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TECHNIQUES DE CONSTRUCTION
DE DIFFERENTIELLES HOLOMORPHES ET HYPERBOLICITE
[d’aprés J.-P. Demailly, S. Diverio, J. Merker, E. Rousseau, Y.-T. Siu...]

par Mihai PAUN

INTRODUCTION

Nous pouvons munir toute variété complexe compacte X d’une structure métrique
en utilisant une partition de 1'unité : sur chaque ouvert de coordonnées on dispose
d’une métrique (provenant de I’espace euclidien selon lequel notre variété est mode-
lée), qu’on globalise & I’aide d’une fonction tronquante. La somme de ces objets sera
notre métrique. Malheureusement, cette construction est beaucoup trop arbitraire ;
en général, on peut difficilement 'utiliser afin de mettre en évidence des propriétés
remarquables de X.

Dans [Kob70], [Kob76], S. Kobayashi a introduit une pseudo-métrique intrinséque,
completement déterminée par la structure complexe de X ; voici sa version infinitési-
male.

Soit £ € X un point, et soit v € Tx ; un vecteur tangent & X en z. La longueur
de v par rapport a la pseudo-métrique de Kobayashi-Royden est donnée par

kx z(v) :=inf{\>0;3f : A = X, f(0) = 2, \f'(0) = v},
ol A C C est le disque unité, et f est une application holomorphe.

Bien entendu, il se peut trés bien que kx (v) = 0; toutefois, grace au lemme de repa-
ramétrisation de Brody (cf. [Bro78]), cette situation a une contrepartie géométrique
bien comprise. S’il existe un point £ € X et un vecteur non nul v € Tx , tels que
kx (v) = 0, alors il existe une application holomorphe non constante ¢ : C — X.
Une telle fonction sera appelée courbe entiére. Nous remarquons en passant que le
point = ne se trouve pas nécessairement dans l'image de ¢, voir I’exemple trouvé par
J. Winkelmann, dans [Winkel].

Si la variété X ne posséde pas de courbes entieres non constantes, alors la pseudo-
métrique infinitésimale de Kobayashi sera non dégénérée ; nous disons dans ce cas que
X est hyperboliqgue au sens de Brody, ou tout simplement hyperbolique (car toutes les
variétés dans cet exposé seront compactes).
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78 M. PAUN

En dimension 1, le théoréeme d’uniformisation montre que seules les courbes de
genre supérieur ou égal a 2 sont hyperboliques. La situation devient beaucoup plus
compliquée deés la dimension 2; toutefois, on espeére que la non dégénérescence de
la métrique de Kobayashi est intimement liée aux propriétés de positivité du fibré
canonique de X.

Nous allons rappeler maintenant quelques notions qui vont intervenir par la suite.
Un fibré en droites L — X est dit ample s’il existe un entier m > 1 tel que Papplica-
tion naturelle vers ’espace projectif induite par les sections globales de L®™ est un
plongement. La version birationnelle de cette notion est celle de fibré gros (ou big) :
L est gros s’il existe un entier m > 1 tel que le degré de transcendance du corps
des fonctions rationnelles sur X induites par les sections holomorphes de L®™ est
maximal (7.e. égal & la dimension de X).

On se propose de présenter dans cet exposé quelques résultats récents en rapport
avec ’hyperbolicité des variétés n-dimensionnelles X dont le fibré canonique Kx est
ample. Ces résultats donnent des réponses partielles & la conjecture classique suivante,
cf. [Kob70].

CONJECTURE 0.1 (Kobayashi). — Une hypersurface générique X de l’espace projec-
tif Pt de degré d supérieur a 2n + 1 est hyperbolique.

Dans I’énoncé précédent, le terme générigue a la signification suivante. Considérons
la variété X c P™t! x PNe paramétrant les hypersurfaces de degré d dans P™*!.
Alors il existe une réunion dénombrable ) de variétés algébriques de X telle que, si
X correspond & un point dans X \ ), alors elle est hyperbolique.

Une autre conjecture standard dans le domaine est celle formulée par Green-Griffiths
dans [GG80] ; nous allons la rappeler maintenant.

CONJECTURE 0.2 (Green-Griffiths). — Soit X une variété projective ; on suppose que
son fibré canonique est gros. Alors il existe une sous-variété propre Y C X de X telle
que limage de toute courbe entiére ¢ : C — X se trouve dans Y.

Si l'image d’une courbe entiere ¢ : C — X est contenue dans une sous-variété
propre de X, on dit que ¢ est algébriquement dégénérée. On remarque que, dans ce
cadre général, un énoncé de type Green-Griffiths est le meilleur qu’on puisse espérer
obtenir, méme si Kx est ample. Pour s’en convaincre, il suffit de considérer la surface
de Fermat

X:=(Z8+...+2§=0) C P>
Si d est assez grand, le fibré canonique de cette variété est ample. Elle contient
des courbes rationnelles, donc des courbes entiéres non constantes. La métrique de
Kobayashi de X est donc partiellement dégénérée ; néanmoins, la conjecture 0.2 pour
les hypersurfaces de Fermat est vérifiée dans [Gr75], [Dem95].
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(1061) DIFFERENTIELLES HOLOMORPHES ET HYPERBOLICITE 79

Afin de mettre en perspective les résultats des articles [DMR10], [Dem11] et [Siul2]
qui constituent la colonne vertébrale de notre exposé, il convient de présenter en
quelques mots une stratégie générale pour traiter les conjectures 0.1 et 0.2 qui remonte
aux articles fondateurs de A. Bloch [Blo26a], [Blo26b] (voir également [Siu04] pour
un compte rendu moderne de [Blo26a]).

Le premier pas dans la stratégie que A. Bloch a inventée pour étudier I’hyperbolicité
des sous-variétés de tores consiste & utiliser 'amplitude de Kx pour construire des
opérateurs différentiels d’ordre supérieur. Cette notion sera présentée de fagon formelle
plus loin; en voici ici un bref apergu.

Pour chaque entier k > 1, considérons ’espace des k-jets Ji(X) dont les éléments
sont des disques holomorphes f : (C,0) = X modulo la relation d’équivalence sui-
vante : f ~ g si et seulement si leurs dérivées en zéro jusqu’a l’ordre k coincident.
Nous appelons différentielle holomorphe d’ordre k et de degré m (ou simplement
différentielle holomorphe, lorsqu’il n’y a pas de risque de confusion) toute fonction
holomorphe sur l’espace des k-jets Jx(X) qui est polynomiale homogene de degré
pondéré m par restriction aux fibres de la projection Ji(X) — X.

Par exemple, si k = 1, les différentielles de degré m correspondent aux sections
du fibré S™T. Signalons aussi que dans ’analyse de ’hyperbolicité d’une variété X
il est indispensable de considérer des différentielles d’ordre k > 2. Leur existence et
P’analyse de leurs propriétés se trouvent au coeur de notre exposé, principalement &
cause du théoreme d’annulation suivant : si P est un opérateur différentiel d’ordre k
et de degré m a valeurs dans le dual d’un fibré ample sur X, alors P ((p’ N7 L) ) =0
pour toute courbe entiére p : C — X.

L’étape suivante dans la stratégie de Bloch serait de montrer qu’on peut construire
beaucoup de k-différentielles holomorphes algébriguement indépendantes. Trés vague-
ment, ceci veut dire qu’on peut « éliminer » successivement les dérivées ¢/, ..., @*)
dans le systeme d’équations Pj((p’ ye .,<p(k)) = 0 induit par les différentielles holo-
morphes, et obtenir ainsi une équation algébrique pour la courbe ¢ (plutét que pour
son jet d’ordre k).

Il nous semble que le degré de difficulté présent dans les deux étapes de cette
stratégie est réparti de fagon inégale : le deuxiéme pas est beaucoup plus délicat que
le premier.

Dans les travaux qui font 'objet de cet exposé, ces idées ont été implémentées avec
succes pour les hypersurfaces X de ’espace projectif. Un premier résultat qui sera
discuté ici est le suivant.

THEOREME 0.3 ([Div09], [DMR10], [Dem12], [Siul2]). — Soit n un entier positif. Il
ezxiste un nombre entier explicite d., avec la propriété suivante : toute hypersurface
génériqgue X C P de degré d > dl admet une n-différentielle holomorphe (non
tdentiquement nulle) a valeurs dans le dual d’un fibré ample sur X.
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Voici quelques commentaires sur les diverses approches pour montrer ce théoréme.

Dans les articles [Siu02], [Siu04] et [Siul2], Y.-T. Siu s’inspire de la construction ex-
plicite des formes différentielles pour les courbes planes de degré assez élevé. 1l calcule
Pordre des péles des n-différentielles méromorphes qu’on peut facilement construire
sur l’espace projectif, puis il montre que la restriction & X de certaines différentielles
ainsi obtenues sera holomorphe, pourvu que le polynéme définissant X soit générique
et que son degré soit assez grand.

Dans Darticle [DMR10], le théoréme 0.3 est obtenu comme conséquence des in-
égalités de Morse holomorphes. Cette technique a été introduite par J.-P. Demailly
dans [Dem85], et elle s’est montrée extrémement utile dans beaucoup de situations :
cela fait leffet d’un best seller perpétuel... Son utilisation systématique dans le
contexte actuel a été initiée par S. Diverio dans sa thése de doctorat (cf. [Div08],
[Div09]). En quelques mots, via la forme algébrique des inégalités de Morse, ’existence
des n-différentielles est équivalente & la positivité d’un certain produit d’intersection.
S. Diverio, J. Merker et E. Rousseau montrent dans [DMR10] que le produit d’inter-
section & calculer est un polynéme de degré n + 1 en d, dont le coefficient dominant
est un entier strictement positif. En estimant les autres coefficients, ils trouvent une
borne effective pour d & partir de laquelle le polynéme en question sera strictement
positif. Une partie de ce travail utilise des résultats obtenus antérieurement dans
[Merk09], [Rou07a], [Div09]. Signalons également que J. Merker montre dans l’ar-
ticle [Merk10] que pour k >> 0 on peut construire des k-différentielles holomorphes
non nulles sur toute hypersurface X de P"*!, dés que Kx est ample. Les calculs
effectifs qu’il déploie dans ce but sont impressionnants.

