 («) Ss lZm(i) 
i2 

777 
am i Ss Zm{i) Ss Zm{i) 2 
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Then using (5.4.2) we obtain 

E0 z(i) 2 So 
m 

Oim(i) Em, 0 (i) 2 

and the contractivity of the conditional expectation £Q on Lip, implies 

So z(i) 
P So 

ra 
am (i) £m,o№ 2 1 

2 
1 2 P' m 

OLm{i) Em,0 (i) 2 1 
2 
1 
2 
P7 

x,tEoi

m 

<Xm(i) £m,t(*) 
2 1 

2 
1 
2 
P' 

E(i) 
Lp M; Hc

i 

Moreover (5.4.3) gives 

Ss z(i) Ss z(i) 
2 

Ss 

mjecr™ 

OLm{l) £,m,t(i) 
|2' 

By the noncommutative Doob inequality we obtain 

sup 
xEoi 

Ss z(i) Ss z(i) 2 
1 2 
P' sup 

xEoi 

4 
m,tEoi

m 

«mW Em,t (i) 2 

1 2 
P 

b 1 2 P 
n,tEoi

m 

Cira i £,m,t i 2 
1 
2 p' 

6 1 
2 p' 

E(i) 2 
Lp •M; 7^ 

Hence 

z(il) 
Lc ,rao 

v 
pi 

max [1 Ö 1 
2 1 2 
P' 

E(i) 
Lp 

M]HC

T 

In particular, we see that the family (z(i))t is uniformly bounded in L2(A4). We set 
z = w-L2- lim2?v z(i). We claim that z G (h£)* with 

(5.4.5) z hp

c 2 max 1 (5 1 2 1 
2 p' 

E vLp M; Hp

c 

By the density of L2(M) in h£ it suffices to estimate \r(z*x)\ for all x G L2(wM) with 

x hp

c 1. Note that 

(5.4.6) x K lim 
iv 

X hp

c 

ov 

Indeed, for all S > 0 and x G /^(.M), by definition of the hp-norm we have 

A6 o E Pfin 0,1 x\ hp

c x hp

c 

o 
5 eU. 

Hence the set Van(M) x A5 xR*+ eT x W x W c V , and since 

Pfin(M) A6 R+ i e X x hp

c X hp

c r ö 
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we deduce that the set in the right hand side is also in V for all 5, which proves (5.4.6). 
We conclude that for x G L2(A4) with x hp

c 1 we have 

r(z*x) lim 
iv 

T z(i)*x 2 lim 
iv 

z(i) Lc ,rno 
P 

X hp

c o 

2 lim 
ty 

z(i) Lc . moia, ) lim 
%y 

X K Ci 

2 max 1 S 1 2 1 2 p' E vLp M; Hc

i X K 2 max 1 Ô 1 2 1 2 P' 
E vLlp M; Hc

p 

This proves (5.4.5). Finally, it remains to check that for all x G Lq(Ai), z satisfies 

(5.4.7) E X v Lp M-.H) v Lp M; Hc

p 
T z*x 

We first verify that for each i P, oi, E G X such that x G F we have 

E(i) x 2 Lp M; Hc

p Lp M; Hc

p 
T z(i)*x 

For all 1 < m < M(i), remark 5.1.3 gives 

T Zm{i)*Xt 
Pom UH) X Em (i) uom x 

tea™ 
T Em,t (i)*ut [aVl d o

m 

t X 

Then 

T z(i)*x 
MU) 

m=l 
am(i)r Zm(i)*X 

M(i) 

m=l tEoi

m 

OLm{i)r Em,t (i) ut oi

m d o
n 

t X E(i) x{i) 

As in the proof of (3.4.5), this is sufficient to show (5.4.7). The end of the proof of 
theorem 5.4.1 is similar to that of theorem 3.4.1. • 

In the sequel, we will work with the space ĥ . 

5.4.1. Complementation results. — The aim of this subsection is to complement 
the spaces hc

p for 1 < p < oo in some nice spaces, that means in some spaces which have 
an Lp-module structure over a finite von Neumann algebra. We would like to deduce 
the continuous analogue of corollary 5.1.2. However, in the conditioned case, we can 
not extend the complementation result stated in lemma 5.1.1 to the continuous setting, 
as we did for the spaces Ftp. Hence we first need to complement hc

p into another nice 
space in the discrete case, and then we will extend this complementation result to the 
continuous setting. This construction is based on free amalgamated products and will 
use the Rosenthal-Voiculescu type inequality recalled in subsection 2.4. 

5.4.. 1.1. Complementation of hc in the discrete case. Let Mn 
N 
n=0 be a finite 

discrete filtration and En N 
n=0 be the associated conditional expectations. The idea 

is to construct a larger finite von Neumann algebra N D M. and then complement h c 
p in the space L c V N, Em We set 

A0 
M, An M *Mn-i Mn for 1 n N and N *M An 
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where we amalgamate over the first copy of Ai in A n . Following the notations intro­
duced in subsection 2.4 we consider the *-homomorphisms 

P Ai M and Pn A n 
j\f. 

which send respectively Ai to the amalgamated copy and A n to the n-th copy. We 
denote by 

S M M and EAn N An 

the associated normal faithful conditional expectations. For each 0 < n < N we 
consider the *-homomorphism 

IIn,2 Mn An 

which sends Ain to the second copy of A n , and (j)n^ : A n —> Ain the associated 
conditional expectation. If n — 0 then TTO,2 is the natural inclusion Aio C and 
00 2 is simply the conditional expectation £Q. AS in subsection 2.4, we consider the 

spaces i X i 
P 

LY 1 
b c 

Y 1 
Lp 

and Zp associated to the free amalgamated product N. 
We will use the following easy fact. 

Lemma 5.43. — For all 0 < n < N we have 

ßn-l Mn 

DM Pn IIn,2 

where by convention we set S-\ — So-

Proof. — The equality is obvious for n = 0. For 1 < n < N and x G Ain we write 

x Sn-l X X Sn—1 X Observe that x - En-1 X E Mn in An and hence by 
freeness 

EM Pn 7Tn,2i Sn—1 X 0 

We get EM Pn IIn,2 (x) EM Pn 7Tn,2 ßn-1 X £n-\(x). 

Remark 5.4.4. — This shows that the construction detailed above gives a tangent 
dilation for Ai associated to the filtration (Ain)^=0. Actually this also holds in 
the case of any (non necessarily finite) discrete filtration. Let us recall the notion 
of a tangent dilation, introduced in [22]. For a von Neumann algebra Ai and a 
filtration (Atn)n>o, a tangent dilation is given by a von Neumann algebra Af and 
trace-preserving homomorphisms i\n ; Ain ^ N, p \ Ai ^ N such that: 

(i) the conditional expectation Ep : N P{M) satisfies, for all n 0, 

P Sn-l Ep IIn 

(Ü) the von Neumann algebras Mn IIn (Mn) are successively independent 

over p(Ai). 

The first named author and Mei constructed a tangent dilation for any group 
von Neumann algebras. More generally the construction described previously gives 
a tangent dilation for every von Neumann algebra and every filtration. Indeed by 
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setting 7rn = pn o 7rn72, we get two trace-preserving homorphisms satisfying (i) by 
lemma 5.4.3. Condition (ii) is also verified by construction, and thus J\f, 7rn and p 
give a tangent dilation of j\4. 

Lemma 5.4.5. — For x G M we set v(x) 
N 

n=0 
Pn IIn,2 

dn(x) Let 1 P oo. 
Then v extends to an isometric embedding 

a: from h ,c 
P 

into y 1 
p,c? 

(") from h d 
p 

into Zp 

We will denote these isometries by v ,c 
P 

and v. d 
P respectively. 

Proof. — Observe that dn(x) ^Mn in A n , hence pn IIn,2 
'dn(x) E An This means 

that if x G M. then v(x) E Si. By orthogonality and lemma 5.4.3 we have 

EM v(x) v(x) 
N 

n=0 

EM Pn 7Tn,2 dn{x) |2 

N 

n=0 

EM Pn 7Tn,2 dn(x) 2 
M 

n=0 
£n-l dn{x) 2 

This means that for x £ M and 1 P oo 

v(x) 
Lp M; Em 

X K 

and (i) is proved. For the second assertion we write 

v(x) 
zv 

N 

71 = 0 
Pn 7Tn,2 dn(x) P 

P 
l/p N 

n=0 

dn(x) p 
P 

l/p 
X hp 

Considering the adjoint we get the following complementation results. 

Proposition 5.4.1. For y N 
n=0 

an G Si i.e., an G An for all 0 n N) we set 

R(y) 
N 

n=0 
0n,2(ön] £n-l (pn,2(an) 

Let 1 P oo. Then 7Z extends to a bounded projection 

(i) from Y1 

P,c 
onto hc • 

tip, 
(Ü) from Zp onto h

d. 
11p ' We denote these projections by 11 c V and K d 

p 
respectively. 

Proof. — We claim that for x G M and y M 
m=0 an 

G Ei we have 

(5.4.8) v(x) y X R(y) 
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Since IIn,2 
Øn,2 A n 7Tn,2 A n is a conditional expectation on A n,tr Pn it is 

trace-preserving and we may write tr Pn 7i~n,2 0n,2 tr o pn. Thus 

v(x) 
N 

n=0 
an 

N 

n=0 

tr Pn 7Tn,2 dn(x) \pn(an 

N 

n=0 
tr O p n 7Tn,2 d n(x) an 

N 

n=0 

tr Pn 7i"n,2 0n,2 IIn,2 
d n(x) * 

an 

N 

n=0 

T EM Pn ' 7ï"n,2 ^n(^)0n,2(ön) 
TV 

n=0 

T £n-\ dn(x) 0n,2(ön): 

where the last equality comes from lemma 5.4.3. Since £n-l 7Tn,2 dn(x) 0 and 
£n-i is trace-preserving, we obtain 

v(x) 
N 

n=0 
an 

N 

n=0 
7 dn(x) ^n,2(ûn) En-1 0n,2 an x R 

N 

71 = 0 
«71, 

and (5.4.8) is proved. Recall that for 1 < p < oo we have uc hp

c 
/6p 

hp

d 

y i 
P ,c 

Y i 
p,c 

and ^p' ^p- Since M is dense in hc, hi and Hi is dense in y i 
P,C" 

P̂? 
we deduce from lemma 5.4.5 that vc, Te c 

P 
y 1 

p,c 
h c 
P 

and h d 
p; 

7? 
P 

Zp h d 
P 

are bounded projections. 

The free Rosenthal inequalities are a crucial tool to prove the similar results for 
the space hp. 

Proposition 5.4.2. Let 1 P oo. 
(i) The map v extends to bounded map from hp into Xp, which is injective for 

1 < p < oo. 

(ii) The map 7Z extends to a bounded projection from X i 
p 

onto hp for 1 < p < oo. 

Proof. — Let x G M. We will show that v(x) p x hp 

for 1 P oo. We first 

consider the case 2 V oo. Then theorem 2.4.3 (i) yields 

v(x) 
V 

max v(x) \zp 

v(x) Lp 
N; EM 

v(x) Lp N, EM 

Then by lemma 5.4.5 we deduce 

v(x) 
lp 

max x K X K X K x hp 

We now consider 1 P 2 In that case theorem 2.4.3 (ii) gives 

v(x) 
P 

inf 
v(x) d+c+r 

d \Zp c Lp 
N, EM 

\r II; N, EM 

where the infimum runs over all the decompositions v(x) — d-\-c-{-r with d, c, r G E i . 
Note that any decomposition x = D + C + R of x with D G hp,C G hp and R G hp 
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yields a decomposition v(x) v(D) v(C) v(R) Hence lemma 5.4.5 gives 

v{x) 
p 

C v(D) Xp 
v(C) L£(A/\£m) v(R) Lp 

N, EM 

c D Lp 

c K R Lp 

Taking the infimum over all the decompositions x D + C + R we get 

v(x) 
p 

C x Lp 

Conversely, for any decomposition v{x) d + c + r with d, c, r e T we can write 

x K v(x) 71(d) K{c) n(r) 

Then proposition 5.4.1 implies for 1 P 2 

x h„ K(d) '4 11(c) Lp 

1Z(r) Lp 
Cp d Zp c Lp 

N, EM 
r Lp 

N, EM 

Taking the infimum over all the decompositions vlx) d + c + r we get 

x hp 

cP 
v(x) 

p-
This ends the proof of (i). We deduce (ii) by duality, by using the fact that 
X i 

P 
X 1 

p and hp hp' for 1 P oo. 

5.4-1-2. Complementation of hc

p in the continuous case. — We now extend this con­
struction to the continuous setting. For any finite partition a of [0, 1] we set 

A 0 G M, At G M *Mt-{tT, Mt for 0 t G G and AT(a) M,t EoAt G 

where we amalgamate over the first copy of M in At(a). Denote pa : M —> M(G) the 
*-homomorphism which sends M to the amalgamated copy, and 8M : M(G) —>· Ai 
the associated conditional expectation. We equip M(G) with the finite normal faithful 
trace tra = r o SM. We consider the ultraproduct von Neumann algebra 

Nu 

u 

M(a) 

and the associated finite von Neumann algebra 

Nu Mufu, 

where fu denotes the support projection of the trace tr^ = ( t r a ) \ Since we may 
extend the *-homomorphism pa to an isometry pG Lp M Lp M(a) the ultra-
product map pu — (paY is the natural inclusion 

Pu Li(Aiu) Li(Mu) 

Taking the adjoint we obtain a normal faithful conditional expectation 

Pu EMu Mu Mu- Xa- EM XQ-

Hence we may consider the Lp A^-module Lp Mu,£<Mu 

Lemma 5.4.6. Let 1 P oo. Then hc

p embeds isometrically into Ljp MU,£MU 
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Proof. — For each cr, we denote by va the map defined in lemma 5.4.5 for the finite 
filtration (Ait)tea- For x e Ai we define 

vu(x) va(x) 

By proposition 5.4.2 and the noncommutative Burkholder-Rosenthal inequalities (the­
orem 5.1.7), for all 1 < p < oo we have 

va(x) Lp(N(o)) Cp x hp{cr) CpKjp x P 
CpKp X I oo · 

This means that vu(x) £ Lp(Afu) for all 1 < p < oo. lemma 2.2.7 implies that 
vu(x) £ Lp(Afu) for all 1 < p < oo. By lemma 5.4.5 we get for 1 < p < oo 

vu(x) T c Mu ,£mu 

EMu vu(xo) vu(x) 
1 
2 L 1 2 P A1„ 

E cr M Va X Va X 
i 
2 I 1 
2 P 

Mu 

lim 
o,U 

V<7 x Lp 'AT cr 
CA4 lim 

a,U 
X hp

c 

a X K 

This proves that vy extends to an isometry from h c 
P 

into L c 
P NU,£mu for 1 p oo. 

Proposition 5.4.3. Let 1 V oo. T/ien hp" is complemented in Lc

v AI"U,£MU 

Proof. Let x Xa <G Afu be such that x hp

c Mu,£mu 
1. This means that 

(5.4.9) EMu * 
X X 

1 
2 I 1 

2 p Mu 

E 
M X a^a l 2 L 1 

2 P Mu 

lim 
ali 

X(j L c v 
Mia) EM 

1. 

