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CATEGORIFICATION OF LIE ALGEBRAS
[after Rouquier, Khovanov-Lauda, ...]

by Joel KAMNITZER

INTRODUCTION

Categorification is the process of finding hidden higher level structure. To cate-
gorify a natural number, we look for a vector space whose dimension is that number.
For example, the passage from Betti numbers to homology groups was an important
advance in algebraic topology.

To categorify a vector space V, we look for a category C whose Grothendieck group
is that vector space, K(C) = V. If V carries an action of a Lie algebra g, then it is
natural to look for functors F, : C — C for each generator a of g, such that F, gives
the action of a on the Grothendieck group level. In this case, we say that we have
categorified the representation V.

There are two general motivations for trying to categorify representations. First,
by studying the category C, we hope to learn more about the vector space V. For
example, we get a special basis for V' coming from classes of indecomposable objects
of C. Second, we may use the action of g on C to learn more about C. For ex-
ample, Chuang-Rouquier used categorification to prove Broué’s abelian defect group
conjecture for symmetric groups.

Recently, there has been amazing progress towards constructing categorifications
of representations of semisimple (or more generally Kac-Moody) Lie algebras. In
this report, we aim to give an introduction to this theory. We start with the cat-
egorification of sl; and its representations. We explain the naive definition and
then the “true” definition, due to Chuang-Rouquier [CR]. We also explain how this
definition leads to interesting equivalences of categories. We then address general
Kac-Moody Lie algebras, reaching the definition of the Khovanov-Lauda-Rouquier
2-category [R2, KL3]. We explain the relationship to Lusztig’s categories of perverse
sheaves, due to Varagnolo-Vasserot [VV] and Rouquier [R3]. We close by discussing
three fundamental examples of categorical representations: modular representation
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398 J. KAMNITZER

theory of symmetric groups (due to Lascoux-Leclerc-Thibon [LLT], Grojnowski [Gr],
and Chuang-Rouquier [CR]), cyclotomic quotients of KLR algebras (due to Kang-
Kashiwara [KK] and Webster [W1]), and quantized quiver varieties (due to Zheng [Z]
and Rouquier [R3]).

In order to keep the exposition readable, we have made a number of simplifications
and glossed over many details. In particular, we only address simply-laced Kac-Moody
Lie algebras (and when it comes to the geometry, only finite-type). We suggest that
interested readers consult the literature for more details.

Throughout this paper, we work over C; all vector spaces are C-vector spaces (some-
times they are actually C(g)-vector spaces) and all additive categories are C-linear.

I would like to thank R. Rouquier, M. Khovanov, and A. Lauda for developing the
beautiful mathematics which is presented here and for their many patient explanations
(an extra thank you to A. Lauda for allowing me to use his diagrams). I also thank
D. Ben-Zvi, R. Bezrukavnikov, A. Braverman, J. Brundan, C. Dodd, D. Gaitsgory,
H. Nakajima, A. Kleshchev, A. Licata, D. Nadler, B. Webster, G. Williamson, and
O. Yacobi for interesting discussions about categorification over many years and a
special thank you to S. Cautis for our long and fruitful collaboration. Finally, I thank
S. Cautis, M. Khovanov, A. Lauda, C. Liu, S. Morgan, R. Rouquier, B. Webster and
0. Yacobi for their helpful comments on a first draft of this paper.

1. CATEGORIFICATION OF sl; REPRESENTATIONS

1.1. The structure of finite-dimensional representations
The Lie algebra sl3(C) has the basis
e=1[85], h=[52], F=I[98].
Consider a finite-dimensional representation V' of sl;. A basic theorem of represen-
tation theory states that h acts semisimply on V with integer eigenvalues. Thus we

may write V = @,czV, as the direct sum of the eigenspaces for h. Moreover the
commutation relations between the generators e, f, h imply the following.

(1) For each r, e restricts to a linear map e : V, = V4.
(2) Similarly, f restricts to a linear map f: V, = V,_o.

(3) These restrictions obey the commutation relation
(1) ef — felv, =rly,.

Conversely, a graded vector space V = @V, along with raising and lowering operators
e, f as above, defines a representation of sl if these operators satisfy the relation (1).
The following example will be very instructive.
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(1072) CATEGORIFICATION OF LIE ALGEBRAS 399

Ezample 1.1. — Let X be a finite set of size n. Let V = CP(X) be a vector space
whose basis consists of the subsets of X. For r = —n,—n + 2,...,n, define V, to be
the span of subsets of size k, where r = 2k — n.

Define linear maps e : V. = V.49, f : V. = V,._5 by the formulas

) (= Y T f®= ¥ T

T>S,|T|=|S|+1 TCS,|T|=|S|-1

It is easy to check that (ef — fe)(S) = (2k —n)S, if S has size k. (The basic reason is
that there are n — k ways to add something to S and k ways to take something away
from S.)

Thus this defines a representation of sl;. In fact, this representation is isomorphic
to an n-fold tensor product (C2)®" of the standard representation of sl,.

We will also need the concept of a representation of the quantum group Upsly,
though we will neither need nor give an explicit definition of Ug,sls.

For each integer 7, let
¢ —q"
[r] := — 1
q—q

denote the quantum integer (the second expression is only valid if r > 0).

— q'r—l _|_q'r—3 4. +q—r+1

A representation of Uysly is a graded C(q) vector space V' = &V, along with raising
e: V. = V42 and lowering f : V, = V,._, operators such that ef — fe|v. = [r]lv,.

1.2. Naive categorical action

Once we think of an sl representation in terms of a sequence of vector spaces
together with raising and lowering operators, we are led to the notion of an action of
sl on a category.

