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Séminaire BOURBAKI Octobre 2012 

65 e année, 2012-2013, n° 1061, p. 77 à 113 

TECHNIQUES DE CONSTRUCTION 

DE DIFFÉRENTIELLES HOLOMORPHES ET HYPERBOLICITÉ 

[d'après J.-P. Demailly, S. Diverio, J. Merker, E. Rousseau, Y . - T . Siu...] 

par Mihai PÂUN 

INTRODUCTION 

Nous pouvons munir toute variété complexe compacte X d'une structure métrique 

en utilisant une partition de l'unité : sur chaque ouvert de coordonnées on dispose 

d'une métrique (provenant de l'espace euclidien selon lequel notre variété est mode­

lée), qu'on globalise à l'aide d'une fonction tronquante. La somme de ces objets sera 

notre métrique. Malheureusement, cette construction est beaucoup trop arbitraire ; 

en général, on peut difficilement l'utiliser afin de mettre en évidence des propriétés 

remarquables de X. 

Dans [Kob70], [Kob76], S. Kobayashi a introduit une pseudo-métrique intrinsèque, 

complètement déterminée par la structure complexe de X ; voici sa version infinitési­

male. 

Soit x £ X un point, et soit v G Tx,x un vecteur tangent à X en x. La longueur 

de v par rapport à la pseudo-métrique de Kobayashi-Royden est donnée par 

k x , » := inf{A > 0; 3f : A -> X , / (0 ) = x, A / '(0) = v}, 

où A C C est le disque unité, et / est une application holomorphe. 

Bien entendu, il se peut très bien que kx , x (^ ) = 0 ; toutefois, grâce au lemme de repa-

ramétrisation de Brody (cf. [Bro78]), cette situation a une contrepartie géométrique 

bien comprise. S'il existe un point x G X et un vecteur non nul v G Tx,x tels que 

kx , x (v ) = 0, alors il existe une application holomorphe non constante cp : C —> X. 

Une telle fonction sera appelée courbe entière. Nous remarquons en passant que le 

point x ne se trouve pas nécessairement dans l'image de (/?, voir l'exemple trouvé par 

J. Winkelmann, dans [Winkel]. 

Si la variété X ne possède pas de courbes entières non constantes, alors la pseudo­

métrique infinitésimale de Kobayashi sera non dégénérée ; nous disons dans ce cas que 

X est hyperbolique au sens de Brody, ou tout simplement hyperbolique (car toutes les 

variétés dans cet exposé seront compactes). 
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78 M. PÀUN 

En dimension 1, le théorème d'uniformisation montre que seules les courbes de 

genre supérieur ou égal à 2 sont hyperboliques. La situation devient beaucoup plus 

compliquée dès la dimension 2 ; toutefois, on espère que la non dégénérescence de 

la métrique de Kobayashi est intimement liée aux propriétés de positivité du fibre 

canonique de X. 

Nous allons rappeler maintenant quelques notions qui vont intervenir par la suite. 

Un fibre en droites L —>• X est dit ample s'il existe un entier m ^ 1 tel que l'applica­

tion naturelle vers l'espace projectif induite par les sections globales de L®171 est un 

plongement. La version birationnelle de cette notion est celle de fibre gros (ou big) : 

L est gros s'il existe un entier m ^ 1 tel que le degré de transcendance du corps 

des fonctions rationnelles sur X induites par les sections holomorphes de L® 7 7 1 est 

maximal (i.e. égal à la dimension de X). 

On se propose de présenter dans cet exposé quelques résultats récents en rapport 

avec Vhyperbolicité des variétés n-dimensionnelles X dont le fibre canonique Kx est 

ample. Ces résultats donnent des réponses partielles à la conjecture classique suivante, 

cf. [Kob70]. 

CONJECTURE 0.1 (Kobayashi). — Une hypersurface générique X de Vespace projec­

tif P n + 1 de degré d supérieur à 2n + 1 est hyperbolique. 

Dans l'énoncé précédent, le terme générique a la signification suivante. Considérons 

la variété X C P n + 1 x PNd paramétrant les hypersurfaces de degré d dans P n + 1 . 

Alors il existe une réunion dénombrable y de variétés algébriques de X telle que, si 

X correspond à un point dans X\y, alors elle est hyperbolique. 

Une autre conjecture standard dans le domaine est celle formulée par Green-Griffiths 

dans [GG80] ; nous allons la rappeler maintenant. 

CONJECTURE 0.2 (Green-Griffiths). — SoitX une variétéprojective ; on suppose que 

son fibre canonique est gros. Alors il existe une sous-variété propre Y C X de X telle 

que l'image de toute courbe entière (p : C -> X se trouve dans Y. 

Si l'image d'une courbe entière ip : C —> X est contenue dans une sous-variété 

propre de X , on dit que (p est algébriquement dégénérée. On remarque que, dans ce 

cadre général, un énoncé de type Green-Griffiths est le meilleur qu'on puisse espérer 

obtenir, même si Kx est ample. Pour s'en convaincre, il suffit de considérer la surface 

de Fermât 

X : = (ZQ + . . . H- Z3 = 0) C P 3 . 

Si d est assez grand, le fibre canonique de cette variété est ample. Elle contient 

des courbes rationnelles, donc des courbes entières non constantes. La métrique de 

Kobayashi de X est donc partiellement dégénérée ; néanmoins, la conjecture 0.2 pour 

les hypersurfaces de Fermât est vérifiée dans [Gr75], [Dem95]. 
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Afin de mettre en perspective les résultats des articles [DMR10], [Demll] et [Siul2] 

qui constituent la colonne vertébrale de notre exposé, il convient de présenter en 

quelques mots une stratégie générale pour traiter les conjectures 0.1 et 0.2 qui remonte 

aux articles fondateurs de A. Bloch [Blo26a], [Blo26b] (voir également [Siu04] pour 

un compte rendu moderne de [Blo26a]). 

Le premier pas dans la stratégie que A. Bloch a inventée pour étudier l'hyperbolicité 

des sous-variétés de tores consiste à utiliser l'amplitude de Kx pour construire des 

opérateurs différentiels d'ordre supérieur. Cette notion sera présentée de façon formelle 

plus loin ; en voici ici un bref aperçu. 

Pour chaque entier k ^ 1, considérons l'espace des fc-jets Jk{X) dont les éléments 

sont des disques holomorphes / : (C, 0) - » X modulo la relation d'équivalence sui­

vante : / ~ g si et seulement si leurs dérivées en zéro jusqu'à l'ordre k coïncident. 

Nous appelons différentielle holomorphe d'ordre k et de degré m (ou simplement 

différentielle holomorphe, lorsqu'il n'y a pas de risque de confusion) toute fonction 

holomorphe sur l'espace des fc-jets Jk(X) qui est polynomiale homogène de degré 

pondéré m par restriction aux fibres de la projection Jk(X) —» X. 

Par exemple, si k = 1, les différentielles de degré m correspondent aux sections 

du fibre S m T j . Signalons aussi que dans l'analyse de l'hyperbolicité d'une variété X 

il est indispensable de considérer des différentielles d'ordre k ^ 2. Leur existence et 

l'analyse de leurs propriétés se trouvent au cœur de notre exposé, principalement à 

cause du théorème d'annulation suivant : si P est un opérateur différentiel d'ordre k 

et de degré m à valeurs dans le dual d'un fibre ample sur X, alors P(<p',...,<pW) = 0 

pour toute courbe entière (p : C —>• X. 

L'étape suivante dans la stratégie de Bloch serait de montrer qu'on peut construire 

beaucoup de fc-différentielles holomorphes algébriquement indépendantes. Très vague­

ment, ceci veut dire qu'on peut « éliminer » successivement les dérivées <//,.. . ,<£>^ 

dans le système d'équations Pj ( ( / / , . . . , <p(fc)) = 0 induit par les différentielles holo­

morphes, et obtenir ainsi une équation algébrique pour la courbe cp (plutôt que pour 

son jet d'ordre k). 

Il nous semble que le degré de difficulté présent dans les deux étapes de cette 

stratégie est réparti de façon inégale : le deuxième pas est beaucoup plus délicat que 

le premier. 

Dans les travaux qui font l'objet de cet exposé, ces idées ont été implémentées avec 

succès pour les hypersurfaces X de l'espace projectif. Un premier résultat qui sera 

discuté ici est le suivant. 

THÉORÈME 0.3 ([Div09], [DMR10], [Deml2], [Siul2]). — Soit n un entier positif. Il 

existe un nombre entier explicite a\ avec la propriété suivante : toute hypersurface 

générique X C P n + 1 de degré d ^ a\ admet une n-différentielle holomorphe (non 

identiquement nulle) à valeurs dans le dual d'un fibre ample sur X. 
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80 M. PÀUN 

Voici quelques commentaires sur les diverses approches pour montrer ce théorème. 

Dans les articles [Siu02], [Siu04] et [Siul2], Y.-T. Siu s'inspire de la construction ex­

plicite des formes différentielles pour les courbes planes de degré assez élevé. Il calcule 

l'ordre des pôles des n-différentielles méromorphes qu'on peut facilement construire 

sur l'espace projectif, puis il montre que la restriction à X de certaines différentielles 

ainsi obtenues sera holomorphe, pourvu que le polynôme définissant X soit générique 

et que son degré soit assez grand. 

Dans l'article [DMR10], le théorème 0.3 est obtenu comme conséquence des in­

égalités de Morse holomorphes. Cette technique a été introduite par J.-P. Demailly 

dans [Dem85], et elle s'est montrée extrêmement utile dans beaucoup de situations : 

cela fait l'effet d'un best seller perpétuel... Son utilisation systématique dans le 

contexte actuel a été initiée par S. Diverio dans sa thèse de doctorat (cf. [Div08], 

[Div09]). En quelques mots, via la forme algébrique des inégalités de Morse, l'existence 

des n-différentielles est équivalente à la positivité d'un certain produit d'intersection. 

S. Diverio, J. Merker et E. Rousseau montrent dans [DMR10] que le produit d'inter­

section à calculer est un polynôme de degré n H- 1 en cZ, dont le coefficient dominant 

est un entier strictement positif. En estimant les autres coefficients, ils trouvent une 

borne effective pour d à partir de laquelle le polynôme en question sera strictement 

positif. Une partie de ce travail utilise des résultats obtenus antérieurement dans 

[Merk09], [Rou07a], [Div09]. Signalons également que J. Merker montre dans l'ar­

ticle [MerklO] que pour k ^> 0 on peut construire des ^-différentielles holomorphes 

non nulles sur toute hypersurface X de P n + 1 , dès que Kx est ample. Les calculs 

effectifs qu'il déploie dans ce but sont impressionnants. 