Trés récemment dans [Dem11], J.-P. Demailly établit I’existence des différentielles
holomorphes non nulles pour toute variété de type général ; en particulier, son résultat
généralise amplement les travaux [GG80], [Merk10], [Rou06a] [Rou06b], [Rou07al,
[Rou07b] [Siu02], [DMR10].

THEOREME 0.4 ([Deml1]). — Soit X une variété n-dimensionnelle de type général;

alors pour touse > 0, k = ko(e) et m = mo(k, €) il existe une k-différentielle d’ordre m

\ —(6k— . [2+..41/
sur X a valeurs dans KX( k E)m, ol on note by := L 2:,6 +i/k,

Comme conséquence de ce travail, il obtient une preuve du théoreme 0.3 dans
des conditions numériques nettement meilleures que celles de [DMR10], [Siul2], ...
Sa méthode utilise la version analytique des inégalités de Morse holomorphes, en
exploitant de plus la nature « probabiliste » des k-jets, les dérivées successives étant
vues comme des variables aléatoires indépendantes.

Avant d’aller plus loin dans cette thématique, signalons I’article de Y. Brunebarbe,
B. Klingler et B. Totaro dans [BKT12]. C’est un travail trés élégant, dans lequel
Pexistence des formes différentielles symétriques sur une variété kahlérienne com-
pacte X est établie en faisant une hypotheése sur le groupe fondamental de X. Dans

ASTERISQUE 361



(1061) DIFFERENTIELLES HOLOMORPHES ET HYPERBOLICITE 81

cet article, la positivité nécessaire pour produire des différentielles symétriques est
extraite de la variation des structures de Hodge. Nous ne pouvons pas présenter
ici leur travail, mais les techniques qu’ils produisent dans le domaine semblent tres
prometteuses.

Il se trouve que dans le cas des hypersurfaces de P"*! on peut analyser les points
base des n-différentielles holomorphes d’une fagon tres précise.

THEOREME 0.5 ([Siu02], [DMR10], [Dem12]). — Soit X C P™*! une hypersurface
générique de degré d > d,. Alors il eriste une sous-variété Y C X telle que pour
tout n-jet v : A — X de disque holomorphe tracé sur X il existe une n-différentielle
holomorphe P d valeurs dans le dual d’un fibré ample telle que

P(v(0),...,7™(0)) #0
dés que v(0) € X \Y.

Les grandes lignes de la preuve du théoréme 0.5 ont été expliquées dans [Siu02], et
traitées en détail dans [DMR10], [Siul2]; I’observation importante repose sur des
travaux antérieurs de C. Voisin, H. Clemens et L. Ein, cf. [Vois98], [Cle86], [Ein88],
[Ein91).

Considérons la variété X C P"t1 x PN¢ qui parametre les hypersurfaces de degré d
dans P"*!. En coordonnées homogeénes, X est I’hypersurface donnée par 1’équation
suivante de bi-degré (d, 1)

Z a2 =0.

Compte tenu du fait que le degré de X par rapport aux variables (a,) vaut 1, on
montre dans [Vois98] que le fibré Ty ® Opn+1(1) est engendré par ses sections globales.

Afin de ’adapter pour I’étude des points base des différentielles holomorphes, ce
résultat a été généralisé comme suit dans [Siu02], [Merk09]. Considérons la projection
sur le second facteur

7 X — PN,

pour chaque k > 1 on note JY°™*(X) I’espace des k-jets relatifs de X’ par rapport & 7.
Des calculs explicites (op. cit.) montrent que le fibré

(1) TJ;/tert(X) ® OPn+1 (nz + 2”) ® OPNd (2)

est engendré par ses sections globales.

Soit sp € PN ; on note X, I’hypersurface corresponac... . ’a déja évo-
qué, les n-différentielles holomorphes sur X, peuvent étre vues comme fonctions sur
Pespace des n-jets de cette variété. Supposons maintenant que sg est suffisamment gé-
nérique pour que les n-différentielles holomorphes sur X, se prolongent au voisinage
U de so dans PV¢. Cela veut dire que la fonction définie sur la fibre X,, = 7~ 1(s)
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admet un prolongement sur 7~(U). On produit de nouvelles n-différentielles holo-
morphes en dérivant cette fonction dans la direction des champs de vecteurs obligues
sur JYe'*(X) obtenus dans (1), puis en restreignant le résultat & X,,. C’est en gros le
mécanisme de la démonstration du théoréme 0.5; les trois articles [Siu02], [DMR10],
et [Dem12] en font usage.

En combinant le théoreme 0.3 avec le procédé que nous venons d’expliquer, on obtient
le résultat suivant.

THEOREME 0.6 ([Siu02], [DMR10], [Dem12]). — Soit n un entier positif; il existe un
entier d, tel que toute courbe entiére ¢ tracée sur une hypersurface génériqgue X C
P! de degré d > d,, est algébriqguement dégénérée.

Le nombre d,, obtenu dans ces travaux s’est trouvé progressivement amélioré.
Dans [Siu02] et [Siu04], 'auteur indique le fait qu’on peut le calculer explicitement,
laissant le soin de le faire aux lecteurs friands de calculs compliqués (voir toutefois
les détails de son approche sur la Toile, cf. [Siul2]). Le degré d,, a été rendu effectif
dans [DMR10] par S. Diverio, J. Merker et E. Rousseau; comme on aura ’occasion
de le voir un peu plus loin dans cet exposé, leur travail est un véritable tour de force,
qui aboutit sur le degré d, = 2"°. Cette borne a été considérablement améliorée
par J.-P. Demailly dans [Dem12], suite & son travail [Dem11]; le degré qu’il obtient
est d, = %i(n log(nlog24n))".

Comme on peut le constater, dans cette introduction nous avons pris la liberté
de ne pas mentionner les résultats autour de la conjecture de Green-Griffiths en
petites dimensions (surfaces, 3-variétés...). Pour les lecteurs intéressés, nous recom-
mandons P'excellent exposé [Bru02|, mené de main de maitre par le regretté Marco
Brunella.

Le texte qui suit est organisé en plusieurs parties. Tout d’abord nous présentons
quelques résultats concernant les espaces de jets, la définition formelle des différen-
tielles d’ordre k, les inégalités de Morse holomorphes et quelques calculs de classes
de Chern. Ensuite nous discutons quelques résultats particulierement frappants des
travaux [Siul2], [DMR10], [Dem11].

1. VARIETES DIRIGEES ET DIFFERENTIELLES D’ORDRE

SUPERIEUR

Nous allons rappeler dans ce paragraphe quelques faits concernant les différentielles
d’ordre k et de degré m. Les grandes lignes de notre présentation suivent de pres
Particle [Dem95] (voir aussi [Gher41], [Semp54], [Mey89]).
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1.1. Différentielles holomorphes
Pour commencer, considérons ’espace vectoriel
C*=C"x...xC"

et Paction de C* sur C™ \ {0} donnée par

(2) te (€, 6r) = (861,826, t7ER)
ou les £; sont des vecteurs de C™ pour tout j = 1,..., k. On désignera le quotient de
cette action par P(1™,2",...,k"™); cette variété est appelée espace projectif a poids.

Il existe un morphisme fini

(3) Pl L P 2M, LK)
donc la variété P(17,27,...,k™) est un quotient global de P*?—1,
Au-dessus de l’espace projectif & poids P(1",2",...,k"™) nous disposons d’un fais-

ceau £ dont I'image inverse par rapport a la projection (3) s’identifie avec le fibré
tautologique usuel O(1) sur P*?~1, Si p est un entier divisible par le plus petit com-
mun multiple de (1,..., k) alors £L®? est inversible (voir [Dol81] pour une présentation
exhaustive de ce sujet).

Via la projection py : C™*\ {0} - P(1™,27,...,k™), une métrique h sur L corres-
pond & une fonction positive ¥, : C** — R telle que

Un(t- (&, &) = 1tPUh(&, ... &)

La forme de courbure de (£, h) sera notée O p; c’est une forme de type (1,1) sur
P(1™,2",...,k"™) telle que

-1 _
(4) pr(Ocn) = \/2_788\11,1.

En conclusion, méme si £ n’est pas un « vrai fibré », on peut définir la notion de
métrique sur L, respectivement de courbure associée au couple (L, h).

Nous allons considérer ensuite la version relative de cette construction. Soit X une
variété complexe compacte. Pour chaque k£ > 1 on note Ji(X) la variété des k-jets de
disques holomorphes paramétrés de X, i.e. 'ensemble des classes d’équivalence des
applications f : (C,0) — X modulo la relation f ~ g si et seulement si f()(0) =
gl )(0) pour chaque j = 0,...,k. Les dérivées de f et g sont calculées par rapport &
un systeme de coordonnées, mais on voit facilement que la relation f ~ g a un sens
intrinseque.

Soit f un élément de Ji(X). Par rapport & un systéme de coordonnées défini sur
un ouvert @ C X centré en z les composantes de f s’écrivent

f=(f1’,fn)(0,0)—>QCCn
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Considérons la projection Jix(X) — X, f — z := f(0); on note Ji(X)|q 'image
inverse de 'ouvert €. Alors ’application

Je(X)la = @ x C¥, - f = (£(0), £/(0),.., FP(0))
est bien définie, et induit un systéme de coordonnées sur Ji(X)|q.