Observe that for all 2 < p < oo, we have by proposition 5.4.2 and proposition 2.4.1 

Rc 

Va X (j LP(M) Vp R
o P1

c 

Xa hp{a) 
rjpCp -pa Xu Lp Af(a) 

4:7]pCp X(j Lp 
M(a) 4.7]pCp Xa Mia) 

Hence the family Rp 

Va 
K%a a 

is uniformly bounded in Lp(A4) for all 2 p oo. 
For 1 < p < oo, we may consider 

lZu(x) ^•^max(2,p) lim 
aJA 

Rp 

Va Xa 

It remains to estimate nu(x) K proposition 5.4.1 (i) and proposition 2.4.1 (ii) yield 
for each cr 

Rc 

Va Xa hp

c 

o 
Cp Pi X(j Lp Mia) EM 

Cp X(j Lp M(a) °A4 

Taking the limit in cr, (5.4.9) gives 

(5.4.10) lim 
o,U 

Ro 

Va X(j hp

c 

a Cp. 

Let 1 < p < 2 and e > 0. We may find a sequence of positive numbers am 
M 

>m=l 
such 

that 
<m am 1 and finite partitions a1 aM satisfying 

llu(x) 

m 
am R a

rn 

,-pf Xam 
2 

E and irrn p1

om 

Xam K(<T") Cp + s. 
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Since z hp

c z 2 by lemma 5.3.1 (i) we get 

Ku(x) hp

c Ku(x) 
m 

Olm Ra"' Vf xom 
hp

c 

m 
dm 7ZaTn vf xom 

K 

e 
m 

am 
na'n P1

om 

xom 
hp

c e 2i/p 

m 
am 

Rom 

vf" X(jm hp

c om 

e + 21/p Cv _+ s 

Sending e to 0 we obtain 

TZu(x) 
K 

21/pCp x Lp 
Nu, EMu 

We now consider 2 < p < oo and fix a partition cfq. By lemma 5.3.1 (ii) we have for 

all a o0 

(5.4.11) Ro O1

0 

Xq- hp

c 

CO 
s 1 2 1 2 V 

IT vi Xq hp

c 

a 

Thus (5.4.10) implies that the family (VJ7 °Vi (xq))qDq0 is uniformly bounded in the 
reflexive space hp(ao). We deduce that the weak*-limit of the Ver o ^ f ^ J ' s exists in 
/ip(<To), and coincides with the weak*-limit in Lp: 

Vu(x) w-hc 

o0 
lim 

cr cr() ,U 
va vi X(7 

By using (5.4.11) and (5.4.10) we get 

Ru(x) 
hp

c 

Co 
lim 

CT o,U 
Ro 

vi •r<j hp CO 
s 1 2 1 2 P 

Cp 

Since this holds true for all partition ao, by taking the limit we obtain 

nu(x) 
hp

c 
5' 
1 
9 2 
2 P 

Cp X Lp Mu i^M.u 

This ends the proof of the proposition. 

We deduce from proposition 2.3.2 the corresponding duality and interpolation re­
sults for the spaces h£. 

Corollary 5.4.7. Let 1 P oo. 

(i) Let 1 P+l p' 1 Then, with equivalent norms, 

hp hp

c 

(ii) Let 1 Pl,P2 oo and 0 0 1 be such that 1 P 1-0 Pi+0 P2 Then, 

with equivalent norms, 

h c 
P 

H c 
Pi 

G c 
P2 e 
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5.5. Injectivity results 

By using corollary 5.4.7 (i), it is now easy to prove that the conditioned Hardy 
spaces defined above are well intermediate spaces between L2(M.) and LP(A4) for 
1 < p < oo as expected. 

Proposition 5.5.1. — Let 1 < p < oo. Then 

^max(p,2) M h C 
V 

-̂ min(p,2) M) 

i.e., hp embeds into Lm-m(Pi2)(M). 

Actually, the injectivity for 2 < p < oo can be proved directly as a consequence 
of the monotonicity lemma 5.3.1. Indeed, since the monotonicity in the conditioned 
case is inverse to that of TLp, the conditioned analogue of lemma 3.6.2 concerns the 
case 2 < p < oo. 

Lemma 5.5.2. — Let 2 < p < oo. Then the space {x G L2(M) : ||x||hc < oo} is 
complete with respect to the norm ||.||h£-

Proof. — Recall that in the conditioned case, by lemma 5.3.1 the norms H-H/jĉ ) are 
increasing in a (up to a constant) for 2 < p < oo. Then the completeness of each 
discrete /î (<j)-space yields the result as in the proof of lemma 3.6.2. • 

It then directly follows that hp embeds into L2(M) for 2 < p < oo. Moreover, 
by simply using the discrete hp(a) — hp,(cr) duality, we can prove the conditioned 
analogue of lemma 3.7.3 with the same argument. 

Lemma 5.5.3. — Let 2 < p < oo. Then, with equivalent norms, 

hp

c x G L2 M x hp

c OO 

Then, combining lemma 5.5.3 with assertion (i) of corollary 5.4.7 we obtain 

Corollary 5.5.4. Let 2 P oo. Then hc

p x G L2(M) x K oo 

However, the injectivity in the case 1 < p < 2 is highly non-trivial and we really 
need the complementation result stated in subsection 5.4.1 to prove it. This approach 
does not include the case p = 1, and at the time of this writing we do not know if 
the natural map from hc

1 to Li(M) is injective (see Problem 6.5.6). For the sequel we 
need to introduce another candidate for the continuous analogue of the conditioned 
Hardy space /1?, which is embedded in Li(A4). We denote by 

P h1

c 

Li M 

the natural map defined by ip(x) = x for x G M, and set 

Lh1

c 

P h1

c Li(M) 
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Since Lp is bounded, LhJ equipped with the norm 

x Lh1

c inf 
x=(p{y) 

y h1

c 

is a Banach space. Moreover, note that L2(AA) is still dense in Lh^. 

Remark 5.5.5. — Considering hp as a subspace of Lm[n(p^)(M-) for 1 < p < oo thanks 
to proposition 5.5.1, we can write 

h c 
q 

h c 
P 

for 1 P q oo and h c 
q 

Lh c 
1 for 1 <7 ; oo. 

Moreover, for 1 < q < oo, the commuting diagram 

hq

c h1

c 

vu vu 

T c 

NU,£MU 

L1

c 

Nu, EMu 

implies that we may also consider 

h c 
q 

RI c 1 for 1 q2 oo. 

5.6. Fefferman-Stein duality 

This subsection deals with the analogue of the Fefferman-Stein duality for the 
conditioned Hardy spaces. First observe that in the discrete case, the space Lpmo 
is simpler than the space LpMO for 2 < p < oo. Indeed, recall that for a finite 
partition a and x G L2{M) we have 

x hp

c MO G sup 
tea 

E x — xt (J 
2 1 

2 1 2 P 

x Lc

pmo a max E x P sup 
vEo 

ft x - xt 

2 1 
2 1 
2 P 

The crucial point is that the index "£~(cr)", which depends on the partition cr, does 
not appear in the definition of Lc

pm,o(o-). Hence it is natural to introduce the following 
definition of Lpino in the continuous setting. 

Definition 5.6.1. — Let 2 P oo We define 

Lpmo x G L2(M) x hp

cmo OO 

where 

x L<pmo max £0 X V sup 
0<t<l 

£t x - xt 

2 1 
2 1 2 P 

For p = oo we denote this space by bmoc. 
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Recall that for a family Xt >0<t<l in Lq(M), 1 p oc. we define 

sup 
0<t<l 

Xt q Xt c It 1 Lq(M;£oc([0,l] inf a 2q SUp 
t 

Vt oo \b 2q, 

where the infimum runs over all factorizations 

Xt aytb with a,ò G L2q(M) and (2/t) e loo £oo([o,i] 

The space L^mo obviously does not depend on U. Note that by proposition 2.1 of [29] 
we have 

sup 
cr 

sup 
Lq(M) 

6 \X — Xt 2 1 
2 1 2 P 

sup 
0 :t ;i 

Et Lq(M) 2 1 
2 1 2 P 

thus we obtain 

(5.6.1) X Lp m° sup 
cr 

Lq(M) L^mo(cr) 

Since by definition Lcmo(cr) is increasing in a for 2 P oc we may write 

x L-mo lim 
Lq(M) 

Lq(M) L^mo a 

for every ultrafilter U. This ensures that we define well a complete space. 

The discrete Fefferman-Stein duality in the conditioned case easily implies the 
following continuous analogue. 

Theorem 5.6.2. Let 1 P 2. Then, with equivalent norms, 

K Lq(M) mo. 

Moreover, 

(5.6.2) v 1 

P X Lc ,mo 
v 

X K 2 x Lc,mo-
v 

Proof. — The proof is similar to that of lemma 3.7.3, by using the discrete hp(a) — 
Lp,mo(a) duality. This argument can also be adapted for p = 1. • 

Moreover, we deduce from proposition 5.1.5 that for 2 < p < oo, with equivalent 
norms, 

Lq(M) mo x G L2 M x K oo 

Hence corollary 5.5.4 yields 

Corollary 5.6.3. Let 2 P oo. Then, with equivalent norms, 

L c 
V mo Lq(M) c 

P' 

As a consequence of theorem 5.6.2 we can characterize the space L^mo similarly 
to the definition of L^MO. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



88 CHAPTER 5. THE h£-SPACES 

Lemma 5.6.4. Let 2 Lq(M) oo Then 

(i) The unit ball o/L^mo is equivalent to 

Lq(M) x = w •L2 lim xa 

Lq(M) 
lim 
Lq(M) 

XQ Lpmo(cr) 1 

More precisely, we have B^mo Lq(M) 2 ^p^L^mo-

(ii) Let (x\)\ be a sequence in L2(A4) such that Lq(M) L£mo 1 for all X and x 

w-L2-lim\ x\ Then x G Lpmo with x Lc

pmo 2up. 

Proof. — It is clear that B^mo C B p . Conversely, let x — w-L2-limo,U xa be such 
that l i m ^ \\xa\\L'pTno(a) < 1. By theorem 5.6.2 and the density of L2(M) in \\c

p, we 
can write 

x Lq(M) Lq 
sup 

Lq(M) 
y Lq L 

1 

T x y 

Note that for all y G L2(M) y L p 
1 we have 

T Lq(M) lim 
Lq(M) 

T Lq(M) 2 lim 
<7,W 

X/T L^mo a y h c 
P 

G 

2 lim 
aU 

XQ L(

pmo o lim 
Lq(M) 

y h Lq p a 2. 

Thus x G 2z/p 
B^mo and this proves (i) The proof of (ii) is similar to that of 

corollary 3.8.5. 

We end this subsection with the description of the dual space of Lh c 
1 

Theorem 5.6.5. We have Lh c 
1 Lbmoc with equivalent norms, where 

Lbmoc x G L2 M x bmoc : oo and limr 
n 

x*yn 0 for all sequence 

(yn)n M such that yn x converges in hï and yn 0 in L\ 

Proof. — By definition, Lh c 
1 is isomorphic to the quotient space h^/ker^. Hence 

Lh r. 
1 ker cp hï bmoc. 

This means that 

Lh r. 
i x G bmoc 

x L bmoc,h£ 0, Vi/ G ker 99 

By definition, an element y G ker<p is the limit in hf of a sequence (yn)n C such 
that = Li-\imn(f(yn) = Li-lim n?/ n = 0. In that case we have (x\y)bmoc,hc

1 — 
limn(x|//n)bmoc,h(

1

; = limnr(x*yn), and this ends the proof. 

Remark 5.6.6. — Observe that since by definition the space Lh c 
1 

embeds into Li(Ai). 
then L 0 0(A /() is weak-* dense in Lbmoc by theorem 5.6.5. 
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5.7. Interpolation 

The end of this section is devoted to the continuous analogue of theorem 5.1.9. 

Theorem 5.7.1. Let 1 P oo Then with equivalent norms 

h c 
V 

bmoc h c 
1 1/p-

Proof. — Observe that by remark 5.5.5, we may write bmoc C L2(M) C h^. This 
ensures that the couple [bmoc, hf] is compatible. As in [2], we first show that corollary 
5.4.7 (ii) still holds true for Pi 1, i.e., for 1 P oo, 0 0 1 and 1-0 + 6 p=l q 
and with equivalent norms 

(5.7.1) h c 
Q 

h c 1 h c 
p e 

Then, as in the proof of [2, thm4.1], we will deduce the required interpolation result 
by using duality (theorem 5.6.2 and corollary 5.4.7 (i)) and Wolff's theorem. Note 
that it suffices to prove (5.7.1) for 1 < q < p < 2. Indeed, corollary 5.4.7 (ii) combined 
with an application of Wolff's theorem will yield (5.7.1) for 1 < p < oo. The inclusion 
[hf, hp]e C follows easily from lemma 5.4.6 and proposition 5.4.3. Let x G [h ,̂ hp]o 
be of norm < 1. Then there exists a function / G ^"(hf, h£) such that f(0) = x and 

1/ Lq(M)L max sup 
t 

Lq(M) 
Lq sup 

t 
f 1 + it 

L 
1. 

Since vu is isometric by lemma 5.4.6, we deduce that vu°f £ T(L\(Mu^Mu)^p{^u^Mu)) 
with \\vuof\\j: = II/Hjf. Hence ^ o f(0) = vu(x) G \L\(MU^Mu)XMu)\Q 
with norm < 1. Proposition 2.3.2 (hi) implies that vu{x) G Lcq(Mu,^Mu) for 
1 — 6 + 0/p = 1/q. Then x = 7̂ ,̂  o vu(x) G by proposition 5.4.3. Observe that 
this argument still works for 1 < p < oo. However, we need the restriction to the 
case 1 < p < 2 to prove the reverse inequality by duality. We will show that, for 
2 < p < q < oo with equivalent norms 

(5.7.2) bmoc LpPno p/q 
L^mo, 

and theorem 5.6.2 will yield the remaining inclusion by duality (since L r̂no is re­
flexive). This comes directly from the discrete result and the monotonicity prop­
erty (5.6.1). Let x G [bmoc, Lpinojp/g be of norm < 1. Then there exists / G 
7(bmoc,L^mo) such that f(p/q) = x and ||/||̂ (bmoC>Lcmo) < 1. By (5.6.1), we de­
duce that / G F(bmoc(cj),Lcpmo(o-)) with norm < 1 for each a. Hence the discrete 
interpolation result gives that x G Lcqmo(o~) for each a with 

x Lcqmo a Cq f F bmoc (7 Lcpmo a 
Gp f Lq bmo1'Lq(M) Oq 

Taking the supremum over a we obtain that x G Lcqxx\o with 

x L̂mo Gp \X [bmoc,L£mo P/Q 
This ends the proof of (5.7.2) and the theorem follows. 
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CHAPTER 6 

DAVIS AND BURKHOLDER-ROSENTHAL 
INEQUALITIES 

We continue our investigation of the Hardy spaces of noncommutative martingales 
in the continuous setting by studying some decompositions of 7ip and 7ip involving 
the conditioned Hardy space hp. By considering the adjoint in section 5 we may define 
the row conditioned Hardy space hp and obtain the analoguous results. After recall­
ing the noncommutative Davis inequalities in the discrete case, we will discuss three 
variants of this decomposition in the case 1 < p < 2. The first one is a regular version 
of the Davis decomposition involving another diagonal space hp

c instead of hp. The 
second version, presented in subsection 6.1.0.4, is a Davis decomposition in Randri­
anantoanina's style with simultaneous control of hp and L2 norms for 1 < p < 2. The 
last variant is a mixed version of the two first ones, ie., a Davis decomposition in 
Randrianantoanina's style involving the diagonal space hp

c. Then we will turn to the 
continuous setting and define the analogue of the diagonal spaces. We will extend the 
three versions of Davis' decomposition to the continuous case for 1 < p < 2, and, as 
usual, deduce the inequalities for 2 < p < oo by duality. However, we will meet some 
difficulty to describe the dual space of our continuous analogue of the diagonal space. 
Hence the continuous analogue of the Davis and Burkholder-Rosenthal inequalities 
for 2 < p < oo stated in theorem 6.4.2 is slightly different from the expected result. 