Très récemment dans [Demll], J.-P. Demailly établit l'existence des différentielles 

holomorphes non nulles pour toute variété de type général ; en particulier, son résultat 

généralise amplement les travaux [GG80], [MerklO], [Rou06a] [Rou06b], [Rou07a], 

[Rou07b] [Siu02], [DMR10]. 

THÉORÈME 0.4 ([Demll]). — Soit X une variété n-dimensionnelle de type général; 

alors pour tous s > 0, k ^ ko(e) etm^ mo(fc, e) il existe une k-différentielle d'ordre m 

sur X à valeurs dans j(~(ôk-£)m^ 0^ o n n o ^ e ._ 1 + 1 / 2 ^ f c

, , + 1 / f c . 

Comme conséquence de ce travail, il obtient une preuve du théorème 0.3 dans 

des conditions numériques nettement meilleures que celles de [DMR10], [Siul2], ... 

Sa méthode utilise la version analytique des inégalités de Morse holomorphes, en 

exploitant de plus la nature « probabiliste » des fc-jets, les dérivées successives étant 

vues comme des variables aléatoires indépendantes. 

Avant d'aller plus loin dans cette thématique, signalons l'article de Y. Brunebarbe, 

B. Klingler et B. Totaro dans [BKT12]. C'est un travail très élégant, dans lequel 

l'existence des formes différentielles symétriques sur une variété kâhlérienne com­

pacte X est établie en faisant une hypothèse sur le groupe fondamental de X. Dans 
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cet article, la positivité nécessaire pour produire des différentielles symétriques est 

extraite de la variation des structures de Hodge. Nous ne pouvons pas présenter 

ici leur travail, mais les techniques qu'ils produisent dans le domaine semblent très 

prometteuses. 

Il se trouve que dans le cas des hypersurfaces de P n + 1 on peut analyser les points 

base des n-différentielles holomorphes d'une façon très précise. 

THÉORÈME 0.5 ([Siu02], [DMR10], [Deml2]). — Soit X c P n + 1 une hypersurface 

générique de degré d > dn. Alors il existe une sous-variété Y C X telle que pour 

tout n-jet 7 : A - » X de disque holomorphe tracé sur X il existe une n-différentielle 

holomorphe V à valeurs dans le dual d'un fibre ample telle que 

P ( V ( 0 ) , . . . , 7 ( n ) ( 0 ) ) ^ 0 

dès que 7(0) eX\Y. 

Les grandes lignes de la preuve du théorème 0.5 ont été expliquées dans [Siu02], et 

traitées en détail dans [DMR10], [Siul2] ; l'observation importante repose sur des 

travaux antérieurs de C. Voisin, H. Clemens et L. Ein, cf. [Vois98], [Cle86], [Ein88], 

[Ein91]. 

Considérons la variété X C P n + 1 x P^ d qui paramètre les hypersurfaces de degré d 

dans P n + 1 . En coordonnées homogènes, X est l'hypersurface donnée par l'équation 

suivante de bi-degré (d, 1) 

aaZ
a = 0. 

Compte tenu du fait que le degré de X par rapport aux variables (aa) vaut 1, on 
montre dans [Vois98] que le fibre Tx (S>0p™+i (1) est engendré par ses sections globales. 

Afin de l'adapter pour l'étude des points base des différentielles holomorphes, ce 
résultat a été généralisé comme suit dans [Siu02], [Merk09]. Considérons la projection 
sur le second facteur 

ir:X->PNd; 

pour chaque k ^ 1 on note J%eTt(X) l'espace des fc-jets relatifs de X par rapport à n. 

Des calculs explicites (op. cit.) montrent que le fibre 

(1) Tjvert(x) ® Opn+i (n 2 + 2n) <g> £>pivd (2) 

est engendré par ses sections globales. 

Soit so G PNd ; on note XSo l'hypersurface corresponde^ 'a déjà évo­
qué, les n-différentielles holomorphes sur XSQ peuvent être vues comme fonctions sur 
l'espace des n-jets de cette variété. Supposons maintenant que SQ est suffisamment gé­
nérique pour que les n-différentielles holomorphes sur XSo se prolongent au voisinage 
U de SQ dans P^ d. Cela veut dire que la fonction définie sur la fibre XSo = n~1(so) 
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admet un prolongement sur 7 r _ 1 ( { 7 ) . On produit de nouvelles n-différentielles holo­

morphes en dérivant cette fonction dans la direction des champs de vecteurs obliques 

sur J^ert(Af) obtenus dans (1), puis en restreignant le résultat à XSQ. C'est en gros le 

mécanisme de la démonstration du théorème 0.5; les trois articles [Siu02], [DMR10], 

et [Demi2] en font usage. 

En combinant le théorème 0.3 avec le procédé que nous venons d'expliquer, on obtient 

le résultat suivant. 

THÉORÈME 0.6 ([Siu02], [DMR10], [Demi?]). — Soitn un entier positif ; il existe un 

entier dn tel que toute courbe entière (p tracée sur une hypersurface générique X C 

P N + 1 de degré dn est algébriquement dégénérée. 

Le nombre dn obtenu dans ces travaux s'est trouvé progressivement amélioré. 

Dans [Siu02] et [Siu04], l'auteur indique le fait qu'on peut le calculer explicitement, 

laissant le soin de le faire aux lecteurs friands de calculs compliqués (voir toutefois 

les détails de son approche sur la Toile, cf. [Siul2]). Le degré dn a été rendu effectif 

dans [DMR10] par S. Diverio, J. Merker et E. Rousseau; comme on aura l'occasion 

de le voir un peu plus loin dans cet exposé, leur travail est un véritable tour de force, 

qui aboutit sur le degré dn = 2 n . Cette borne a été considérablement améliorée 

par J.-P. Demailly dans [Deml2], suite à son travail [Demll] ; le degré qu'il obtient 

est dn = 2 | - (n log(nlog24n)) n . 

Comme on peut le constater, dans cette introduction nous avons pris la liberté 

de ne pas mentionner les résultats autour de la conjecture de Green-Griffiths en 

petites dimensions (surfaces, 3-variétés...). Pour les lecteurs intéressés, nous recom­

mandons l'excellent exposé [Bru02], mené de main de maître par le regretté Marco 

Brunella. 

Le texte qui suit est organisé en plusieurs parties. Tout d'abord nous présentons 

quelques résultats concernant les espaces de jets, la définition formelle des différen­

tielles d'ordre /c, les inégalités de Morse holomorphes et quelques calculs de classes 

de Chern. Ensuite nous discutons quelques résultats particulièrement frappants des 

travaux [Siul2], [DMR10], [Demll]. 

1. V A R I É T É S D I R I G É E S E T D I F F É R E N T I E L L E S D ' O R D R E 

S U P É R I E U R 

Nous allons rappeler dans ce paragraphe quelques faits concernant les différentielles 

d'ordre k et de degré m. Les grandes lignes de notre présentation suivent de près 

l'article [Dem95] (voir aussi [Gher41], [Semp54], [Mey89]). 

ASTÉRISQUE 361 



(1061) DIFFÉRENTIELLES HOLOMORPHES ET HYPERBOLICITÉ 83 

1.1. Différentielles holomorphes 

Pour commencer, considérons l'espace vectoriel 

Qnk = c n x . . . x C n 

et l'action de C* sur CNK \ { 0 } donnée par 

(2) t - K i , . . . , & ) = ( t C i , t 2 6 , . . . , t f c & ) 

où les £j sont des vecteurs de C n pour tout j = 1,..., fc. On désignera le quotient de 

cette action par P ( l n , 2 n , . . . , kn) ; cette variété est appelée espace projectif à poids. 

Il existe un morphisme fini 

(3) P ^ - 1 - > P ( l n , 2 n , . . . , f c n ) ; 

donc la variété P ( l n , 2 n , . . . , kn) est un quotient global de p ^ 7 1 - 1 . 

Au-dessus de l'espace projectif à poids P ( l n , 2 n , . . . , kn) nous disposons d'un fais­

ceau C dont l'image inverse par rapport à la projection (3) s'identifie avec le fibre 

tautologique usuel 0(1) sur p f c n _ 1 . Si p est un entier divisible par le plus petit com­

mun multiple de ( 1 , . . . , k) alors £ ® p est inversible (voir [Dol81] pour une présentation 

exhaustive de ce sujet). 

Via la projection pk : CNH \ { 0 } -> P ( l n , 2 n , . . . , / c n ) , une métrique h sur C corres­

pond à une fonction positive : CNK -> R telle que 

* h ( t - ( Ê i , . . . , 6 0 ) = | t | 2 * h ( 6 , . • • , & ) • 

La forme de courbure de (£, h) sera notée Qc,h] c'est une forme de type (1,1) sur 

P ( l n , 2 n , . . . , A : n ) telle que 

(4) PÎ{ec,h) = ^ d 5 9 h . 

En conclusion, même si C n'est pas un « vrai fibre », on peut définir la notion de 

métrique sur C, respectivement de courbure associée au couple (£,h). 

Nous allons considérer ensuite la version relative de cette construction. Soit X une 

variété complexe compacte. Pour chaque k ^ 1 on note Jk(X) la variété des fc-jets de 

disques holomorphes paramétrés de X , i.e. l'ensemble des classes d'équivalence des 

applications / : (C ,0) —» X modulo la relation / ~ g si et seulement si / ^ ( 0 ) = 

g^(0) pour chaque j = 0 , . . . , k. Les dérivées de / et g sont calculées par rapport à 

un système de coordonnées, mais on voit facilement que la relation / ~ g a un sens 

intrinsèque. 

Soit / un élément de Jk(X). Par rapport à un système de coordonnées défini sur 

un ouvert l î d centré en x les composantes de / s'écrivent 

/ = ( / i , . . . , / n ) : ( C , 0 ) - ^ f i c C n . 
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Considérons la projection Jk{X) X , / i - > x := / ( 0 ) ; on note Jk(X)\n l'image 

inverse de l'ouvert tt. Alors l'application 

4 ( I ) | ^ Q x C f e " , / - > ( / (0 ) , / ' (0 ) , . . . , /W(0) ) 

est bien définie, et induit un système de coordonnées sur Jk(X)\n. 