Si k = 1, la variété J1(X) s’identifie naturellement avec T'x, ’espace tangent de X.
En général, si k > 2 I’espace Ji(X) n’a pas une structure de fibré vectoriel sur X, car
les fonctions de transition le définissant sont polynomiales non linéaires (de degré k).

Soit Gy, le groupe de germes de k-jets d’automorphismes de (C, 0). Ce groupe agit
sur la variété de jets Jix(X) de fagon naturelle : si (f,p) € Jx(X) x Gy, alors on a
Papplication de reparamétrisation a la source

(f,p) = fop.

Plus particulierement, ’action du sous-groupe des homothéties C* C Gy, est donnée
par
A (fe o f®Yy = (Of, . AR fR)),

Le quotient de Ji(X) \ {0} par I’action de C* ainsi définie sera noté XFC. C’est une
variété singuliere dés que k > 2 : en fait, c’est la version relative de la construction
de D’espace projectif & poids. Les singularités de XS¢ sont de type quotient, elles
sont bien comprises et ne vont pas nous poser de difficultés par la suite. Le faisceau
tautologique sur XF¢ (analogue de L) sera noté O xga(1). Si m est un entier assez
divisible, alors le faisceau O xg6 (m) est un fibré en droites. Nous notons

Elgg = Wk*oxgc(m)
son image directe; c’est un fibré vectoriel sur X.
La notion centrale de notre exposé est la suivante.
DEFINITION 1.1. — On appelle différentielle holomorphe d’ordre k et de degré m

sur X (ou tout simplement k-différentielle holomorphe) toute section globale du
fibré B

Soit P € HO(X, E,f':g) une différentielle holomorphe; par définition, sa restric-
tion aux fibres de 1'application de projection Ji(X) — X s’identifie & un polyndme
homogene de degré pondéré m, i.e. on a 1’égalité

PO, .. X f®y = xmp(f! L fB)

pour tout A € C\ {0} et pour tout k-jet f. On remarque que la notion de polynéme
homogéne sur les fibres de l’application de projection a un sens intrinseque, compte
tenu du fait que les fonctions de transition de Ji(X) sont polynomiales et respectent
P’action de C*.
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On peut exprimer P par rapport & un systéme de coordonnées z = (z1,..., %)
centré au point z. Considérons les symboles (dizj), ouni=1,...,ketj=1,...,n;
alors on a

P= Z ao(2)dz ... dF 2

|az|4+2|az|+...+k|ak|=m
ou les a; = (1, ..., ®jn) sont des multi-indices, et ou on utilise la notation

dPz% = H(dpzi)o""‘
i=1

ainsi que |a;| =Y, aji. Si f est un k-jet de disque analytique en (X, z), alors chaque
symbole dizj agit sur f de maniere naturelle : dizj - f = f]@ (0), et ceci indique la
facon dont P agit sur les k-jets. Pour plus de détails concernant ces notions, nous
renvoyons a larticle [GG80].

1.2. Différentielles holomorphes invariantes

Nous allons nous concentrer dans ce paragraphe sur une classe plus particuliere
de différentielles holomorphes, notamment celles qui sont invariantes par tous les
éléments du groupe Gy, cf. [Dem95], [SY96a], [SY96b], [SY97].

DEFINITION 1.2. — Soit P une k-différentielle de degré m ; on dit qu’elle est inva-
riante st

P((fop),....,(fop)®) =g (O™P(f,...,f¥)
pour tout k-jet f et pour tout élément p € Gg.
La notion suivante est importante, car elle permettra en particulier d’avoir une in-

terprétation des différentielles holomorphes invariantes dans le langage des fibrés li-
néaires.

DEFINITION 1.3. — On appelle variété dirigée un couple (X,V'), ou X est une variété
complexe compacte et V C Tx est un sous-fibré de son fibré tangent.

Le couple (X,V) engendre une nouvelle variété dirigée (X,V) (cf. [Semp54],
[Dem95]), dont nous allons maintenant expliquer la construction : soit X := P(V) la
variété projectivisée des droites de V'; le fibré V C T, est défini comme suit

f/"(z,['u]) = {£ € TXl,z : dﬂ'({) € CU}

oum: X — X estla projection canonique. Au-dessus de la variété X on dispose d’un
fibré tautologique

Oz(-1)cnV
tel que (95{(—1)(%[1,]) = Cv.
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Soit f : A — X un disque holomorphe non constant, tangent en tout point a V';
autrement dit, on a f'(t) € V) pour chaque ¢t dans le domaine de définition de f.
On définit le relevement canonique de f & X par

(5) FiA= X, f)=(f0),1f0).

Dans V’expression (5), on suppose implicitement que le point ¢ n’est pas stationnaire;
néanmoins, on voit facilement que fsera a posteriori bien défini sur A en simplifiant
les zéros de f'(t).

Une autre remarque importante par rapport & cette construction est que le disque f
est tangent & V.En effet, on a w o f f et en dérivant cette égalité on obtient

T (t) = f'(t) € Vyg).

Du point de vue geometrlque le fibré V est ainsi caractérisé : un disque holomorphe
~v:(C,0) — X est tangent a V si et seulement si ou bien il est contenu dans une
des fibres de 7, ou bien il coincide avec le relevé f d’un disque holomorphe f de X
tangent a V.

Du point de vue algébrique, le fibré V est caractérisé par les suites exactes suivantes

(6) 0 Tg,x =V —=0g(-1) =0
et
(7 O—)O)?—nr*V@(’)X,(l)—)T;(X—)O,

ou Ty /X désigne le fibré tangent relatif associé a la fibration X — X. On déduit en
particulier que le rang de V coincide avec celui de V, et que dlm(X ) = dim(X) +
rk(V) — 1.

En itérant cette construction & partir de (Xo, Vo) := (X, Tx) nous obtenons une suite
de variétés dirigées (Xx, Vi )k>0 ; nous avons donc
Xk+1 = P(Vk)y Vi1 = ﬁ:
pour chaque k > 0. La dimension de X} est égale & n + k(n — 1).
On note Ox, (—1) — X le fibré tautologique induit par (Xx—1, Vk—1), et
ux € HY'(Xg, R) N H? (X, Z)

sa (premiere) classe de Chern. Pour chaque couple £ > [ nous allons utiliser les
notations 7y : Xz — X et m, : X — X afin de désigner les projections naturelles
respectives. Par la suite, il sera commode d’introduire la notation suivante : soit
a=(ay,...,axr) € Z* un k-uplet de nombres entiers. On pose

(8) OXk (a) = ®§=17r;,j (OXj (aj))'
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Pour £ > 2, on définit le diviseur Dy sur la variété X de la fagon suivante.
Considérons la suite exacte (6) associée au couple (Xk_1, Vk—1); en particulier, on a
I’injection naturelle

0— TXk—l/ch—2 — ‘7]6_1.

On définit 'hypersurface Dy, := P(Txk_1 / Xk_2) - P(Vk_l) comme projectivisé du
fibré tangent relatif correspondant & la projection mr_1 x—2. C’est une variété non
singuliére, et en utilisant la suite (6) on déduit 1’égalité

O(Dk) = Ox,(-1,1)
(voir [Dem95]).
Dans ce contexte, on a le résultat suivant.
THEOREME 1.4 ([Dem95]). — Soit X une variété compleze compacte, et soit Ji(X)

Uespace de ses k-jets. On note J,°® C Jix(X) la sous-variété des jets réguliers (i.e. les
classes d’équivalence des applications f : (C,0) — X telles que f'(0) #0).

(a) Il existe un plongement holomorphe ji : J, 5(X)/Gr — Xk, dont limage est
Vouvert de Zariski

X8 = ﬂjgkﬂ.k:;(xj \ D;).

Ainsi, la variété Xy peut étre vue comme compactification naturelle du quotient
J8(X)/Gg.

(b) Pour chaque m > 1, le faisceau image directe
(9) (m)xOx, (M) := Ej,m

est un fibré vectoriel sur X, dont l’espace des sections globales s’identifie avec les
différentielles holomorphes invariantes d’ordre k et de degré m.

(¢) Plus généralement, pour chaque a = (ay, ..., ar) € ZX tel que a1 +...+ar :=m,
l’image directe
(10) (k)4 (Ox,, (a)) C O(Ekm)

s’identifie au sous-fibré vectoriel dont les sections globales sont des différentielles in-
variantes

P= " ta(2)(d2)™ ... (d"2)™

a€Sa

ou on note Sy C Z’Jﬁk lensemble des o = (o, ..., a) défini par les relations
laa| + ...+ klax| =m, |opri| + ...+ (k —p)lar] < apr1 + ...+ ax

pour chaque p=0,...,k—1.
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Nous n’allons pas reproduire ici la preuve de ce résultat; néanmoins, voici les idées
principales. Pour le premier point, on définit ji comme suit : si f € J,°® est le k-germe
d’un disque holomorphe régulier, alors on considére ’application

= fin(0) € Xk

ol fix) désigne la k-ieme relevée de f. Cette application est constante sur les orbites
de Gy et ji est obtenue par passage au quotient. Les points (b) et (c) sont démontrés
en observant que pour toute section u € H° (X &, Ox, (m)) on obtient un opérateur
d’ordre k et de degré m en posant

P(f',..., f®) == u(f(0)) - (flp_py(0))®™;

il se trouve que P est une différentielle invariante. Nous invitons le lecteur a consulter
Particle [Dem95] pour une preuve compléte de ce théoréme. |

D’apreés le résultat précédent, on voit que l’existence des différentielles holomorphes
sur X est équivalente & ’existence des sections du fibré Ox, (a) sur X.

