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THEORY OF #H,-SPACES FOR CONTINUOUS
FILTRATIONS IN VON NEUMANN ALGEBRAS

Marius Junge, Mathilde Perrin

Abstract. — We introduce Hardy spaces for martingales with respect to continu-
ous filtration for von Neumann algebras. In particular we prove the analogues of
the Burkholder-Gundy and Burkholder-Rosenthal inequalities in this setting. The
usual arguments using stopping times in the commutative case are replaced by tools
from noncommutative function theory and allow us to obtain the analogue of the
Feffermann-Stein duality and prove a noncommutative Davis decomposition.

Résumé (Théorie des espaces H,, pour des filtrations continues dans des algebres de von
Neumann)

Nous introduisons des espaces de Hardy pour des martingales relatives & des fil-
trations continues d’algébres de von Neumann. Nous démontrons en particulier les
inégalités de Burkholder-Gundy et de Burkholder-Rosenthal dans ce cadre. Les argu-
ments usuels basés sur des temps d’arrét dans le cas commutatif sont remplacés par
des outils de la théorie des fonctions non commutatives, qui nous permettent d’obtenir
I’analogue de la dualité de Fefferman-Stein et de prouver une décomposition de Davis
non commutative.

© Astérisque 362, SMF 2014
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CHAPTER 1

INTRODUCTION

The theory of stochastic integrals and martingales with continuous time is a well-
known theory with many applications. Quantum stochastic calculus is also well devel-
oped with applications reaching into fields such as quantum optics. In the setting of
von Neumann algebras, many classical martingale inequalities have been reformulated
for noncommutative martingales with respect to discrete filtrations, see e.g. [40], [27],
[21], [30]. The aim of this paper is to study martingales with respect to continuous
filtrations in von Neumann algebras. Our long term goal is to develop a satisfactory
theory for semimartingales, including the convergence of the stochastic integrals. In
the noncommutative setting, we cannot construct the stochastic integrals pathwise as
in [9]. It is unimaginable to consider the path of a process of operators in a von Neu-
mann algebra. However, it is well-known that in the classical case, the convergence
of the stochastic integrals is closely related to the existence of the quadratic variation
bracket [.,.] via the formula

t t
Xth:/ XsdesqL/ Y- dX, + [X, Y],

Here the quadratic variation bracket can be characterized as the limit in probability
of the following dyadic square functions

2™ —1

[X. Y] = XoYo + lim > (Ksp — X, ) (Y
k=0

o

Hence we will first study this quadratic variation bracket in the setting of von Neu-
mann algebras, and then deal with stochastic integrals in a forthcoming paper based
on the theory developed here. More precisely, we will focus on the L% p-orm of this
bracket by considering the Hardy spaces H), defined in the classical case by the norm

[N S

lzllz, = ||l 213,
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This paper develops a theory of the Hardy spaces of noncommutative martingales with
respect to a continuous filtration. One fundamental application is an interpolation
theory for these noncommutative function spaces which has already found applications
in the theory of semigroups (see e.g. [22]).

Let us consider a von Neumann algebra M. For simplicity, we assume that M
is finite and equipped with a normal faithful normalized trace 7. Fortunately, the
theory of noncommutative H,-spaces is now very well understood in the discrete
setting, i.e., when dealing with an increasing sequence (My), >0 of von Neumann
subalgebras of M, whose union is weak*-dense in M. We consider the associated
conditional expectations &, : M — M,. In the noncommutative setting it is well-
known that we always encounter two different objects, the row and column versions
of the Hardy spaces:

Hl“HH;; = H(Z ‘dn(x)f);Hp and ||$HH; = H(Z |dn(;17*)|2)% p

where d,(z) = En(x) — En_1(x). Here ||zf, = (7(|2[?))/P refers to the norm in
the noncommutative L,-space. The noncommutative Burkholder-Gundy inequalities

b

from [40] say that with equivalent norms forl < p < oo,
(1.0.1) Ly(M) = H,
where the H,-space is defined by
H{H;JrH; for 1<p<2,
P H,NH, for 2<p<oo.

Following the commutative theory, we should expect to define the bracket [z, 2] for a
martingale z and then define

= rol=

1
”T”ﬁl = ||[T,7]]”§p and Hl”ﬁzﬁ = [|[z*, 2] .

N

Armed with the definition we may then attempt to prove (1.0.1) for a continuous
filtration (M;);>0. For simplicity, we assume that the continuous parameter set is
given by the interval [0,1]. We define a candidate for the noncommutative bracket
following a nonstandard analysis approach. For a finite partition o = {0 =ty < t; <
-+« <ty = 1} of the interval [0, 1] and x € M, we consider the finite bracket

[z, 2], = Z Idf(x)

teo

2
)

where df (z) = & (x) — &~ (5)(x). Then for p > 2, (1.0.1) gives an a priori bound

[z, 1o ]|

Hence, for a fixed ultrafilter I/ refining the general net of finite partitions of [0, 1], we

VBV

» < apllz]p-

may simply define
[, 2]y = w-Ly,- 1;13 [z, 2],

ASTERISQUE 362



CHAPTER 1. INTRODUCTION 3

In fact, in nonstandard analysis, the weak-limit corresponds to the standard part
and is known to coincide with the classical definition of the bracket for commutative
martingales. However, the norm is only lower semi-continuous with respect to the
weak topology and we should not expect Burkholder/Gundy inequalities for contin-
uous filtrations to be a simple consequence of the discrete theory of Hp-spaces. Yet,
using the crucial observation that the L -norms of the discrete brackets [z, x], are
monotonous up to a constant, we may bhOW the following result.

Theorem 1.0.1. — Let 1 <p < oo and x € M. Then

Sup, ”[1‘77"]0“%7) f()'l’ 1 < p< 2’

H[:I‘, m]uuép ~ 1;12{1 ”[LL’,HJJUH%;) = { inf, H[m,w]allép for 2<p<oo.

In particular, this implies that the L 1p~DOTIM of the bracket [z, z]yy does not de-
pend on the choice of the ultrafilter U, up to equivalent norm. We will discuss the
independence of the bracket [z, x]y itself from the choice of ¢ in a forthcoming paper.
Hence for 1 < p < o0 and x € M we define the norms

1 1
Il = lo.alull3, and lall = tim [w.ala |5, = lim ol 50

We denote by ﬁ; and ‘H,, respectively the corresponding completions. Using theo-
rem 1.0.1 we may show that actually

(1.0.2) ﬁ; = H; with equivalent norms for 1 < p < oo.

Hence this defines a good candidate for the Hardy space of noncommutative martin-
gales with respect to the continuous filtration (M;)o<;<1. We now want to establish
for this space the analogues of many well-known results in the discrete setting. For
doing this, we will use the definition of the space Hj, which will be more practical
to work with. In particular, we may embed Hj into some ultraproduct space, which
has an L,-module structure and a p-equiintegrability property. This allows us to con-
sider H;, as an intermediate space of operators between Ly(M) and L,(M). Then,
by complementation, we can show the following duality result.

Theorem 1.0.2. —— Let 1 <p < oo and 1/p+ 1/p’ = 1. Then with equivalent norms
(Hy)" =H,-

Note that throughout this paper, following [40] we will consider the anti-linear
duality, given by the duality bracket (z]y) = 7(x*y). Since no confusion is possible,
we will denote it by (Hj)*. With this convention, the dual space of a column space is
still a column space. For p = 1, we also establish the analogue of the Fefferman-Stein
duality in this setting:

(Hf)" = BMO°® with equivalent norms.

SOCIETE MATHEMATIQUE DE FRANCE 2014



4 CHAPTER 1. INTRODUCTION

We have to be careful when defining the space BMO°. A naive candidate for the
BMO° norm is given by

. 1
1=l g = lim [zl srmoe(o).  where [[z[lsrmoc () = sup [Ec(jz — - [*)]| 2.

However, here our restriction to finite partitions (instead of random partitions in the
classical case) is restrictive. Indeed, if one of the ||z|zroc(s)’s is finite, then x is
already in M. Definitively, we expect BMO® to be larger than M. We will therefore
say that an element x € Lo(M) belongs to the unit ball of BMO® if it can be
approximated in Lgo-norm by elements of the form

w-Lo- Lllll/{ll'g with 2111} lzo | BAMOc () < 1.

This definition gives the expected interpolation result
H, = [BMO®, H],;,  with equivalent norms for 1 < p < oc.

We may define the Hardy space H,, as in the discrete setting by considering the sum
of the column and row Hardy spaces in L,(M) for 1 < p < 2, and their intersection
in Ly(M) for 2 < p < oco. The continuous analogue of (1.0.1) is then obtained by
taking the weak limit of the discrete decompositions for 1 < p < 2. However, the usual
duality argument used to deduce the case 2 < p < oo may not be directly applied
in this case. We first need to extend a stronger Burkholder-Gundy decomposition
introduced by Randrianantoanina to the continuous setting. More precisely, we need
a Burkholder-Gundy decomposition with a simultaneous control of H;, and L9 norms.
This is one of the delicate and key points of this paper. In fact, such decompositions
with simultaneous control of norms turn out to be essential when dealing with duality
in the continuous setting. In particular, this was one of the motivations of the recent
paper [47]. In this paper, we introduce another version of a sum, the H-sum of
two spaces, which is obtained as the completion of a normed space equipped with
a quotient norm. In classical probability, stopping time arguments allow to show

3

that there is no “virtual kernel” when trying to embed this abstract space in Lj.
However, in functional analysis and in particular through Grothendieck’s formulation
of the approximation property, we know that hard analysis may be required to decide
whether for such completions the kernel is automatically trivial. The same remains
true in our situation, and we have to rely on Randrianantoanina’s work to control
these kernels in some cases. We show that for the Hardy space H, we may use either
the new H-sum or the usual sum in the definition, and we deduce the continuous

analogue of (1.0.1)

Theorem 1.0.3. — Let 1 < p < oc. Then with equivalent norms

Lp(M) = H,.

ASTERISQUE 362



CHAPTER 1. INTRODUCTION 5

We are also interested in the conditioned Hardy spaces h,, defined in the discrete
setting by the norms

el = || (3 Encrldal)?)

Then the noncommutative Burkholder inequalities proved in [27] state that with

y p\ /P
el =l wnd iallg = (3 lda(@)]l7) "
n

equivalent norms for 1 < p < oo
(1.0.3) Lp(M) = hy,

where the hj,-space is defined by

d c r
}Lp:{hp+hp+hp for 1<p<2,

d r
hy N by Nk, for 2<p<oo.

A column version of these inequalities, which also holds true for p = 1, have been
discovered independently in [22] and [37]:

P

{hg+hc for 1<p<2,
hgﬂh; for 2<p<oo.

(1.0.4) Hy =
In the commutative theory the decomposition for 1 < p < 2 corresponds to a version
of the Davis decomposition into jump part and conditioned square function. In the
conditioned case, we still have a crucial monotonicity property, and considering the
conditioned bracket

2

<.’L‘, $>J = Z St*(tr) ldf(l’)l
tco

for a finite partition o, we define the conditioned Hardy spaces H; and hf of noncom-
mutative martingales with respect to the filtration (M;)o<t<1. Then we may adapt
the theory developed for the H;-spaces to hy and hy and obtain that with equivalent
norms for 1 < p < oo

(1.0.5) he = he.

Sometimes we have to resort the theory of noncommutative functions spaces, in partic-
ular L,-modules over finite von Neumann algebras for comparing different candidates
for the h,-norms. Indeed, in (1.0.5) the construction is based on free amalgamated
products and use the free analogue of Rosenthal inequalities. This complementa-
tion result implies the conditioned analogue of theorem 1.0.2 and injectivity results
for 1 < p < oo. At the time of this writing we do not know if the injectivity result
still holds true for p = 1, i.e., if h{ embeds into L;(M). We will need to consider the
corresponding subspace of Li(M), denoted by Lh]. Note that in this case the space
bmo° is easier to describe. It is defined as the set of operators x € Lo(M) such that

Eilx — e |? .
up [JEeke — e[|, < o0

SOCIETE MATHEMATIQUE DE FRANCE 2014



6 CHAPTER 1. INTRODUCTION

We also prove the expected interpolation result. To obtain the continuous analogue
of the decompositions (1.0.3) and (1.0.4) for 1 < p < 2 and 1 < p < 2 respectively,
we need to introduce another diagonal space hll;‘ C hg, which yields a stronger Davis
decomposition, closer to the classical one. Then we deduce the continuous analogues
of (1.0.3) and (1.0.4) for 2 < p < oo by a dual approach. Unfortunately, we cannot
directly describe the dual space of our continuous analogue of the diagonal space hz.
We introduce a variant of the Davis decomposition for 1 < p < 2 with simultaneous
control of h, and Ly norms, based on a deep result of Randrianantoanina. Here we
use again the H-sum and we need to show that the kernel is trivial in this situation.
As a payoff, we find a nice description of the space Hi, and the continuity of the
maps defined on it can be checked on atoms. For open problems in this direction
we refer to the appendix. We obtain that for the conditioned Hardy spaces, the two
sums coincide. Moreover, it is very easy to see that in the Davis decomposition we
may replace the diagonal space hg by alarger, Lo-regularized space K g = hg + Lo(M).
That leads to a satisfactory description of the duality for the conditioned Hardy space

d T
_{hp+h;+hp for 1<p<?2,
L d c

Jpﬂhpﬂh;7 for 2 <p< oo,
where Jg denotes the dual space of K g,. We obtain the continuous analogue of (1.0.4)

and (1.0.3) respectively:

Theorem 1.0.4. — Let 1 < p < co. Then, with equivalent norms:
hd + Lh§ for p=1,

(i) H; = h?+hs Jor 1<p<2,
Jgﬁh; for 2 <p< o0,

(ii) for 1 < p < oo, Lp(M) = h,.
By approximation, we deduce a new characterization of BMO°.

Theorem 1.0.5. — Let 1 < p < oo. Then, with equivalent norms,
L,(M)= [BM(’),Hl]l/p.

The paper is organized as follows. In section 2 we recall some necessary preliminar-
ies on ultraproduct of Banach spaces in general, and on ultraproduct of von Neumann
algebras in particular. We also discuss the finite case, and give some background on
L,-modules and free Rosenthal inequalities. The main part of this paper is developed
in section 3, where we define the Hardy spaces ﬁ; and H;, of noncommutative mar-
tingales with respect to a continuous filtration and prove theorem 1.0.1 and (1.0.2).
We also transfer injectivity, complementation, duality and interpolation results from
the discrete setting to this case. The continuous analogue of the noncommutative
Burkholder-Gundy inequalities (theorem 1.0.3) is proved in section 4, where we intro-
duce a variant way of considering the sum of two Banach spaces. In our setting this

ASTERISQUE 362



CHAPTER 1. INTRODUCTION 7

corresponds in some sense to focus on the decomposition at the level of La(M), and
with the help of Randrianantoanina’s results we extend our continuous Burkholder-
Gundy decomposition to this stronger sum. Section 5 is devoted to the study of the
conditioned Hardy spaces hy. The Davis and Burkholder-Rosenthal inequalities are
presented in section 6, in which the diagonal spaces hg, hzl,”v, Kg and Jg, forl1 <p<?2
are defined. At the beginning of each section, we recall the discrete results that we
want to reformulate in the continuous setting, and add some details on the discrete
proofs. At the end of this paper, some open problems are collected in the appendix.

Throughout this paper, the notation a, ~ b, means that there exist two positive
constants ¢ and C' such that
ap
c< = <(C.
=3,
Aknowledgments. — The second named author would like to thank the Math De-
partment of the University of Illinois, where a first version of this paper was done,
for its warm hospitality. We are grateful to Eric Ricard and Quanhua Xu for nu-
merous fruitful discussions and useful comments, which led to many corrections and
improvements.
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CHAPTER 2

PRELIMINARIES

2.1. Noncommutative L,-spaces and martingales with respect to continu-
ous filtrations

We use standard notation in operator algebras. We refer to [31], [54] for back-
ground on von Neumann algebra theory, to the survey [41] for details on noncom-
mutative L,-spaces, and to [14], [56] in particular for the Haagerup noncommutative
L,-spaces. In the sequel, even if we will define some L,,-spaces in the type I1I case, we
will mainly work with noncommutative L,-spaces associated to semifinite von Neu-
mann algebras. Let us briefly recall this construction. Let M be a semifinite von
Neumann algebra equipped with a normal faithful semifinite trace 7. For 0 < p < oo,
we denote by L,(M,7) or simply L,(M) the noncommutative L,-space associated
with (M, 7). Note that if p = oo, L,(M) is just M itself with the operator norm;
also recall that for 0 < p < oo the (quasi) norm on L,(M) is defined by

Iz, = (r(12P)) ", @ € Ly(M)

where |z = (#*2)? is the usual modulus of z.

Following [40], for 1 < p < oo and a finite sequence a = (ay)n>0 in L,(M) we set

lallzyansy = || (2 lanl?)” Hp and - lallz, atiep) = lla™llz, (aies)-
n>0

Then |||, re5) (resp. |||z, (m;ep)) defines a norm on the family of finite sequences
of L,(M). The corresponding completion is a Banach space, denoted by L,(M:;5)
(resp. L,(M;¥5)). For p = oo, we define Lo (M;05) (respectively Loo(M;€5)) as
the Banach space of the sequences in Loo(M) such that > -, x)z, (respectively
Y >0 Tny,) converges for the weak-operator topology. These spaces will be denoted
by L,(M; £5(I)) and L,(M; €5(I)) when the considered sequences are indexed by I.

Let (M;)i>0 be an increasing family of von Neumann subalgebras of M whose
union is weak*-dense in M. Moreover, we assume that for all £ > 0 there exist
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normal faithful conditional expectations & : M — M,. Throughout this paper,
we assume that the filtration (M;);>0 is right continuous, i.e., My = (., M, for
allt > 0. A family x = (24),>0 in L1(M) is called a noncommutative martingale with
respect to (My);>¢ if, for all s,¢ such that 0 < s <t,

Es(xy) = wss.

If in addition all z;’s are in L,(M) for some 1 < p < oo, then z is called an L,-
martingale. In this case we set

lzllp = sup |||,
t>0

If |[z]|, < oo, we say that x is a bounded L,-martingale.

Let © = (2¢);>0 be a noncommutative martingale with respect to (M;);>. We say
that x is a finite martingale if there exists a finite time T° > 0 such that z; = xy for
all t > T'. In this paper, we will only consider finite martingales on [0, 1], i.e., T = 1.
In this case, for a finite partition o = {0 =ty < t; <ty < --- < t, =1} of [0,1] we
denote t* (o) = t;41 the successor of t = t; and t (o) = ¢;_1 its predecessor, and
for t > 0 we define
Ty — Tt~ (o) for t > 0,

@ = |

In the sequel, for any operator x € Li(M) we denote x; = & (x) for all ¢ > 0.

To for t = 0.

2.2. Ultraproduct techniques

2.2.0.1. Ultraproduct of Banach spaces. Our approach will be mainly based on
ultraproduct constructions. Let us first recall the definition and some well-known
results on the ultraproducts of Banach spaces. Let U be an ultrafilter on a directed
set Z. They are fixed throughout all this subsection. Recall that U is a collection of
subsets of 7 such that

(i) o¢ U

(ii) if A, B C Z such that A C B and A € U, then B € U;
(iii) if A,B €U then AN B e U;
(iv) if ACZ, then either AcUd or T\ A U.

Let X be a normed vector space. For a family (x;);cz indexed by Z in X, we say
that x = lim; s z; is the limit of the x;’s along the ultrafilter I if

{ieT:|lx—ail<e} el foralle>0.

Recall that this limit always exists whenever the family (z;);e7 is in a compact space.
If X is a dual space, then its unit ball is weak*-compact, and any bounded family in X
admits a weak*-limit along the ultrafilter . If X is reflexive, since the weak-topology

ASTERISQUE 362



2.2. ULTRAPRODUCT TECHNIQUES 11

coincide with the weak*-topology, we deduce that any bounded family in X admits a
weak-limit along the ultrafilter U.

We now turn to the ultraproduct construction. Let us start with the ultraproduct
of a family (X;);cz of Banach spaces. Let ¢o, ({X; : ¢ € Z}) be the space of bounded
families (z;);ez € []; Xi equipped with the supremum norm. We define the ultraprod-
uct [, X;, also denoted by [], X;/U, as the quotient space {oo({X; : i € T})/NY,
where NY denotes the (closed) subspace of U-vanishing families, i.e.,

N = {(2:)ier € boo({X; 11 € T}) : lim [l x, = 0}.

We will denote by (z;)* the element of [],, X; represented by the family (x;)icz.
Recall that the quotient norm is simply given by

[|(zi)*]| = lim [,

If X; = X for all 4, then we denote by ¢, (Z; X) the space of bounded X-valued
families and by [],, X the quotient space (oo (Z; X)/NY, called ultrapower in this
case. We refer to [16], [52] for basic facts about ultraproducts of Banach spaces.
If (Xi)iez, (Yi)iez are two families of Banach spaces and T; : X; — Y; are linear
operators uniformly bounded in i € Z, we can define canonically the ultraproduct
map Ty = (T;)* as

T [[ X — [[Ye (@) — (T
u u
In the sequel we will often use the following useful fact without any further reference.

Lemma 2.2.1. — Let (X;)iez be a family of Banach spaces and let x = (x;)* € [[,, X;
be such that ||z||m,x, = limiy ||zil|x, < 1. Then there exists a family (T;)iez €
loc({ X : ¢ € I}) such that

x=(2;)* and ||T||x, <1, forallieX.

Proof. — Setting Z; = z; if ||;]|x, < 1 and Z; = 0 otherwise, we get a family verifying
|Z:]|x, <1 for all i € Z. Moreover, by the definition of the limit along the ultrafilter
U, we have

lim ||:L‘l — fi”Xi =0.
iU
Indeed, if we denote ¢ = lim; 3/ ||2;||x, < 1, then for any § > 0 we have
As={i €T : |0~ ||lz;]|x,| < 6} € U.

Observe that for § = (1 — ) > 0, each i € As satisfies ||z;||x, < {+6 = (1 +¢) < 1.
Hence for all € > 0, condition (ii) in the definition of an ultrafilter implies

A%(lvﬁ) C {Z S IZ ”lll

x, <l}c{ieZ:|a—ax <c} €l

This shows that (z;)* = (Z;)* and ends the proof. O
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We will need to study the dual space of an ultraproduct. For a family of Banach
spaces (X;)icz, there is a canonical isometric embedding J of [],, X into ([],, XZ-)
defined by

" |2) = lim (a7 | 2;
(Ja* | 2) = lim (o] |:)

for x* = (x7)* € [[,, X{ and 2 = (x;)* € [[; Xi. Hence we may identify [],, X; with
a subspace of (Hu X 2)* These two spaces coincide in the following case.

Lemma 2.2.2 (see [17]). — Let (X;)icz be a family of Banach spaces. Then
(TL, Xl-)* = [I, X; if and only if ], X; is reflexive.

Even in the non reflexive case, the subspace [T, X; is “big” in ([, Xi)* in the
sense of the following lemma. This is also a well-known fact of the theory of ultra-
products (see [52], section 11), we include a proof for the convenience of the reader.

Lemma 2.2.3. — Let (X;)iez be a family of Banach spaces. Then the unit ball of
[, X; is weak®-dense in the unit ball of (T],, Xi)*‘

Proof. — We first prove that for two normed vector spaces X and Y such that Y is
a norming subspace of X*, the unit ball of Y is weak*-dense in the unit ball of X*.
Suppose that By is not weak*-dense in By, then by the Hahn-Banach theorem there
exist * € Bx- and x € X such that |[(z* |z)| = 1 and for all y € By, |(y|z)| < 6,
0 < 0 < 1. Since Y is a norming subspace of X* we have

[zl x = sup |(y|x)| <0
yEBy
Then
L= |(z"|2)| < 2" lx- -zl x <4,

which contradicts § < 1. It remains to apply this general result to X = [[,, X; and
Y = [[,X;. It suffices to see that [],, X; is a norming subspace of (], Xi)*.
Let z = (x;)* € [[,; Xi. For each i € T, there exists z; € Bx» such that [|z;]x, =
[(zf|x;)]. Multiplying by a complex number of modulus 1, we can assume that
|zl x, = (2} | x;). Thus

[l x, = 1}71151 z:llx, = 12.171151 (27 | z:)

< sup |lim (y; |z:)| = sup (" |2)].
y*:(ynyBnuxi* LU Z/*EBnMx:
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2.2.0.2. Ultraproduct of von Neumann algebras : the general case. — We now con-
sider the ultraproduct construction for von Neumann algebras. For convenience we
will simply consider ultrapowers, but all the following discussion remains valid for ul-
traproducts. It is well known that if A is a C*-algebra, then [],, A is still a C*-algebra.
On the other hand, the class of von Neumann algebras is not closed under ultrapow-
ers. However, according to Groh’s work [12], we know that the class of the preduals
of von Neumann algebras is closed under ultrapowers. Let M be a von Neumann
algebra. Then [],, M, is the predual of a von Neumann algebra denoted by

My = (1;[/\4)

Moreover, [[,, M identifies naturally to a weak*-dense subalgebra of Mu. As de-
tailed in [48], we can also see My, as the von Neumann algebra generated by [],, M
in B([[,, #), where we have a standard #-representation of M over the Hilbert
space H. Following Raynaud’s work [48], for all p > 0 we can construct an isometric
isomorphism
Ap: [T Lp(M) — Lp(My),
u

which preserves the following structures:

> Conjugation: A, ((z})*) = A,((z:)*)".

> Absolute values: A, ((|z:])%) = [Ap((x:)*)].

> [T, M-bimodule structure: Ap((a;)* - (z:)* - (b:)*) = (a:)* - Ap((z:)*) - (b:)*.

> External product: for 1/r = 1/p+1/q, for all (x;)*€ [],, Lp(M), (yi)*€ 1y, Le(M)

and (ai)', (bz)° S Hu M,
Ap((2a)" - (9)*) = Ap((:)7) - Ag((w2)°)

In the sequel we will identify the spaces [],, L,(M) and Lp(ﬂu) without any
further reference.

2.2.0.3. Ultraproduct of von Neumann algebras : the finite case. — We now discuss
the finite situation. Let M be a finite von Neumann algebra equipped with a normal
faithful normalized trace 7. In this case the usual von Neumann algebra ultrapower

is My = loo(Z; M)/T", where
TY = {(2i)iez € loo(T; M) : lirl/rilT(:L‘;-kxi) =0}.

According to Sakai [51], My, is a finite von Neumann algebra when equipped with
the ultrapower map of the trace 7, denoted by 7, and defined by

u((z)*) = ll_igl 7(x;).

Note that this definition is compatible with Z;;, and defines a normal faithful nor-
malized trace on My,. We may identify M, as a dense subspace of Li(My,) via the
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map
lEMu*—>Tu( )EL (Mu)

Then for x = (x;)* € My, we have ||z||; = lim; g ||z;]|1. Observe that this does not
depend on the representing family (x;) of x. Let us define the map

L My — Ly(My),  (2:)° — (r(2i))".

We see that this map is well-defined, and it is clear that ||¢((x;)*)||1 = lim; ey ||24]1-
Hence by density we can extend ¢ to an isometry from Li(My) into Ly (My).
Since Li(Myy) is stable under My, actions, theorem I1I1.2.7 of [54] gives a central
projection ey in /ﬁu such that

Li(My) = Li(My)ey.

We can see that ey is the support. projection of the trace U In the sequel we will
identify My, as a subalgebra of Mu, by considering My = Mueu More generally
we have

(2.2.1) L,(My) = Lp(ﬂu)eu for all 0 < p < oo.

The subspace L,(My,) can be characterized by using the notion of p-equiintegrability
as follows. Let us recall the definition of a p-equiintegrable subset of a noncommutative
L,-space introduced in [54] for p = 1 and by Randrianantoanina [43] for any p.

Definition 2.2.4. — Let 0 < p < oo. A bounded subset K of L,(M) is called p-
equiintegrable if

nlggo bgp llenzenlly, =0

for every decreasing sequences (en)n of projections of M which weak* -converges to 0.
If p =1, we say that K is uniformly integrable.

Recall that finite subsets of L,(M) are p-equiintegrable. We will use the following
characterization coming from [15, cor.2.7] in the case 1 < p < o0, and [53, lem. 1.3]
for0 < p< 1.

Lemma 2.2.5. — Let 0 < p < oo and (z;)iez be a bounded family in L,(M). Then
the following assertions are equivalent.

(i) (x;)iez is p-equiintegrable;
(ii) limg oo sup; disty, (z;, TBa) = 0;
(iil) Hmr_yeo limgg |2 L(J2s] > T)|lp, =0,
where for a > 0, 1(a > T) denotes the spectral projection of a corresponding to the
interval (T, 00).
Observe that (2.2.1) implies that for 0 < p < oo and z € LP(J\A/TU)

x € Ly(My) <= z=zey.

ASTERISQUE 362



2.2. ULTRAPRODUCT TECHNIQUES 15

Moreover, in the finite case, ey corresponds to the projection denoted by s, in [49].
Hence theorem 4.6 of [49] yields the following characterization of L,(My).

Theorem 2.2.6. — Let 0 < p < o0 and x € Lp(/\?u), Then the following assertions
are equivalent.
(i) = € Lp(Mu);

(ii) = admits a p-equiintegrable representing family (x;)iez.

For 0 < p < p < oo, since M is finite we have a contractive inclusion Lz(M) C
L,(M). Let us denote by

Lip: [[ L6(M) — T] LM
u u

the contractive ultraproduct map of the componentwise inclusion maps.

Note that although the componentwise inclusion maps are injective, the ultraprod-
uct map I, is not. However, its restriction to Lz(My) is injective.

Indeed, using the weak*-density of [[,, M in Mvu, we see that I5, is bimodular
under the action of My. Hence, if 2 € L,;(Mvu) satisfies © = wey, then I ,(z) =
Ii p(xey) = Ijp(x)ey € Lp(My). This shows that Iy, : Li(My) — Ly(My).
Moreover, since My, is finite, the map I;, coincides on Lz(My) with the natural
inclusion Ly(My) C Lp(My).

We deduce from theorem 2.2.6 the following description of the space L,(My),
viewed as a subspace of Lp(/\A/lZ,).

Lemma 2.2.7. — Let 0 < p < oo. Then

MU) U Ipp MM))

p>p

Wil Ay

Proof. — Let us first show that Ig’p(Lﬁ(/\?u)) C L,(My) for p > p. Let z = (z;)*
in Lz (Mu) By theorem 2.2.6, it suffices to prove that the family (x;);er is p-
equiintegrable. For T' > 0 and each ¢ € 7 we have

|zt (z:] > T, < [l - sl /P17 PP|| < TRy 27
Taking the limit along the ultrafilter ¢ we obtain

lii,gl |zl (|| > T)H < T P/PHx”p/pMu)

Since 1 — p/p < 0, this tends to 0 as T' goes to oo. We conclude that (z;);ez is
p-equiintegrable by using lemma 2.2.5. Conversely, let © € L,(My). Since My is
finite, Lz(My) is dense in L,(My) for all p > p. Hence for all ¢ > 0 there exists
y € Lz(My) such that ||z — yllz,(m,,) < €. Since L,(My) is isometrically embedded

into Lp(./\7u) and y = I ,(y) € Igyp(Lﬁ(./i/lvu)), this ends the proof. O

SOCIETE MATHEMATIQUE DE FRANCE 2014



16 CHAPTER 2. PRELIMINARIES

For p = 1, we can translate the notion of uniform integrability in terms of com-
pactness as follows.

Theorem 2.2.8 (see [54]). — Let K be a bounded subset of the predual M, of M. Then
the following assertions are equivalent:

(i) K is uniformly integrable;

(ii) K is weakly relatively compact.

Let us consider the map
i (M, T) — My, ), @ — (x)°.

Since 4y is trace preserving, this yields an isometric embedding of L;(M) into
Ly(My,). Hence we get natural inclusions

Li(M) € Li(My) C Li(My),

where Ll(ﬂu) represents the bounded families in Lq(M), Li(My) corresponds to
the weakly converging families along U and L;(M) consists of the collection of the
constants families.

We end this subsection with the introduction of a conditional expectation. We set
Eu = ()" : My — M.