DEFINITION 1.2. — A naive categorical sly action consists of a sequence D, of ad-
ditive categories along with additive functors E : D, = Dyyo, F : D, = D,_5, for
each r, such that there exist isomorphisms of functors

0
0

(3) EF|p, ® FE|p, ® I3}, ifr

>
(4) FE|p, 2 EF|p, ® I3, ifr<

Suppose that the categories D, carry a naive categorical sl action. Then we can
construct a usual slp representation as follows. We set V. = K(D,.), the complexified
split Grothendieck group. The functors E, F' give rise to linear maps e : V. — V2,
f Ve = V._5 and we can easily see that (3) and (4) give the commutation relation
(1). Thus we get a representation of sl; on V = ®V,.. We say that the categories D,
categorify the representation V = @V,..
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400 J. KAMNITZER

It is also useful to consider a graded version of the above definition. A graded
additive category is a category C along with an additive functor (1) : C — C. We
define a graded naive categorical sly action as above but with (3), (4) replaced by

EF|p. 2 FE|p.®Ip.(r—1)&---®Ip.(-r+1), ifr>0
FE|p, 2 EF|p,®Ip (r—1)&---@®Ip (-r+1), ifr<0

The Grothendieck groups K (D, ) will then carry an action of Ugsls.

We will now give an example of a naive categorical action which will build on
Example 1.1.

In Example 1.1, we studied subsets of a finite set. There is a well-known analogy
between subsets of an n-element set and subspaces of an n-dimensional vector space
over a finite field Fy, where g is a power of a prime. This analogy suggests that we try
to construct a representation of sly on @V,., where V, = CE®FQ) is a C-vector space
whose basis is G(k,Fy), the set of k-dimensional subspaces of Fg (where r = 2k —n
as before). If we define e, f as in (2), then we get a representation of the quantum
group U szslz (after a slight modification).

The finite set G(k,Fy) is the set of F,-points of a projective variety, called the
Grassmannian. By Grothendieck’s fonctions-faisceaux correspondence, we can cate-
gorify CC(kFg) using an appropriate category of sheaves on G(k, F:). For simplicity,
we switch to characteristic 0 and consider sheaves on G(k,C"), the Grassmannian of
k-dimensional subspaces of C™.

For each r = —n,—n +2,...,n, we let D, = D%(G(k,C")) denote the bounded
derived category of constructible sheaves (again here r = 2k — n). These are graded
categories, where the grading comes from homological shift. With the above motiva-
tions, we will define a categorical sl action using these categories.

For each k, we define the 3-step partial flag variety
Fli(k,k+1,C")={0cVcV' cC*:dimV =k, dimV' =k +1}

Fi(k,k + 1,C") serves as a correspondence between G(k,C") and G(k + 1,C") and
thus it can be used to define functors between categories of sheaves on these varieties.
Let p : Fl(k,k+1,C") —» G(k,C") and ¢ : Fi(k,k +1,C") - G(k + 1,C™) denote
the two projections.

We define
E: D, = D%G(k,C")) = D, 42 = D%(G(k +1,C"))
A= q.(p*A)
F:D,— D,_5
A= pu(q"A)

The above definition of E, F' parallels the definition (2).
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The following result was proven in an algebraic context (i.e., after applying the
Beilinson-Bernstein correspondence) by Bernstein-Frenkel-Khovanov [BFK].

THEOREM 1.3. — This defines a graded naive categorical sly action.

The proof of this theorem is relatively straightforward. To illustrate the idea,
let us fix V € G(k,C") and consider A; = {V' : V C V/,dimV’ = k + 1} and
Ay ={V':V D> V',dimV’ = k — 1}; these are the varieties of ways to increase or
decrease V. Note that A; is a projective space of dimension n — k — 1 and A; is a
projective space of dimension k — 1. Thus dim H*(A3) — dim H*(A;) = 2k — n. This
observation combined with the decomposition theorem proves the above result.

Remark 1.4. — The Grothendieck group of these categories D, is actually infinite-
dimensional. To cut down to a finite dimensional situation, we can consider the full
subcategories D, = Pscn(G(k,C™)) consisting of direct sums of homological shifts of
IC-sheaves on Schubert varieties. The subcategories D). carry a naive categorical slp
action and by considering dimensions of weight spaces, we can see that they categorify
the representation (C2)®".

1.3. Categorical sly-action

In the definition of naive categorical sl action, we only demanded that there
exist isomorphisms of functors in (3) and (4). We did not specify the data of these
isomorphisms. This is very unnatural from the point of view of category theory.
However, it is not immediately obvious how to specify these isomorphisms nor what
relations these isomorphisms should satisfy.

In their breakthrough paper, Chuang-Rouquier [CR] solved this problem. First, it
is natural to assume that the functors E, F' be adjoint (this is a categorification of the
fact that e, f are adjoint with respect to the Shapovalov form on any finite-dimensional
representation of sls).

Now (assume r > 0), we desire to specify a isomorphism of functors
(¢7'(/)07‘ .. 7¢T‘—1) : EI}T,Dr - FEIDr @ID:

so ¢ € Hom(EF,FE) = Hom(EE,FFE) (using the adjunction) and s €
Hom(EF,I) = Hom(E,E) (again using the adjunction). Thus it is natural to
choose two elements T' € Hom(EFE, EE) and X € Hom(E, E) such that ¢ corre-
sponds to T' and s corresponds to X® for s=0,.,.,r — 1.

This leads us to the following definition, essentially due to Chuang-Rouquier [CR].

DEFINITION 1.5. — A categorical sly action consists of
(1) a sequence D, of additive categories, with D, = 0 for r < 0,
(2) functors E : D, = Dyy2, F: D, — D,_s, for each r,
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(3) natural transformationse: EF — I, n: I - FE, X:E— E, T: E?> - E?
such that the following holds.

(1) The morphisms €,n are the units and counits of adjunctions.

