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Séminaire BOURBAKI 
65 e année, 2012-2013, n° 1072, p. 397 à 419 

Juin 2013 

CATEGORIFICATION OF LIE ALGEBRAS 
[after Rouquier, Khovanov-Lauda, ...] 

by Joel K A M N I T Z E R 

INTRODUCTION 

Categorification is the process of finding hidden higher level structure. To cate-
gorify a natural number, we look for a vector space whose dimension is that number. 
For example, the passage from Betti numbers to homology groups was an important 
advance in algebraic topology. 

To categorify a vector space V, we look for a category C whose Grothendieck group 
is that vector space, K(C) = V. If V carries an action of a Lie algebra g, then it is 
natural to look for functors Fa : C -» C for each generator a of g, such that Fa gives 
the action of a on the Grothendieck group level. In this case, we say that we have 
categorified the representation V. 

There are two general motivations for trying to categorify representations. First, 
by studying the category C, we hope to learn more about the vector space V. For 
example, we get a special basis for V coming from classes of indecomposable objects 
of C. Second, we may use the action of g on C to learn more about C. For ex­
ample, Chuang-Rouquier used categorification to prove Broue's abelian defect group 
conjecture for symmetric groups. 

Recently, there has been amazing progress towards constructing categorifications 
of representations of semisimple (or more generally Kac-Moody) Lie algebras. In 
this report, we aim to give an introduction to this theory. We start with the cat­
egorification of SI2 and its representations. We explain the naive definition and 
then the "true" definition, due to Chuang-Rouquier [CR]. We also explain how this 
definition leads to interesting equivalences of categories. We then address general 
Kac-Moody Lie algebras, reaching the definition of the Khovanov-Lauda-Rouquier 
2-category [R2, KL3]. We explain the relationship to Lusztig's categories of perverse 
sheaves, due to Varagnolo-Vasserot [VV] and Rouquier [R3]. We close by discussing 
three fundamental examples of categorical representations: modular representation 
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398 J. KAMNITZER 

theory of symmetric groups (due to Lascoux-Leclerc-Thibon [LLT], Grojnowski [Gr], 

and Chuang-Rouquier [CR]), cyclotomic quotients of KLR algebras (due to Kang-

Kashiwara [KK] and Webster [Wl]), and quantized quiver varieties (due to Zheng [Z] 

and Rouquier [R3]). 

In order to keep the exposition readable, we have made a number of simplifications 

and glossed over many details. In particular, we only address simply-laced Kac-Moody 

Lie algebras (and when it comes to the geometry, only finite-type). We suggest that 

interested readers consult the literature for more details. 

Throughout this paper, we work over C; all vector spaces are C-vector spaces (some­

times they are actually C(g)-vector spaces) and all additive categories are C-linear. 

I would like to thank R. Rouquier, M. Khovanov, and A. Lauda for developing the 

beautiful mathematics which is presented here and for their many patient explanations 

(an extra thank you to A. Lauda for allowing me to use his diagrams). I also thank 

D. Ben-Zvi, R. Bezrukavnikov, A. Braverman, J. Brundan, C. Dodd, D. Gaitsgory, 

H. Nakajima, A. Kleshchev, A. Licata, D. Nadler, B. Webster, G. Williamson, and 

O. Yacobi for interesting discussions about categorification over many years and a 

special thank you to S. Cautis for our long and fruitful collaboration. Finally, I thank 

S. Cautis, M. Khovanov, A. Lauda, C. Liu, S. Morgan, R. Rouquier, B. Webster and 

O. Yacobi for their helpful comments on a first draft of this paper. 

1. CATEGORIFICATION OF sl2 REPRESENTATIONS 

1.1. The structure of finite-dimensional representations 

The Lie algebra s[2(C) has the basis 

e = [°oh], > » = [ S - 0 i ] , / = [?81-

Consider a finite-dimensional representation V of sk- A basic theorem of represen­

tation theory states that h acts semisimply on V with integer eigenvalues. Thus we 

may write V = 0 r G z K as the direct sum of the eigenspaces for h. Moreover the 

commutation relations between the generators e, / , h imply the following. 

(1) For each r, e restricts to a linear map e : Vr —> Vr+2-

(2) Similarly, / restricts to a linear map / : Vr —ï K-2-

(3) These restrictions obey the commutation relation 

(1) ef - fe\Vr=rIVr. 

Conversely, a graded vector space V = along with raising and lowering operators 

e, / as above, defines a representation of 5I2 if these operators satisfy the relation (1). 

The following example will be very instructive. 
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(1072) CATEGORIFICATION OF LIE ALGEBRAS 399 

Example 1.1. — Let X be a finite set of size n. Let V = Cp(x^ be a vector space 

whose basis consists of the subsets of X. For r = —n, —n + 2 , . . . , n, define Vr to be 

the span of subsets of size k, where r = 2k — n. 

Define linear maps e : Vr —>• / • Vr —>• Vr-i by the formulas 

(2) e ( 5 ) =
 T< E T 

TD5, |T| = |5 | + 1 TC5, |T | = | 5 | - 1 

It is easy to check that ( e / — fe)(S) = (2k — n)5, if S has size k. (The basic reason is 

that there are n — k ways to add something to S and k ways to take something away 

from S.) 

Thus this defines a representation of s^- In fact, this representation is isomorphic 

to an n-fold tensor product (C 2 )® 7 1 of the standard representation of s^-

We will also need the concept of a representation of the quantum group Uqsl2, 

though we will neither need nor give an explicit definition of Uqs\i. 

For each integer r, let 

[r] := £^£L = < f - i + g - 3 + . . . + g - r + i 

denote the quantum integer (the second expression is only valid if r ^ 0). 

A representation of Uq$i2 is a graded C(q) vector space V = (&Vr along with raising 

e : Vr -> F r + 2 and lowering / : K —>> K - 2 operators such that ef — fe\yr = [r]Iyr. 

1.2. Naive categorical action 

Once we think of an representation in terms of a sequence of vector spaces 
together with raising and lowering operators, we are led to the notion of an action of 

on a category. 