Then &, is a normal faithful conditional expectation on My. Since &, is trace
preserving, for all 1 < p < 0o we can extend & to a contraction from L,(My) onto
L,(M), still denoted by &,. Moreover, for 1 < p < 0o and z = (2;)* € L(My) we
have

Eu(r) = w*-Ly- 1_i12{1 Z;.
Indeed, for y € L,/ (M) and 1/p+1/p’ =1 we can write
(2.2.2) T(Eu(@)*y) = u(a*iu(y)) = IZIIZ/I{l T(z]y).

Note that since in this case L,(M) is a dual space, the weak™-limit of the z;’s exists
for any bounded family (z;). Hence we may extend &, to Lp(Mvu) for 1 < p < oc.
However this extension, still denoted by &, in the sequel, is no longer faithful. For
1 < p < oo, since L,(M) is reflexive, the weak*-limit corresponds to the weak-limit.
Recall that by theorem 2.2.8, L1(Mjy) corresponds to the weakly converging families.
Thus (2.2.2) implies that for 1 < p < co and z = (x;)* € L,(My) we have

Eu(z) = w-Ly- l_irbrtl Z;.
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2.3. L, M-MODULES 17

2.3. L, M-modules

We will use the theory of L,-modules introduced in [26]. This structure will help
us to prove duality and interpolation results for different #,-spaces. We may say
that L,-modules are L,-versions of Hilbert W*-modules. Let M be a von Neumann
algebra.

Definition 2.3.1. — Let 1 < p < co. A right M-module X s called a right L, M-
module if it has an L%p(M)—valued iner product, i.e. there is a sesquilinear map
()« X X X — L1,(M), conjugate linear in the first variable, such that for all
z,y € X and alla e M

(i) (z,z) >0, and (x,x) =0 <= = =0;

(i) (z,y)" = (y, );

(iii) (z,ya) = (z,y)a;
and X 1is complete in the inherited (quasi)norm

1
el = | I3,

We call X a right Lo, M-module if it has an Loo(M)-valued inner product and is
complete with respect to the strong operator topology, i.e. the topology arising from
the seminorms

lzlly = (p((2,2)))7, @€ M.

The basic example of such a right L, M-module is given by the column L,-space
Lp(M;£5). Herefora € Mandz =3 50€n0@Tn, ¥ =) ,50€n08Yn € Lp(M;L5)
we define the right M-module action by

T-a= Z €n,0 ® (Tha).

n>0
Then we define the following L, ,(M)-valued inner product
<$7y>L,,(M;l;) = Zl’;yn € L%p(M)'
n>0

Let us highlight another important example of L,-module introduced in [21]. Let
€ : M — N be a normal faithful conditional expectation, where A/ is a von Neumann
subalgebra of the finite von Neumann algebra M. Then for 0 < p < oo and z,y
in L,(M) we may consider the bracket

<JI, y>L§(M;£) = E(x*y) € L%p('/\/’)7

where € denotes the extension of £ to L1,(M) (see [27] for details on conditional
expectations). It is clear that this defines an L1 ,(N)-valued inner product, and the

2
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associated L, N-module is denoted by L5 (M;E). This means that LS (M;E) is the
completion of M with respect to the quasi-norm

[N

]l e (aiey = [[E (@™ 2) || >

For p = 0o we denote by L& (M; ) the closure with respect to the strong operator
topology. Recall that for p > 2 the space L;(M; &) can also be defined as the closure
of L,(M). It is proved in proposition 2.8 of [21] that this latter example is similar to
the former one. More precisely, this proposition shows that Lg(M; &) is isometrically
isomorphic, as a module, to a complemented subspace of L (N ;45). As a consequence,

we obtain that ||.] Le(M;€) 1S anorm. We also deduce from the well-known duality and

interpolation results for the column Lj-space Ly, (N; £5) the same results for L§(M; ).

Proposition 2.3.2. — Let 1 < p < oc.
(i) Let 1/p+1/p" =1. Then (Ly(M;E))* = L5, (M; E) isometrically.
(i) We have (L§(M;E))* = LY (M; E) isometrically.
(iii) Let 1 < pp < p2 < oo and 0 < 6 < 1 be such that 1/p = (1 —0)/p1 + 6/pa.
Then
LE(M;€) = Ly, (M;E), Ly, (M;E)],  with equivalent norms.
Remark 2.3.3. — Since L,(M) is dense in Lg(M;E) for p > 2, proposition 2.3.2 (i)
implies that for 1 < p < 2, L;(M;E&) embeds into L,(M). This still holds true for
p = 1. Indeed, L{(M;E) is d(‘scrlbed as a subspace of Li(M) in [24, (c), p. 28], as
follows
L{(M;E) = Lay(M)L2(N)  with equivalent norms.
Recall that La(M)Ls(N) is defined as the subset of elements x € L;(M) which
factorizes as z = ya with y € Ly(M) and a € La(N). The norm is given by
2l arn Loy = 10 lyllzaoan - llallzaon-

Proposition 2.8 of [21] has been extended in [26] for any L, M-module. By
theorem 3.6 of [26], a right M-module X is a right L, M-module if and only if X is
a “column sum of Ly-spaces” in the following sense.

Theorem 2.3.4 (see [26]). — Let X be a right L, M-module. Then X is isometrically
isomorphic, as an Ly-module, to a principal Ly-module, i.e., there exists a set (qa)acr
of projections in M such that

X = {(5(1)(161 §a € qaL ZE Ca € Llp )}

This latter set is denoted by @; ¢o Lp(M) and endowed with the norm ||(€n)all =

IS, sl

the sense of the following corollary with some density property, then we may represent

. In the finite case, if we have a projective system of L, M-modules in

this family by using the same set of projections.
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Corollary 2.3.5. — Let M be a finite von Neumann algebra. Let (X,)i1<p<oo be a
family of right M-modules such that
(i) Xp is an Ly, M-module for all 1 < p < oo.

(ii) There exists a family of modular maps 1y, : Xq — X, for p < q satisfying
Ip,=1idx, and Ijpol.q=1, forp<q<r.

(iii) The inner products are compatible with the maps 1,p, i.e., for p < g
and x,y € Xg,

(r,y)x, = <Iq,p($)7lq,p(y)>x :

P

(iv) Ioo,p(Xo) is dense in X, for all 1 < p < oo.

Then there exists a set (qo)acr of projections in M such that for all 1 <p < o0, X,
is isometrically isomorphic, as an L,-module, to @, galLy(M).

Proof. — Observe that (iii) implies that the maps I, , are contractive and injective.
Indeed, for p < g and x € X, since M is finite we have

1 1 1
|‘I‘I7P(I)’|Xp = H<qup(x)7qup($)>xp”§p = ||<$,.T>Xq ”gp S ’|<x7x>xq H;q = ||"E”Xq-
For the injectivity, if Z,,(2) = 0 then (Igp(2), Igp(2))x, = 0 in L1, (M). By (iii),
this implies that (z,z)x, = 0in L,(M), hence z = 0 in Xg by (i) of definition 2.3.1.

We now turn to the proof of the corollary. We first apply theorem 2.3.4 to the
Loo M-module X, and obtain a set (g )acs of projections in M and an isometric

isomorphism of Ly-modules ¢o : Xoo = D gaLoo(M). We may extend this isomor-
phism to X, by density as follows. For 1 <p < 0o and & = I »(y) € loop(Xso) we

set
$p(r) = oo (y) € EBq“o

Since M is finite, we have a contractive inclusion @ qoLooc(M) C @D galp(M)
and ¢, preserves the L%p(/\/l)—valued inner product. Indeed, for z1 = I p(y1),
x2 = Ino p(Y2) € Ioo p(Xoo), the modularity of ¢o, implies
<¢ZD($1)» ¢P<$2)>@ Go Lp(M) = <¢00(y1)7 ¢OO (y2)>@[ Ga Loo (M) = @17 ?/2>X'>o
= <IOO,P(yl)1 IOO,P(y2)>XW by (111)
= (r1,22)x,-
Hence by the density assumption (iv) we can extend ¢, to an isometric homomorphism

of L,-modules on X, to @ goLp(M). Since @ gaLoo(M) is dense in @ goLy(M),

by the same way we can construct ¢, 1. Thus we obtain an isometric isomorphism of
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L,-modules ¢, which makes the following diagram commuting

X <—¢°°—> DB qoLoc(M)

Ioo,pJ/ J,ld

Xp <—¢> D qaLp(M)
P

O

In this situation, we may deduce the following results from some well-known facts
on the column L,-spaces @qoLy(M).

Corollary 2.3.6. — Let M be a finite von Neumann algebra. Let (Xp)i<p<oo be a
family of right M-modules as in corollary 2.3.5.

(i) Let 1 <p<ooandl/p+1/p =1. Then (X,)* = X,y isometrically.

(ii) Let 1 <p; <p<p2 <00 and 0 <6 <1 be such that 1/p=(1—0)/p1 + 0/p2.
Then

XP = [Xm ) sz](?'

2.4. Free Rosenthal inequalities

Amalgamated free products and the free analogue of Rosenthal inequalities
(see [25]) will be key tools needed for the study of the continuous analogue of the
conditioned Hardy spaces hy,. After briefly recalling the notations, we will present the
Rosenthal-Voiculescu type inequality stated in [25] in the amalgamated free product
case. Then we will extend it by duality to the case 1 < p < 2.

Voiculescu [57] introduced the notion of amalgamated free product of C*-algebras,
and we refer to [25] and [24] for the construction in the von Neumann setting. Let
Ag,A1,...,ANx be a finite family of von Neumann algebras having M as a common
von Neumann subalgebra. Suppose that M is finite and equipped with a normal
faithful normalized trace 7. We also assume that &, = Exqja, are faithful conditional
expectations. Recall that the amalgamated free product N' = *1(A,, can be seen as

* A, = <./\/1 &) @ @ le/o\jQ "';\jm >N7

m2>1j1#joFFim
(o)
where A, denotes the mean-zero subspace
[e]
An={an € Ay : En(an) = 0}.

We denote by p : M — N the *-homomorphism which sends M to the amalgamated
copy, and by £x : N — M the normal faithful conditional expectation onto the
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amalgamated copy. The von Neumann algebra A, can be identified as von Neumann
subalgebra of A via the *-homomorphism

Pn - An — N»
which sends A, to the n-th copy of N' = xa(A,. With this identification, we may
use either Exq or &, (= Eaq 0 py, rigorously) indistinctively over A,. In the sequel we

will always use the notation £4¢. Moreover, we may equip the von Neumann algebras
Ao,A1,..., Ay and A with the normal faithful normalized trace defined by

tr =70&M.
We denote by Ea, : NV — A,, the conditional expectation onto A,. It turns out that
A, ...,An are freely independent over £pq. For a given nonnegative integer d, we
denote the homogeneous part of degree d of the algebraic free product by ¥y
o] o o
Yqg = @ AjAjs - Ajy -
J1#j2#Fja
For d = 0, ¥, is simply M. We define Ny as the weak*-closure of ¥4 in A. This
means that Ny is the subspace of A of homogeneous free polynomials of degree d.
We also define X7 as the closure of Xg in L,(N), and Y, (resp. Y;!) as the closure

of ¥g in L§(N;Em) (vesp. Lp(N;Em)). We will need the complementation result
below.

Proposition 2.4.1. — Let 1 < p < oo and d be a nonnegative integer. Let
o] o (o]
'Pd:/\/l@@ @ Aj Aj, - Ay, — Bd
m>1j1#jo# HEm
be the natural projection. Then

(i) Pq extends to a bounded projection (of norm less than max(4d, 1)) from L,(N)
onto X I‘f.

(ii) Pa extends to a contractive projection from Lg (N5 Enm) (respectivly Ly (N Ear))
onto Y2, (resp. Y,).

Proof. — Assertion (i) is stated in [25]. It can be deduced from the case p = oo

proved in [50] by transposition and complex interpolation. The second point follows

easily from orthogonality. Indeed, let z € M &P, @jl Aok tim /Z\jl/g\jz e ,Z‘jm.
We can write x = 3~ P (x). Then by orthogonality we get

m>0
Hence
1Pat@)] s iy = 16 (Pate) Pata)) [, < Emte @1 E, = lalligenn
and (ii) is proved. O
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In the sequel we will only consider the case of words of length 1, i.e., d = 1. We
also introduce the space Z,, defined for 1 < p < oo as the completion of ¥; with
respect to the norm

N
” (l,L
n=0

We may naturally define the map

1/p
2= annannz) :

N N
Y an €51 Y enn®an € BUYTHEN.

n=0 n=0

This map extends to an isometry from Z, to L,(B(¢5 1) & N), and allows to consider
Z, as a subspace of L,(B(£5 1) & N). Moreover, this inclusion is complemented.

Lemma2.4.2. — Let1 <p < oo. Then Z, is 2-complemented into L,(B(¢3 ) S N).

Proof. — We consider the projection Q : L,(B(fy ™) ®N) — Z, defined by

N N
QY nrk @ann) = Y En, (@) = Ent(En, (@nn)).
n=0

n,k=0

The contractivity of the conditional expectations in L,, yields

N N 1/p
[2( X enr@war)|, = (2 . @an) — Ent(Ealwnn))lp)
n,k=0 P n=0

N 1/p N
<2( Y lonalls) =2 Y enn @ wan
n=0

n=0

Lp(B(EYTH®N)

N
< 2“ > enn ®wn,kH

N+1\ = "
n k=0 Ly(B(ty, THYRN)

The last inequality comes from the boundedness of the diagonal projection in

Ly(B(t3 ) BN). O

We now recall the Rosenthal-Voiculescu type inequality in the amalgamated free
product case proved in [25]. We present these inequalities as they are stated in [24]
for d =1 and 2 < p < o0, and extend them by duality to the case 1 <p < 2.

Theorem 2.4.3. — Let ag,a1 -+ ,an € Ly(xpmAn). Then the following equivalence of
norms holds with relevant constants independent of p or N.

i) For2<p<oo,ifa, €L ;\n for 0 <n < N then
p

N N p N 1 N )
[, = (35 o)+ (5 etz (35 o)

P
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(ii) For1<p <2, ifa, E,&n for 0 <n < N then

N N 1/p N 3 N 3
[ 3] =int (3 ldalls) ™+ || (3 Emtenen)) || + (X emtrars)
n=0 n=0 n=0 n=0

where the infimum is taken over all the decompositions a, = dy + cn + rn with

)
P

d1L7 C’IL7 7177, 6Arl :

Throughout all this paper, we consider a finite von Neumann algebra M equipped
with a normal faithful normalized trace 7 and we restrict ourselves to finite martingales

on the interval [0, 1].
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CHAPTER 3

THE #:-SPACES

In this section we study the column Hardy space Hj, associated to the continuous
filtration (My)o<t<1. We start by defining the two candidates ﬁg and H;. The crucial
monotonicity property will imply that these two candidates for the Hardy space in the
continuous setting are in fact equivalent. In the sequel we will focus on Hj, and embed
this space into a regularized version of an ultraproduct space, called K;(Z/{). This
larger space satisfies a p-equiintegrability property which gives it a structure of L,-
module over a finite von Neumann algebra. We then check that H7 is an intermediate
space between Ly(M) and L,(M), to ensure that we are well dealing with operators.
By complementing the continuous Hardy space H in K (U), we deduce the expected
duality and interpolation results for 1 < p < co. We will then describe the associated
BMO spaces, and establish the analogue of the Fefferman-Stein duality in this setting.
The end of this section is devoted to the expected interpolation result involving the
column spaces H{ and BMO°.

3.1. The discrete case

Let us first recall the definitions of the Hardy spaces of noncommutative martingales
in the discrete case and some well-known results. Let (M,,),>0 be a discrete filtration
of M. Following [40], we introduce the column and row versions of square functions
relative to a (finite) martingale x = (2, )n>0:

So(z) = (}Oi |dn(x)\2>% and S, (z) = (i |dn(x)*]2)%,
n=0

n=0

where
Ty — Tp1 forn>1,

dn(z) = {

denotes the martingale difference sequence. For 1 < p < co we define Hy (vesp. H))
as the completion of all finite L,-martingales under the norm ||| e = [[Sc(2)|| (resp.

o forn =0,
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lzllmy = |[Sr(2)l[p). The Hardy space of noncommutative martingales is defined by

{H;+H; for 1<p<2
p= c T ,

HpﬂHp for 2<p<oc.

We now recall some known facts on the column Hardy spaces. For 1 < p < oo,

Hy embeds isometrically into L,(M;¢5) and the noncommutative Stein inequality
(see [40]) implies the following complementation result.

Proposition 3.1.1. -~ Let 1 < p < co. Then the discrete space Hy is ~p-complemented
in Lp(M;£5).

Remark 3.1.2. — Recall that as p — 1 or p — o0,

Yp &~ max(p,p’),

where p’ denotes the conjugate index of p.

Since (Lp(M;5))* = Ly (M;€5) isometrically for 1/p+ 1/p’ = 1 and the family
of column L,-spaces forms an interpolation scale, we deduce the similar duality and
interpolation results for H;.

Corollary 3.1.3. — Let 1 < p < oco. Then the discrete spaces satisfy
(i) Let 1/p+1/p' = 1. Then, with equivalent norms,

(HE)* = HE,.

(i1) Let 1 < p1,p2 < oo and 0 < 8 < 1 be such that 1/p = (1 —0)/p1+6/p2. Then,
with equivalent norms,

HE = [HE, HE o

P1? 77 p2

In the sequel, we will always denote the conjugate of p by p’.

For the case p = 1, Pisier and Xu [40] described the dual space of Hf as a
BMQO¢-space. This noncommutative analogue of the Fefferman-Stein duality has
been extended by the first author and Xu in [27] to the case 1 < p < 2 as follows.
Recall that for 1 < p < oo, we say that a sequence (Z,),>0 in L,(M) belongs to
Ly(M; o) if (2n)n>0 admits a factorization x, = ayn,b with a,b € Lyy(M) and
(Yn)n>0 € Loo(Loc(M)). The norm of (z,,),>0 is then defined as

H(I"")"ZOHLP(M;ZOC) -

inf [lallzp - sup [[yalloc - [b]]2p-
Tn=aynb n>0

It was proved in [21], [29] that if (z,,),>0 is a positive sequence in L,(M; /), then

”(.Tn)n,ZO“LP(M;E%) = sup{ ZT(.’L’nyn) " Yn € L;)L,(M) H Zyn < 1}.
>0 n>0 P

n>
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3.1. THE DISCRETE CASE 27

The norm of L,(M; ) will be denoted by || sup; ,||,. We should warn the reader
that || sup;l 2,||, is just a notation since sup,, x, does not make any sense in the
noncommutative setting. For 2 < p < oo we define

LiMO = {x € Ly(M) : ||

LeMO < 00}7

where

82

1
— Napnt . 2|2
Lsmo = |[sup”Eplr — Tp1] ”ip-
n>0 2

Here we use the convention z_; = 0. For p = oo we denote this space by BMO°®.

Theorem 3.1.4 (see [40], [27]). — Let 1 < p < 2. Then the discrete spaces satisfy
(Hp,)" = Ly MO  with equivalent norms.

Moreover,
)\;IHIHL;,MO < el < \/§”-T||L;,1\107

where A\, remains bounded as p — 1.
Combining corollary 3.1.3 (i) with theorem 3.1.4 we obtain

Proposition 3.1.5. — Let 2 < p < co. Then the discrete spaces satisfy, with equivalent
norms,

HS = LLMO.

The Burkholder-Gundy inequalities have been extended to the noncommutative
setting by Pisier and Xu in [40].

Theorem 3.1.6. — Let 1 < p < co. Then the discrete spaces satisfy
L,(M) = H, with equivalent norms.

Moreover, oyt |z|lu, < |lzllp < Bpllzll m, -

Remark 3.1.7. — According to [39], 28] and [45] we know that
ap~(p—1)7"1 asp-—1, op R pasp— 00,
Bp =1 asp — 1, Bp = pas p — oo.

In particular, for p = 1 we have a bounded inclusion H; C Li(M). Throughout this
paper we will always denote by v,, Ap, @, and 3, the constants introduced previously.
We will also frequently use the noncommutative Doob inequality

||sup+8n(a)“p < dpllall, forl<p<oo, a€L,(M), a>0,
n

and its dual form

<9,
p P

E a’ll

n

for 1 <p < o0,
P

” Zg7l(an)
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for any finite sequence (ay), of positive elements in L,(M). These inequalities were
proved in [21], and we will always denote by d, and 4, respectively the constants
involved there. Recall that 5;, = 0, for 1 < p < 0o. Moreover, we have

Sp(p—1)"2 asp-—1 and d,=~1 asp— oco.

We end this collection of results with the interpolation theorem due to Musat in [34]
(see also [23] for a different proof with better constants).

Theorem 3.1.8. — Let 1 < p < oo. Then the discrete spaces satisfy, with equivalent
norms,

(i) Hy = [BMO®, Hilyyp;
(i) Lp(M) = [BMO, Hily .

Remark 3.1.9. — Observe that if we consider a finite filtration (M,,)"_,, then the
Hg-norm is equivalent to the Ly-norm for 1 < p < oo. This comes directly from the
triangle inequality in L,(M) for 2 < p < oo, and from the fact that ||.|| 1pisa +p-norm
forl <p<2.

3.2. Definitions of #{ and #

We fix an ultrafilter U over the set of all finite partitions of the interval [0, 1],
denoted by P, ([0, 1]), such that for each finite partition o of [0,1] the set

U, = {0’ € Psu([0,1]) : 0 C 0’} e U.

Let us point out that in what follows, all considered partitions will be finite. We start
by introducing a candidate for the bracket [.,.] in the noncommutative setting. For
o € Pan(]0,1]) fixed and x € M, we define the finite bracket

o, 2lo = |d7 (@]
teo
Observe that [l[m,x]gll; = |zl he(o), where Hy (o) denotes the noncommutative
Hardy space with respect to the discrete filtration (M;)ie,. Hence the noncom-
mutative Burkholder-Gundy inequalities recalled in theorem 3.1.6 and the Holder
inequality imply for each finite partition o and z € M

1
By lelly < e, aloll3, < llzfla fori<p<2,
(3.2.1) H
lzllz < [|lz,alo]]3, < apllzlly  for 2 <p <oo.

We deduce that for 1 < p < oo, ([z,2]5)* € L1,(My). Indeed, we see that the family
([x,2])o is uniformly bounded in L%p(M) and in Lj/(M) for any p > max(p,2)
(by apllzllz < apllz|le). Hence by lemma 2.2.7 this means that the associated el-
ement in the ultraproduct is in the regularized part. In particular for x € M and
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1 < p < o0, we have ([z,z]5)* € Lj/2(Muy) for any p > max(p,2). Thus we can apply
the conditional expectation &, to this element and set

[z, 2l = Eu(([x,2]5)").

Since this bracket is in Lg/s(M) for any p > max(p,2), it is also in L, (M) and we
may define

ol = [l wlll},

Note that for any p > max(p,2), this coincides with the weak-limit in Lz/5(M), and
we can write

1
Il = llw-L y5-lim (ol |,
In particular, for 2 < p < co we simply have
1
[33,11?]“ = w'L%p" l;}g{l [Zt,.’l?]a and Hx”ﬁ; = ”w'L%p_ {TI,IZE{I [zvxlnll;p'

This definition depends a priori on the choice of the ultrafilter ¢, and we should
write “Hﬁ;u However, we will show in the sequel that in fact this quantity does not
depend on U up to equivalent norm. Hence for the sake of simplicity we will omit the
power U and simply denote ||||ﬁ§

We also introduce the following natural candidate for the norm of the Hardy space
in the continuous setting. For z € M and 1 < p < co we define

l .
el =lim [|le, o]}, = lim llzllz)-

1

The family (]|[z, z]o || ip)o is uniformly bounded by (3.2.1), hence the limit with respect
2

to the ultrafilter U exists. Taking the limit in (3.2.1) we get for x € M

{@Illlxllp < el < llfl2 for 1 <p<2,

(3.2.2)
lzllz < llzllng < apllzll,  for 2 <p < oo.

This shows that [|.||l; defines a norm on M. As for |||lﬁ;}, the norm ||.[|3¢ depends
a priori on the choice of the ultrafilter I/, but we will show that it does not (up to a
constant) and hence simply denote ||||H; Moreover, the properties of the conditional
expectation &, imply the following estimates for x € M

IA

Bzl < llzllag < llzllgy < Izl for 1 <p<2,

(3.2.3)
lellz < llzllgy < llzllug < apllzll,  for 2 <p < oo

Here for 2 < p < oo we used the contractivity of &, for the L%p—norm, and for
1 < p < 2 we need the following well-known result due to Hansen.
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30 CHAPTER 3. THE H;-SPACES

Lemma 3.2.1. — Let A be a semifinite von Neumann algebra and T : A — A be a
trace preserving, completely positive linear contraction. Let 0 < p < 1. Then, for each
positive element € A,

T(a?) < (T(@))” and |z, < |7 ()|

P’

Then (3.2.3) shows that ||.||;. defines a quasinorm on M.

Definition 3.2.2. — Let 1 < p < oco. We define the spaces ﬁ; and Hy, as the comple-
tion of M with respect to the (quasi)norm ||.||5. and ||.|lxg respectively.
P

We may check that for x € M and 1 < p < oo, (z,2)55. = [z, 2]y extends to
5
an L1, (M)-valued inner product on Hg, which endows H with an L, M-module
structure. Hence theorem 2.3.4 implies that ||.|| 5. is a norm for 1 <p < oo.
P

Remark 3.2.3. — Note that thanks to (3.2.3), Liax(p,2)(M) is dense in Hg and 7—7;
for 1 < p < oo.

By definition, we deduce from the discrete case the following
Lemma 3.2.4. — Let1 <p < oco. Then H, is reflezive.

Proof. — Tt suffices to observe that the H;-norm satisfies the Clarkson inequalities.
Then we will deduce that Hj is uniformly convex, so reflexive. Note that for each o,
the Hp(o)-norm satisfies the Clarkson inequalities with relevant constants depending
only on p. This comes from the fact that the noncommutative L,-spaces do (see [41]),
and recall that for z € M we have

lalligior = || D evo @ df (@)

teo

Lp(B(£2(0)) ® M)

Taking the limit over o yields the desired Clarkson inequalities for the Hj-norm. [

3.3. Monotonicity and convexity properties

The crucial observation for the study of the spaces 7—7; and My, is that the Hy(o)-
norms verify some monotonicity properties.

Lemma 3.3.1. — Let 1 <p < 0o and o € Psn([0,1]).
(i) Let 1 <p <2,z € Ly(M) and o’ Do. Then |z|ge(o) < Bplzl e (or)- Hence

lellng < sup lallmso) < Bollzlls.
g

(ii) Let 2 < p < oco. Let ol,..., 0™ be partitions contained in o, let (am)1<m<m
be a sequence of positive numbers such that )" am =1, and let zh . . xM be
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3.3. MONOTONICITY AND CONVEXITY PROPERTIES 31

elements of L,(M). Then forx =3 anx™ we have

M
\ Z a'm[xnlyllm]a'”

m=1

[N/ T

)l Hgo) < ap )

In particular for x € Ly(M) and 0 C o’ we have ||z|[ s (o) < pl|@] e (o). Hence
—1 . . .
a, [lzllag < inf [zl g0y < 1]l

Proof. — Let 1 < p <2, 2 € La(M) and o C o’. Applying the noncommutative
Burkholder-Gundy inequalities to
y=) eo®di(z)
teo
in L,(B({2(c)) @ M) for the finite partition o’, we get
19l 2, B0y & M) < BollYll e (on) (BEa(o)) & M)
Here we consider the discrete filtration of B(¢2(0)) ® M given by (B(¢2(0)) ® My)ieo-
Note that

19l 15( ) teaton B 00 = || D2 D 00 @ v @ (&7 (2)|

s€o’ t€o

Ly(B(£2(0") 8 B(£2(0)) 8 M)

An easy computation gives that for s € o', t € o

do'(z) if t7(0) <s (o)) <s<t,

& (@@) ={

Hence for s € ¢’ fixed, only one term does not vanish in the sum over ¢ € ¢ and we

otherwise.

get

19l ts (o) (B(e2(o)) B M) = H Z eso®d7 ( ‘ = |2l #g(or)-

= Ly(B(t2(o") & M)
The result follows from the fact that ||yl ((e,(0)) & 1) = 1%l H(0)-

We now consider 2 < p < oo. Let us first assume that the partitions ¢™ are

disjoint. Denote ¢’ the union of ¢',...,c™. Again, we apply the noncommutative

Burkholder-Gundy inequalities to

M
=33 ero® Jamdy" (@™)

m=1tco™

in L,(B(¢2(0")) ® M) for the finite partition o. We get

||Z/||H;(a)(3(22(a')) am) S BlYlL, B0 E M)

On the one hand, since the partitions ¢™ are disjoint we have

M 1
Yl L, (B(ea(o)) B M) = H Z Z am|df " (z™) i = H Z am[z™, 2™ gm
2

m=1t€o™

[SIE VT

P
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On the other hand,

91l £rs (o) (B2 (o)) @ M)

ST Y @ en s vamas (@ @)

scom=1tco™

Lp(B(£2(0)) ® B(£2(0")) ® M)

Again, for s € 0 and m € {1,..., M} fixed, since ¢™ C o, only one term does not
vanish in the sum over ¢t € ¢™, and it is equal to d?(z™). Hence

M 1
O (0 2||2
191l (o) (B2 (o)) & M) = H > D am|dI @™,
s€o m=1 2P
By the operator convexity of |.|? we obtain

2k
‘ . < apllyll e o) (B2 (0) & M)
2

M
lellgo = [ 3] 3 amdz@™)
s€o m=1

which yields the required inequality. In the general case, when the partitions are not

disjoint, the result still holds by approximation, thanks to the fact that the filtration
is right continuous. Indeed, if there exists a common point ¢ which is both in o™
and ¢™ (for n # m), then we can replace t by t + ¢ in ¢™ (for € small enough), which
does not change the considered norms when passing to the limit as ¢ — 0. O

This monotonicity property immediately implies the following crucial result, men-
tioned previously.

Theorem 3.3.2. — For 1 < p < oo the space H;, is independent of the choice of the
ultrafilter U, up to equivalent norm.

3.4. The spaces ﬁg and H,; coincide

In this subsection we show that the two candidates ﬁ; and H;, introduced previ-
ously for the Hardy space of noncommutative martingales with respect to the contin-
uous filtration (M;)o<i<1 actually coincide. In particular we will deduce that, up to
an equivalent constant, these spaces do not depend on the choice of the ultrafilter .

Theorem 3.4.1. — Let 1 < p < oo. Then, with equivalent norms,

Theorem 3.3.2 yields immediately

Corollary 3.4.2. — For 1 < p < oo the space ﬁg is independent of the choice of the
ultrafilter U, up to equivalent norm.

The case 2 < p < oo is an easy consequence of the convexity property proved in
lemma 3.3.1, as detailed below.
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3.4. THE SPACES H{ AND H{ COINCIDE 33

Proof of theorem 3.4.1 for 2 < p < oo. — It suffices to show that the H;-norm and
the ﬁ;—norm are equivalent on M. Let z € M, by (3.2.3) we have ||uv||ﬁp < l@llne-
Now assume that )

Il = [l alull, < 1.
Since the two spaces coincide with Lo(M) for p = 2, we consider 2 < p < oo. In that
case we have

[.’L’,.’E]u = w_L%p_ LI,IE [III,.’E]O.

We can find a sequence of positive numbers (&) %:1 such that > = ., = 1 and finite
1

..., oM satisfying

M
|3 ane.

m=1

partitions o

<1.
ip

Applying lemma 3.3.1 (ii) to o = |

m

o™ we get [|z] (o) < ap. Then

Izl < apllell (o) < o =

For 1 < p < 2, it is more complicated to explicit the bracket [z, x]y. This is why
we will use a dual approach. The trick is to embed Hj into a larger ultraproduct
space defined as follows. Let us fix ¢ > 2. We define the set

I = Piin(M) x Prn([0,1]) x RY,
where Pg, (M) denotes the set of all finite families in M. Then 7 is a partially ordered
set by the natural order. We define an ultrafilter V on Z as follows. For G € Pgn (M)
we define
Sg = {F € Pga(M) : G C F}
and consider the filter base on Pg, (M)
T ={Sc:G € Pan(M)}.
On R?% we consider the filter base given by
W =1{]0,8]: § > 0}.