Si k = 1, la variété J\(X) s'identifie naturellement avec Tx, l'espace tangent de X. 

En général, si k ^ 2 l'espace Jk{X) n'a pas une structure de fibre vectoriel sur X , car 

les fonctions de transition le définissant sont polynomiales non linéaires (de degré k). 

Soit Gfc le groupe de germes de fc-jets d'automorphismes de (C, 0). Ce groupe agit 

sur la variété de jets Jk{X) de façon naturelle : si (/,p) G Jk(X) x alors on a 

l'application de reparamétrisation à la source 

( / , P ) - + / ° P . 

Plus particulièrement, l'action du sous-groupe des homothéties C G^ est donnée 
par 

A - ( / ' , . . . , / w ) = ( A / ' , . . . , À f e / ( f c ) ) . 

Le quotient de Jk(X) \ { 0 } par l'action de C* ainsi définie sera noté XGG. C'est une 

variété singulière dès que k ^ 2 : en fait, c'est la version relative de la construction 

de l'espace projectif à poids. Les singularités de XGG sont de type quotient, elles 

sont bien comprises et ne vont pas nous poser de difficultés par la suite. Le faisceau 

tautologique sur XGG (analogue de C) sera noté OXGG(1). Si m est un entier assez 

divisible, alors le faisceau OXGG (m) est un fibre en droites. Nous notons 

:=nKI,Oxao(m) 

son image directe; c'est un fibre vectoriel sur X. 

La notion centrale de notre exposé est la suivante. 

DÉFINITION 1.1. — On appelle différentielle holomorphe d'ordre k et de degré m 

sur X (ou tout simplement k-différentielle holomorphe) toute section globale du 

fibre E^g. 

Soit P e H°(X,EG^l) une différentielle holomorphe; par définition, sa restric­

tion aux fibres de l'application de projection Jk(X) -» X s'identifie à un polynôme 

homogène de degré pondéré m, i.e. on a l'égalité 

P ( A / ' , . . . , A f c / ( f e ) ) - A T O P ( / ' , . . . , / W ) 

pour tout À G C \ { 0 } et pour tout fc-jet / . On remarque que la notion de polynôme 

homogène sur les fibres de Vapplication de projection a un sens intrinsèque, compte 

tenu du fait que les fonctions de transition de Jk(X) sont polynomiales et respectent 

l'action de C*. 
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On peut exprimer P par rapport à un système de coordonnées z = (z\,..., zn) 

centré au point x. Considérons les symboles {dïzj), où i = 1,..., k et j = 1,..., n ; 

alors on a 

P = aa(z)dzai ...dhzak 

|ai|+2|a 2 | + ...+fc|afc|=m 

OU les OLj — (0Lj\, . . . , OLjn ) sont des multi-indices, et où on utilise la notation 
n 

dpz«j : = Y[(dpzi)a^ 
i=l 

ainsi que \aj\ = o ^ . Si / est un /c-jet de disque analytique en (X, x) , alors chaque 

symbole dlZj agit sur / de manière naturelle : d*Zj • / := } (0) , et ceci indique la 

façon dont P agit sur les fc-jets. Pour plus de détails concernant ces notions, nous 

renvoyons à l'article [GG80]. 

1.2. Différentielles holomorphes invariantes 

Nous allons nous concentrer dans ce paragraphe sur une classe plus particulière 

de différentielles holomorphes, notamment celles qui sont invariantes par tous les 

éléments du groupe G*, cf. [Dem95], [SY96a], [SY96b], [SY97]. 

DÉFINITION 1.2. — Soit P une k-différentielle de degré m; on dit qu'elle est inva­
riante si 

p((f o py,...,(/ o P)( f c)) = P'(orp(f,/(*>) 
pour tout k-jet f et pour tout élément p G Gfc. 

La notion suivante est importante, car elle permettra en particulier d'avoir une in­

terprétation des différentielles holomorphes invariantes dans le langage des fibres li­

néaires. 

DÉFINITION 1.3. — On appelle variété dirigée un couple (X, V), où X est une variété 

complexe compacte etVc Tx est un sous-fibré de son fibre tangent. 

Le couple (X, V) engendre une nouvelle variété dirigée (X,V) (cf. [Semp54], 

[Dem95]), dont nous allons maintenant expliquer la construction : soit X := P ( V ) la 

variété projectivisée des droites de V ; le fibre V C Txx est défini comme suit 

v ( x M ) = {Çe TXuz ' « M O g C M 

où 7r : X -> X est la projection canonique. Au-dessus de la variété X on dispose d'un 

fibre tautologique 

Os(-l)c**V 

tel que 0^(-l)(Zy[v]) = Cv. 
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Soit / : A —>• X un disque holomorphe non constant, tangent en tout point à V ; 

autrement dit, on a f'{t) G Vf(t) pour chaque t dans le domaine de définition de / . 

On définit le relèvement canonique de / à X par 

(5) f:A^X, /(*) = (/(*),[/'(*)])• 

Dans l'expression (5), on suppose implicitement que le point t n'est pas stationnaire ; 

néanmoins, on voit facilement que / sera a posteriori bien défini sur A en simplifiant 

les zéros de f'(t). 

Une autre remarque importante par rapport à cette construction est que le disque / 

est tangent à V. En effet, on a n o / = / et en dérivant cette égalité on obtient 

**f'(t) = f ( t ) e v m . 

Du point de vue géométrique, le fibre V est ainsi caractérisé : un disque holomorphe 

7 : (C,0) —y X est tangent à V si et seulement si ou bien il est contenu dans une 

des fibres de 7r, ou bien il coïncide avec le relevé / d'un disque holomorphe f de X 

tangent à V. 

Du point de vue algébrique, le fibre V est caractérisé par les suites exactes suivantes 

(6) 0->Tx/x^V^Ox(-l)->0 

et 

(7) 0 -> Ox - » n*V (g) 0 ^ ( 1 ) -+ T%/x -> 0, 

où T^jx désigne le fibre tangent relatif associé à la fibration X —>• X. On déduit en 

particulier que le rang de V coïncide avec celui de V, et que dim(X) = dim(X) + 

rk(V) - 1. 

En itérant cette construction à partir de (Xo, Vb) := (X, Tx) nous obtenons une suite 

de variétés dirigées (Xfc, Vk)k^o ; nous avons donc 

Xk+1 := P(T4), Vk+1 := Vk 

pour chaque k ^ 0. La dimension de Xk est égale à n + k(n — 1). 

On note Oxk{—1) -> Xfc le fibre tautologique induit par V ^ - i ) , et 

u f c G f f M ( X f c , R ) n f f 2 ( X f c , Z ) 

sa (première) classe de Chern. Pour chaque couple k > / nous allons utiliser les 

notations 7Tfc,z : Xk ^ Xi et nk : Xk X afin de désigner les projections naturelles 

respectives. Par la suite, il sera commode d'introduire la notation suivante : soit 

a = ( a i , . . . , ak) G Zk un fc-uplet de nombres entiers. On pose 

(8) O x ^ - . ^ ^ l ^ O x ^ ) ) . 
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Pour k > 2, on définit le diviseur Dk sur la variété Xk de la façon suivante. 

Considérons la suite exacte (6) associée au couple (Xk-i, Vk-i) ; en particulier, on a 

l'injection naturelle 

T X k - i Xk-2 

On définit l'hypersurface Dk := P(Tx f c _ 1 /x f c _ 2 )
 c P (^ fc - i ) comme projectivisé du 

fibre tangent relatif correspondant à la projection 7Tk-i,k-2' C'est une variété non 
singulière, et en utilisant la suite (6) on déduit l'égalité 

0(Dk) = 0Xk(-l,l) 

(voir [Dem95]). 

Dans ce contexte, on a le résultat suivant. 

THÉORÈME 1.4 ([Dem95]). — Soit X une variété complexe compacte, et soit Jk(X) 

Vespace de ses k-jets. On note J£ E G C Jk(X) la sous-variété des jets réguliers (i.e. les 

classes d'équivalence des applications f : (C,0) —> X telles que / ' ( 0 ) J^O). 

(a) Il existe un plongement holomorphe jk : JT

k

eg(X)/Gk Xk, dont l'image est 

l'ouvert de Zariski 

С 8 := л ( •i\Di). 

Ainsi, la variété Xk peut être vue comme compactification naturelle du quotient 
JT

k

es(X)/Gk. 

(b) Pour chaque m ^ 1, le faisceau image directe 

(9) (7rk)*0Xk(™) .= Ek,m 

est un fibre vectoriel sur X, dont l'espace des sections globales s'identifie avec les 

différentielles holomorphes invariantes d'ordre k et de degré m. 

(c ) Plus généralement, pour chaque a = ( a i , . . . , ajt) G tel que a i + . . . - f a ^ : = m, 

l'image directe 

(10) (**)*(Oxfc(a)) cO(Ek,m) 

s'identifie au sous-fibré vectoriel dont les sections globales sont des différentielles in­

variantes 

&(z)(d*)Œl...(dfcs)a* 
où on note Sa C Z+ f c l'ensemble des a = ( a i , . . . , a&) défini par les relations 

| a i | + . . . + k\ak\ = m, | a p + i | + . . . + (& -p)\ak\ < a p + i 4 - . . . + ak 

pour chaque p = 0 , . . . , k — 1. 
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Nous n'allons pas reproduire ici la preuve de ce résultat ; néanmoins, voici les idées 

principales. Pour le premier point, on définit j k comme suit : si / G Jj£eg est le fc-germe 

d'un disque holomorphe régulier, alors on considère l'application 

/ - * / [ f c ] ( 0 ) e X f c 

où / [ / c ] désigne la k-ième relevée de / . Cette application est constante sur les orbites 

de Gk et j k est obtenue par passage au quotient. Les points (b) et (c) sont démontrés 

en observant que pour toute section u G H°(Xk, Oxk {m)) on obtient un opérateur 

d'ordre k et de degré m en posant 

P ( / ,

> . . . , / « ) : = « ( / t * ] ( 0 ) ) - ( / 5 k _ 1 ] ( 0 ) ) * m ; 

il se trouve que P est une différentielle invariante. Nous invitons le lecteur à consulter 

l'article [Dem95] pour une preuve complète de ce théorème. • 

D'après le résultat précédent, on voit que l'existence des différentielles holomorphes 

sur X est équivalente à l'existence des sections du fibre Oxk (a) sur Xk. 