DEFINITION 1.2. — A naive categorical 5(2 action consists of a sequence Dr of ad­

ditive categories along with additive functors E : Dr -> Dr+2, F : Dr —> Dr-2, for 

each r, such that there exist isomorphisms of functors 

(3) EF\or — FE\DT © I®*, ifr^O 

(4) FE\DR^EF\DR®I®R

R, ifr^O 

Suppose that the categories Dr carry a naive categorical s {2 action. Then we can 
construct a usual $[2 representation as follows. We set Vr = K(Dr), the complexified 
split Grothendieck group. The functors E, F give rise to linear maps e : Vr —> Vr+2, 

f : Vr -> Vr-2 and we can easily see that (3) and (4) give the commutation relation 
(1). Thus we get a representation of on V = (&Vr. We say that the categories Dr 

categorify the representation V = 0T^. 
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400 J. KAMNITZER 

It is also useful to consider a graded version of the above definition. A graded 

additive category is a category C along with an additive functor (1) : C —> C. We 

define a graded naive categorical sfe action as above but with (3), (4) replaced by 

EF\Dr ^ FE\Dr e IDr(r -1) e . • • e IDr(-r + 1), if r ^ 0 

FE\Dr ^ EF\Dr e iDr(r -1) e •. • e iDr<-r +1>, if r < o 

The Grothendieck groups K(Dr) will then carry an action of Uqsl2-

We will now give an example of a naive categorical action which will build on 

Example 1.1. 

In Example 1.1, we studied subsets of a finite set. There is a well-known analogy 

between subsets of an n-element set and subspaces of an n-dimensional vector space 

over a finite field ¥q, where q is a power of a prime. This analogy suggests that we try 

to construct a representation of on 01^., where Vr = C G ^ ' F ^ is a C-vector space 

whose basis is G(fc,F™), the set of fc-dimensional subspaces of F™ (where r = 2k — n 

as before). If we define e , / as in (2), then we get a representation of the quantum 

group U^/q-zh (after a slight modification). 

The finite set G(A;,F™) is the set of Fg-points of a projective variety, called the 

Grassmannian. By Grothendieck's fonctions-faisceaux correspondence, we can cate-

gorify C G ( f c ' F ^ using an appropriate category of sheaves on G(k,Fq). For simplicity, 

we switch to characteristic 0 and consider sheaves on G(A;,C n), the Grassmannian of 

fc-dimensional subspaces of C n . 

For each r = - n , —n + 2 , . . . , n, we let Dr = Dh

c{G(k, C n ) ) denote the bounded 

derived category of constructible sheaves (again here r = 2k — n). These are graded 

categories, where the grading comes from homological shift. With the above motiva­

tions, we will define a categorical 5(2 action using these categories. 

For each k, we define the 3-step partial flag variety 

Fl(k,k + l , C n ) = {0 C V C V C C n : dimV = fc,dimV = k + 1} 

Fl(k,k+ l , C n ) serves as a correspondence between G(fc,C n ) and G(k + l , C n ) and 

thus it can be used to define functors between categories of sheaves on these varieties. 

Let p : Fl{k, k + 1, C n ) -> G(Jfe, C n ) and q : Fl(k, k + 1, Cn) -> G(k + 1, C n ) denote 

the two projections. 

We define 

E:Dr = Db

c(G(k, C n ) ) D r + 2 = Db

c{G{k + 1, C n ) ) 

A*-> q*(p*A) 

F : Dr-^ Dr-2 

A^p*{q*A) 

The above definition of E, F parallels the definition (2). 
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The following result was proven in an algebraic context ( ie . , after applying the 
Beilinson-Bernstein correspondence) by Bernstein-Frenkel-Khovanov [BFK]. 

THEOREM 1.3. — This defines a graded naive categorical SI2 action. 

The proof of this theorem is relatively straightforward. To illustrate the idea, 
let us fix V e G(kXn) and consider Ax = {V : V C V\dimV = k + 1 } and 
A2 = {V : V D V'^dimV = k — 1 } ; these are the varieties of ways to increase or 
decrease V. Note that A\ is a projective space of dimension n — k — 1 and A2 is a 
projective space of dimension fc — 1. Thus dimH*(A2) — dimH*(Ai) = 2k — n. This 
observation combined with the decomposition theorem proves the above result. 

Remark 1.4- — The Grothendieck group of these categories Dr is actually infinite-
dimensional. To cut down to a finite dimensional situation, we can consider the full 
subcategories D'r = Psch(G(k,Cn)) consisting of direct sums of homological shifts of 
IC-sheaves on Schubert varieties. The subcategories Dr

r carry a naive categorical ${2 
action and by considering dimensions of weight spaces, we can see that they categorify 
the representation ( C 2 ) 0 n . 

1.3. Categorical sb-action 

In the definition of naive categorical sl 2 action, we only demanded that there 
exist isomorphisms of functors in ( 3 ) and ( 4 ) . We did not specify the data of these 
isomorphisms. This is very unnatural from the point of view of category theory. 
However, it is not immediately obvious how to specify these isomorphisms nor what 
relations these isomorphisms should satisfy. 

In their breakthrough paper, Chuang-Rouquier [CR] solved this problem. First, it 
is natural to assume that the functors E, F be adjoint (this is a categorification of the 
fact that e, / are adjoint with respect to the Shapovalov form on any finite-dimensional 
representation of 5I2) . 

Now (assume r > 0 ) , we desire to specify a isomorphism of functors 

(0, Vo, • • •, ^ r - i ) : EF\Dr -+ FE\Dr 0 I®; 

so (/) e Hom(KF, FE) ^ Uom(EE,EE) (using the adjunction) and ^s e 
Rom(EF,I) = Hom(2?, E) (again using the adjunction). Thus it is natural to 
choose two elements T G Kom(EE,EE) and X e Hom(E,E) such that <f> corre­
sponds to T and ips corresponds to Xs for s = 0 , . . . , r — 1. 

This leads us to the following definition, essentially due to Chuang-Rouquier [CR]. 

DEFINITION 1.5. — A categorical ${2 action consists of 

( 1 ) a sequence Dr of additive categories, with Dr = 0 for r <^0, 

( 2 ) functors E : Dr -> Dr+2, F : Dr Dr-2, for each r, 
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(3) natural transformations e : EF -> 7, r\ : I -> FE, X : E -+ E, T : E2 E2 

such that the following holds. 