1.3. Les inégalités de Morse holomorphes

Soit L — Y un fibré holomorphe en droites sur une variété complexe compacte
Y de dimension N. On se propose d’évaluer ’ordre de croissance de la dimension de
Pespace des sections globales

RO(Y, L®™) := dim H° (Y, L®™)

lorsque m — oo. Pour cela, on dispose de la célebre formule de Riemann-Roch-
Hirzebruch-Grothendieck, qui exprime la caractéristique d’Euler de L®™ comme suit

N
(11) /ch(L®m) - Todd(X) =) _(—1)7hI (Y, L®™).
Y =0
C’est un résultat évidemment fondamental; toutefois, la présence des groupes de
cohomologie supérieurs dans le membre de droite de (11) fait que son utilisation dans
le but d’évaluer ’espace des sections globales de L®™ est a priori assez limitée.

Une version treés raffinée de ce type de résultat permettant d’évaluer individuellement
les groupes de cohomologie a été obtenue par J.-P. Demailly dans [Dem85].

Soit h une métrique hermitienne non singuliere sur L, et soit ©r 5 la forme de
courbure correspondante. Pour chaque 0 < ¢ < N, on désigne par Y (O p,q) l'en-
semble des points z € Y en lesquels la forme de courbure Oy, 5, a précisément g valeurs
propres négatives et n — ¢q valeurs propres positives. Nous remarquons ici que pour
définir les valeurs propres de Oy, on utilise une métrique de référence sur la variété
Y, mais leur signe ne dépend pas de cette structure supplémentaire. Aussi, les valeurs
propres nulles ne jouent aucun role.
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Nous définissons également I’ensemble de points d’indice au plus ¢ comme suit
Y(Orh <q) = U Y(Orn,T).
0<r<g
Le résultat suivant est un corollaire du théoréme principal de [Dem85).
THEOREME 1.5 ([Dem85]). — Sous les hypothéses et notations précédentes, on a
linégalité asymptotique
mN
RO, 18m) — (Y, > T | Oy, — o(m™);
N Jy(@rn<n)

en particulier, si fY(GL <) Gﬁh > 0, alors L est gros.

Les ensembles Y (O p, < 1) sont difficiles & manipuler, et pour cette raison le résultat
précédent est souvent utilisé dans sa version algébrique ([Tra95]). Par définition, un
fibré L est nef (numériquement effectif) si sa classe de Chern c¢;(L) est limite de
classes de Q-fibrés amples.

COROLLAIRE 1.6 ([Tra95]). — Soit Y une variété projective, et soient F et G deux
fibrés en droites nef surY, tels que ¢1(L) = ¢1(F) — ¢1(G). Si le produit d’intersection

(12) FN -NFN-1@

est strictement positif, alors L est gros, i.e. il existe une constante C > 0 telle que
RO(Y, L®™) > Cm™ , pour tout m > 1.

Le résultat suivant est une version ponctuelle de ce corollaire.

COROLLAIRE 1.7 ([Dem85]). — Soit g une forme réelle de type (1,1) sur une variété
compacte Y de dimension N. Supposons qu’on puisse écrire

g=m —"2
ot 1 et a2 sont des formes semi-positives sur'Y . Alors
(13) X@<n)g" > — Ny 1.
Donc s’il existe un Q-fibré L tel que {g} = c1(L), et si

/’Y{V“N/ 1 "y > 0,
Y Y

alors L est gros.

Dans la formule (13) ci-dessus, nous avons noté la fonction caractéristique de 1’en-
semble de points d’indice au plus 1 de g par x(g,<1)-

Nous désirons utiliser ces résultats pour montrer l'existence d’un vecteur
a=(ai,...,ar) € Z% tel que le fibré correspondant Ox, (a) soit gros. Le corol-
laire 1.6 montre qu’il suffit d’écrire ce fibré comme différence de fibrés nef, telle que le
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produit d’intersection (12) soit strictement positif. Nous allons analyser les propriétés
numériques de Ox, (a) ; ce sera l’objet du paragraphe suivant.

1.4. Propriétés numériques et classes de Chern

On voit sans peine que le fibré Ox, (1) est relativement ample (par rapport & la
projection ), mais dés que k > 2, ceci n’est plus vrai. En effet, considérons une
courbe rationnelle C C X; contenue dans une fibre de I’application m : X; — X.
L’espace tangent & C est un sous-fibré de Vi|c, et considérons la relevée canonique
Cy :=P(T¢) de C dans X2. Nous avons

Ox,(1)-CL=T%-C =2

donc on en déduit que le fibré Ox,(1) est trés loin d’étre relativement ample par
rapport & la projection w3 : X2 — X. Néanmoins, on a le résultat suivant, démontré
dans [Dem95], [Div08], [DR11].

LEMME 1.8 ([Dem95], [Div08], [DR11]). — Soit X C P? une variété projective ; pour

chaque entier k > 2 on note a := (a1,...,ar) € ZX un vecteur dont les composantes
sont des entiers positifs tels que pour tout j =1,...,k— 2 on ait

(14) a; > 3aj+1 ax—1 = 2a; >0 ;

on note également |a| := a1 + ...+ ax. Si Ox(1) désigne la restriction du diviseur
hyperplan correspondant au plongement X C P? ¢ X, alors le fibré

(15) Ox,(a) ® Ox(2al)

est nef.

Preuve (esquisse). — Nous allons rappeler ici en quelques lignes les arguments

de [Div08] ; on procéde par récurrence sur k.

Rappelons d’abord que l’espace cotangent Tp, ® O(2) est globalement engendré;
comme conséquence, on en déduit que T3 ® Ox (2) a la méme propriété. En particulier,
le fibré

Ox,(1) ® Ox(2)
est nef.

Supposons que pour un certain rang k nous ayons déterminé un fibré nef A
sur Xi—1, tel que Ox, (1) ® Ai soit nef. Nous voulons trouver Axy; sur X ayant
les mémes propriétés ; pour cela, on utilise les suites exactes (6) et (7) associées a la
variété dirigée (X, Vi) :

(16) 0— Tx,/x_; = V& = Ox,(=1) =0
et respectivement

a7 0— Ox;, = T p—1Ve-1® Ox, (1) = Tx,/x,_, = 0.
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En utilisant la suite (17) on montre ’existence d’un morphisme surjectif
A? (T k—1Vim1) = T%,/x._ ® Ox,(2) 2 0

donc le fibré Ty, | ®Ox, (2) ® AD? est nef. Considérons la suite duale & (16); on
en déduit que le fibré

Vi ® Akt
est nef, et on note Axy1 = AP ® Ox, (2).
En conclusion, le fibré

My = 0x,(2-3*72,...,2,1) ® Ox(2-3*71)

est nef — ceci est un cas particulier de 1’énoncé 1.8. Le cas général s’en déduit aisément

en observant que le fibré Ox, (a)®Ox (2|a|) peut s’exprimer en fonction de My, ..., M
comme combinaison linéaire & coefficients positifs, grace aux inégalités (14). Pour une
preuve compléte de ce lemme, nous renvoyons & [Div08]. O

Considérons maintenant a € ZF un vecteur dont les composantes vérifient les
relations algébriques (14). Il sera important par la suite (cf. [DMR10]) d’avoir un
critere pour l'existence des sections des multiples du Q-fibré

Ox,(a) ® K"
ou ¢ est un nombre rationnel positif. Pour cela on écrit le fibré

comme différence de deux fibrés nef (cf. le lemme précédent), et les inégalités de
Morse holomorphes montrent que le fibré Ox, (a) @ K ;ﬂal sera gros des que le produit
d’intersection

(Ox,(2) ® Ox(2la]))™ ~ i (Ox, (a) ® Ox (2[a])™ " - (Ox (2la)) ® KJ)
est strictement positif, ot ng :=n + k(n — 1).

Pour le reste de ce texte nous allons adopter les notations et conventions suivantes.
Soient | > k deux entiers positifs. La classe de Chern du fibré Ox, (1), ainsi que son
image inverse sur X; par I'application m; : X; — X}, sera notée uy. La classe de
Chern de la section hyperplane Ox (1), ainsi que ses images inverses, sera désignée
par le symbole h. Le produit d’intersection précédent devient

k Nk k ng—1
(18) (Z aju; + 2|a|h) — nklal ( Zajuj + 2|alh> (2h = bc1(X))

=1 j=1
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et on voit clairement que pour déterminer son signe on va devoir évaluer les nombres
p,,01,,02 ik
hPultuy’ ... uy

ol i3 + ...+ ix + p = ng. Pour cela, nous allons employer une récurrence a de mul-
tiples reprises, et nous rappelons maintenant & cet effet les relations algébriques entre
(uj)j=1,...k €t les classes de Chern de X. Par construction, pour chaque k¥ > 1, on a

(19) up + Y coo(Vi-1)up % =

50=1

Les suites exactes (16) et (17) permettent d’exprimer les classes de Chern de Vi_; en
fonction de uk—1 et des classes de Chern de Vi_2 (cf. [Dem95], [Div08]) : pour chaque
l=1,...,nona

l
(20) Csqo (Vk—l) = Z b(SO, Sl)uzo_—isl Csl (Vk—Z)

81:1

ot1 on note b(so,51) = (2% ) — (4,521, ). En itérant cette égalité, on obtient

Sp0—S1 80—81—-1
(21)
Cso(Vik—1)= Z b(s0, 81, -, Sk—1) U T uR 2 couF T e (X))
802812...28k-121
avec b(So,S1,...,8k—1) = b(s0,51)b(s1,52)...b(sk—2,8k—1). Un calcul immédiat

montre que

k-2

1
22 b(s0,81,...,8k—1) = (8)(n — s + 1)%0 k-1 —_—
(22) (80, 51 1) (s)( 0 ) J]-;-[](sj—sjﬂ)!

ol £(s) est un nombre rationnel, dont la valeur absolue est inférieure & 1. On peut
donc écrire 1’égalité (20) sous la forme

— 1)s0—P

(23) coVe) = 3 ety B IV i ),
ptlil=s0 '
ol i = (i1,...,%k-1), Ut = Hs;ll uf," et |i| :== i1 + ... + ix—1. Par substitution
dans (19), on obtient
1 1)yr—%—P .
(24) v Y BT e, (0 =0
p+i|+ik=n '

dans la somme précédente, on a % := (i1,...,ik-1) €t ix < n.
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2. DIFFERENTIELLES HOLOMORPHES SUR LES HYPER-
SURFACES DE L’ESPACE PROJECTIF, I

Nous allons présenter dans la suite la construction des différentielles holomorphes dans
Uordre chronologique, selon [Siu02], [Siul2], [DMR10] et [Dem11], respectivement.

