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65° année, 2012-2013, n® 1071, p. 373 & 396

NOUVEAUX DEVELOPPEMENTS SUR LES VALEURS DES
CARACTERES DES GROUPES SYMETRIQUES;
METHODES COMBINATOIRES
[d’apres V. Féray, ...]

par Pierre CARTIER

INTRODUCTION

Il est difficile d’innover dans un sujet aussi vénérable que ’étude des caracteres
des groupes symétriques. L’ouverture a été faite dans ’article fondateur de Frobenius
[A2] en 1900, suivi par Schur [A11] en 1901, et par Young [A13] en 1928. On dispose
aujourd’hui d’un bon nombre d’excellents exposés d’ensemble [A5, A6, A8, A9, A10,
A12].

Les travaux dont nous allons parler ont leur origine dans I'Ecole de Saint-
Petersbourg (autrefois Leningrad) : Kerov, Vershik, Olshanski, Ivanov, Okunkov. ..
Leur motivation initiale était 1’étude des représentations factorielles du groupe
symétrique S, réunion de la suite des groupes symétriques S; C So C --- C S, C
Sp+1 C ... Il s'agissait d’un exemple emblématique des méthodes d’algebres d’opé-
rateurs dans les espaces de Hilbert. En un sens convenable, il faut passer a la limite
sur les diagrammes de Young de taille croissante. Il apparut vite que cela revenait
a étudier la forme limite de diagrammes de Young aléatoires; voici une illustration
d’une simulation numérique sur des tableaux de taille 20, 200, puis 2000. La courbe
limite se dessine trés nettement.

2 2 2
.......................... 12
1 ) ' 1 1 )
1 1 ] 1 1 ,
1 1 ' 1 ] 1
1 1 ' 1 ] 1
1 1 ' 1l ' 1
1 1 ' l ' 1
1 1 ' ] 1 ]
1 1 ' 1 ' 1
) [5) 2 ) 0 2 -2 ) 2
n =20 n = 200 n = 2000
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374 P. CARTIER

Une autre source d’inspiration est venue des probabilités non commutatives. Le
cadre est le suivant :

e un espace de Hilbert séparable H ;

e une algebre de von Neumann A d’opérateurs bornés dans H (stable par I’adjonc-
tion ¢ — z* et fermée pour la topologie faible de la dualité entre L(H) et ’espace
L1(H) des opérateurs & trace) ;

e un état E sur A (forme linéaire faiblement continue, positive E(z*z) > 0, telle
que E(1) =1).

Lorsque l’algébre A est commutative, on est ramené au cas probabiliste usuel : un
espace probabilisé (2, 4,P), avec A = L*°(Q,P) agissant par multiplication sur
Pespace de Hilbert H = L?(Q2,P), et E[f] = [, fdP pour f dans A.

Vers 1970, Voiculescu a entrepris I’étude du cas fourni par P’algebre de von Neu-
mann engendrée par un groupe libre G agissant par la représentation réguliere dans
’espace £2(G). Voiculescu a découvert que les générateurs du groupe libre satisfont &
une propriété qui se réduit dans le cas des probabilités commutatives & I’indépendance
stochastique. Ce nouveau domaine fut baptisé : « probabilités libres ». Les moments et
les cumulants classiques des variables aléatoires se généralisent en « cumulants libres »
qui font intervenir la combinatoire des « partitions non-croisées ». Le petit miracle est
que ces partitions non-croisées correspondent aux factorisations minimales v, = 70
d’une permutation circulaire -y dans le groupe symétrique Sy (cf. section 2.3.4). Ces
factorisations minimales vont & leur tour se décrire au moyen des cartes biparties
unicellulaires (cf. section 2.1.2). Ces cartes seront le théme central des méthodes com-
binatoires décrites a la section 2.

Si X est une partition de n, et x> le caractére de S,, correspondant & A, on considére
les valeurs normalisées des caracteéres

n! x )

= = e

pour n > k. Utilisant les méthodes de probabilités libres, Biane [C1] a étudié le
comportement asymptotique de Chy(A) quand n croit, et que le nombre de lignes et
de colonnes de X est d’ordre O(y/n). La clé est fournie par les homothéties : identifiant
A & une région Dy du plan R2, 'homothétie de rapport t (¢ > 1 entier) transforme
D) en Dy, () pour une partition h¢(A) de nt2. Biane prouve que la limite

Ri+1(X) = Jim Chy(he A) JthT1

existe, et il I'interpréte en termes de cumulants libres. En particulier R2()) est la taille
|A| de A.
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Il est remarquable que les quantités Chy()) et Ri(\) sont polynomiales : intro-
duisant les coordonnées multirectangulaires p,q (cf. section 1.1.5) de A, on a des
expressions polynomiales en p, q. De plus, il existe des formules universelles liant les
Chy, et les Ry : voici un échantillon

Ch; =Ry

Chy = R3

Chs = R4+ R,
Chy =Rs5+5R3

Chs = Re +15Rs + 5R2 +8 Ry
Chg = R7+35Rs +35Ry R3 + 84 R3.

Dans [C2], p. 199, Biane () donne les valeurs de Ch; & Chy;. Il y a une graduation
naturelle par le degré total en les variables p1, pa,...;q1,¢q2,... Alors Ry est homogeéne
de degré k, et le terme de plus haut degré de Chy est Ry1, de degré k + 1 (cf. sec-
tion 2.3.3). L’estimation asymptotique de Biane [C1], p. 127, résulte facilement des
relations entre les Ry et les Chy. :

D’une maniere générale, Kerov écrit Chy, sous la forme d’un polynéme (de Kerov)
Kk(RQ, R3, ey Rk+1) s

et la table ci-dessus suggere la conjecture de Kerov : les coefficients de Ky, sont des
entiers positifs. Cela a été prouvé récemment par V. Féray [B2] par utilisation de
méthodes combinatoires de la théorie des graphes et des cartes. C’est ce que nous
allons essayer d’expliquer en suivant ses exposés du cours Peccot 2013 au College de
France.

1. LE GROUPE SYMETRIQUE

1.1. Notations et préliminaires

1.1.1. — Le groupe symétrique Sy, est le groupe des permutations de I’ensemble [n]
des entiers 1,2,...,n. On fait la convention [0] = @&, d’ot1 Sy = (1). L’élément unité
d’un groupe est toujours noté 1. Pour 1 < k < n, on identifie Sy & un sous-groupe de
Sn, en faisant correspondre & la permutation o de [k] la permutation de [n] qui fixe
tous les éléments de [n]\[k]. On note 7% le cycle (12...k), vu comme élément de Sk,
donc aussi de S,, pour n > k.