Then the product V' = T x U x W is a filter base on Z, and we consider V an
ultrafilter on Z refining V'. Let us now fix an element ¢ = (F,0;,¢) € Z. For each
z € F, the Burkholder-Gundy inequalities applied to each o for ¢ > 2 yields that the
family ([z,z],), is uniformly bounded in L%q(/\/l). Since L%q(/\/l) is reflexive, the
weak-limit exists and

[‘,I:7I]U = 'U.)—L%q- E,IZI/{I [.ZL',LC]U,

The same holds for the finite family F, i.e., the family ([z,z]s)zer is uniformly
bounded in L1, (M) @ --- & L1,(M). By reflexivity, the weak-limit exists and can
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be approximated by convex combinations in L1 gnorm. Hence we can find a se-

quence of positive numbers (am(i))m Zl such that > m @m(i) = 1 and finite partitions
ok, 0?1(1) satisfying for all z € F

M(4)
(3.4.1) H Z am (9)[z, z], mll <e.

m=1 24

We may assume in addition that o; is contained in ¢ for all m. We consider the
Hilbert space H; = ¢2(U,, ;c,m {t}) equipped with the norm

“(gm,t)ISmSIW(i),fEa{" H, = (Z Z |£m tl )
m=1 teo"

For 1 < p < oo and i € Z we consider the column space L,(M;H¢). Recall that for
any sequence (fm,t)lgmgm(i),tecr;" in L,(M) we have

M(i)

HZ Z em,0 Qe @ Emt L(MH)WH(ZO(’" )Z |€mt|>

m=1teo" teom

Then for 1 < p < oo we have
(Lp(M;HE)) = Ly (M;HS)  isometrically,

via the duality bracket

M)

(§ | 77)L1,(M;7-L?),LPI(M;H;') = Z Z am(i)T(£;L,tn7n,t)-

m=1teo™
Lemma 3.4.3. — Let 1 <p<2. Then ﬁ embeds isometrically into [, L,(M;HS).

Proof. — By density it suffices to consider an element € M. We associate z with
T = (2(2))* in [[y, Lp(M;HS) defined as follows. For each index i = (F,0;,¢) € T
such that x € F' we set

M(i)

i)=Y Y eno@en®d (2),

m=1teo"

and Z(¢) = 0 otherwise. Then we claim that

1
(3.4.2) ||37”HVL,,(M;H“) = hm ”.L‘ “L,,(M;H;j) = ”[L,:L]M@p = ||m||ﬁ;
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Indeed, for § > 0, we observe that for ¢« = (F,0;,¢) such that z € F' and £2P < § we
1
have by the triangle inequality applied to the norm H||§z and (3.4.1)

1
3P
[z aled| 32 = 1ZON, apeey| = [l alell T~ | Z ) 3 5" @)}
teay 2
K M(i) "
= ‘H[{E,Lblullgz — H WLZZI a’ln(li>[m7x]¢7;” I%p
M) 1p M) "
< H[x,az]u - Z ()zm(i)[.”l,',.’l,‘]g;n“j < H x, Xy — Z am (1) [z, @lom || |
m=1 2P m=1 249

< g2P <.
This means that

Stz X Pan([0,1]) x 10,6%/7) C {ieT: |H[:1,L]u||§2 — ||§5(z)||’£p(

Since by construction, the set Sy X Pra([0, 1]) x ]0,52/”] € T xU x W is in the
ultrafilter V, we deduce that the set in the right hand side is also in V for all ¢ > 0.
Thus by the definition of the limit with respect to an ultrafilter we get

'l
hm Hw “L,, MHE) ||[£737]MH§£

This concludes the proof of (3.4.2) and shows that the map x € M — T extends to
an isometric embedding of Hy into [y, L, (M;H). O

This embedding will be useful to describe the dual space of ﬁf,
Lemma 3.4.4. — Let 1 < p < 2. Then (HS)* C (HS)*.

Proof. — Let p € (ﬁ;)* be a functional of norm less than one. By lemma 3.4.3 and
the Hahn-Banach theorem we can extend ¢ to a linear functional on [],, L,(M; H§) of
norm less than one, also denoted by . Lemma 2. 2 3 implies that ¢ is the weak*-limit
of elements &y in the unit ball of [T, (L,(M;HS))* = 1), Ly (M;HS). For each A,
we will prove that there exists z) € La(M) such that

(Ex]T) = 7(z3z), Ve M and |lza](3g)- < Ky,

where T denotes the element in [[,, L,(M;HY) corresponding to x via the embedding

given by lemma 3.4.3. Then we will set z = w-Lo-limy z) and get an element z €
Ly(M) such that

olz) = li)r\n(@ |z) = li;n T(z3z) =7(z"2), Vo e M and ||z][(35) < kp.

Finally we will conclude the proof using the density of M in ﬁ;
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We now consider an element § = (£(4))* € [],, Ly (M;HS) of norm less than 1,

with
M (7)

Z Z Pm0®eto®£mt()

m=1teo"

Fix i = (F,05,e) € Tand 1 <m < M (7). Then

gm Z em0®pt0®§'m t(l) S L (M ez(o,m))
teo”
We set
Zm Z d Em t
teo™
where d?’m(fm,t(i)) = &E(&m,e(7) — E—(om)(Em,e(i)) for t > 0 and d0 (fmyo(i)) =

Eo(€m.0(i)). Note that since the partltlon ol is finite, we have 2,,(i) € L, (M).
Then we consider

Zam 1)zm (i) € Ly (M).

We first show that ”Z(Z)”U MO(aty < kp for of =0 U...U oM(l)

Let s € o/. Then for m ﬁxcd we denote by t,,(s ) the unique element in o
satisfying t,,,(s) " (07") < s (0}) < s < t;(s). The operator convexity of the square
function |.|? yields

(3.4.3) E,|2(0) — & (o (D) [* = & ‘2

Zam(z) (zm (i) — /)(Zm(l)))
<Y (i

m

!2

s Zm(z) - Es‘ (o) (Zm(l))

On the other hand we can write

Eulam(®) ~ o (em @) = & ( X0 157 (@) + [Ernio e ))_55’(01>(2’m(i))‘2)
et
. 2
:£s< > (Em,t(i))|2+lgtm(s)(fm,tmm(i)) ‘Ss'<<f:>(5m¢m(5>(i))’ )
ey
16,( D ema)) + 260 &m0 )0 + 265 (0 |mtn (9 O]
t>t,(s)
teay"
(5 ) <55 (5 )
teol” teo™

Here the second identity comes from the fact that for ¢ € o]

{ dtl (fm,t(i)) ift < tm(s)’
0 if t > tn(s),

o) (@7 (€ (i) =
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and
d7* (Em 2 (i) i< t(s),
Ea-(on (A7 (Emi(D)) = § oo (Emt(D) = Erpu(o)= (o) (§m e (D) i L = tm(s),
0 i 6> t(s).

Then (3.4.3) gives

£~ oy (20)|* < 46( D am@]eme*) +26 (D2 am@)|ma]).
m,teo” m,t€Ea”

By the noncommutative Doob inequality we obtain

12(3)]

2 . . 2
Le, MO(o}) ~ ”523+ £o[2®) = £ GO

1.
b4

sup €, Y an(i)feme)])

’
s€o; m,tea"

+2s &y (3 anilencif’)

5€9; mteay

3" (i) |em ()]

m,teo"

<4

1
2P

1,
2P

<681,

- 65%pr||€(i)||ip,(M;Hf)'

37’
Hence
(3.4 =)

In particular, we see that the family (z(z)); is uniformly bounded in Ly(M). We set

1 , 1
Le,MO(a?) = 35%2;)’”5(7’)“LP/(M;H§) < 35;;;"
=w-Lo-1i ;).
¢ =w-Ly-lim z(%)
By the density of La(M) in H; we have
lollge = sup |r(z"w).
z€La(M)
lzllzg <1

Then for z € L2(M) and [|z[|3¢ < 1, lemma 3.3.1 and (3.4.4) imply
|7(z"2)| < l-ir\l} |7(2(i) )] < V2 l.ilf} 2@ . MO(a'.)”w”H,E(UZ)
2, 2, p’ K3
1 1
< Bﬁéi IBIJ“I”HC < 3\/5512 /[))P'
3P P 3P

Hence we get [|z]|(e)- < kp with k, = 3v/2 (5?}),5,,. Finally, it remains to check that
» 2
for all x € M, z satisfies

(34.5) (€ 5)n‘,LP/(M;Hg),nV Ly = T(Z7T).

We first verify that for each i = (F, 0;,¢) € Z such that z € F' we have

(ED1Z@) , vsmey, 1, sy = 7(2(0)" ).
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For each m we have

Tz (@) x) = 3 7(d] Ema(@) @) = 3 T(Emali) ] (2)).

teo™ teo™
Then
M(7) M (%)
Z am Z'rn Z Z am £m t( ) ti (T)) = (5(7’”}(2))
m=1 m=1teo"

By the construction of the ultrafilter V this is sufficient to show that the limits along V
coincide, and (3.4.5) follows. This concludes the proof of the lemma. O

Proof of theorem 3.4.1 for 1 < p < 2. — By density, it suffices to prove the equiva-
lence of the norms on M. This follows from (3.2.3), and we prove the reverse inequality
by duality by using lemma 3.4.4. O

In the sequel, we will use the definition of Hj to transfer the results from the
discrete case to the continuous setting. Indeed, this construction seems more natural
for taking the limit in the classical results.

5. Ultraproduct spaces and L,-modules

In this subsection we introduce the ultraproduct of the column L,-spaces and its
regularized version, into which we will isometrically embed the Hardy space H. We
will equip these ultraproduct spaces with some Lp,-module structure.

Definition 3.5.1. — Let 1 <p < oco. We define
KgU) =[] Lo(M:65(0))  and  K5U) = K5U) - ew,
u

where - denotes the right modular action of Mu on I?;(L{) For p = 0o we set

SO

K (U) = HL (M:€5(0))  and K& (U) =K (U) - ey,

where the strong operator topology is taken in the von Neumann algebra generated by
11 B(f2(0)) @ M, and coincides with the topology arising from the seminorms

el = timr (&), for 0= 00 € W)t = ([T 2100)
u

teo
The right My-module structure of IN(I‘)(Z/{) is given for x = (z,)* € [[, M and
€= (&) € Kyu) by
§x=(&w0)"
It is easy to see that this does not depend on the chosen representing families. More-
over, by proposition 5.2 of [26], this module action extends naturally from [],, M
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to My. Similarly, for £ = (£,)* and n = (n,)* € l?;(lj{) we consider the component-
wise bracket

(&W)I};(u) = ((€o1M0) L, (Mits(0))) = (an(t)*%(t)) € HLgp(M) = L1, (Muy),

t€o u

where {5 =3, €008 (1), Mo = Y 1ey €1,0 @10 (1) € Lyp(M;€5()). This defines an
L% p(ﬂu)—valued inner product which generates the norm of K (i) and is compatible
with the module action. Hence I?;(U) is aright L, Mu—module for1 < p < oo. Inthe
sequel, the regularized spaces will be crucial tools to study H;. We may equip K;(U )
with an L,-module structure over the finite von Neumann My, thanks to the following
observation.

Lemma 3.5.2. — Let 1 < p < oo. Let £ € I?S(U) Then the following assertions are
equivalent:

(i) &€ Kp(U);

Proof. — By (2.2.1), it suffices to show that for £ € I?;(U) we have
g = g ey <€7£>f(;(u) - <€7£>R;(L{)6U'

This comes from definition 2.3.1 and the fact that ey is a central projection. Indeed,
we can write

E=C ey <= - (1—ey)=0 < <f'(1*€u),£'(1*6u)>f{;(u):O
= (1761/{)*<§7£>}?;(u)(1_6u):0 — <§7£>[?IL7(L{)(176M) =0
— <€7£>}?;(u) = <€7§>i€ (u)€u~ O

c
P

Lemma 3.5.2 implies that Kj(U) is an L, My-module. Moreover, the fam-
ily (K5U))1<p<oo forms a projective system of L, My-modules. Indeed, for
1 <p < q< oo we may consider the contractive ultraproduct of the componentwise
inclusion maps I,, : K, sUu) — I?;(U) By modularity, this map preserves the reg-
ularized spaces, i.e., I, @ Kg(U) — Kj(U). Then we observe that the assumptions
(i)-(iii) of corollary 2.3.5 are satisfied. In particular, we deduce that the map I, ,
is injective on K{(U). Hence for 1 < p < g < oo we may identify K¢(U) with a
subspace of K (U). We can prove the density assumption (iv) of corollary 2.3.5 by
using the p-equiintegrability as follows.

Lemma 3.5.3. — Let 1 <p < oo. Then K$ (U) is dense in K (U).

Proof. — Let £ € Kj(U), then lemma 3.5.2 yields that (&f)}(;(u) € L%p(Mu).
Combining theorem 2.2.6 with lemma 2.2.5 we deduce that

(3:5.1) Jim 166, rge0 1 (6 x50 > T, () =0

S
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We set np = &+ L((§, &) k) < T). Then

(e, ) ks = (6 € ke (€ ke < T) € My,
and nr € K5 (U). Moreover, by (3.5.1) we have

1€ = nrll ke = 1€ L& E) ke > T)HK;;(U)
= [[€- 1((& O kewy > T), € - L, E) sy > T)>K§(u)”§p

= 46O xse0 (€ Oz > D1}, = 0.

T—00

This ends the proof of the lemma. O

Since My, is finite, we deduce duality and interpolation results from corollary 2.3.6.

Corollary 3.5.4. — Let 1 < p < oco. Then

(i) (KpU))* = K, (U) isometrically.

(ii) Let 1 <p; <p<pz <oo and 0 < 8 <1 be such that 1/p = (1 —0)/p1 + 6/p2.
Then

Ky U) = [K;, ), Ky, (U))]

(i) K5U) = Upsy Lpn(Rg)) 7500,

Proof. — The assertions (i) and (ii) follow directly from corollary 2.3.6. For (iii), let
p>pand € Iﬁ,p(Ki)%( )). There exists n € K;(Z/l) such that £ = I5 p(n). Then by
lemma 2.2.7 we have

<£7 g)f(;(u) = Iﬁ,;ﬂ(<n7 77>;?%(u)) € Iﬁ,p(Lﬁ/Q(MU)) C L%p(MU),

and lemma 3.5.2 yields £ € Kj(U). Conversely, let £ € Kg(U). Then by
lemma 3.5.3 we can approximate & in KS(U)-norm by an element n € K (U),

o isometrically.

which is in I,;,p(l? £(U)) for all p > p. This concludes the proof of the corollary. 1
The finiteness of My, also implies the following useful result.
Lemma 3.5.5. — Let 1 <p < oo and £ € Kg(u). Then
€l sy = Jim 1€l e -

Proof. — For € Kj(U), we have (§,€) ks w) € L1, (My) by lemma 3.5.2. Since My

is finite we may write

€1l s @y = || €€, €) KC(M)HL1 (M) = H €6, &) ke ”E%q(Mu) = lim 1€l ey

ASTERISQUE 362



3.6. INJECTIVITY RESULTS 41

We may isometrically embed Hy into KJ(U) for every 1 < p < oo via the map
LMy, — Kp(U)
defined for x € M by
(3.5.2) Wz) = (Z eto® dg(a,-)) "

teo
Indeed, for x € M there exists p > p such that

(@), @) o0 = (D1 @I) € I g (Lap(Mu)).

teo
Then <L(.’1}),L(.’1})>Rc(u) € L%p(Mu) by lemma 2.2.7, which ensures that ¢(x) belongs
to K;(U) by lemma 3.5.2. Observe that lemma 3.5.5 still holds true for the Hj-norm.

Lemma 3.5.6. — Let1 <p<oo andxz € M. Then
z||ye = lim ||2]|3e.
2l = lim
Proof. — For x € M, 1(x) € K;(U) and by lemma 3.5.5 we can write

Ko@) — qh_rf}, [[1()]

Il = [l — lim el o

Ke(U)

3.6. Injectivity results

In this subsection we check that the Hardy spaces defined above are well interme-
diate spaces between Lo(M) and L,(M) as expected. The inequalities (3.2.2) allow
to define by density natural bounded maps from H to Linin(p,2)(M) for 1 < p < oo.
Since it is not clear a priori, we need to prove that these maps are injective.
Proposition 3.6.1. — Let 1 < p < oo. Then

Lmax(p,Q) (M) - H;C) - Lmin(p,Q)(M)7
i.e., Hy embeds into Liin(p,2)(M).

We first prove the following direct consequence of the monotonicity property.

Lemma3.6.2. — Let 1 < p < 2. Then the space {x € L,(M) : |zllpg < oo} is
complete with respect to the norm ||| .

Proof. — The argument we will use to prove the completeness of the space

{z € L(M): 2flae < 00}
relies on the fact that the discrete Hy(o)-norms are increasing in o (up to a constant)
for 1 < p < 2, and on the completeness of the discrete spaces Hj(a). Let (zn)n>1 C
{z € Ly(M) : [|z][3g < oo} be a Cauchy sequence with respect to ||.[#:. Recall that

for x € {x € Ly(M) : ||z[lyg < oo} we have [|lz[l, < Bpl|2[ns. Then we deduce that
(@n)n>1 is also a Cauchy sequence in L,(M). Hence (2,,),>1 converges in L,(M) to
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an element 2 € Ly(M). Since for a finite partition o, the norms |||, and |[.[| g (o)
are equivalent, the convergence is in H7(o) for each o. It remains to prove that the
convergence is also with respect to the Hj-norm, and then we will conclude that
z € {x € Lp(M) : ||lzflag < oco}. Fix e > 0. By the Cauchy property with respect to
the H;-norm, there exists ng € N such that for all n > ng,

lim ||z, — 25 |lpe <e.
m—o0 ¥
For a fixed partition o, since r, — x in Hg(o) we have
HT - In“H;j(o) = nlgnoo ”mm - 51:71“H{;(a) < b)p '"}i_géo ”-Im - :L'nHHI“, <eEe.

Note that here ng does not depend on the partition o, hence taking the limit in o we
obtain the required convergence in Hj-norm. O

Proof of proposition 3.6.1. — For 1 < p < 2, by lemma 3.6.2 and density we can
isometrically embed Hj into {z € L,(M) : |lzflag < oo}, which is clearly a sub-
space of L,(M). Hence the natural map which sends H, to L, (M) is injective. For
2 < p < oo, the injectivity of H into Ly(M) directly comes from the L,-module
structure of the spaces K;'(Ll) introduced in subsection 3.5. Indeed, if 2 < p < oo,
this structure implies the injectivity of the map I, o : K5(U) — K5(U). Hence the
following commuting diagram yields the required injectivity result:

HE ————— HG = Ly(M)

[,k

2
Ke(U) ——— K5(U) 0

3.7. Complementation results

The aim of this subsection is to obtain the analoguous results of proposition 3.1.1
and corollary 3.1.3 in the continuous setting. Here the space K ;(U) will play the role
of the space L,(M;¥¢5) in the discrete case.

Proposition 3.7.1. — Let 1 < p < oo. Then Hj, is complemented in K (U).

Proof. — We first describe the projection D : K, (U) — H;, for an element
=) = (D e ) e KL@).
teo

For each o we set

Lo = Z dy (gU(t))v

tco
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where df (& (1)) = E1(&x (1) — Et-(0) (€ (#)) for 0 <t € o and df (& (1)) = Eo(&(1))-
Since K& (U) € K§(U), we have x5 € La(M) and ||lzoll2 = [|€ || Lo(mses(o)) 18 uni-
formly bounded. Hence we can consider the weak-limit in Lo(M) of the z,’s and we
set,

D(&) = w-Lo- grlrll To.

We will show that this construction defines well an element D(§) € H; with
IDE) g < kplléllks@y for 1 < p < oco. Then we will conclude by density (see
lemma 3.5.3) that 1 is complemented in K (U).

Let £ € K& (U) be such that H§||K;(u) = limy  [|€ || L, (Mit5(0)) < 1. We may
assume that [|§5 ]|, (mieg(0)) < 1 for all 0. Let 1 < p < 2 and fix a finite partition oo.
In this case we clearly have D(§) € La(M) C H;. By lemma 3.3.1 and the non-
commutative Stein inequality in the discrete case (proposition 3.1.1), for o9 C o we
have

ol s (00) < Bplltollng o) < WpBpll€ollL, (Mmieg(o)) < 1pBp-
We see that (25 )s50, is uniformly bounded in H;(00), and we deduce that the weak-
limit of the z,’s (for ¢ D 0g) exists in Hpc(oo). This weak-limit coincides with the
weak-limit in Lo, t.e.,
D(§) = w-Hy(0p)- lim .
U?/{Cf(]

Then we can write

“D(g)HH;(a()) S lim ||‘7"U”H;(a'u) S ’Ypﬂp-

D00

Since this holds true for every partition g, taking the limit we obtain
IP@) 50 < WwBplEl 50

Let 2 < p < 0o. lemma 3.3.1 and proposition 3.1.1 imply that for each o,

2ollrg < apllzollg o) < YpplléollL,(Mmiege) < Wpp-

Hence the family (7,), is uniformly bounded in Hj. The reflexivity of Hj
(lemma 3.2.4) yields that the weak-limit of the z,’s exists in Hj. Since Hj
embeds into Lo(M) by proposition 3.6.1, we deduce that these two weak-limits
coincide, i.e.,

— (8 M ~ c
D(§) = w-H,- }THZI} Ty € My
Then we can write

”D(f)“}[; < EIIE ”ma”?{; < WPQPHSHK;;(LW O

This complementation result allows to transfer the duality and interpolation results
proved for Kj(U) in corollary 3.5.4 to the spaces Hy.
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Corollary 3.7.2. — Let 1 < p < 0.
(i) Then, with equivalent norms,
(Hp)" =H,-

(i1) Let1 < p1,p2 < oo and 0 < 6 < 1 be such that 1/p= (1 —0)/p1+0/ps. Then,
with equivalent norms,

= [H;

P11’ Pz]

A direct approach of the duality between H and H,, by simply using the discrete
duality, yields instead the following duality result.

Lemma 3.7.3. — Let 1 < p < 2. Then, with equivalent norms,
(Hy)" = {T € L,(M): “I”Hf] < oo}.

Proof. — Let x € {zx € Lp(M) : ||z]lnug < oc} and y € M. For a fixed partition o,
the Holder inequality implies
1
OIHOIY
teo

=[St aw)] < |(Swer) ],

=zl g @ 1yl e, (@)-

Passing to the limit yields
|T(z*y)| < l2ll7e - HZ/HH;’/-
Since M is dense in H;,, this shows that 2 € (H;,)" and
el < el
Conversely, let ¢ € (H5,)* be of norm less than one. Since Ly (M) is dense in H,,,
 is represented by an element x € L, (M) such that ¢(y) = 7(z*y) forally € Ly (M).

It remains to show that [|z|ly; < oo. For a fixed partition o, by corollary 3.1.3 and
the density of L, (M) in Hy, (o), we get

||¢F||H;(a) < \/§7p||37||(HC,(a))* = \/5% sSup ’T(I*y)|~
? YyeL, (M)
lylle, (o) <1
P
For y € Ly (M) with ||y| g, (o) < 1 we have
(@ o)| = lew)] < s, < awllvllae, o) < o
Hence we get
lzllug < \/571:%'”517”(%;,)*7
and deduce that z € {x € L,(M) : ||lz[lpg < oo} a

Hence, combining lemma 3.7.3 with assertion (i) of corollary 3.7.2 we obtain

Corollary 3.7.4. Let 1 <p<2. Then M = {z € Ly,(M): lzllg < oo}
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Remark 3.7.5. — We have to be careful when considering the duality bracket between
Hy, and H,,. Indeed, we can not always write it explicitly. For 1 < p < oo and z € Hj,
y € My, we can write

(@ [Y)rgme, = 7(27y)
when either € Lyaxp2) (M) or ¥y € Lyaxr,2)(M).  We first suppose that
T e Lmax(p,2)(M) and y € Lmax(p’,Q)(M>- Then

(] y)?{;,%;, = (L(:L‘) | L(y))K;(u),K;,(u)

- (( ; €0 ® di’(x)) ' } (Z €10 ® di’(y))') K K, 00

teo
S H do * joO :l * — * .
lim ;T( F(2)d7 () = lim(a"y) = 7(z"y)
We now consider # € Lyax(p,2)(M) and y = ’}-[;,-limn Yn With ¥n € Lmax(pr,2)(M),
the other case being similar. Then
(@ |y)rg 7, = (@[ yn)pg e, = M 7(27yn).

Since Hy, C Liyin(p,2)(M), the sequence (y,)n also converges in Lyiy(pr,2) to y and
we get (2 |y)ag.me, = 7(27y)-

3.8. Fefferman-Stein duality

In this subsection we establish the analogue of the Fefferman-Stein duality in the
continuous setting. The difficulty here is to find the right description of the spaces
Ly MO to get the expected duality.

Definition 3.8.1. — (i) Let 2 < p < co. We define L5 MO as the space of all elements
x € Ly(M) of the form x = w-La-limyy x5 with limey |24 e mo(e) < 00. We equip
LgMO with the norm

lzllLgmo = inf Er{} |ZollLsar0(0),

where the infimum is taken over all the descriptions v = w-Lo-limgs 1y 2.

(ii) We define BMO® as the space whose closed unit ball is given by the absolute
convezx set

Bsmoe = {x = w-Ly-limz, : lim ||z, c(oy < 1}z,
BMO {fL w-L ;Ig{lf ;fg}”»ﬁ BMmOe(0) < }
We equip BMQO® with the norm
”-THBMOC = iIlf{C >0:z¢€ CBBMO“}-
Lemma 3.8.2. — The spaces LyMO for 2 <p < oo and BMOC are Banach spaces.

To prove that BMO® is complete we will need the following general fact.
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Lemma 3.8.3. — Let X be a Banach space and B be an absolutely convexr subset of X
satisfying
(i) B is continuously embedded into the unit ball of X, i.e., there exists D > 0
such that
B C DBy;

(ii) B is closed with respect to the norm ||.||x.

Then the space Y whose unit ball is B, equipped with the norm
|z|ly =inf {C >0:z € CB}
1s a Banach space.

Proof. — It is a well-known fact that ||.||y defines a norm. Let )" x,>1 be an abso-
lutely converging series in (Y, |.]ly). We may assume that ||z,[ly < 5 for all n > 1.
We want to show that this series converges in Y. We first remark that the series Y @,
is absolutely converging, and hence converging, in X. Then there exists z € X such
that = ) x,, where the convergence is with respect to ||.|[x. Thus

N

N

g T, —— x in X and ExneB.
N—o00

n=1 n=1

Indeed, we have

N N N 1
1> @], <D lwally <3° 5 < 1.
n=1 n=1 n=1

Using (ii), this shows that x € B. It remains to see that the convergence also holds
for the norm ||.|ly. Let € > 0. Let Ny be such that 20 > ¢~!. We claim that for all
M >N > Ny

1M N
;= - n— Tn) € B.
ynvar = = PIEEDIE )
Indeed, we have
M M M
1 1 1 1 1 1
== |l < - Ay < = — << <1.
llyw.pally 5” Z lly =% Z lzally < € Z 2n T 2N 7 g2No —
n=N-+1 n=N-+1 n=N-+1

Moreover, for N > Ny fixed we have

1 N
YN.M — ~<{E*an> in X.
M—oo € —

Hence (ii) yields that 1 (z — Zﬁ;l ) belongs to B, i.e.,

N
S
n=1

This proves that the series converges with respect to ||.|y and ends the proof. a

; <e forall N> Ny.
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Proof of lemma 3.8.2. — We start with the case p = co. We apply lemma 3.8.3 to
X = Ly(M) and B = Bgamoe. Then by the definition of Bgaoe, it is clear that
condition (ii) of lemma 3.8.3 is satisfied. Moreover, since for € Lo(M) and each o we
have |22 < V2||z||ga10¢ (o), condition (i) holds for D = v/2. Hence the construction
of the space BMO° defines a Banach space.

For 2 < p < oo, we observe that LS MO is the range of the bounded map

b HL MO(0) = Ly(M), - (w6)" = w-Ly-lim 5.

Indeed, since for each o we have ||z,|2 < V2 ||zo] L5MO(o) the family (z5)y is uni-
formly bounded in Ly and hence the weak-limit in Lo exists. Moreover, it is easily
checked that the map ¢ is well-defined, i.e., if (2,)* = (y5)® € [[; L;MO(c), then

w-Lo-limz, = w-La-lim
ou u e

0-7

Since [],, LM O(o) is a Banach space, the boundedness of ¢ implies that Ly MO =
([ 1y LyMO(0)) equipped with the quotient norm

lll" L;‘,MO = inf

z=¢((z5)*)

is a Banach space. O

[C) HnML;MO(a)

We can now state the continuous analogue of the noncommuative Fefferman-Stein
duality.

Theorem 3.8.4. — Let 1 < p < 2. Then, with equivalent norms,
(Hy)" = Ly MO.
Moreover, )\;1||.7:||L;/M0 < 2l gy~ < ﬁ”x”bp/Mo

Proof. — We first prove the inclusion L, MO C (Hj)* for 1 < p < 2. We consider
r € Ly MO with [|z| e, mo < 1. Then there exists a sequence (z,), such that
P
limg g |25 e, MmOy < 1 and & = w-Lo-limg gy 25. Hence for y € M we have 7(z*y) =
P
lim, ¢ 7(2z%y). Recall that the discrete Fefferman-Stein duality for a fixed partition o
implies
[T(zhy)| < \/_Hl“a“u mo(o) 1l ag(0)-
Taking the limit we get
IT(ﬂﬁ*y)i < \/5 Elg (Hl’ol L¢,MO(o) * ||’!/||H;;(a))
= \/5(1(5141 HIL'UHL;,}\/IO((T))(EE} 1Ylls1g(0)) < V2 [yl

Since M is dense in My, this shows that x € (H;)" and

Izl 35 < V2 l2llze, mo-
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The proof of this inclusion in the case p = 1 is similar. Indeed, let x € Bgao<. Then
there exists a sequence (x’\),\ such that z = Le-limy z* and z* = w-Lo- limg 14 1‘3‘,,
with limg i ||z | smoe (o) < 1 for all A. For y € M we have

|7(2*y)| = [limr((2*)"y)| < V2 lim (lim [l25]|5m0c0)) (lm lyllr o) < V2 Iyl

We deduce that BMO® C (H$)* by density as above.

To prove the converse inclusion, we first embed H; into an ultraproduct space
as follows. Note that the map iy : € M (2)* € [[,, H5(o) is isometric with
respect to the norms ||.[[3 and ||.|[m, rg(s). Hence by the density of M in Hj we
can extend 7y to an isometric embedding of Hy into [[,, Hy(o). Let p € (H;)* be
a functional of norm less than one. By the Hahn-Banach theorem we can extend ¢
to a functional on [[,, H;(o) of norm less than one. We now need to consider the
dual space of an ultraproduct. Recall that the situation is much easier in the reflexive
case (see subsection 2.2), hence we start with the case 1 < p < 2. In this situation
[, Hy(o) is reflexive, and lemma 2.2.2 gives

(HH;(U))* =TT (He(0)" =[] L& MO(o),
12 U U

where the constants in the equivalence of the norms come from the discrete case (see
theorem 3.1.4). Then there exists z = (z25)° € [[, LIC),MO(U) of norm < A, such that
for all y € Hj

oY) = (z]iu(y))-

Applying this to y € M we get
o) = (21 W)") = lim 7(z59) =(a"y),

where © = w-Lo-limgy 25 is in Ly, MO. By the density of M in H} this proves that
o is represented by x and

lzllLe, mo < LHZT} 2ol Le, a10(0) < ApllZllaeg)--

For p = 1, lemma 2.2.3 says that the unit ball of [[,,(Hf(0))* = [],, BMO(0) is
weak*-dense in the unit ball of ([[,, H{(c))*. Then there exists a sequence (z*)j,
where 2* = (22)* € [[,, BMO*() is of norm less than v/3 for all A, such that

(y) =lim (z* |iu(y)), ¥y € HT.
Applying this to y € M we get
v) = li A ) — limli A * =1 A\ *
oY) im (Z | (y) ) 11§n ;IBT((%) U) m T((x ) y),
where 2* = w-Loy- lim, 74 zi‘ is in BMOF of norm less than /3. Since for all A we have
||Z)‘||nuL2(M) < \/§||z’\||nu3Mor(g) < /6, the sequence (z*), is uniformly bounded

in Lo(M). Setting © = w-Lo-limy z* we obtain ¢(y) = 7(z*y) for all y € M. We
can approximate the weak-limit 2 by convex combinations of the z*’s in the Ly-norm.
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Since z* € V3 Bemoe for all A, the convexity of the unit ball of BMO® implies that
any convex combination Zm amx*™ is still in V3 By moe. Thus by the definition of
Bpamoe<, we obtain that = € /3 Bgaoe. By the density of M in H$ this proves that
@ is represented by x and

|zl Bmoe < \/§|’37||(H;*)*- U
This duality implies the following property.