(1) The morphisms e,rj are the units and counits of adjunctions. 

(2) Ifr^O, the morphism 

(5) (v,e,eoXIF...,eoXr-XIF) : EF\Dr -+ FE\Dr 0 1 ^ 

is an isomorphism, where a : EF -> FE is defined as the composition 

EF ^ > FEEF FEEF FE. 

(And we impose a similar isomorphism condition ifr^O.) 

(3) The morphisms X, T obey the following relations. 

(a) InHom(E2,E2), we have XIEoT-ToIEX = IE2 = ToXIE - IEX oT. 

(b) In Hom(E2,E2), we have T2 = 0. 

(c) In Hom(E 3 , Es), we have TIE o IET o TIE = IET o TIE o 1ET. 

Remark 1.6. — If we work in the graded setting, then it is natural to ask that X have 

degree 2, i.e., that it be a morphism X : E —> 25(2). Likewise, we give T degree —2. 

The degrees of e and rj depend on r. 

At first glance, it is not apparent where the relations among the X , T come from. 

To motivate them, we introduce the nil amne Hecke algebra. 

DEFINITION 1.7. — The nil affine Hecke algebra Hn is the algebra with generators 

xi,...,a;n,£i,..., tn-i and relations 

t2 = 0, UU+iU =t1+it1t1+iUtj = tjU if \i — j \ > 1, 

X{Xj — XjX{) tiXi X<i-^-\ti — 1 — Xjti t\Xi-^.\ 

Suppose that we have a categorical s^-action. Then the morphisms X, T gener­

ate an action of Hn on En. More precisely, we have an algebra morphism Hn —> 

Hom(2£ n ,E n ) by sending Xi to IEi-iXIEn-i and U to IEi-iTIEn-i-i. The above 

relations among X , T ensure that the relations of Hn hold. 

Remark 1.8. — In their original paper, Chuang-Rouquier [CR] used relations among 

X , T modelled after the afhne Hecke algebra or degenerate affine Hecke algebra, rather 

than the nil affine Hecke algebra. The nil affine Hecke relations were first introduced 

by Lauda [La]. 

The nil affine Hecke algebra arises quite naturally in the study of the topology of 

the flag variety. Let Fl(Cn) denote the variety of complete flags in C n . The following 

result appears to be due to Arabia [Ara] (see also [Gi, Prop. 12.8]). 
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PROPOSITION 1.9. — There is an isomorphism of algebras 

Hn 2á Ln(Fl(Cn) x F / ( C n ) ) 

where the right hand side carries an algebra structure by convolution. 

1.4. Categorical 5Í2 actions coming from Grassmannians 

Let us return to constructible sheaves on Grassmannians. Consider the functor 

E*> : Db

c(G(kXn)) Db

c(G(k + p , C n ) ) . It is given by the correspondence with the 

partial flag variety 

Fl(k, k + 1,... , k + p, C n ) = {0 C VQ C Vi C • • • C Vp C C n : dim V¡ = k + 3} 

The map FZ(fc, fc+1,..., k+p, C n ) -> C n ) x C n ) is a fibre bundle onto its 

image Fl(k, k + p, C n ) with fibre Fl(Cp). By Proposition 1.9 this provides an action 

of the algebra Hp on the functor Ep. This can be used to upgrade Theorem 1.3 to 

the following result. 

THEOREM 1.10. — The naive graded categorical 5(2 action on Dr = Db(G(k, C n ) ) 

extends to a graded categorical SÍ2 action. 

The above result is well-known but does not appear explicitly in the literature. It 

is a special case of the main result of [W2]. 

It is worth mentioning a more "elementary" version of this categorical s I2 action. For 

each k — 0 , . . . , n, let D'¡. be the category of finite-dimensional iJ*(G(/c, n))-modules 

(with r = 2k — n). We have a functor Dr —>> D" given by global sections. The 

following result was sketched by Chuang-Rouquier [CR, section 7.7.2] and a complete 

proof was given by Lauda [La, Theorem 7.12]. 

THEOREM 1.11. — There exists a categorical ${2 action on D'¡. compatible with the 

functor Dr —> D". This categorifies the n + 1-dimensional irreducible representation 

ofsl2. 

Moreover, this categorical $I2 representation is the simplest possible categorification 

of this irreducible representation; more precisely, it is a minimal categorification, 

according to the results of Chuang-Rouquier [CR]. 

A related construction was given by Cautis, Licata, and the author in [CKL]. We 

considered derived categories of coherent sheaves on cotangent bundles to Grassman­

nians D'l' := DbCoh{T*G{k, C n ) ) , where again r = 2k - n. We proved the following 

result. 

THEOREM 1.12. — There is a graded categorical $[2 action on D'" where the functors 

E,F come from the conormal bundles to the correspondences Fl(k,k + l , C n ) . This 

categorifies the representation ( C 2 ) ® n . 
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1.5. Equivalences 

We will now see how a categorical 5(2 action can be used to produce interesting 

equivalences of categories, following Chuang-Rouquier [CR]. 

To motivate the construction, suppose that V = ®>Vr is a finite-dimensional repre­

sentation of 5 I2 . Then the group SL2 acts on @Vr. In particular the matrix s — [ _?i 0 ] 
acts on V. Since s is a lift of the non-trivial element in the Weyl group of SL2, it 

gives an isomorphism of vector spaces s : Vr —> V-r for all r. We would like to do 

something similar for categorical 5(2 actions. 

To do this, let us fix r > 0 and note that the action of s on K is given by 

s\Vr = - £ F < R + 1 > + E ^ F ^ ){-2) _..; 

where E^ = ^jEn. (Note that this sum is finite since for large enough p, Vr-2p = 0.) 

The alternating signs in this expression suggest that we try to categorify s using a 

complex. This complex was introduced by Chuang-Rouquier [CR], inspired by certain 

complexes of Rickard. The following result is due to Chuang-Rouquier [CR] in the 

abelian case and Cautis-Kamnitzer-Licata [CKL] in the triangulated case (which is 

the one we state below). 