Dans Particle [Siul2] publié trés récemment sur la Toile, Y.-T. Siu apporte des
précisions au sujet de son ancien projet dans [Siu02], [Siu04]. Compte tenu de la taille
impressionnante du manuscrit, il nous est difficile de présenter ici toutes les subtili-
tés des arguments invoqués dans la preuve. Cependant, dans ce chapitre nous allons
essayer de tracer le fil rouge des idées contenues dans larticle [Siul2], lesquelles impli-
queraient in fine une preuve de la conjecture de S. Kobayashi pour les hypersurfaces
génériques de grand degré de P!,

Soit X = (P = 0) une hypersurface de degré d dans I’espace projectif. Nous fixons

des coordonnées homogenes 2y, ..., 2,41 sur P**1 et pour chaque j = 1,...,n +1
soient r; = EO-L les coordonnées affines associées. Etant donné un couple d’entiers

positifs (mg, m) tel que
(25) mo + 2m < d,

considérons ’espace vectoriel V(myg, m) des polynémes

P = Z Da(2)dz .. dzgm

laa|+...+nlan|=m
ou pour chaque indice « le coefficient p, est un polynéme de degré inférieur ou égal
a myp. La dimension de cet espace est minorée par
mo+n+1\[/|2]+nn+1)-1

R [t AN
comme on le voit immédiatement par des calculs élémentaires.

Il se trouve que P définit une différentielle méromorphe d’ordre n sur P!
en utilisant les changements de coordonnées usuels de ’espace projectif, on déduit
dans [Siul2] que l'ordre des pdles de la restriction P|x n’excéde pas mg + 2m.

Ensuite, Y.-T. Siu montre (cf. proposition 3.8, p. 58, op. cit.) que ’espace vectoriel
V(mo, m) contient un élément P qui s’annule identiquement sur la sous-variété S de
X décrite en coordonnées affines par I’équation

(26) P, =1

(on note ici Py, la dérivée partielle de P par rapport & la variable z1). Si P est assez
général, alors S sera non singuliére, et on en déduit que le quotient

(le - 1)_179

est une différentielle holomorphe sur X, & valeurs dans O(mg + 2m — d).
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La condition d’annulation de P le long de S se traduit par un systéme d’équations
linéaires homogeénes (o les inconnues sont les coefficients des p,). Afin de montrer
que le systéme en question admet une solution non triviale, on tient compte du fait

que les 1-formes dzy,...,dx, ne sont pas indépendantes par restriction & X, car
n
(27) E P, (z)dz; = 0.
=1

Par la relation (27) et celles obtenues en la dérivant on peut donc éliminer
dzi,...,d"z; dans lexpression de P (quitte & multiplier P avec une puissance
adéquate de P,,). Suite & cette opération, le nombre d’équations de notre systéme
diminue considérablement, ce qui est crucial.

Ces arguments entrainent le résultat suivant.

PROPOSITION 2.1 ([Siu02]). — Considérons les paramétres réels ,€’,0,6’, 0 tels que
(28) nbo+0>n+e, 6 <1-¢.

Alors il existe mg < d% et m < d°, ainsi qu’un entier positif explicitement calculable
d(n,e,€'), tel que pour toute hypersurface X C P™*1 de degré d > d(n,e,€’) il existe
une différentielle holomorphe P € V(mg, m) non identiquement nulle, ¢ valeurs dans
le fibré Opni1(—d®).

Nous remarquons que les inégalités (28) sont nécessaires dans la preuve du résultat
précédent, ceci afin de montrer que le nombre d’équations du systeme d’équations li-
néaires homogéne mentionné auparavant est inférieur au nombre des inconnues. Aussi,
il se trouve que sous la condition

mo +2m < d,

la restriction & X de tout élément de V(mg, m) non identiquement nul sera non triviale,
cf. Lemma 3.4, p. 51. La quantité d(n, €, €’) peut étre donnée explicitement, voir [Siul2,
p. 61].

Les origines de la construction des différentielles holomorphes telle qu’elle est envi-
sagée dans [Siu02] se trouvent dans la construction classique des 1-formes holomorphes
sur les courbes planes. Soit C := (P = 0) C P? une courbe non singuliére. Alors on
définit la forme A (en coordonnées affines)

dr  dy.
=R
elle sera holomorphe dés que le degré de P sera assez élevé.

En conclusion, grace a la proposition 2.1, on contrble parfaitement les degrés de pa,
i.e. mg < d?. Ceci marque une différence de taille par rapport aux énoncés analogues
dans [DMR10], ..., obtenus « abstraitement », e.g. par les inégalités de Morse holo-
morphes, et c’est une information particulitrement précieuse (cf. les commentaires
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dans l'introduction de [Siul2], et dans le dernier paragraphe de ce texte). En contre-
partie, le degré d(n,e,e’) est beaucoup plus grand que celui obtenu dans [DMR10)]
(encore plus grand que celui de [Dem12]).

3. DIFFERENTIELLES HOLOMORPHES SUR LES HYPER-
SURFACES DE L’ESPACE PROJECTIF, II

Soit X une hypersurface non singuliére de degré d de ’espace projectif P**!. Nous
allons suivre dans ce paragraphe I’approche de S. Diverio, J. Merker et E. Rousseau
dans [DMR10] pour montrer Pexistence des différentielles holomorphes d’ordre n et de
degré m & valeurs dans K 3°*™ sur X, sous I'hypothése d > d1. Ici d2. et &, désignent
des nombres rationnels positifs explicitement calculables en fonction de n = dim(X).
Signalons également ’article trés intéressant [BeKil0] qui traite de questions voisines,
et que nous n’allons malheureusement pas pouvoir présenter ici.

L’idée de [DMR10] est d’utiliser la version algébrique des inégalités de Morse (cf. co-
rollaire 1.6) ; on doit montrer que le produit d’intersection (12) est positif si £ = n (et
si le degré d > d} est assez grand). Ce choix n’est pas arbitraire : suite aux résultats
de [Div08], [Rou06a], on sait que 'ordre k = n est le minimum pour lequel on puisse
espérer montrer que le groupe

H°(X, Epm)

n’est pas réduit a zéro, si m > 0.

Les classes de Chern de I'hypersurface X C P™*! s’écrivent ainsi (voir e.g. [DR11])
(29) cp(X) = Qp(d)h?
ot Qp(d) = >-P_,(—1)"*tP(}2)dP~" est un polynéme de degré p en d. Il sera com-
mode d’introduire la notation

(30) Qp(d) =) grd”™"
r=0

ou |gr| < (n+2)" pour chaque 7 = 0, ..., p. En combinant les égalités (24) et (29) nous

r!
obtenons la formule

p ; n—ig—p .
(31) up + (i) BTV rhpyigie — o,
1! k

p+|i|+ig=nr=0

ol on pose £(2) = 0 si i = n.

Les arguments de [DMR10] visant & démontrer le théoréme 0.3 s’articulent autour des
trois lemmes suivants.
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LEMME 3.1 ([Div09]). — Soit j := (j1,..-,Jn) € Z} un vecteur dont les coefficients
sont des entiers positifs et soit s € Z tels que s + |j| = n%. Alors le produit d’inter-
section

(32) hoult .. udr

est un polynéme en d de degré inférieur a n+ 1 — s. Ainsi, on peut écrire (18) sous
la forme

n n
( Z agug + 2|a|h>

t=1

2 2

n n—1
n?|al ( Zatut + 2|a|h> (2h — b1 (X))

t=1

n+1 n+1

= ) by(a)d? +0 by(a)de.
q=0 q=0

ou les by et Zq de la formule précédente sont des polynémes homogénes de degré n?

ena=(ai,...,an).

Preuve (esquisse). — On prouve ce lemme par une double récurrence sur n et jy, : si
jn < n—1, la quantité (32) vaut zéro, car la classe huj' ... u)"7}' vit en codimension

s+j1+-Hinr=85+|n|—jn>n*—n+1=dim(X,-1).
Sij,=n—-1,ona
(33) hudt . ulr Tttt = pPudt L uln )

(car la restriction du fibré en droites Ox,, (1) aux fibres du morphisme X, — X,,_;
coincide avec le fibré tautologique sur l’espace projectif) et on poursuit le raisonne-
ment. Si i, > n, alors on a

~ j oo (i + 1) P s i
hsu111 . ‘uzln - _ E § :e(l)qrdp—r_i'—hp SuZ+Ju.’ZLn+1/n n
ptlil+in=nr=0 )
et le lemme est démontré grace a ’hypothése de récurrence, car dans la somme ci-
dessus on a jn +inp — N < Jn. O

Dans le lemme suivant, nous allons analyser le coefficient b,4; du polynéme

n+1
Bsa(d) =Y (by(a) + b(a))d?.

q=0
Pour cela, il sera utile de définir le pavé
C:={(a1,...,an)eR":3”“j+...+3<912'<3""'+...+3+1, i=1,...,n—1}
n
et 1 <a, <n?