Corollary 3.8.5. — Let 2 < p < oo. Let (zx)x be a sequence in Lo(M) such
that ||17A||L;;Mo < 1 for all X and x = w-La-limyzy. Then z € LyMO with
Lgmo < V22X,

Proof. — Using theorem 3.8.4 and the density of La(M) in My, we can write

[ ]

[zl zopmo <Xy sup |7(z"y)|.
yELo(M)
lvllace, <1

Note that for all y € La(M), ||y]lse, < 1 we have
|T(z*y)| < limSIip |7(z3y)| < V2 limsup lzallemo - lyllae, < V2.
by 4

Thus z € LEMO with [|zf[Lemo < V2. O
Combining theorem 3.8.4 with corollary 3.7.2 (i) we immediately get the

Corollary 3.8.6. — Let 2 < p < co. Then, with equivalent norms,
LyMO =H,,.
Remark 3.8.7. — In particular, we deduce the following properties for L{MO,
2 <p<oo:
(1) Ly MO is independent of the choice of the ultrafilter ¢/, up to equivalent norm.
(ii) Lp(M) is norm dense in Ly MO.
(iii) For x € Lp(M) and every ultrafilter U,

zllLemo = (}ig;] lzllLemo ~ 1;1511 2/l g a0 (o)-

In particular, up to equivalent norms, Ly MO is the completion of L,(M) with respect
to the norm limo g ||| s MO (o) -

(iv) The |[.||gro(s)-norm is decreasing in o (up to a constant).
Note that for (iii), if # € Ly(M) the fact that |[z]Lomo =~ [[2[ng combined with
lemma 3.5.6 ensures that limg.,p, [z Lc mo exists. Since for 2 < g < p < r we have
lzlemo < llzllLgmo < 2l Lemo,

sending ¢ and r to p we obtain that the limit is in fact equal to ||z{|Lcrmo0-
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Concerning the case p = oo, we can also deduce some nice properties for BMO°
from theorem 3.8.4.

Corollary 3.8.8. (i) BMOC is independent of the choice of U, up to equivalent norm.
(il) M is weak*-dense in BMO°.
(iii) For x € M and every ultrafilter U,

zllBrmoe = sup [[z][Lemo < lim[|z]|spmoc(o)-
2<p<oo oUu
(iv) The ||.[lBMmoe(0)-n0rm is decreasing in o (up to a constant). More precisely,
forx € M and o C o' we have

2l Baoc (o) < 2017l BAoO (o) -

Proof. — Assertions (i) and (ii) follow directly from theorem 3.8.4 and theorem 3.3.2,
proposition 3.6.1 respectively. For x € M and 2 < p < oo, one has Hl'”L‘,;MO <

\/QAPH."L'HBM@ from corollary 3.8.5. Conversely, by the density of M in H§ we have

IzllBrmos < V32l = V3 sup  |r(z*y)|-
yeEM
Iyles <1

Let ¢ > 0. By lemma 3.5.6, for each y € M, [[y[|¢ < 1 there exists 1 < p(y) < 2
such that ||?/HH;;M < 14 e. Applying theorem 3.8.4 to 1/p(y) + 1/p(y) = 1 we get
[7(z"y)| < V2|l e

p(y)’

Mo lly””?»(m = \/5(1 + E)QSUE ”IHL}‘;MO~
p<oo

Sending ¢ to 0, we obtain

(V2A,) 7

2

sup [[z]lLemo < zllBmor < V6 sup @]l Lemo-
<p<o0 2<p<oo

Then by remark 3.8.7 (iii) we deduce

[zl Baroe =~ sup ||z]

2<p<oo 0 7,

¢ ~ im ||z|| e < li (o)
LEMO 2211]15 HII}||I||LPMO(0) s ;1511 llzl B0 (o)

Finally, (iv) comes from the reversed monotonicity result for the H{(c)-norms by
duality. But this approach yields a constant /12, which can be improved by a direct
proof that we include below. Let z € M and ¢ C o'. Fix u € o', there exists a
unique element s(u) € o, satisfying s(u)” (o) < u™(0’) < u < s(u). Observe that for
b € B({z(0)) ® M we have by contractivity of the conditional expectation

€ulb = Eum o O] o < 2(|[Eulb]], + [|EulEu- o B[] )
<A EulEsu b || oo < 4 Esu[B17]] -
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Applying this to b= 3 ) €s0 @ d](x) € B(l2(c)) & M we get

E( 18O 05 0

!
vEoT

1€ulb = Eumor (0

2
)| HB(Mo))@M - ’

v>u
. NG
< 4 VLo 00 = s ( X @)
s€o

Recall that , e

, de (x) if s (o) <v (o)) <v<s,

d? (d2(x)) =
o (@) { 0 otherwise.

Note that s(.) is monotonous, i.e., for u,v € o', v > w implies s(v) > s(u). Hence

A7 ()= > eso®d] (d(x)) = eqguy.0 @ dY (),

s€o
s>s(u)
and , ,
'g"( ;/ |42 0)] )HB(&(U))@M - ng(l;' |7 ()] )Hoo
v>u v>u

At the end we showed that for each u € o/,
2,1
1€ulz = Eumon @75, < 2xllsmor o),
which yields the required result by taking the supremum over u € o’. O
We end this subsection with the following characterization of the Ly MO-spaces.

Observe that this characterization also holds true for p = oo, hence this allows us to
consider the spaces Ly MO and BMO® in a similar way.

Proposition 3.8.9. — Let 2 < p <oo. Then the unit ball of LyMO is equivalent to

B, = {z € Ly(M): lir}} 2]l Lo rro@) < 1}l

Proof. — For p = oo, it is obvious that B, is a subset of Bgapoe. For 2 < p < oo,
corollary 3.8.5 implies that B, C ﬁApBL;;MO. Conversely, let € BL;M@ for
2 < p < oo. It suffices to consider x = w-Lo-limy 1y ¥, with limg i |||

LeMo(o) < 1.
Let ¢ > 0. We may assume that ||x(,||L;MO(U) < 1+ ¢ for each 0. For a fixed

partition ¢’, since the LM O(o)-norms are decreasing we have

EIZI} o llLsrroqe) < kpll@or lsmoer) < kp(1 +¢).

Moreover, the family (x,), is uniformly bounded in Ly(M). Then z is the limit in

Lo-norm of convex combinations of the x,’s. Let y = Y  a,xsm be such a convex

m
combination, then

lim |yl Lgao() < 3 am lim om

m

LsMO(o) < kp(l +€).

Sending € to 0 we get x € k,B,. O
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3.9. Interpolation

We end the study of the H spaces with the continuous analogue of the interpolation
theorem 3.1.8 (i). We will deal with the complex method of interpolation, and we
refer to [3] for informations on interpolation. This interpolation result has already
been used in the literature and is particularly important in abstract semigroup theory.

Theorem 3.9.1. — Let 1 < p < oo. Then, with equivalent norms,
H, = [BMO, Hil1/p-

Proof. — By definition BMO C Ly(M) C Hf, hence the couple [BMO°, H] is
compatible. Recall that H; embeds isometrically into K7(U) via the map ¢ defined
by (3.5.2) for 1 < p < oo, and this inclusion is complemented for 1 < p < oo by
proposition 3.7.1. Then the fact that the spaces K (i) form an interpolation scale for
1 < p < oo (by corollary 3.5.4 (ii)) clearly implies for for 1 <p<2and 1/p=1-6/2
the inclusion

(3.9.1) [HT, La(M)], C H,.
Conversely, we will prove that with equivalent norms for 2 < p < oo,
(3.9.2) [BMO®, Ly(M)],, € Hj,.
In fact, we will first show that
(3.9.3) [BMO, Ly(M)]ay, € HS,
where
BMO = {z € Lo(M) : [lz] g5 = lim lallsrtor (o) < oo} lamrer = M amor.

Then we will use the following fact from [3].

Fact 3.9.2. — Let Ao, A1 be a compatible couple such that Ag N Ay is dense in Ag
and Ay. Let Ay be such that Bz, = Ba,'4ota1 . Then for any 0 < 0 < 1 we have
isometrically

[Ao, A1]e = [Ao, Aile.

We will apply this fact to Ay = BMO', A = Ly(M), and (3.9.2) will follow
from (3.9.3). Indeed, BMO NLy(M) D M is clearly dense in BMO and in Ly(M).
Moreover, Ay = BMO° with equivalent norm. More precisely, we have

Indeed, since

the first inclusion of (3.9.4) is obvious by the definition of BMO°. Conversely, if x =
w-Lo-limg g x5 with limg |24 || a0 (o) < 1 (we may assume that |24 || sapoc (o) < 1
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for every o), then for all € > 0 we can find a convex combination z. = Y QpZem €
Ly(M) such that ||z — z.||2 < e. By corollary 3.8.8, for o D |J,, 0™ we may write

|zllBMmoc@) < D tmllTo, IBaoc @) < 2 T, | B0 (om) < 2.

m m

Then ||zc||
of (3.9.4).

It remains to prove (3.9.3). Observe that we have an isometric embedding

i : BMO™ — [[ BMO(0)
u

. Bl i i i
anios < 2 and x € 2B EAO , which proves the second inclusion

given by iy(z) = (z)* for x € M. This map satisfies ¢ o iy(x) = z for all z € M,
where

o,U

@ HBMOC(U) — La(M), (25)* —> w-La-limz,.
u
Let x € M be such that llx“[E/TA_(/DC,LQ(M)}Z/,, < 1. Then there exists an analytic
—~—C
function f in F(BMO , Lz(M)) such that z = f(2/p) and

———c = ) —~—c ) <
117 575 Lacanyy = max {sup £ grzpe> sup [ (1 +in)]],} < 1.
By setting g = iy o f, since iy is also isometric from La(M) to [],, L2(M), we get

a function g in F([[,, BMO“(0),[];, L2(M)) of norm < 1 such that iy(z) = g(2/p).
Hence by using ultraproduct techniques and the discrete case we may write

iu(z) € [H BMO* (), [] LQ(M)] u C [1BMO%(0), La(M)),,, = [[ L5MO(0),
u u 124 12

with [li/(2)ny, Lemoe) < Cp. Recall that in the proof of lemma 3.8.2 we have
seen that LoMO = ¢([, LyMO(0)), hence z = ¢ o iy(z) € LyMO = H by

corollary 3.8.6. Moreover we obtain

H‘T“H; = ”¢O ’Lu(m)| LsMO < Hi“(x)”HuL;MO(a) < Cp”x”[mc,Lz(M)lz/zz.
By density this shows (3.9.3) and ends the proof of (3.9.2). By duality, since La(M)
is reflexive and (H§)* = BMO® by theorem 3.8.4, by combining (3.9.1) and (3.9.2)
we obtain [H, La(M)]s = H; with equivalent norms for 1 < p < 2 and 1/p =
1 — 6/2. Finally, by using the reiteration theorem, Wolff’s theorem, duality and
corollary 3.7.2 (ii), we conclude the proof with the usual interpolation techniques. O
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CHAPTER 4

BURKHOLDER-GUNDY INEQUALITIES

The aim of this section is to establish the analogue of the noncommutative
Burkholder-Gundy inequalities in the continuous setting. The theory developed
previously for the column spaces still holds true for the row spaces. Indeed, by
considering the adjoint we may define the row Hardy space H; and obtain the
analoguous results. By proposition 3.6.1 we can naturally define the Hardy space for
continuous filtrations H,, as follows.

Definition 4.0.1. — Let 1 < p < co. We define

{H;+H; for 1<p<2,

H =
P HyNH, for 2<p< o0,

where the sum is taken in L,(M) and the intersection in Lo(M).

Observe that for 2 < p < 0o, by applying the noncommutative Burkholder-Gundy
inequalities in the discrete case for each partition ¢ and taking the limit in o we
immediately obtain

]l & max {||z]|lz, |2ll#y}  for z € Ly(M).
This means that
Ly(M) = LM% for 2 < p < 0.

However this result is too weak, we would like to prove that L,(M) = Hy N Hj, for
2 < p < co. To obtain this stronger result, we use a dual approach and first consider
the case 1 < p < 2. The discrete noncommutative Burkholder-Gundy inequalities
(theorem 3.1.6) applied to each partition and the monotonicity lemma 3.3.1 imme-
diately imply the required Burkholder-Gundy inequalities in the continuous setting,
as detailed in subsection 4.1. However, this result won’t be sufficient to apply the
classical duality argument and get the continuous analogue of the noncommutative



56 CHAPTER 4. BURKHOLDER-GUNDY INEQUALITIES

Burkholder-Gundy inequalities for 2 < p < co. We will need a stronger decomposi-
tion introduced by Randrianantoanina and recalled in subsection 4.2, which will be
formalized in subsection 4.3 by defining another construction for the sum of Banach
spaces. After extending Randrianantoanina’s result for 1 < p < 2 to the continuous
setting, we will be able to deduce by duality the continuous analogue of the non-
commutative Burkholder-Gundy inequalities for 2 < p < oo. We then discuss the
case p = 1, and establish a Fefferman-Stein duality result for ;. We end this section
with the expected interpolation result involving our spaces H; and BMO.

4.1. Burkholder-Gundy inequalities for 1 < p < 2

We may obtain the Burkholder-Gundy inequalities for 1 < p < 2 by a direct
approach, as we will detail below. Indeed, the proof presented here only uses the
discrete Burkholder-Gundy inequalities and the crucial monotonicity property proved
in lemma 3.3.1. Let us first state the result in this case.

Theorem 4.1.1. — Let 1 < p < 2. Then, with equivalent norms,
Ly(M) =Hy =H, +H,.

Proof. — The inclusion H, C L,(M) is obvious, and for z € H, we have |z||, <

Bpllzll2,. Now let x € L,(M). Then by the discrete Burkholder-Gundy inequalities,

for each ¢ we may decompose = = a, + b, where a, € Hj(0),b, € Hy(0) and
lacll g (o) + 0ol ty (o) < plllp-

Moreover, for each o we have

[Iaa“p < /Bp“acfHHp(a) < Bp“aa“H;(o) < /Bpap“x“p-

Hence the family (as), is uniformly bounded in L,(M), and since 1 < p < 2 the
weak-limit of the a,’s exists in L,. The same holds for (b, ), and we set

a =w-Ly-lim a, and b= w-L,-lim b,.
ol o

Then 2 = a + b. It remains to prove that a € Hj and b € H;. Recall that by
corollary 3.7.4, since a € L,(M) it suffices to estimate [la[xs = limoy [|al (o) and

[ll2¢; = limg ¢ [[bll pi7 (o). Fix € > 0 and a finite partition o of [0,1]. We can find
M

positive numbers (ay, ), verifying Y., a., = 1 and partitions o*, ..., o containing
o such that
M M
(4.1.1) “a - Z QU Ggm ) <e and “b- Z Qmbgm ) <e.
m=1 m=1

Oun the one hand, note that for y € L,(M) we have

(4.1.2) Yl sre(0) < 2007 [[yllp-
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Indeed, we may write

, i 1
ol = | Sl @] < S a1
i teo 2P teo 2
=Ml @l < > Cllln)” < 2%lolliyl?.
teo tco
Taking the adjoint we obtain
(4.1.3) ylls1z0) < 20l lyllp-

Then combining (4.1.1) with (4.1.2) and (4.1.3) we get

M M
4.1.4 ”a — QU Qgm l < 2|o|Pe and ‘b - A bgm < 2|g|'/Pe.
(4.1.4) W; He(o) |o| ; Hr(0) |o|

On the other hand, since o C ¢™ for all m, lemma 3.3.1 yields

M
(4.1.5) “ S At

m=1

M
. +H E A bom
H{ (o) —
M

S Z am(”ao"’

m=1
M

< By O am(lagn s (o) + [lbom

m=1

Finally by (4.1.4) and (4.1.5) we get

Hp (o)

He(o) + ||bgm ||H;;(a))

H;;(O"”)) S /Bp(lp”l'”p.

M
lallprg(o) + Ibll iy (o) < [Ja = 3 amagn

m=1

M
+ Hb — Z A bgm
m=1

M
+ ” E QA Agm
Hg (o)

m=1

M
+ H A bgm
o 122

Hg (o)

Hp (o)
< 4|U|1/p5 + Bpapl|zlp-

Sending ¢ to 0 we obtain [lal|pg (o) + 0]l 5 (o) < Bpapllz||p for all o. Taking the limit
over o we get

lallag + bl < Bpapllzlp- U

Recalling that (Hy)* = H;, by corollary 3.7.2 (i), we would like to deduce, as usual,
the Burkholder-Gundy inequalities for 2 < p’ < oo by duality from the case 1 < p < 2.
However, as detailed in Remark 3.7.5, the duality bracket between H; and H;, is not
always explicit. At one point we will need that the elements in the decomposition
Ly(M) = H;, + H, lie in La(M) when z € Ly(M). This is why we need a stronger
result due to Randrianantoanina in the discrete setting.
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4.2. Randrianantoanina’s result in the discrete case

Let (My)n>0 be a discrete filtration. Randrianantoanina [45] gives another proof
of the Burkholder-Gundy inequalities based on weak-type (1,1) estimates. This ap-
proach yields a better decomposition at the Lo-level in the sense of the following
theorem.

Theorem 4.2.1. Let 1 < p <2 and © € La(M). Then there exist a,b € Lo(M)
such that

(i) z=a+b,
(i) llallmg + [1bllay; < Clp)|l2llp,
(iii) max {{lall2, [[bll2} < f(p, l2lp, [12]l2)-
Here C(p) <C(p—1)"t asp — 1.

Proof. — We derive the estimate of the Lo-norms (iii) from Randrianantoanina’s
construction. The main tool is the real interpolation, more precisely the J-method,
to deduce this decomposition from a weak type (1, 1)-inequality. We refer to [3] for
details on interpolation. Let © € La(M) and 1 < p < 2. Let 0 < 6 < 1 be such that
1/p=1-0+6/2. We know that L,(M) = [L1(M), Lo(M)]g p,s, hence we may write

(4.2.1) r=Y u,
where

/p
(122) (3 @ max {llunlis. 2w 23)") " < C) el

veZ
We claim that we may in addition suppose that

(4.2.3) > w2 < f(ps

vEZ

zl|p. [lll2)-

For each v € Z we set
e = 1(par (z) < |2| < pav—1(2)),

where for ¢ > 0, u;(x) denote the generalized singular numbers of 2. We refer to [10]
for details on these generalized numbers. Since ¢ (z) — ||z as t = 0 and p¢(z) — 0

as t — 0o, we see that )~ e, = s(|z]), where 5(|z|) denotes the support projection

of z. Hence we can write
(4.2.4) x = Z xe,.
vEZL

Let us first show that the sequence u, = ze, satisfy (4.2.2) with C(p) = (%6)1/1).
Note that by the definition of p;(x) we have for all v

(4.2.5) T(ey) < 7(L(pav () < |2])) < 4%
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On the other hand, since p:(x) is decreasing we have

|[:I;|§:/O e Pdf—Z/iz e ()P de

VEZL

> Z (4771 =4 g ()P = 23 42401 ()P

veZ vEZ
The inequality (4.2.5) gives
eyl = 7(Je|L(par (z) < || < pav=1(2))) < pav-r(@)7(en) < pav-r(2)47.
Using p(2 — 0) = 2 we get

, , 16,
ST @ e lh)” <D 2 D g (@) =D 4 g () < ~ llllp-

veL VEL VEL

The Lo-norm can be estimated by

lweull2 = 7 (12?1 (uar (2) < [2] < paos (@) * < v (@)7(es)

hence

,_.
=

< pge—1(2)2Y,

v(l— D v — 16
Z (2 (1 0)||I6DH2)T < ZQ p(2 0)'[1,4[/71(1.)17 < ?H[HZ
veEZ VEZL
Let us now consider vg € Z. Then, to obtain (4.2.3), we replace (4.2.4) by

T = E L€y,
v
where €, = e, for v > vy and €, = >° ., e, = L(pava (x) < |z[). For a good choice

().

of vy, we can show that this decomposition still satisfy (4.2.2) with C'(p) = (3

Note that
2770wl ||, = 27707 | & 1 (pavo () < |2) ],

< 27 o 7 (L (pavo () < Ja])) * < 2000 ],

2110(170) H'rgl/o ||2 < 214)(179) ||1‘||2

We can find vy = vo(p, |||p, ||]|2) such that

20O afl < el = v < (1-0)n () n (552).

We then obtain

(3 @ max {Jlee 11,247 ]})") o (13—9)1/’7||x||p.

V>

The inequality (4.2.3) follows from the Holder inequality

S el < (T @0 larler) (3 2 0) " < el ),

v>vy v>vg 122270
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where

271/()(1—6) 19\ 1/p
(el Well) = =gy () el

Now we apply Randrianantoanina’s decomposition to the sequence (u, ), satisfying
(4.2.1), (4.2.2) and (4.2.3). For each v € Z, by theorem 3.1 of [45], we may find an
absolute constant K > 0 and two martingales a*) = ((I,ELV )),, and b) = (bslu ))n such
that '

Enluy) = CLE;') + bgzl,/)
for all n > 0 and

|da®||, |+ ||t ) < 2lluwl2,

V>||L2<M;1ag
1

2 (ML
[OINACDIDN N (OWACTINY
n>0 ’ n>0

Recall that |[z|]1 s = sup,~q tpe(z). Then we set

a= Za(”) and b= Zb(”),

vel vEZ

=

< Kl|uyls-
1,00

and obtain two martingales @ and b with * = a + b. Using the following interpo-
lation result of noncommutative L,-spaces associated to a semifinite von Neumann
algebra N/

Ly(N) = [L1,o(N), L2(N)]

and (4.2.2) we can show that
’)

H ( Z:O |dn(d)lz)% ‘,, + H ( ;) |d, (b)"

It remains to prove the Lo-estimate (iii). This comes from (4.2.3) as follows

6,p;J°

Nl=

Hp <C(p— 1Dz,

lalla <> a2 =Y da™ | nyanieg) <2 Nuwlla < 2f (p. 12llp. 122).-
VETL VEZL vel
The estimate for b is similar. O

4.3. Sums of Banach spaces

In this subsection we introduce a notation to formalize the notion of “decompo-
sition at the Ls-level” mentioned previously. To do this, we discuss two competing
constructions of the sum of Banach spaces in a general case. Let X and Y be two Ba-
nach spaces both embedded into a Banach space Ay, i.e., the inclusion maps X C A;
and Y C A; are continuous and injective. In interpolation theory one considers the
sum

X+Y = {z € A :3x € X,y €Y such that z:a,'+y}
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equipped with the norm
[zllx+y = _inf flzllx + {lylly.
Z2=xT+Y

The second method we will consider depends on a fourth space Ag, which is also
injectively embedded into A;. We assume that

(4.3.1) ApN X isdensein X and A is dense in Y.

For 2 € Ay we set

lelixmny = _inf el + -

r€ANX,
yEAy
We clearly have
(4.3.2) 2]l x4y < HZ”XEE’AUY for z e Ay,

and ||.[|xm,,v defines a norm on Ag. We define the Ag-sum
X84 Y

as the completion of Ay with respect to the norm ||.|| xm 4,V In our context we will
always consider Ag = La(M), and simply denote X HY. Let us state the following
basic fact.

Lemma 4.3.1. — Let Ay, X,Y, Ay be four Banach spaces as above. Then there exists
a surjective quotient map q: XHBHY — X +Y.

Proof. — By (4.3.2) we can consider the contractive map ¢ : XHBY — X +Y defined
by ¢q(z) = z for z € Ag. Let us show that ¢ is a quotient map. Let z € X + Y be of
norm < 1. We can find € X and y € Y such that z = x+y and ||z|]|x =\, [|y]ly = p
with A+ g < 1. Since Ag N X is dense in X, we can find a sequence (x,,), in AgNX
such that the series is absolutely converging and

lexnllx <A+1(1-(+p), .1::233” in X.

Similarly, there exists a sequence (y,), in Ag such that the series is absolutely con-
verging and

Z”ynHYS“JFi(l*()‘WLN))a ?J:Zyn inY.
n n
Then z, =z, +y, € X BY for all n, and

Z”Z"”XBHY < Z lznllx + llyally < %(1 + A—Ht) < 1.

Hence the series (z,,), is absolutely converging in X BY and we have

()=

n

This ends the proof. O
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The two sums coincide in the following cases.

Lemma 4.3.2. — Let Ay, X, Y, Ay be four Banach spaces as above. Then the following
assertions are equivalent.

(i) X+Y = XBY with equivalent norms;
(i) X +Y = XBY isometrically;
(iii) X BY embeds injectively into Aj.

Proof. — By lemma 4.3.1, we see that the two sums coincide with equivalent norms
if and only if they coincide isometrically if and only if the quotient map ¢ is injective.
Let us consider the following commuting diagram

XEBY~————>X+Y

.

It is clear that g is injective if and only if f is injective. This proves the lemma. O

Remark 4.3.3. — These two sums may be seen as quotient of Banach spaces. Indeed,
on the one hand X + Y is isometrically isomorphic to the quotient space X &, Y/L,
where

L=ker¢={(r,~2)eX®& Y :2eXNY}

and ¢ : X &1 Y — Ay is the map (z,y) — = + y. On the other hand, X HY is
isometrically isomorphic to the completion of the quotient

(Ao N X) &1 Ao)/ Lo,
where
Lo = ker (¢ agnx)@, 40) = LN ((AgNX) @1 Ag) = {(2,—2) E XD Y : 2 € AgNX}.

The density assumption (4.3.1) then implies that

(4.3.3) XBY = ((AoNX) By Ao)/Lo = X @1 Y/ L.
Hence we can write

X+Y =XBY <« L=1Ly « Lpisdensein L <= AyNX is dense in XNY.

As mentioned previously, the introduction of this H-sum is motivated by some dual
arguments. It is well known that the dual of the usual sum X +Y is X*NY* whenever
XNY isdense in X and Y, but this is not true in general. In some cases, the dual space
of X BY is easier to describe than the dual space of the usual sum X + Y. More
precisely, the dual spaces of these two constructions are described in the following
lemma.
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Lemma 4.3.4. — Let Ay, X,Y and Ay be such that AgNX is dense in X, Ag is dense
mY and X,Y embed into Al. Then

(i) (X+Y) ={@"y") e X" @OOY*:ermY:UerY}'

(i) (XBY)* = {(z*,y ) € X" B Y7 124 0 = Uiy -
Proof. — Since X +Y = X @, Y/L, we deduce that (X +Y)* = L+ C (X &, Y)*
X*@®,Y* and we obtain (i). By (4.3.3) we can write (XBY)* = (Lo)* = Lg and (ii
follows.

Dvll

Remark 4.3.5. — Observe that the definition of the sum X Hj, Y only relies on the
space Ag and not on A;. In fact, we do not need that X and Y are embedded into
a common space A; to define X B4, Y. However, in that situation we cannot define
the usual sum X + Y.

Theorem 4.2.1 can be reformulated by using the B-sum as follows.

Corollary 4.3.6. — Let 1 < p < 2. Then, with equivalent norms,
Ly,(M)=H; B H,.

Proof. — In this application we consider Ag = Ly(M), X = H7,Y = Hj and A; =
L,(M). The density assumption (4.3.1) is clearly satisfied. By the density of Ly(M),
it suffices to see that the norm ||.|[, is equivalent to the norm ||.||xcmu; defined
for x € La(M) by
2l rrgrry = ik llallmg + bl
a ZE LQ(M)

Theorem 4.2.1 means that [|z[|gemmy < C(p)llz(l, for 2 € L2(M), and theorem 3.1.6
gives the reverse inequality

|zl < /3p||iL'||1I;;+H;; < 5p||3?||H;EEHI;~ O

4.4. Burkholder-Gundy inequalities for 2 < p <

As mentioned previously, we need a stronger version of the Burkholder-Gundy
inequalities for 1 < p < 2 stated in theorem 4.1.1 before proving the case 2 < p < oo
by duality. We may extend Randrianantoanina’s result recalled in theorem 4.2.1 to
the continuous setting as follows.

Proposition 4.4.1. — Let 1 < p < 2 and z € Lo(M). Then there exist a,b € Ly(M)
such that
(i) r=a+b,
(i) flallzg + lbllag < C@)llp,
(i) max {lall. 1512} < £ (p. el ]2).
Here C(p) <C(p—1)"Y asp — 1.
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Proof. — The proof is similar to that of theorem 4.1.1. In this case, for each o we
apply theorem 4.2.1 to the discrete Hardy spaces Hy (o) and Hy(o). We obtain a
decomposition x = a, + b, with

bo—||2} < f(p» 2lps HI”?)

Hence the families (a,), and (by ), are uniformly bounded in Lo, and we can consider

laclms(o) + bl o) < C)zllp, and  max {||as|[2,

a = w-Lo-1im a, and b= w-Ly-lim b,.
oUu o

We obtain & = a + b where a,b € Lo(M) satisfy (iii). The proof of the estimate (ii) is
even simpler than in the proof of theorem 4.1.1. We use the fact that for y € La(M),
Iyl #re(o) < llyll2 and the result follows similarly. d

Corollary 4.4.1. — Let 1 < p < 2. Then isometrically
Hp = H, BH,.
Proof. — In terms of B-sum, proposition 4.4.1 means that with equivalent norms
Ly(M) =H, BH,.

Here we consider Ag = L2(M), X = H,,Y = H, and A, = L,(M). Moreover, we
know by theorem 4.1.1 that with equivalent norms

Ly(M) = H, = H + H),

We deduce that H;, + H;, = H, B H, with equivalent norms, hence the two sums

coincide isometrically by lemma 4.3.2. |
We can now apply the duality argument to get the remaining case 2 < p < .

Theorem 4.4.2. — Let 2 < p < oo. Then, with equivalent norms,

Ly(M) =H, =H,NH,.
Proof. — In this case the non-obvious inclusion is H, C Lp(M). We detail the
argument to highlight the need of the decomposition in Lo(M). Let y € H, =
Hy NH;, C La(M) and = € La(M) be such that ||lz][,, < 1. By proposition 4.4.1,
there exist a,b € La(M) such that © = a + b and

lallae, + [bllar, < C@).
Then 7(y*z) = 7(y*a) + 7(y*b). Moreover, since y € Hj, and a € La(M) we can write
by corollary 3.7.2 (i) and remark 3.7.5

[Ty a)| = [(y]a)| < c®)llyllrg - llallw:, < c®)llyla, - lale,.

The same estimate holds true for b and we get

(v 2)| < eyl (lallze, + 1bllae,) < CE )@yl -zl
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By density of Lo(M) in Ly (M) we deduce
lylly < @@y, - =

Remark 4.4.3. — Observe that in this proof, the fact that the decomposition x = a+b
is in Ls is crucial. Indeed, if @ and b do not lie in Ly (M), then the quantities 7(y*a)
and 7(y*b) may not exist, and the duality argument does not work.

4.5. The space H,

We end this section with a discussion on the case p = 1. Inspired by lemma 3.5.6,
we define for © € M

e, = lim 1zl

Since the H,-norm is decreasing in p, the limit is in fact an infimum, which exists for
(ll]|2, )p>1 is then a decreasing family bounded by below. Moreover, the inequalities

Bt el <zl < il
ensure that this defines a norm on M.

Definition 4.5.1. — We define the space H; as the completion of M with respect to

the norm ||.||#, -
By approximation we can extend corollary 4.4.1 to the case p = 1.
Proposition 4.5.2. — We have isometrically
Hi=H]BHT.