(2) If r 2 0, the morphism
(5) (0,6,60XIp...,e0 X" 'Ip) : EF|p, — FE|p, ® I3’
is an isomorphism, where o : EF — FE is defined as the composition

EF Mery pppp PR, pEER IFES PR

(And we impose a similar isomorphism condition if r < 0.)
(3) The morphisms X, T obey the following relations.
(a) In Hom(E?, E?), we have XIgoT —TolgX = Ipz = ToXIg—IgXoT.
(b) In Hom(E?, E?), we have T? = 0.
(c) In Hom(E3, E3), we have TIg o IgT o TIg = IgT o TIg o 15T.
Remark 1.6. — If we work in the graded setting, then it is natural to ask that X have

degree 2, i.e., that it be a morphism X : E — E(2). Likewise, we give T degree —2.
The degrees of £ and 1 depend on 7.

At first glance, it is not apparent where the relations among the X, T come from.
To motivate them, we introduce the nil affine Hecke algebra.

DEFINITION 1.7. — The nil affine Hecke algebra H,, is the algebra with generators
T1,...,Zn,t1,...,tn_1 and relations

t? =0, titiv1t; = tip1titivr, tit; = t;t; if I’L - ]| > 1,

TiTj = T;Ti, GiTi — Tiprti = 1 = Tity — 6iTiga

Suppose that we have a categorical sl;-action. Then the morphisms X, T gener-
ate an action of H, on E™. More precisely, we have an algebra morphism H, —
Hom(E™, E™) by sending z; to Igi-1XIgn-: and t; to Igi-1TIgn-i-1. The above
relations among X, T ensure that the relations of H,, hold.

Remark 1.8. — In their original paper, Chuang-Rouquier [CR] used relations among
X, T modelled after the affine Hecke algebra or degenerate affine Hecke algebra, rather
than the nil affine Hecke algebra. The nil affine Hecke relations were first introduced
by Lauda [La).

The nil affine Hecke algebra arises quite naturally in the study of the topology of
the flag variety. Let FI(C™) denote the variety of complete flags in C™. The following
result appears to be due to Arabia [Ara] (see also [Gi, Prop. 12.8]).
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PROPOSITION 1.9. — There is an isomorphism of algebras
H, = HSL~(FI(C") x FI(C"))

where the right hand side carries an algebra structure by convolution.

1.4. Categorical sl; actions coming from Grassmannians

Let us return to constructible sheaves on Grassmannians. Consider the functor
EP : D%G(k,C")) — D%G(k + p,C")). It is given by the correspondence with the
partial flag variety

Fi(k,k+1,...,k+p,C")={0cVycViC:---CV,CcC":dimV; =k + j}

The map Fl(k,k+1,...,k+p,C") - G(k,C™) x G(k+p, C") is a fibre bundle onto its
image Fl(k,k + p,C™) with fibre FI(CP). By Proposition 1.9 this provides an action
of the algebra Hj, on the functor EP. This can be used to upgrade Theorem 1.3 to
the following result.

THEOREM 1.10. — The naive graded categorical sl action on D, = DE(G(k,C"))
extends to a graded categorical slp action.

The above result is well-known but does not appear explicitly in the literature. It
is a special case of the main result of [W2].

It is worth mentioning a more “elementary” version of this categorical sl; action. For
each k =0,...,n, let D! be the category of finite-dimensional H*(G(k,n))-modules
(with » = 2k — n). We have a functor D, — D! given by global sections. The
following result was sketched by Chuang-Rouquier [CR, section 7.7.2] and a complete
proof was given by Lauda [La, Theorem 7.12].

THEOREM 1.11. — There exists a categorical sla action on D} compatible with the
functor D, — D!. This categorifies the n + 1-dimensional irreducible representation
Of sla.

Moreover, this categorical sz representation is the simplest possible categorification
of this irreducible representation; more precisely, it is a minimal categorification,
according to the results of Chuang-Rouquier [CR].

A related construction was given by Cautis, Licata, and the author in [CKL]. We
considered derived categories of coherent sheaves on cotangent bundles to Grassman-
nians D! := D*Coh(T*G(k,C™)), where again r = 2k — n. We proved the following
result.

THEOREM 1.12. — There is a graded categorical slo action on D! where the functors
E,F come from the conormal bundles to the correspondences Fl(k,k + 1,C™). This
categorifies the representation (C2)®".
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404 J. KAMNITZER

1.5. Equivalences

We will now see how a categorical sly action can be used to produce interesting
equivalences of categories, following Chuang-Rouquier [CR].

To motivate the construction, suppose that V = @V, is a finite-dimensional repre-
sentation of sly. Then the group SLs acts on @V,.. In particular the matrix s = [ 0 (1)]
acts on V. Since s is a lift of the non-trivial element in the Weyl group of SLs, it
gives an isomorphism of vector spaces s : V. — V_, for all . We would like to do
something similar for categorical sls actions.

To do this, let us fix » > 0 and note that the action of s on V. is given by

sy, = FO _ppt+) L p@pE+2) _

where (") = #E" (Note that this sum is finite since for large enough p, V;_o, = 0.)

The alternating signs in this expression suggest that we try to categorify s using a
complex. This complex was introduced by Chuang-Rouquier [CR], inspired by certain
complexes of Rickard. The following result is due to Chuang-Rouquier [CR] in the
abelian case and Cautis-Kamnitzer-Licata [CKL] in the triangulated case (which is
the one we state below).

THEOREM 1.13. — Suppose that D, is a sequence of triangulated categories carrying
a graded categorical sly action such that all functors E, F' are exact. Then the complex

S =[F" o EFTHD(_1) o EQFC+D(_9)  ...]

provides an equivalence S : D, — D_,.