1. Ce que nous notons Chy, est désigné par Xy dans Biane, loc. cit.

SOCIETE MATHEMATIQUE DE FRANCE 2014



376 P. CARTIER

1.1.2. — Une composition ¢ d’un entier n > 1 est une suite (cy,...,cx) d’entiers
strictement positifs de somme c¢; + - -- + ¢ égale & n. Une partition A de n est une
composition & 'ordre preés des éléments, et on peut toujours la normaliser de sorte
que

A=Az 2N >0.

La longueur de A, notée £(\), est k; la taille de A, notée ||, est la somme A; +- - -+ Ag.
La relation |A\| = n s’écrit aussi souvent A F n. On est parfois amené & compléter
une partition par une suite infinie de zéros. Une composition d’un ensemble X est
une suite (Cy,...,Cf) de sous-ensembles non vides, deux & deux disjoints, de X, de
réunion X. Une partition II de X est un ensemble de parties non vides de X, deux a
deux disjointes, de réunion X.

1.1.3. — Les partitions de n paramétrisent les classes de conjugaison des éléments 7
de S, ; le type cyclique de m est la partition A de n, soit A = (Ay1,..., k), telle que
m se compose de cycles de longueurs Aq, ..., Ax. Les partitions paramétrisent aussi
les représentations irréductibles de S, (cf. section 1.2). Pour une partition X\ de n,
on note p* la représentation irréductible correspondante de S,, x* son caractére, et
P* = x*/x*(1) le caractére normalisé. Le degré dy = x*(1) est la dimension de
’espace de la représentation p*.

1.1.4. — Décrivons les diagrammes de Young. Si A = (\1,..., Ax) est une partition
de n, on note Ay 'ensemble des couples (i, 7) d’entiers tels que

1<j<k, 1<i<\.
A tout couple (i, §) on associe le carré D; ; = [i — 1,i] x [j — 1, 7] de c6té 1 dans R?,

dont le sommet nord-est est (¢,7); on note aussi Dy la réunion des carrés D; ; pour
(i,7) dans Ay (voir les figures dans le cas de la partition A = (4,4,2,1) de taille 11).

J A J A

T

LY

D
Le cardinal |A,| de Ay et l'aire |Dy| de Dy sont égaux & |A|. Sur le dessin de Ay,

les lignes et les colonnes sont évidentes. Les longueurs des lignes sont A1, Ag,..., Ag;
celles des colonnes forment une partition A = (A1, ..., \¢) de n, dite duale de A.
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1.1.5. — Si p,q sont des entiers strictement positifs, on note p x ¢ le diagramme
rectangulaire formé de p lignes de longueur ¢, et de g colonnes de longueur p. Plus
généralement, si p et g sont des compositions de méme longueur m > 1, le diagramme
P X q se compose de p; lignes de longueur g; + ¢;41 + -+ ¢m pour 1 < j < m, et de
g; colonnes de longueur p; +---+p;. Il y a en tout p1 +- - - +py, lignes et g1 +---+¢qm
colonnes. Toute partition A de n s’éerit de maniere unique sous la forme p X q; le
diagramme A est alors la réunion de rectangles p; x g; pour 1 < 4 < j < m. La
taille de la partition A (ou du diagramme correspondant) est alors |A| = Zi< ; Pid;-
Notre stratégie sera d’exprimer divers invariants associés & un tableau de Young
comme polyndmes en les coordonnées multi-rectangulaires p, q.

a3 S1
p3 D3
o ------- | 92 So
b2 | S . P2qi g,
P1 : : n
q3 q2 71
1.1.6. — Venons-en & la notation russe®. Le domaine polygonal B est déduit de

D, par la transformation linéaire (z,y) — (z —y, z +y) dans R2. Il existe une unique
application continue wy de R dans R qui a les propriétés suivantes :

e on a wy(x) = |z| pour |z| assez grand ;
e la fonction wy est linéaire par morceaux, et sa pente est égale & +1 ou —1;

e le domaine F) est défini par les inégalités

lz] <y < wa(z).

Al =11

Wi wx

2. Ce que nous venons de décrire est la notation « frangaise ». La notation « anglo-saxonne » utilise
le symétrique de Dy par rapport a I’axe horizontal.
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1.1.7. — Si X correspond aux compositions p X ¢ de méme longueur m, il existe une
suite de nombres entiers de la forme

U <V <UL < < Up—1 < Uy < U

qui sont les abscisses des points anguleux de la fonction wy. La suite wo,u1,...,um
décrit les minima locaux de la fonction wy, et v1,..., v, les maxima locaux. Ce sont
les coordonnées entrelacées de A, et ’on a les lois de transformation

u=—Pr1+- - +Pm), U=V +Pmjt1, Vi =U-1+gm—j+1 (1<J<m)

d’ol1 Von déduit ug + - + upm = vy + -+ + Uy

1.1.8. — Au lieu de la fonction wy, on peut introduire la fonction wy(z)

1 (wa(=) — |z]), et le domaine Fy défini par les inégalités

0 <y < wiz)
dans R2. L’aire de F) est définie par I'intégrale
+o00
|Fal = / wx(z)dz = [ drdy;
—00 F

elle est égale a |A|. Il nous sera utile d’introduire des « moments »

+o00
te(A) = - 1)/ wy(z) dx
=k(k—1) [ z¢F2dzdy
Fx

= M zF 2 dz dy,
2 B

d’otr t2(A) = 2 |A|. Dans les coordonnées entrelacées, on a

te(A\) =uf + -k, —oF - 0k

1.1.9. — On a déja introduit les homothéties h; de rapport ¢ > 0 entier. On a aussitot
les relations

Dp,x = ht(D5)
wha(Z) = twa(z/t)
wh, A (2) = twr(z/t),

et la relation d’homogénéité pour les moments
te(he)) =t ().

Enfin, ’homothétie h; transforme p x g en tp X tq, donc les coordonnées entrelacées
de hi\ sont tug < tvg; < tup <...