1.3. Les inégalités de Morse holomorphes 

Soit L —ï Y un fibre holomorphe en droites sur une variété complexe compacte 

Y de dimension N. On se propose d'évaluer l'ordre de croissance de la dimension de 

l'espace des sections globales 

h°(Y,L®m) : = d i m # ° ( F , L ® m ) 

lorsque m —> oo. Pour cela, on dispose de la célèbre formule de Riemann-Roch-

Hirzebruch-Grothendieck, qui exprime la caractéristique d'Euler de L ® m comme suit 

r N 

(11) / c h ( L 0 m ) • Todd(X) - V ( - l ) ' V ( y , L ® m ) . 
J y 3=0 

C'est un résultat évidemment fondamental; toutefois, la présence des groupes de 
cohomologie supérieurs dans le membre de droite de (11) fait que son utilisation dans 
le but d'évaluer l'espace des sections globales de L®m est a priori assez limitée. 

Une version très raffinée de ce type de résultat permettant d'évaluer individuellement 

les groupes de cohomologie a été obtenue par J.-P. Demailly dans [Dem85]. 

Soit h une métrique hermitienne non singulière sur L, et soit QL,H la forme de 

courbure correspondante. Pour chaque 0 < q < AT, on désigne par Y(@L,h,Q) l'en­

semble des points x G Y en lesquels la forme de courbure &L,h a précisément q valeurs 

propres négatives et n — q valeurs propres positives. Nous remarquons ici que pour 

définir les valeurs propres de QL,H on utilise une métrique de référence sur la variété 

y , mais leur signe ne dépend pas de cette structure supplémentaire. Aussi, les valeurs 

propres nulles ne jouent aucun rôle. 
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Nous définissons également l'ensemble de points d'indice au plus q comme suit 

Y(eL.h,^q):= Y(&rh,r). 

Le résultat suivant est un corollaire du théorème principal de [Dem85]. 

THÉORÈME 1.5 ([Dem85]). — Sous les hypothèses et notations précédentes, on a 

Vinégalité asymptotique 

h°(Y,L®™)-h\Y,L®™)>^ f O ^ - o ( m - ) ; 
I V ! JY(eL,h^i) 

en particulier, si jY(@L h < i ) ®L,H > ®> a ^ o r s L e s t 9ros-

Les ensembles y(0z,,/i, < 1) sont difficiles à manipuler, et pour cette raison le résultat 

précédent est souvent utilisé dans sa version algébrique ([Tra95]). Par définition, un 

fibre L est nef (numériquement effectif) si sa classe de Chern c\(L) est limite de 

classes de Q-fibrés amples. 

COROLLAIRE 1.6 ([Tra95]). — Soit Y une variété projective, et soient F et G deux 

fibres en droites nef sur Y, tels que c\{L) = c\{F) — c\(G). Si le produit d'intersection 

(12) FN — N FN~1G 

est strictement positif, alors L est gros, i.e. il existe une constante C > 0 telle que 

h°(Y, L®m) > CmN, pour tout m > 1. 

Le résultat suivant est une version ponctuelle de ce corollaire. 

COROLLAIRE 1.7 ([Dem85]). — Soit g une forme réelle de type (1,1) sur une variété 

compacte Y de dimension N. Supposons qu'on puisse écrire 

g = 7 i ~ 7 2 

où 7 i et 72 sont des formes semi-positives sur Y. Alors 

(13) X G ^ D ^ T f - ^ " - V 

Donc s'il existe un Q-fibré L tel que {g} = c\{L), et si 

> y ? - N , 7 f - S > 0 , 

alors L est gros. 

Dans la formule (13) ci-dessus, nous avons noté la fonction caractéristique de l'en­

semble de points d'indice au plus 1 de g par X(g,^i)-

Nous désirons utiliser ces résultats pour montrer l'existence d'un vecteur 

a = ( a i , . . . ,afc) £ Z+ tel que le fibre correspondant Oxk(&) soit gros. Le corol­

laire 1.6 montre qu'il suffit d'écrire ce fibre comme différence de fibres nef, telle que le 
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produit d'intersection (12) soit strictement positif. Nous allons analyser les propriétés 

numériques de Oxk(a) ; ce sera l'objet du paragraphe suivant. 

1.4. Propriétés numériques et classes de Chern 

On voit sans peine que le fibre O x i ( l ) est relativement ample (par rapport à la 

projection 7Ti), mais dès que k > 2, ceci n'est plus vrai. En effet, considérons une 

courbe rationnelle C C X\ contenue dans une fibre de l'application m : X\ —ïX. 

L'espace tangent à C est un sous-fibré de Vi |c , et considérons la relevée canonique 

Ci := P (Tc) de C dans X2. Nous avons 

0 x a ( l ) - C i = 2 3 - C = - 2 

donc on en déduit que le fibre Ox2iX) e s ^ très loin d'être relativement ample par 

rapport à la projection 7T2 : X2 —> X. Néanmoins, on a le résultat suivant, démontré 

dans [Dem95], [Div08], [DRU]. 

Lemme 1.8 ([Dem95], [Div08], [DRU]). — SoitX C Pq une variété projective ; pour 

chaque entier k > 2 on note a := ( a i , . . . , ak) € un vecteur dont les composantes 

sont des entiers positifs tels que pour tout j = 1,..., A; — 2 on ait 

(14) aj ^ 3 a J + i ak-i > 2ak > 0 ; 

on note également |a| := ai + . . . + ak. Si Ox{^) désigne la restriction du diviseur 

hyperplan correspondant au plongement X C Pq à X7 alors le fibre 

(15) 0Xk{*)®Ox{2\a\) 

est nef. 

Preuve (esquisse). — Nous allons rappeler ici en quelques lignes les arguments 

de [Div08] ; on procède par récurrence sur k. 

Rappelons d'abord que l'espace cotangent Tp q 0 0(2) est globalement engendré; 

comme conséquence, on en déduit que T£(S>0x(2) a la même propriété. En particulier, 

le fibre 

0 ^ ( 1 ) ® 0 x (2) 

est nef. 

Supposons que pour un certain rang k nous ayons déterminé un fibre nef Ak 

sur Xk-i, tel que C?x f c(l) 0 Ak soit nef. Nous voulons trouver ^4fc+i sur Xk ayant 

les mêmes propriétés ; pour cela, on utilise les suites exactes (6) et (7) associées à la 

variété dirigée (Xk, Vk) : 

(16) O^Tx^x^^Vk^Oxti-V^O 

et respectivement 

(17) 0 -> 0 X k -»• K,k-iVk-i ® Oxh(l) -»• TXh,Xh-x 0. 
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En utilisant la suite (17) on montre l'existence d'un morphisme surjectif 

A 2 K f c - i ^ - i ) -> T^/x^ ® 0 X k (2) -»• 0 

donc le fibre Txk/Xk_1 <S> Oxk (2) ® Af2 est nef. Considérons la suite duale à (16) ; on 

en déduit que le fibre 

V£®AK+1 

est nef, et on note Ak+i := Af3 <g> 0Xk(2). 

En conclusion, le fibre 

Mk := <9xfe(2 • 3 f c ~ 2 , . . . , 2,1) 0 C>x(2 • 3*" 1 ) 

est nef - ceci est un cas particulier de l'énoncé 1.8. Le cas général s'en déduit aisément 
en observant que le fibre 0 X k (a)(g)0x (2|a|) peut s'exprimer en fonction de M\,..., Mk 

comme combinaison linéaire à coefficients positifs, grâce aux inégalités (14). Pour une 
preuve complète de ce lemme, nous renvoyons à [Div08]. • 

Considérons maintenant a G Zk un vecteur dont les composantes vérifient les 

relations algébriques (14). Il sera important par la suite (cf. [DMR10]) d'avoir un 

critère pour l'existence des sections des multiples du Q-fibré 

O v b ( a ) ® K " Ä | a | 

où S est un nombre rationnel positif. Pour cela on écrit le fibre 

OxM ® K~5^ = (Ox„(a) ® Ox(2|a | ) ) ® (0jc(-2|a|) ® ^ | a | ) 

comme différence de deux fibres nef (cf. le lemme précédent), et les inégalités de 

Morse holomorphes montrent que le fibre 0 X k (a) <S>K^5^ sera gros dès que le produit 

d'intersection 

( 0 ^ ( a ) ® O x ( 2 | a | ) ) " f c - n f c ( 0 X f c ( a ) ® C ? x ( 2 | a | ) ) n A ! - 1 • (Ox(2\a\) ® K*™) 

est strictement positif, où nk :=n + k(n — l). 

Pour le reste de ce texte nous allons adopter les notations et conventions suivantes. 

Soient l ^ k deux entiers positifs. La classe de Chern du fibre 0Xk(\), ainsi que son 

image inverse sur X\ par l'application n^k ' Xi —» Xkl sera notée uk. La classe de 

Chern de la section hyperplane Ox(l), ainsi que ses images inverses, sera désignée 

par le symbole h. Le produit d'intersection précédent devient 

(18) ctjUj -h 2|a|ft -rcjb|a| djUj + 2\a\h 

^ - 1 

(2h-ôa(X)) 
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et on voit clairement que pour déterminer son signe on va devoir évaluer les nombres 

hpu 42. uk 

où ii + + = njfc. Pour cela, nous allons employer une récurrence à de mul­

tiples reprises, et nous rappelons maintenant à cet effet les relations algébriques entre 

( t ^ j ^ i ^ . / c et les classes de Chern de X. Par construction, pour chaque k ^ 1, on a 

(19) cSo(Vk^)un

k-
So=0. 