Here E(™ is defined using a splitting E™ = E(”)®n! which is achieved using the
action of H, on E™ (see section 4.1.1 of [R2] or section 9.2 of [La]). The maps in this
complex come from the adjunctions. See section 6.1 of [CR| for more details.

Ezxzample 1.14. — Suppose that we have a categorical sl; action with just Dq, Do, D_5
non-zero. Then choosing r = 0, the above complex has two terms S = [I = EF(—1)].
In this case, the equivalence S is actually a Seidel-Thomas [ST]| spherical twist with
respect to the functor F : D_o — Dy. Thus we see that the equivalences coming from
categorical sy actions generalize the theory of spherical twists.

Chuang-Rouquier applied Theorem 1.13 to prove that certain blocks of modular
representations of symmetric groups were derived equivalent. This proved Broué’s
abelian defect group conjecture for symmetric groups. See Theorem 4.1 for the con-
struction of the relevant categorical action.

Another very interesting application of Theorem 1.13 concerns constructible
sheaves on Grassmannians, as in Theorem 1.10. In this case, it can be shown that
the resulting equivalence D%(G(k,C")) — D% G(n — k,C")) is given by the Radon
transform. More precisely, S is given by the integral transform with respect to the
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kernel j.Cy, where U C G(k,C") x G(n — k,C™) is the open GL,-orbit consisting
pairs of transverse subspaces (1).

Yet another application of Theorem 1.13 involves coherent sheaves on cotangent
bundles of Grassmannians. In [CKL], by combining Theorem 1.13 with Theorem 1.12,
we were able to construct an equivalence

DbCoh(T*G(k,C™)) — D°Coh(T*G(n — k,C")),

thus answering an open problem posed by Kawamata and Namikawa. (This approach
was previously suggested by Rouquier in [R1].) The exact description of the equiva-
lence in this case was given by Cautis [C].

2. THE KHOVANOV-LAUDA-ROUQUIER CATEGORIFICATION

We will now rephrase the notion of categorical sl; action (Definition 1.5) from a
more general viewpoint. We will then proceed to define the categorification of any
simply-laced Kac-Moody Lie algebra.

2.1. Generalities on categorification

Let C be an additive category. Let K(C) denote the (complexified) split
Grothendieck group of C; this is the vector space spanned by isomorphism classes [A]
of objects of C modulo the relation [A @ B] = [A] + [B]. If C is a graded additive
category, then K(C) is a C[g,q ']-module, where we define q[A] = [A(1)]. We can
then tensor to obtain a C(g)-vector space, which we will also denote by K (C).

Let V be a vector space. A categorification of V is an additive category C, along
with an isomorphism of vector spaces K(C) = V. If V is a C(q)-vector space, then a
categorification of V' is a graded additive category C, along with an isomorphism of
C(g)-vector spaces K(C) 2 V.

We will also need the notion of categorification of algebras. A monoidal category
is an additive category C, along with an additive bifunctor ® : C x C — C, such that
A®(B®C)=(A® B)® C®@. If C is a monoidal category, then K (C) acquires the
structure of an algebra where the multiplication is defined by [A][B] = [A ® B).

Let A be an algebra. A categorification of A is a monoidal category C, along
with an isomorphism of algebras K(C) = A. (This generalizes in an obvious way to
C(q)-algebras and graded monoidal categories.)

1. This result will appear in a forthcoming paper by Cautis, Dodd, and the author.
2. Actually, this defines the notion of strict monoidal category.
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Example 2.1. — The simplest algebra is A = C. This algebra is categorified by Vect,
the category of finite-dimensional vector spaces. Similarly, C(q) is categorified by the
category of graded vector spaces.

More generally, if G is a finite group, then the category Rep(G) of finite-dimensional
representations of G categorifies the algebra C.(G) of class functions on G. The
isomorphism K (Rep(G)) — C.(G) is provided by the character map.

An algebra A can be regarded as a linear category with one object whose set of
endomorphisms is A and where the composition of morphisms is the multiplication
in A. From this perspective, it is natural to try to categorify more general categories,
especially those with very few objects. To this end, we will need to look at 2-categories.

A 2-category C (for our purposes) is a category enriched over the category of ad-
ditive categories. That means we have a set of objects C and for any two objects
A,B € C, a category Hom(A, B). We also have associative composition functors
Hom(B,C) x Hom(A, B) — Hom(A, C). Note that a monoidal category is the same
as a 2-category with one object.

The simplest example of a 2-category is Cat, the 2-category of additive categories.
The objects of Cat are additive categories and for any two additive categories A, B,
we define Hom(A, B) to be the category of functors from A to B (the morphisms in
Hom(A, B) are natural transformations of functors).

If C is a 2-category, then we will define K(C) to be the category whose ob-
jects are the same as C and whose morphism sets are defined by Homg c)(4, B) =
K(Hom(A4, B)).

Let A be a linear category. A categorification of A is an additive 2-category C
along with an isomorphism K (C) & A.

We will also need the notion of idempotent completion (or Karoubi envelope).
Recall that if C is an additive category, an idempotent in C is a morphism T': A — A
in C such that T? = T. We say that T splits if we can write A as a direct sum
A= Ag® Ay, such that T acts by 0 on Ag and by 1 on A;. The idempotent completion
(C)? of C is the smallest enlargement of C such that all idempotents split in (C)*. If C
is a 2-category, then (C)* will denote the 2-category with the same objects, but where
we perform idempotent completion on every Hom-category.

2.2. 2-categorical rephrasing for sl

Let us apply this setup to A = Usly, the universal enveloping algebra. Actually we
will need Lusztig’s idempotent form Usly. Since Usl, carries a system of idempotents,
we can regard it as a category.