6.1. The discrete case 

We first recall the analogue of the Davis decomposition for noncommutative martin­
gales in the discrete case, then we discuss three stronger versions of this decomposition 
which will be useful for extending it to the continuous setting. Let (A4n)n>o be a 
discrete filtration. 
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Observe that by combining the noncommutative Burkholder-Gundy inequalities 
(theorem 3.1.6) with the noncommutative Burkholder-Rosenthal inequalities (theo­
rem 5.1.7) we get with equivalent norms for 1 < p < oo 

Hp hp. 

By a dual approach, it was proved in [22] and [37] that this equality still holds true 
for p — 1, i.e., with equivalent norms 
(6.1.1) Hi hi 

Moreover, we can show a column version of this result. 

Theorem 6.1.1. Let 1 P oo. Then the discrete spaces satisfy with equivalent 
norms 

H c 
P 

h d 
P 

h c 
V 

for 1 P 2. 

h d 
v 

h c 
P 

for 2 P oo. 

6.1.0.3. The "regular" version of the discrete Davis decomposition. — The Davis de­
composition stated in theorem 6.1.1 can be refined to get a stronger decomposition, 
involving another diagonal space called /i*c. The regularity properties satisfied by 
this space make it a good tool for the sequel. 

To see how we may refine theorem 6.1.1, we briefly recall the strategy of its proof. 
We first show the decomposition for 1 < p < 2, then the case 2 < p < oo is deduced 
by duality. For 1 < p < 2 the inclusion hp-\-hp C Hp is easy, and the reverse inclusion 
is proved by a dual approach. More precisely, we can show that 

h d 
P 

h c 
P 

h d 
P 

L c 
P mo L c 

P' 
MO H c 

P 
A close look at the dual spaces yields a stronger decomposition. Indeed, observe that 
for 2 < p' < oo and x G L2(M.), by the triangle inequality in Lip,(M.'^00) we can 
write 

sup 
hi>0 

Lq(M) 

k>n 

dk(x) 2 
1 
2 p' 

sup 
n>0 

dn X 2 
1 2 P sup 

n>0 
f 

Lq(M) 

dk x 2 
1 
2 P 

Hence we get 

6.1.2 x Mp P 
MO max dn x 

n 
LP> Lq(M) X 5 c 

P mo 
Recall that for 2 < p' < oo, LP>(M;£%D) is defined in [21], [34] as the space of all 
sequences x = (x n ) n >o in Lp>(M) such that 

Lq n 0 x Lq(M) Xfl 2 
7? 0 

1 
2 L 1 

2 P Lq(M) sup 
n 0 

Lq( 2 1 
2 1 
Lq 

P' 
OO. 

Note that a sequence x = (xn)n>o in LP>(M) belongs to Lp^M'd^) if and only if 
there exist a G LP>(M) and y = (yn)n>o C Loc(M) such that xn = yna for all n > 0. 
Moreover, 

x LP> Lq(M) inf sup 
n 0 

yo oc a p'. 

where the infimum runs over all factorizations as above. 
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Inspired by the duality between Lp{Ai]£\) and Lp>(Ai;£oo) proved in [21], we 
define its predual space Lp(M;£l) as follows. Let 1 < p < 2 and l/p = 1/2 + 1/q. 
A sequence x = {xn)n>o is in Lp(Al;£l) if there exist bk,n £ L2(Al) and a f c?n G Lq(Ai) 
such that 

'6.1.3 Xn 
k>0 

K,nak,n 

for all n 0 and Lq(M) bk,n 
12 G L^Ai) jk,n>0 &k,n 2 G H, M We equip 

Lp \M\t\ with the norm 

x LP Lq(M) inf 

Lq(M) 

Lq,nm 
2 
2 

1 
2 

Lq(M) >0 
dk,n 2 

1 
2 

q 

where the infimum is taken over all factorizations (6.1.3). In fact this space can be 
described in an easier way. 

Lemma 6.1.2. Let 1 P 2 and 1 P 1 2 + 1 q- Then the unit ball of Lp AA;£\ 
is the set of all sequences (bnan)n>o such that 

(6.1.4) 
n>0 

bn 

2 
2 

1 
2 

n>0 
Lq( 2 

1 
2 

q 
1. 

Proof. — It is clear that a sequence (bnan)n>o satisfying (6.1.4) is in the unit ball of 
Lp Lq(M) Conversely, let x Xn n>0 be such that Xn <k>0 K,nak,n with 

k,n>0 
bk,n 2 

2 
1 
2 

k,n>0 
Lq(M) 2 

1 
2 

9 
1 

We first set an k>0 Lq(M 2 1 
2 By approximation, we may assume that the a '̂s 

are invertible. Then considering 

Vk,n Lq(M)a 1 
n 

and Lq(M¿4 
/c>0 

Lq(M)Lq(M 

we can write Xn bWn for all n 0. Moreover, 

n>0 
Lq(M) 2 

1 
2 

q n,k>0 
Lq(M) 2 

1 
2 

9 

and since 
•fc>o Vk,n 2 1 we get 

n>0 

Lq( 2 
2 

n>0 fc>0 
Kjn

vk,n 
2 

2 

n>0 k>0 

K,nbk,n 
i 
2 

2 

2 /c>0 

Lq(M)n 
1 
2 2 

00 /c,n>0 

Lq(n 2 
2 

Hence (g4) and (¿4) satisfy (6.1.4). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 

file:///M/t/


94 CHAPTER 6. DAVIS AND BURKHOLDER-ROSENTHAL INEQUALITIES 

Remark 6.1.3. — This implies that we have a bounded map 

Lq(M Lq(M) Lp Lq(M) bnan n>0 
n>0 

Lq(M) 
1 bn(in 

Indeed, we can write 

n 
en,o bnan 

n 
Lq(M) bn 

n 
Lq(M) Lp 

and the Holder inequality gives for 1 p=l '2 + 1 Q 

n 
Lq(M) ^bn&n 

V n 
Lq(M) bn 

2 
n 

Lq(M) Lq(M) 
Lq(M) n 

bn 
2 
12 

i 
2 

n 
Lq(M) 2 

i 
2 

q 

We can now state the following duality. 

Proposition 6.1.1. Let 1 V 2 Then isometrically 

Lp M-JÎ LP. Lq(M) 

Proof. — Let x be in the unit ball of Lp(M;£i) and y G L p / ( A ^ ; ^ ) . By lemma 6.1.2, 
for all n > 0 we can decompose xn = bnan where (bn) and (an) satisfy (6.1.4). Then 
we deduce from the Cauchy-Schwarz inequality and the duality between LS(A4:£\) 
and Lip,(M;£oo) that 

n>0 
r * 

yn

Xn n>0 

T yn

bnCLn 

n>0 

T ynCLn bn 

n>0 
ynan 

2 
2 

i 
2 

n>0 
On 2 

2 
i 
2 

n>0 
r 2/n 2 a n 

2 
i 
2 

n>0 
Lq(M) 2 

2 
i 2 

sup" 
n 

2/n 2 i 
2 1 
2 P 

n 
ap 

2 
1 
2 
S n>0 

Lq(M 2 
2 

1 
2 

where s denotes the conjugate index of i 
2 
v An easy calculation gives s i 

2 <7 and 
this yields the contractive inclusion Lv> Lq(M) Lp Lq(M) 

Conversely, let be a norm one functional on LP(M.\(\). We observe that con-
tractively 

6.1.5 Lq(M) Lp M Lv\ Lq(M) 

Indeed, for a finite sequence x Lq(M) N 
'n=0 we can write x 

N 
<i=l 

X1 where x1 

Xn n>C with xn 0~n.i%i -By setting 

b i 
n 

Lq(M) Xi 
1 
2 P and a i n 

Lq(M) Xi p/q 

where 1/p 1/2 l/q and Lq(M) Lq(M) Xi denotes the polar decomposition of xi, we 
obtain that 

x1 

Lq(M) Lq(M) 
n>0 

b i 
n 

2 
2 

2 
2 

n>0 
a i n 

2 
1 
2 

q 
vp Lq(M) 1 

2 P 2 xo 
p/q Q Xi P 
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for all 1 < i < N. Then 

x Lq(M) Lq(M) 

N 

i=l 

xl 

Lp Lq(M) 
N 

Lq(M) 
x P x ti Lp(M) 

Since the family of finite sequences is dense in £i(Lp(M))1 this shows (6.1.5). More­
over, the density of the family of finite sequences in Lp(M;£i) implies that £i(Lp(M)) 
is dense in Lp(JVl]£\). Hence there exists a sequence y — (yn) in LP>(A4) such that 
ip(x) 

n 
T Lq(M) for all x Xn in h LP{M) Then 

y Lq(M) Lq(M) sup 
n 

x 2 1 
2 1 
2 p 

sup 
n 

T Vn 2 Cn 
1 2 R Ee L 1 

2 q 
N 

n 
Cn 

1 
2 q 

1 

sup 
n 

Vn^-n 
1 
2 2 

2 
1 
2 En E L 

1 2 9 
N 

n 
Cn 1 

2 q 
1 

sup 
71 

T VnC 
1 
2 n 

On Lq(M) 1 M 
2 2 

TV 

n 
Cn 

1 2 p 
1 

n 

bn 
2 
2 1 

sup p(x) Xn bnc 1 
2 n Cn E L 

2 
2 

<7 
AT 

n 
C 

1 2 n 
2 

1 
2 

<7 
1 

n 

bn 2 
2 1 1 

Thus y G Lp/(An;£^0). By density, the functional p is uniquely determined by the 
sequence (yn) and the duality is proved. • 

Let h lc 
P resp. h v 

P; be the subspace of Lp Lq(M) resp. Lp' Lq(M) consisting 

of all martingale difference sequences. 

Lemma 6.1.4. — Let 1 < p < oo. Then the discrete spaces satisfy: 

(b For 1 p 2 /1 lc 
P 

is a complemented subspace of Lp Lq(M) 

(Ü) For 2 P oo /1 op 
p 

is a complemented subspace of Lp 
'M'£c ' 

Proof. — We first show that the Stein projection 

V Xn n>0 dn Xn n>0 
is bounded on Lp M;£c, for 1 < p < 2. Let (xn)n be in the unit ball of Lp \M\H\ 

and let xn — bnan be the decomposition of xn given by lemma 6.1.2. Then for each 
n we can write 

&n {Xn) UnK) Un{0>n) 
n,k 

Lq(M) k un(an)(k) 

where un{bn){k) G L2(M) and un(an)(k) G Lq(M). On the one hand, the trace 
preserving property of the conditional expectation gives 

n,k 

un{b*n)(k) 2 
2 

n 

T £n(bnbn) 

n 

bn 
2 
12 
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On the other hand, since we have 2 < q < oo for 1 < p < 2, the dual form of the 
Doob inequality yields 

n,k 
un(an)(k) 2 

1 2 q n 
f an 

2 
1 2 •q 

6 1 2 q 
n 

Lq(M) 2 
1 2 q 

Hence f Xn n x Lp Lq(M) with S 
*^n 

Xn n Lp Lq(M) S 1 2 1 2 q 
where 6 1 2 9 

92 

as q oo Lq(M) 2. This shows that h lc 
P is 28 1 

2 1 2 x 
complemented in L p \M\f\ for 

1 Lq(M) 2. 
For the second assertion, the noncommutative Doob inequality and En xn 

2 

f Xn 2 immediately imply that h x 
p is 26 1 2 1 2 P 

complemented in Lp Lq(M) 

Combining proposition 6.1.1 with lemma 6.1.4 we get the duality between h c 
P 

and h c 
p 

Corollary 6.1.5. Let 1 P 2. Then the discrete spaces satisfy with equivalent 
norms 

h 1,· P 
h c 
P 

Then (6.1.2) means that for 1 < p < 2, we have by corollary 6.1.5 

H c 
P L c 

P MO h c 
P 

a c 
P mo h lc 

P h c P 
This yields the following stronger Davis decomposition. 

Theorem 6.1.6. — Let 1 < p < oo. Then the discrete spaces satisfy with equivalent 
norms 

H c 
P 

h Ir P h c P for 1 P 2 
h O0(; P h c P for 2 P oo. 

Remarks 6.1.7. — 1) Observe that by interpolation between the cases p = 1 and 
p — 2 we have a contractive inclusion Lp Lq(M) Llp Lp{M) for 1 P 2 Thus, 
considering the martingale difference sequences, we get 

h lc 
P 

h d 
p 

contractively for D P 2. 

Hence the decomposition of theorem 6.1.6 is stronger than the usual decomposition 
stated in theorem 6.1.1. 

2) The advantage of working with the spaces h lc 
p is that, since J\A is finite, they 

satisfy the following regularity property 

h lc 
P 

h i c 

P 
contractively for 1 P P 2, 

whereas the h c 
p 

spaces do not. However we loose the reflexivity property. 
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6.1.0.4- The version of the discrete Davis decomposition in Randrianantoanina7 s style. 
— As for the Burkholder-Gundy inequalities in section 4, we will need a result due to 
Randrianantoanina to apply duality in the continuous setting. In [46], Randrianan­
toanina proves the following Burkholder-Rosenthal decomposition at the L2-level, 
with simultaneous control of norms. 