THEOREM 1.13. — Suppose that Dr is a sequence of triangulated categories carrying 

a graded categorical 5(2 action such that all functors E, F are exact. Then the complex 

S = [ f W -> EF^(-l) -+ E^F{r+2){-2) -+...] 

provides an equivalence S : Dr D-r. 

Here E^ is defined using a splitting En = E^n^n' which is achieved using the 

action of Hn on En (see section 4.1.1 of [R2] or section 9.2 of [La]). The maps in this 

complex come from the adjunctions. See section 6.1 of [CR] for more details. 

Example 1.14. — Suppose that we have a categorical 5X2 action with just D2,Do, D-2 

non-zero. Then choosing r = 0, the above complex has two terms S = [I EF(—1)]. 

In this case, the equivalence S is actually a Seidel-Thomas [ST] spherical twist with 

respect to the functor E : D-2 —> T)Q. Thus we see that the equivalences coming from 

categorical ${2 actions generalize the theory of spherical twists. 

Chuang-Rouquier applied Theorem 1.13 to prove that certain blocks of modular 

representations of symmetric groups were derived equivalent. This proved Broue's 

abelian defect group conjecture for symmetric groups. See Theorem 4.1 for the con­

struction of the relevant categorical action. 

Another very interesting application of Theorem 1.13 concerns constructible 

sheaves on Grassmannians, as in Theorem 1.10. In this case, it can be shown that 

the resulting equivalence Db

c(G(k, C n ) ) -> Db

c(G(n - fc,Cn)) is given by the Radon 

transform. More precisely, S is given by the integral transform with respect to the 
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kernel .7*0/, where U C G(fc,C n ) x G(n — fc,Cn) is the open GL n-orbit consisting 

pairs of transverse subspaces ^ \ 

Yet another application of Theorem 1.13 involves coherent sheaves on cotangent 

bundles of Grassmannians. In [CKL], by combining Theorem 1.13 with Theorem 1.12, 

we were able to construct an equivalence 

£ 6 Go/i(T*G(fc,C n )) DbCoh{T*G(n - fc,Cn)), 

thus answering an open problem posed by Kawamata and Namikawa. (This approach 

was previously suggested by Rouquier in [Rl].) The exact description of the equiva­

lence in this case was given by Cautis [C]. 

2. THE KHOVANOV-LAUDA-ROUQUIER CATEGORIFICATION 

We will now rephrase the notion of categorical 5(2 action (Definition 1.5) from a 

more general viewpoint. We will then proceed to define the categorification of any 

simply-laced Kac-Moody Lie algebra. 

2.1. Generalities on categorification 

Let C be an additive category. Let K(C) denote the (complexified) split 

Grothendieck group of C; this is the vector space spanned by isomorphism classes [A] 

of objects of C modulo the relation [A 0 B] = [A] + [B], If C is a graded additive 

category, then K(C) is a C[g, ^ - 1]-module, where we define q[A] — [A(l)]. We can 

then tensor to obtain a C(#)-vector space, which we will also denote by K(C). 

Let V be a vector space. A categorification of V is an additive category C, along 

with an isomorphism of vector spaces K(C) = V. If V is a C((/)-vector space, then a 

categorification of V is a graded additive category C, along with an isomorphism of 

C(g)-vector spaces K{C) ^ V. 

We will also need the notion of categorification of algebras. A monoidal category 

is an additive category C, along with an additive bifunctor 0 : C x C —> C, such that 

A®(B®C) = (A®B)®C(2\ IfC is a monoidal category, then K(C) acquires the 

structure of an algebra where the multiplication is defined by [̂ 4] [B] = [i<8)B]. 

Let A be an algebra. A categorification of A is a monoidal category C, along 

with an isomorphism of algebras K{C) = A. (This generalizes in an obvious way to 

(C(g)-algebras and graded monoidal categories.) 

1. This result will appear in a forthcoming paper by Cautis, Dodd, and the author. 

2. Actually, this defines the notion of strict monoidal category. 

S O C I É T É M A T H É M A T I Q U E DE F R A N C E 2014 



406 J. KAMNITZER 

Example 2.1. — The simplest algebra is A = C. This algebra is categorified by Vect, 
the category of finite-dimensional vector spaces. Similarly, C(q) is categorified by the 
category of graded vector spaces. 

More generally, if G is a finite group, then the category Rep(G) of finite-dimensional 
representations of G categorifies the algebra CC(G) of class functions on G. The 
isomorphism K(Rep(G)) -» CC(G) is provided by the character map. 

An algebra A can be regarded as a linear category with one object whose set of 
endomorphisms is A and where the composition of morphisms is the multiplication 
in A. Prom this perspective, it is natural to try to categorify more general categories, 
especially those with very few objects. To this end, we will need to look at 2-categories. 

A 2-category C (for our purposes) is a category enriched over the category of ad­
ditive categories. That means we have a set of objects C and for any two objects 
A, B e C, a category Hom(A, B). We also have associative composition functors 
Hom(23, C) x Hom(A, B) —> Hom(A, C). Note that a monoidal category is the same 
as a 2-category with one object. 

The simplest example of a 2-category is Cat, the 2-category of additive categories. 
The objects of Cat are additive categories and for any two additive categories A, J3, 
we define Hom(^4, B) to be the category of functors from A to B (the morphisms in 
Hom(A, B) are natural transformations of functors). 

If C is a 2-category, then we will define K(C) to be the category whose ob­
jects are the same as C and whose morphism sets are defined by Homx(c)(A^) = 
K(Rom(A,B)). 

Let A be a linear category. A categorification of A is an additive 2-category C 
along with an isomorphism K(C) = A. 

We will also need the notion of idempotent completion (or Karoubi envelope). 
Recall that if C is an additive category, an idempotent in C is a morphism T : A-± A 
in C such that T 2 = T. We say that T splits if we can write A as a direct sum 
A = A0®Ai, such that T acts by 0 on Ao and by l o n i i . The idempotent completion 
(Cy of C is the smallest enlargement of C such that all idempotents split in (C) \ If C 
is a 2-category, then (C)1 will denote the 2-category with the same objects, but where 
we perform idempotent completion on every Horn-category. 

2.2. 2-categorical rephrasing for ${2 

Let us apply this setup to A = Usk, the universal enveloping algebra. Actually we 
will need Lusztig's idempotent form Us^. Since Usl2 carries a system of idempotents, 
we can regard it as a category. 