DEFINITION 2.2. — The category Usly has objects r € Z. It is the C-linear category
with generating morphisms e € Hom(r,r+2) and f € Hom(r,r —2), for all v, subject
to the relation ef — fe = rI,. for all v (this is an equation in Hom(r,r)).
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A representation of an algebra A is the same thing as a linear functor A — Vect,
where A is the category with one object constructed using A. Thus we can speak
more generally of a representation of a linear category C as a linear functor C — Vect.

In particular, we can consider linear functors Usly — Vect. From our discussion
in section 1.1, we can see that a finite-dimensional representation V = @V, of sl; is
the same thing as a linear functor Usly — Vect which takes the object  to the vector
space V.

We also have qulz, which is defined in the same fashion, except that it is C(q)-
linear and the relation is ef — fe = [r]I,.

Now we proceed to the question of trying to categorify Usly. Since it is a category
with objects r € Z, it will be categorified by a 2-category with the same set of objects.
In the previous section we explained Chuang-Rouquier’s definition (Definition 1.5) of
a categorical sly action. By thinking about this definition, we reach the definition of
a 2-category which categorifies Usl,.

DEFINITION 2.3. — Let Usly denote the additive 2-category with
(1) objects r € Z,

(2) 1-morphisms generated under direct sum and composition by E € Hom(r,r+2)
and F € Hom(r,r — 2) for all r,

(3) 2-morphisms generated by
X:E—-SE T:E>?5E? n:I1>FE,e:EF 1

subject to the relations
(1) in Hom(E, E), we have elg o Ign = Ig,
(2) in Hom(E?, E?), we have XIgoT —ToIgX =Igp: =T o XIg —IgX oT,
(3) in Hom(E?, E?), we have T? = 0,
(4) in Hom(E3, E3), we have TIg o IgT o TIg = IgT o TIg o 15T,
(5) if r = 0, the following 2-morphism
(6) (0,6,60XIp...,.e0 X" 'Ip): EF - FE®I®"
is an isomorphism, where o is defined as in Definition 1.5 (plus a similar condition

ifr <0).

More precisely, the last condition means that for each r, in the category Hom(r,r)
we adjoin the inverse of (0,6, 0 XIp...,e0 X" p).

Now that we have defined the 2-category Usly, it is natural to consider 2-functors
Usly — Cat (these are 2-representations of Uslz). With the above definition, it is easy
to see that a categorical sl; action on some categories D, (Definition 1.5) is the same
thing as a 2-functor Usl, — Cat which takes r to D, for all r.
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Remark 2.4. — In this definition, we are following Rouquier’s definition [R2] of the
2-category. In the Lauda [La] version, which we denote by ULsly, we do not invert
(0,¢,...,60 X" 1), but rather add extra relations to ensure that this map is invert-
ible. In a recent paper, Cautis-Lauda [CL] proved that under some mild assumptions
a 2-functor from Usly to Cat gives rise to a 2-functor from U%sly to Cat (the converse
is automatically true).

The following result is due to Lauda [La).
THEOREM 2.5. — The 2-category U sly categorifies Usl,.

Remark 2.6. — The graded version of Usl, categorifies Lusztig’s qulz. There is also
a more precise version of Theorem 2.5, which states that the idempotent comple-
tion (ULsly)? categorifies Lusztig’s Z[g, ¢~ ']-form of U,sly (if we look at the Z[g, ¢ ']
version of the Grothendieck group).

2.3. The 2-category for general g

Suppose that g is an arbitrary Kac-Moody Lie algebra. It is natural to try to
extend the above construction from sl to g, in particular to construct a 2-category
Ug which categorifies Ug. Roughly equivalent constructions of this 2-category were
achieved independently and simultaneously by Khovanov-Lauda [KL1, KL2, KL3] and
by Rouquier [R2].

For simplicity, we will assume that g is simply-laced. Let us fix notation as follows.
Let X denote the weight lattice of g. Let I denote the indexing set for the simple
roots and let «; for ¢ € I denote the simple roots. Let ZI C X be the root lattice
and let NI denote the positive root cone. Let (,) denote the symmetric bilinear form
on X. Then (a;, ;) are the entries of the Cartan matrix of g (these lie in the set
{2,-1,0} by assumption). We choose an orientation of the Dynkin diagram of g in
order to produce a directed graph, called a quiver and denoted Q. We write ¢ — j if
there is an oriented edge from ¢ to j in Q.

The category Ug is constructed from Lusztig’s idempotent form of the universal
enveloping algebra Ug and its definition parallels Usl, (Definition 2.2). In partic-
ular, it has objects A € X and generating morphisms e; € Hom(A, A + «;) and
fi € Hom(A, X\ — ;) for i € I and A € X (for reasons of brevity, we do not give
a complete list of the relations in U g). As before, there is a quantum version Uqg
which is obtained by replacing all integers in the definition of Ug by quantum integers.

We will describe the 2-category Ug using graphical notation due to Khovanov and
Lauda. In this graphical notation, 2-morphisms are viewed as string diagrams in the
plane, with strings oriented and labelled from ¢ € I. The orientations and labels
on the strands tell you the source and target of the 2-morphism. An arrow labelled
i pointing up (resp. down) denotes E; (resp. Fj). For more information on this
graphical notation see [La, Section 4].
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DEFINITION 2.7. — The 2-category Ug is defined as follows.
— The objects are A for A € X.

— The 1-morphisms are generated by
E; € Hom(\M A+ «;), F; € Hom(A, A — o)

foriel and A€ X.

— The 2-morphisms are generated by
Xi=$_:Ei—+Ei, Xi=i,:Fi—>Fi,
1 7
T’ij = i><j : EzEJ g EjEi, Tij = "\><7 : E.F] — E,E
N\ :EF, 1, N :FE—~I \J':I>FE, YJ':I-EF,

forielI and )\ € X. (We have suppressed A in the above notation — it should
label a region in each elementary string diagram. This label tells you the source
and target of the E;, F;.)