ASTERISQUE 361



(1071) VALEURS DES CARACTERES DES GROUPES SYMETRIQUES 379

1.2. Représentations irréductibles du groupe symétrique

1.2.1. Symétriseur de Young. — Soient n > 1 un entier et A une partition de n.
L’ensemble Ay de sommets est de taille n; nous noterons S(\) le groupe des permu-
tations de Ay. Un tableau de Young est une bijection T' de [n] sur Ay ; autrement
dit, une numérotation des éléments de A, ou des carrés correspondants de D) (voir
la figure) :

9]
5|10
3]7]8]u
1[2]4]6

Le tableau est standard lorsque les nombres dans les carrés vont en croissant de gauche
a droite dans chaque ligne et de bas en haut dans chaque colonne, ce qui est le cas
dans la figure ci-dessus. Le choix d’un tableau T' définit un isomorphisme @7 de S,
sur S(A).

On introduit deux sous-groupes C(A) et L()) de S(\), formés des permutations de
A) qui transforment chaque colonne (ligne) en elle-méme. Notons (o) la signature
d’une permutation o € S(A), et e, 1'élément de base correspondant dans I’algebre du
groupe C(S(A)). On définit deux éléments ay et by de C(S(A)) par les formules

ay = Z €0, b/\= Z 6(0)607
g€L(A) geC(N)

et le symétriseur de Young est C = ay bj.

1.2.2. — On note I Iidéal & gauche de C(S()\)) engendré par Cy, et p*(o) la restric-
tion & I de la multiplication & gauche par e, dans C(S()\)). On a remarqué qu’un
tableau T' de forme A définit un isomorphisme ¢r de S, sur S(\), qui permet de
transporter C(\), L(A), ax, bx, Cx, I, p* sur des objets C(T), L(T), ar, br, Cr, Ir,
pT associés & S,. La représentation (p”,Ir) de S, ne dépend & isomorphisme prés
que de .

THEOREME 1.1 (Frobenius-Schur)

a) Pour tout tableau de Young T de taille n, la représentation (p*,Ir) de S, est
trréductible.

b) Toute représentation irréductible de S, est isomorphe d l’une des représentations
(pT’ IT) :

¢) Deuz représentations (pT,Ir) et (pT ,I/) sont isomorphes si et seulement si
les tableauz T et T' correspondent a la méme partition \ de n.

Pour chaque partition A, on choisira une fois pour toutes un tableau standard de
forme A, par exemple celui ou la premiére ligne comporte les nombres 1 & Aq, la
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380 P. CARTIER

seconde les nombres A\; + 1 & A1 + Ag, etc... et I'on paramétrisera les représentations
de S, par les partitions A de n.

1.2.8. — Soit P l’ensemble des couples (7, j) d’entiers strictement positifs, muni de
la relation d’ordre produit

6,d) = (k) e izk et j> L.

Une partie H de P est dite héréditaire si avec tout élément (i,j) elle contient tous
les éléments (k, ¢) tels que (3,7) > (k,£). L’application A — A est une bijection de
l’ensemble des partitions de n sur l’ensemble des parties héréditaires a n éléments
de P.

Si A et p sont deux partitions, on écrit A < p si Ay est contenu dans A,. Si 'on
prolonge toute partition par une suite infinie de 0, la relation A < p signifie que 'on
a Ar < U pour tout entier k > 1.

Un tableau de Young standard T de taille n peut étre vu comme une application
injective ¢ : [n] — P. Les applications en question sont caractérisées par le fait
que ’ensemble ¢([k]) = {¢(1),...,¢(k)} est héréditaire pour 1 < k < n. D’apres
la remarque précédente, un tableau standard T de forme A correspond ¢ une suite
croissante de partitions

AD <A@ oA = )
avec n = |\| et k= |A®)].

1.2.4. — Venons-en a la régle de branchement. Soit A une partition de n. La restric-
tion & Sp_1 de la représentation p* de S, est canoniquement isomorphe & la somme
directe des représentations p* de S,_1, ot p parcourt l’ensemble des partitions de
n — 1 telles que p < A.

Par une itération facile, on voit que ’espace I a une base indexée par les suites
croissantes A() <A@ ... <A™ = ) de partitions, c’est-a-dire par les tableaux de
Young standard de forme X (cf. section 1.2.3).

Pour décrire les partitions u de n — 1 telles que p < A, le plus commode est d’uti-
liser les coordonnées multi-rectangulaires p1,...,Pm,q1,---,qm- Il y a m possibilités,
obtenues en supprimant de Ay 'un des m points sy, ..., S, définis par

8j = (@m—j+1 + Gm-j+2+ -+ @m,P1 + P2+ + Pm—j+1)

pour 1 < j < m (ou le carré correspondant de D) ). Dans la représentation russe, ceci
correspond aux m maxima locaux d’abscisses vi, ..., Un.
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1.2.5. — Nous allons donner une autre description des représentations de S,,, & 'aide
des éléments Jy, introduits par Jucys et Murphy en 1974. Rappelons qu’on plonge les
groupes symétriques les uns dans les autres

S1CS C---CS, CSpye1C..

on nomme Sy la réunion (ou limite inductive) de ces groupes, d’ou une situation
analogue pour les algebres de groupes

Q(S1) € Q(S2) C -+ CQ(Sn) CQ(Sn+1) C -+ C Q(Swo) -
Voici la définition des Jj

k—1
Jyi=0, Jpi=(12), Jy:i=(13)+(23),..., Jr:=» (ik),...
i=1

ou (¢j) est la transposition de i et j. On voit que Jy appartient & Q(S%) et commute
aux éléments de Q(Sk—_1); par suite, les Jx commutent deux ¢ deuz.

Il est immédiat que, dans toute représentation unitaire (p, V') de Sy, les opérateurs
p(J1),...,p(Jy) sont hermitiens et commutent deux a deux, donc se diagonalisent
simultanément. De plus, I’algeébre engendrée par Jy, . .., J, dans Q(S,) est assez grosse
pour qu’on ait le résultat suivant : si p est irréductible, le sous-espace de V' défini par
les relations p(Ji)v = cxv pour 1 < k < n est de dimension < 1. On peut donc indexer
une base de V par des systémes de valeurs propres ci, ..., ¢, : c’est la stratégie bien
connue des « nombres quantiques » en physique quantique.

Explicitement, pour la représentation p* de S, associée & la partition A de n, on a
la base (er) de l’espace I indexée par les tableaux standard T' de forme A, et I’on a

N Jy) er = e(T(k)) er pour 1 <k < n.