DEFINITION 2.2. — The category Us^ has objects r e Z . It is the C-linear category 
with generating morphisms e G Hom(r, r + 2) and f e Hom(r, r — 2), for all r, subject 
to the relation ef — fe = rlr for all r (this is an equation in Hom(r, r )) . 
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A representation of an algebra A is the same thing as a linear functor A - » Vect, 

where A is the category with one object constructed using A. Thus we can speak 

more generally of a representation of a linear category C as a linear functor C —> Vect. 

In particular, we can consider linear functors Usk —> Vect. From our discussion 

in section 1.1, we can see that a finite-dimensional representation V = 0V^ of 5 ^ is 

the same thing as a linear functor I/sfe —» Vect which takes the object r to the vector 

space Vr. 

We also have Uqsl2, which is defined in the same fashion, except that it is C(q)-

linear and the relation is ef — fe = [r]Ir. 

Now we proceed to the question of trying to categorify Us^. Since it is a category 

with objects r G Z, it will be categorified by a 2-category with the same set of objects. 

In the previous section we explained Chuang-Rouquier's definition (Definition 1.5) of 

a categorical sl 2 action. By thinking about this definition, we reach the definition of 

a 2-category which categorifies C/5I2. 

DEFINITION 2.3. — LetUsk denote the additive 2-category with 

(1) objects r e Z , 

(2) 1-morphisms generated under direct sum and composition by E G Hom(r, r + 2) 

and F 6 Hom(r, r — 2) for all r, 

(3) 2-morphisms generated by 

X :E-±E, T : E 2 -± E2, r j : I -> FE, e : EF - > J 

subject to the relations 

(1) in HomfT?, E), we have SIE 0 IEV = IE, 

(2) in Hom(£ 2 , E2), we have XIE 0 T - T 0 IEX = IE2 = T o XIE - IEX o T, 

(3) in Hom(£ 2 , E2), we have T2 = 0, 

(4) in Hom(^ 3 , E3), we have TIE o IET o T / ^ = / ^ T o T / ^ o lET, 

(5) if r ^ 0, the following 2-morphism 

(6) (a, e, £ o XIF . . . , e o X ^ 1 ^ ) : EF^FE® lfr 

is an isomorphism, where a is defined as in Definition 1.5 (plus a similar condition 

ifr^O). 

More precisely, the last condition means that for each r, in the category Hom(r, r) 

we adjoin the inverse of (a, e, e o XIE ..., e o X r - 1 i " ^ ) . 

Now that we have defined the 2-category it is natural to consider 2-functors 

Usk Cat (these are 2-representations of Ws^)- With the above definition, it is easy 

to see that a categorical action on some categories Dr (Definition 1.5) is the same 

thing as a 2-functor Us^ —> Cat which takes r to Dr for all r. 
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Remark 2.4. — In this definition, we are following Rouquier's definition [R2] of the 

2-category. In the Lauda [La] version, which we denote by ULsl2, we do not invert 

(cr, £ , . . . , £oXr~llF), but rather add extra relations to ensure that this map is invert-

ible. In a recent paper, Cautis-Lauda [CL] proved that under some mild assumptions 

a 2-functor from Wsfe to Cat gives rise to a 2-functor from UL$i2 to Cat (the converse 

is automatically true). 

The following result is due to Lauda [La]. 

THEOREM 2.5. — The 2-category ULsi2 categorifies Usi2. 

Remark 2.6. — The graded version of U$l2 categorifies Lusztig's Uqsi2- There is also 

a more precise version of Theorem 2.5, which states that the idempotent comple­

tion (ULsl2y categorifies Lusztig's Z[#, # - 1 ]-form of Uqsl2 (if we look at the Z[q, q~l) 

version of the Grothendieck group). 

2.3. The 2-category for general g 

Suppose that g is an arbitrary Kac-Moody Lie algebra. It is natural to try to 

extend the above construction from 5^2 to in particular to construct a 2-category 

Ug which categorifies Ug. Roughly equivalent constructions of this 2-category were 

achieved independently and simultaneously by Khovanov-Lauda [KL1, KL2, KL3] and 

by Rouquier [R2]. 

For simplicity, we will assume that g is simply-laced. Let us fix notation as follows. 

Let X denote the weight lattice of g. Let / denote the indexing set for the simple 

roots and let ai for i £ I denote the simple roots. Let ZI C X be the root lattice 

and let N7 denote the positive root cone. Let (,) denote the symmetric bilinear form 

on X. Then (ai,dj) are the entries of the Cartan matrix of g (these lie in the set 

{2 , —1,0} by assumption). We choose an orientation of the Dynkin diagram of g in 

order to produce a directed graph, called a quiver and denoted Q. We write i —>• j if 

there is an oriented edge from i to j in Q. 

The category Ug is constructed from Lusztig's idempotent form of the universal 

enveloping algebra Ug and its definition parallels Us^ (Definition 2.2). In partic­

ular, it has objects A G X and generating morphisms a G Hom(A, A + ai) and 

fi G Hom(A, A — cti) for i e I and A G X (for reasons of brevity, we do not give 

a complete list of the relations in Ug). As before, there is a quantum version Uqg 

which is obtained by replacing all integers in the definition of Ug by quantum integers. 

We will describe the 2-category Ug using graphical notation due to Khovanov and 

Lauda. In this graphical notation, 2-morphisms are viewed as string diagrams in the 

plane, with strings oriented and labelled from i G I. The orientations and labels 

on the strands tell you the source and target of the 2-morphism. An arrow labelled 

i pointing up (resp. down) denotes Ei (resp. Fi). For more information on this 

graphical notation see [La, Section 4]. 
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DEFINITION 2.7. — The 2-category Ug is defined as follows. 

- The objects are X for A G X. 

- The 1-morphisms are generated by 

Ei G Hom(A, A + a » ) , Fi G Hom(A, A - a») 

for i G I and X G X. 

- The 2-morphisms are generated by 

Xi = ^ : Ei -> Ei, Xi = Fi Fi, 

Tij = t̂ X} : E i E 3 ~^ E 3 E i i Tij = v*y : F%F3 ~^ F J F i 

rX : EiFi J, r\ ' F i E i "> ̂  : / f * : / ^ jE7.Fi 

/ o r i G / and A G X . (We have suppressed X in the above notation — it should 

label a region in each elementary string diagram. This label tells you the source 

and target of the Ei, Fi.) 