Proof. — In this application we consider Ag = Lo(M), X = HS,Y = H} and A =
Li(M). The density assumption (4.3.1) is satisfied. By the density of Lo(M), it
|3, and |[|.|[emy; are equivalent on Lo(M). Let

suffices to see that the norms ||.
x € La(M). By corollary 4.4.1 we may write

ez, = lim Jl2lls, = lm [llwme
p—1 p—1 T ¥

= li i . o> Nyemyr -
I)gnl z:lizlf-b, HaH’HP + HbHHp - Hl||7—tlEEm-tl
a.bELz(M)

On the other hand, assume that [|z|l3s@3; < 1. Then there exist a,b € Lo(M) such
that © = a + b and |[lafs + [[b]l3; < 1. Observe that lemma 3.5.6 still holds true
for a,b € La(M), thus

lall3s = lim [lall3: and [|b][3; = lim [[bf|3:.
p—1 P p—1 F

Hence we can find p > 1 such that [[z{[3, < {[allxg + [|bfl%; < 1. Since the Hy-norm

is decreasing in p we get the reverse inequality |||

1y < |@llsmar 0
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With this decomposition at the La-level we can describe the dual space of H; as

follows.
Theorem 4.5.1. — We have, with equivalent norms,
(H1)" = BMO,
where BMO = BMO N BMO".
Proof. — The proof directly follows from proposition 4.5.2 and theorem 3.8.4 by using
the same argument than the one detailed in the proof of theorem 4.4.2. O

4.6. Interpolation

We end this section with the continuous analogue of the interpolation theorem 3.1.8
(ii) involving the spaces H;, and BMO introduced in subsection 4.5.
Theorem 4.6.1. Let 1 < p < oo. Then, with equivalent norms,

Ly(M) = [BMO, Hilyp.

Proof. — The inclusions BMO C La(M) C H; ensure that the couple [BMO, H,]
is compatible. As in the proof of theorem 3.9.1, we only need to prove that
[BMO, La(M)]2/, = Lp(M) for 2 < p < oo, and we will conclude by using the dual-
ity (H1)* = BMO established in theorem 4.5.1. On the one hand, by theorem 3.9.1

we can write
[BMO. Ly(M)],,, = [BMO N BMO", Ly(M)],,
C [BMO®, Ly(M)],, N [BMO", Ly(M)]
=M NH, = Ly(M).

where the last equality is the Burkholder-Gundy theorem 4.4.2 for 2 < p < co. On
the other hand, the continuous inclusion M C BMO yields the reverse inclusion

Ly(M) = [M, Lo(M)], € [BMO, Ly(M)],, .
and finishes the proof. O

2/p
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CHAPTER 5

THE hi-SPACES

In this section we consider the conditioned version of Hardy spaces, and study their
continuous analogue. Following the case of the H{-spaces studied in section 3, we de-
fine two conditioned column Hardy spaces EIC) and h? in the continuous setting. In this
case we still have a crucial monotonicity property, with a reversed monotonicity, which
will also imply that the two conditioned candidates Ff) and hj coincide. However, the
conditioned case is more complicated than the Hj-case in the sense that we can not
prove the injectivity results directly, as we did in section 3. In particular, the fact that
Hy(o) = Ly(M) with equivalent norms for a finite partition o is no longer true in
the conditioned case. This is why we will first need to complement the space hj into
some larger space, which also have an L,-module structure over a finite von Neumann
algebra. The construction will be based on free amalgamated products. Then we will
deduce duality, injectivity and interpolation results for 1 < p < co. We also establish

C
p7
of the Lymo spaces will be easier than the one of the L7 MO spaces in subsection 3.8.

the continuous analogue of the Fefferman-Stein duality for h$, where the description

The end of this section is devoted to the expected interpolation result involving the
column spaces h{ and bmo°.

5.1. The discrete case

As in section 3, we start by recalling the definitions of the conditioned Hardy spaces
of noncommutative martingales in the discrete case and some well-known results. Let
(Mp)n>0 be a discrete filtration. Following [27], we introduce the column and row
conditioned square functions relative to a (finite) martingale z = (2, )p>0 in Loo(M):

se(x) = (i En1 |(1n(1)|2>% and s.(r) = (i Eni 2) %.

n=0 n=0
where by convention we set €1 = &. For 1 < p < oo we define h, (resp. hy)

$e()llp

dp(z)*

as the completion of all finite Loc-martingales under the norm [[2|pe =
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(vesp. [|z([n; = ||si(x)[lp). Let us also introduce the diagonal space hg, defined as the
subspace of £,(L,(M)) consisting of all martingale difference sequences. Recall that

0, (Lp(M)) is the space of all sequences a = (ay,)n>0 in Ly(M) such that

> 1/p
lalle, e, = (3 lanlly) ™ < o0,

n=0
with the usual modification for p = co. The conditioned Hardy space of noncommu-
tative martingales is defined by
d o g .
o { hy, + hy, + by, for 1<p<2,
P 1 g g
h;, N h; N hl’] for 2<p< .
It was proved in [21] that for each n and 0 < p < oo, there exists an isometric

right M,,-module map u, p : Lg(M;E,,,) — Ly(My:05) with complemented range
such that

(5.1.1) U p (@) Un q(y) = En(z™y),

for all x € L{(M: &) and y € Lg(M; E,). More precisely, for 0 < p < oo there exists
a contractive projection Q,, , defined from L,(M,:¢5) onto the image of u, , such
that for all & € L,(My,;45)

(5.1.2) Qn p(8)"Qnp(§) < E7¢.
For 1 < p < oo we know that
(513) Q;‘;,p = Qn,p’-

In the sequel for the sake of simplicity we will drop the subscript p in u, , and Q, .
This proves that kS isometrically embeds into L, (M; ¢5(N?)) via the map

u:hy, — L, (M;é;(N‘Z)), T — Z €n,0 ® Up—1 (dn(w)).
n>0
Furthermore, Ay is a complemented subspace of L,(M; (5(N?)) for 1 < p < oo. Indeed,
we can define a projection
P Ly(M:l5(N%)) — kS,
as follows. For £ =5 e,0®&, € L,(M; (5(N?)), for all n > 0 we have £,_1(&,) €

Ly(Mp—1;45(N)). We may apply the projection Q,,_1 and obtain for each n an
element y,, € Ly (M; &, 1) satisfying

(514) anl(gn,*l(gn)) - “'nfl(yn)-

Then we set

P(&) = dulyn).

n>0
It is clear that P ou = ide, i.e., that P is a projection from L (M; ¢5(N?)) onto hS.
Moreover, we can show that this projection is bounded for 1 < p < oc.
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Lemma 5.1.1. — Let 1 < p < oo. Then the discrete space hy, is ~yp-complemented in
Lp(M; 65(N?)).

Proof. — Let £ =3 eno®&, € L,(M; ¢5(N?)). First observe that for all n > 0 we
have

(5.1.5) Ent|dn(yn)]” < Encilynl®.

Indeed, for n = 0, since by convention £_; = & and do(yo) = Eo(yo), we have
Eoldo(y0)|” = |€0(y0)|” < Eolyol*.

For n > 1, we can write

gn-1|dn(yn)’2 - n—1(|€n(yn)|2 - |€n—1(7/n)|2)
< En1 (1€ ) ?) < En1(Enlynl®) = Entlynl®.

Moreover by (5.1.4) and (5.1.2), we have for all n > 0

. 2 2
(51()) n 1|yn - |un 1 yn ‘ IQn 1( n— l(gn | S |E7l-1(§7l)’ N
Combining (5.1.5) with (5.1.6) we obtain for all n > 0

(517) 5n,1|dn (P(ﬁ))|2 = n~]|dn(yn) : é |£n71(§n)‘2‘

The noncommutative Stein inequality implies

by = [ (S e dntol) 1< (S oneso’)

< %H(Z% IEnIQ) : Hp = Y ll€ll, ez av2))- -

1P)]

We deduce the following duality and interpolation results.

Corollary 5.1.2. — Let 1 < p < oco. Then the discrete spaces satisfy
(i) Let 1/p+1/p’ = 1. Then, with equivalent norms,

(ii) Let 1 < pi,p2 < o0 and 0 < 6 < 1 be such that 1/p = (1 —0)/p1 +0/p2. Then,
with equivalent norms,

hy, = [h, s by, le-
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Remark 5.1.3. Observe that for 1 < p < oo we have P = u*. Indeed, for z € h;;
and € in Ly (M;¢5(N?)) we may write

(P(E) |1) = ZT((lrz("/71)*‘lrl(l7)) = ZT(LU:(lrt(x))

n

‘Z En—i yn ( ))) :ZT(U'n—l(yn)*un~l(dN(I))) by (5'1'1)

n

= Z Q- l En— l(gn))*”n—l(d'n,(fl/'))) by (514)
- Z n 1 fn Q'nfl(unfl(dn (T)))) 1)y (513)
= Z En1(&) un—1(dn(2))) = ZT({Z'IL,I,l(dn(;I:))) = (ﬁ‘u(;r))

n

The analogue of the Fefferman-Stein duality for the conditioned case was estab-
lished independently in [22] and [2]. For 2 < p < oo we introduce

Lymo = {r € La(M) : ||x|lL;;,,L(, < oo},

where

[|z| Lgmo = de{HEO ”P7 ||SUP+5 |z — 517n| ” : }

For p = oo we denote this space by bmo°.

Theorem 5.1.4. — Let 1 < p < 2. Then the discrete spaces satisfy, with equivalent
norms,
(hy)" = Lymo.

P
Moreover, one has

VP“'/E”L;,mo S ||x||(h<p)* S \/§||-'L'HL;,mo7
where v, remains bounded as p — 1.

Combining these two latter results we obtain

Proposition 5.1.5. —— Let 2 < p < oo. Then the discrete spaces satisfy, with equivalent
norms,
c _rec,
h;, = Ly,mo.

Observe that we can extend lemma 5.1.1 to the case p = oo in the following sense.
Lemma 5.1.6. — Let 2 < p < oo. Then P : L,(M:(5(N?)) = Limo is bounded.

Proof. — Let € =3 €p0®&, € Lp(M:45(N?)) and 2 = P(€). On the one hand,
by (5.1.7) for n = 0 we have
1

o, < N, < leok = 1062y, = (32 16a) || = Nelpcanesmn

n>0
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On the other hand, note that by (5.1.7), for each n > 0 we have

(5.18) Gl —mnl? = & (D Eldi@)?) <& (Y & 1(&)])

k>n k>n
<& Y alal) =a( Y la?) <& D lal?).
k>n k>n k>0

Since 1 < %p < oo, the noncommutative Doob inequality gives

I\Slrip+5,llél7*fﬂrl|zﬂép < SlrleJrg"(Z |5kl2> lpé Sl Y Ll W I lIENT, (s vz
k>0 2 k>0 2
Thus we get
1
1P Lemo = ||‘T||L;Jmo = max {H50(37)||p> Sllp+€n|m - 5"'1112“;1)}‘
n
1
< HlaX{Lng}||§||Ll,(M;zg(N2))- O

The noncommutative Burkholder-Rosenthal inequalities were obtained by the first
named author and Xu in [27].

Theorem 5.1.7. — Let 1 < p < oo. Then the discrete spaces satisfy, with equivalent

norms,
Ly(M) = hy
Moreover,
ki Hln, < llzllp < npllzln,.
Remark 5.1.8. — It is important to note that 7, remains bounded as p — 1, i.e., for

p = 1 we have a bounded inclusion hy C L;(M).

We end this subsection with the conditioned analogue of theorem 3.1.8 proved
in [2].

Theorem 5.1.9. — Let 1 < p < oo. Then the discrete spaces satisfy, with equivalent
norms,
hy, = [bmo®, hily/p.

5.2. Definitions of ﬁ;, h?, and basic properties

Following section 3, we start by fixing an ultrafilter «. For o € Pg,([0, 1]) and
r € M, we define the finite conditioned bracket

SN
(v, 1)y = th*(”)ldt (z)]
teo
(recalling our convention that & (o) = &y). Observe that ||<:17,ZII>U||§p = llzllng (o)

where hy (o) denotes the noncommutative conditioned Hardy space with respect to
the discrete filtration (My)ieo. Hence the noncommutative Burkholder-Rosenthal
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inequalities recalled in theorem 5.1.7 and the Holder inequality imply for each finite
partition ¢ and x € M

A
IN

[lz]2 for 1 <p <2,

(5.2.1) {np‘ lellp < 1, )0l

flz]l2 <

—~
8
8
S~
S)

IN

1]~ K]0 1]~
=

=

rpllzll,  for 2 <p < oo.

Then, adapting the discussion detailed in subsection 3.2, for z € M and 1 < p < o©
we may define

= &l 0)2)), Nl = I aulld, and el = lm elligo.

The properties of the conditional expectation &, imply the analogue of (3.2.3)

el < ]
[zl < [lzf

w < Nzl < llals fori<p<e,
5 <l

(5.2.2) {

he < kpllall,  for 2 <p<oo

Hence |[|.[z. and [[.[[n; define two (quasi)norms on M. As for ?A{g and H,, these
P

(quasi)norms a priori depend on the choice of the ultrafilter &/. We will show that

they actually do not, up to equivalent norm, and simply denote ||.|-. and ||.|

he he -

Definition 5.2.1. Let 1 < p < oo. We define the spaces /h\g and h, as the completion
of M with respect to the (quasi)norms ||. and ||.|

he he Tespectively.
P p

As we did for ﬁ;, we may equip Eg with an L, M-module structure and show
that ||.

It is a norm for 1 < p < oo.
Remark 5.2.2. — In this case we also note that Ly,ax(p2)(M) is dense in h{ and EIC)
for 1 < p < 0.

The conditioned version of lemma 3.2.4 holds true.

Lemma 5.2.3. — Let 1 <p < oo. Then hy is reflexive.

5.3. Monotonicity and convexity properties

In the conditioned case we still have some monotonicity properties of the discrete
norms, but the monotonicity is reversed.

Lemma5.3.1. — Let 1 <p < oo and o € Pun([0,1]).

(i) Let 1 < p < 2, ol,...,a™ be partitions contained in o, (m)i<m<mn be a
sequence of positive numbers such that Y, a,, =1, and z',... caM e Loy(M). Then
forx =3 anax™ we have

o=

ip

M
“I”h;}(a) S 21/PH Z (/Ym<$m,l’m>(,m
m=1
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In particular for x € La(M) and 0 C o’ we have ||z|[pe(or) < 21/”H;L*||hz((,). Hence
inf [[zf[ng o) < [lzflng < 2!/7 inf [zl ng (o) -
(i) Let 2 < p < oo, o', o™ be partitions containing o, (am)i<m<m be a
sequence of positive numbers such that 3., am =1, and 2',... .2 € L,(M). Then
forx =3 anx™ we have

W= =

) M
;p‘ § :(l7n<177n,17"1>07”'

m=1

2llns (o) < 5/2

p

In particular for x € L,(M) and o C o’ we have |[z([ps (o) < (5 ; HJ‘Hh (o) Hence

—-1/2
01 sup el o) < llallg c(a)-

Proof. — We first consider 1 < p < 2. On the one hand, the operator convexity of

|. |2 yields

lelfor = | X o] S met [, < | 3 bl

On the other hand, for 1 < m < M and t € ¢™ fixed we denote by I; the collection of
s € o such that t~(¢™) < s~ (0) < s < t. Then for m fixed, ,c,n I+ = 0. Note that
for 1 <m < M and ¢ € 6™, we can split up the interval [t~ (¢"), ] in the subintervals
[s7(0), s] with s € I; and by the martingale property (and ¢t~ (¢™) < s~ (o)) we have

m " 9 2
(5.3.1) & (oo |d " (™" = Sr(om)‘z di(a™)| = E-(om) (Z Es (o) ’dé'(fm)f)-

sely sely

1

2P

Then (5.3.1) implies

Z Qo <~77m7 xm>cr’” = Z Qm Z gt‘(a"") ( Z gs* (o) ’dg (_,L,m) |2>

m teo™ sel;
2
—_ U ’I'n
= D Eruor om (@mEe (o [dI ™)),
m,s€o

where t,,,(s) denotes the unique ¢ € ¢™ which satisfies t7(¢™) < s7(0) < s < t.

We can rearrange the set {1,...,M} X o so that (th(s)f(gm)) becomes an

m,s)

increasing sequence of von Neumann algebras. Thus we can apply the dual form of
the reverse noncommutative Doob inequality for 0 < %p <1 (theorem 7.1 of [27]),
and obtain

)S H Z CVmgs‘(cr)

m,s€o

22/1}“ Z gfm() (a'"l) amé 'd” m |

m,s€o

d7(a™)|*

1
2P

=2 et 2"

1
3P 2P
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We now turn to assertion (ii). In this case, since o C o™, for ¢t € ¢ and m fixed we
denote by I} the collection of s € 0™ such that t~ (o) < s7(¢™) < s < t. Then for
m fixed, (J,¢, It = 0. We observe that

N

E- )@@= Y amai- (o) (d7 (@) d7 (21)).

mf=1

By Cauchy-Schwarz, we deduce that

||5L'||/21;;(o) = th (o) ld )| )
teo
! T
<| Y0 o (ld7 (™) % H T (I (-’ITE)V)H1
teo,m,t 2P teo,m,l 2P
= Z am&i- (o) |d0( m)’ ) 1
teom 2P

Note that in the first term the summation over ¢ disappears by using >, ay = 1,
and in the second one the summation over m disappears similarly. For ¢ € ¢ and m
as (5.3.1) we can write

gt (o) (Ido m Z gt (o) ‘dg I"l |2)

sel)

By the dual version of the noncommutative Doob inequality for 1 < %p < 00, we
deduce that

| 32 amé(larmp)|

1, H Z amgt—(g)(’d;’m (:L,rn,)’2)

1
ip 3
teo,m 2! teo,m,sel" 3P
= o™ omy |2
= H E EL*(U)( § O/mgs*(a'”)ﬂds ('7’ )\ )) 1
tco m,sel" 2P
am&s—(gm) ‘d” 2™) L= H E (2™ ™) g ]D
2P 2

fGU'm,sEIf’“ m=1

The independence (up to a constant) of h on U follows immediately.

Theorem 5.3.2. For 1 < p < oo the space h is independent of the choice of the
ultrafilter U, up to equivalent norm.

5.4. The spaces hj, and h, coincide

In this subsection we show that in the conditioned case the two spaces h; and hy
also coincide. In particular we will deduce that, up to an equivalent constant, these
two spaces do not depend on the choice of the ultrafilter i.
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Theorem 5.4.1. — Let 1 < p < oo. Then, with equivalent norms,
= hy.
Theorem 5.3.2 immediately yields

Corollary 5.4.2. — For 1 < p < oo the space RIC, is independent of the choice of the
ultrafilter U, up to equivalent norm.

Proof of theorem 5.4.1. — As in proof of theorem 3.4.1, we start with the case
2 < p < oo, which is an easy consequence of the convexity property proved in
lemma 5.3.1. It suffices to show that the hj-norm and the R‘erm are equiva-
lent on M. Let T € M, by (5.2.2) we have ”thL < |[z[lns. Now assume that
||7}]h( = ||(x, 1>1,(|}2 < 1 and fix 0.

Since the two spaces coincide with Lo(M) for p = 2, we consider 2 < p < oc.

In that case we have (z,x)y = w-Li,- lim, g (z, x),. We can find a sequence of

positive numbers (a,,)M_, satisfying 3° a,, = 1 and finite partitions o!,... o™

containing ¢ such that

m

< 1.
ip

M
“ Z Um <*T'~,~T>(Tm

m=1

SRV

Lemma 5.3.1 (ii) gives for all o the inequality [[2/nc (o) < & . Taking the limit over o
we get
1
xllpe <87 .
lellng <93,
We now turn to the case 1 < p < 2. We will use the same trick as in the proof of

lemma 3.4.4. Let us adapt this argument for /};; We consider the same index set
7= Pﬁn(-/\/l) X Pﬁn([ov 1]) X Rfr

and construct similarly the ultrafilter V on Z. As in subsection 3.4, for each i =

(Fyoi,6) € Z we can find a sequence of positive numbers (a,,,(?)),,ﬁ? such that
1 M (i)

D om @m (i) = 1 and finite partitions o, ..., 0, containing o; and satisfying for
allz e F
M)
H(x,m)u - Z am i)z, 2)om |l <e.
— 29
m=1

In this case we consider the Hilbert space H; = ¢2(|J w{t} X N) equipped with

m,teo;]
the norm

M)
”(im,t,j)lgmgl\f(i),tEUZ”.jEN”H7 = ( Z O"m Z lfm t]* )
m=1 teo"

JEN
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Then ﬁ;) embeds isometrically into [, L,(M;H¢) via the map 2 € M — 7 = (2(4))°,
where
M (%)

Z Z (m()®(t0®ut (o’")(d (T))

m=1lteo"

if i = (F,0;,¢) is such that x € F and (i) = 0 otherwise. We will show that

(5.4.1) (he)* c (h)".

p
Let p € (E;))* be a functional of norm less than one. We may assume that ¢ is given
by an element § = (£(i))* € [],, Ly (M;HS) of norm less than one, with

M (i)

Z Z (’m0®6t0‘®€7nt(2)

m=1ltco™

where &, (1) € Ly (M;€5(N)). Fix i = (F,o0;,¢) € Z and 1 <m < M(i). We set
Zm() = Iom (£7n( )) € Lp’(M)a

where &, (i Z,eam Em,08e10Q0Em (i) € Ly (M;€5(a x N)) and P, denotes the
projection ﬁom L, (M £5(07" x N)) onto he, (o)) described in subsection 5.1. Then
we consider

Zam 0)2m (i) € Ly (M).
We claim that z(i) is a martingale in L{,mo(c;). The crucial point here is that
by lemma 5.1.6 the map Pym @ Ly (M;#5(07" x N)) — L7,mo(o") is bounded for

2 < p’ < oo. More precisely, on the one hand, (5.1.7) for n = 0 implies

(5.4.2) €0 (zm ()] < |€0(Em0())|? < Eo&moli)

On the other hand, by (5.1.8) we have for all s € o}* (and in particular for all
s€o0; Co™)

(5.4.3) Eulzm(i) ~ E(am(@)|” < & (3 lemai)]).

team

I 2

The operator convexity of the square function |.|? yields

& (z(0)|° = ‘Zam(i)go(zm(i))’? < 57 (D)€ (zm (@),

m

and for each s € g; we get

2(i) = € (=)

2

(5.4.4) Es =&
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Then using (5.4.2) we obtain

[E0 (=) < &( 3 am(@)[moli)]*),

m

and the contractivity of the conditional expectation & on L 1p implies

les@, < ”SO(Zam(‘i)lfwn,o(’i)‘Qmip, <| Zamu)!Em.o(i)IQHip,
< H Z am(i)|£m‘t(l’)’2 ;, = Hg(i)HLp/(M;H‘{)'

m,teal

Moreover (5.4.3) gives

E|2(8) — & (2(0)] < S( > am(i)!ém,t(i)f)-

m,teo”

By the noncommutative Doob inequality we obtain

Isup™ £4J2(0) = Ex(=(0) Pl gy < |sup* (3 om@leme )

SE€EoT; m.teom v
<Oy 3 am(@lmai)? 1 = O €I, e
m,tco™ 2

Hence

=]

i .
L;,mn(al) S max {1’ (slzp’ } H£(7) ”LPI(M;H‘:)'

In particular, we see that the family (z(4)); is uniformly bounded in La(M). We set
z = w-Ly-lim; y z(i). We claim that z € (hg)* with

(5.4.5) 2l (h ) < V2 max {168, Ml L, (v

By the density of Lo(M) in hy it suffices to estimate [7(z*2)| for all z € Ly(M) with
|| he < 1. Note that

(5.4.6) [Z[[he = liir\gl |z

he(oi)-
Indeed, for all 6 > 0 and z € La(M), by definition of the hj-norm we have

As = {0 € Pan([0,1]) : |||

he = 2]l ()] < 8} € U.
Hence the set Pgn(M) x As x RYL € T xU x W C V, and since

Pﬁn(M) X A5 X R:_ C {i cl: |||-T“h; — ||.T||h;(g‘)| < (5}
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we deduce that the set in the right hand side is also in V for all §, which proves (5.4.6).
We conclude that for z € La(M) with |||

()] < lim [T(2(i)"x)| < V2 lim (II=(i)
= V2 (T ||()]

he <1 we have

Le,mo(ay) ||-'l’||h,;(a, ))
,;;(a;))

4 ;
2 max {1,5§p,}||§||nvL,,(M;H<;) o < V2 max {L5;p,}||§||nvL,,/(M;H;')~

This proves (5.4.5). Finally, it remains to check that for all © € L,(M), z satisfies

L;,nw(a,)) ( 1\)

(5.4.7) €1y L, (M) IT, Ly (mems) = T(272).
We first verify that for each i = (F, 0;,¢) € T such that « € F' we have

(g(i)|§(i))L,,I(/M;H,’[‘),L‘,(JM;H‘I ) = T(Z(T)*J) .

For all 1 < m < M(i), remark 5.1.3 gives

m

T(z,,,,(i)*;(:) = ( i (gm( )) iL) = (fm(i) | ugm (r)) Z (Em (1) g~ ((,m)(df" (.1)))

team
Then
M(4) ,
T(2(i)"w) = Z (1) 7 (2m ( Z Z (1 fmt i)* ut*(a:")(d;ﬂ (f))) = (E(‘HF(’))
m=1 m=1teo"

As in the proof of (3.4.5), this is sufficient to show (5.4.7). The end of the proof of
theorem 5.4.1 is similar to that of theorem 3.4.1. O

In the sequel, we will work with the space hf.

5.4.1. Complementation results. — The aim of this subsection is to complement
the spaces hy for 1 < p < oo in some nice spaces, that means in some spaces which have
an L,-module structure over a finite von Neumann algebra. We would like to deduce
the continuous analogue of corollary 5.1.2. However, in the conditioned case, we can
not extend the complementation result stated in lemma 5.1.1 to the continuous setting,
as we did for the spaces Hj,. Hence we first need to complement hj, into another nice
space in the discrete case, and then we will extend this complementation result to the
continuous setting. This construction is based on free amalgamated products and will
use the Rosenthal-Voiculescu type inequality recalled in subsection 2.4.

5.4.1.1. Complementation of hj, in the discrete case. — Let (M,)N_ be a finite
discrete filtration and (&,,)f}f:o be the associated conditional expectations. The idea
is to construct a larger finite von Neumann algebra A" D M and then complement h,
in the space L5 (N;Eam). We set

Ag =M, A, =Msxpn, M, for1<n<N and N =xpA,,
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5.4. THE SPACES ﬁ;) AND h; COINCIDE 79

where we amalgamate over the first copy of M in A,,. Following the notations intro-
duced in subsection 2.4 we consider the x-homomorphisms

p:M—N and p,:A, — N,

which send respectively M to the amalgamated copy and A,, to the n-th copy. We
denote by

Em: N — M and &a, : N — A,
the associated normal faithful conditional expectations. For each 0 < n < N we

consider the *-homomorphism
Tn,2 :Mn ? An

which sends M,, to the second copy of A, and ¢, 2 : A, — M, the associated
conditional expectation. If n = 0 then m o is the natural inclusion My C M and
¢o,2 is simply the conditional expectation &. As in subsection 2.4, we consider the
spaces %1, X ;, Y;C, Ypl’r and Z, associated to the free amalgamated product N.

We will use the following easy fact.

Lemma 5.4.3. — For all 0 <n < N we have

(51171)|M7. = gM O Pn © T 2,

where by convention we set £_1 = &y.

Proof. — The equality is obvious for n = 0. For 1 < n < N and x € M,, we write
=&, 1(x) + (x — Euo1(x)). Observe that x — &,_1(x) € /\jln in A,,, and hence by
freeness

EMO Pn O T2 (:r — é'nAl(x)) = 0.
We get Ea1 0 pnomno(x) =Emopnomna(Eni(x)) =Enr(x). O

Remark 5.4.4. — This shows that the construction detailed above gives a tangent
dilation for M associated to the filtration (M,,)N_ ;. Actually this also holds in
the case of any (non necessarily finite) discrete filtration. Let us recall the notion
of a tangent dilation, introduced in [22]. For a von Neumann algebra M and a
filtration (M,,)n>0, a tangent dilation is given by a von Neumann algebra A and
trace-preserving homomorphisms 7, : M,, = N, p: M — N such that:

i) the conditional expectation &, : N' — p(M) satisfies, for all n > 0
P p )
po&y_1= Sﬂ O Tn;

(i) the von Neumann algebras N, = m,(M,) are successively independent

over p(M).

The first named author and Mei constructed a tangent dilation for any group
von Neumann algebras. More generally the construction described previously gives
a tangent dilation for every von Neumann algebra and every filtration. Indeed by
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setting m, = pn o T2, we get two trace-preserving homorphisms satisfying (i) by
lemma 5.4.3. Condition (ii) is also verified by construction, and thus N, m, and p
give a tangent dilation of M.

Lemma 5.4.5. — For x € M we set v( anow,,z dp (2 )) Let 1 < p < oc.
Then v extends to an isometric embeddmg n=0

(i) from hg intoY,) .;

(ii) from hp into Z,.
We will denote these isometries by vy, and 171, respectively.

o o

Proof. — Observe that d,,(x) €M, in Ay, hence p, om, 2(dy(z)) € Ay,. This means
that if z € M then v(x) € £;. By orthogonality and lemma 5.4.3 we have

N
Em (U(:z;)*v(;L')) = Z Em ([pn 0 Tp2 (dn(r)) l2)

n=0

N ) N )
= ZSMOPnOﬂ'n,Q dn(f)! :Zgnfﬂdn("l‘” .

n=0 n=0

This means that for z € M and 1 <p < o0

”l)(I)HL;‘,(N;&M) = ||l"”h;;7

and (i) is proved. For the second assertion we write

lo@l, = (ZHpnomdn( )" (ﬁjudnmng)””:nxuhg. O

Considering the adjoint we get the following complementation results.

Proposition 5.4.1. — Fory = Z,ﬁ;n an € X1 (i-e., ay, € Z\n for all0 <n < N) we set

N
y) - Z (,brt,?(an) - gnfl (¢n,2(alm)) .

n=0
Let 1 <p <oo. Then R extends to a bounded projection
(i) from Y, . onto hS;
(ii) from Z, onto hd.

We denote these projections by Ry, and ’Rd respectively.

Proof. — We claim that for x € M and y = Ziv:o an, € X1 we have

(5.4.8) (v(z)|y) = (x| R(y)).
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Since 7,2 0 P2 1 Ay — T 2(Ay) is a conditional expectation on (A, tr o p,), it is
trace-preserving and we may write tr o p, o Ty 2 0 ¢n 2 = tr o p,. Thus

N N
(v(:v) ‘ Z a,,,) = Z tr(pn © Tn,2 (dn()) pr(an)”)
n=0

n=0
N N
= Z tro Pn (7T11,2 (dn (T))a;kl) = Z tro Pn ©Tp2 o0 ¢n,2 (71'71’2 (dn(T))a:;)
n=0 n=0
N
= Z T o SM O Pn O Ty, Z(dn(r)d)n 2 an Z T O gn l dn (T)(bn 2((1411) )~
n=>0 n=0

where the last equality comes from lemma 5.4.3. Since &,_1(m 2(dn(x))) = 0 and
&, _1 is trace-preserving, we obtain

N N N
(v@) | D an) = 32 7(du(@)(@nalan) = Eamr(@na(@))) = (x| R(Y an) ).

n=0 n=0 n=0

and (5.4.8) is proved. Recall that for 1 < p < oo we have (hy, )" = h, (hd)* = hi

7)7
(Y, )* =Y, and (Z,)* = Z,. Since M is dense in hj, hi and 3 is dense in Y, ., Z,,,
we deduce from lemma 5.4.5 that (vy,)* = Ry Y, . = h{ and (vg,) Rd Zy — h
are bounded projections. D

The free Rosenthal inequalities are a crucial tool to prove the similar results for
the space hy,.

Proposition 5.4.2. — Let 1 < p < oo.

i) The map v extends to bounded map from h, into X}, which is injective for
r P
1 <p<oo.

(ii) The map R extends to a bounded projection from X; onto h, for 1 <p < oo.