Rappelons que le tableau T est une suite T'(1),...,T(n) d’éléments de P et c est
Papplication (4,j) — ¢ — j de P dans Z : c(i,j) est le contenu de la boite (4,7). On
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peut donc paramétrer la base de I, sous la forme e(ci,--.,Cn), au moyen des suites
c1 =c(T(1)),...,cn = ¢(T(n)) vérifiant la condition suivante :
(TS) Soitk € [n]. Soit a; le nombre de fois que i apparait dans la suitecy, .. ., cx.
On a alors
Q21 20 220-32..., Qg2 a1 Za2032....

Rappelons que le groupe S, est engendré par les transpositions s = (k, k+1) pour
1 < k < n. L’action de ces générateurs dans la représentation p* se décrit ainsi OF

o sicyi1 =cp£1,0nap(s)elc,...,cn) = xe(cr, ... ¢n);
e si |ckp1 — ck| = 2, pM(sk) laisse fixe le plan ayant pour base le vecteur
e =e(cy,...,cn) et le vecteur €’ déduit de e par échange de ¢ et ci41; il y agit par

la matrice (%, ¥

1 ) avee u = (cpgr —ck) L

Utilisant la présentation bien connue du groupe S, par les relations
2 _
sp=1
Sk Sp = Sy Sk silk—¢ =2
Sk Sk+1 Sk = Sk+1 Sk Sk+1

on peut vérifier que les opérateurs p*(si), définis comme ci-dessus sur un espace ayant
pour base ) les vecteurs e(ci,...,cy), correspondant & la relation (TS), définissent
bien une représentation du groupe S, (pour tout corps de coefficients de caractéris-
tique 0). L’avantage de cette construction est qu’elle s’applique presque telle quelle
aux représentations de l’algebre de Hecke #H,4(Sy,).

1.2.6. — Les éléments de Jucys-Murphy permettent de donner une description par-
ticulierement attrayante de la régle de branchement. Soient A une partition de n,
p* la représentation de S, correspondante, et ug < v; < U1 < +++ < Uy < U, les
coordonnées entrelacées de \. L’opérateur p*(J,,) a pour valeurs propres vi,...,Um ;
notons Vi,...,Vy les sous-espaces propres correspondants. Alors, pour 1 < j < m,
Uespace V; est stable pour S,_1, et correspond a la représentation irréductible pHa)
de Sn—1, ot u(j) est la partition de n — 1 obtenue en supprimant le point s; de Ay
(cf. section 1.2.4). Noter aussi que v; est le contenu du point s;.

2. METHODES COMBINATOIRES

2.1. Graphes et cartes bipartis

2.1.1. — Un graphe biparti G se compose d’un ensemble V' de sommets, muni d’une
composition (Vo, Vs) (les éléments de V, sont de couleur blanche, et ceux de V, de

3. Vu les conditions imposées, on a toujours ci 7# Ck+1-
4. Chaque suite (ci1,...,cn) décrit un tableau de Young standard, et I'on doit se restreindre a

ceux de forme A.
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couleur noire), d’un ensemble F d’arétes, et de deux applications s : E — V,, b :
E — V,. On dit que I'aréte e joint le sommet blanc s(e) au sommet noir b(e). Il est
commode d’introduire pour chaque aréte e une aréte opposée €, obtenue en échangeant
les deux extrémités de e. On note E 'ensemble de ces arétes é. Par exemple, si A est
une partition de n, on définit un graphe biparti G dont A est 'ensemble des arétes,
les sommets blancs (noirs) correspondant aux lignes (colonnes), et 'aréte (4,7) € Ay
joignant la ligne j a la colonne i. Tous les graphes considérés seront finis, c’est-a-dire
que les ensembles V' et E sont finis.

2.1.2. — Une carte bipartie M est un graphe biparti G sans sommet isolé (®) et muni,
pour chaque sommet v, d'un ordre cyclique sur ’ensemble F,, des arétes adjacentes a v ;
un tel ordre cyclique définit sur F, une permutation circulaire v, (et réciproquement).
La donnée de la partition (E,),cv, et des permutations circulaires v, équivaut, via
la décomposition en cycles, a la donnée d’'une permutation o de E. De méme, au
moyen des sommets noirs, on décrit une autre permutation 7 de E. Autrement dit,
une carte bipartie est la représentation combinatoire d’une paire de permutations o, 7
d’un ensemble fini £'; on la notera M, ;.

Il est bon d’introduire une représentation géométrique. A chaque sommet v, nous
associons un disque orienté D,, dont le bord 9D, est disséqué en une famille d’arcs de
meémes longueurs, indexée par F,, de sorte que v, corresponde & une rotation d’angle
27 /|E,| dans le sens positif. A chaque aréte e, on associe un rectangle orienté R, dont
le bord est composé des arétes e (orientée du blanc vers le noir), € (orientée en sens
inverse) et les deux arcs orientés correspondent aux disques Dy() et Dy(.) associés
a ses extrémités. On recolle ensuite les disques D, et les rectangles R., de maniere
compatible avec les orientations, et 1’on obtient une surface S(M) (voir figure).

5. Autrement dit, les applications s : E — V, et b: E — Ve sont surjectives.
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Le bord 8S(M) de cette surface se compose d’arcs orientés indexés par E LI E, de
sorte que deux arcs adjacents ne soient pas tous deux dans E, ou tous deux dans E.
La décomposition de ce bord en composantes connexes I',, correspond & la décom-
position en cycles de o7 : dans I',, un arc sur deux est dans E et la permutation
circulaire associée & o7 fait passer d’un arc dans E au suivant dans E dans le sens de
Porientation.

En échangeant les roles de E et E, on a la décomposition en cycles de To.

Il revient au méme de supposer que le graphe G(M) sous-jacent & M et la surface
S(M) soient connexes. Le bord 8S(M) n’est pas toujours connexe, mais on le suppo-
sera désormais connexe. Ceci revient & supposer que o7 et 7o ont un seul cycle. On
dit dans ce cas que la carte est unicellulaire. Si Pon choisit de plus une aréte e; (la
racine), et qu’il y ait k arétes, il existe une numérotation ey, ..., e, des arétes et une
seule, telle que 7o soit égal au cycle v = (12... k).

En résumé, les factorisations v, = 170 dans Sk correspondent bijectivement auz
cartes biparties unicellulaires enracinées a k arétes.