The 2-morphisms are subject to the following relations. 

- The KLR algebra relations among upward pointing string diagrams 

(1) If all strands are labeled by the same i £ I, the nil affine Hecke algebra 

relations 

(7) = 0, T Î - X - X - X - X 
(2) For i ^ j 

(8) 

if {ai, a j) = 0, 

= < ifi<-3, 

ifi 

(3) For %i=- j the dot sliding relations 

(9) = £*C y*\j = 
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(4) Unless i = k and (a^, otj) < 0 the relation 

(10) 

I k i\ j r \ k 

Otherwise, (ai,aj) < 0 and 

( H ) 

ifi<-3, 

i f \ j \i i\ j r \ i 

li\ l i l i 

ifi j -

- The cap and cup morphisms are biadjunctions 

(12) 

Moreover the dots and crossing are compatible with these biadjunctions. 

- For each i ^ j , we have 

(13) 

if V7 *| V i V ^ j *| p' 

where we define 

(14) 

¿1 I* 

¿1 \j i\ li 

fTfte equality comes from the biadjointness of the crossing.) 

- For each i and each X such that r = (A, a») > 0, £/ie following 2-morphism is 

invertible, 

(15) ( X, C 1 C.............r-1C) EiFi--->FiEiOL 

JJere a dot with a positive integer k indicates that we put k dots on that strand 
(in other words, it means Xj°). We also impose a similar condition ifr^O. 
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This definition is quite complicated, so let us see where these relations come from. 

When g = this definition gives the 2-category from Definition 2.3. In fact, (7) 

is relations 2, 3, 4 from Definition 2.3 written in diagrammatic form and (12) and (15) 

correspond to relations 1 and 5 from Definition 2.3. (Actually there is a slight differ­

ence, in that the above definition imposes biadjointness, whereas Definition 2.3 only 

involves one-sided adjointness. For more discussion on this see [R2, Theorem 5.16].) 

Khovanov-Lauda and Rouquier discovered the relations (8),(9), (10), and (11) 

based on computations involving cohomology of partial flag varieties and quiver vari­

eties (essentially to get Theorem 3.4 to hold). 

Remark 2.8. — As in Remark 2.4, this is the Rouquier version of the 2-category, be­

cause of (15). Khovanov-Lauda's version, denoted UKLg, bears the same relationship 

to Ug as Lauda's version, UL$l2, did in the case. 

Consider the Grothendieck group K(Ug) as a 1-category. The generating mor-

phisms are = [Ei], fi = [Fi] as above. From (13), we see that we have afj = fjeu 

and from (15), we see that e^/i — f%ei = (\,ai)I\ in Hom(A, A). As these are most 

of the relations of Ug (there remain the Serre relations), this suggests the following 

result, which was proven by Khovanov-Lauda [KL3] in the case of sln and for general 

g by Webster [Wl]. 

THEOREM 2.9. — There is an isomorphism of categories K(UKLg) = tig. In other 
words, the 2-category UKLg is a categorification ofUg. 

Remark 2.10. — There is a graded version of Ug with the degree of Xi equal to 2 

and the degree of Tij equal to —(a*, aj). This graded version categorifies Uqg. Again, 

there is a more precise form relating the idempotent completion of UKLg and Lusztig's 

Z[q, g _ 1]-form of Uqg. 

2.4. Categorification of the upper half 

It is important to isolate the categorification of the upper half of the envelopping 

algebra U+g, where U+g C Ug is the subalgebra generated by all Ei (or equivalently, 

it is the envelopping algebra of n). Note that U+g has no idempotents, so we regard 

it as an algebra, not as a category. We have the usual grading U+g = © I / G N / ( ^ + S ) I / . 

DEFINITION 2.11. — Letting denote the monoidal category whose objects are gener­

ated (under direct sum and tensor product) by Ei, for i £ I, and whose morphisms are 

upward pointing string diagrams as in Definition 2.7 (so the morphisms are generated 

by the upward pointing dot and crossing with the KLR algebra relations). 

Remark 2.12. — In the above definition of W+g, the Ei do not have a source and 

target object as they do in Ug. Thus U+g does not sit inside Ug in any way. This is 

not that surprising, as U+g is not a subalgebra of tig. 
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Let v G N1. Let 

Seq^ = {i = (¿1 , . . . ,im) : a h + • • • + a i m = v} 

This is the set of all ways to write v as an ordered sum of simple roots. For i G Seq^, 

we let E\ = Eix • • - Eim (here the (g)-operation in 11+g is written as concatenation). 

Let {U+g)v denote the full subcategory of U+g whose objects are directs sums of the 

E{ for i G Seq^. 

We define algebras Rv := ®i,i'eSeq„ Hom^+ g(i£j, E[). 

These algebras have become known as Khovanov-Lauda-Rouquier (KLR) algebras, 

though the term quiver Hecke algebras has also been used. See [B] for a survey paper 

on these algebras. 

Example 2.13. — Suppose that g = sfe- Then v = na for some n, Seq^ has only one 

element and Rv — Hn, the nil affine Hecke algebra. 

By general principles, we have an equivalence of categories (U+g)l, = i^-pmod be­

tween the idempotent completion of (U+g)y and the category of projective modules 

over the KLR algebra Ru. In particular, K((U+g)u) acquires a basis of indecom­

posable projective Rv modules (these are the same as the indecomposable objects of 

(JAJrg)u under the above equivalence). Note that under the above equivalence, the 

monoidal structure on (U+g)1 comes from the inclusion R^ ® Rv -» R^+v given by 

horizontal concatenation of string diagrams. 

The following result is due to Khovanov-Lauda [KL1, Theorem 1.1] (in the simply-

laced case). 

THEOREM 2.14. — (U+gY = ©^iJ^-pmod is a categorification ofU+g. 

In fact, K((U+g)1) can be given the structure of a bialgebra and then the above 

result can be strengthened to an isomorphism of bialgebras. 

Remark 2.15. — There is a graded version of U+g which categories U+g. 