Les suites exactes (16) et (17) permettent d'exprimer les classes de Chern de Vk-i en 

fonction de Uk-i et des classes de Chern de Vk-2 (cf. [Dem95], [Div08]) : pour chaque 

Z = 1... . . n on a 

(20) c s o 04_! ) b(s0,sl)u
s

k°-1

SlcSl(Vk-2) 

où on note b(so,Si) := (s0-s\ ) ~ ( s 0 - s i - i ) * ^ n Gérant cette égalité, on obtient 

(21) 

cao{Vk-i) = {8Q, S i , . . . , ^ - i K ' T 1 ^ 2 • • • «1 (X) 

avec 6 ( s o , 5 i , . . . , S f c - i ) : = K 5 o 5

5 2 ) • • • b(sk-2,Sfc-i). Un calcul immédiat 
montre que 

(22) 6 ( 5 o , 5 i , . . . , * f c _ i ) = e(*)(n - 5 0 + l ) s ° - s * - i 
(s? - * H - i ) ! 

où 5(5) est un nombre rationnel, dont la valeur absolue est inférieure à 1. On peut 

donc écrire l'égalité (20) sous la forme 

(23) CsJVk-!) --
(n - so + l ) s ° - p 

p+|i|=so 

où i := ( i i , . . . , û _ i ) , : = n£=i e t N : = = ¿1 + . . . + ik-i- Par substitution 

dans (19), on obtient 

(24) ut + .(ifc + l ) " - * ' - " 

P+W+*fc=n 

dans la somme précédente, on a i := ( ¿ 1 , . . . , ifc_i) et ik < n. 
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2. DIFFÉRENTIELLES HOLOMORPHES SUR LES HYPER-
SURFACES DE L'ESPACE PROJECTIF, I 

Nous allons présenter dans la suite la construction des différentielles holomorphes dans 

l'ordre chronologique, selon [Siu02], [Siul2], [DMR10] et [Demll], respectivement. 

Dans l'article [Siul2] publié très récemment sur la Toile, Y.-T. Siu apporte des 

précisions au sujet de son ancien projet dans [Siu02], [Siu04]. Compte tenu de la taille 

impressionnante du manuscrit, il nous est difficile de présenter ici toutes les subtili­

tés des arguments invoqués dans la preuve. Cependant, dans ce chapitre nous allons 

essayer de tracer le fil rouge des idées contenues dans l'article [Siul2], lesquelles impli­

queraient in fine une preuve de la conjecture de S. Kobayashi pour les hypersurfaces 

génériques de grand degré de P n + 1 . 

Soit X = (P = 0) une hypersurface de degré d dans l'espace projectif. Nous fixons 

des coordonnées homogènes z o , . . . , zn+i sur P n + 1 , et pour chaque j = 1,... , n + 1 

soient Xj = | j - les coordonnées affines associées. Étant donné un couple d'entiers 

positifs (mo,m) tel que 

(25) m 0 + 2m < d, 

considérons l'espace vectoriel V(mo,m) des polynômes 

J2 pa(z)dz?...dz? 
|ai | + ...+n|û!n|=m 

où pour chaque indice a le coefficient pa est un polynôme de degré inférieur ou égal 

à rao. La dimension de cet espace est minorée par 

/mo + n + 1\ / | a j + n(n + 1) - 1\ 

V m 0 J\ n(n + 1 ) - 1 / ' 

comme on le voit immédiatement par des calculs élémentaires. 

Il se trouve que V définit une différentielle méromorphe d'ordre n sur P n + 1 ; 

en utilisant les changements de coordonnées usuels de l'espace projectif, on déduit 

dans [Siul2] que l'ordre des pôles de la restriction V\x n'excède pas mo 4- 2m. 

Ensuite, Y.-T. Siu montre (cf. proposition 3.8, p. 58, op. cit.) que l'espace vectoriel 

V(mo,m) contient un élément V qui s'annule identiquement sur la sous-variété S de 

X décrite en coordonnées affines par l'équation 

(26) PX1 = 1 

(on note ici PXl la dérivée partielle de P par rapport à la variable x\). Si P est assez 

général, alors S sera non singulière, et on en déduit que le quotient 

(p œ i - i )~V 

est une différentielle holomorphe sur X, à valeurs dans O(mo + 2m — d). 
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La condition d'annulation de V le long de S se traduit par un système d'équations 

linéaires homogènes (où les inconnues sont les coefficients des pa). Afin de montrer 

que le système en question admet une solution non triviale, on tient compte du fait 

que les 1-formes dx\,..., dxn ne sont pas indépendantes par restriction à X , car 
n 

(27) 5^P a î i (x )c to < =0. 
2=1 

Par la relation (27) et celles obtenues en la dérivant on peut donc éliminer 

dx\,..., dnx\ dans l'expression de V (quitte à multiplier V avec une puissance 

adéquate de PXl)> Suite à cette opération, le nombre d'équations de notre système 

diminue considérablement, ce qui est crucial. 

Ces arguments entraînent le résultat suivant. 

PROPOSITION 2.1 ([Siu02]). — Considérons les paramètres réels e,ef,0o,0f , 0 tels que 

(28) n0 o + 0 > n + e, 6'<l-e'. 

Alors il existe mo ^ de° et m ^ de, ainsi qu'un entier positif explicitement calculable 

d(n,e,ef), tel que pour toute hypersurface X C P n + 1 de degré d ^ d(n, £ ,£ ' ) il existe 

une différentielle holomorphe V G V(mo,m) non identiquement nulle, à valeurs dans 

le fibre 0Pn+i(-dd'). 

Nous remarquons que les inégalités (28) sont nécessaires dans la preuve du résultat 

précédent, ceci afin de montrer que le nombre d'équations du système d'équations li­

néaires homogène mentionné auparavant est inférieur au nombre des inconnues. Aussi, 

il se trouve que sous la condition 

mo + 2m < d, 

la restriction à X de tout élément de V(mo, m) non identiquement nul sera non triviale, 

cf. Lemma 3.4, p. 51. La quantité d(n, e, s') peut être donnée explicitement, voir [Siul2, 

p. 61]. 

Les origines de la construction des différentielles holomorphes telle qu'elle est envi­

sagée dans [Siu02] se trouvent dans la construction classique des 1-formes holomorphes 

sur les courbes planes. Soit C := (P = 0) C P 2 une courbe non singulière. Alors on 

définit la forme À (en coordonnées affines) 

dx _ dy 

Py Px 

elle sera holomorphe dès que le degré de P sera assez élevé. 

En conclusion, grâce à la proposition 2.1, on contrôle parfaitement les degrés de p a , 

Le. mo < de°. Ceci marque une différence de taille par rapport aux énoncés analogues 

dans [DMR10], obtenus « abstraitement », e.g. par les inégalités de Morse holo­

morphes, et c'est une information particulièrement précieuse (cf. les commentaires 
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dans l'introduction de [Siul2], et dans le dernier paragraphe de ce texte). En contre­

partie, le degré d(n,£,e') est beaucoup plus grand que celui obtenu dans [DMR10] 

(encore plus grand que celui de [Demi2]). 

3. DIFFÉRENTIELLES HOLOMORPHES SUR LES HYPER-

SURFACES DE L'ESPACE PROJECTIF, II 

Soit X une hypersurface non singulière de degré d de l'espace projectif P n + 1 . Nous 

allons suivre dans ce paragraphe l'approche de S. Diverio, J. Merker et E. Rousseau 

dans [DMR10] pour montrer l'existence des différentielles holomorphes d'ordre n et de 

degré m à valeurs dans K^ônrn sur X, sous l'hypothèse d ^ d^. Ici d^ et Sn désignent 

des nombres rationnels positifs explicitement calculables en fonction de n = dim(X). 

Signalons également l'article très intéressant [BeKilO] qui traite de questions voisines, 

et que nous n'allons malheureusement pas pouvoir présenter ici. 

L'idée de [DMR10] est d'utiliser la version algébrique des inégalités de Morse (cf. co­

rollaire 1.6) ; on doit montrer que le produit d'intersection (12) est positif si k = n (et 

si le degré d^d^ est assez grand). Ce choix n'est pas arbitraire : suite aux résultats 

de [Div08], [Rou06a], on sait que l'ordre k = n est le minimum pour lequel on puisse 

espérer montrer que le groupe 

H° (X,Ek,m) 

n'est pas réduit à zéro, si m ^> 0. 

Les classes de Chern de l'hypersurface X C P n + 1 s'écrivent ainsi (voir e.g. [DRU]) 

(29) Cp(X) = Qp(d)hp 

où Qp(d) = YX=o(~l)r^P(nt2)dp~r est un polynôme de degré p en d. Il sera com­
mode d'introduire la notation 

(30) Q p (d) = ¿ 9 r c P - r 

r=0 

où \qr\ < ^n~lf^ pour chaque r = 0 , . . . ,p. En combinant les égalités (24) et (29) nous 

obtenons la formule 

(31) « 2 + £ ¿ £ ( ¿ ) f a + l ) ^ % k ~ P qrdP^hW¿ = 0, 
p+\i\+ik=n r=0 

où on pose e{i) = 0 si i k = n. 

Les arguments de [DMR10] visant à démontrer le théorème 0.3 s'articulent autour des 

trois lemmes suivants. 
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LEMME 3.1 ([Div09]). — Soit j := ( j i , . . . , j n ) G Z™ un vecteur dont les coefficients 

sont des entiers positifs et soit s G Z+ tels que s + \j\ = n2. Alors le produit d'inter­

section 

(32) h'v?...vfr 

est un polynôme en d de degré inférieur à n + 1 — s. Ainsi, on peut écrire (18) sous 

la forme 

( n \ n 2 / n \ n 2 - l 

J2atut+2iaiM - n 2 i a i ( J^atUt+2|a'ft) (2h~Sci(xïï 
n+1 n+1 

q=0 q=0 

où les bq et bq de la formule précédente sont des polynômes homogènes de degré n2 

en a = ( a i , . . . , a n ) . 

Preuve (esquisse). — On prouve ce lemme par une double récurrence sur n et j n : si 

j n < n — 1, la, quantité (32) vaut zéro, car la classe h8u3i ... u3

n

nzl vit en codimension 

s+ji + " -+jn-i = s + \n\ - jn > n2 - n + 1 = d im(X n _ i ) . 

Si j n = n — 1, on a 

(33) h'v? ... 1 = / * V . . . u^L-j1 

(car la restriction du fibre en droites Oxn(l) aux fibres du morphisme Xn —> X n _ i 

coïncide avec le fibre tautologique sur l'espace projectif) et on poursuit le raisonne­

ment. Si i n > n, alors on a 

hsu^ ...uJ

n

n = 
p+\i\+in=n r=0 

(i)qrd
p-r / i p + s ui+j - n 

et le lemme est démontré grâce à l'hypothèse de récurrence, car dans la somme ci-

dessus on a j n + i n — n < j n . • 

Dans le lemme suivant, nous allons analyser le coefficient bn+i du polynôme 

BsJd) := У (bq(&) + 6bq(&))d*. 