2.1.3. — 1l est bien connu que, dans un graphe connexe & k arétes, le nombre des
sommets est au plus égal & k + 1, et les arbres sont les graphes connexes & k arétes
et k + 1 sommets. Si ’on note C(o) ’ensemble des cycles d’une permutation o, dans
la carte associée & une factorisation vy, = 7o il y a |C(o)| sommets blancs et [C(7)]
sommets noirs, d’ou l'inégalité

IC@)+IC(T) <k+1,

sur laquelle nous reviendrons a la section 2.3.3. Nous dirons que la factorisation vy, =
To est minimale si Pon a égalité dans la relation précédente. Noter aussi que dans
un arbre 3 racine noire, les sommets noirs sont ceux qui sont & distance paire de la
racine ; de la sorte, le coloriage des sommets est automatique.

On a donc un corollaire du résultat ci-dessus : les factorisations minimales vy = 70
correspondent auz arbres plans enracinés d k arétes et k + 1 sommets®). La surface
associée & un tel arbre est homéomorphe & un disque.

6. On a choisi plus haut pour racine d’une carte une des arétes. Ceci est conforme aux conventions
pour les arbres plans, si I’'on prend pour aréte privilégiée e; la plus & gauche pointant vers le sommet
racine supposé noir.
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2.2. Calcul des caractéres

2.2.1. — Précisons d’abord ce qu’on entend par série formelle 4 une infinité de va-
riables z; (i € I). Un mon6éme z* = [],; x{"* correspond & une application o.: I — N
telle que ’ensemble des i avec ; # 0 soit fini. Une série formelle est une combinaison
linéaire de la forme ) ;,cqa %, ol les ¢, appartiennent & ’anneau de base K, et ou
M est ensemble des monémes (« une infinité de mondémes dont chacun ne dépend
que d’un nombre fini de variables »).

2.2.2. — Soit G un graphe biparti, avec I’ensemble des sommets V = V,UV,. A toute
application (¥ ¢ : V — N* on associe le mon6éme My

my = [ Powy 1 totw

vEV, weV,
en les variables pi,ps,...,q1,92,... On désigne par Ng la série formelle dans
Z[p1,p2---;491,42, - - .|| somme des mondmes m,, pour toutes les applications ¢ crois-

santes au sens suivant : s’il existe une aréte allant du sommet blanc v au sommet noir
w, on a ¢(v) < p(w). Cette série Ng ne dépend que du graphe réduit Greq obtenu en
identifiant deux arétes ayant les mémes extrémités.

2.2.3. — Soient G un graphe biparti, et A une partition de taille |A\| = n. On a défini
le graphe biparti G & la section 2.1.1. La notion de morphisme de graphes bipartis est
évidente : un morphisme ® du graphe biparti G = (V;, Vs, E) dans le graphe biparti
G' = (V!,V],E’) se compose de trois applications

O, : VooV, ®=V,>V], ®:E—FE
rendant commutatif le diagramme suivant :

Vo< E—t,v,

SN

Vi< F 25V

On note alors Ng(\) le nombre de morphismes de G dans G. Ce nombre ne dépend
que du graphe réduit G,eq associé a G.

2.2.4. — Voici le lien entre ces deux définitions : si le diagramme de Young A, est
de la forme p x q, avec deux compositions p = (p1,...,Pm) €t ¢ = (q1,---,qm), ON @

NG()‘) =NG(Pl,Pz,u-aPm»O,O,---§Q1,Q2,‘--,Qma0,0---)'

7. Rappelons que N désigne I’ensemble des entiers n > 0, et N* celui des entiers n > 1.
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Exemples :

plVel g!Vel pour tout graphe biparti G ;

(/\) sz 94 =

i<J

eonaNg(pxq)=

esiA=pxgq,ona

eona N A = Y DiDj qk qe, la somme étant étendue aux systemes tels que i < k,
<k j<t
2.2.5. — Fixons un entier k > 1. Si \ est une partition d’un entier n > k, on cons1dere
Sy comme un sous-groupe de Sy, et donc la valeur x*(7) du caractére irréductible x*
de S, en I’élément 7 de S) est bien définie. On utilise la normalisation suivante, due
a Kerov et Olshanski [B5]

Che(3) = Ty XWC).

Comme la valeur des caractéres en un élément m ne dépend que de la partition p
décrivant la décomposition en cycles de 7, on écrira Ch, (M) pour Ch,()); on a pour
parameétres la partition p de k, fixée, et la partition A de n, variable. La normalisation
ci-dessus a pour effet que Ch,(p x q) va étre représenté comme un polynéme en
D1,y Pm;ql,- - ->qm- Le point de départ est la formule de Stanley [B7]

Chr(px g) = Y &(r)pl9@l o™,
oT="m

qu’il s’agit de généraliser.
2.2.6. — Soient o et T dans Sg. D’apres la construction de la section 2.1.2, on associe
a o, 7 une carte bipartie M, . décrite ainsi :

e Pensemble V, des sommets blancs est I’ensemble C(o) des cycles de o;

e de méme, on a V, = C(1);

e 'ensemble des arétes est donné par E = [k];

e la source s(i) d’une aréte i € [k] est le cycle de o contenant i, et de méme b(¢)
est le cycle de T contenant i.

On note Gy le graphe biparti réduit associé & M, .. Les sommets blancs (resp.
noirs) sont les cycles de o (resp. 7), et il y a une aréte joignant ¢; € C(0) & c; € C(7)
si et seulement si ¢; N ¢z est non-vide. On écrit N, , pour Ng, ,; c’est une série
formelle & coefficients entiers en les variables p;,pa,...;91,92,- .-

2.2.7. — Voici maintenant le résultat central de V. Féray [B3], conjecturé préalable-
ment par R. Stanley [B7]. La version que nous en donnons, aussi bien pour ’énoncé
que pour la démonstration, suit 'article [C3] publié par Féray en collaboration avec
Sniady.
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THEOREME 2.1. — Soient m un élément de Sy et A une partition d’un entier n > k.
Ona
Chr(A) = ) &(r) Npr(N)
TO=T

(sommation sur o, dans Sk).

La démonstration comporte plusieurs étapes.