3. LUSZTIG'S PERVERSE SHEAVES A N D KLR ALGEBRAS 

We will now explain a geometric incarnation of the KLR algebras and of the cate­

gory U+g. For simplicity, let us assume that g is of finite type. 

3.1. Lusztig's perverse sheaves 

Recall that we chose an orientation of the Dynkin diagram of g to produce the 

quiver Q. 
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DEFINITION 3.1. — A representation of Q is a graded vector space V = ® i e / ^ along 
with linear maps Aij : V* —> Vj for every directed edge i -» j in Q. 

The dimension-vector of a representation V is defined by 

dim F = 5̂  dim Vi a. G N7. 

Let Mv denote the moduli stack of representations of Q of dimension-vector v. 
More explicitly, we can present Mv as a global quotient 

Mv = 0Hom(C^C^/n G L ( C Î / i ) 

where v — J2i "iai' 

Example 3.2. — When Q = s[2, then the quiver Q consists of just one vertex with no 
arrows. Thus a representation of Q is just a vector space. So we see that Mna = 
pt/GL, 

When g = sis, then the quiver Q consists of two vertices with an arrow between 
them. Thus a representation of Q is a pair of vertices and a linear map between them. 
Thus, we see that M n Q l + m a 2 = Hom(C n , Cm)/GLn x GLm. 

We let D(M) := ® I / D ( M I / ) denote the derived category of constructible sheaves 
on the stack M = UMU. Note that we may consider D{MV) as the Y[iGL{CUiy 
equivariant derived category of ®(ij)eQ Hom(C I / i , C^') . 

Following Lusztig [Lul, Lu2], we define a monoidal structure on the category D(M). 
We consider the moduli stack of short exact sequences 

S = {0 Vi - » V3 -> V2 -> 0} 

of representations of Q. We have three projection morphisms 7Ti, 7T2,7T3 : S M and 
thus for A,B e D(M), we can define A * B = TTS^I A ® TT^B). If A G D{MU) and 
B G D(MfJt) then A* B e D(Mu+fi). 

The simple perverse sheaves in D(Mlf) are precisely the IC-sheaves of the 
Hi GL(C^)-orbits in vj Hom(C I / l , ) and thus are in bijection with the isomor­
phism classes of representations of Q of dimension-vector v. Ringel's theorem tells 
us that the indecomposable representations of Q have the positive roots as their 
dimension-vectors. Thus, the number of isomorphism classes of representations of Q 
of dimension-vector v equals the dimension of (U+Q)U. 

Let P(MU) be the subcategory of D(MV) consisting of direct sums of homological 
shifts of simple perverse sheaves in D(MV). By the decomposition theorem, P(M) = 
0P(Mjy) is a monoidal subcategory. Note that P(M) has a graded structure given 
by homological shift. 
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Lusztig [Lul, Lu2] proved the following theorem concerning P(M). 

THEOREM 3.3. — The Grothendieck ring of P(M) is isomorphic to U+g. In other 
words, P(M) is a categorification ofU^g. 

By this theorem, U+g acquires a basis coming from the classes of the IC-sheaves 
in P(M). This basis is called Lusztig's canonical basis. 

3.2. Relationship to KLR algebras 

It is natural to expect that Lusztig's categorification of U+g is related to the 
categorification of U^g defined by generators and relations in section 2.4. This result 
was proven independently by Varagnolo-Vasserot [VV] and by Rouquier [R3]. 

THEOREM 3.4. — There is an equivalence of additive monoidal categories (U+Y -» 
P(M) defined on generators as follows 

Ei i y CM(Xi 

Xi^XiE Ext*(CMai, CMai) = #*C>< (pt) ^ C[xi] 

T{j ' y tij 

Here we use that Mai = pt/Cx. The definition of Uj is a bit involved and depends 
on cases, so we skip the definition. 

We can reformulate this theorem using a convolution algebra defined using Mv. 
We define Mu to be the moduli stack of complete flags 0 C V\ C • • • C Vm of 
representations of Q with dim Vm = v. Then we can form the stack Zv := MV^MV MV. 

Then H*(ZV) is an algebra under convolution. By Ginzburg [Gi, Prop 5.1], H*(ZV) is 
an Ext-algebra in P(M). With this setup, Theorem 3.4 is equivalent to the existence 
of compatible isomorphisms Rv = H*(ZU) for all v. 

Example 3.5. — If we take & = sl2 and v = na, then Mv = Fl(Cn)/GLn and Zv = 
(Fl(Cn) x Fl(Cn))/GLn. In this case the isomorphism Rv ^ H*(ZV) is precisely the 
statement of Proposition 1.9. 

As a corollary of Theorem 3.4, we obtain the following result. 

COROLLARY 3.6. — The basis ofU+g provided by indecomposable graded projective 
Rv-modules under Theorem 2.14 is Lusztig's canonical basis. 

4. EXAMPLES OF CATEGORICAL ^-REPRESENTATIONS 

4.1. Definition of categorical ^-representations 

Using the 2-category Ug, we can now define a categorical ^-representation to be 
an additive linear 2-functor Ug -> Cat. In particular, a categorical g-representation 
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consists of a collection of categories for \i G X, biadjoint functors Ei,Fi : —> 
Dfj,±cxi and natural transformations Xi : Ei —> Ei, Tij : EiEj —> EjEi satisfying the 
relations in Ug. 

A graded categorical g representation involves the same setup except that each 
category is graded, some shifts appear in the biadjointness of Ei,Fi, and the 
natural transformations Xi,Tij have degrees as indicated in Remark 2.10. 

4.2. Modular representation theory of symmetric groups 

Going back to the work of Lascoux-Leclerc-Thibon [LLT] and Grojnowski [Gr], 
the prime motivating example of a categorical g-representation concerns modular 
representations of symmetric groups. In fact, this categorical action has proved to be 
very important in understanding modular representation theory. 

Fix a prime p and an algebraically closed field k of characteristic p. We will be 
interested in the category Rep(Sn) of finite-dimensional representations of Sn over k. 
These categories will provide an action of the affine Lie algebra sip. The basic func­
tors we consider between these categories are the induction and restriction functors 
corresponding to the natural embedding Sn-\ ^ Sn. 