Theorem 6.1.8. — Let 1 < p < 2 and x G L2{M). Then there exist a,h,c G L2(M) 
such that 

(i) x a + b + c 

(Ü) a hp 
b K c ht 

C(P) X P 
(iü) max a 2 b 2 C 2 f p. x P X 2 

Here C(p) c p-1 •1 as p 1 

Proof. — The proof is similar to that of theorem 4.2.1. Let x G L2(M), 1 < p < 2 

and 0 0 . 1 be such that 1/p 1 -6 + 0/2. As in the proof of theorem 4.2.1 we 
may write 

6.1.6 x 
Lq(M) 

xv 

with 

(6.1.7) 

Lq(M) 

2~ve max Lq(M) i,2" Lq(M) 2 Lq(M) 
1/p 

C(P) X P 

and 

(6.1.8) 
Lq(M) 

uv 2 f P, x P X 2 

We apply Randrianantoanina's decomposition to this sequence (uu)v. For each v G Z, 
by theorem 3.1 of [46], we may find an absolute constant K > 0 and three adapted 

sequences Lq(M) Lq(M) and c<"> such that Lq(M) an 
v bn v Cn 

v for all n > 0 and 

Lq(M) Lq(M)Bn 

Bv 

Lq(M) Lq(M) Lq(M)L2 K Lq(M) 2 

n>0 
Lq(M) a Lq(M) 

n Lq(M) Lq(M) M n>0 
Lq(M) b 

n 
1 2 

1 
2 

I l,oo 

n>0 

Lq(M) C 1 
1 

2 1 2 
l,oo 

K u2 1 

Then we set 

Lq(M) 
Lq(M) 

a V 
n bn 

z/GZ 
6 V 
n and En 

Lq(M) 
c c 
n 

and obtain three adapted sequences a = (an)n^b — {bn)n and c — (cn)n- Using the 
fact that for any semifinite von Neumann algebra Af we have 

Lq(M) N l̂,oo TV ¿ 2 'TV 
e,p;J' 
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and (4.2.2), we can show that 

n>0 
Lq(M) p 

p 
l/p 

n>0 

Lq(M) bn 
|2 

1 
2 

P n>0 
£n-l an 

2 
1 
2 

P 
C Lq(M) .1 \X P 

Applying the Stein projection V to the sequences a, 6 and c we obtain three martin­
gales. We set 

a V{a) b' V(b) and / 
c 

Vic) 

Then we have for all n > 0 

dn(x) d„(a') dn(b') - dn(c') 

Moreover, since any conditional expectation £ is a contractive projection in Lp(Ai) 
and satisfies £(y)*£(y) < £(y*y), we get 

a Lq(M) b' Lq(M) I 
C 

Lq(M) c p - 1 -1 
x IP 

It remains to prove the L2-estimate (iii). This conies from (6.1.8) by writing 

a 2 V{a) 2 2 a 2 2 
Lq(M) 

Lq(M) L2(M;£(i) 2K 

Lq(M) 
Lq(M) 2 2Kf Lq(M) x p X 2 

The estimates for b' and c' are similar. 

We can derive a column version of theorem 6.1.8, which is the following version of 
the Davis decomposition at the Z/2-level. 

Corollary 6.1.9. Let Mn m 
n=0 be a finite filtration of Ai. Let 1 < p < 2 and 

x G L2(Ai). Then there exist a, b E L2(A
/I) s^c/i t/zat 

(i) vb a + 6; 

(Ü) xd K b c C(P) x Lq(M) 
(iii) max a 2 b 2 

f p x Lq(M) X 2 
where C(p) c p-1 1 as j9 1. 

Proof. — We apply theorem 6.1.8 to the element 

y 
m 

n=0 
Lq(M) Lq(M) 

Here we consider the finite von Neumann algebra J\f = B(^ 2

n + 1 ) ® At equipped with 
the filtration Mn = B^™^1) 0 Ain. We have to be careful with the trace we consider 
on N. The natural trace on N is tr̂ - = tr ® r, where tr denotes the usual trace 
on B(£2

Tl+l). This trace is finite, but not normalized. Since theorem 3.1 of [46] have 
been proved for a normalized trace, we will also need to consider the normalized trace 
TJSJ- = tr/(m + 1) 0 r. Observe that 

y L2 
Af,tYAf X 2 and y Lp Af,tr^r X Lq(M) 
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As in the proof of theorem 4.4.1, we can find a sequence (uu)u such that y Lq(M)uv 
with 

:6.i.9 
Lq(M) 

Tvd max xv Lq(M)Lq(M) T Lq(M) Lq(M)Lq(M) P 1/P 

C(p) y Lq(M)(M) C P x Lq(M) 

and 

;6.1.10 

Lq(M) 
Etn Lq(M)Lq( f P y Lq(ML)) y Lq(M)miN f >P x Lq(M) X 2 

Applying theorem 3.1 of [46] in (Af, r^f) for each v G Z, we may find an absolute 
constant K > 0 and three adapted sequences a^\b^ and c(v) such that for all n > 0 

Lq(M) Lq(M) a V 
n 

b V 
n C x 

n 
and 

6.1.11 Lq(M) 
L2 

Lq(M)l2

c Lq(M) L2 
M,TM^2 

E(v=) 

L2 Lq(M)l2

'r K Ev L2 
AT, tat 

'6.I.I2; 
n>0 

Lq(M) a V 
n Lq(M) Lq(M) Lq(M) n>0 

£n-l b V 
n 

2 
1 2 

Lq(M) Lq(M) 

n>0 
£n-l C v 

n 
2 

1 
2 

Lq(M) A", TAT 

K 2 Li A/", TM 

We would like to obtain the same estimates with respect to the trace tr/x to use the 
interpolation argument and (6.1.9). Note that for z G L\(Af), we have 

z Li M MM m + 1 y Li Lq(M) z Lq(M) Lq(M) m + 1 z Lq(M) Lq(M) 

and for z G L2(Af) we have 

z l2{Mmm) rn + 1 z L2{N,TM) 
Hence multiplying (6.1.11) and (6.1.12) by m + 1 and ra+1 respectively, we get the 
same estimates with respect to the trace tr/v". Thus we may control the J-functionals 
for a^\b^ and c(v) in (LijQO(Af, trx), L2(Af, tr^)) by the J-functional of ^ in 
(Li(Af,tr^f),L2(Af,tix)), which is bounded by C(p)\\x\\H<p by (6.1.9). Then applying 
the Stein projection we get three elements a, b, c in L2(Af) such that 2/ = a + 6 + c 
and 

a Lq(M) Lq(M) 6 M A/*,trjv" C 21 A/\trA/- c x Lq(M) Lq(M) 

max Lq(M) L2{N,trN) 6 Lq(M)LM) c Lq(M)Lq(M) f P, \x Lq(M) x 2 
Now we deduce a decomposition of x satisfying (ii) and (iii) as follows. We consider 
the following projections in Af 

e 
n>0 

&n,n 1 and Lq(M) eo,o 1. 
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Since y has a column structure we have y — eyf, hence y eaf + ebf + ecf Writing 

a 
k,n>0 

ek,n dk7n b 

fc,n>0 
Lq(M) bk,n and c 

k,n>0 
Lq(M) Lq(M) 

we have 

eaf 

n>0 

en,o &n,0: ebf 

n>0 
Lq(M) Lq(M) and ecf 

n>0 
Lq(M) Cn,0-

Since dn(y) Lq(M) cin(x) we get for all n > 0 

d n(x) Lq(M)Lq(M) dn(bn,o) dn{cnio). 

Finallv we set 

a 
n>0 

4(ûn,o): /3 
77 >0 

dn(bn,o) 7 

71>0 
dn(cn,o), 

and obtain three elements in L,2{M) such that x = a + ¡3 + 7. It is clear that a,B 
and 7 verify the /^-estimate (iii). Note that here we want a decomposition of x in 
two elements. We will show that a G hp1, /3 G /1^ and that the third element 7 is in 
the diagonal space hp1. Let us first observe that since e, / G Ao = £>(£™+1) ® jMo5 we 
deduce from the module property that 

(6.1.13) Lq(M) Lq(M) AfMM ebf 
K A/'MM ecf 

K M MM C(P) X Lq(M) 

Indeed, the estimate of the first term comes from the fact that e and / are projections, 
and for the second term we write 

£n-l dn 
ebf 2 £n-i edn b Lq(M) 2 £71-1 Lq(M) b edn 

b f 

f£n-l dn(b) edn(b) f f£n-l dn(b) 2 f 

Then ebf K Lq(MLq(M) \b K 'M MM The third term is similar. For the term a we 
have 

a K 
n 

dn 071,0, P 
P 

l/p 

n 

dn am,0 

|2 1 
2 \P 

p 

I/P 

n k 
dn ß/c,0 2 1 2 Lq(M) 

p. 

l/p 

77 k 
ejfe,o Lq(M) Lq(M) 

IP 

hp

c M MM 

l/p 

n 

dn eaf p 
Lp 

M MM 

l/p 
eaf K N MM 
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We proceed similarly for the term (3 

Lq(M) K 
n 

£n-l dn bn,0 
2 1 

2 
P n,k 

£n-l dn Pk,0 
2 1 

2 
P 

n 
£n-l 

k 
Lq(M) dn bk,o 

2 1 
2 

Lp A/\trAT 

n 
£n-l dn 

ebf 2 1 
2 

Lq(M) Lq(MtrN) 
ebf Lq( A/",trAT 

Finally for the term 7 we write 

7 K 
n 

dn cn,o P 
\p 

K 1/P 

Lq(M) 
Lq(M) <^n(cn,o) 

Lq(M)ien 

Diag 

Lq(M) 
Lq(M) dn(Cfc,o) 

Lp(Af,trs/) 

where Diag denotes the diagonal projection in AA. Since the diagonal projection is 
bounded on Lp(Af, tr/v), it remains to estimate 

Lq(M) 
&k,n dn{ck,o) 

LP{MMM) 
k,n 

Lq(M) e/c,o dn(Cfc,o) 
Lq(MLq(M)) jV,tr(8)trjv-) 

k.n 
om 

dn(ecf) 
LP(B(qi+1) A/",tr0trjv-) 

ec/ Lq(M) ATjtrjv-' 

Then, using (6.1.13), we deduce (ii) and the theorem follows for the decomposition 

Lq(M) a + 7 Lq(M) 

As in corollary 4.3.6, corollary 6.1.9 can be translated by using the EB-sum as 
follows. 

Corollary 6.1.10. — Let 1 < p < 2. Then the discrete spaces satisfy with equivalent 
norms 

H c 
P 

h d 
P 

h c 
p 

6.1.0.5. The "mixed" version of the discrete Davis decomposition. — It is natural 
to wonder whether the Davis decomposition involving the regular diagonal space h^c 

established in the subsection 6.1.0.3 can be done with a simultaneous control of norms, 
in the spirit of Randrianantoanina's decompositions. In term of EB-sum, we can easily 
establish that 

Theorem 6.1.11. — Let 1 < p < 2. Then the discrete spaces satisfy 

H c 
P 

h lc 
P 

h c 
P 

with equivalent norms. 
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Proof. — We first look at the dual spaces and claim that if x xi,x2 h If 
P 

h . c 
P 

then 

(6.1.14) X2 £ h le 
P 

h c 
P 

L c 
P 

MO H c 
p 

h le 
P 

h c 
P 

Then we can deduce that the quotient map 

x h lc 
p 

h c 
p 

h lc 
'p 

h c 
P 

is injective. Hence the two sums h lc 
P 

h c 
P 

and h IR 
p 

h c 
P 

coincide isometrically, and 
the result follows from theorem 6.1.6 with the same constant in the equivalence of the 
norms. To see (6.1.14), we consider x = (xi,x2) G (hp

c EB hp)*. Then by lemma 4.3.4 
we have x\ G (hp

(:)*, x2 G (hp)* = Lc

p,mo C L2(M) and (xi,y) = (x2,y) for all 
y G L2(Ai) fl hlpc. Hence for y G L2(M) H hl

p

c we have 

^2,2/. Lq(M) Xl h c p 
y h If Jv 

By density of L2(M)nhp

c in hl

p

c we conclude that x2 G (hl

p

cy and (6.1.14) follows. 

The continuous case will be more complicated, and we need to introduce some 
notations and prove some preliminary results in the discrete case to extend theo­
rem 6.1.11 to the continuous setting later in subsection 6.3.0.8. We can view Hp as a 
subset of the conditioned column space Lc

p

ond(M]£c

2) introduced in [21]. Recall that 
for 1 < p < oo and any finite sequence x — (xn)n>o hi A4, we set 

x Lcond Lq(M) 
n>0 

En Xn 2 
1 
2 

V 

Then ||.||L^iid(A4;^) defines a norm on the family of finite sequences of AA. We denote 
by Lp

ond(Ai; £2) the corresponding completion, and Hp clearly embeds isometrically 
into Lp

ond(A4; £2). The Lp

ond(Ai; £2)-noim can be characterized in an atomic way. 

Lemma 6.1.12. — Let 1 p 2, 1/p 1/2 + 1/q and x (Xn)n>0 be a finite 

sequence of A4. Then 

P 
2, 

c 2 inf 
c bnWn 

Lq(M) Lq(M) n>0 
bn 2 

2 

1 
2 sup 

n 
111 2 

n 
1 
9. 2 
2 q 

x L conil V 
M;IC

2 

inf 
x bNWN 

WneL Lq(M) Lq(M) n>0 

Lq(M) 2 
2 

1 
2 sup 

n 
w 2 

n 
1 
2 1 
2 q 

Proof. — Recall that 

sup 
n 

W 2 
n 1 2 q 

inf w 1 
2 q Lq(M) 2 

n 
w, Vn 0 

We first consider a decomposition xn = bnwn such that wn G L+(A4n) for all n > 0. 
Let w an element of Lt (jM) be such that ^ < w for all n > 0. 

2 9 
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Then we may write wn vnw 1 2 for all n, with Vn oo ; I. We obtain 

x 2 
Lc„nd Lq(M) 

n>0 

En yn 
bn 

2wn 

1 2 P n>0 
wn £n bn 2 Lq(M) i 

2 P 

Lq(M) 
1 
2 

n>0 
Lq(M) fen 2Vn W i 2 1 

2 P n>0 
Lq(M) I fen 2vn 

1 Lq 

i 
2 2 

E 

n>0 

T Lq 
2 2 x 

2 vnvn f fen 2 i 
2 un 1 

2 Q 
n>0 

fen 2 
2 W i 

2 
9' 

Thus taking the infimum yields the second inequality. For the first one we con­
sider a finite sequence x — (xn)n>o in -M. By approximation, we may assume that 
B 

n>0 ̂ n Xn 2 1 2 is invertibie. We set Bn ¿0<k<n £k Xk 
2 i 

2 e L+(Mn) 
for n > 0. Following [2], we can show that 

6.1.15 r 5 P 
n 

5 P 
n-1 

1 
2 
J9T B P-2 

n 
5 2 

n 
5 2 

n-1 
1 
2 
Lq(M) 5 P-2 

n 
f 
^n 

Xn 2 

Setting wn 
B i i 2 P 

n and fen xp 
B 1 2 P-1 

n we get xn 
bnwn with wn e L+(Mn) 

Moreover, since 0 1 i 
2 P i 

2 and Lq(M) £ 2 we have Lq(M) Lq(M) We deduce that 

sup 
n 

H 2 
n 

i 
2 1 2 9 

Lq(M) 1 2 
1 2 9 

B p/q 
P X p/q 

Lcond M;ici 

The other estimates comes from (6.1.15) 

n>0 

Lq(M) 2 
2 

i 
2 

n>0 
jT 5 

P 
2 1 
n Xn 2 B 

P 
2 1 
n 

i 
2 

n>0 
T 5 P-2 

n 
^n Xn 2 

1 
2 

2 

P 

1 2 

n>0 
T 5 P 

n 
B P 

n-1 

i 
2 2 

P 

1 
2 x 1 

2 P 
^ conci Lq(M) 

This proves the first inequality. 