Pour cela, il sera utile de définir le pavé 

C : = { ( a 1 , . . . , a n ) G R n : 3 n ^ ' + . . . + 3 ^ 3 i < 3 n - ' + . . . + 3 + 1 , j = 1,..., n - 1} 

et 1 ^ an ^ n2. 

LEMME 3.2 ([Div09]). — Il existe un élément a G C f l Z n tel que fcn+i(a) ^ 1. 
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Preuve (esquisse). — Tout d'abord, remarquons que, si a G C, alors le fibre 

< 9 x » ® 0 x ( 2 | a | ) 

est nef, car les composantes de a satisfont les relations algébriques requises par le 

lemme 1.8. Ceci combiné avec le lemme 3.1 montre que 

6 n + i ( a ) ^ 0 

pour tout a G C. Si le polynôme 6 n+i est identiquement nul par restriction à l'ensemble 

C H Z n , alors il est aisé de voir que ceci entraîne l'annulation de tous ses coefficients. 

Mais cette éventualité ne peut pas se produire, car 

< . . . < > 0 

dès que d ^ n + 2 (i.e. dès que Kx est ample). • 

Il nous reste à majorer de façon effective les autres coefficients de jB<s,a- L
e s compo­

santes de a sont bornées explicitement par rapport à n, car a G C. Par la formule 
du binôme, on voit qu'il suffit d'estimer les coefficients des puissances de d dans les 
expressions 

hTuî1 ...ut 

où a + | j | = n 2 (cf. [DMR10, théorème 5.1]). 

LEMME 3.3 ([DMR10]). — Soitk ^ 1 un entier positif. Onnotec(k) le maximum des 

valeurs absolues des coefficients des polynômes hau3^ u3

k, oùa+\j\ = n + k(n — 1). 

Alors nous avons Vinégalité 

c{k) < (n(n + 2)(fe + n + 2 ) ) f c ( n " 1 ) + 1 c ( f c - 1); 

en particulier, c(n) < 2 5 ( n 3 + n ) n i ( n 3 + n ) . 

Preuve (esquisse). — L'argument est une « version itérée » de la preuve du lemme 3.1. 
Considérons un vecteur j := (ji,..., jk) et un entier a tels que a + \j\ = n + k(n — 1). 
Comme nous l'avons déjà vu, le produit correspondant h^u3^ ... u3

k

k est un polynôme 
de degré au plus n + 1 par rapport à d. Sans perte de généralité on peut supposer 
jk ^ n, et comme dans la preuve de 3.1 on écrit 

hav^ ...uÍk =-havÁ1 •••<-' 

en utilisant la formule (19). On applique ce procédé à plusieurs reprises, afin de dimi­

nuer la puissance de Uk jusqu'à n — 1 ; ceci donne 

(34) h01^1 ...uÌk = i / i^ t t j 1 . . . uj*_"i 

8 = 0 ll + ...+ls=jk-n+l 

4ÁVk-i)...cH(Vk-i). 
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Les indices lp figurant dans la somme varient entre 1 et n ; par la formule (23), nous 

obtenons 

(35) Q ( 1 4 - i ) = E E^^" ' ^ 1 ^^"^ 
p+\i\=l r=0 %' 

Très grossièrement, d'après la formule (34), pour trouver un majorant de c(k), il suffit 

de multiplier c(k — 1) par le nombre 

*E E n ( E £ W W | f e ^ ± ! ^ 4 

La quantité sous le signe produit est majorée par 

(nJfe + 3)'* ; 

on peut vérifier cette affirmation comme suit. Pour chaque /3 = l , . . . , s et Z ^ ^ n on 

doit évaluer le nombre 

( 3 6 ) 2 ^ 2 ^ 2 ^ **• 

L'inégalité ]Cr£=i Qrp ^ (n + 3) p ^ est une conséquence directe du fait que qr/3 < 

( n * ^ P , par (30). Ensuite, par la formule du binôme on obtient l'égalité 

J_ _ (k - l)h-PP 

, ^ v (h-Pf>)\ ' 

et la quantité (36) sera donc majorée par 

(37) è (n + 3 ^ ( i f e - l ) ' ^ ( n - t , + l ) ' ^ < + , + „ . 

en conclusion, on doit majorer la somme 

(38) I 4 E 1 ( i f c _ r + 1 ) ( 3 + * + »*) ' -

Mais ceci est vite fait, car l'expression (38) vaut 

(39) (nfc + fc + 4 ) j f c " n + 1 

et finalement, pour tout k ^ n, nous obtenons l'inégalité 

(40) c(fc) < (n 2 + n + 4) f c nc(A: - 1), 

à partir de laquelle on déduit immédiatement la majoration de c(n). • 
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Nous nous retrouvons à présent dans la situation suivante. Le produit d'intersection 

figurant dans le lemme 3.1 s'écrit 

n+1 n+1 

¿ 5 , ( ^ + ^ 6 , ( 8 ) « ? ; 

q=0 q=0 

d'après le lemme 3.2, nous pouvons choisir un vecteur a 0 G C tel que 

bn+i(fio) > 1. 

Le lemme 3.3 et la relation ao G C fournissent une majoration explicite en fonction 

de n pour les quantités ((bq(a.o))0^q<^net ( ^ ( a o ) ) o ^ ^ n + r ^ n Peu*> donc choisir un 

nombre rationnel positif 6 = ôn tel que 

b n +i (a 0 ) -h <W>n+i(a 0) > 1/2. 

Ensuite, dans [DMR10] les auteurs déterminent une quantité effective dn telle que la 

positivité du (18) sera vérifiée dès lors que d ^ d* ; ceci se fait par des considérations 

élémentaires sur l'estimation des valeurs absolues des racines des polynômes d'une 

variable en fonction de la valeur absolue de leurs coefficients. 

Pour résumer, il existe (dn,ôn) G Z+ x Q+ tel que pour toute hypersurface non 

singulière X de P n + 1 de degré d ^ dn on ait 

(41) H°(X, £ „ , m 2 $ 0 Kxônrn) £ 0. 

4. DIFFÉRENTIELLES HOLOMORPHES SUR UNE VARIÉTÉ DE 
T Y P E GÉNÉRAL 

L'étude des questions qui nous intéressent dans cet exposé a enregistré un pro­

grès important grâce aux travaux de J.-P. Demailly dans [Demll], [Deml2]. Ceux-ci 

montrent que le fibre OXGG (1) est gros, pour toute variété de type général X , à condi­

tion que k ^> 0. Un résultat analogue dans le cas des hypersurfaces de P n + 1 avait 

été établi auparavant par J. Merker dans [MerklO], par des méthodes différentes. 

L'article [Demll] est très riche en contenu; nous nous proposons de n'illustrer ici que 

quelques aspects qui nous paraissent particulièrement frappants. 

4.1. Métriques sur le Q-fîbré OXGG(1) 

Tour d'abord on cherche à munir le Q-fibré OXGG(1) d'une métrique, afin d'utili­

ser la version analytique des inégalités de Morse holomorphes (cf. [Dem85], et théo­

rème 1.5 dans le premier paragraphe de ce texte). 
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Si k = 1, l'espace J i ( X ) s'identifie avec l'espace tangent Tx de X , et une métrique 

sur OXGG{\) est simplement ce qu'on appelle une métrique de Finsler sur X. Par 

exemple, si on fixe une métrique hermitienne u sur X , alors elle induit naturellement 

une métrique sur OXGG{\). 

Si k ^ 2, la seule donnée (X,u>) n'est pas suffisante pour munir OXGG(1) d'une 

métrique. Soit X = \JAEA Ua un recouvrement de X par un nombre fini d'ouverts de 

coordonnées ; pour chaque a G A on fixe les coordonnées z a = ( z * , . . . , z™) : Ua —> C n . 
Comme nous l'avons vu dans le paragraphe 2.1, ceci induit une carte pour la variété 

de jets Jk(X)\ua —• Ua x C n / c , définie comme suit : 

/ ^ ( / ( o ) , / ; ( o ) , . . . , / W ( o ) ) 

où foc : = z a o / est l'image du fc-jet / par l'application z a . 

La définition de la métrique sur OXGG(1) fait intervenir des paramètres (£j)j=i,...k 

tels que 1 = e± ^ > £2 ^ • •• ^ > £k > 0, un nombre entier p assez divisible, une métrique 

hermitienne u sur X ainsi qu'une partition de l'unité (0a)aeA subordonnée à (Ua). 

Étant donné un fc-jet / G Jk,x{X) en x G X , on définit sa norme par la formule 

/ k \ 

(42) *EIW(/) := S^Ee2Pl/^(0)lS/a • 
\ a € A s= l / 

La fonction ty£,u; définit une exhaustion de la variété des fc-jets Jk(X) de X , et elle 

induit une métrique h£ sur OXGG (1) dont la forme de courbure sera désignée par ®£,k> 

Si on note pk la projection de Jfc(X) \ {0} sur XJ^G, on a 

p*(ee,fc) 
2TT 

Ô9l0g*£,a,. 

Afin de montrer que OXOG(\) est gros, il suffit de montrer l'inégalité 

(43) e n ( f c + D - i > Q 

^ ( G £ , f c , ^ l ) ' 

En regardant la définition (42) de la fonction 9eiùJ on pourrait a priori émettre des 

doutes sur les propriétés de positivité de la forme de courbure associée. En effet, 

si L est un fibre en droites et si on se donne une famille de fonctions indéfiniment 

dérivables <pa : Ua —>> R, on peut construire une métrique h sur L en recollant des 

métriques locales e _ ¥ ? a par la partition de l'unité 6a. En général, la courbure de (L, h) 

peut être substantiellement différente de la hessienne des fonctions locales cpa. 

Cependant, nous nous trouvons ici dans une situation spéciale : si les paramètres 

£ 2 , . . . , £k tendent vers zéro, la limite de ^ £ ^ se trouve être indépendante de la par­

tition de l'unité (0 a). Donc, si les (SJ) sont petits, on peut espérer que l'influence des 

(0 a) sera réduite. C'est ce qu'on va montrer ensuite, cf. [Demll]. 