Recall the Young-Jucys-Murphy elements Ym := (1 m) + • • • + (ra — 1 m) G kSn. 
A fundamental result is that the eigenvalues of Ym acting on a representation M lie 
in the prime subfield Z/p C k. We will identify of Z/p as the set I of simple roots of 
our Kac-Moody algebra sip. 

Let i G Z/p. Using the Young-Jucys-Murphy elements, we define functors Ei and 
Fi of i-restriction and z-induction as follows. If M G Rep{Sn)1 we let Ei(M) denote the 
generalized i-eigenspace of Yn. Since Yn commutes with the action 5 n _ i , we see that 
Ei(M) is an Sn—i representation. Similarly, we define Fi(M) to be the generalized 
i-eigenspace of Yn+i acting on Inds™+1M. 

Symmetric polynomials in Y i , . . . , Yn span the centre of kSn. Thus we may regard 
a central character 7 : kSn -^ feasa element of (Z/p)n/Sn, which we think of as the 
set of n-element multisubsets of Z/p. Thus for each // = (/xo,. . . , /ip-i) G N p such that 
Y2v>i = ni w e c a n consider the category Rep{Sn)lJL of representations M of Sn whose 
generalized central character is given by the multiset := { 0 ^ ° , . . . , (p — l ) ^ - 1 } . 

THEOREM 4.1. — The category @nRep(Sn) carries a categorical $ip-action. More 
precisely, we get the categorical $ip-action as follows 

- We define D^-j^mai = Rep{Sn)^ for each \x G W (where n = Y,^)-
- For each i G Z/p, we define Ei,Fi as above. 
- The "dot" Xi and crossing Tij are defined with the help ofYn and the transpo­

sition (n — 1 n). 

The fact that these categories carry a naive categorial sip-action was proven by 
Lascoux-Leclerc-Thibon [LLT] and by Grojnowski [Gr]. The above statement of an 
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actual categorical 5(^-action was proven by Chuang-Rouquier [R3, Theorem 4.23]. In 

this theorem, we work with a version of Uslp defined over the field k (rather than C). 

Let us be more precise about the definitions of Xi and Tij. Consider the functor 

Resg^_p. This functor will have endomorphisms Yn-p+i,..., Yn and (n — p -f 1 n — 

p + 2 ) , . . . , (n — 1 n ) . It is easily seen that they define an action of a degenerate 

affine Hecke algebra Hp on Resg"_p. For any ¡1 with Y^Vi = n> the functor Ef : 

Rep{Sn)^ —> Rep(Sn-p)fJi-p(Xi is a direct summand of Resg^_ and thus Ef carries an 

action of Hp. Theorem 3.16 from [R2] explains how we can convert this to an action of 

the nil affine Hecke algebra Hp (a similar result was obtained by Brundan-Kleshchev 

[BK]). Using this result, we can construct the categorical slp-action. For more details, 

see section 5.3.7 of [R2], 

4.3. Cyclotomic quotients 

There is a natural way to construct categorifications of irreducible representations 

of 0 using cyclotomic quotients of KLR algebras. For each dominant weight A = 

Y niUi e X+ and each v G Ni", let RU(X) be the quotient of Rv by the ideal generated 

by all diagrams of the form 

n11 .... 

i 1 i2 im 

Let V(A) M = i?A-/i(A)-pmod be the category of projective modules over the cyclo­

tomic quotients. Note that there is an action oiU~g on V(A) coming from maps 

Ry-u o Rv --> Ry (u-v)(y) 

which are given by horizontal concatenation (here U Q is defined in the same fashion 

as U+Q). In particular, we have functors Fi : V(A) -> V(A). 

The following result was conjectured by Khovanov-Lauda [KL1] and was proved 

by Kang-Kashiwara [KK, Ka] and Webster [Wl]. The conjecture was motivated by 

the work of Ariki [Ari] who constructed naive categorical sln actions using cyclotomic 

Hecke algebras. 

THEOREM 4.2. — The functors Fi admit biadjoints Ei and this defines a categorical 

Q-action on V(A). Moreover, V(A) categorifies the irreducible representation V(X) of 

highest weight X. 

Rouquier has proved [R3] that a slight generalization of V(A) is the universal cate­

gorical ^-representation with highest weight A. Also, Lauda-Vazirani [LV] constructed 

the crystal of V(A) using the simple modules over the algebras Rl/(X). 
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Remark 4-3. — Webster [Wl] has generalized this construction. For any sequence 

A i , . . . , A n , he has constructed certain diagrammatic algebras i ? „ ( A i , . . . , A n ) whose 

categories of projective modules admit a categorical g-action as above. This construc­

tion categorifies the tensor product representation V(Ai) ® • • • ® V ( A n ) . 

4.4. Geometric examples 

It is natural to generalize the construction of the categorical 5^-action on sheaves 

on Grassmannians (Theorem 1.10). The generalization uses Nakajima quiver varieties. 

For each dominant weight A, there exists a (disconnected) Nakajima quiver variety 

Y(X) = UfJbexY(X, /i). It is a moduli space of framed representations of a doubled 

quiver with preprojective relation. Nakajima [N] has constructed an action of g on 

H*(Y(X)). This motivated the question of constructing categorical actions of g on 

categories defined using Y(X). 

The variety Y(A, ji) is almost a cotangent bundle — in fact, it can be viewed as an 

open subset of a cotangent bundle to a certain stack M(A, / / ) . This motivated Zheng 

[Z] to define a certain category of constructible sheaves D(X,/i) on M(A, ¡1) which 

should carry a categorical g action. 

Example 4-4- — I*1 the case g = 5X2 and A = n, then Y(n, n — 2k) = T*G(k, C n ) and 

D(n,n-2k) = Db

c(G(k,Cn)). 

THEOREM 4.5. — The categories D(X,/J,) carry a categorical g-action. 

Zheng [Z] proved a weaker version of this theorem (he only established a naive 

categorical action). The above statement was proven by Rouquier [R3] using The­

orem 3.4. Webster [W2] also explained that the category D(A,/x) can be viewed 

(under Riemann-Hilbert correspondence and Hamiltonian reduction) as a category of 

modules over a deformation quantization of Y(A, /J,). 
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