We will give an explicit decomposition of H c P 
h lc 
p 

h c 
P 

by using this charac­
terization. To establish the control of the norms, for technical reasons we need to 
recall the definition of the space Lp(Ai;£i) introduced in [21]. For 1 < p < 2, a 
sequence x = (xn)n>o belongs to Lp(M;£i) if there are fe/c,n,«/c,n £ L2p(M) such 
that xn = ^2k>0 fefc n

ak,n for all n and 

k,n>0 

b*k,nbk,n e Lp M 
/c,n>0 

ak:n
ak,n E Lq(M) 

Then Lp(M.\£i) is a Banach space when equipped with the norm 

x Lp(M;£i) inf 

k,n>0 

bk,nbk,n 
1 
2 
P fc,n>0 

ak,nak,n 
1 
9 
P 
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where the infimum is taken over all (bk,n)
 a n d (afc,n) as above. Recall that for a 

positive sequence x = (xn)n>o we have 

x Lp(M;£i) 
n>0 

X?l 
P 

We will use the following inclusion. 

Lemma 6.1.13. Let 1 q oo. Then contractively 

Lp 
Lq(M) Lq(M) Lq(M) 

Proof. — Since the spaces Lq(A4;£i) and Lq(Ai;£2) interpolate, it suffices to prove 
the result for q = 1 and q — oo. The case q — 1 is clear. Supose q = oo and let 
xn = l>2k>o K,nak,n be such that 

k,n>0 

bk,nbk,n 
I oo 

1 and 
k,n>0 

ak,nak,n 
I oo 

1. 

We set an k ak,nak,n 1 
2 By approximation, we may assume that the an's are 

invertible. Then considering Vk n Q>k,nQ'n and bn Lq(M)Uknl we can write 
Xn bnan Note that 

k 

vtnVk,n 1 and bn oo 
k>0 

bk,nbk,n 
1 
2 

loc fc>0 

Vk,nVk,n 
1 
2 
OO 

1. 

Then 

n>0 
xnxn 

n>0 
a,nbnbnan 

n>0 
anan 

k,n>0 

ak,nak,n 1, 

which proves the result for g oo. 

We can now establish the decomposition of an element x G Z ^ J M ) in ft c 
P 

ft c 
p 

However, in this case we cannot get directly such a decomposition in L2(M) with 
a simultaneous control of hp and L2 norms, but we are able to approximate x with 
elements for which we have such a simultaneous control of norms. 

Proposition 6.1.2. Let 1 P 2,P Po 4/(4 -p) and x G L2(M) Then there 

exist two families (ar)T>o and (6t)t>o in L2(M) such that 

FI) x ÌÌIIÌT oo ar bT in H£Q ; 

(Ü) ar Lq(M) br K C(p) \x Et 
for all T >0, 

(iii) max Lq(M) 2· Òj1 

2 9 x X pl T for all T 0. 

Proof. — Let x G L2(M). Following the proof of lemma 6.1.12, we set 

B 
n>0 

dnix) 
2 1 2 Bn 

0<k<n 

dk(x) 2 1 2 and Lq(M) B 1 1 2 P 
n 
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By approximation, we may assume that B is invertible and set bn 
dn(x)B \p-l 

•n 
SO 

that one has dn(x) = bnwn for all n > 0 and 

n>0 
bn 

2 
2 

1 
2 2 

P 

1 
2 2 

ck 
p and sup" 

n 
iu ,2 

n 
1 
2 1 2 '9 

a* P/9 
Lq( 

Fix T > 0. We consider the spectral projections 

e 
1 

T 1 

n>0 

Wn-Wn-i 2 
1 2 T e 2 

T 1 r^i-èp T and ER E i T E 2 
T 

We set 

<2T 

n>0 
dn bn wn - wn-i ^n Lq(M) and br 

n>0 
dn bnwn-i£n-i ER 

We first check that ar and br satisfy the estimates (ii) and (iii). Since h^' is comple­
mented in Lp(M'1£l) by lemma 6.1.4, we have for l/p = 1/2+ 1/q 

Lq(M) HLC Cp bn wn - Wn-i En(et) 
n Lp M-,q 

Cp 

n>0 

bn 
2 
2 

1 
2 

n>0 
Wn - Wn-1 >£ ER 2N 1 

2 
9 

Since wn G L^"(JMN)
 a n d Wn-i < ^ n we have by Stein's inequality 

n>0 

Wn - Wn-1 *^n CT, 2 1 
2 

Q n>0 

En Wn -Wn-1 Er 2 
1 
2 

9 

7g 
n>0 

Wn -Wn-i ET 2 1 
2 

q 
7<? Etn 

n>0 
Wn - Wn^! 2 ET 

1 
2 
1 
2 q 

7g 
n>0 

Wn - Wn-i 2 
1 
2 
1 
2 9 

7g 
n>0 

- Wn-1 
Q 

7* B 1 
2 P 9 7g X p/q 

H c 2 

where the last inequality comes from lemma 6.1.13. We deduce that 

a7 Lq(M) Cp 
2 

P 

1 
2 LQ X Lq(M) 

For estimating br, we will use the well-known fact 

(6.1.16) £n-l £n{an) £n-l an 

2 Lq(M) &n (un) 2 £n-l ap 

|2 

£n-l £'n {ß>n ) 2 £n-l Lq(M) Lq(M) 2 Lq(M) an 

2 
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to write Lq(M) K n>0 
Lq(M) bn'Wn-l^n-l Lq(M) 2 i 2 

P 
Then by the same argument 

than the one we used in the first part of the proof of lemma 6.1.12 we obtain 

Lq(M) x 
n>0 

bn 
2 
2 

2 sup 
n 

Wn-1 £n-l eT 

2 1 
2 1 2 q 

n>0 

bn 
2 
2 

i 
2 sup 

n 
W 2 

n-1 
i 
2 1 2 q 

2 

P 

1 
2 X H xi 

v 

This proves (ii). We now turn to the estimate of the L2-norms. By definition of er 
we can write 

wn - Wn-l Lq(M) er 
oo 

Lq(M) Wn - Wn-i er Lq(M) 
Wn -Wn-i er oo 

er W7l - Wn-1 ,2 
er 

i 2 oo e 1 
T Wn - Wn-1 >2 

Lq(M) 
Lq(M) 1 2 

OO 
T 

and 

Wn-1 £n-l er I oo <?n-l wn-ieT oo u' n_ie T •oo 
Lq(M) .2 

n-1 Lq(M) 
1_ 2 
OO 

e 2 
T p .2 

n-1 e 
2 

T 
i 9. OO e 2 

T B2-P e 2 
T 

i 
2 OO T. 

Thus 

aT 2 2 
n>0 

Òn 2 
2 

i 
2 sup 

n 
Lq(M)-wn1 Lq(M) 

oo 
2 

2 

P 

1 
2 X 

1 
2 P 
H p v 

T. 

br 2 2 
n>0 

n̂ 2 
2 

1 
2 sup 

n 
Wn-l£n-l er oo 

2 
2 
P 

1 
2 X 

1 
9 P 
H p p 

T. 

We obtain (iii) with g P, Lq(M) Lq(M) T 2 2 
P 

1 
22 H 

1 2 P 
H 2 v 

T It remains to prove the conver­
gence (i) in H c 

Po 
We set 

Vt 
n>0 

Lq(M) Lq(M) Wn -Wn-1 s 
*̂n 

1 — er and zT 

n>0 
dn bnWn-l £n-l 1 — er 

Then x ay + br Lq(M)zt and theorem 6.1.6 implies 

(6.1.17) x CLT + 
"2o 

C(po) Vt Lq(M) Lq(M) ^0 

Observe that 

(6.1.18) r 1 — er 2T-q X P 
H ¡y 

Indeed, since 1 — er 1 e i T e 2 
T 

1 e i T V 1 e 2 
1 we have 

T 1 — er T 1 e i T T 1 e 2 
T 
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Moreover, lemma 6.1.13 yields 

R 1 e 
1 

T R 1 

n>0 
wn - Wn-i 2 

] 
2 T T~qr 

n>0 
wn - WN-1 2 

1 
2 9 

Lq(M) 

n>0 
Wn - Wn-1 |9 

9 
ji-q X IP 

P̂ 

and 

r 1 x 2 
T 

: T 1 Lq(M) 1 
2 P Lq(M) Lq(M) Bq 1 1 

2 -p rp-q X 
IP 
^p' 

This proves (6.1.18). As for ar we can write for 1/po 1/2 + 1/qo 

Vt UP0 
Lq(M) 

n>0 

Lq(M) |2 
12 

1 
2 

n>0 
w n - w n - i 0n 1 — ct 12 

1 
2 

90 

Let s = 4/(2 — p). Since po < 4/(4 —p) we have go < s. Thus we can consider 
qo < TQ < oo such that 1/go = 1/s + l/^o- By Stein's inequality we have 

n>0 
w n - wn-i f Lq(M) 2 1 2 

9C n>0 

Lq(M) Wn - WN-1 Lq(M) 2 1 
2 

go 

7go 
n>0 

w n - w n_i 1 — er 2 1 2 
9o 

7go T — er 
n>0 

w n - wn_i >2 ,1 — 
1 
2 
1 
2 go 

7go 1 ex ro 
n>0 

Wn - Wn-1 2 1 
2 
1 2 S 

Lemma 6.1.13 implies 

n>0 

Lq(MLq(M)Lq() 2 
1 
2 
1 2 S n>0 

Wn - Wn-1 
s 

B1 1 
2 P 

Lq(M) X 
2 x 2 

By using (6.1.18) we obtain 

Vt h lc 
PO 

Cp7go 
2 

P 

1 
2 2 1 rorp-q/ro X 

V 1 
2 

1 
r0 H c V 

X 
2 s 2 

We estimate 2T as we did for br by 

Lq(M) h x PO n>0 

Lq(M) 2 
2 

1 
2 sup 

n 
Wn-1 £n-l 1 — er 2 1 

2 
go/2 

Since 1 — er w 2 
n-1 

1 — er 1 — er B2-v 1 — er , we have 

£n-l WN-1 1 — er 2 £n-l WN-1 1 — 2 £n-l Bd 1 
2 P 1 — ex 

2 
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and the noncommutative Doob inequality gives 

sup 
n 

Wn-1 £n-l 1 — er 2 
1 2 9o 

sup 
n 

£n-l Wn-1 1 — er 2 
1 2 Qo 

sup 
n 

£n-l Bl P 
2 1 — er 2 

1 2 qo 

S 1 2 Bn 

Lq(M) V 
2 1 — ex 2 

1 
2 Lq(M) 

¿90/2 1 — er B2-P 1 — 6t 1 
2 90 

1 — er 2 
x 

Lq(M) 1 
2 S 

22/ro rp-2q/rQ X 2p/r0 

H 2 P 
X 4/s 

2 
Thus 

Lq(M) Lq(M)h hp PO 

2 
Lq(M) 

1 2 2 1 / r ü ji-q/ro \X 
V 1 

2 
1 r0 Lp Lq(M) P 

X 
2 3 2 

By (6.1.17), we obtain that 

x Lq(M) H c PO 
C Lq(M) ji-q/ro X 

P i 2 
1 r0 H x p 

X 
2 2 2 

and taking the limit as T tends to oo yields (i). 

Remark 6.1.14. — It is important to note that for all T > 0 we obtained a uniform 
bound 

x clt + bT 
HP0 

c P,Po j^-q/ro X 
P 1 

2 
1 r0 H p p 

X 
2 
c 2 

where s 4 2-p and 1/ro 1/po - 1/2 - 1/5. 

Observe that we may deduce from the proof of proposition 6.1.2 an explicit decom­

position of H c 
V 

h lc 
P 

h c P 
This gives a constructive proof of theorem 6.1.6. Indeed, 

for x G Ij2(M.) we can set 

xlc 

n>0 
dn 

Lq(M) Wn - Wn-i and xc 

n>0 
dn bnwn-i 

where wn ;0<k<n \dk{x) 2 
1 
2 1 4 P 

and bn 
dn(x)wn

1 (here we assume that 

n dn X, 2 is invertible Then x xlc + Xe 

and it follows from the proof of propo­
sition 6.1.2 that 

X1' Lq(M) XC 

Lq( Civ) X Hp 
In fact, this explicit decomposition can be done at the level of the column Lp spaces. 
More precisely, we can define the space Lc°nd~(M\ £%) by setting 

x LC O N ( 1" 
p 

Lq(M) 

n>0 
£n-l Xn 

2 1 2 
P 

for 1 < p < oo and x = (xn)n>o a finite sequence in M. Then we might prove 
constructively that 

(6.1.19) L cond 
P 

Lq(M) Lp Lq(M)IK L cond-
P 

M;£c

2 
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with equivalent norms for 1 < p < 2. Even if we will not use it in this paper, it is 
worth mentioning that (6.1.19) implies 

H r. 
P 

is complemented in L cond 
P 

M;£c

2 for 1 P oo. 

Indeed, this is easy to see for 1 < p < oo by Stein's inequality. For p — 1, this follows 
from (6.1.19) and from the fact that h\ is complemented in L\°nd~(M; £c

2) (by (6.1.16)) 
and h\c is complemented in Li(M;£i) (by lemma 6.1.4). 

6.2. Definition of diagonal spaces for 1 < p < 2 and basic properties 

We fix an ultrafilter U. For x G Ai and 1 < p < 2, whenever the limits exist, we 
define 

x Lq(M) LIM 
aU 

X K a and \x hlc 

lip 

lim 
<7,U 

x hlc 

cr 
Observe that by interpolation between the cases p = 1 and p — 2 and remark 6.1.7 

we have 
1 
2 X P X K X Lq(M) 

Hence Lq( and hlc 

rip 

define two norms for 1 P 2. 

The discrete diagonal norms also satisfy some monotonicity properties. 

Lemma 6.2.1. — Let l<p<27xeM and a C a'. Then 

(i) x Lq(M) a 
2 x\ K cr Hence x Lq(M) : SUPa \x K a 2 x Lq(M) 

(ii) X Lq(M) o X Lq(M) cr' 
Hence x hpc SUPcr X Lq(M) 

cr t 

Proof. — Let ado-'. By interpolation between the cases p = 1 and p — 2 we have 
for 1 < p < 2 and tea 

d CT 
Lq(M) Lq(M) 

P Lq(M) 

d 
s X 

P 
2 

Lq(M) 

d a 
s X P 

P 

l 
p 

where It denotes the collection of s G cr' such that t (a) < s (a') < s < t. Thus 

x K a 2 x Lq(M) a 
For (ii), we show that for a C a' we have a contractive map 

E Lq(M) M-Jl(a') Lp \M-A(P) X s seer' Lq( teer 
SEIT 

X s 
teer 

Since for x G Ai we have d fcr 2 X seer' d 'cr t X tea this will yield the required re­
sult for hpc. Let x — (xs)secr' be in the unit ball of Lp(A4'1 IKa')), then by lemma 6.1.2 
we may write xs = bsas for all s G a' with 

seer' 

bn 
2 
2 

1 2 

sGcr' 
as 

2 1 
2 

l 
1 
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where l/p 1/2 + 1/(7 Then E(x <seh bsas tea 
is of the form (6.1.3) with 

tea,seit 

K 2 
2 

1 
2 

tea.seit 
as 

2 1 2 

q Lq(M) 

\bs 
2 
12 

1 
2 

Lq(M) 

as 
i2 

1 
2 

9 
1. 

Hence D(x) is in the unit ball of Lp(Aim, (\(CR)) 

Corollary 6.2.2. — Let 1 < p < 2. TTien £/ie norms \\.\\h<t and | | . | | hi c cfo r&o£ depend on 
the choice of the ultrafilter li, up to a constant. 