Proof. — Let x € M. We will show that |[v(z)[|, = ||z, for 1 < p < co. We first
consider the case 2 < p < co. Then theorem 2.4.3 (i) yields

[v(@)]], = max {{lv(@)l|z,, lv@)ll s v.enns 0@ e }-

Then by lemma 5.4.5 we deduce
.} = llelln,.
We now consider 1 < p < 2. In that case theorem 2.4.3 (ii) gives

(@), ~ “(I)n(l]i Adllz, + 1l

||v(a:)||p S 111ax{||:1:|]hg, 2llng. [l

|

Lo(N.Em)>

where the infimum runs over all the decompositions v(z) = d+c+r with d,¢,r € 5.
Note that any decomposition x = D + C + R of x with D € hp, C € hyand R € hy,
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vields a decomposition v(x) = v(D) + v(C) + v(R). Hence lemma 5.4.5 gives
le@)]|, < (D, + 1(COlynven) + (R

=C( [Dl[na + 1Cllng, + 1Ry
Taking the infimum over all the decompositions z = D + C + R we get

oI, < Clielh,

LN Em ))

Conversely, for any decomposition v(x) =d + ¢+ r with d,c,r € ¥; we can write
z=TR(v(z)) = R(d) + R(c) + R(r).

Then proposition 5.4.1 implies for 1 < p < 2

lelln, < IRl + IR@lng + ROy < Colldlz, + e

Taking the infimumn over all the decompositions v(z) = d + ¢+ r we get

e, < Cpllo(@)llp-

P -

Ly HITllnvenn)-

This ends the proof of (i). We deduce (ii) by duality, by using the fact that
(X)) = X)), and (h,)* = hy for 1 < p < oo. O

5.4.1.2. Complementation of h, in the continuous case. — We now extend this con-
struction to the continuous setting. For any finite partition o of [0, 1] we set

Ao(o) = M, A(o) = Mxm, Mpfor0<teo and N(o) = *rmieohi(o),

where we amalgamate over the first copy of M in A;(c). Denote p, : M — N (o) the
*-homomorphism which sends M to the amalgamated copy, and £, : N (o) - M
the associated conditional expectation. We equip N (o) with the finite normal faithful
trace tr, = 70 £F,. We consider the ultraproduct von Neumann algebra

~ *
Ny = (HN(O—)*)
u
and the associated finite von Neumann algebra

NL{ :-/\N[l/{.flx{s

where fi; denotes the support projection of the trace tryy = (tr,)®. Since we may
extend the *-homomorphism p, to an isometry p, : L,(M) — L,(N (o)), the ultra-
product map py = (po)* is the natural inclusion

pu s Li(My) — Li(Ny).
Taking the adjoint we obtain a normal faithful conditional expectation
()" = Eny : N — My, (20)" — (E4(x0)) "
Hence we may consider the L, My-module Lj(Ny, Eay,)-

Lemma 5.4.6. — Let 1 <p < oc. Then hy embeds isometrically into Lg(Nu, Epy,)-
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Proof. For each o, we denote by v, the map defined in lemma 5.4.5 for the finite
filtration (M;)ie,. For x € M we define

() = (ve(2))".
By proposition 5.4.2 and the noncommutative Burkholder-Rosenthal inequalities (the-

orem 5.1.7), for all 1 < p < oo we have

var H[p(_/\[(g)) <C ||xHh,,(U) <C HP”‘l”P <C 'L”P”T”DC

This means that vy (x) € L,(Ny) for all 1 < p < co. lemma 2.2.7 implies that
vy(x) € Lp(Ny) for all 1 < p < co. By lemma 5.4.5 we get for 1 <p < oo

%
v ()| Lo Ninny) = | Ene, (vua (@) vy (2 )HLl (M) = [|(E% (vo () 05 () l:%p(Mu)
= 1;15}””0 ), V(). e5,) — g

This proves that vy extends to an isometry from h{ into Lg(./\/u, Emy,) for 1 <p < 0.
a

Proposition 5.4.3. — Let 1 < p < oo. Then hy is complemented in L;(NU,EMM).
Proof. Let x = (z,)* € Ny be such that ||;I:|l14§;(NM~5M“) < 1. This means that

1 oyl
(5.4.9) ’|8M“($*m)||zlp(/\/lu) = ”(5X/l (-"L’ZZEU)) ||L§p(M“)
1 .

o) < L.

Observe that for all 2 < p < oo, we have by proposition 5.4.2 and proposition 2.4.1
|R7 o P (x4 ||L Sy S p||R7 o P (a Hh,,(o—) <G| PY (‘IU)“L (N (o))

< dn, le'n”Lp(N(o)) < 47]1)01)”550”/\[(0)-
Hence the family (R? o P{(z,)), is uniformly bounded in L,(M) for all 2 < p < oc.
For 1 < p < 0o, we may consider

Ry (1‘) = w'Lmax(Zp)' EE{I R7 o ,Pij(il;o)~
It remains to estimate [|Ry/(2)|[ne. proposition 5.4.1 (i) and proposition 2.4.1 (ii) yield
for each o

”Rd o Py (x4) ) < CPH’Pf(-TGH

L5 (N (0).€3,)

LY (N (0),63,)
Taking the limit in o, (5.4.9) gives
(5.4.10) 1i1£{1 IR o Py (z0)]

he (o) < Cp~

Let 1 < p < 2and e > 0. We may find a sequence of positive numbers (a,,)}_, such

that Zm o, = 1 and finite partitions o', ...,

[Ru@) =3 anR™™ o P{" (wom)

oM satisfying

L <e and [[RToPy" (zgn) <Cpte

’h;‘,(o”' )
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Since |

z

he < IIz]|2, by lemma 5.3.1 (i) we get

[ Ru ()]

< HRL{(JZ) — S @R 0Py (gm )Hh ot H S @R 0Py (o )”h
P P ™ b

m

<e+ H Y R 0Py (:vam)Hhr <e 4273 an||RT o PY" (wom)
14

m m

’h;‘,(a'”)
<e42YP(C, + o).
Sending ¢ to 0 we obtain

HR“(‘E)Hh; <2l/rc,

|417||L;‘,(NM‘EMM)-

We now consider 2 < p < oo and fix a partition op. By lemma 5.3.1 (ii) we have for
all ¢ D ogg

(5.4.11) |R? o PY (z5)]

1
13 o _
ks (o0) < o ;FHR o ,Pf(’IU” he(o)-
Thus (5.4.10) implies that the family (R” o P{(x4))s>0, is uniformly bounded in the
reflexive space hj(0¢). We deduce that the weak*-limit of the R” o P{ (2,)’s exists in
h;(00), and coincides with the weak*-limit in L,:

Ru(x) = w-hy(09)-lim R o PY(z,).

oDoy.U

By using (5.4.11) and (5.4.10) we get

[[Ru(o)]

< lim H’R(’O’Pf(.rg)”h‘.( <¥'3% C,.

h;(”“) T oDop U o0) —

M

p

Since this holds true for all partition oy, by taking the limit we obtain

Rt

1
/3 3
<94 %T,CP”'T L;;(Nuf,uu)‘

e~
he

This ends the proof of the proposition. 4

We deduce from proposition 2.3.2 the corresponding duality and interpolation re-
sults for the spaces hy.

Corollary 5.4.7. Let 1 <p < o0.
(i) Let 1/p+1/p' = 1. Then, with equivalent norms,
(h)" =h.

(i) Let 1 < py,p2 < oo and 0 <6 <1 be such that 1/p= (1 —0)/p1+60/p2. Then,
with equivalent norms,

hy, = h hy,lo-
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5.5. Injectivity results

By using corollary 5.4.7 (i), it is now easy to prove that the conditioned Hardy
spaces defined above are well intermediate spaces between La(M) and L,(M) for
1 < p < > as expected.

Proposition 5.5.1. — Let 1 < p < oo. Then
Lmax(p,Q) (M) C h; C Lmin(p,‘Z) (M)7
i.e., hy embeds into Liyin(p,2)(M).

Actually, the injectivity for 2 < p < oo can be proved directly as a consequence
of the monotonicity lemma 5.3.1. Indeed, since the monotonicity in the conditioned
case is inverse to that of Hj, the conditioned analogue of lemma 3.6.2 concerns the

case 2 < p < o0.

Lemma 5.5.2. — Let 2 < p < oo. Then the space {x € Ly(M) : ||z

he < 0O} s

complete with respect to the norm ||.||ne .

Proof. — Recall that in the conditioned case, by lemma 5.3.1 the norms ||.| he(o) are
increasing in o (up to a constant) for 2 < p < oo. Then the completeness of each
discrete hy(o)-space yields the result as in the proof of lemma 3.6.2. |

It then directly follows that hf embeds into La(M) for 2 < p < co. Moreover,
by simply using the discrete hj (o) — hy, (o) duality, we can prove the conditioned
analogue of lemma 3.7.3 with the same argument.

Lemma 5.5.3. — Let 2 < p < co. Then, with equivalent norms,
(hy)™ = {x € Lay(M) : l[[lhe < o0}
Then, combining lemma 5.5.3 with assertion (i) of corollary 5.4.7 we obtain

Corollary 5.5.4. — Let 2 < p < co. Then h% = {z € Ly(M): 2[lhe < o0}

However, the injectivity in the case 1 < p < 2 is highly non-trivial and we really
need the complementation result stated in subsection 5.4.1 to prove it. This approach
does not include the case p = 1, and at the time of this writing we do not know if
the natural map from h§ to Li(M) is injective (see Problem 6.5.6). For the sequel we
need to introduce another candidate for the continuous analogue of the conditioned
Hardy space h{, which is embedded in L;(M). We denote by

w:hi = Li(M)
the natural map defined by ¢(x) = z for x € M, and set
Lh{ = ¢(h§) € Ly(M).
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Since ¢ is bounded, Lh{ equipped with the norm

xllthe = inf ||y|pe
2L r:m)il c

is a Banach space. Moreover, note that La(M) is still dense in Lhj.

Remark 5.5.5. — Considering hy as a subspace of Liyin(p.2)(M) for 1 < p < oo thanks
to proposition 5.5.1, we can write

hy Ch, forl<p<g<oo and hy CLh] forl<g<oc.
Moreover, for 1 < ¢ < oo, the commuting diagram

he h¢

u[ fw

LW Emty) — L1 (N Enaiy)

implies that we may also consider

hy Chi for1l<g<oc.

5.6. Fefferman-Stein duality

This subsection deals with the analogue of the Fefferman-Stein duality for the
conditioned Hardy spaces. First observe that in the discrete case, the space Ljmo
is simpler than the space Ly MO for 2 < p < oo. Indeed, recall that for a finite
partition o and x € La(M) we have

1
Hl| LeMO(o) = HSUP+5t|iL’ - iL‘r(a)|2H§p,
teo 2

/| g mo(oy = max {[[€o()llp,

ol o=

sup & |z — x?|| ,,}'
teo '

"

The crucial point is that the index “t~(o)”, which depends on the partition o, does

not appear in the definition of Lymo(c). Hence it is natural to introduce the following
definition of L{mo in the continuous setting.

Definition 5.6.1. — Let 2 <p < oo. We define

Limo = {z € Ly(M) : |z|

Lemo < OO}
where

71_
/| Lgmo = max {[[Eo(@)llp, || sup *Elar —ae?||7 )}
0<t<1 z

For p = oo we denote this space by bmo°.
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Recall that for a family (2;)o<t<1 in Lg(M), 1 < ¢ < oo, we define
sup Ty = || (2 = inf ||a||2¢ sup ||yil|so - |0l]24,
HOStgl tllg ||( t)OSt§1HLq(M;1zx([o,1])) l[all2q ! lyellso - [[0ll2g
where the infimum runs over all factorizations
x; = ayb  with a,b € Lag(M) and (y:) € £oo(Loo([0,1])).

The space L;mo obviously does not depend on Y. Note that by proposition 2.1 of [29]
we have

1 Sk
sup [[sup T Efx — i *||3 = || sup Y& — xt|2ij,
o teo 2! 0<t<1 2

thus we obtain

(5.6.1) ||

Lymo = SUP [|Z]| Lgmo(a) -
o

Since by definition ||.] Lsmo(o) 18 increasing in o, for 2 < p < 0o we may write

E

Lemo = lllll} ||‘L| Lgmo(o)

)

for every ultrafilter ¢. This ensures that we define well a complete space.

The discrete Fefferman-Stein duality in the conditioned case easily implies the
following continuous analogue.

Theorem 5.6.2. — Let 1 < p < 2. Then, with equivalent norms,
(hy)* = Ly, mo.
Moreover,

(5.6.2) vy allee,mo < ll2llng)- < V2|2

L;,mo~

Proof. — The proof is similar to that of lemma 3.7.3, by using the discrete hy (o) —
L;,mo(a) duality. This argument can also be adapted for p = 1. O

Moreover, we deduce from proposition 5.1.5 that for 2 < p < oo, with equivalent

norms,
Lsmo = {z € Ly(M) : [2flhe < oo}

Hence corollary 5.5.4 yields
Corollary 5.6.3. — Let 2 < p < co. Then, with equivalent norms,
Lymo = hy.

As a consequence of theorem 5.6.2 we can characterize the space Lymo similarly
to the definition of L{ MO.
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Lemma 5.6.4. — Let 2 < p <oo. Then

(i) The unit ball of Lymo is equivalent to

B, = {‘L = w'LQ'l(i%{l Lot 1;119 2] Lemo(o) < 1}'
More precisely, we have BL;mO CcB,C ﬁypBL;mo.
(i) Let (xx)x be a sequence in La(M) such that ||2x|[Lsmo < 1 for all X and x =

w-Lo-limyzy. Then x € Lymo with ||.’L’||[,;mo <V2u,,.

Proof. — 1t is clear that BL;-)mo C B,. Conversely, let @ = w-Ls-lim, s 2, be such
that lime g ||-’I«‘a|11,f‘;mo(g) < 1. By theorem 5.6.2 and the density of Lo(M) in hy, we
can write

|].7J|L;7mo < v, sup |T(1*y)’
yELa(M)

llyllne, <1
»

Note that for all y € La(M), ||y

he, < 1 we have
»

[r@y)] < lim[r(@Zy)| < V2 lim (Jl2|

Lemo(o) ”th;/(U))

he (o) < V2.

=2 (lim ||z,
o

L;ﬂno(o’)) ( 1;,[11} Hul

Thus x € ﬂVpBL;mo, and this proves (i). The proof of (ii) is similar to that of
corollary 3.8.5. O

We end this subsection with the description of the dual space of Lhj.

Theorem 5.6.5. We have (Lh{)* = Lbmo® with equivalent norms, where
Lbmo® ={x € Ly(M) : ||z][bmoc < 00 and li7rln T(x"yn) = 0 for all sequence
(Yn)n C M such that (yn)n converges in h§ and y, — 0 in Ly }.
Proof. By definition, Lh{ is isomorphic to the quotient space h{/ker ¢. Hence
(Lh$)* = (ker)* C (h§)* = bmo".
This means that
(Lh)* = {z € bmo® : (x| y)bmoc,he = 0,Vy € ker ¢}

By definition, an element y € ker ¢ is the limit in h§ of a sequence (y,)n C M such
that p(y) = Li-lim, ¢(y,) = Li-lim, y, = 0. In that case we have (z[y)bmos he =
lim,, (2] )bmoe e = lim,, 7(z*y,), and this ends the proof. O
Remark 5.6.6. — Observe that since by definition the space Lh] embeds into L; (M),
then L..(M) is weak-* dense in Lbmo“ by theorem 5.6.5.
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5.7. Interpolation
The end of this section is devoted to the continuous analogue of theorem 5.1.9.

Theorem 5.7.1. Let 1 < p < oo. Then with equivalent norms
h; = [bmoc7 h{l:]l/p

Proof. — Observe that by remark 5.5.5, we may write bmo® C Lo(M) C h{. This
ensures that the couple [bmo®, h{] is compatible. As in [2], we first show that corollary
5.4.7 (ii) still holds true for p; = 1, i.e., for 1 <p < 00,0 <0 < land 1-0+0/p=1/q
and with equivalent norms

(5.7.1) he = [hS, hes.

q
Then, as in the proof of [2, thm 4.1], we will deduce the required interpolation result
by using duality (theorem 5.6.2 and corollary 5.4.7 (i)) and Wolft’s theorem. Note
that it suffices to prove (5.7.1) for 1 < ¢ < p < 2. Indeed, corollary 5.4.7 (ii) combined
with an application of Wolff’s theorem will yield (5.7.1) for 1 < p < co. The inclusion
[h§, hele C hg follows easily from lemma 5.4.6 and proposition 5.4.3. Let o € [h{, hy g

be of norm < 1. Then there exists a function f € F(h{, h{) such that f() =z and

h({,SIflp Hf(l + it)”h;_)} <1

Since vy is isometric by lemma 5.4.6, we deduce that vyof € F(L(Nu, Epay, ), L (Nat, Eamy,))
with [luy o fllF = || fl|F. Hence vy o f(0) = vy(x) € [LS(Nut, Eany)s L (Nt Eany)]o
with norm < 1. Proposition 2.3.2 (iii) implies that vy(z) € L§(Nu,Em,,) for
1—-0+6/p=1/qg. Then r = Ry owvy(x) € hy by proposition 5.4.3. Observe that
this argument still works for 1 < p < co. However, we need the restriction to the
case 1 < p < 2 to prove the reverse inequality by duality. We will show that, for

IF 117 ng he) = max { sup | £(it)]

2 < p < q < oo with equivalent norms

(5.7.2) [bmo*, Lymo],,,, C Limo,

and theorem 5.6.2 will yield the remaining inclusion by duality (since Limo is re-
flexive). This comes directly from the discrete result and the monotonicity prop-
erty (5.6.1). Let x € [bmo®, Limo],/, be of norm < 1. Then there exists f &
F(bmo®, Lymo) such that f(p/q) = @ and [|f| Fbmo.Lsme) < 1. By (5.6.1), we de-
duce that f € F(bmo®(o), Lymo(a)) with norm < 1 for each o. Hence the discrete
interpolation result gives that x € Lymo(o) for each o with

||'/If| Lemo(o) < Cq“f“f(bmo’(a),L;',mo(o)) < Cq”f”f(bmo“,L;mo) < Cq-
Taking the supremum over o we obtain that x € Lgmo with

]

Lgmo < C(l ||T|| [bmo®,Lgmo],, /4 *

This ends the proof of (5.7.2) and the theorem follows. O
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CHAPTER 6

DAVIS AND BURKHOLDER-ROSENTHAL
INEQUALITIES

We continue our investigation of the Hardy spaces of noncommutative martingales
in the continuous setting by studying some decompositions of Hf and H,, involving
the conditioned Hardy space hy. By considering the adjoint in section 5 we may define
the row conditioned Hardy space h;, and obtain the analoguous results. After recall-
ing the noncommutative Davis inequalities in the discrete case, we will discuss three
variants of this decomposition in the case 1 < p < 2. The first one is a regular version
of the Davis decomposition involving another diagonal space hll;' instead of h,g. The
second version, presented in subsection 6.1.0.4, is a Davis decomposition in Randri-
anantoanina’s style with simultaneous control of h,, and Ly norms for 1 < p < 2. The
last variant is a mixed version of the two first ones, i.e., a Davis decomposition in
Randrianantoanina’s style involving the diagonal space h;] Then we will turn to the
continuous setting and define the analogue of the diagonal spaces. We will extend the
three versions of Davis’ decomposition to the continuous case for 1 < p < 2, and, as
usual, deduce the inequalities for 2 < p < co by duality. However, we will meet some
difficulty to describe the dual space of our continuous analogue of the diagonal space.
Hence the continuous analogue of the Davis and Burkholder-Rosenthal inequalities
for 2 < p < oo stated in theorem 6.4.2 is slightly different from the expected result.

6.1. The discrete case

We first recall the analogue of the Davis decomposition for noncommutative martin-
gales in the discrete case, then we discuss three stronger versions of this decomposition
which will be useful for extending it to the continuous setting. Let (M,,),>0 be a
discrete filtration.
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Observe that by combining the noncommutative Burkholder-Gundy inequalities
(th(\orem 3.1.6) with the noncommutative Burkholder-Rosenthal inequalities (theo-
rem 5.1.7) we get with equivalent norms for 1 < p < o

H, =h,.
By a dual approach, it was proved in [22] and [37] that this equality still holds true
for p = 1, i.e., with equivalent norms
(611) H] :h].

Moreover, we can show a column version of this result.

Theorem 6.1.1. — Let 1 < p < oc. Then the discrete spaces satisfy with equivalent
norms R4 e for 1<p<?,

c __ P P = ’

" { hinhs  for 2<p<oc.

6.1.0.3. The “regular” version of the discrete Davis decomposition. — The Davis de-
composition stated in theorem 6.1.1 can be refined to get a stronger decomposition,
involving another diagonal space called h,l)'—'. The regularity properties satisfied by
this space make it a good tool for the sequel.

To see how we may refine theorem 6.1.1, we briefly recall the strategy of its proof.
We first show the decomposition for 1 < p < 2, then the case 2 < p < o is deduced
by duality. For 1 < p < 2 the inclusion hg +hy, C Hp is easy, and the reverse inclusion
is proved by a dual approach. More precisely, we can show that

1 : d > .
(hy, 4 hy)™ = hy, O Ly,mo C Ly, MO = (H,)".
A close look at the dual spaces yields a stronger decomposition. Indeed, observe that

for 2 < p’ < 0o and & € Lo(M), by the triangle inequality in L%p, (M;l) we can
write

sup En(}: ‘dk (1 ) . ~ Hsup*’dn | H] .+ Hsup“LEn(Z Idk(:r)‘ ) .
n>0 P k>n 2P
Hence we get
(6.1.2) Hl’HL;,MO ~ max { || (d”('/l"))nHLp,(M:(gc)’ ||<’17HL;,mo}~

Recall that for 2 < p’ < 00, Ly (M;(S) is defined in [21], [34] as the space of all
sequences T = (Tp)n>0 i Ly (M) such that

”(”’")HZO||LI,(M:£;) = H(ltﬂ| n>()||L| (M) ||sup+):r,1| H Ly < 00.

Note that a sequence x = (2y,),>0 in L, (M) belongs to L, (M; (S, ) if and only if
there exist a € L,y (M) and y = (Yn)n>0 C Lo (M) such that x,, = y,a for all n > 0.
Moreover,

ll]l (M) = inf { sup [[yn o - IIaHp/},
! n>0

where the infimum runs over all factorizations as above.
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Inspired by the duality between L,(M;¢1) and L, (M;{ls) proved in [21], we
define its predual space L,(M;{5) as follows. Let 1 < p < 2 and 1/p =1/2+1/q.
A sequence x = (2, )n>0 18 in L, (M; £9) if there exist by, € La(M) and ag,,, € Lg(M)
such that

(6.1.3) Tn =Y bj o0k

k>0

for all n > 0 and 35, 5o |benl® € Li(M), 304 50 laknl? € L4,(M). We equip
L,(M;€5) with the norm
+

2/l L, (Msec) —mf{( Z [ ) ( Z |ak"n|2>%
k>0

where the infimum is taken over all factorizations (6.1.3). In fact this space can be

described in an easier way.

Lemma 6.1.2. — Let 1 <p<2and1/p=1/2+1/q. Then the unit ball of L,(M:{)
is the set of all sequences (bpay)n>0 such that

(6.1.4) (S)’ (2 anl?)’

n>0
Proof. — Tt is clear that a sequence (bya,)n>0 satisfying (6.1.4) is in the unit ball of
Ly(M; £9). Conversely, let x = (25,)n>0 be such that x, =3, - b}, ak,n with

1 1

2 ‘ 2
(3 M) [ (32 lawanl?)
k,n>0 k,n>0

1
We first set a), = (Zkzo lak»|?)?. By approximation, we may assume that the a},’s
are invertible. Then considering

/=1 / *
Vkn = k@, and b, = E bh Uk s
k>0

<1.

we can write 2, = bl,al, for all n > 0. Moreover,

I ), =SS )’

=2

and since ), lvg.n|? = 1 we get
2
SR = D || D bt
n>0 n>0 k>0
L. 9 1.9 ;
<SS tiabin) [ (S trnn) [ = 3 bl
n>0 k>0 2 k>0 k>0

Hence (a],) and (b)) satisfy (6.1.4). O
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Remark 6.1.3. — This implies that we have a bounded map
LP(M: (/i) — LP(M [/5)7 (b7l(1fn)112() — Z €n,0 & bnan-
n>0

Indeed, we can write

Z €n,0 & bnan - (Z €n,n & bn) ( Z €n.,0 ® an)
n n n

and the Holder inequality gives for 1/p=1/2+1/q

” E 6n,0®bna/n S ” § en,nQObn 2“ § 671_0®(L"
P
n n n

We can now state the following duality.

1

= () (k)

n

q

Proposition 6.1.1. — Let 1 < p < 2. Then isometrically

(Lpy(M:£5))" = Ly (M:L2).
Proof. — Let x be in the unit ball of L,(M;¢{) and y € L, (M;/S). By lemma 6.1.2,
for all n > 0 we can decompose z,, = b,a, where (b,) and (a,) satisfy (6.1.4). Then

we deduce from the Cauchy-Schwarz inequality and the duality between Lg(M:{;)
and L1, (M:{) that

Z T('!/;;-Tn) = Z T(y;bnan) = Z T((yna:)*bn)

n>0 n>0 n>0
3 3 3 3
< (D lwmantd)” (D2 10al3) " = (32 7 (lwnllanl®)) " (3 loall3)
n>0 n>0 n>0 n>0

ot 12112
< HM’IIP \]/n| H%p’

Z ‘O’"\Z f ( Z \IbNH%) %7

where s denotes the conjugate index of %p/ . An easy calculation gives s = %q, and
this yields the contractive inclusion L, (M;¢<) C (L,(M;€9))*.

Conversely, let ¢ be a norm one functional on L,(M;{{). We observe that con-
tractively
(6.1.5) 0 (Lp(M)) C Lp(M;£5).
Indeed, for a finite sequence x = (x,)N_, we can write r = Zf\il 2%, where 2t =
(28>0 with 2!, = 6, ;;. By setting

b, = (5,,‘2~ui]fri|%” and  al =8, |z,

where 1/p = 1/2 + 1/q and z; = w;|z;| denotes the polar decomposition of x;, we
obtain that

1 1
i i 2 i2)2 1p P/
I e < (3 WI8) [ (2 tarl?) ", = s 2l "l < sl

n>0 n>0
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forall1 <i¢ < N. Then

N N
12l L, (o) < Z 2] L, (M) < Z illp = 16 (L, r1)-

Since the family of finite sequences is dense in ¢1(L,(M)), this shows (6.1.5). More-
over, the density of the family of finite sequences in L,(M; ¢5) implies that ¢, (L,(M))
is dense in L,(M;¢5). Hence there exists a sequence y = (yn) in L, (M) such that
o(z) =", 7(ysay) for all @ = (x,) in £1(L,y(M)). Then

||y||L,,,(M;w ||511P+|yn| H
zsup{(zT@ynwcn))% e 0 Sel,

= sup { ( Z Hyn(‘é ||§)% ten € L, ” Z Cn § }
= sup { ZT((yncé)*bn) DCp € L’%Lq(N), H ch < I,Z a3 < 1}

1.
[(X1edi?) || st ealf <1} <1
q
n n

Thus y € L, (M;¥,). By density, the functional ¢ is uniquely determined by the
sequence (y,) and the duality is proved. |

NIH [SIE

q

W= =

1
= sup {cp(uc) C Ty, = bpci, cn € Lirq(N),
2

Let hye (resp. h.<) be the subspace of L,(M;{5) (resp. Ly (M;l5)) consisting
of all martingale difference sequences.
Lemma 6.1.4. — Let 1 < p < oco. Then the discrete spaces satisfy:

(i) For1 <p<2, h)e is a complemented subspace of Ly(M;(5).

(ii) For 2 < p < oo, hy'e is a complemented subspace of Ly(M;LS,).

Proof. — We first show that the Stein projection

is bounded on L,(M;¢5) for 1 < p < 2. Let (x,)n be in the unit ball of L,(M;£5)
and let x,, = bya, be the decomposition of z, given by lemma 6.1.2. Then for each
n we can write

En(n) = tn (b)) un(an) =Y wn (b)) (k) n(an) (),

n,k

where u, (b})(k) € Ly(M) and up(an)(k) € Ly(M). On the one hand, the trace
preserving property of the conditional expectation gives

ZHun K5 = D 7(Enb}bn) annng

n
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On the other hand, since we have 2 < ¢ < oo for 1 < p < 2, the dual form of the
Doob inequality yields

H Z [t (an) ()2
n,k

< 8
24

. <
34

1

2 249

1 = H Z&L|an|2 Z lan|2

Hence (572(-17'71,))n € Lp(M*((l) with H(gn(mn))nHL,,(M:[?I') < (S/lqv where (Sl%q ~ q2

[SIEYIT

1
as ¢ — oo, p — 2. This shows that hll," is 25'i(1—complement0d in L,(M;¢5) for
2
1<p<2.
For the second assertion, the noncommutative Doob inequality and |E,(x,)[? <

‘ 1
Enlr,|? immediately imply that hpce is 25§p-complemented in L,(M;£5). |

Combining proposition 6.1.1 with lemma 6.1.4 we get the duality between h.]l;‘
and hpyc.

Corollary 6.1.5. Let 1 < p < 2. Then the discrete spaces satisfy with equivalent
norms

Then (6.1.2) means that for 1 < p < 2, we have by corollary 6.1.5
C\k _ TC A/ _ ¢ c _ 1. c\*
(Hp)" = Ly MO = hyc N Ly,mo = (h,” + hy)".

This yields the following stronger Davis decomposition.

Theorem 6.1.6. Let 1 < p < o. Then the discrete spaces satisfy with equivalent
norms
He — { h})" +hy for 1<p<2,
p

h;o" N h; for 2 <p<oo.

Remarks 6.1.7. — 1) Observe that by interpolation between the cases p = 1 and
p = 2 we have a contractive inclusion L,(M;¢5) C £,(L,(M)) for 1 < p < 2. Thus,
considering the martingale difference sequences, we get

h;, C hﬁ contractively for 1 < p < 2.

Hence the decomposition of theorem 6.1.6 is stronger than the usual decomposition
stated in theorem 6.1.1.

2) The advantage of working with the spaces hll;' is that, since M is finite, they
satisfy the following regularity property

h:;" - h,llf contractively for 1 < p <p < 2,

whereas the hg spaces do not. However we loose the reflexivity property.

ASTERISQUE 362


file:///M/f/

6.1. THE DISCRETE CASE 97

6.1.0.4. The version of the discrete Davis decomposition in Randrianantoanina’s style.
— As for the Burkholder-Gundy inequalities in section 4, we will need a result due to
Randrianantoanina to apply duality in the continuous setting. In [46], Randrianan-
toanina proves the following Burkholder-Rosenthal decomposition at the Ls-level,

with simultaneous control of norms.
Theorem 6.1.8. — Let 1 < p < 2 and x € La(M). Then there exist a,b,c € La(M)
such that
(i) z=a+b+c¢
(i) lallng + [16lln; + lellng < CO)lly:
(i) max {[lallz, 1b]z, lellz} < £(p. Il lzl)
Here C(p) <C(p—1)"' asp— 1.

Proof. — The proof is similar to that of theorem 4.2.1. Let € Lo(M), 1 <p <2
and 0 < @ < 1 be such that 1/p =1— 6+ 6/2. As in the proof of theorem 4.2.1 we
may write

(6.1.6) r= uy

veZ
with
e y 1/p
(6.1.7) (S max {flul, 2 N2 }7) < C@)all,
veEZL
and
(6.1.8) Y llulla < £ (o, 2llps l2]2)-

veZ
We apply Randrianantoanina’s decomposition to this sequence (u,),. For each v € Z,
by theorem 3.1 of [46], we may find an absolute constant K > 0 and three adapted
sequences a(”), b and ¢ such that dn(u,) = agj) + b;”) + ci{’), for all n > 0 and

a1l Ly amseg) + 10N Laatses) + 1€ oy < Klluwll2,

() H( (v) 2)
(& n,®a + g — b,,
HFL;O ™ "Ly (B B M) g} ne1 [0y 1,00

i [PICEY

n>0

)=

)Y, =t

Then we set

an = Z al), by = Zb;” and ¢, =) ),
vEZL VEZL veZ

and obtain three adapted sequences a = (an)n,b = (bn)n and ¢ = (¢,),. Using the
fact that for any semifinite von Neumann algebra A/ we have

LP(N) = [LIOO(N)vLZ(N)]

0,p;J’
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98 CHAPTER 6. DAVIS AND BURKHOLDER-ROSENTHAL INEQUALITIES

and (4.2.2), we can show that
2\ P 2) 2 c2)? v -1
(D taallz) ™+ [ (D amaloal?) || +[ (X i) || < o= 1)l
n>0 n>0 P n>0 P
Applying the Stein projection D to the sequences a,b and ¢ we obtain three martin-
gales. We set
a'=D(a), V =D(b) and ¢ =D(c).
Then we have for all n > 0

dp(x) = d,(a") + d, (V) + dn ().