LEMME 3.2 ([Div09)]). — Il existe un élément a € CNZ" tel que bpy1(a) > 1.
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Preuve (esquisse). — Tout d’abord, remarquons que, si a € C, alors le fibré
Ox,(a) ® Ox(2[a])

est nef, car les composantes de a satisfont les relations algébriques requises par le
lemme 1.8. Ceci combiné avec le lemme 3.1 montre que

bn+1 (a) 20

pour tout a € C. Si le polynéme by, est identiquement nul par restriction & ’ensemble
CNZ", alors il est aisé de voir que ceci entraine ’annulation de tous ses coefficients.
Mais cette éventualité ne peut pas se produire, car

ut...up >0

dés que d > n + 2 (i.e. dés que Kx est ample). O

Il nous reste a majorer de fagon effective les autres coefficients de Bsa. Les compo-
santes de a sont bornées explicitement par rapport & n, car a € C. Par la formule
du binéme, on voit qu’il suffit d’estimer les coefficients des puissances de d dans les
expressions

houdt .. udn
olt @ + |j| = n? (cf. [DMRI10, théoréme 5.1]).
LeMME 3.3 ([DMRI10]). — Soit k£ > 1 un entier positif. On note c(k) le mazimum des

valeurs absolues des coefficients des polynémes hau{‘_. . .ui", ot a+|j| =n+k(n-1).
Alors nous avons linégalité

c(k) < (n(n+2)(k +n+2)) k("_l)Hc(k —1);
en particulier, c(n) < 22(°+M)p3(n°+n)
Preuve (esquisse). — L’argument est une « version itérée » de la preuve du lemme 3.1.
Considérons un vecteur j := (j1,...,jk) et un entier « tels que a+ |j| = n+k(n—1).

Comme nous ’avons déja vu, le produit correspondant ho‘u{1 .. .ui" est un polynéme
de degré au plus n + 1 par rapport & d. Sans perte de généralité on peut supposer
jkx = n, et comme dans la preuve de 3.1 on écrit
. . . . n .
Ul .. ult = —h%u L ut ) ufc’“_lcl(Vk_l)
=1
en utilisant la formule (19). On applique ce procédé & plusieurs reprises, afin de dimi-
nuer la puissance de ug jusqu’a n — 1; ceci donne
Je—n+1

(34) h%udt...ul* = £h%udt .. ulh} Z Z iy (Vie-1) -+ - ety (Vi—1).
=0 ULi+..+ls=jr—n+1
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Les indices [, figurant dans la somme varient entre 1 et n; par la formule (23), nous
obtenons

P (n—1+1)P ;
(35) a(Vi)= Y Ze(z)(n—T—)—qrdp_Thru’.
p+|i|=l 7=0 )

Tres grossierement, d’aprés la formule (34), pour trouver un majorant de c(k), il suffit
de multiplier ¢(k — 1) par le nombre

Je—n+1

> i n— lg—ps
¥ s i 3 Sk,

s=0 Ii+...4+ls=jx—n+1B8=1 \pg+|ig|=lg rg=0

La quantité sous le signe produit est majorée par

(nk + 3)lﬁ ;
on peut vérifier cette affirmation comme suit. Pour chaque 8 =1,...,s et g < on
doit évaluer le nombre
lg Pp lg—
(n—1lg+1)s—Ps
(36) > 2 R

18!
ps=175=1lig|=lp—ps A

L’inégalité ngzl grs < (n+ 3)Pf est une conséquence directe du fait que ¢, <
(n42)'7 par (30). Ensuite, par la formule du bindme on obtient 1’égalité

'r'ﬁ!

Z 1 (k —1)s—Ps
s (g —pp)!
sl oTe—p (Ig — pp)

et la quantité (36) sera donc majorée par

2. (n+3)P8 (k — 1)'87P8 (n — lg + 1)6 P8
Z B

0> —7s) < (B8+k + nk)ls;
s —DB)!

(37)

pp=1
en conclusion, on doit majorer la somme

Jk—n+1 .
(38) 3 <Jk_sn+1>(3+k+nk)s.

s=0

Mais ceci est vite fait, car I’expression (38) vaut

(39) (nk + k +4)™ 7"

et finalement, pour tout k < n, nous obtenons I’'inégalité
(40) c(k) < (n? +n+4)""c(k - 1),

3 partir de laquelle on déduit immédiatement la majoration de ¢(n). O
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Nous nous retrouvons & présent dans la situation suivante. Le produit d’intersection
figurant dans le lemme 3.1 s’écrit

n+1 n+1 »
> " by(a)d? +8)  by(a)d? ;
q=0 q=0

d’apres le lemme 3.2, nous pouvons choisir un vecteur ag € C tel que

bn+1(aO) 2 1.

Le lemme 3.3 et la relation ag € C fournissent une majoration explicite en fonction
de n pour les quantités ((bq(ao))ogqgn et (gq(ao))ogqsnﬂ' On peut donc choisir un
nombre rationnel positif § = 4,, tel que

bnt1(20) + Snbn+1(a0) > 1/2.

Ensuite, dans [DMR10] les auteurs déterminent une quantité effective d} telle que la
positivité du (18) sera vérifiée dés lors que d > d., ; ceci se fait par des considérations
élémentaires sur ’estimation des valeurs absolues des racines des polynémes d’une
variable en fonction de la valeur absolue de leurs coefficients.

Pour résumer, il existe (d,d,) € Z; x Q4 tel que pour toute hypersurface non
singuliere X de P™*! de degré d > d., on ait

(41) H°(X,EpmTx @ Kx°*™) # 0.

4. DIFFERENTIELLES HOLOMORPHES SUR UNE VARIETE DE
TYPE GENERAL

L’étude des questions qui nous intéressent dans cet exposé a enregistré un pro-
gres important grace aux travaux de J.-P. Demailly dans [Dem11], [Dem12]. Ceux-ci
montrent que le fibré O Py (1) est gros, pour toute variété de type général X, a condi-
tion que k > 0. Un résultat analogue dans le cas des hypersurfaces de P"*! avait
été établi auparavant par J. Merker dans [Merk10], par des méthodes différentes.
L’article [Dem11] est trés riche en contenu ; nous nous proposons de n’illustrer ici que
quelques aspects qui nous paraissent particuliérement frappants.

4.1. Métriques sur le Q-fibré Oxcc(1)

Tour d’abord on cherche & munir le Q-fibré O Xfc(l) d’une métrique, afin d’utili-
ser la version analytique des inégalités de Morse holomorphes (cf. [Dem85], et théo-
reme 1.5 dans le premier paragraphe de ce texte).
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Si k = 1, Pespace J1(X) s’identifie avec I’espace tangent T'x de X, et une métrique
sur Oxlcc(l) est simplement ce qu’on appelle une métrique de Finsler sur X. Par
exemple, si on fixe une métrique hermitienne w sur X, alors elle induit naturellement
une métrique sur Oxgo(1).

Si k > 2, la seule donnée (X,w) n’est pas suffisante pour munir Oxcc (1) d’une
métrique. Soit X = (J,cp Ua un recouvrement de X par un nombre fini d’ouverts de
coordonnées ; pour chaque o € A on fixe les coordonnées z, = (2,...,2") : Uy — C™.
Comme nous ’avons vu dans le paragraphe 2.1, ceci induit une carte pour la variété
de jets Jx(X)|v, — Ua X C™*, définie comme suit :

F = (£(0), fa(0),..., £P(0))
ou fo := z4 o f est I'image du k-jet f par 'application z,.

La définition de la métrique sur O xg6 (1) fait intervenir des parametres (&) =1,...k
telsque 1 = g1 > €2 > ... > gk > 0, un nombre entier p assez divisible, une métrique
hermitienne w sur X ainsi qu’une partition de 'unité (64 )aca subordonnée a (Uy).
Etant donné un k-jet f € Jk,z(X) en € X, on définit sa norme par la formule

k 1/1’
(42) Veo(f) = (Z%Zﬁ?’lfé”((’) Zz“) :

a€EA s=1
La fonction ¥, définit une exhaustion de la variété des k-jets Ji(X) de X, et elle
induit une métrique k. sur Oxcc (1) dont la forme de courbure sera désignée par Oc k.
Si on note py, la projection de Jx(X) \ {0} sur XF¢, on a

V=1

pz (eg,k) = —2;—6510g qle,w-
Afin de montrer que Oxcc (1) est gros, il suffit de montrer I'inégalité
(43) / erti=1 5o
XZ%(Ock,<1)

En regardant la définition (42) de la fonction ¥, ,, on pourrait a priori émettre des
doutes sur les propriétés de positivité de la forme de courbure associée. En effet,
si L est un fibré en droites et si on se donne une famille de fonctions indéfiniment
dérivables ¢, : U, — R, on peut construire une métrique h sur L en recollant des
métriques locales e~¥> par la partition de 'unité ,. En général, la courbure de (L, h)
peut étre substantiellement différente de la hessienne des fonctions locales ¢, .
Cependant, nous nous trouvons ici dans une situation spéciale : si les parametres
€2,...,Ek tendent vers zéro, la limite de U, , se trouve étre indépendante de la par-
tition de l'unité (). Donc, si les (¢;) sont petits, on peut espérer que I'influence des
(6,) sera réduite. C’est ce qu’on va montrer ensuite, cf. [Dem11].
Soit a € A, et supposons qu’on dispose d’un biholomorphisme

pa 5 (Us) = 15 1 (Ua),
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ou mp : XE¢ — X est la projection naturelle. On peut appliquer la formule de
changement de variables, et I'intégrale a calculer

@nk+1)-1

44) /
( XSS sr<Dlvg

est égale &

45 / o (en(k+l) -1
( ) XGC(0c,x,<1)|ug ok )

o1 on utilise la méme notation X<%(O, x, < 1)|y, pour désigner ensemble des points
d’indice au plus 1 dans X ,?G qui se projettent sur U, pour les deux formes sous le
signe de la somme dans (44) et (45) respectivement.