Definition 6.2.1. — Let 1 < p < 2. We define 

h '.d 
P 

x e LJM) x K oo and h c 
P 

x G LP(M) x Lq(M) oo 

Adapting the proof of proposition 3.6.2 we can show that these define two Banach 
spaces. By remark 6.1.7 (1) we have 

h Ir 
P 

Lq( 'd 
P 

contractively for 1 P 2. 

For technical reasons these spaces are too large. Hence we need to introduce their 
regularized versions as follows. Note that by the regularity property of the /I*C(CR)-

spaces stated in remark 6.1.7 and the fact that h^c is a subspace of LP(A4), we have 

E lc 
P 

h lc 
P 

contractively for 1 P P 2. 

Definition 6.2.2. — Let 1 < p < 2. We define 

g d 
P 

L2 M h d 
p 

Lq(M) and H IC 

p 
P>P 

h le 
P 

,ic 

Remarks 6.2.3. — 1) At this point it is not obvious that the set L2(Ai) fl is non 
trivial. We will show later that this definition of hd

p actually makes sense. 

2) Note that for 1 < p < 2 we have bounded inclusions 

h d 
P 

h d 
p 

LP(M) and h lc 
P 

Lq(M) lc 
P 

Lp M 

Since by proposition 3.6.1 we have an injective map Hc LP(M) this implies that 

the natural bounded maps 

h d 
P 

H c 
P and h Lc 

P 
H c 

P 
are injective. Similarly, since proposition 5.5.1 implies that for 1 < p < 2 the natural 
map h£ ^+ LP(A4) is injective, we deduce that the map 

E c 
P 

H c 
V 

is injective for 1 < p < 2. For p = 1 we have LhJ ^+ Hf. Hence in what follows we 
will consider the spaces h^, h^c and h£ as subspaces of hc

p for 1 < p < 2 and hf, h}c 

and LhJ as subspaces of H,\. 
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6.3. Davis decomposition for 1 < p < 2 

Equipped with the diagonal spaces Lq(M) d 
p 

and G 1 
P 

defined in subsection 6.2 , we can 
now extend the three versions of the Davis decomposition presented in subsection 6.1 
to the continuous setting. Since we will consider the weak limit of the discrete case, 
we will need the following lemma. 

Lemma 6.3.1. — Let 1 < p < 2. 

Lq(M) Let p P ; 2 be such that p 1 and (xa)cr be an uniformly bounded family in 
Lp(M). Then 

w-Lp lim 
Lq(M) 

Lq(M) Lq(M) lim 
a,U 

X(j Lq(M) a 

(Ü) Let (xa)(j be an uniformly bounded family in L2(M). Then 

w-L2 lim 
a,U 

X(j v 2 lim 
<7,U 

X(j Lq(M) a 

(iii) Let (xa)a be an uniformly bounded family in L2(A4). Then 

w-L2- lim 
aJA 

X(j Lq(M) 2i/p lim 
alÁ 

XQ-Lq(M) (T 

Proof. — We first consider assertion (i) and set x = w-Lp- lim a^ xa. We fix a par­
tition cr0 and e > 0. We can find a sequence of positive numbers (ojm)^f = 1 such that 
XIm a m = a n a ^ Partitions a 1 , . . . , a " M containing (JO such that 

X 
m 

amxam 
P 

e 

and X(jm hP

c Lq(M) 1+e LINIER tu X<7 Lq(M) 
a 

for all m = 1. M. We write 

\x Lq(M) CTO X 
m 

Lq(M) 
hp

c 
Lq( m 

G¿mXcrrri 

Lq( cro. 

2e x 
m 

Lq(M) Xam hl

p

c 

<7Q 

The last inequality comes from the fact that for 1 < p < 2, z G LP(A4) and ao a finite 
partition we have 

(6.3.1) Z ip x 
2 O~0 z \P 2 ^0 z p-

Indeed, by the triangle inequality in h lc 
P 

Lq( we have z xe no tecTQ 
d ao 
t Z Lq(M) cro 

We can write Ss,t d ao 
t Z 'seao bsas s£ao 

with 

bs ös,tvt 
d <a0 t Z 

i 2 P and as 

Lq( d aQ t Z p/q 

where d a0 t Z vt 
d 'a0 t Z is the polar decomposition of d ao 

t Z and 1/p 1/2 + 1/9. 
Then we obtain 

d ao 
t Z Lq(M) ao Vt 

d a0 •t Z 
1 2 P 

2 d a0 t Z 
p/q 

q d ao 
t Z P 

2 z \P 
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and (6.3.1) follows. Since ctq C G771 we get by lemma 6.2.1 

x Lq(M) CTO 2 ^0 e 
m 

Lq Xam vLq( ' (jVTL 2 CTO e l+e lim 
Lq(M 

XQ-hlc 

ftp 
a 

Sending e to 0 and taking the supremum over GQ yields (i). Assertion (ii) follows 
similarly from the fact that the Holder inequality in £P(<J; LP(M)) gives for z G L2(M) 
and a finite partition a 

z K 'a 'd CT 
t Z tea tv cr;Lp M G 

Lq(M x 2 
for 1 < p < 2 and l/p= 1/2 + 1/'q. The last point may be proved with the same kind 
of argument, by using the fact that \\z\\^c < \\z\\2 and lemma 5.3.1. • 

6.3.0.6. The "regular" version of the Davis decomposition. — The continuous ana­
logue of theorem 6.1.6 for 1 < p < 2 is 

Theorem 6.3.2. — Let 1 < p < 2. Then with equivalent norms: 

(0 u C 
V 

xh lc 
P 

h c P 
for 1 P 2, 

(ii) TL c 1 E lc 
1 Lh c 1 

Proof. — Let 1 < p < 2 and x G Ai be such that ||X||K c < 1· By lemma 3.5.6 there 
exists 1 < p < p < 2 such that ((x))Hp

c < 1· We apply theorem 6.1.6 to each partition 

a and p and get a decomposition x Lq(M) with aa G h le 
p er bo G /7, c 

p a and 

am h le 
P 

x 
Lq( P 2 C P, x HZ 

p 
a 

Here C(p) denotes the constant in the equivalence H r. 
P a h lc 

p 
d h c 

P 
G Hence it 

does not depend on G and is bounded as p —> 1. For each G we have 

Lq(M) p 
21 Lq(M) p CT 

2C P. x m 
P 

a 

Thus the family (aa)a is uniformly bounded in the reflexive space Lp(M.) and we can 
consider 

a w-Lp- lim 
crXi 

da e LP(M). 

By lemma 6.3.1 (i) we obtain 

a h IF 

P 

lim 
crlA 

Lq(M) p cr 

Then we deduce that a G h lc 
P 

IT lc 
P 

We now turn to the 6-terms. Since the ft c 
p (7 

norms are decreasing in a by lemma 5.3.1, for each a we have 

(6.3.2) bo G ft c 
P (J 19 r. P 

with bo h c p 
2 1/P bo c p p 

Indeed, by the density of L2{M) in ft~(cr) there exists a sequence (fr£)n

 m ^ ( A f ) 
which converges in ft~(cr) to ba. By lemma 5.3.1, (b™)n is also a Cauchy sequence in h~, 
hence converges in h | to 6 .̂ We get two Operators ba and b'a in Lp(A4) thanks to 
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proposition 5.5.1, and we can easily check that r Lq(M) r y*K for all y G L($),{M). 
Then ba = b'a G hc~ with 

ba hi 
p 

lim 
n 

b n 
a hi 

p 

2i/p lim 
Lq(M) 

6 n 
CT hi 

P 
a 

Lq(M) Lq(M) 
h C P a 

Hence the family (ba)a is uniformly bounded in the reflexive space h~ and we can 
consider 

6 = w-hc~-lim 
a,U 

ba g Lq(M) 

Moreover we have 

6 hi 
p 

LIM 
a,U 

ba hi 
p 

2 I /P LIM 
a,U 

ba hi p a 

Since the family (ba)a is also uniformly bounded in the reflexive space Lp(Ai), the 
weak-limit of the ba's in Lp(M) exists and coincide with 6 for h~ C Lp(jM). Then 
we obtain x = a + b with a G h*c and 6 G hc

p C h£ for 1 < p < 2, b G C LhJ by 
remark 5.5.5. The above estimates give 

a Lq(M) b h 2 P a h lc 
P 

b h c v 
lim 
aM 

Lq(M) p a 
2Vp lim 

Lq(M) 
6a P o 

2 1 / P C p LIM 
aU 

X Lq(M)p a 
2l/pc V 

Since 2 1/ pC(p) is bounded as p —> 1 we may obtain a bound indépendant of the choice 
of p, say sup p < p < 1 + i ,p2

1/pC(p). This concludes the proof of the theorem. • 

We can now deduce the continuous analogue of theorem 6.1.1, i.e., the Davis de­
composition involving the space h^. To do this we need to extend remark 6.1.7 (1) to 
the continuous setting. This is not trivial, it comes from the following density result 
based on the notion of p-equiintegrability. 

Lemma 6.3.3. Let 1 < p < 2. Then L2(M) hp c is dense in Lq(M) 

Proof. — Let x G h*c and e > 0. By definition it suffices to consider x G h~c for some 
1 < p < p < 2. We suppose that ||#||h^c < C. Let q > q be such that l/p= 1/2 + 1/q 

P 
and 1 jp— 1/2 + l/q. By lemma 6.2.1, for each a we can decompose d°{x) — ba(t)aa(t) 
with 

' tea 
ba t 

2 
2 

1 
2 

tea 
Lq(M) t 

2 1 
2 

Lq(M) 
c. 

We may assume that tea ba t 2 
2 

1 
2 1 and Lq(M) Lq(M) t 2 1 

2 9 
c. We set 

(6.3.3) Oct1 t) Lq(M) t 1 

tea 
Lq(M) t 

2 
T with T 2q Lq(M) C 2q q-q 

Then we have 

(6.3.4) 
tea 

Lq t 
2 

oo tea 
op 

t 2 1 

tea 
ap f 

2 L 
oo 

T 
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and 

(6.3.5) 

tea 

aa(t) aa 
t 2 

1 
2 

q tea 
aa 

t 2 1 

tea 

Lq(M) t 2 T 
1 
2 
1 
2 3 

tea 
Lq(M) t 2 T il q 

x 
tea 

Lq(M) t 2 
q 
q 

1 1 2 
1 
2 x 

T g-g 2q 
tea 

Lq(M) t 2 
q 
2 g 
g/2 

T q-q 
2 g O q 

q S 

We set 

Va 
tea 

d a t 
Lq(M) t Lq(M) t 

By (6.3.4) and the Holder inequality in L2(M; i^i*7)) w e g e t for each a 

Va 2 2 
tea 

Lq(M) t Lq(M) t 2 
2 

1 
2 2 

tea 

ba t 2 
12 

1 
2 

tea 
Lq(M) t 2 1 2 

OO 
2T 1 

2 

Hence the family (ya)a is uniformly bounded in L,2(A4), and we can consider 

y w-L2 lim 
Lq(M) 

Lq(M) e L2(M) 

Lemma 6.3.1 implies 

y h1^ 
V 

lim 
ali 

Va Lq(v rr 
By the definition of ya and (6.3.4) we get 

Va Lq( a 
tea 

ba t 2 
2 

1 2 

Lq(M) 

Lq(M) t 2 1 
2 

b 

tea 
ba t 2 

2 

1 
2 

Lq(M) 

Lq(M) t i2 1 
2 

OO 
T 1 2 

and we deduce that y £ IN 1. 
Lq(M) 

h lc 
P 

We may adapt the proof of lemma 6.3.1 (i) to 
show that 

(6.3.6) \x-y hlc 

lip 

lim 
aU 

X-ya hl

p

c 

a 

Indeed, for a fixed partition crn and 5 > 0 we can find a sequence of positive numbers 
Lq(M) M 

'm=l 
such that m O'rn 1. and partitions a1 aM 

containing do such that 

y 
m 

Lq(M)pol 
2 

ö 

and 

x - yam Lq(M) am 1 + 5 lim 
aM 

X-ya Up a 
for all m 1,...,M. 
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Lemma 6.2.1 and (6.3.1) give 

x — y Lq(M) co X 
m 

(^mycTr" hl

p

c 

co m 
Umy<7™ - y Lq(M) ao] 

m 
Olm X - yam 

Lq(M) c0 

2 Lq(M) y 
m 

amy am 
P 

m 
Lq(M) X - yarn hP

c 

en 2 Lq(M) y 
m 

Lq(M) 
2 

m 
«m X - yarn LIP Lq(M) 25 Lq(M) L + (5 lim 

Lq(M) 
x-ycr HPC 

a 
20 Lq(M) 

Sending 6 to 0 and taking the supremum over ao we obtain (6.3.6). For each a we 
have by (6.3.5) 

Lq(M) TIP a 
tea 

ba(t) aa(t) aa(t) 
I BP a 

tea 
bo t 2' 

2 
1 2 

tea 
aa(t) - aM) 2 1 2 

cLq(M) 
Lq(M) 

Hence x-y Lq(M) : e and this ends the proof of the lemma. 

We can now define by density a contractive map from I? lc 
P to h D 

'pi 
which is clearly 

injective for hp

c and hd

p are subspaces of LP(M). 

Corollary 6.3.4. — Let 1 < p < 2. Then we have a contractive inclusion 

h i c 

p 
Lq(M) D 

P' 

We deduce from theorem 6.3.2 and remark 6.2.3 (2) the desired Davis decomposi­
tion. 

Theorem 6.3.5. — Let 1 < p < 2. Then, with equivalent norms, 

i Lq(M) c P h D 
P 

h c 
P for 1 V 2, 

(Ü) Lq(M) c 1 h D 
1 Lh c 1 

6.3.0.7. The version of the Davis decomposition in Randrianantoanina7s style. — 
The continuous analogue of corollary 6.1.9 is stated as follows 

Proposition 6.3.1. Let 1 V 2 and x e L2(M). Then there exist a, b G L2(M) 
such that 

(i) X a + b: 
(ii) a K b K C(P) X H c P 
(iii max a 2, b 2 Lq(M) Lq(M) x HP X 2 

where C(P) c p-1 -1 as V 1 
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Proof. — We again use the limit argument detailed in the previous proofs of decom­
positions in the continuous setting. We start by applying corollary 6.1.9 to a: G L2(M) 
and obtain a decomposition x = aa + ba with 

(6.3.7) 
Lq(M) h d P a 

Lq(M) 
h p a c P. x H p a 

max Lq(M) 2 ba 2 Lq(M) Lq(M) x Hp a X 2 

Hence the families (aa)a and (ba)a are uniformly bounded in L 2, and we can consider 

a w-L2- lim 
Lq(M) 

aa 
and b w-Lo lim 

a,U 
ba-

We obtain x a + b where a, b G L2(M) satisfy 

a 2 lim 
a,U 

da 2 lim 
a,U 

f p, x Lq(M) cr X 2 
Lq(M) 

P x Lq(M) X 2 

and similarly b 2 
Lq(M) Pi X Lq(M) X 2, Lemma 6.3.1 (ii) and (iii) give 

a h d 
P 

Lq(M) lim 
alÂ 

Lq(M) h d 
P a and b h 2 P 

2i/p LIM 
aLl 

ba h c p a 

Combining with (6.3.7) we get 

a c d 
P 

b h c p 
2 lim 

a,U 
aa h d 

P a lim 
Lq(M) 

ba K a 

2C P. lim 
ahi 

X H c P a 2C P x n x 
p 

Corollary 6.3.6. — Let 1 < p < 2. Then, with equivalent norms, 

Lq(M) c 
c 

IÏ d 
v 

h c 
P 

Lq(M) d 
P 

h c 
P 

Moreover, the constant remains bounded as p —)• 1. 