Moreover, since any conditional expectation £ is a contractive projection in L,(M)
and satisfies £(y)*E(y) < E(y*y), we get

H“/th 10 e+l g < C(p — 1zl

It remains to prove the Lo-estimate (iii). This comes from (6.1.8) by writing
la'llz = 1D(@)]l2 < 2llall2 <23 la" N raaiey < 2K ) llunllz < 2K f (.|l llz]l2).
veZ veZ

The estimates for b and ¢’ are similar. O

We can derive a column version of theorem 6.1.8, which is the following version of
the Davis decomposition at the Lo-level.

Corollary 6.1.9. -~ Let (M) be a finite filtration of M. Let 1 < p < 2 and
x € Lo(M). Then there exist a,b € Lo(M) such that

(i) z=a+b;
(i) [lallng + l1bllng < Co)l2lag:
(iii) max {[|al2, [bll2} < f(p. [Ea(7e |]|2),
where C(p) < C(p—1)" asp — 1.

Proof. — We apply theorem 6.1.8 to the element

m
y = Z €n0 @ dp(x).

n=0
Here we consider the finite von Neumann algebra N = B(¢/5**") & M equipped with
the filtration NV,, = B (@'Z”H) @ M,,. We have to be careful with the trace we consider
on N. The natural trace on N is tryr = tr ® 7, where tr denotes the usual trace
on B(@"H). This trace is finite, but not normalized. Since theorem 3.1 of [46] have
been proved for a normalized trace, we will also need to consider the normalized trace
v = tr/(m+ 1) ® 7. Observe that

Yl Lo teary = lz]2 - and ||Z/||L,,(N,tr,v) = |i17||H;~
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As in the proof of theorem 4.4.1, we can find a sequence (u, ), such that y =3, u
with
—v v p /p
(6'1'9) (Z(z nlaX{HuV”LMN,trN)sQ ||uV||L2(/\/',trN)}) )
vEZ
< COIlL,w.n) = CO) 2l g

and

(6110) Z ”uVHL-z(N,trN) < j(p7 ||y||Lp(N.trN)7 HyHLQ(N,trN)) = f(pv H'/I"HH,‘," |T”2)

vel
Applying theorem 3.1 of [46] in (N, 7xr) for each v € Z, we may find an absolute
constant K > 0 and three adapted sequences a*), b*) and ¢*) such that for all n > 0

o) = ) + 40 + 2,
and

(6.1.11) [|a" |y rase) + 1B avimnsts) + 1€ N Lo vy < Kl o m s

oIS
L1 (B(f2) ® N tr@7a7)

(e’

n>0

(6.1.12) || > e @)

n>0

Ll,x(-'\f-,TN)

L1~ (N,7A7)

< Kllu,

Li(N, A7)

We would like to obtain the same estimates with respect to the trace trps to use the
interpolation argument and (6.1.9). Note that for z € Li(N'), we have

Izl oten) = (M A+ Dlizllinyvirays 120 vy = M+ Dzl covimn
and for 2z € La(N') we have

20l Lo ey = VI + L2 Lyv ra) -

Hence multiplying (6.1.11) and (6.1.12) by v/m + 1 and (m+1) respectively, we get the
same estimates with respect to the trace trps. Thus we may control the J-functionals
for a®) ) and ™) in (Lj oo (N, trar), La(N trar)) by the J-functional of w, in
(LN trpr), La(N, tryr)), which is bounded by C(p)||z[ln; by (6.1.9). Then applying
the Stein projection we get three elements a,b,c in Lo(N) such that y =a+b+ ¢
and

lal s nn) T llellnpvinny < C@)] ag,

max { [|all o tex)s [0 Lo ey el Loovieny b < F (P 2], [l2]]2).-

Now we deduce a decomposition of z satisfying (ii) and (iii) as follows. We consider

he(

the following projections in N

e = Zen‘n®l and f=ego®1.

n>0
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Since y has a column structure we have y = ey f, hence y = eaf +ebf + ecf. Writing

a = E €l @ Ak ns b= § €hkn @ bk'.n and c¢= § €kn @ Ckon,

kn>0 k,n>0 k,n>0

we have

eaf = E €no® ano, ebf= E eno®@byo and ecf = E €n,0 X Cn -

n>0 n>0 n>0

Since d, (y) = €,.0 @ dnp () we get for all n > 0
dn(”) = dn (UJn,O) + dn(bn.O) + dn (Cn,())-

Finally we set

n>0 n>0 n>0

and obtain three elements in La(M) such that © = a+ 8 + v. It is clear that o, 3
and v verify the Lo-estimate (iii). Note that here we want a decomposition of z in
two elements. We will show that a € hg, B € hj, and that the third element v is in
the diagonal space hg. Let us first observe that since e, f € Ny = B(£5""1) & My, we
deduce from the module property that

(6.1.13) lleaf|

i aeae) TEbfllns v ieny + llecf gy < C@)zllmg-

Indeed, the estimate of the first term comes from the fact that e and f are projections,

and for the second term we write

. 9 X

’2 = En,1 ‘edn(b)f‘ - 57171 (fdn(b) edn(b)f)
. . 2.,

= fgnfl (dn(b) ()dn<b))f S f(c/‘n——l ldn(b)‘ f

gn—l ’dn<(be)

Then |lebf]
have

lellng = (D2 ||dn(an’0)’|z>1/p -(x H(|dn(an’0)|2)%Hz)l/b
(; H(ZA: ld”(ak'o)|2>% Z)l/” - (; H ;ek’o ®d"(ak'O)HZ,,(N.tw))

1/p
<Z ”(171 (f3(1f)||lz,p(}\f~tr_v)> = ||eaf”hg(/\/,tr'v)~

he (N trw) < |16] RS (N bra) - The third term is similar. For the term o we

1/p

IN
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We proceed similarly for the term 3

o (znjg”l‘d"“wwl?)%Hp = H(gsnlidnm,o)yz)% b

) (ZSTF].Zek@@dn(bk,o)r)%
" k

= (Z&Llld"((gbf)V)%'

Finally for the term v we write

1/p ]
”'VHh;i = (; ”dn(cn,o)”2> = H ; €n,n ® dn(Cn,O)HLP(N,“N)
- HDiag( > ern @ dn(ck‘,ﬂ))‘
k,n

where Diag denotes the diagonal projection in A/. Since the diagonal projection is
bounded on L,(N, trar), it remains to estimate

pe dn(c ‘ :” ® eno®dy(ch ’
H;’;(Ln@) n(Ck,O) LN trn) ;60,.” k.0 ((k,O)

18]

L, (N .trar)

= leb S llne oren)-
LN trar) ”6 f”hp(./\/,t A)

LP(NvtrN)’

LP(B(K;”Jrl) DN tr@trar)

= | 32 con @ duee)]

k,n
— flec/]

Then, using (6.1.13), we deduce (ii) and the theorem follows for the decomposition

L,,(B(Z;"’Ll) @ N, tr@trar)

R (N trar) -

z=(a+7v)+ 0. O

As in corollary 4.3.6, corollary 6.1.9 can be translated by using the H-sum as

follows.

Corollary 6.1.10. — Let 1 < p < 2. Then the discrete spaces satisfy with equivalent

norms
c _ 1d c
Hy = h, B h,.

6.1.0.5. The “mized” version of the discrete Davis decomposition. — It is natural

to wonder whether the Davis decomposition involving the regular diagonal space h};‘
established in the subsection 6.1.0.3 can be done with a simultaneous control of norms,
in the spirit of Randrianantoanina’s decompositions. In term of H-sum, we can easily
establish that

Theorem 6.1.11. — Let 1 < p < 2. Then the discrete spaces satisfy

c _ p1c c e -
Hp = h,~Bh;, with equivalent norms.
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Proof. — We first look at the dual spaces and claim that if = (21, 22) € (/1,1)“ Bhg)",
then

(6.1.14) z9 € (hy ) N(hg)" = L5, MO = (H)" = (b + hy,)".
Then we can deduce that the quotient map
q: h;,“ B hy, — h:," + hy,

is injective. Hence the two sums h,ll;' B h;, and hll, + h;, coincide isometrically, and
the result follows from theorem 6.1.6 with the same constant in the equivalence of the
norms. To see (6.1.14), we consider = = (21, x2) € (hy, Bhg)*. Then by lemma 4.3.4
we have x1 € (hy")*, 22 € (k)" = Lymo C Ly(M) and (21,y) = (z2,y) for all
y € La(M) N hye. Hence for y € Ly(M) N h) we have

[ae)] = @1 )] < el - Il
By density of Lo(M)Nh in bl we conclude that zp € (h)*)* and (6.1.14) follows. O
The continuous case will be more complicated, and we need to introduce some
notations and prove some preliminary results in the discrete case to extend theo-
rem 6.1.11 to the continuous setting later in subsection 6.3.0.8. We can view Hy as a

subset of the conditioned column space L;"“d(./\/l ; £5) introduced in [21]. Recall that
for 1 <p < oo and any finite sequence x = (2, )n>0 in M, we set

1
9\ 2
Leend (M:e5) — H( § Sn|.rn|l)

n>0

Il|

P

Then [[.[| cona(ar:65) defines a norm on the family of finite sequences of M. We denote
P "

by L;O“d(./\/l; (5) the corresponding completion, and H , clearly embeds isometrically

into L;"“d(./\/l; ¢5). The Lf)‘md(./\/l; ¢5)-norm can be characterized in an atomic way.

Lemma 6.1.12. — Let 1 < p < 2, 1/p = 1/2+ 1/q and = = (x,)n>0 be a finite
sequence of M. Then

1 1
PNz . 2 2|
<§> :::,,illfw,, (Z ||bn||§> 1’Sgp+u7721,||‘ = ||:EUL;~;»“(.(M;£;) 1
inf ( Z an”%) 2 ||Sllp+'[u721 |
n

>
wn€L} (M) 120
Tn=byw, 50

wy LT (My)

Bl bl
N

VAN

q

SV

Proof. — Recall that

= inf {||w||%q : ’wi < w,Vn > O}.

sup* |,

We first consider a decomposition x,, = b,w,, such that w, € L;(Mn) for all n > 0.
Let w an element of qu(M) be such that w? < w for all n > 0.
2
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. 1 . .
Then we may write w,, = vy,w? for all n, with ||v,]] < 1. We obtain

| C i;‘“nd(M;g;) = ” Z En (w71|bn;2wn

1 = ” Z wngn |bn| Wn,

n>0 2P
1 1
— ‘ w%(Z’U;En|bn)2vn)w2 . < H Zr Enlbn*vn ||’u12||3
n>0 2P n>0
1 .
= (2 r((Elbal®) o (Ealon)®) Y wl gy < (D2 10a13) ol
n>0 n>0

Thus taking the infimum yields the second inequality. For the first one we con-

sider a finite sequence x = (x,),>0 in M. By approximation, we may assume that
Yoo 1

B = (ano Enlznl?)? is invertible. We set B, = (ZOSkSn Exlzel?)? € L} (M)

for n > 0. Following [2], we can show that

(6.1.15) 7(B? — BP

n—1

) > pT(BﬁfQ(Bi — B?L_l)) = %p7(35‘25n|;17n|2).
1, 1p— .

Setting w,, = B,]L 2P and b, = 2, B2’ ' we get z, = byw, with w, € LI (M,).
Moreover, since 0 < 1 — —p <3 and B2 < B2, we have w? < B?7P. We deduce that

p/a

1
||S?Lp+71)72l||? <1823, Leond (M:t5)°

NI»—‘ =

= [|BIIy/? = |||

The other estimates comes from (6.1.15)

(i)’

1

(B sl ™) = (el

Il

n>0 n>0 >0
2\3 2\ 3 1
<) (- 80) = ) 11 ianes
p ”Z% -1 D Leond (M;45)
This proves the first inequality. 0

We will give an explicit decomposition of Hy = hllf + hi, by using this charac-
terization. To establish the control of the norms, for technical reasons we need to
recall the definition of the space L,(M;¥¢;) introduced in [21]. For 1 < p < 2, a
sequence = (xy)n>0 belongs to L,(M;¢y) if there are by, ak, € Lop(M) such
that z, = > ,v¢ bj. @k, for all n and

Z blt,nbkw” € LI’(M)7 Z a/t,nak?wn € LP(M)

k,n>0 k,n>0

Then L,(M:{;) is a Banach space when equipped with the norm

1
o N 2
||T’|le(M;f1) = inf {H E bk:m,b/f,n ’ ” E a;,'n,ak,n
)
I kn>0

kn>0

1
2

’
P
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where the infimum is taken over all (by,) and (ag,) as above. Recall that for a
positive sequence & = (2, )n>0 we have

||l‘fHL,,(M;ﬁ1) = H Z:L'n

n>0

p

We will use the following inclusion.

Lemma 6.1.13. — Let 1 < g < oc. Then contractively
Ly(M; 1) C Lg(M;65).

Proof. Since the spaces Lqy(M;¢;) and L, (M;{€5) interpolate, it suffices to prove
the result for ¢ = 1 and ¢ = oo. The case ¢ = 1 is clear. Supose ¢ = oo and let
Tn = >0 bk nakn be such that

‘ g bk nbk.n <1 and H E ay Ak on
[a'e)

k,n>0 k,n>0

<1

o

1 . .
We set a, = (3. & O .0k n)Z. By approximation, we may assume that the a,’s are
invertible. Then considering vy, = agna,' and b, = Y, b}, vkn, We can write
T, = bpa,. Note that

1 1
* * 2 * 2
E Vi pUkn =1 and  ||bylloc < H E b nbk.n H g Vfo nVkon < 1.
oC oo
k E>0 E>0
Then
K P S * * * I *
E €T, Ty = E a, b ba, < E a,a, = E Qg <1,
n>0 n>0 n>0 k,n>0
which proves the result for ¢ = occo. O

We can now establish the decomposition of an element z € Lo(M) in h;)" + hy,.
However, in this case we cannot get directly such a decomposition in La(M) with
a simultaneous control of h, and Lo norms, but we are able to approximate x with
elements for which we have such a simultaneous control of norms.

Proposition 6.1.2. — Let 1 <p <2, p<py<4/(4—p) and x € Lo(M). Then there
exist two families (ar)r>0 and (br)r>o in Lo(M) such that
(i) @ = limpe ar + by in Hp
(i) flarll, +11brlng < C@)zllng for el T > 0;
(iif) max {|lar|2,[[brl2} < g(p, 2l e, T) for all T > 0.

Proof. — Let 2 € La(M). Following the proof of lemma 6.1.12, we set

1

b= (Z ‘d,l(;1:)|2>%7 Bn = ( Z ‘dk(il“)\‘z)% and  w, = B,lfip.

n>0 0<k<n
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. . . . 1
By approximation, we may assume that B is invertible and set b, = d,,(z)B3 ip- SO
that one has d,(x) = byw, for all n > 0 and

(S i)’ ()nxnz’; and  [Jsup* w?

n>0 n

, < el

wr~ [SE

Fix T > 0. We consider the spectral projections

1
(1) ]1((2(11)”—10”_1)2) < T), eg?) = ]I(BI_"’ < T) and ep = ( )/\6(2).

n>0

We set

ar = Z dy (b,,(wn - wn,])&,(erp)) and by = Z dy, (bnwn,lé'n,l(eT)).

n>0 n>0

We first check that ap and by satisfy the estimates (i) and (iii). Since h,° is comple-
mented in L,(M;¢5) by lemma 6.1.4, we have for 1/p=1/2+1/q

)|aT|[,1(<C’pH( (wy, — wnfl)SH(CT))n“L,,(M;Z;')

<Go( il DI om - weEn(en)’)’

q

Since w,, € L;F(Mn) and w,,_1 < w, we have by Stein’s inequality

(5 - wnctent) ], = |5 ot - )’

n>0 n>0 a

1 1

2\ 2 2

S%H ( > |(wn = wn1)er] ) = ’YquT ( > (wn — wy )2>€T )

n>0 q n>0 24
1
< 2

<ol S = wama P} <] S = wa)]|, =l B = el

2

n>0 n>0

where the last inequality comes from lemma 6.1.13. We deduce that

1

2\ 3
lar il < Co() "allelng
For estimating by, we will use the well-known fact

(6116) 671~1|€n,(a'n) - gn 1( )| - 5 71’571 n ’2 - ’gnfl(an)
S 571,71‘511 (an)IQ S 87171 (gn|an|2) - gnfll(lnl2

‘ 2
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a1
to write ||br| hg < || ( ano En1 ‘b”,'wn~1 En-1ler) ’2) 2 Hp. Then by the same argument

than the one we used in the first part of the proof of lemma 6.1.12 we obtain

0\ 2 1
1orlag < (3 16al3)” sup* w1 Ena(er)?]3,
n

n>0
1 2\ 3
< (S Ial) pswp ol < (2) et
>0 N '

This proves (ii). We now turn to the estimate of the Lo-norms. By definition of ep
we can write

H(wn —wp-1)En(er) H = ||E,,( — “’"—1)67)”% < |[wy — wp—1)er|| oo
= ler(w, — wH)?eTui <1l (wn — woon)2e) 5 < T
and
Jwn-1En-1(e7) o0 = ||5n—1(’wn~1€T)Hoo < w-rerllw = llerw?_er]|Z
< [efw? e % < el B & < T

Thus

3 2\ 3
farle < 2( 3 1a13)" sup [~ wn)nfer)|, < 2(7) " Nl T

n>0

orllz < 2( Y 10al13)

n>0

(NI

sup”wn 1En- 1(€T)” <2(p)2||x'|;§12T

Y

We obtain (iii) with g(p, [|z([ng,T) = 2(%) 2||lz|| 3% T. Tt remains to prove the conver-
; ¢

gence (i) in Hy . We set

Yyr = Z dn n (W — Wp—1)ER (1 — eT)) and zp = Z dp (bnwn,lgn,l(] — eT)).

n>0 n>0

Then x — (ar + br) = yr + zr and theorem 6.1.6 implies

(6.1.17) lr = oz + b2l 7, < Clpo)(lyr ] h,)-

nl
Observe that

(6.1.18) T(l —er) < 2T7‘1]|:17||?[;;.
Indeed, since 1 —er =1 — (e A ((2)) =(1- e(ll)) V(1 - 6(12))7 we have

T(1—ep) <7(1-— e(Tl)) +7(1 - e(Tz)).
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Moreover, lemma 6.1.13 yields

(1= o) = o (2 (( Sl = wa?) > 7)) <70 (X = w0

n>0 n>0

q
> (wn = wa-n)||| = T el
q p

n>0

o)

)

<171

and
(1 —ef) =7(1(B'7# > T)) < T-07 (B ~40) = 79|z,

This proves (6.1.18). As for ap we can write for 1/pg = 1/2+1/qo

nyT||hu<c(Z||bnn) (Zl - w)E (= en)f)’

Let s = 4/(2—p). Since pp < 4/(4 —p) we have qo < s. Thus we can consider
qo < ro < oo such that 1/go = 1/s+ 1/rg. By Stein’s inequality we have

(S 0wzt =) = (oo —wna —en?)

n>0

q0

2\ 2
<o | (3 (= wa0)(1 = en)?)
n>0 q0
= a0 | (1 = er) (Y (wn = wa1)?) (1 = en);
n>0 390
:
< vl = x| 3w — w12}
n>0 2°

Lemma 6.1.13 implies

| 2o =

n>0

[SIE ST
»

< || 3o twn = waen)|| = 1B =

n>0

By using (6.1.18) we obtain

2 % T T T s
Iorllagg < v (2) 2T/l .

We estimate z7 as we did for by by

ho, < (Z”bn“ ) ||Sllp+|wn 1En-1(1 =€) qu

n>0

|27

Since (1 — er)w?_;(1 —er) < (1 —er)B%P(1 — er), we have

ygnfl(rwnfl(l - eT))‘Z S €n—1|wn~1(1 - eT)‘ < gn IIBI 1 - eT)l2
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and the noncommutative Doob inequality gives

”bup lwp1En 1 (1 —er)?|| Lgo

= HSup ’En 1(U7n I(I_PT) ' “ 590

< “sup+6'n 1|B1 2(1—er)]? “

5490

= (SqU/QH ]. - CT)B27P(1 - (ZT)“ 1

<1 H|Bl 1—€T| | Lqo

2490

(Iu

2 It 0 2p/To 4/s
<= el 1Bl < 22T =20 a5 a3

To

Thus

1(+

2 T 70 T
lerllng, < (p) 2 /mop =l | 2

By (6.1.17), we obtain that

—q/ron PG 2
o = (ar +bo)llg, < Copo) T~ all2 ™ a5,

and taking the limit as T tends to oo yields (i). O
Remark 6.1.14. It is important to note that for all T' > 0 we obtained a uniform
bound

—q/r0 P(%Jr%) 2
Hl - lar + bT)HH;( < C(p,po)T ”x”H;—; I3,
0
where s =4/(2 —p) and 1/rg =1/py —1/2 —1/s.
Observe that we may deduce from the proof of proposition 6.1.2 an explicit decom-

position of Hj = hllf + hj,. This gives a constructive proof of theorem 6.1.6. Indeed,
for x € LQ(M) we can set

Z d ’IL wn wn—l)) and ¢ = Z dn(bnwn~1)7
n>0 n>0

1 1
i-1ip
where w,, = (Zo<k<n |dk(1'>|2>2 " and b, = dy(z)w, ! (here we assume that

3= |dn(x)]? is invertible). Then x = z'c + 2¢ and it follows from the proof of propo-
sition 6.1.2 that

'l pae + l2lng < C)llzllag.
In fact, this explicit decomposition can be done at the level of the column L, spaces.
More precisely, we can define the space L;O"d'(/\/t; £5) by setting

1

2) 2

L;ond‘(M:[fz') = H( g gn—l|xn| )
n>0

for 1 < p < oo and ¢ = (zp)n>0 a finite sequence in M. Then we might prove

]

constructively that

(6.1.19) LY (M €5) = Lp( M3 £5) + LS (M 65)
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with equivalent norms for 1 < p < 2. Even if we will not use it in this paper, it is
worth mentioning that (6.1.19) implies

H, is complemented in LEom (M £5) for 1< p < oo.

Indeed, this is easy to see for 1 < p < co by Stein’s inequality. For p = 1, this follows
from (6.1.19) and from the fact that h§ is complemented in L (M; £5) (by (6.1.16))
and hi¢ is complemented in L;(M;¢$) (by lemma 6.1.4).

6.2. Definition of diagonal spaces for 1 < p < 2 and basic properties
We fix an ultrafilter 4. For x € M and 1 < p < 2, whenever the limits exist, we
define
g = lim g and ol = lim el o
Observe that by interpolation between the cases p = 1 and p = 2 and remark 6.1.7

we have

sllzly <l

g < e
Hence ||.||ns and ]|.||h’1]C define two norms for 1 < p < 2.

The discrete diagonal norms also satisfy some monotonicity properties.

Lemma 6.2.1. — Let1 <p<2,x€ M ando Co'. Then

(i) =]

(i) Nzl o) < N2llpie ory- Hence [zllyre = supg [l2]l1c (-

niio) < 2elnaior. Hence |zllng < sup, ellngo) < 2lllng-

Proof. — Let o C ¢’. By interpolation between the cases p = 1 and p = 2 we have
forl<p<2andteco

@l = || o @], <2( Xl @l)

s€ly sely

where I; denotes the collection of s € ¢’ such that ¢t~ (o) < s~ (0') < s <t. Thus

lzllna(o) < 2l

hd(a’)-
For (ii), we show that for 0 C ¢’ we have a contractive map

X Lp(M§£§(OJ)) — L[)(Mvgi((f))v (l's)sEa' — (-rt)téd = (Z Is)

t
sel, €o

Since for € M we have £((d? (z))seor) = (d7(2))1co, this will yield the required re-
sult for hle. Let # = (25)seor be in the unit ball of L,(M;#5(c”)), then by lemma 6.1.2
we may write xs = bsag for all s € o/ with

(S 10)" |- (S loar)’

s€o’

<1,
q

SOCIETE MATHEMATIQUE DE FRANCE 2014



110 CHAPTER 6. DAVIS AND BURKHOLDER-ROSENTHAL INEQUALITIES

where 1/p =1/2+1/q. Then %(z) = (X, bsas)teg is of the form (6.1.3) with

> ) (X )] = (S )| (S )], <

teo,sely tco,scl; seo’

Hence X(x) is in the unit ball of L,(M;¢5(0)). O

q

Corollary 6.2.2. — Let 1 < p < 2. Then the norms ||.|na and “Hhi do not depend on
the choice of the ultrafilter U, up to a constant.

Definition 6.2.1. — Let 1 < p < 2. We define
Eg ={z € L,(M): %]l < oo} and EII, ={zeL,(M): ||T||h}) < 00}
Adapting the proof of proposition 3.6.2 we can show that these define two Banach
spaces. By remark 6.1.7 (1) we have
HII) - Fz contractively for 1 < p < 2.

For technical reasons these spaces are too large. Hence we need to introduce their
regularized versions as follows. Note that by the regularity property of the h;;'(o)—

spaces stated in remark 6.1.7 and the fact that H;)” is a subspace of L,(M), we have
Tle e . . ~
h5* Chy,®  contractively for 1 <p <p < 2.

Definition 6.2.2. — Let 1 < p < 2. We define

hZ =Loy(M)N Eg”‘““;l* and h;;’ = U H%"NH";)",

p>p

Remarks 6.2.3. — 1) At this point it is not obvious that the set Lo(M) N Hg is non
trivial. We will show later that this definition of hg actually makes sense.

2) Note that for 1 < p < 2 we have bounded inclusions
h c h? € L,(M) and hl C hle C Ly(M).

Since by proposition 3.6.1 we have an injective map H;, < L, (M), this implies that
the natural bounded maps

d c . 1. c
hy, = H, and h,° — H

are injective. Similarly, since proposition 5.5.1 implies that for 1 < p < 2 the natural
map hy < L,(M) is injective, we deduce that the map

h, — H,,

is injective for 1 < p < 2. For p = 1 we have Lh] — H$. Hence in what follows we
will consider the spaces hg, hzlf and hj as subspaces of H;, for 1 < p <2 and he, h{‘
and Lh] as subspaces of Hf.
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6.3. Davis decomposition for 1 <p <2

Equipped with the diagonal spaces hg and hzl;«‘ defined in subsection 6.2 , we can
now extend the three versions of the Davis decomposition presented in subsection 6.1
to the continuous setting. Since we will consider the weak limit of the discrete case,

we will need the following lemma.

Lemma 6.3.1. — Let 1 <p < 2.
(i) Let p < p <2 be such that p > 1 and (x5)s be an uniformly bounded family in
Lz(M). Then
”w'Lﬁ'l(’i% Iff”h},“ = EI}} ||w0”h11}'(0)'
(ii) Let (x,)s be an uniformly bounded family in Lo(M). Then

lo-Lo-imzalag < 21 2o g

(ii) Let (zo)o be an uniformly bounded family in Lo(M). Then
||w-L2-1(irg{1x[,||h; <2'/P 1;15} ”%”h;;(a)-
Proof. — We first consider assertion (i) and set & = w-L-limyy 2,. We fix a par-

tition oo and € > 0. We can find a sequence of positive numbers (am)ﬁf:l such that

Zm a,;, = 1, and partitions ol oM containing g such that

HZL’- E Qo Tgm
m

hle(om) < (1 +¢)limyy ||xd||h;c(0) foralm=1,..., M. We write

”x”h})c‘(go) < fo E ammfr"" le + H g QT om
m hp®(o0) m

S 28|UO, + Z am“[EU-Wn

m

The last inequality comes from the fact that for 1 <p < 2,z € L,(M) and oy a finite
partition we have

(6.3.1) 2]

_<e
¥

and |lzgm

h3t (0)

'h%)" (0)"

hie(oo) < 2lool - [12llp < 2Joof - |25

Indeed, by the triangle inequality in k) (09) we have |[z[[h;f-(00) < Dteo, ld7° (z)||h;)c(go).

We can write (5,¢d7°(2))seo, = (bsas)segU with

p/q

b

1,
by = 557tvt|df0(z)| P and a, = 637t|df”(z)

where d7°(z) = v|d7°(2)] is the polar decomposition of d7°(z) and 1/p=1/2+ 1/q.
Then we obtain

12 s oy < loeld2 1P| - g )Py < [l ()], < 21zl
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and (6.3.1) follows. Since oy C 0™ we get by lemma 6.2.1
|umkmﬁgzwde+§:aﬂmﬂm%%ﬂq§2mmw41+aggw%mgwy
m

Sending € to 0 and taking the supremum over oy yields (i). Assertion (ii) follows
similarly from the fact that the Holder inequality in ¢,(o; L,(M)) gives for z € La(M)
and a finite partition o

V2lngior = 1 el o inny < o120
for 1 <p<2and1/p=1/2+1/q. The last point may be proved with the same kind

of argument, by using the fact that |z[n. < [/z[|> and lemma 5.3.1. O

6.3.0.6. The “regular” version of the Davis decomposition. The continuous ana-
logue of theorem 6.1.6 for 1 <p < 2 is

Theorem 6.3.2. — Let 1 < p < 2. Then with equivalent norms:

(i) ngh};‘+h§f0r1<p<2,

(ii) H§ = hie + LhS.
Proof. — Let 1 < p <2 and x € M be such that ||z[[3; < 1. By lemma 3.5.6 there
exists 1 < p < p < 2 such that ||x||7.[% < 1. We apply theorem 6.1.6 to each partition

o and p and get a decomposition z = a, + b, with a, € h;; (0),bs € h%(o) and
”a””hzl;(o') + ||b17”h%(¢7) S C(i),)H'r”H%(U)

Here C'(p) denotes the constant in the equivalence Hg(o) = h;;" (0) + k(o). Hence it
does not depend on ¢ and is bounded as p — 1. For each o we have

lasllz < 2llac iy o) < 202l g (o)-

Thus the family (a, ), is uniformly bounded in the reflexive space Lz(M) and we can
consider

a =w-Lp-lima, € Lz(M).

(77

By lemma 6.3.1 (i) we obtain
||a||hgc = LHIE} ”aUHhTI;F(a)'

Then we deduce that a € H;; C hye. We now turn to the b-terms. Since the hf(o)-

norms are decreasing in ¢ by lemma 5.3.1, for each o we have
(6.3.2) by € h&(o) C hS wmlumm%gyﬁmw%wy

Indeed, by the density of Ly(M) in h§(o) there exists a sequence (by)n in La(M)
which converges in hi(o) to by. By lemma 5.3.1, (b7), is also a Cauchy sequence in hg;,
hence converges in h to b;,. We get two operators b, and b, in L(M) thanks to
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proposition 5.5.1, and we can easily check that 7(y*b,) = 7(y*b,,) for all y € L) (M).
Then b, = b, € h with

11

he = Hm {167 e < 2P 1m (167 |ns (o) = 2"/ 1D lne (o)-

Hence the family (b ), is uniformly bounded in the reflexive space hz and we can
consider

b= ’w-h%— gual bs € h%.

Moreover we have

16

. 1/p1:
vy < lim 1o [y < 2 PP Timn (1B [ (o)-

Since the family (b,), is also uniformly bounded in the reflexive space Lz(M), the
weak-limit of the b,’s in Lj(M) exists and coincide with b for ht C Lz(M). Then
we obtain x = a + b with a € hzl,“ and b € h% Chyforl <p<2be h%C Lh{ by
remark 5.5.5. The above estimates give

lallyge + Dollg < llallse + 16l

< lim [lag e (o) + 27 [1bs|lng (o) < 2Y/PC(B) lim |2l (o) < 2V/7C (D).
o, P o P o, p

Since 2'/PC(p) is bounded as p — 1 we may obtain a bound independant of the choice
of p, say sup, 5111, 21/PC(p). This concludes the proof of the theorem. O

We can now deduce the continuous analogue of theorem 6.1.1, i.e., the Davis de-
composition involving the space hﬁ‘ To do this we need to extend remark 6.1.7 (1) to
the continuous setting. This is not trivial, it comes from the following density result
based on the notion of p-equiintegrability.