En utilisant la carte Jx(X)|y, — Uy x CF, on définit le biholomorphisme pq  :
Jk(X)an — Jk(X)an fibre & fibre
(46) Pae(x,&1,€2...,8&k) = (w,eflﬁl,sz_zﬁz . ,egk‘ﬁk).

L’importance de cette application réside dans le fait que la fonction
\Ile,w O Pa,e

est presque indépendante de la partition de I'unité ! Pour étayer ces propos, on esquisse
maintenant la vérification de cette affirmation pour le cas particulier k = 2.

On note gos la fonction de transition correspondant aux coordonnées (zo) et (z3),
i.e. 23 = gap(2a) ; la fonction de transition induite sur espace des 2-jets est

(47) (6[37 56) = (dgaﬁga’ dgaﬂga + dzgaﬂ (5(17 g;))
ou les dérivées sont calculées en 2.
Soit f un 2-jet en z, ; les composantes du 2-jet pq,c © f par rapport aux coordon-

nées o sont (fl,e52f!) et, d’apres la formule (47), ses composantes par rapport aux
coordonnées 3 sont

(dgaﬁféw 62_2dga,3fz/1/ + dzgaﬂ(f;u fc,x)) .

Alors en comparant les expressions

2p
|falZF +eflex?Falss  |dgapfal + €363 dgap e + d*gas(fa SOLL,
on voit qu’elles coincident a I’ordre C*°, modulo des termes d’erreur en «.

En conclusion, cet argument montre que dans ’évaluation de I'intégrale (43) on peut

supposer que la fonction ¥, ., est réduite & son expression locale (avec changement
d’échelle)

U(z, ..., 6%) = (lef 2”“) :

olt chaque &/ est interprété comme vecteur tangent en z.
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En utilisant des coordonnées géodésiques pour la métrique w, on a
E1L= 181+ > comsaznmméiéh,
o m!piaiﬂ

modulo des termes d’ordre 3 en z et, grace a cette formule, on montre (cf. [Deml1,
proposition 2.13]) que la forme de courbure associée & ¥ s’écrit

e RLICE T GE
ee,k = wk(&) + \/—— Z |£z| Z ijﬂal_gi—l-z_dzj Adz™ H

- 12 ;
2 =1 v Ef:l |§J| P/ m,j,a,0

on a noté ici

Us

k 1/p
—1 _ N
wnle) = YL oBlog (2‘; |s’|2"/’>
1=
l’analogue de la forme de Fubini-Study pour 1’espace projectif & poids, et les coeffi-
cients (c¢;jmpg) sont ceux de la forme de courbure de (T%,w) au point z.

A présent, il est clair que la positivité relative du fibré O X56 (1) est cruciale : 'ouvert
des points ol sa forme de courbure est d’indice au plus 1 est entierement déterminé
par la courbure de (X,w). En anticipant un peu sur la suite, on peut montrer que,
lorsque k > 0, ce n’est pas l'intégralité du tenseur de courbure qui contribue aux
termes dominants, mais seulement sa trace, & savoir la courbure de Ricci (voir aussi
le calcul de la caractéristique d’Euler dans [GG80]).

Une fois cette situation comprise, le calcul de l'intégrale (43) dans [Demll] ne
présente plus de complications importantes, mais il est assez long et comporte quelques
points délicats. Avant d’en donner un trés bref aper¢u dans le paragraphe suivant,
une observation générale voisine se dégage quant aux techniques discutées ici.

Remarque 4.1. — Considérons une suite exacte de fibrés
0-F—>E—-G—-0

et supposons F' et G munis de métriques hermitiennes hr et hg respectivement. Via
un scindage C*° (non holomorphe en général) E ~ F @ G, on obtient une métrique
sur E, dont la forme de courbure s’exprime en fonction de O, Oc,ne €t de la se-
conde forme fondamentale de la suite précédente. Cette derniére quantité (i.e. son
analogue pour les applications entre espaces fibrés) semble absente de nos considéra-
tions dans ce paragraphe; bien entendu, ce n’est pas le cas. N’oublions pas que c’est
la forme de courbure du fibré Og(1) qui nous intéresse, et dans son expression on a la
courbure de E évaluée dans les directions [£] du fibré dual E*. Ainsi, la seconde forme
fondamentale apparait dans les termes non diagonauz, qui ne sont pas perceptibles
lorsqu’on fait agir les changements d’échelle p., mais apparaissent certainement dans
les termes d’erreur.
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Comme conséquence, on en déduit ’énoncé suivant : supposons que F (ou G) est
muni d’une métrique dont la forme de courbure est semi-positive, et que G (ou F) est
gros (au sens de Hartshorne). Alors E est gros.

4.2. Les calculs
En travaillant en coordonnées polaires (cf. [Demll, p. 18]), on voit que l'inté-
grale (43) devient
kn —1)!
(48) (‘n‘t.nﬁ‘)“ / / Xoi (2,2, w)gk(2, T, u)"dvdp
nl(k!) 2€X J(@u)€Ap_ x(S2n—1)k

ou on utilise les notations

Ag_q1:= {(xl,...,l'k) S Rﬁ_ : le = 1};

i=1
les mesures par rapport auxquelles on integre sont

dv:= (z1...2%)" " 'd\, dp := mesure produit sur (Szn_l)k.

Finalement, on note

k
(49) gk (2, T, u) = ST Z —l—’ Z Cimpauguadz’ A dz™
=1 m,j,a,B
et xg, est la fonction caractéristique correspondant a I'ouvert des points (z,z,u) €
X x A x (.5‘2"“1)1C ou l'indice de gy est au plus 1.
Pour déterminer la valeur asymptotique de la quantité (48) lorsque k — oo, on propose
deux méthodes dans [Dem12].

— On commence par observer que le calcul est immédiat si les coefficients du
tenseur de courbure (¢jmga)j,m,qa,p de (T%,w) vérifient

(50) Cjmpa = Tjmdap

(autrement dit, si la matrice de courbure est diagonale et telle que les formes sur
la diagonale coincident). Dans ce cas, la forme g est particuliérement simple,
nous avons une parfaite corrélation entre les points d’indice au plus 1 sur X ,? G
et sur X, et on obtient

- log k)™ _
51 / 6”(k+1) 1 — £_ / 0011 +O((log k 1
o Xge(@n<)) (kD [y X ((log &)™)
ot1  est la courbure du fibré canonique, muni de la métrique déduite de w. Etant

donné que par hypothése Kx est ample (ou au moins gros, mais nous n’allons
pas discuter cette version ici), on peut supposer que 6 est définie positive.
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En général il n’y pas de raison que la courbure de (T, w) ait une forme aussi
particuliere que celle demandée dans (50). Mais on peut toujours décomposer la
forme gi en

9k = 958 + Gi

olt dans la définition de gi'®® on remplace chaque coefficient c;mpw par

n
ij = 1/7150,5 Z Cimaa
a=1

et dans celle de gk par ¢jmpa = ¢jmpa — Ojmdas. On montre (cf. [Demll]) que
la contribution de la forme de trace nulle gi dans le calcul de (48) est de 'ordre
de grandeur %, ce qui marque la fin de la preuve. Bien entendu, au cours
de la « vraie » démonstration de [Demll] il y a quelques points délicats — des
estimées de déviation de nature probabiliste — que nous ne pouvons pas évoquer
ici.

Observons pour finir que malgré sa souplesse, cette méthode ne permet pas de
déterminer un ordre optimal k & partir duquel on obtient des sections du fibré
o XG0 (m), bien qu’elle permette tout de méme d’obtenir des bornes explicites
pour k en fonction des invariants de X.

— La deuxiéme méthode fait intervenir une borne inférieure pour le tenseur de
courbure du fibré cotangent, dans le sens suivant.

Soit E un fibré vectoriel sur X, muni d’une métrique h dont la forme de
courbure en un point xg € X s’écrit

/o1 o
On(E)z, = 5 Z Ri55dz" Ndz' ® eg ® e,
i,j,a,8
On dit que (E, h) est positif au sens de Griffiths si on a
Z Rﬂﬁal’jﬁfﬁﬁ_"‘ 20
i,5,0,8
pour tout couple de vecteurs (v,€) € T'x,z, X Eg,.
Soit w une métrique sur X ; supposons qu’il existe une forme <y sur X telle que
Z Cirpt? VIEPER > — ‘—-v’;{]ﬂ?
jifo = A/yz
i,5,0,8

ol on note ¢;;55 les coefficients de la courbure de T} par rapport & la métrique

déduite de w. Ici v est un vecteur tangent et £ est un vecteur cotangent en zg.
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Dans ce cas on écrit la forme gx comme différence de deux formes définies
semi-positives sur X, notamment g := g,lc - g,% ; on note

k
1 V=1 Zi i i dzd m
g0 =5 == > (cjmpa + Ymbas)uuidsd A dzT

i= 1 m’j? (e $ﬂ
et respectivement

g,(cz) = |ul? Z'yﬁvjﬁdzj Adzt.
i?j

On controle I'intégrale sur I’ensemble des points d’indice au plus 1 de gi sur
X en appliquant le corollaire 1.7. En fait, il sera utile de travailler dans un
cadre un peu plus général, et de considérer le fibré Ly := Oxgc(1) ® A% (cf.
notations dans le théoréme 0.4); on montre dans [Dem12], pages 52-53 que si
k>nona

N'I’L,k / @n+kn—1
( )X,?G(hk,@ Lot
> [ @kt m)" = o, / (Okxo +17)" (@ s +17)
X X

ou les symboles N(n, k) et c(n, k) sont des nombres rationnels positifs explicites
tels que

(nlog(nlog 24n))"

W=

c(n,n) €
(cf. [Dem12, p. 52-53]).