Proof. — On the one hand, we consider A0 L2 M X Lq(M) d 
P 

Y LÌ c 
P 

Ai Lp M 
Then we may translate proposition 6.3.1 in terms of EB-sum as follows 

(6.3.8) H C 
P 

Lq(M) d 
P 

h c 
P 

with equivalent norms. 

But this holds with a constant C(p) which does not remain bounded as p -> 1. On 
the other hand, we know by theorem 6.3.5 that with equivalent norms 

(6.3.9) Ti c 
p 

C d 
P 

h c 
p 

where the constant remains bounded as p —> 1. We deduce that Lq(M) d 
P 

Lq(M) c 
p 

h d 
P 

h c 
P 

with equivalent norms for 1 < p < 2. Hence the two sums coincide isometrically 
by lemma 4.3.2. This means that the constant in (6.3.8) is the same than the one 
in (6.3.9), hence remains bounded as p —>· 1. • 
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6.3.0.8. The "mixed" version of the Davis decomposition. — Lemma 6.3.3 allows us 
to define the sum h^c EE h£, and we may extend theorem 6.1.11 to the continuous 
setting. 

Theorem 6.3.7. — Let 1 < p < 2. Then with equivalent norms 

H c 
P 

Lq(M) 
Lq(M)V 

IT c 
P 

We first need the continuous analogue of proposition 6.1.2. 

Proposition 6.3.2. — Let 1 : P 2,P Po Lq(M) 4 - p and x G L2(M). Then there 
exist two families (OT)T>O and (6t)t>o in L2{M) such that 

(i) x LIM 
T^oo 

ar + br in H c 
Po 

(U) OT Lq(M) br Lq(M) C(P) x Lq(M) for all T > 0; 

(iii) max OT 2 Lq(M) 2 c P, x TX T for all T > 0. 

Proof. — Let x G L2{M). By proposition 6.1.2, for T > 0 fixed and each a we can 
find CLTM, brier) G L2(M) such that 

x aT a br a Hc 

PO 
a c P. Po Ji-q/ro X P 1 2 1 r0 

H c P a X 
2 n 2 

aT a h lc P CT 
br a Lq(M) a c P Lq(M) H c P a 

max ar Lq(M) 2 br a 2 9 P. x Hp CT 
T X H c p CT 

where s 4 2-p AND 1 , Lq(M) 1 Po - 1 2 - 1 5. Since Lq(M) Lq(M) '(J and ÒT1 Lq(M) CT are 
uniformly bounded in L2(A4)1 we can consider 

<2T w-L2 lim 
Cr,W 

ÜT o and ÒR w-L2 
lim 
cr,U 

bT(or) 

Then the point (iii) is clear, and (ii) follows directly from lemma 6.3.1. Since 

x ar + br w-L2 
LIM 
Lq(M) 

X aT((r) bT(<T) 

by using lemma 3.3.1 we can easily show that 

x ar+br ^PO ßp LIM 
Lq(M) 

X aT(cr) -brier) Hpo x 
C P,Po IT 0 

r0 \X 
P l 2 1 

r0 x p P 
X 

2 c 2 

This gives (i) and ends the proof of the proposition. 

Proof of theorem 6.3.7. — It suffices to prove that if x X\,X2 .' lp Lq(M) then 

(6.3.10) x2 G Lp,MÖ with X2 Lc,MO 
v 

c P x ,nP Lq(M) 

We will conclude by using the fact that L c 
P 

MO H C 
V 

h lc 
P 

h c 
P 

by theo­
rem 3.8.4 and theorem 6.3.2. Let x Xl,X2 G 17 lc 

P 
Lq(M) c P 

Then by lemma 4.3.4 

we have x\ G h le 
P X2 G h c P 

L c 
P mo L2 M and x\iV X2iV for ail 

y e L2 
M Lq(M) le 

p Furthermore 

x h le P h c P 
max #1 Lq(M) le 

P 
^2 ir c p 
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For R > 0 and a fixed we consider the projection 

Lq(M) 1 
tea 

et,t d a 
t %2 R g B Lq(M) a M. 

Then fR a tea eut f t 
R a where / t R a 1 d ]a 

t X2 R G M. We set 

x R 
2 G 

tea 

d a 
t I t R G d a 

t %2 

Since x R 
2 

G a is uniformly bounded in L2 
M we can define 

x R 
2 w-L2 

lim 
a,U 

X R 
2 

G 

We will show that 

(i) x R 
2 

Lq(M) L c 
P 

MO ¡53133 x R 
2 L 

p 
MO C P x Lq(M) Lq(M) 

for all R > 0, 

(ii) X2 w-L2 lim 
R oo 

X R 
2 

Since Lc,MO h c 
P 

by theorem 3.8.4 and L2(A4) is dense in h 'C 
•p we will de­

duce (6.3.10). Let p < po < 4/(4 — p). On the one hand, by (6.1.16) we get for 
each G 

(6.3.11) x R 
2 

G 
h c 
p 

a 
tea 

£t~{a) d a 
t f -t R G d a 

t X2 
2 1 

2 
1 2 p' 

tea 
£t-(a) f t 

R G d a 
t X2 

2 1 
2 
1 2 p' 

X2 h c 
P a 

Proposition 5.1.5 implies x R 2 
G L c 

p 
mo(a) c P X2 p mo(a) On the other hand, 

by definition of /R{G) we can write 

x R 
2 G h d 

p a 
2 

tea 
f t 
R G d a t X2 P 

P 

1/p' 
2 

tea 

f t 
R G d a 

t X2 
2 f t 

R G 
i 2 P 
1 2 P 

1/p' 

fR G 

tea 
et,t d 

t X2 
2 fR G 

i 
2 
L i 2 P 

B t2(a) M 
R. 

Thus X%(G) G hD

PL(G) n Lc

p,mo{G) = L^AfO(a), and we can control its hc

p LP,MO(G)-
norm uniformly in cr. We deduce that x2 G LC

PLMO. Now we want to estimate its 
L^XO-norm. Let p < po < 4/(4 - p) and y G L2(M) be such that ||^||hc < 1· 
By proposition 6.3.2 we can approximate y in HpQ by a family ar + br such that 
aTlbT G L2(M) and ||aT|| hi c + ||6T||h- < C(p)\\x\\n- for all T > 0. Since x^ belongs 
to LC

P,MO C Lc

p,MO = (Uc

poy and x%, aT, bT e L2{M), we can write 

x R 
2 y lim 

Lq(M) 
X R 

2 ar x lim 
T->oo 

X R 
2 Lq(M) x R 

2 6T 

By (6.3.11) we clearly have 

x R 
2 br X R 

2 Lq(M) bT h c P 
Cp X2 Lq(M) br h c 

p 
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Observe that for z G L2 M we have x R 
2 Z x R where 

zR w-L2 lim 
Lq(M) 

Lq(M) G and zR 

G 
tea 

d a t f t R G d a t Z 

If in addition z G L2(M) D h^c, then zR e L2(M) D h*c with 

(6.3.12) zR 

Lq(M) Lq(M) Lq(M) hlc 

Indeed, for G fixed, let e > 0 and Lq(M) (7 1 2 6a t do-t be a decomposition such that 

tea 
Lq(M) t 2 

2 
1 2 

tea 
Lq(M) t 2 1 2 

9 
Lq(M) 1 lc P a Lq(M) 

where 1/p 1/2+1/?. Then / Lq(M) 
2 a RI z f t R G ba t Lq(M) t and 

zR 

G hpc Cp Lq(M) t R G d a t Z n Lq(M) M-l\{a) Cp 
tea 

Lq(M) t R G ba t 2 
2 

1 2 
tea 

Lq(M) t 2' 1 2 
Lq(M) 

Cp z Lq(M) a 
Lq(M) 

Taking the limit in G and as e —>> 0 we get (6.3.12). Then applying this to z = ar G 
L2 X h lc P we get 

x R 
2 <2t X2 a R 

T xi a 
R 
T xi hpc a R 

T Lq(M) Cp xi hlc 

rip 
Lq(M) hlc 

lip Finally we obtain 

x R 
2 Lq(M) Cp lim 

Lq(M) 
Lq(M) hpc br Lq(M) c P 

max Lq(M) hlc 

lip 
X2 h c P 

Lq(M) 2/ Lq(M) 
V max Zl hlc 

lip 
X2 Lq(M) c P 

Hence by density of ./^(Al) in Hp we deduce (i). It remains to prove the conver­
gence (ii). We start by proving that x2 = w-Lr- lim^^oo xR for all r > 2. Since 
the family (X2)R is uniformly bounded in L2(A4), the weak limit exists in L2, and 
necessarily coincides with the weak limit in Lr. Hence we will deduce (ii). Let r > 2 
and y G L r(Af). We prove that for G fixed, 

(6.3.13) X2 x R 
2 G y CrR~2/u 

X2 1+2 fu 
2 y r 

where 1/2 1/r + 1/u. We will conclude that 

X<2 X ,R 
2 y lim 

7,U 
X2 X R 

2 G y CrR~2/u 

X2 1+2/u 
2 y ri 

which trivially tends to 0 as R goes to oo. To prove (6.3.13) we use 

tr r l-IR G R~2tror 
tea 

Lq(M) d a t X2 2 R-2 

X2 2 
2 
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We write 

X2 X R 
2 Lq(M) y 

tea 

T d a t X2 dat 1 Lq(M) t 
R G d a t y 

2 X2 2 
tea 

1 Lq(M) t 
R G d a t y 

2 
2 

1 
2 

2 X2 2 1-fR G 

tea 
,et,t d a 

t y 2 Lq(M)(o) 
1 
2 
Li B Lq(M) M 

2 x2 2 1 IR G Lq(M) B(Ï2(a) M 
tea 

et,t d a 
t y 

2 i 
2 
L Lq(M) 

2 r 
B(£2(a) M 

2R~2/u 

X2 \l + 2/u 
12 2/ Lq(M) CT 2CrR -2/u X2 

1 + 2/u 
2 2/ r 5 

where the last inequality comes from the continuous inclusion Lr(Ai) hf G 

Since h v 
V 

h d 
P contractively, we can deduce from theorem 6.3.7 a new proof of 

corollary 6.3.6 which allows us to extend it to the case p = 1. 

Corollary 63.8. — We have with equivalent norms 

U c 1 h d 
1 

h c 1 It d 
1 

Lh c 1 

Proof. — We consider the following bounded maps 

Lq(M) c 
1 h lc 

1 
h c 1 

gLq(M) h 1 
Lq(M) c 1 

<£2 Lq(M) c 
1 Lh c 1 

Lq(M) Lq(M) c 
1 Lh c 1 

Lq(M) c 
1 

Here the first equality comes from theorem 6.3.7, the last one from theorem 6.3.5 (ii), 
the map ipi comes from the contractive inclusion h}c C hf, if2 from the quotient map 
ĥ  —>> LhJ and (fs is the quotient map described in lemma 4.3.1. Since this composed 
map coincides with the identity on L2(A4), the result follows by density. • 

Remark 6.3.9. — In fact corollary 6.3.8 could be proved directly. Indeed, in the very 
recent paper [47], Randrianantoanina and Xu give a constructive proof of corol­
lary 6.1.9 for p = 1 in the discrete setting. Then proposition 6.3.1 can be easily 
extended to the case p — 1 with slight modifications, and corollary 6.3.8 follows 
directly. 

Corollary 6.3.8 leads naturally to the definition 

Definition 6.3.3. — We define hi h d 
1 I? c 1 

h r 
1 

Eventually, combining corollary 6.3.8 and theorem 6.3.7 with proposition 4.5.2, we 
obtain a continuous analogue of (6.1.1). 

Theorem 6.3.10. — We have with equivalent norms 

H i hi h lc 1 h Ir 1 h c 1 
h r 

1 
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Remark 63.11. — The decomposition given by theorem 6.3.10 yields an "atomic" 
characterization of the space Hi which could be useful for applications. Indeed, this 
provides a nice way for proving that an operator x £ L2(M) is in BM.O. It suffices 
to test x against the "infinitesimal atoms" given by the definition of h\c, h\r and the 
discrete atoms of hj, hr

1 introduced in [2] (since the hf and h -̂norms are infimum by 
lemma 5.3.1). 

6.4. Davis inequalities for 2 < p < oo 

We now want to extend theorem 6.1.1 to the continuous setting for 2 < p < oo. 
As we did in subsection 4.4 for proving the noncommutative Burkholder-Gundy in­
equalities for 2 < p < oo, we will use a dual approach. This is why we need, as 
in this latter case, the version of the Davis decomposition in Randrianantoanina's 
style proved in proposition 6.3.1. Moreover, we need to discuss the dual space of the 
diagonal space hd

p for 1 < p < 2. That is a very delicate point, and actually we won't 
describe this dual. However, we define a smaller space Jp for 2 < p < oo which will 
play the role of the diagonal space in the Davis inequalities. 

Definition 6.4.1. — Let 2 < p < oo. We define the space Lq(M) d 
P as the space whose closed 

unit ball is given by the absolute convex set 

B c d 
P 

x G L2 M lim 
cr,U 

X Lq(M) a 1 x\ 2 1 2 

Then the norm in J d 
p 

is given by 

x j d v 
inf C 0 xeCB J d 

P 
Lemma 3.8.3 ensures that this defines well a Banach space. We may naturally 

introduce the seminorm 

x h d 
P 

lim 
Lq(M) 

X h d p a 
for 2 < p < oo and x G Lp(A4). By interpolation between the cases p = 2 and p = oo, 
we have 

x h d v 
2 x V 

In this situation we also have some monotonicity properties. 

Lemma 6.4.1. — Let 2 P oo, x G Lp M a a'. Then \x Lq(M) cr 2 x K n 
Hence 

1 
2 X h d 

P 
inf 
cr 

X Lq(M) (T X h d 
p 

Proof. — The proof is similar to that of lemma 6.2.1, hence we omit the details. 

As a direct consequence, we see that the seminorm Lq(M) and the space ,1 d 
p 

do not 
depend on the choice of the ultrafilter U, up to a constant. We can now state our 
continuous version of the Davis inequalities for 2 < p < oo. 
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Theorem 6.4.2. — Let 2 < p < oo. Then with equivalent norms 

H c 
V J d 

V h c 
V 

Moreover, the constant remains bounded as p —>· oo. 