1) Rappelons la définition du symétriseur de Young

C = 26(7') €or

on a choisi un tableau T' de forme A, o parcourt le groupe L(T') et 7 le groupe C(T'). Si
I'on pose ay := n!/dy (o1 dy est le degré de la représentation p* de S,, associée & \), on
a C% = a,C), donc py = a;lC)\ est un idempotent, et ’espace de la représentation
p* est C(Sy,) - pa. Il en résulte que la valeur x*(7) du caractére x* de p* est la trace
de l'opérateur = — e, z p) dans C(S,). Un calcul facile donne

@)/ dy = 3 &) Now ()
TO=T
pour tout 7 dans S,,. La sommation est étendue aux factorisations de 7« dans S, et
Ny -()) est le nombre de tableaux T de forme X tels que o € L(T) et 7 € C(T). Autre-
ment dit, on compte les bijections de [n] sur Ay qui se déduisent d’un isomorphisme
du graphe biparti G, . sur le graphe biparti G associé a .

2) Il y a deux restrictions dans la formule précédente : tout d’abord k = n, et
N -(A) est remplacé par Na,r()\). Pour traiter le cas k < n, on note que (—n?k—), est
le nombre d’applications injectives 6 : [k] — [n], que toute application de ce type
transforme un élément o de Sk en une permutation de ([k]) que 'on prolonge en un
élément oy de S, qui fixe les éléments de [n]\f([k]). La somme ), e,, appartient au
centre de l’algébre de groupe C(S,), et donne un scalaire dans toute représentation
irréductible de S, (« lemme de Schur ») (®),

3) On obtient alors la relation

(4) Che(N) = Y &(r) Norr(N)

T=TO

ol NG,T(A) compte les applications injectives f de [k] dans A, qui définissent un
morphisme de graphes bipartis de G, » dans G. Il faut se débarrasser de I’hypothése

8. Voir a la section 2.3.2 un raisonnement analogue.
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que f est injective. Or la somme qui nous intéresse Y &(7) Ny ,(A) peut aussi

s’écrire T=Te
> &)
fror
avec les conditions
e €S, TES K, TO=";
e f est une application de [k] dans Ay ;
e f(7) et f(o(i)) sont dans la méme ligne pour tout ;
e f(i) et f(7(i)) sont dans la méme colonne pour tout 4.

Montrons que la contribution pour une fonction f non injective fixée est nulle : en
effet, si 'on a a # b et f(a) = f(b), & toute factorisation 7 = 70 comme ci-dessus,
on en fait correspondre une autre m = 7'0’ avec ¢’ = (ab) - o, 7/ = 7 - (ab) et comme
(ab) est une transposition, on a g(7') = —e&(7), et les termes de la somme sur 0,7
s’annulent par paires.

2.3. L’algebre A et les polynémes de Kerov

2.8.1. — Nous définissons le degré d’un polynéme ou d’une série formelle en les p; et
les ¢; en donnant le degré 1 a p; et & ¢;. Ayant choisi un anneau commutatif K de
coefficients, nous noterons ®, (ou ®s(K)) le module des séries formelles en les p; et
les ¢; homogenes de degré s. La somme directe des @, (pour s entier > 0) sera notée
® ou ¢(K).

Pour tout graphe biparti G & s sommets, la série Ng est somme de mondmes de
degré s, donc appartient & ®5(Z). Le théoreme de Féray, décrit & la section 2.2.7,
s’écrit Ch, = > _ e(7) Ng, . (p partition de k, correspondant & la décomposition
en cycles de m € Sk, avec o, T parcourant Sg) ; il montre que les Ch,, appartiennent a ®.
Nous noterons A(K) (ou A) le sous-K-module de ®(K) engendré par les « caracteres »
Ch,, pour toutes les partitions .

2.3.2. — 1l est immédiat que si un graphe biparti G est réunion disjointe de deux
sous-graphes bipartis G’ et G on aura Ng = Ng/ - Ng~. On peut aussi montrer que
le produit de deux Ch,, appartient encore & A(K), donc que A(K) est une K-algebre
commutative. Féray le démontre dans ’exemple Chs - Chg ; vu sa définition, on a

Chz(X) = n(n — 1) 9*((12))
= M) = (Z(z‘j))
i#j
la somme portant sur les couples 4,j avec i # j dans [n]. L'élément },.(ij)

appartient au centre de I’algebre K (S,). De plus ¢* est multiplicatif sur ce centre.
Par un calcul dans ce centre, on trouve ’identité

Chz . Ch2 = Ch22 + 4Ch3 + 2Ch11 .
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Noter que Ch,, n’est pas un élément homogéne de ® car le terme N, , correspondant
a une factorisation m = 7o est homogene de degré |C(o)| + |C(7)].

2.3.3. — Examinons ce point de plus pres. Pour toute permutation o de Sk, posons
lo| = k —|C(o)| ou |C(c)| représente le nombre de cycles de . On sait que 'on a
|o| = 1 pour une transposition (ij), qu’on a |1| = 0 et plus généralement que |o| est
le nombre minimal de facteurs dans une décomposition o = ¢; ...ty en produit de
transpositions. On en déduit aussitot |7| < |o| + |7| si 7 = 7o dans Sk, d’ou

IC()|+]C(7)| < [C(m)| + k.

Si p est le type cyclique de w, on a k = |u| et |C(7)| est le nombre de parts (ou
longueur) ¢(u) de p. Conclusion : Ch, est somme de termes homogénes de degrés
< |ul + €(p). De plus, les relations (o) = (=1)1°!, e(1) = (=1)I"], e(o7) = e(0) e(7)
montrent que tous les termes du développement de Ch,, sont homogénes de degré |u|+
£(u) — 2¢ avec £ > 0 entier. Lorsque p = k a une seule part, cela correspond au cas oll
7 est conjugué & la permutation circulaire v, et 'on a Chg()\) = (n—f'w xMve)/x (1)
pour toute partition A\ de taille n > k. D’apres ce qui précede, Chy est somme de
termes homogenes de degrés < k+ 1. On notera Ry le terme homogéne de plus haut
degré k + 1 de Chy.

2.3.4. — D’apres ce qu'on a vu en 2.3.2, Ry, est la somme des termes (7) Ny,
correspondant aux factorisations 7o = -y, pour lesquelles |C(0)| + |C(7)| = k + 1;
autrement dit, le graphe connexe G’a,T sous-jacent a la carte M, . posséde k arétes
et k + 1 sommets; il est donc réduit (sans aréte multiple) et c’est un arbre, enraciné,
plan, comme on I’a vu & la section 2.1.3. En conclusion, on a (avec une détermination
facile du signe)
Ré — Z(_l)no(T)+1 NT,
T

ou la somme est étendue a tous les arbres plans enracinés T & £ sommets, £ — 1 arétes
et no(T") sommets blancs (voir [C3]).