The 2-morphisms are subject to the following relations.

~ The KLR algebra relations among upward pointing string diagrams

(1) If all strands are labeled by the same i € I, the nil affine Hecke algebra
relations

0 %m0 (41K 113 -

(2) Fori#j
( ‘}& + Zf (ai,aj) = 0,
i J

i i % J i J
{ } _ * * Fioi
il |4 il |d
(8) For i # j the dot sliding relations

©) X=X XX = 2N
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(4) Unless i =k and (o4, ;) < O the relation

R

Otherwise, (o, o) <0 and

(

(11) E}%—%{j: | |

- ifi— 7.

ifi < j,

— The cap and cup morphisms are biadjunctions

- -0

Moreover the dots and crossing are compatible with these biadjunctions.

- For each i # j, we have

"X

where we define

w o<

(The equality comes from the biadjointness of the crossing.)

i J

— For each i and each X such that r = (\,a;) > 0, the following 2-morphism is
invertible,

(15) (>< Y lm,...,“h) . E;F, » F,E; ® I®"
Here a dot with a positive integer k indicates that we put k dots on that strand
(in other words, it means XF). We also impose a similar condition if r < 0.
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This definition is quite complicated, so let us see where these relations come from.

When g = slp, this definition gives the 2-category from Definition 2.3. In fact, (7)
is relations 2, 3, 4 from Definition 2.3 written in diagrammatic form and (12) and (15)
correspond to relations 1 and 5 from Definition 2.3. (Actually there is a slight differ-
ence, in that the above definition imposes biadjointness, whereas Definition 2.3 only
involves one-sided adjointness. For more discussion on this see [R2, Theorem 5.16].)

Khovanov-Lauda and Rouquier discovered the relations (8),(9), (10), and (11)
based on computations involving cohomology of partial flag varieties and quiver vari-
eties (essentially to get Theorem 3.4 to hold).

Remark 2.8. — As in Remark 2.4, this is the Rouquier version of the 2-category, be-
cause of (15). Khovanov-Lauda’s version, denoted ¥ g, bears the same relationship
to Ug as Lauda’s version, UZsly, did in the sl, case.

Consider the Grothendieck group K(Ug) as a l-category. The generating mor-
phisms are e; = [E;], f; = [F;] as above. From (13), we see that we have e; f; = fje;,
and from (15), we see that e;f; — fie; = (A, a;)Ix in Hom(\, X). As these are most
of the relations of Ug (there remain the Serre relations), this suggests the following
result, which was proven by Khovanov-Lauda [KL3] in the case of sl,, and for general
g by Webster [W1].

THEOREM 2.9. — There is an isomorphism of categories K(UXLg) = Ug. In other
words, the 2-category UKLg is a categorification of Ug.

Remark 2.10. — There is a graded version of Ug with the degree of X; equal to 2
and the degree of T;; equal to —(a;, ;). This graded version categorifies Uqg. Again,
there is a more precise form relating the idempotent completion of /¥ Lg and Lusztig’s
Z[q,q ']-form of Uqg.

2.4. Categorification of the upper half

It is important to isolate the categorification of the upper half of the envelopping
algebra Utg, where UTg C Ug is the subalgebra generated by all E; (or equivalently,
it is the envelopping algebra of n). Note that U*g has no idempotents, so we regard
it as an algebra, not as a category. We have the usual grading U*tg = ®,ent(UTg),-

DEFINITION 2.11. — Let Ut g denote the monoidal category whose objects are gener-
ated (under direct sum and tensor product) by E;, fori € I, and whose morphisms are
upward pointing string diagrams as in Definition 2.7 (so the morphisms are generated
by the upward pointing dot and crossing with the KLR algebra relations).

Remark 2.12. — In the above definition of U*g, the E; do not have a source and
target object as they do in Ug. Thus UTg does not sit inside Ug in any way. This is
not that surprising, as U*g is not a subalgebra of Ug.
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Let v € NI. Let
Seq, = {i=(i1,...,%m) 1 s, + -+ 05, =V}

This is the set of all ways to write v as an ordered sum of simple roots. For i € Seq,,
we let E; = E;, ---E;_ (here the ®-operation in g is written as concatenation).
Let (U*g), denote the full subcategory of U*g whose objects are directs sums of the
E; for i € Seq,,.

We define algebras R, := @®; i eseq, Homy+4(Ej, Ef).

These algebras have become known as Khovanov-Lauda-Rouquier (KLR) algebras,
though the term quiver Hecke algebras has also been used. See [B] for a survey paper
on these algebras.

Ezample 2.13. — Suppose that g = sl;. Then v = na for some n, Seq, has only one
element and R, = H,, the nil affine Hecke algebra.

By general principles, we have an equivalence of categories (U*g)! = R,-pmod be-
tween the idempotent completion of (U*+g), and the category of projective modules
over the KLR algebra R,. In particular, K(({*g),) acquires a basis of indecom-
posable projective R, modules (these are the same as the indecomposable objects of
(Utg), under the above equivalence). Note that under the above equivalence, the
monoidal structure on (U*g)* comes from the inclusion R, ® R, — R4, given by
horizontal concatenation of string diagrams.

The following result is due to Khovanov-Lauda [KL1, Theorem 1.1] (in the simply-
laced case).

THEOREM 2.14. — (U*g)? = @, R, -pmod is a categorification of UTg.

In fact, K((*g)!) can be given the structure of a bialgebra and then the above
result can be strengthened to an isomorphism of bialgebras.

Remark 2.15. — There is a graded version of U g which categorifies U g.

3. LUSZTIG’S PERVERSE SHEAVES AND KLR ALGEBRAS

We will now explain a geometric incarnation of the KLR algebras and of the cate-
gory Utg. For simplicity, let us assume that g is of finite type.