Lemma 6.3.3. — Let 1 < p < 2. Then Ly(M)Nh}e is dense in h)e.

Proof. — Let x € hll, and £ > 0. By definition it suffices to consider = € Eflﬁ“ for some

1 <p < p <2 Wesuppose that ||z]|,;.. < C. Let ¢ > ¢ be such that 1/p=1/2+1/q
5

and 1/p = 1/241/¢. By lemma 6.2.1, for each o we can decompose df (z) = b, (t)as(t)

with
(Sl (S eoor) |, <

teo
We may assume that (3, ||bg(t)|}§)% <land ||( X, lac(t)]?) : Ha < C. We set

(633) @) =a®1(Y |a () <T) with T>e77075.

tco

Then we have

o3 X = |l (X0l <T)] <7

teo o
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and
L f 1
635) (D laa®) —a )| =[|(Xlao®P)1( 3 lasr? > 1)
tco a tco tE€o 29
q %-1 L
<[|(Xlar )5 (Y lao )"
teo teo 249
— 7% ;mo(m Hw <TECH <e.
We set
Yo = Z dg (ba(t)aa(t))'
teo
By (6.3.4) and the Holder inequality in Lo(M;5(0)) we get for each o
L 1 1
lyollz < 2(2 l[bg(t)ﬁ(,(t)ng) P < Q(Z Hbg(t)”;> 2 (Z |2ia(t)|2) 2 < 2Tz,
teo tEo

tco

Hence the family (y, ), is uniformly bounded in Lo(M), and we can consider
y = w-Lo-limy, € Lao(M).
o
Lemma 6.3.1 implies
- < li | N
Il < lim ol o

By the definition of y, and (6.3.4) we get

b= (S 1 012) (S artof)

< (S0l (S hor) ], <7

and we deduce that y € E:{ C h)e. We may adapt the proof of lemma 6.3.1 (i) to
show that

(6.3.6) |z — ?/Hh;)c < EILT} |z — yo”f,,},c(oy

Indeed, for a fixed partition og and § > 0 we can find a sequence of positive numbers

(@ )M_, such that > a,, = 1, and partitions o*, ..., o™

Y — Z U Yom

m

m containing og such that

<

and

|z — yom hhe (o) < (1+9) EIZI} llx — yaHhLC(U) forallm=1,..., M.

ASTERISQUE 362



6.3. DAVIS DECOMPOSITION FOR 1 < p <2 115

Lemma 6.2.1 and (6.3.1) give

2 = yllpie o) < ”T = amyom

< H Zam(x — Yom)

m

S Z am”l' - yU"”'l

m

S Zam”x — Yom

m

+ H « m — 1Y
h})t?(a()) § myo h;}C (G’())

2|0 H — O Ygm
h;c(ao)—“_ |0| Y ; mYo

p

hll,C(O()) + 2‘0’0| : ”y - Zamya’m 9
m

lh;n(gm) +24oo| < (1+9) l;r;} |z — yo'Hh,;c(g) + 26|o0|-

Sending 6 to 0 and taking the supremum over gy we obtain (6.3.6). For each o we
have by (6.3.5)

e = ol (o) = ” 3 b (t) (a0 (t) — (1)) H

tco h;’c(g)
2) 2 2\ 2
< (b oll) [ (S lasttr = @ m)F) || <=
tco teo a
Hence ||z — y[]h;’c < ¢ and this ends the proof of the lemma. O

We can now define by density a contractive map from hllf to h?, which is clearly

p,
injective for h)¢ and hg are subspaces of L,(M).

Corollary 6.3.4. — Let 1 < p < 2. Then we have a contractive inclusion
1. d
h,© C hy,.

We deduce from theorem 6.3.2 and remark 6.2.3 (2) the desired Davis decomposi-

tion.

Theorem 6.3.5. — Let 1 < p < 2. Then, with equivalent norms,
i) ?{;:hg+hgf0rl<p<2,
(ii) H§ = h{ + Lh.

6.3.0.7. The version of the Davis decomposition in Randrianantoanina’s style. —
The continuous analogue of corollary 6.1.9 is stated as follows

Proposition 6.3.1. — Let 1 < p < 2 and x € La(M). Then there exist a,b € Lay(M)
such that

(i) x=a+Db;
(i) lallg + Ibllg < COlzlh

(i) mac {lalo, b1} < £ (o el Ila);
where C(p) < C(p—1)"1 asp — 1.
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Proof. — We again use the limit argument detailed in the previous proofs of decom-
positions in the continuous setting. We start by applying corollary 6.1.9 to z € Ly(M)
and obtain a decomposition x = a, + b, with

{ lasllna(oy + bollns @) < C@M2l e (o),
max {[|a |2, [1bo 2} < [ (0, 2] m5(0)s |2]]2)-

Hence the families (a, ), and (by ), are uniformly bounded in L, and we can consider

(6.3.7)

a = w-Lo-lim a, and b= w-Lo-lim b,.
oU

(71

We obtain = a + b where a,b € La(M) satisfy

2ll2) = £ (Il llz)

<l olle <1 el geoy,
lallz < lim [lasll < lim f (. 2]l (0 |

and similarly |[b]l2 < f(p, |z||2). Lemma 6.3.1 (i) and (iii) give

1’“7—(;;~,

lallg < 2tim flag gy and — [bllg < 2177 tim [l .

Combining with (6.3.7) we get

lalla + (1]

h;(o))
< 20() i 12l 150r) < 200) ] 0

ng < 2(1im flacllng (o) + Lim [lbo]

Corollary 6.3.6. — Let 1 < p < 2. Then, with equivalent norms,
N _ kd -
H, =h, Bhy =hy+ho.
Moreover, the constant remains bounded as p — 1.

Proof. — On the one hand, we consider Ag = Lo(M), X = hz, Y =hs, Ay = Lp(M).
Then we may translate proposition 6.3.1 in terms of B-sum as follows

¢ _ nd c . . }
(6.3.8) H, = h, B h  with equivalent norms.

But this holds with a constant C(p) which does not remain bounded as p — 1. On
the other hand, we know by theorem 6.3.5 that with equivalent norms

c _ d c
(6.3.9) HE = hi + he,

where the constant remains bounded as p — 1. We deduce that hg +h}, = hg B hy
with equivalent norms for 1 < p < 2. Hence the two sums coincide isometrically
by lemma 4.3.2. This means that the constant in (6.3.8) is the same than the one
in (6.3.9), hence remains bounded as p — 1. O
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6.3.0.8. The “mized” version of the Davis decomposition. — Lemma 6.3.3 allows us
to define the sum hlly“ B hy, and we may extend theorem 6.1.11 to the continuous

setting.
Theorem 6.3.7. — Let 1 < p < 2. Then with equivalent norms
> kle c
H, =h, Bhy.
We first need the continuous analogue of proposition 6.1.2.

Proposition 6.3.2. — Let 1 <p<2,p<po<4/(4—p) and x € Ly(M). Then there
exist two families (ar)r>0 and (br)r>o in La(M) such that

c .
Po’

(i) llarllye + [1brlhg < CP)lzllng for el T > 0;
(iii) max {[laz|2,[[br]2} < C(p, 2llng, T) for all T > 0.

(i) 2= lim ar+br in H
T—o00

Proof. — Let x € Ly(M). By proposition 6.1.2, for T' > 0 fixed and each ¢ we can
find ar(o), br(c) € La(M) such that
o/ p(3+e5), 2

o 2~ (ar(0) + br(@)) g, (o) < Clp.po) T k™ el

> flaz(o)lle o) + 107(0)|lng o) < CP) 2l 15 (o)

> max {[lar(0)l2, [br(0)ll2} < g(p: 12l 1 (o) T2 115003
where s = 4/(2—p) and 1/rg = 1/pg — 1/2 — 1/s. Since (ar(0))s and (br(c)), are
uniformly bounded in Ly(M), we can consider

ar = w-Lo- 1i12{1 ar(o) and by =w-Lo- HIZI} br (o).

Then the point (iii) is clear, and (ii) follows directly from lemma 6.3.1. Since
x—(ap+br) = ’w—LQ—lil’i{l (z — (arp(o) + br(0))),

by using lemma 3.3.1 we can easily show that

. _a . p(3+)
le=(ar+br)lug, < Bplim ||z (ar(@)+br(0) ||z, () < CPpO)T 70 allz ™l

2
s
2 -

This gives (i) and ends the proof of the proposition. O

Proof of theorem 6.5.7. — 1t suffices to prove that if = (21, 22) € (h}* BhS)*, then
(6310) X9 € L;/MO with ||1'2||L;,MO < C(p)H:E”(h;)cEBh;)*.

We will conclude by using the fact that Lg, MO = (Hp)* = (hje + hS)* by theo-
rem 3.8.4 and theorem 6.3.2. Let 2 = (x1,22) € (h}* B hS)*. Then by lemma 4.3.4
we have z; € (hye)*, z2 € (hg)* = Limo C Ly(M) and (z1,y) = (zg,y) for all
y € Ly(M) Nhye. Furthermore

HxH(h;fEBh;)* = max{|lx1||(hll)c)*, |x2||(h;)*}-
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For R > 0 and o fixed we consider the projection

fr(o) = 11(‘ S ers @ df (x2)"

teo

Then fr(0) =3 ,c, €14 ® fR(0), where fL(0) = 1(]d] (x2)*] < R) € M. We set
“LQ (o) = ng fr(0)d] (22)).

teo

) € B(ly(0)) M.

Since (x5 (0)), is uniformly bounded in Ly(M), we can define
o = w-Lo-lim 28 ().
o

We will show that

(i) =f € L, MO with || 8]

Le, M0 < CP) ||zl e mp )~ for all R >0,
(ii) z9 = w-Lo-lim 2.
R—o0
Since L, MO = (Hy)* by theorem 3.8.4 and L2(M) is dense in Hj, we will de-

duce (6.3.10). Let p < pp < 4/(4—p). On the one hand, by (6.1.16) we get for
each o

(6.3.11) |z (o)

h( (o) Hzgt da fR( )dy (z2) [ H

= HZ5t~<o>\f'ff(‘7)d7(x2)‘2H

L¢,mo(o) <cWw )||172||L ,mo(s)- On the other hand,

’

P

Nl= =

P’ < ”xQHh;'(”)

[SE NS

Proposition 5.1.5 implies ||z5(o)]

by definition of fr(c) we can write

@, 0y < 2( 3 Ml (o H”) 4 = 2 3 |1 Fhlo) | 2"

1\ 1/P
t (O’)H;p,)
teo teo

= [nto (X e o ) e <

teo L%p/(B(f‘Z(U)@M) -

Thus z(0) € hﬁ, (o) N Lg,mo(o) = Lg, MO(0), and we can control its Ly, MO(o)-
norm uniformly in o. We deduce that 2% € Ly, MO. Now we want to estimate its
Lg, MO-norm. Let p < po < 4/(4—p) and y € La(M) be such that [jy[lpe < 1.
By proposition 6.3.2 we can approximate y in Hg by a family ar + br such that
ar,br € La(M) and ||aTHh71)c ¢ < C(p)||@|lng for all T > 0. Since o belongs
to Ly, MO C Lj, MO = (HS,)" and = ap, by € La(M), we can write

(x5, y) = TlglgoﬁfaaT +br) = IJLH;O(%ﬁZaaﬂ + (a3, br).
By (6.3.11) we clearly have

(@3 br)| < |2 llng)- - llbr|

he < Cp“x.ZH(h )
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Observe that for z € Lo(M) we have (zlt, 2) = (24, 2%), where

2 = w-Lo- hm Rg) and zf(0) = de (fR(0)d] (2)).

teo

If in addition 2 € Ly(M) N hle, then 2/ € Ly(M) Nhje with
(6:3.12) 1%l < Collzlly

Indeed, for o fixed, let € > 0 and dY (z) = b, (t)as(t) be a decomposition such that
1 1
2\ 2 3
(X lo @)™ (X tae®F) ], < Bellagecoy +2:
teo teo
where 1/p =1/2+ 1/q. Then fh(0)d](z) = fr(0)bs(t)as(t) and

27 @ e < Col R ), uns o < Col 2 10D (0 H)

teo

(S fectof?)’
teo
S CP(HZHh})"(U) + 6).

Taking the limit in ¢ and as € — 0 we get (6.3.12). Then applying this to z = ar €
Loy(M) N hle we get

‘<I§»GT l = | 'EQvaT ‘ = ’ Ty, ap >| < Hxln(hlc ”aTth‘ <C ”wl”(hl‘)* ||“T||h1f-
Finally we obtain

(s’ )] < Cp Jim (llazllye + [brllng) max {[lz1[[gpe ) [@allng)- §

< Cpllyllag max { [zl ey llz2llne)- -

Hence by density of La(M) in H; we deduce (i). It remains to prove the conver-
gence (ii). We start by proving that zo = w-L,-limg_o ¥ for all » > 2. Since
the family (2£)g is uniformly bounded in Ly(M), the weak limit exists in Lo, and
necessarily coincides with the weak limit in L,. Hence we will deduce (ii). Let r > 2
and y € L.(M). We prove that for o fixed,

(6.3.13) (@2 = 25'(0), )] < OB a3 Iyl
where 1/2 = 1/r + 1/u. We will conclude that

(22 = 2, )| <lim|(2s = 2f(0),y)| < Cv R %o 3 s

which trivially tends to 0 as R goes to co. To prove (6.3.13) we use

2 —
) = R

tror(l — fr(o)) < R_2tI'OT(Z€t’t ® |df (z2)*

tco
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We write
(w2 — o), m)] = 30 7(d (2" (1 = Fhlo))df (1))
< 2faallz( 311 = Sr(@)dr 3)
= 2|22 - “(1 - fR(U))(ZCtvt ® ’d?(y)*f)(l = (@) Z(s(b(a))@M)

tco

< 2fallol[L = 20| s oy 3.0 | D 0 @ 17 @)
t€o

1
2

L, (B(t2(2)) & M)

2

_a2/, 142 - 142
< 2R ol lyllnaco) < 26 R a3 -yl
where the last inequality comes from the continuous inclusion L,.(M) C h¢(s). O

Since hll;’ C hg contractively, we can deduce from theorem 6.3.7 a new proof of
corollary 6.3.6 which allows us to extend it to the case p = 1.

Corollary 6.3.8. — We have with equivalent norms
§ =h{ B h] =h{+ LS.
Proof. — We consider the following bounded maps
¢ = hlBh{ 25 hf@Bhe —Z5 hd B LhS —2 h 4+ LhS = HS.
Here the first equality comes from theorem 6.3.7, the last one from theorem 6.3.5 (ii),
the map ¢; comes from the contractive inclusion h%“ C h{, ¢y from the quotient map

h{ — Lh{ and ¢3 is the quotient map described in lemma 4.3.1. Since this composed
map coincides with the identity on Lo(M), the result follows by density. O

Remark 6.3.9. — In fact corollary 6.3.8 could be proved directly. Indeed, in the very
recent paper [47], Randrianantoanina and Xu give a constructive proof of corol-
lary 6.1.9 for p = 1 in the discrete setting. Then proposition 6.3.1 can be easily
extended to the case p = 1 with slight modifications, and corollary 6.3.8 follows
directly.

Corollary 6.3.8 leads naturally to the definition

Definition 6.3.3. — We define h; = h¢ B h$ @ hy.

Eventually, combining corollary 6.3.8 and theorem 6.3.7 with proposition 4.5.2, we
obtain a continuous analogue of (6.1.1).

Theorem 6.3.10. — We have with equivalent norms

Hi=h, =h;"Bh;" Bh{Bh.
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Remark 6.3.11. — The decomposition given by theorem 6.3.10 yields an “atomic”
characterization of the space H; which could be useful for applications. Indeed, this
provides a nice way for proving that an operator x € Ly(M) is in BMO. It suffices
to test x against the “infinitesimal atoms” given by the definition of hi", h}r and the
discrete atoms of h{, h] introduced in [2] (since the h{ and hj-norms are infimum by
lemma 5.3.1).

6.4. Davis inequalities for 2 < p < ©

We now want to extend theorem 6.1.1 to the continuous setting for 2 < p < oo.
As we did in subsection 4.4 for proving the noncommutative Burkholder-Gundy in-
equalities for 2 < p < oo, we will use a dual approach. This is why we need, as
in this latter case, the version of the Davis decomposition in Randrianantoanina’s
style proved in proposition 6.3.1. Moreover, we need to discuss the dual space of the
diagonal space hg for 1 < p < 2. That is a very delicate point, and actually we won’t
describe this dual. However, we define a smaller space Jg for 2 < p < oo which will
play the role of the diagonal space in the Davis inequalities.

Definition 6.4.1. — Let 2 < p < 0o. We define the space JZ as the space whose closed
unit ball is given by the absolute convex set

Bja = {z € Ly(M) : lirlf{l [@llhg(o) < 1, [J2ll2 < 1}||~||2.

Then the norm in Jg is given by
]l ;4 = inf {C>0:z€ CBJZ}.
Lemma 3.8.3 ensures that this defines well a Banach space. We may naturally

introduce the seminorm

[l

hd = Bfg} ||97||h;1,(a)
for 2 < p < oo and x € L,(M). By interpolation between the cases p = 2 and p = oo,
we have

2]l < 2|z,

In this situation we also have some monotonicity properties.

Lemma 6.4.1. — Let 2 < p < oo, x € L,(M), 0 C o'. Then ||x||hg(,,,) < 2||x||hg((,).
Hence
g < inf ollnggo) < llallng

Proof. — The proof is similar to that of lemma 6.2.1, hence we omit the details. [J

As a direct consequence, we see that the seminorm | .||hg and the space Jg do not
depend on the choice of the ultrafilter U, up to a constant. We can now state our

continuous version of the Davis inequalities for 2 < p < oo.
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Theorem 6.4.2. — Let 2 < p < oco. Then with equivalent norms
¢ __ 1d c
H, =J,h,.
Moreover, the constant remains bounded as p — oo.

Proof. We clearly have a continuous inclusion H; C h7 and a contractive inclusion
He C JL. Indeed, let 2 € M be such that [zllzg < 1. Then

lim [|2llngoy <lim flallpgoy <1 and lzfl2 < flzflug < 1.

This means that x € B g Conversely, let x € Jz‘f M hy be of norm < 1. We can write
x = Ly-limx, = hj-lima],,
n n
where the sequence (z,), satisfies ”Tn”h;i < 1, |jzpllz < 1 for all n, and (z),), is a
sequence in L,(M). Recall that by corollary 3.7.2 and lemma 3.7.3 we have
(M) =Hy = {x € Ly(M): llzflae < oo}

with equivalent norms. Hence by the density of Lo(M) in H;, it suffices to estimate

|T(x*y)| for y € Lo(M), ||yllne, < 1. By proposition 6.3.1 we may decompose y = a+b
p

with a,b € La(M) and

llallna + l[bllng < C(p).

Then
|T(;c*y)| < [T(x*a)’ + ‘T(a:*b)[ < lim ’T(T:a)| + lim |7 ((2,)*D)]|.
n n
For each o we have

|7 (xha)] < [l

hg(a)||a| h, (o) and |T((T/;)*b)’ < ||T;7,| h;;(a)||b||h;,(a)-

Taking the limit over o yields

@) < Nenlhglals, < llally,  and  [7((@1,)78)] < 120 lng ol

Hence we get
b

(@ y)| < lla b

e, 1 [l [lng [[Bllhe, = Nlallne, + 1 ]ng [1Bllne, < llallng + [10llng < C(p)-

Moreover the constant C'(p) remains bounded as p — 1 thanks to corollary 6.3.6. [

We presented above a direct proof of theorem 6.4.2, but this does not explain where
does the space Jz‘f come from. This is why we detail below the whole argument, which
highlights the construction of the space Jﬁ. Moreover, we will use this construction
in the sequel.

The delicate point here is to describe the dual space of the diagonal space hg for
1 < p < 2. Since we are only interested in the dual of the sum hg B hy, the key trick
is to replace hg in this sum by a nicer space, without changing the H-sum. We first

observe that since Ly(M) is dense in hS, we have

p?
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Lemma 6.4.3. — Let 1 < p < 2. Then tsometrically
(i) hy = Lo(M)Bhy forl <p<2;
(ii) Lh{ = Lo(M) B LhS.

Proof. — For 1 < p < 2, we consider
Ag = Ly(M), X =Ly(M),Y =h; and A; = L,(M).
By the density of Lo(M) in hy it suffices to see that ||z|[ne = [|z([1,(r)mne for all
x € Ly(M). Let o € Lo(M). Tt is clear that ||z]|r,(vmng < [[z]lne. Conversely, we
assume ||z||,(r@he < 1. Then there exist a,b € Ly(M) such that
r=a+b and |all2+ [[blls <1.
By the Holder inequality we get
lellng < llalg + 6l < llallz + [1blns < 1.

Since La(M) is dense in Lh{ and Lh] embeds into L;(M), the proof for p = 1 is
similar. O

The idea is to add the space Lo(M) to hz to obtain a new larger diagonal space,
in which Lo(M) will be dense, and which will preserve the H-sum with h7. Hence we
introduce the following space, which will play the role of hg in the sequel.

Definition 6.4.2. — Let 1 < p < 2. We define
K¢ = he 8 Ly(M),
i.e., Kg is the completion of Lo(M) with respect to the norm

lellcg = it llallg + Bl
a€Ly(M)Nh?
Note that in this application we consider
Ag=Lo(M), X =hl Y =LyM) (and A = L,(M)).

By the definition of h;l, these spaces satisfy the density assumption (4.3.1) (more-
over X and Y embed continuously into A;). By working a little bit more we can
prove that the space Kg embeds into L,(M). The discrete analogue of Kg is the
space Kg(a) = hg(o) B Lo(M), defined as the completion of Ly(M) with respect to
the norm

Izl k ey = ,f llallna(o) + [bll2-

aéLz(M)
be Ly (M)

Observe that since we consider finite partitions, the norm ||.||hg(g) is equivalent to the
norm ||.||, for 1 < p < 2. Hence for a finite partition o, Kg(a) is L, (M) equipped
with the norm ||-Hz<g(o)-
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Lemma 6.4.4. Let 1 <p<2andx € Ly(M). Then
slzllis < g%”ﬁﬁnkg(a) < ll#llka-
Moreover the map iy : x € Lo(M) — (x)° extends to a contractive injective map

iy Kg > H Kg(o).
u

Proof. — Let «© € La(M). It is obvious that

lim [|z ]l ko) < 2llics-

Conversely, we assume lim, ¢ ||.7:||Kg(0) < 1. We may suppose that ||x||K3(U) < 1 for
all o. Then for each o there exist a(o),b(c) € La(M) such that

z=a(o)+b(o) and ||a(0)||hg(g) + ”b(a)”2 < 1.

Note that

la(@)l, = [l = b(o)][, < llal2 + 1.
Hence the families (a(0)), and (b(0)), are uniformly bounded in Ly(M), and we can
consider

a = w-Lo- lirlbl a(o) and b= w-Lo- lirz{l b(o).

0-7

Then we may write © = a + b, where a € Ly(M) Nhi, b € Ly(M) satisfy by
lemma 6.3.1 (ii)

lallng + l1bll2 < 21im (la(o)llngo) + [1B(o)]12) < 2.

We obtain |[z|ks < 2limou [|2] i (o)- O

Note that by lemma 6.2.1 we have
||51I||K;f(a) < 2H$||Kg(a')
for o C 0’ and & € Ly(M). Hence
1;121} lzllxa(o) < sup lzll xa(o) < 21;1;1 ]l st (o)

This means that the norm ||||K7 is equivalent to sup, ||.|] Kd(o)- Thus adapting the
proof of proposition 3.6.2 and using lemma 6.4.4 we can show that

Lemma 6.4.5. — Let 1 <p < 2. Then
(i) {z € Lp(M): ll#llka < oo} is complete;
(ii) K¢ embeds injectively into Ly(M).
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Observe that by lemma 4.3.2, we deduce that in fact Kg = hz+L2(M) isometrically.
We can now consider

Ag=Loy(M), X =K Y=h{ (and A = Ly(M)).
The associativity of B combined with lemma 6.4.3 yield that Kg preserves the B-sum

with h7 in the following sense.

Lemma 6.4.6. — Let 1 < p < 2. Then isometrically

(i) thEIhg:KgEElhgforl <p<2

(i) h¢ @ Lh = K¢ 8 LhS.
Proof. — By associativity, lemma 6.4.3 gives for 1 < p < 2

hd 8 (La(M) B hS) = (h? B Ly(M)) Bhe =K B he,.

The proof for p =1 is the same. O

At this point we have our new candidate Kg for the diagonal space. Indeed, in-
terchanging h? to K¢ does not affect the H-sum with h¢. Moreover Ly(M) is dense
in ng and this will help us for describing its dual space as the space Jg introduced
previously. We first need to give another description of Jg. In the discrete case, for a

finite partition o and 2 < p < oo we define Jg(a) as the space L,(M) equipped with
the norm

[2]l14() = max {||z]|ns(o), l]l2}-
By lemma 6.4.1, it is clear that for 2 < p < 0o,z € L,(M) and o C ¢’ we have
lzll a0y < 2|\5U||Jg(g)-
For 1 < p < 2, the discrete duality hg(a)—hg, (o) implies with equivalent norms
(Kg(a))* = Jg, (o).
Moreover,
%HQTHJ;(U) < H93||(Kg(a))* < ||CE||J§,(U)~

Observe that the space Jg may be characterized similarly to the space LyMO as
follows.

Lemma 6.4.7. — Let 2 < p < 0.
(i) For2 < p < oo, the unit ball of Jg is equivalent to

B, = {z = w-Lg—lgiyrll}a:U : Llrg{l 2ol sa(o) < 1}

(ii) The unit ball of J% is equivalent to

Boo = {& = w-Lo-lima, in Lo lim 2]l 0 (o) < T}

SOCIETE MATHEMATIQUE DE FRANCE 2014



126 CHAPTER 6. DAVIS AND BURKHOLDER-ROSENTHAL INEQUALITIES

Proof. — Since the discrete JJ(o)-norms are decreasing in o (up to a constant 2), we
may adapt the proof of proposition 3.8.9 and obtain that B, is equivalent to

10 ll-ll2
{w € La(M) s lim o]l gy o) < 1},
Moreover, it is clear that for € L,(M)
i ] 0 =2 masx {Illgs 2}
We obtain that B, is equivalent to B g for 2 < p < 0. O
This characterization describes the dual space of Kg.

Lemma 6.4.8. — Let 1 < p < 2. Then with equivalent norms
(KZ)* = Jg,.

Proof. — The proof is similar to that of theorem 3.8.4. Indeed the description of the
space Jg, given in lemma 6.4.7 is similar to that of the space L7, MO. The contractive
inclusion Jg, C (K)* follows easily from the discrete duality (Ki(o))" = Jg,(a) and
the density of Ly(M) in K& For the reverse inclusion, recall that by lemma 6.4.4 the
space K¢ embeds into [],, K{(o), and that ||$||Kg < 2limg ¢ ||| ka(s)- Hence by the
Hahn-Banach theorem we may extend a linear functional on Kg of norm less than
one to a linear functional on [[,, K g(a) of norm less than two. Then we use the same
argument as in the proof of theorem 3.8.4. The crucial point here is that

(6.4.1) Ly(M) is dense in Kg and |z|l2 < (|2l je(0)- |

Remark 6.4.9. — The same argument does not work if the observation (6.4.1) is not
verified. This explains why we cannot easily describe similarly the dual space of hz
for 1 < p < 2, and justifies the introduction of the spaces Kz

We obtain another proof of theorem 6.4.2.

Proof of theorem 6.4.2. — Combining corollary 3.7.2 (i) with corollary 6.3.6 and
lemma 6.4.6 and we get for 2 < p < o0

c C o\k __ d co\k __ d o\ %
Hy = (Hy)" = (hyy Bhy)* = (K Bhy )"
Then lemma 4.3.4, lemma 6.4.8 and corollary 5.4.7 (i) yield
HE = (K%)* N (h)* = J¢Nhe. 0

Remark 6.4.10. — This argument can be extended to the case p = oo, p’ = 1. Then
by duality corollary 6.3.8 implies that with equivalent norms

BMO° = J¢ N bmo°.
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6.5. Burkholder-Rosenthal inequalities

We may now extend the noncommutative Burkholder-Rosenthal inequalities re-
called in theorem 5.1.7 to the continuous setting. We introduce the conditioned Hardy
space h, as follows.

Definition 6.5.1. — Let 1 < p < co. We define

d
{hp-i—h;—i—h; for 1<p<2,

d T )

Jp M hy hy for 2<p<oo,

p =
where the sum is taken in L,(M) and the intersection in Lo(M).

Combining the Davis inequalities (theorem 6.3.5 and theorem 6.4.2) with the
Burkholder-Gundy inequalities (theorem 4.1.1 and theorem 4.4.2) we get

Theorem 6.5.1. — Let 1 < p < co. Then with equivalent norms
Lp(M) = hy.
Corollary 6.5.2. — Let 1 < p < 2. Then isometrically
hpzthEh;EEih;= hIleHhIlf B hy EHhy.

Proof. — Combining corollary 6.3.6 with corollary 4.4.1 we obtain that the two sums
hg + hy + hy and hg B hf, B h} coincide with equivalent norms. Hence they coin-
cide isometrically by lemma 4.3.2. The second equality follows similarly from theo-
rem 6.3.7. O
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APPENDIX

We end this paper with some problems which are still open at the time of this writ-
ing. They concern the more difficult case p = 1. For 1 < p < 2, corollary 3.7.4 gives
a nice description of the space Hj. However, we do not know if this characterization

still holds true for p = 1.
Problem 6.5.3. — Do we have HS = {x € L1(M) : ||lz|lye < o0} ?

On the dual side, by remark 3.8.7 (iii) we know that the L{ MO-norm is the limit
of the discrete Ly MO-norms for 2 < p < oo. For p = oo, we only established one
estimate in corollary 3.8.8 (iii).

Problem 6.5.4. — For x € M, do we have
|zl BMmoe =~ EILT} 1zl BAoe (o) ?

The two last problems concern the delicate point of injectivity of the spaces. The
first one concerns the space H; defined in paragraph 4.5.

Problem 6.5.5. Does H1 embed injectively into Li(M) ? Or, equivalently, Hi =
HE+HL?

A way of solving this problem could be by finding a “Randrianantoanina’s type”
explicit decomposition in La(M) of the discrete space H; with a simultaneous control
of the norms. The second injectivity question deals with the column conditional Hardy
space h{ studied in section 5.

Problem 6.5.6. — Does h§ embed injectively into Li(M) ¢ Or, equivalently, do we

have h§ = Lh}?

Observe that these two last problems are somehow related. Indeed, for z € M we
can consider

Iz, =lig ol
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This defines a norm on M, and we denote by El the corresponding completion. With
the notations of section 5, we have seen in the proof of lemma 5.4.6 that for x € M
we have vy (z) = (v, (2))* € L1(Ny). Moreover, proposition 5.4.2 (i) yields

et (@)l wvi) = U oo (2) ] 2, (o)) < Clim[[2]ln, o) = Clz]lg, -

This means that vy, extends to a bounded map from El to L1(Ny). Since L1 (Ny, Eay,)
embeds into Lj(ANy) by remark 2.3.3, the following commuting diagram shows that
the natural map ¢ : h{ — h; is injective:

he v by

o

L§ (N Eny) > L1 (M)

Moreover, (6.1.1) implies that Hl = ’rfll with equivalent norms, where ﬁl denotes the
completion of M with respect to the norm

lllz, = lim fllls, 0)-

Hence the problem of the injectivity of h§ into L;(M) is related to the problem of
the injectivity of H; into L;(M). More precisely, the commuting diagram

e b

Ly(M)

means that if ¢ is injective then ¢ is also injective.
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