Exemples :
R2 = N I

R3 = N\/ - NA
Ry = NJI& + N\V—NN
Notons aussi qu’on a
Ch; =Ry, Chy=R3, Ch3=R4+R,.

De maniere générale, pour obtenir les termes de plus haut degré de Ch,, pour une
partition (p1,...,ue) de k, on doit s’intéresser aux décompositions 7 = 7o mini-
males, c’est-a-dire pour lesquelles |C(o)|+ |C(7)| = |C(r)|+ k. On les obtient comme
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suit : si 7 est décomposé en cycles 1, ..., de longueurs respectives k1, ..., ks (avec
ki+ -+ ke =k), on choisit des décompositions minimales y; = 7;0; dans Sk, et
Pon pose 7 = 71...7¢, 0 = 01...04. Ceci prouve que le terme de plus haut degré
de Ch,, est Hf=1R .+1 (et ce degré est |u| + £(w)). En plus, ces deux polynémes ont
méme parité (comme on I'a vu & la section 2.3.3), donc leur différence est de degré
< pl +£(p) — 2.

2.3.5. — 1l résulte des travaux de Kerov, Olshanski, Ivanov et Biane (voir [B5], [C1]
et [C4]) que A est Ualgébre des polynémes en Ra, Rs, ... Par suite, on peut écrire

Chy, = Ky (R, Rs, ...)

ou l'on a introduit le polynéme de Kerov K & coefficients entiers. Le résultat suivant
a été conjecturé par Kerov en 2000, prouvé par Féray en 2009 dans [B2].

THEOREME 2.2. — Le polynéme de Kerov a des coefficients entiers positifs.

Nous allons donner un apergu de la démonstration.

2.3.6. — Commengons par énoncer le principe d’inclusion-exclusion cyclique. Soit G
un graphe biparti réduit (sans aréte double), et soit E l’ensemble de ses arétes. Soit C
un cycle orienté dans G, et soit Ec 1’ensemble des arétes de C' orientées d’un sommet
blanc vers un sommet noir ; cela constitue la moitié des arétes. On a alors la relation

(IE) > (-1)FINg\r =0,

FCEc
out G\ F désigne le graphe G dont on a supprimé les arétes appartenant & F'. Pour faire
la démonstration, on peut oublier le reste du graphe, et se ramener au cas ou G est
un cycle biparti (c’est-a-dire de longueur paire avec un coloriage adapté). Illustrons
I’exemple typique d’un cycle de longueur 4; on a la relation

NGO - ]\TG1 —]\fg2 +NG3 =0

pour les graphes

GO:M G1=N G2=M G3=II

On a & considérer des sommes de mondmes p; p; gx g¢ (ol on a numéroté les sommets
blancs par 4,j et les noirs par k,¢). Chacun des graphes correspond & un systéme
d’inégalités, et ’analyse est facile. Le cas général est analogue.

En corollaire, on a un algorithme pour réduire toute série de la forme Ng, donc
aussi les Chy,, en polynémes & coefficients entiers en les Nz, ou T est un arbre plan,
enraciné.

En fait, on peut faire mieux. Considérons un graphe biparti G = (V;, Ve, E) muni
d’une composition (V2,...,V¥¢) de V,, et d’une composition (V},...,V¥) de Vi, de
sorte que P’ensemble des arétes est la partie E de V, x V, réunion des V¢ x 1%
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pour 1 <i<j< /4 Silon pose co(i) = |VE| et ce(i) = |V¢|, le graphe est dé-
fini & isomorphisme preés par les deux compositions ¢, = (¢o(1),...,¢(£)) et co =
(ce(1),...,ca(£)). Ce n’est autre que le graphe G, associé & la partition A = ¢, X ¢,
(cf. section 2.1.1). On notera N(c., Ce) la série Ng correspondante.

On montre alors sur la définition explicite des séries Ng(p1,p2,---;41,42,--.) que
les séries N(co,c,) sont linéairement indépendantes. De plus, par utilisation de la
relation (IE) pour les cycles de longueur 4, on peut exprimer les séries Ng (donc aussi
Chy,, Chg, Ry) dans la base formée des N(c,, c,) avec des coordonnées entiéres.

2.8.7. — Pour achever la démonstration, nous aurons besoin de la notion de graphe
expanseur de type v, ou v = (11 = V2 = -+ 2 v,) est une partition. Soient donc G
un graphe biparti, et h une fonction définie sur ’ensemble V, & valeurs entiéres > 2.
On suppose que le multi-ensemble h(V;) (i.e. la famille de ces entiers avec répétition
éventuelle) se réarrange en la partition v.

On dira que le graphe décoré (G,h) est expanseur si la propriété suivante est
vérifiée :
Pour toute partie V de Vi, non vide, contenue dans une composante connexe de G,

et distincte d’elle, on a |V|+n(V) > 3 cyh(v), ot n(V) est le nombre de sommets
noirs connectés a un sommet blanc dans V.

Dolega, Féray et Sniady montrent dans [Bl] que le coefficient du mondéme
R, ... R, dans le polynéme de Kerov Kx(Rg2, Rs,...) est égal au nombre de cartes
biparties, unicellulaires, enracinées, avec k arétes, munies d’une décoration h de type
v sur les sommets blancs, qui en fasse un graphe expanseur. Ce coefficient est donc
un entier positif.

La notion de graphe expanseur n’est pas nouvelle (voir [B4] pour une revue). La

démonstration suppose un bon soin dans le controle des signes.

2.8.8. — En conclusion, on peut formuler le théoréme 2.1 de la maniére suivante. Pour
tout entier k£ > 1, notons My ’ensemble des cartes biparties, avec k arétes dont une
marquée, unicellulaires (9. On note 7% le sous-ensemble de M}, constitué des arbres
planaires, enracinés, avec k arétes (donc k + 1 sommets). On a alors

Chy = (=1)* Y (=) Ngyy,
MeMy

Reyr = (1) > (=) Ng(r,
TeTk

en notant G(M) le graphe réduit associé & M, et de méme pour G(T').

9. C’est-a-dire avec un bord connexe.
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Comme Chy a Rgy1 pour terme de plus haut degré, l’algébre A est aussi l’al-
gébre de polynémes K[Chy, Chy, ...], mais la graduation n’est pas compatible. Comme
Ry +1 ... Ryu,41 est le terme de plus haut degré de Ch,, pour = (1 > -+ > py), on
voit aussi que les séries Ch,, forment une base de l’algébre A.