Soit a G A, et supposons qu'on dispose d'un biholomorphisme 

pa:irk

l(Ua)-+irk

l(Ua), 
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où 7rfc : XGG —>• X est la projection naturelle. On peut appliquer la formule de 

changement de variables, et l'intégrale à calculer 

(44) Qn(fc+1)-1 

C?G(Oe,k^l)\ua ^ 

est égale à 

(45) 
:?G(eetk^i)\Ua

 v J 

où on utilise la même notation XGG(Q£ik, ^ 1)|u a pour désigner l'ensemble des points 

d'indice au plus 1 dans XGG qui se projettent sur Ua pour les deux formes sous le 

signe de la somme dans (44) et (45) respectivement. 

En utilisant la carte Jk(X)\ua —> Ua x C f c n , on définit le biholomorphisme p a ? £ : 

Jk(X)\Ua -+ Jk(X)\Ua fibre à fibre 

(46) P^efa£i, 6 • • • > £fc) = fae^Zu^Zï • • • >ekk£k). 

L'importance de cette application réside dans le fait que la fonction 

°Pa,e 

est presque indépendante de la partition de l'unité ! Pour étayer ces propos, on esquisse 

maintenant la vérification de cette affirmation pour le cas particulier k = 2. 

On note gap la fonction de transition correspondant aux coordonnées (za) et (zp), 

i.e. zp = ga/3(za) ; la fonction de transition induite sur l'espace des 2-jets est 

(47) = (dga(,&,dgarf2

a + <Pga0(&,&)) 

où les dérivées sont calculées en za. 

Soit / un 2-jet en za ; les composantes du 2-jet pa,£ o / par rapport aux coordon­
nées a sont ( / i , £ 2 ~ 2 / a )

 e ^ d'après la formule (47), ses composantes par rapport aux 
coordonnées /3 sont 

[dgapf'a,eZ2dgapJ'l + d2gaP(f'a, f'a)). 

Alors en comparant les expressions 

№ + 4p\t22fZ> \d9*?f'a\T + # K 2 « W £ ' + *9*e(fa,f'X 

on voit qu'elles coïncident à l'ordre C°°, modulo des termes d'erreur en e. 

En conclusion, cet argument montre que dans l'évaluation de l'intégrale (43) on peut 

supposer que la fonction SS?£iU) est réduite à son expression locale (avec changement 

d'échelle) 

.e ¿ к 

. .7 = 1 

tú 2P/i 

où chaque £ J est interprété comme vecteur tangent en z. 
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En utilisant des coordonnées géodésiques pour la métrique w, o n a 

WZ- Sa I 

modulo des termes d'ordre 3 en z et, grâce à cette formule, on montre (cf. [Demll, 

proposition 2.13]) que la forme de courbure associée à \I> s'écrit 

k 

E -
|£.|2p/* 

j=l |S I m,j,<x,ß 

jmßäj^dz3 A dzm ; 

on a noté ici 

MO • -dd log 

\ VP 

2\?\2p/i) 
l'analogue de la forme de Fubini-Study pour l'espace projectif à poids, et les coeffi­

cients (cjrn/3â) sont ceux de la forme de courbure de (T^,uo) au point z. 

A présent, il est clair que la positivité relative du fibre OXGG{\) est cruciale : l'ouvert 

des points où sa forme de courbure est d'indice au plus 1 est entièrement déterminé 

par la courbure de (X,u). En anticipant un peu sur la suite, on peut montrer que, 

lorsque k ^> 0, ce n'est pas l'intégralité du tenseur de courbure qui contribue aux 

termes dominants, mais seulement sa trace, à savoir la courbure de Ricci (voir aussi 

le calcul de la caractéristique d'Euler dans [GG80]). 

Une fois cette situation comprise, le calcul de l'intégrale (43) dans [Demll] ne 

présente plus de complications importantes, mais il est assez long et comporte quelques 

points délicats. Avant d'en donner un très bref aperçu dans le paragraphe suivant, 

une observation générale voisine se dégage quant aux techniques discutées ici. 

Remarque J^.l. — Considérons une suite exacte de fibres 

0- F - E G -> 0 

et supposons F et G munis de métriques hermitiennes hp et KQ respectivement. Via 

un scindage C°° (non holomorphe en général) E ~ F 0 G, on obtient une métrique 

sur E, dont la forme de courbure s'exprime en fonction de ®F,hFi®G,hG et de la se­

conde forme fondamentale de la suite précédente. Cette dernière quantité (i.e. son 

analogue pour les applications entre espaces fibres) semble absente de nos considéra­

tions dans ce paragraphe ; bien entendu, ce n'est pas le cas. N'oublions pas que c'est 

la forme de courbure du fibre OE(X) qui nous intéresse, et dans son expression on a la 

courbure de E évaluée dans les directions [£] du fibre dual E*. Ainsi, la seconde forme 

fondamentale apparaît dans les termes non diagonaux, qui ne sont pas perceptibles 

lorsqu'on fait agir les changements d'échelle p £ , mais apparaissent certainement dans 

les termes d'erreur. 

ASTÉRISQUE 361 



(1061) DIFFÉRENTIELLES HOLOMORPHES ET HYPERBOLICITÉ 103 

Comme conséquence, on en déduit l'énoncé suivant : supposons que F (ou G) est 

muni d'une métrique dont la forme de courbure est semi-positive, et que G (ou F) est 

gros (au sens de Hartshorne). Alors E est gros. 

4.2. Les calculs 

En travaillant en coordonnées polaires (cf. [Demll, p. 18]), on voit que l'inté­

grale (43) devient 

( 4 8 ) ^ t i m v » 1 ^ / / Xgk(z,x,u)gk(z,x,u)ndvdii 
n\(k\)n

 y * e X . / ( a , u ) € A f c _ 1 x ( S 2 » - i ) * 

où on utilise les notations 

A f c _i := | ( x i , . . . , x f c ) G R + : ¿ 2 * = l j ; 

les mesures par rapport auxquelles on intègre sont 

du := (xi... Xk)n~1d\, d/i := mesure produit sur ( 5 2 n - 1 ) f c . 

Finalement, on note 

(49) gk(z, x , u) := ^ y ^ c^pcfli^u^dz0 A dzm 

i—l m,j,cx,/3 

et Xgk

 e s ^ ^ a fonction caractéristique correspondant à l'ouvert des points (z, x, u) G 

X x A x ( 5 2 n _ 1 ) f c où l'indice de gk est au plus 1. 

Pour déterminer la valeur asymptotique de la quantité (48) lorsque k —>• 0 0 , on propose 
deux méthodes dans [Deml2]. 

- On commence par observer que le calcul est immédiat si les coefficients du 

tenseur de courbure (cjrn(3â)j,m,a,i3 de (TJ,u;) vérifient 

(50) Cjrnfiâ — rjrn^a(3 

(autrement dit, si la matrice de courbure est diagonale et telle que les formes sur 
la diagonale coïncident). Dans ce cas, la forme gk est particulièrement simple, 
nous avons une parfaite corrélation entre les points d'indice au plus 1 sur XGG 

et sur X , et on obtient 

(si) / e » r > - 1 = ^ £ / ntr + o((]og*)-i) 
ix f c

G G(e e , f c ,<i) n!(fc!)n Jx 

où 0 est la courbure du fibre canonique, muni de la métrique déduite de ou. Étant 

donné que par hypothèse Kx est ample (ou au moins gros, mais nous n'allons 

pas discuter cette version ici), on peut supposer que 6 est définie positive. 
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En général il n'y pas de raison que la courbure de (T£,a;) ait une forme aussi 

particulière que celle demandée dans (50). Mais on peut toujours décomposer la 

forme gk en 

9k = g%mg + gk 

où dans la définition de # £ i a g on remplace chaque coefficient Cjjnpâ par 

l/nSaß Cjmotot i 

et dans celle de gk par Cjrnfiâ : = Cjm^â — ôjmôap- On montre (cf. [Demll]) que 

la contribution de la forme de trace nulle gk dans le calcul de (48) est de l'ordre 

de grandeur ^rf.(k\)n ? ce qui marque la fin de la preuve. Bien entendu, au cours 

de la « vraie » démonstration de [Demll] il y a quelques points délicats - des 

estimées de déviation de nature probabiliste - que nous ne pouvons pas évoquer 

ici. 

Observons pour finir que malgré sa souplesse, cette méthode ne permet pas de 

déterminer un ordre optimal k à partir duquel on obtient des sections du fibre 

0XGG{m), bien qu'elle permette tout de même d'obtenir des bornes explicites 

pour k en fonction des invariants de X. 

- La deuxième méthode fait intervenir une borne inférieure pour le tenseur de 

courbure du fibre cotangent, dans le sens suivant. 

Soit E un fibre vectoriel sur X , muni d'une métrique h dont la forme de 

courbure en un point XQ G l s'écrit 

h(E)xQ 2тг 
RjißädzJ л d z i ® ^ (g) e*. 

On dit que (E1, h) est positif au sens de Griffiths si on a 

E jißäu u ç ç ^ u 

pour tout couple de vecteurs G Tx,Xo x £ x 0 -

Soit (j une métrique sur X ; supposons qu'il existe une forme 7 sur X telle que 

fí 
'tßua > -*v_.7v>vi\£\2 

où on note Cjip& les coefficients de la courbure de T£ par rapport à la métrique 

déduite de UJ. Ici v est un vecteur tangent et £ est un vecteur cotangent en XQ. 
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Dans ce cas on écrit la forme gk comme différence de deux formes définies 

semi-positives sur Xk, notamment gk := g\ — g\ ; on note 

y T Z \ ^ x-

9k] := - g ^ - ^ 7 E {cmps + limàocfsjtfpuidzi A dzm 

i—1 m,j,a,(3 

et respectivement 

gW : = | W | 2 ^ 7 ^ V ^ ' A d / . 

On contrôle l'intégrale sur l'ensemble des points d'indice au plus 1 de gk sur 

Xk en appliquant le corollaire 1.7. En fait, il sera utile de travailler dans un 

cadre un peu plus général, et de considérer le fibre Lk := OXGG{1) <8> A~ÔK (cf. 

notations dans le théorème 0.4) ; on montre dans [Deml2], pages 52-53 que si 

k ^ n on a 

N(n,k) f e ^ T R 1 

Jx*°(hk,^i) fc' 

^ / ( e ^ , w + n 7 ) n - c ( n , f c ) / ( e ^ ^ + n ^ - ^ e ^ + n ^ 
i l Jx 

où les symboles iV(n, k) et c(n, A:) sont des nombres rationnels positifs explicites 
tels que 

c(n, n) < i (nlog(nlog24n)) n 

o 

(cf. [Deml2, p. 52-53]). 