Proof. — We clearly have a continuous inclusion TL c Lq(M) c 
P 

and a contractive inclusion 
U r 

p 1 d 
P Indeed, let x G M. be such that ||x||?^ < 1· Then 

lim 
Lq(M) X h d P (T 

lim 
Lq(M) 

Lq(M) Lq(M) c p CT 1 and Lq(M) 2 Lq(M) ft c p 
1 

This means that x G Bid 
JP 

Conversely, let x G J d 
P 

h c P 
be of norm < 1. We can write 

x L2 lim 
n 

X"YL h c 
V lim 

n 
X 

where the sequence ( x n ) n satisfies ||xn||hd ^ 1? Il̂ nlb < 1 for all n, and (x^) n is a 
sequence in Lp(Ai). Recall that by corollary 3.7.2 and lemma 3.7.3 we have 

TL c 
p 

Lq(M) c P x G Lp>(M) x Lq(M) c p 
OO 

with equivalent norms. Hence by the density of L2(A4) in TL c 
'p' it suffices to estimate 

r(x*y] for y G 1/2 M y Lq(M) 1 By proposition 6.3.1 we may decompose y = a + b 
with a, b G L2(A /() and 

a Lq(M) 61 hP C(P) 

Then 
R * 

x y 
T * 

x a 
T x*6 lim 

n 
T xna lim 

r?, 
R x7 b 

For each cr we have 

T x a X"YL h d P CT a h d V (7 and R x' b" x' K a b hc, 
P 

a 
Taking the limit over a yields 

R * 
xna 

Xn K a h d P 
a \1 d 

p 
and r xn "b x K b Lq(M) c 

P 
Hence we get 

T x y a Lq(M) d P 
lim 
n 

x' K b h c 
P 

a h c 
p 

X h c P 
5 Lq(M) c P 

a h d p 
6 hP 

Lq(M) P. 

Moreover the constant C(p) remains bounded as p —> 1 thanks to corollary 6.3.6. 

We presented above a direct proof of theorem 6.4.2, but this does not explain where 
does the space .1 d 

Lq(M) come from. This is why we detail below the whole argument, which 
highlights the construction of the space Lq(M) d 

p- Moreover, we will use this construction 
in the sequel. 

The delicate point here is to describe the dual space of the diagonal space h d 
P 

for 
1 < p < 2. Since we are only interested in the dual of the sum E d 

P h c 
V the key trick 

is to replace h d 
P 

in this sum by a nicer space, without changing the sum. We first 
observe that since L2 

M is dense in 13 c P 
we have 
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Lemma 6.4.3. — Let 1 < p < 2. T/ien isometrically 

(i) 17 c 
P 

L2 M G c P /or 1 Lq(M) 2 

(ii) Lh c 1 ¿2 A4 Lh C 
1 

Proof. — For 1 < p < 2, we consider 

A, L 2 ( X ) X L2 M Y h c P and Al Z/p M 

By the density of L2(.M) in IR c 
p 

it suffices to see that x Lq(M) x L2 M K for all 
x G L2(M). Let x G L2(M). It is clear that ||£||L2(.M)fflh£ < llxllhc- Conversely, we 
assume ||x||L2(X)fflhc < 1· Then there exist a, b G L2(M) such that 

Lq(M) a + 6 and a 2 6 Lq(M) 1. 

By the Holder inequality we get 

Lq(M) Lq(M) 0 hp 6 hp a 2 6 Lq(M) 1. 

Since L2(M.) is dense in Lh r. '1 and Lh c T embeds into Li(A4), the proof for p = 1 is 
similar. 

The idea is to add the space L2(M) to h D 
V 

to obtain a new larger diagonal space, 
in which L2(A4) will be dense, and which will preserve the EB-sum with h^. Hence we 
introduce the following space, which will play the role of h^ in the sequel. 

Definition 6.4.2. — Let 1 < p < 2. We define 

K D 
p 

Lq(M) D 
P 

L2(M) 

i.e., K D 
p 

is the completion of L2(A4) with respect to the norm 

x Lq(M) inf 
X=A+b 

aeL2(M) hp 
beL2(M) 

a P b 2 

Note that in this application we consider 

An L2(M) X h D 
P 

Y = L2(M) and A\ Lp(M) 

By the definition of I? D 
P' 

these spaces satisfy the density assumption (4.3.1) (more­
over X and Y embed continuously into v4i). By working a little bit more we can 
prove that the space hd

p embeds into LP(M). The discrete analogue of hd

p is the 

space K D 
p 

0~ h D 
P 

G L2(M) defined as the completion of L2(A4) with respect to 
the norm 

x 
Kd 

P 
CT 

INF 

X=A+b AELO(M) 
beL2(M) 

a K cr b 2· 

Observe that since we consider finite partitions, the norm Lq(M) a 
is equivalent to the 

norm p 
for 1 V 2. Hence for a finite partition G K D 

p 
G is Lp(M) equipped 

with the norm Lq(M) <J 
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Lemma 6.4A. Let 1 < p < 2 and x G L2(M). Then 

1 
2 X K d V 

lim 
ALI X K d V Lq(M) X K d P 

Moreover the map iu · x G L2 M x extends to a contractive injective map 

Lq(M) K d 
p 

u 
K d 

v a 

Proof. — Let x G L2(M). It is obvious that 

lim 
ALI X K d P A X K d P 

Conversely, we assume l i m ^ x K d P A 1 We may suppose that x K •d P A 1 for 
all a. Then for each a there exist a(a),b(cr) G L2(M.) such that 

x a(a) Ha) and a(a) Lq(M) Lq(M) 
6(a) 

2 1. 

Note that 
a(a) 2 x-b (7 

2 X 2 1. 
Hence the families (a(a))a and (b(a))a are uniformly bounded in L2(M), and we can 
consider 

a : w-L2 
LIM 
OLA 

a(a) and b w-L2 lim 
CRLA 

6(a) 

Then we may write x — a + 6, where a G L2CM) H ĥ , 6 G ^ ( j M ) satisfy by 
lemma 6.3.1 (ii) 

a h Lq(M) 
V 

b 2 2 lim 
Lq(M) 

a(a) Lq(M) x 6(a) 2 2. 

We obtain Lq(M) K d P 
2 linv,w 

Lq(M) K d 
P 

A 

Note that by lemma 6.2.1 we have 

x K d p A 2 x K d P (J
1 

for cr C a' and x G L 2(A /(). Hence 

lim 
Lq(M) 

X\ K d p Cr 
sup 

CT 
X K d P Cr 

2 lim 
ALA 

X K d P CT 

This means that the norm ||.||Krf is equivalent to supa | | . | | ^ ( a ) . Thus adapting the 
proof of proposition 3.6.2 and using lemma 6.4.4 we can show that 

Lemma 6.4.5. — Let 1 < p < 2. Then 

(i) x G Lp M x Kd 

p 
OO is complete; 

(Ü) K •d 
~P embeds injectively into Lp M 
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Observe that by lemma 4.3.2, we deduce that in fact K D 
v 

Lq(M) D 
P 

•L2(M) isometrically. 
We can now consider 

Lq(M) L2{M), X K D 
P 

Y h c 
P and Ai Lp M 

The associativity of E) combined with lemma 6.4.3 yield that K D 
Lq(M) preserves the EB-sum 

with h c 
P in the following sense. 

Lemma 6.4.6. Let 1 V 2. Then isometrically 

(0 Lq(M) D 
P 

h c 
P 

K D 
p 

IT c 
P 

for 1 Lq(M) 2; 
Lq(M) Lq(M) x 

1 Lh c 1 K c 
1 

Lh c 1 

Proof — By associativity, lemma 6.4.3 gives for 1 < p < 2 

h D 
P 

L2 'M Lq(M) c 
P 

h D 
P 

L2 M h C 
P K c 

p 
Lq(M) c 
P 

The proof for p = 1 is the same. 

At this point we have our new candidate K D 
p 

for the diagonal space. Indeed, in­
terchanging hd

p to Kp does not affect the EB-sum with h£. Moreover L2(M) is dense 
in Kp, and this will help us for describing its dual space as the space Jp introduced 
previously. We first need to give another description of Ĵ . In the discrete case, for a 
finite partition a and 2 < p < oo we define Jp (cr) as the space LP(M) equipped with 
the norm 

x Lq(M) a max x K Lq(M) X 2 
By lemma 6.4.1, it is clear that for 2 < p < oo, x G Lp(A4) and a C a' we have 

x Lq(M) a' 
2 x Lq(M) (7 

For 1 < p < 2, the discrete duality h D 
V 

CR h D 
'P' 

CR implies with equivalent norms 

K D 
P CT J RD 

P a 

Moreover, 
1 
2 Lq(M) Lq(M) d 

v a X K d v Lq(M) X J d 
V cr 

Observe that the space may be characterized similarly to the space LpM.O as 
follows. 

Lemma 6.4.7. — Let 2 < p < oo. 

FI) For 2 < p < oo, the unit ball of J: D 
P 

is equivalent to 

Bp x = w-L2 
lim 
CJU 

X<J lim 
Lq(M) 

X(j jd cr 1 

(ii) The unit ball of J D 
oo 

is equivalent to 

Boo X w-L2 lim 
Lq(M) 

X(j in L2 lim 
oU 

x<j jd <J 1 2 
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Proof. Since the discrete J d 
P a •norms are decreasing in cr (up to a constant 2), we 

may adapt the proof of proposition 3.8.9 and obtain that Mp is equivalent to 

x e L2(M) lim 
Lq(M) 

X Jd a 1 2 

Moreover, it is clear that for x G Lp{M) 

lim 
Lq(M) 

x J d V (T 2 max x h d V 
X 2 

We obtain that Mp is equivalent to Bjd for 2 < p < oo. 

This characterization describes the dual space of K d 
P' 

Lemma 6.4.8. — Let 1 < p < 2. Then with equivalent norms 

K d 
P 

J d 
P 

Proof. — The proof is similar to that of theorem 3.8.4. Indeed the description of the 
space Jp, given in lemma 6.4.7 is similar to that of the space Lc,M.O. The contractive 
inclusion Jp, C (Kp)* follows easily from the discrete duality (K^(a))* — Jpf(o~) and 
the density of L2(Ai) in K .̂ For the reverse inclusion, recall that by lemma 6.4.4 the 
space Kd

p embeds into YluKp(a), and that ||#||Kd < 21ima^ H^H^d^). Hence by the 
Hahn-Banach theorem we may extend a linear functional on hc

p of norm less than 
one to a linear functional on \\u Kp(cr) of norm less than two. Then we use the same 
argument as in the proof of theorem 3.8.4. The crucial point here is that 

[6Â.I] L2(M) is dense in K d 
P and x 2 X JD 

v 
cr 

Remark 6.4.9. — The same argument does not work if the observation (6.4.1) is not 
verified. This explains why we cannot easily describe similarly the dual space of 
for 1 < p < 2, and justifies the introduction of the spaces K d 

p. 
We obtain another proof of theorem 6.4.2. 

Proof of theorem 6.4-2. — Combining corollary 3.7.2 (i) with corollary 6.3.6 and 
lemma 6.4.6 and we get for 2 < p < oo 

TL c 
P 

TL c P h d 
P' 

Lq(M) c p' K d 
p h c P 

Then lemma 4.3.4, lemma 6.4.8 and corollary 5.4.7 (i) yield 

TL c 
P 

K d 
Lq(M) h c Lq(M) J d 

P h c P 
Remark 6.4.10. — This argument can be extended to the case p = oo, p' = 1. Then 
by duality corollary 6.3.8 implies that with equivalent norms 

BMOc 3d bmoc. 
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6.5. Burkholder-Rosenthal inequalities 

We may now extend the noncommutative Burkholder-Rosenthal inequalities re­
called in theorem 5.1.7 to the continuous setting. We introduce the conditioned Hardy 
space hp as follows. 

Definition 6.5.1. — Let 1 < p < oo. We define 

hp 
G d 

p 
h c p 

Lq(M) r 
P 

for 1 P 2, 
J d 
P 

Lq(M) c P 
h r P for 2 Lq(M) oc, 

where the sum is taken in LP{M) and the intersection in L,2{M). 

Combining the Davis inequalities (theorem 6.3.5 and theorem 6.4.2) with the 
Burkholder-Gundy inequalities (theorem 4.1.1 and theorem 4.4.2) we get 

Theorem 6.5.1. — Let 1 < p < oo. Then with equivalent norms 

Lp M hp. 

Corollary 6.5.2. — Let 1 < p < 2. Then isometrically 

hp Lq(M) d 
P 

Lq(M) c P 
Lq(M) r Lq(M) lc 

Lq(M) h ir Lq(M) 
Lq(M) c 

P 
17 r P 

Proof. — Combining corollary 6.3.6 with corollary 4.4.1 we obtain that the two sums 
Lq(M) d 

P 
h c P 

h r P and h c 
P IT c 

P h r 
P 

coincide with equivalent norms. Hence they coin­
cide isometrically by lemma 4.3.2. The second equality follows similarly from theo­
rem 6.3.7. • 
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APPENDIX 

We end this paper with some problems which are still open at the time of this writ­
ing. They concern the more difficult case p — 1. For 1 < p < 2, corollary 3.7.4 gives 
a nice description of the space Hp. However, we do not know if this characterization 
still holds true for p — 1. 

Problem 6.5.3. Do we have H c 1 x e Li(M) X Lq(M) c 1 
OO Lq(M) 

On the dual side, by remark 3.8.7 (iii) we know that the L^MO-norm is the limit 
of the discrete Lc

vMO-norms for 2 < p < oo. For p = oo, we only established one 
estimate in corollary 3.8.8 (iii). 

Problem 6.5.4. — For x G M, do we have 

x BMOC lim 
alA 

X BMOC Lq(M) ? 

The two last problems concern the delicate point of injectivity of the spaces. The 
first one concerns the space Hi defined in paragraph 4.5. 

Problem 6.5.5. — Does Hi embed injectively into L\(Ai) ? Or, equivalently, Hi 
H r -1 H Lq(M) 

1 Lq(M) 

A way of solving this problem could be by finding a "Randrianantoanina's type" 
explicit decomposition in L2{M) of the discrete space Hi with a simultaneous control 
of the norms. The second injectivity question deals wTth the column conditional Hardy 
space hi studied in section 5. 

Problem 6.5.6. — Does \\\ embed injectively into L\{M) ? Or, equivalently, do we 
have hf = LhJ ? 

Observe that these two last problems are somehow related. Indeed, fovxeM wt 
can consider 

x hi lim 
Cr,̂  

x Lq(M) CT 



130 APPENDIX 

This defines a norm on A4, and we denote by hi the corresponding completion. With 
the notations of section 5, we have seen in the proof of lemma 5.4.6 that for x G Ai 
we have vu(x) = (va(x))' G LAMu)- Moreover, proposition 5.4.2 (i) yields 

vu(x) Lq(M) lim 
a,U 

va(x) Lq(M)o) CTim 
a,U 

X I/11 q c x\ hi 

This means that vu extends to a bounded map from hi to L i (Mu)- Since L\ (NU,£MU ) 
embeds into L\(Mu) by remark 2.3.3, the following commuting diagram shows that 
the natural map : ĥ  —> hi is injective: 

E c 1 

W 
hi 

vu vu 

L c 
1 Nu,£>Mu Li 'Mu 

Moreover, (6.1.1) implies that hi = T-L\ with equivalent norms, where Hi denotes the 
completion of A4 with respect to the norm 

x H lim 
olA 

X\ H a 

Hence the problem of the injectivity of ĥ ; into Li(Ai) is related to the problem of 
the injectivity of Hi into Li(Ai). More precisely, the commuting diagram 

Lq(M) c 1 
w 

Ui 

x 
w 

Li M 

means that if (f is injective then P is also injective. 
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