2.4. Evaluations asymptotiques

Les formules exactes données pour les valeurs des caractéres redonnent facilement
les formules asymptotiques sur les diagrammes de Young, telles qu’elles ont été dé-
couvertes en 1977 par Kerov et Vershik dans [C6] et par Logan et Schepp dans [C7].

2.4.1. — Notons Y, ensemble des partitions de n (ou des diagrammes de Young de
taille n). Rappelons la formule bien connue en théorie des groupes

Spl=n! sir=1
> dom = {7
e 0 siT#1.
Faisant 7 = 1, on a donc Y, )\di = n!, d’ou une mesure de probabilité P, sur YV,

attribuant la probabilité P, (A) := d3/n! au point A (« mesure de Plancherel »). De
plus, la moyenne sur ), de la fonction A — o> (m) = x*(m)/dx est égale & 6 1.

2.4.2. — Introduisons ’espace fonctionnel £ formé des applications w : R =+ R qui
satisfont aux deux conditions :

o il existe A > 0 tel que w(z) = |z| pour |z| > A;

e w est 1-lipschitzienne, c’est-a-dire qu’on a 'inégalité |w(z) —w(y)| < |z — y| pour
x,y réels.

On le munit de la distance
d(w,w') = sup lw(z) — o/ (z)]
z€R
Cette formule a un sens car la fonction z — w(z) — |z| est continue et bornée pour
w € L. Noter aussi que toute fonction w € L a presque partout une dérivée w' et
qu'on a —1 < w'(x) < 1 pour presque tout .

D’apres le théoréme d’Ascoli, pour tout A > 0, le sous-espace L4 de £, formé des
fonctions w telles que w(z) = |z| lorsque |z| > A, est compact ; par suite, ’espace
métrique £ est réunion des sous-espaces métriques compacts £ C Lo C L3 C ...
Autrement dit, I'intégration & la Lebesgue fonctionne parfaitement dans ’espace L.

2.4.8. — Nous allons d’abord recalibrer les fonctions w) introduites a la section 1.1.6.
Pour toute partition A de n, posons (1)

ox(z) =n"2w\(n?x).

10. Intuitivement, cela revient & dessiner le diagramme de Young (en version russe) avec des pe-

tits carrés de coté ,/%, d’out n carrés d’aire 2/n. Cela revient & multiplier les coordonnées multi-

rectangulaires p;, ¢; par ﬁ
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Alors Daire de la région de R? définie par les inégalités
|z <y < @a(2)
est égale a 2, indépendamment de n. Il est clair aussi que la fonction @)y appartient
& L. L’image par Dapplication @™ : X\ — @y de Y, dans £ de la loi de probabilité P,
sur ), est une loi de probabilité II,, sur L.
Par ailleurs, on définit un élément Q2 de £ par la formule
ilz| =2
O(z) = || si|z| =
(z) {% [zarcsin (Z) + (4 — 2?)Y/?] si |z < 2.

Soit aussi dq la masse unité au point Q2 de L.

2.4.4. — Voici maintenant le théoreme asymptotique de Kerov, Vershik, Logan et
Schepp :
THEOREME 2.3. — Dans l’espace métrique L, la suite des mesures de probabilité I1,,

tend vers dq.

Employons un langage plus pittoresque : considérons pour » > 1 une partition
aléatoire A(® de taille n, choisie selon la loi de probabilité P, sur ),. Faisons subir
a la courbe aléatoire Cp, : ¥ = wym) (z) dans R? une homothétie de rapport n~=1/2
(qui la rameéne dans une région finie). Soit C, la courbe aléatoire obtenue. Alors en
probabilité, la courbe C,, tend vers la courbe Cy, définie par y = Q(zx) (voir la figure
donnée dans 'introduction).

2.4.5. — Voici quelques points saillants de la démonstration. Il faut d’abord s’assurer
que la suite des mesures I, est « tendue » (tight en anglais international!). Autrement
dit, pour tout € > 0, il existe une partie compacte de la forme L4 telle que I1,(L4) >
1 — e pour tout n > 1. Il faut ensuite s’assurer que pour tout A > 0 et toute fonction
continue F' sur L4, on a

lim [ F-dI, = F(Q).

n— 00 LA
Pour cela, on peut utiliser le théoreme de Stone-Weierstrass qui exprime toute fonction
continue F' sur 1’espace compact £ 4 comme limite uniforme de polynémes en une suite
séparante de fonctions continues sur £ 4.
C’est le moment d’introduire les moments ¢ (pour k > 2) de la section 1.1.8; la
théorie des moments montre que c’est une suite séparante. On utilise alors les faits
suivants :

a) Une relation algébrique

1 (k
t,c:EZ;(T> > Ry Ry,...R,
r=

L1+ L=k
qui permet de naviguer de la suite (Rg, R3,...) & la suite (t2,t3,...) et vice-versa.

SOCIETE MATHEMATIQUE DE FRANCE 2014



394 P. CARTIER

Dans la théorie des probabilités libres, c’est la formule reliant les moments t; d’une
variable aléatoire & ses cumulants libres Ry.

b) L’homogénéité des Ry permet de montrer que 'on a (avec ’abus de notation
hi, /= pour les homothéties)
nli)nolo Ra(hy/ymA) =1 (calcul d’aire)
nlLH;oRk(hl/\/ﬁ A)=0 pour k > 3.

¢) Les moments de la fonction  étant définis par
2
1
t(@) = [ 3(a) - fol)* 2 da,

-2

la fonction 2 est caractérisée par les valeurs

{tzk(Q) = (2k — 1)!/(k")?

t2k+1(Q) = 0 .

Ces relations équivalent & Ry(2) = 1, Rig(2) = 0 pour k > 3, en utilisant
la formule de a) pour définir Ri(2). Mais le calcul de limite dans b) s’écrit
limp o0 Ri(hy/m A) = Ri(2) pour tout k£ > 2, d’olt une formule analogue pour les
moments.

Remerciements. — Tout d’abord a Valentin Féray, qui m’a communiqué ses notes
de cours, et Victor Rabiet pour le prét de ses fichiers, en particulier ceux des figures.
Les auditeurs du Séminaire Chevalley & Paris-Diderot ont servi de cobayes. Enfin, une
fois encore, 1’assistance experte et souriante de Cécile Gourgues, pour la saisie, ne m’a
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