3.1. Lusztig’s perverse sheaves

Recall that we chose an orientation of the Dynkin diagram of g to produce the
quiver Q.
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DEFINITION 3.1. — A representation of Q is a graded vector space V = @®;c1V; along
with linear maps A;; 1 Vi = V; for every directed edge i — j in Q.

The dimension-vector of a representation V is defined by

dimV =) " dimV; o; € NI.
icl
Let M, denote the moduli stack of representations of ) of dimension-vector v.
More explicitly, we can present M, as a global quotient

M, = @) Hom(C*,C*)/ [ GL(C*)

1—J 7

where v = Y, v;0;.

Ezxample 3.2. — When g = sl, then the quiver @ consists of just one vertex with no
arrows. Thus a representation of @) is just a vector space. So we see that M,, =
pt/GL,.

When g = sl3, then the quiver ) consists of two vertices with an arrow between

them. Thus a representation of @) is a pair of vertices and a linear map between them.
Thus, we see that Mpa, +ma, = Hom(C"®,C™)/GL,, x GLy,.

We let D(M) := @, D(M,) denote the derived category of constructible sheaves
on the stack M = UM,. Note that we may consider D(M,) as the [], GL(C")-
equivariant derived category of &; ;) e Hom(C"i,C").

Following Lusztig [Lul, Lu2], we define a monoidal structure on the category D(M).
We consider the moduli stack of short exact sequences

S={0->V, > V3>V, =0}

of representations of (). We have three projection morphisms my, 72,73 : § — M and
thus for A, B € D(M), we can define A* B = w3, (7 A® n3B). If A € D(M,) and
B € D(M,) then Ax B € D(M,,,).

The simple perverse sheaves in D(M,) are precisely the IC-sheaves of the
[I; GL(C")-orbits in ®;_,; Hom(C*,C" ) and thus are in bijection with the isomor-
phism classes of representations of () of dimension-vector v. Ringel’s theorem tells
us that the indecomposable representations of ) have the positive roots as their
dimension-vectors. Thus, the number of isomorphism classes of representations of Q
of dimension-vector v equals the dimension of (Utg),.

Let P(M,) be the subcategory of D(M,) consisting of direct sums of homological
shifts of simple perverse sheaves in D(M,). By the decomposition theorem, P(M) =
®P(M,) is a monoidal subcategory. Note that P(M) has a graded structure given
by homological shift.
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Lusztig [Lul, Lu2] proved the following theorem concerning P(M).

THEOREM 3.3. — The Grothendieck ring of P(M) is isomorphic to Ufg. In other
words, P(M) is a categorification of U g.

By this theorem, Uq+ g acquires a basis coming from the classes of the IC-sheaves
in P(M). This basis is called Lusztig’s canonical basis.
3.2. Relationship to KLR algebras

It is natural to expect that Lusztig’s categorification of U;' g is related to the
categorification of U;' g defined by generators and relations in section 2.4. This result
was proven independently by Varagnolo-Vasserot [VV] and by Rouquier [R3].

THEOREM 3.4. — There is an eguivalence of additive monoidal categories (U )" —
P(M) defined on generators as follows

E; = Cu,,

X; > 2; € Ext*(Cua,, , Ca,,) = HE (pt) = Cla;]

T = tsy

Here we use that M,, = pt/C*. The definition of ¢;; is a bit involved and depends
on cases, so we skip the definition.

We can reformulate this theorem using a convolution algebra defined using M,.
We define M,, to be the moduli stack of complete flags 0 C Vi3 C --- C Vp, of
representations of Q with dim V;,, = v. Then we can form the stack Z, := M,, XM, M,,.
Then H,(Z,) is an algebra under convolution. By Ginzburg [Gi, Prop 5.1], H.(Z,) is
an Ext-algebra in P(M). With this setup, Theorem 3.4 is equivalent to the existence
of compatible isomorphisms R, & H,(Z,) for all v.

Ezample 8.5. — If we take g = sly and v = na, then M, = FI(C")/GL,, and Z, =
(FI(C™) x FI(C™))/GL,. In this case the isomorphism R, = H,(Z,) is precisely the
statement of Proposition 1.9.

As a corollary of Theorem 3.4, we obtain the following result.

COROLLARY 3.6. — The basis of U; g provided by indecomposable graded projective
R, -modules under Theorem 2.1/ is Lusztig’s canonical basis.

4. EXAMPLES OF CATEGORICAL g-REPRESENTATIONS

4.1. Definition of categorical g-representations

Using the 2-category Ug, we can now define a categorical g-representation to be
an additive linear 2-functor g — Cat. In particular, a categorical g-representation
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consists of a collection of categories D, for 4 € X, biadjoint functors E;, F; : D, —
D, +q; and natural transformations X; : E; — E;, T;; : E;E; — E; E; satisfying the
relations in Ug.

A graded categorical g representation involves the same setup except that each
category D, is graded, some shifts appear in the biadjointness of E;, F;, and the
natural transformations X;, T;; have degrees as indicated in Remark 2.10.

4.2. Modular representation theory of symmetric groups

Going back to the work of Lascoux-Leclerc-Thibon [LLT] and Grojnowski [Gr],
the prime motivating example of a categorical g-representation concerns modular
representations of symmetric groups. In fact, this categorical action has proved to be
very important in understanding modular representation theory.

Fix a prime p and an algebraically closed field k£ of characteristic p. We will be
interested in the category Rep(S,) of finite-dimensional representations of S,, over k.
These categories will provide an action of the affine Lie algebra ;[p. The basic func-
tors we consider between these categories are the induction and restriction functors
corresponding to the natural embedding S,_1 < S,.