En conclusion, le fibre Lk sera gros dès que la condition numérique suivante est 
satisfaite : 

(52) / (eKx^+n1)
n>c{n,n) f ( 6 « : X | W + n 7 ) N - 1 ( © A > f c A + n 7 ) . 

Jx Jx 

5. LA CONJECTURE DE GREEN-GRIFFITHS POUR LES HYPER­
SURFACES GÉNÉRIQUES DE L'ESPACE PROJECTIF 

Pour montrer que toute courbe transcendante tracée sur une hypersurface géné­

rique X de P n + 1 est algébriquement dégénérée, dans [DMR10] les auteurs utilisent 

une stratégie mise au point par Y.-T. Siu dans [Siu02], [Siu04], et écrite en détail 

très récemment dans [Siul2]. Nous allons la présenter brièvement par la suite, mais 

d'abord nous rappelons le théorème d'annulation fondamental mis en jeu. 
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THÉORÈME 5 . 1 ([Siu97], [Dem97]). — SoitV une k-différentielle holomorphe de de­

gré m à valeurs dans le dual d'un fibre ample sur X. Alors 

V(tn' L¿kh = о 

pour toute courbe entière ip : C -» X. 

Les résultats présentés dans les paragraphes précédents montrent l'existence de 

sections non-triviales du fibre j E N , M T J <S)A_1 si le degré de X C P n + 1 est assez élevé. 

Par le théorème 5 . 1 ci-dessus, l'image de la dérivée d'ordre n de toute courbe entière 

(f se situe dans une sous-variété propre Y Ç Xn. Nous voudrions cependant montrer 

qu'il existe une sous-variété Y verticale par rapport à la projection Xn —y X {Le. telle 

que son image dans X n'est pas dense). 

Soit X C P n + 1 x PNd l'hypersurface donnée par la relation 

X : = {(z,A) G P n + 1 x P N d : ^ a a z a = o}, 

a 

où Nd : = ( n " f ^ + 1 ) — 1 . H se trouve que X est une variété non-singulière, de bidegré 

(d, 1 ) . Comme conséquence du fait que le degré de X par rapport aux variables A est 

égal à 1 , on peut construire des champs de vecteurs méromorphes sur X dont l'ordre 

des pôles est indépendant de d ; en fait, C. Voisin montre dans [Vois98] que le fibre 

( 5 3 ) T*®e>Pn+(i) 

est engendré par ses sections globales. Bien entendu, les vecteurs construits dans 

le théorème 5 . 2 ne seront pas tangents au point générique des fibres de la projection 

7TJV : X —>> (c'est en référence à cela que Siu les appelle obliques), mais néanmoins, 

leur existence sera déterminante pour montrer le théorème 0 .5 . En fait, on aura besoin 

d'une généralisation des résultats de [Vois98], dans le contexte des jets. 

Pour chaque entier positif fc, on définit la variété J™S{X) des fc-jets relatifs de 

X qui consiste en classes d'équivalence des disques holomorphes contenus dans les 

fibres de la projection n^. Le résultat suivant est démontré dans [Merk09] et [Siul2] 

(voir également [Pa08] pour un argument « à la main » dans le cas n = 2). On prend 

ici k = n. 

THÉORÈME 5 . 2 ([Merk09], [Siul2]). — Le fibre vectoriel 

( 5 4 ) TJ™s{x) ® Opn+i (n2 + 2n) 0 OpNd (2) 

est engendré par ses sections globales Gn-invariantes. 

La preuve de ce résultat ne sera pas esquissée ici ; on se contentera de mentionner 

que la construction de champs de vecteurs est explicite, selon un algorithme très bien 

expliqué dans [Merk09]. 
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En utilisant le théorème précédent, le résultat de non-annulation 0.5 procède comme 

suit (à quelques virgules près, les arguments sont identiques dans les trois articles 

[Siu02], [DMR10], [Deml2]). 

Soit X une hypersurface non-singulière de degré d dans P N + 1 ; nous supposons que 

X est générique, dans le sens suivant. Soit ao G P ^ D tel que X = Xao. Alors toute 

différentielle holomorphe d'ordre n et de degré arbitraire se prolonge au voisinage 

de ao-

Nous avons vu dans les paragraphes 3 et 4 que si d est assez grand, il existe une 

différentielle holomorphe V d'ordre n et de degré m > 0 à valeurs dans K^ônTn. Dans 

les articles cités précédemment la constante ôn n'est pas la même, mais ce n'est pas 

important ici. 

Localement, en tant que fonction sur Jn(X) on peut écrire V sous la forme 

Viz. Л = V nJzW1)"1 ... (£n)a* 

|ai |+. . .+n|a n |=m 

(on utilise ici les notations multi-indices) ; pour z E X générique, le polynôme V(z,-) 

n'est pas identiquement zéro, donc son ordre d'annulation en un point (disons (£0)5 
correspondant au jet 7 dans le théorème 1.5) est au plus m. La différentielle holo­

morphe V se prolonge au voisinage de ao, car X est générique. Donc une nouvelle 

différentielle holomorphe sera produite en dérivant l'extension de V dans la direction 

d'un champ de vecteurs, puis en considérant la restriction du résultat à Xn. Si on a 

(55) VGH° (X, Tjreg w (g) Opn+i (n2 + 2n) <g> OpNd (2 ) ) , 

alors la dérivée de l'extension de V dans la direction v sera une différentielle holo­

morphe de degré n à valeurs dans 

K-ônTn
 ( g>e> P n + i (n 2 + 2n). 

Afin de montrer le résultat de non-annulation 0.5, on doit dériver au plus m fois, 
compte tenu de la discussion précédente concernant les singularités de V par rapport 
aux variables £• La différentielle ainsi construite induira une équation pour la courbe 
entière (p : C —> X à condition que 

(56) Sn(d - n - 2) > n 2 -h 2n. 

• Conjointement avec la condition nécessaire pour produire la différentielle holo­

morphe V dans le paragraphe 3, l'inégalité (56) impose dans l'article [DMR10] la 

contrainte 

(57) d^2n\ 

Ceci marque la fin de notre survol de ce travail. Nous remarquons que la seule raison 

qui empêche les auteurs de [DMR10] de montrer Phyperbolicité de X (et non pas 
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« seulement » la dégénérescence des courbes entières) est l'absence de contrôle de la 

taille des singularités des coefficients pa dans (2.1). 

• Dans l'article [Demi2] que nous décrivons brièvement, J.-P. Demailly obtient une 

amélioration considérable du degré obtenu dans (57), que nous décrivons brièvement. 

Soit X C ~PN une sous-variété. On a déjà vu dans la démonstration du lemme 1.8 

que le fibre vectoriel Tx (g> 0 ( 2 ) est engendré par ses sections globales. L'observation 

suivante est qu'un fibre vectoriel engendré par ses sections globales admet une mé­

trique hermitienne telle que la forme de courbure associée soit positive au sens de 

Griffiths. 

En conséquence, les résultats présentés dans le paragraphe 4 montrent qu'il suffit 

de satisfaire l'inégalité (52), avec des données qui sont les suivantes. La forme 7 est la 

restriction à X de 2ups, la forme de Fubini-Study et A := 0(n4 — 2n) (ce choix est 

dicté par l'ordre des pôles des champs de vecteurs construits dans le théorème 5.2). 

Ainsi, [Demi2] prouve que la conjecture de Green-Griffiths est vérifiée à partir du 

degré 

dn := y (nlog(nlog24n)) n . 

Remarquons que dans l'article [DMR10] on doit écrire le fibre tautologique comme 

différence de fibres nef directement sur la variété Xn, ce qui induit un manque de 

précision considérable et se traduit par une augmentation substantielle de la borne dn. 

• Y.-T. Siu annonce dans l'article [Siul2] Vhyperbolicité des hypersurfaces de grand 

degré de P n + 1 . En reprenant les notations du paragraphe 3, son idée est de montrer 

que les polynômes (pa)a ne sont pas trop singuliers par restriction à X (comme nous 

l'avons vu dans ce paragraphe, ceci est une information cruciale, qui a un impact 

direct sur le nombre de fois que doivent dériver les différentielles holomorphes pour 

obtenir 0.5). Nous rappelons que pour chaque indice a on a pa G H°(X, 0x(^))> o u 

ô ^ de° est un entier positif, et l'assertion dans [Siul2] est que le degré 5 sera une borne 

supérieure pour les singularités de pa\x- En principe, il est très probable que cela soit 

ainsi, car X est générique. Cependant, cette affirmation nous semble loin d'être im­

médiate (ou banale), car les coefficients pa des différentielles holomorphes construites 

dans [Siul2] dépendent de l'élément a G PNd correspondant à X. Les arguments qu'il 

invoque dans sa démonstration sont actuellement en cours de vérification. 

Remarque 5.3. — L'analyse des points base des différentielles holomorphes telle que 

décrite dans ce paragraphe fait intervenir des objets « extérieurs » à la variété X , 

notamment les champs de vecteurs obliques dans le théorème 5.2. Il serait plus que 

souhaitable de disposer d'une approche complémentaire pour cette partie de la preuve 

de la conjecture de Green-Griffiths relative au cas des hypersurfaces de P n + 1 . 
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Remarque 5.4 (communiquée par S. Diverio). — Remarquons pour finir qu'il n'est 

pas raisonnable d'espérer que l'abondance des différentielles holomorphes (théo­

rème 0.5) dans le cas des hypersurfaces de l'espace projectif se produise pour toutes 

les variétés de type général. En effet, il existe des surfaces complexes S dont le 

revêtement universel est le bidisque, telles que c\ = 2c2 et qui ont la propriété 

suivante. Pour tout point x e S et pour tout k ^ 1 il existe un fc-jet j x de S en x qui 

se trouve dans l'ensemble des zéros de toute différentielle holomorphe d'ordre k et 

de degré arbitraire (ce résultat est à comparer avec le théorème de S. Lu, cf. [Lu91], 

compte tenu des propriétés des classes de Chern de S). Nous renvoyons le lecteur à 

l'article de S. Lang cf. [Lan86] ; une analyse détaillée des exemples dans cet article a 

été récemment faite dans [DR12]. 
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