En conclusion, le fibré Ly sera gros dés que la condition numérique suivante est
satisfaite :

(52) / (Okx s + 1) > c(n,m) / (Okx o +17)" (O ans + 7).
X X

5. LA CONJECTURE DE GREEN-GRIFFITHS POUR LES HYPER-
SURFACES GENERIQUES DE L’ESPACE PROJECTIF

Pour montrer que toute courbe transcendante tracée sur une hypersurface géné-
rique X de P™*! est algébriquement dégénérée, dans [DMR10] les auteurs utilisent
une stratégie mise au point par Y.-T. Siu dans [Siu02], [Siu04], et écrite en détail
trés récemment dans [Siul2]. Nous allons la présenter briévement par la suite, mais
d’abord nous rappelons le théoréeme d’annulation fondamental mis en jeu.
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THEOREME 5.1 ([Siu97], [Dem97]). — Soit P une k-différentielle holomorphe de de-
gré m a valeurs dans le dual d’un fibré ample sur X. Alors

P,...,¢") =0

pour toute courbe entiére ¢ : C — X.

Les résultats présentés dans les paragraphes précédents montrent ’existence de
sections non-triviales du fibré E,, ,,T% ® A~ si le degré de X C P"*! est assez élevé.
Par le théoréme 5.1 ci-dessus, I'image de la dérivée d’ordre n de toute courbe entiere
¢ se situe dans une sous-variété propre Y C X,,. Nous voudrions cependant montrer
qu’il existe une sous-variété Y verticale par rapport a la projection X, — X (i.e. telle
que son image dans X n’est pas dense).

Soit X ¢ P*t! x PVe ’hypersurface donnée par la relation

X = {(z,A) e Pl x pNe ; Zaazo‘ = 0},

ot Ng := ("*4+1) — 1. 1l se trouve que X’ est une variété non-singuliére, de bidegré
(d,1). Comme conséquence du fait que le degré de X' par rapport aux variables A est
égal & 1, on peut construire des champs de vecteurs méromorphes sur X dont 1’ordre
des pdles est indépendant de d; en fait, C. Voisin montre dans [Vois98] que le fibré

(53) Tx ® Opn+(1)

est engendré par ses sections globales. Bien entendu, les vecteurs construits dans
le théoreéme 5.2 ne seront pas tangents au point générique des fibres de la projection
7n : X — PNd (c’est en référence A cela que Siu les appelle obliques), mais néanmoins,
leur existence sera déterminante pour montrer le théoréme 0.5. En fait, on aura besoin
d’une généralisation des résultats de [Vois98], dans le contexte des jets.

Pour chaque entier positif k, on définit la variété J;°®(X) des k-jets relatifs de
X qui consiste en classes d’équivalence des disques holomorphes contenus dans les
fibres de la projection my. Le résultat suivant est démontré dans [Merk09] et [Siul2]
(voir également [Pa08] pour un argument « & la main » dans le cas n = 2). On prend
ici k =mn.

THEOREME 5.2 ([Merk09)], [Siul2]). — Le fibré vectoriel

(54) TJ;”fE(x) ® Opn+1 (’I’L2 +2n) ® Opn,(2)

est engendré par ses sections globales G, -invariantes.

La preuve de ce résultat ne sera pas esquissée ici; on se contentera de mentionner

que la construction de champs de vecteurs est explicite, selon un algorithme tres bien
expliqué dans [Merk09].

ASTERISQUE 361



(1061) DIFFERENTIELLES HOLOMORPHES ET HYPERBOLICITE 107

En utilisant le théoreme précédent, le résultat de non-annulation 0.5 procede comme
suit (& quelques virgules prés, les arguments sont identiques dans les trois articles
[Siu02], [DMR10], [Dem12]).

Soit X une hypersurface non-singuliere de degré d dans P™*! ; nous supposons que
X est générique, dans le sens suivant. Soit ag € PN tel que X = A,,. Alors toute
différentielle holomorphe d’ordre n et de degré arbitraire se prolonge au voisinage
de aq.

Nous avons vu dans les paragraphes 3 et 4 que si d est assez grand, il existe une
différentielle holomorphe P d’ordre n et de degré m >> 0 a valeurs dans K }_(5"'". Dans
les articles cités précédemment la constante &, n’est pas la méme, mais ce n’est pas
important ici.

Localement, en tant que fonction sur J,(X) on peut écrire P sous la forme

Pz = Y, pal)E)*... ()
|lai]|+...+njan|=m
(on utilise ici les notations multi-indices) ; pour z € X générique, le polynéme P(z, -)
n’est pas identiquement zéro, donc son ordre d’annulation en un point (disons (&o),
correspondant au jet v dans le théoréme 1.5) est au plus m. La différentielle holo-
morphe P se prolonge au voisinage de ap, car X est générique. Donc une nouvelle
différentielle holomorphe sera produite en dérivant ’extension de P dans la direction
d’un champ de vecteurs, puis en considérant la restriction du résultat & X,,. Si on a

(55) ve H° (X, TJ;eg(X) ® Opn+1 (’I’l2 +2n) ® Opn, (2)) ,

alors la dérivée de 'extension de P dans la direction v sera une différentielle holo-
morphe de degré n & valeurs dans

K)_(a"m ® Opn+1 (’I’L2 + 2n).

Afin de montrer le résultat de non-annulation 0.5, on doit dériver au plus m fois,
compte tenu de la discussion précédente concernant les singularités de P par rapport
aux variables €. La différentielle ainsi construite induira une équation pour la courbe
entiere ¢ : C — X a condition que

(56) 6n(d—n—2) >n? 4 2n.

e Conjointement avec la condition nécessaire pour produire la différentielle holo-
morphe P dans le paragraphe 3, 'inégalité (56) impose dans l'article [DMR10] la
contrainte

(57) d>o.

Ceci marque la fin de notre survol de ce travail. Nous remarquons que la seule raison
qui empéche les auteurs de [DMR10] de montrer I’hyperbolicité de X (et non pas
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« seulement » la dégénérescence des courbes entiéres) est ’absence de controle de la
taille des singularités des coefficients p, dans (2.1).

e Dans article [Dem12] que nous décrivons briévement, J.-P. Demailly obtient une
amélioration considérable du degré obtenu dans (57), que nous décrivons briévement.

Soit X € PV une sous-variété. On a déja vu dans la démonstration du lemme 1.8
que le fibré vectoriel T% ® O(2) est engendré par ses sections globales. L’observation
suivante est qu’'un fibré vectoriel engendré par ses sections globales admet une mé-
trique hermitienne telle que la forme de courbure associée soit positive au sens de
Griffiths.

En conséquence, les résultats présentés dans le paragraphe 4 montrent qu’il suffit
de satisfaire I’inégalité (52), avec des données qui sont les suivantes. La forme v est la
restriction & X de 2wpg, la forme de Fubini-Study et A := O(n* — 2n) (ce choix est
dicté par 1’ordre des poles des champs de vecteurs construits dans le théoréme 5.2).
Ainsi, [Dem12] prouve que la conjecture de Green-Griffiths est vérifiée a partir du
degré
nd

dy == ?( log(nlog 24n))".
Remarquons que dans l'article [DMR10] on doit écrire le fibré tautologique comme
différence de fibrés nef directement sur la variété X,, ce qui induit un manque de

précision considérable et se traduit par une augmentation substantielle de la borne d,.

e Y.-T. Siu annonce dans Varticle [Siul2] I’hyperbolicité des hypersurfaces de grand
degré de P™*1. En reprenant les notations du paragraphe 3, son idée est de montrer
que les polynémes (p, ) ne sont pas trop singuliers par restriction & X (comme nous
Pavons vu dans ce paragraphe, ceci est une information cruciale, qui a un impact
direct sur le nombre de fois que doivent dériver les différentielles holomorphes pour
obtenir 0.5). Nous rappelons que pour chaque indice @ on a p, € H° (X ,Ox (6)), ou
8 < d% est un entier positif, et ’assertion dans [Siul2] est que le degré J sera une borne
supérieure pour les singularités de p,|x. En principe, il est trés probable que cela soit
ainsi, car X est générique. Cependant, cette affirmation nous semble loin d’étre im-
médiate (ou banale), car les coefficients p, des différentielles holomorphes construites
dans [Siul2] dépendent de 1’élément a € PN¢ correspondant & X . Les arguments qu'il
invoque dans sa démonstration sont actuellement en cours de vérification.

Remarque 5.3. — L’analyse des points base des différentielles holomorphes telle que
décrite dans ce paragraphe fait intervenir des objets « extérieurs » & la variété X,
notamment les champs de vecteurs obliques dans le théoréme 5.2. Il serait plus que
souhaitable de disposer d’une approche complémentaire pour cette partie de la preuve
de la conjecture de Green-Griffiths relative au cas des hypersurfaces de P™+1.
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Remarque 5.4 (communiquée par S. Diverio). — Remarquons pour finir qu'’il n’est
pas raisonnable d’espérer que ’abondance des différentielles holomorphes (théo-
réme 0.5) dans le cas des hypersurfaces de ’espace projectif se produise pour toutes
les variétés de type général. En effet, il existe des surfaces complexes S dont le
revétement universel est le bidisque, telles que ¢ = 2cy et qui ont la propriété
suivante. Pour tout point x € S et pour tout k > 1 il existe un k-jet j, de S en x qui
se trouve dans l’ensemble des zéros de toute différentielle holomorphe d’ordre k et
de degré arbitraire (ce résultat est & comparer avec le théoréme de S. Lu, cf. [Lu91],
compte tenu des propriétés des classes de Chern de S). Nous renvoyons le lecteur &
article de S. Lang cf. [Lan86] ; une analyse détaillée des exemples dans cet article a
été récemment faite dans [DR12).
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