Recall the Young-Jucys-Murphy elements Yy, := (1 m) + --- + (m — 1 m) € kS,.
A fundamental result is that the eigenvalues of Y,, acting on a representation M lie
in the prime subfield Z/p C k. We will identify of Z/p as the set I of simple roots of
our Kac-Moody algebra ;[p.

Let ¢ € Z/p. Using the Young-Jucys-Murphy elements, we define functors E; and
F; of i-restriction and i-induction as follows. If M € Rep(S,), we let E;(M) denote the
generalized i-eigenspace of Y,,. Since Y;,, commutes with the action S,,_1, we see that
E;(M) is an S, _1 representation. Similarly, we define F;(M) to be the generalized
i-eigenspace of Y, acting on [ ndéZ“M .

Symmetric polynomials in Y3, ...,Y, span the centre of £S,,. Thus we may regard
a central character v : kS, — k as a element of (Z/p)"™/S,, which we think of as the
set of n-element multisubsets of Z/p. Thus for each p1 = (uo, .. ., ptp—1) € NP such that
> ti = n, we can consider the category Rep(Sy), of representations M of S,, whose
generalized central character is given by the multiset v(u) := {OH0, ..., (p — 1)#»-1}.

THEOREM 4.1. — The category @®,Rep(S,) carries a categorical ;[p—action. More
precisely, we get the categorical f/,\[p-action as follows
- We define Dyy_s~ yia; = Rep(Sn)u for each p € NP (where n =" p;).
— For each i € Z/p, we define E;, F; as above.
— The “dot” X; and crossing T;; are defined with the help of Y, and the transpo-
sition (n — 1 n).

The fact that these categories carry a naive categorial s/u\[p-action was proven by
Lascoux-Leclerc-Thibon [LLT] and by Grojnowski [Gr]. The above statement of an
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actual categorical ;[p—action was proven by Chuang-Rouquier [R3, Theorem 4.23]. In
this theorem, we work with a version of Ll;[p defined over the field k£ (rather than C).

Let us be more precise about the definitions of X; and T;;. Consider the functor
Resg’;_p. This functor will have endomorphisms Y, _pt1,..., Y, and (n —p+1n —
p+2),...,(n—1n). It is easily seen that they define an action of a degenerate
affine Hecke algebra H,, on Resg" . For any p with 3" ui; = n, the functor E? :
Rep(Sn)u — Rep(Sn—p)u—pa, is a direct summand of Resg”_ and thus E? carries an
action of H,. Theorem 3.16 from [R2] explains how we can convert this to an action of
the nil affine Hecke algebra H, (a similar result was obtained by Brundan-Kleshchev
[BK]). Using this result, we can construct the categorical ;[p-action. For more details,
see section 5.3.7 of [R2].

4.3. Cyclotomic quotients

There is a natural way to construct categorifications of irreducible representations
of g using cyclotomic quotients of KLR algebras. For each dominant weight A =
> n;w; € X4 and each v € NI, let R, (\) be the quotient of R, by the ideal generated

by all diagrams of the form
nil} ,]A cen A]A

i1 2 im
Let V(A), = Ra—p(A)-pmod be the category of projective modules over the cyclo-
tomic quotients. Note that there is an action of {~g on V(A) coming from maps

Ry_u(A\) ® R, — R)\_(u_,,)()\)

which are given by horizontal concatenation (here &g is defined in the same fashion
as Utg). In particular, we have functors F; : V(A) = V().

The following result was conjectured by Khovanov-Lauda [KL1] and was proved
by Kang-Kashiwara [KK, Ka] and Webster [W1]. The conjecture was motivated by
the work of Ariki [Ari] who constructed naive categorical sl actions using cyclotomic
Hecke algebras.

THEOREM 4.2. — The functors F; admit biadjoints E; and this defines a categorical
g-action on V(X). Moreover, V() categorifies the irreducible representation V(X) of
highest weight .

Rouquier has proved [R3] that a slight generalization of V() is the universal cate-

gorical g-representation with highest weight A. Also, Lauda-Vazirani [LV] constructed
the crystal of V()\) using the simple modules over the algebras R, ().
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Remark 4.3. — Webster [W1] has generalized this construction. For any sequence
A1, .., An, he has constructed certain diagrammatic algebras R, (\1,...,An) whose
categories of projective modules admit a categorical g-action as above. This construc-
tion categorifies the tensor product representation V(A1) ® - -- ® V(Ap).

4.4. Geometric examples

It is natural to generalize the construction of the categorical sly-action on sheaves
on Grassmannians (Theorem 1.10). The generalization uses Nakajima quiver varieties.

For each dominant weight A, there exists a (disconnected) Nakajima quiver variety
Y(A) = UpexY (A, p). It is a moduli space of framed representations of a doubled
quiver with preprojective relation. Nakajima [N] has constructed an action of g on
H*(Y()A)). This motivated the question of constructing categorical actions of g on
categories defined using Y ().

The variety Y (A, ) is almost a cotangent bundle — in fact, it can be viewed as an
open subset of a cotangent bundle to a certain stack M (A, ). This motivated Zheng
[Z] to define a certain category of constructible sheaves D(A, u) on M (), n) which
should carry a categorical g action.

Ezample 4.4. — In the case g = sly and A = n, then Y (n,n — 2k) = T*G(k,C") and
D(n,n — 2k) = D%(G(k,C")).

THEOREM 4.5. — The categories D(A, u) carry a categorical g-action.

Zheng [Z] proved a weaker version of this theorem (he only established a naive
categorical action). The above statement was proven by Rouquier [R3] using The-
orem 3.4. Webster [W2] also explained that the category D()\, u) can be viewed
(under Riemann-Hilbert correspondence and Hamiltonian reduction) as a category of
modules over a deformation quantization of Y (A, u).
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