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Séminaire BOURBAKI Juin 2013 

65 e année, 2012-2013, n° 1071, p. 373 à 396 

N O U V E A U X DÉVELOPPEMENTS SUR LES VALEURS DES 
CARACTÈRES DES GROUPES SYMÉTRIQUES; 

MÉTHODES COMBINATOIRES 
[d'après V. Féray, ...] 

par Pierre CARTIER 

INTRODUCTION 

Il est difficile d'innover dans un sujet aussi vénérable que l'étude des caractères 

des groupes symétriques. L'ouverture a été faite dans l'article fondateur de Probenius 

[A2] en 1900, suivi par Schur [Ail] en 1901, et par Young [A13] en 1928. On dispose 

aujourd'hui d'un bon nombre d'excellents exposés d'ensemble [A5, A6, A8, A9, A10, 

A12]. 

Les travaux dont nous allons parler ont leur origine dans l'École de Saint-

Pétersbourg (autrefois Leningrad) : Kerov, Vershik, Olshanski, Ivanov, Okunkov... 

Leur motivation initiale était l'étude des représentations factorielles du groupe 

symétrique SQQ, réunion de la suite des groupes symétriques Si C S2 C • • • C S n C 

Sn+i C . . . Il s'agissait d'un exemple emblématique des méthodes d'algèbres d'opé­

rateurs dans les espaces de Hilbert. En un sens convenable, il faut passer à la limite 

sur les diagrammes de Young de taille croissante. Il apparut vite que cela revenait 

à étudier la forme limite de diagrammes de Young aléatoires ; voici une illustration 

d'une simulation numérique sur des tableaux de taille 20, 200, puis 2000. La courbe 

limite se dessine très nettement. 

J5ii?L r \7 i i \ 7 | 
-2 o \ *~ - 2 0 2 - 2 0 2 

n = 20 n = 200 n = 2000 
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374 P. CARTIER 

Une autre source d'inspiration est venue des probabilités non commutatives. Le 

cadre est le suivant : 

• un espace de Hilbert séparable H ; 

• une algèbre de von Neumann A d'opérateurs bornés dans % (stable par l'adjonc­

tion x x* et fermée pour la topologie faible de la dualité entre C(H) et l'espace 

C\ (H) des opérateurs à trace) ; 

• un état E sur A (forme linéaire faiblement continue, positive E(x*x) > 0, telle 

que E(l) = 1). 

Lorsque l'algèbre A est commutative, on est ramené au cas probabiliste usuel : un 

espace probabilisé (0,*4, P), avec A = L°°(£Î,P) agissant par multiplication sur 

l'espace de Hilbert H = L2(Q,F), et E[/] = JQ fdF pour / dans A. 

Vers 1970, Voiculescu a entrepris l'étude du cas fourni par l'algèbre de von Neu­

mann engendrée par un groupe libre G agissant par la représentation régulière dans 

l'espace £2(G). Voiculescu a découvert que les générateurs du groupe libre satisfont à 

une propriété qui se réduit dans le cas des probabilités commutatives à l'indépendance 

stochastique. Ce nouveau domaine fut baptisé : « probabilités libres ». Les moments et 

les cumulants classiques des variables aléatoires se généralisent en « cumulants libres » 

qui font intervenir la combinatoire des « partitions non-croisées ». Le petit miracle est 

que ces partitions non-croisées correspondent aux factorisations minimales jk — TO 

d'une permutation circulaire 7& dans le groupe symétrique Sk (cf. section 2.3.4). Ces 

factorisations minimales vont à leur tour se décrire au moyen des cartes biparties 

unicellulaires (cf. section 2.1.2). Ces cartes seront le thème central des méthodes com-

binatoires décrites à la section 2. 

Si À est une partition de n, et %A le caractère de Sn correspondant à À, on considère 

les valeurs normalisées des caractères 

Ch fe(A n\ XA(7fc) 
( n - f c ) ! x A ( l ) 

pour n ^ k. Utilisant les méthodes de probabilités libres, Biane [Cl] a étudié le 

comportement asymptotique de Chfc(À) quand n croît, et que le nombre de lignes et 

de colonnes de À est d'ordre 0(y/n). La clé est fournie par les homothéties : identifiant 

À à une région D\ du plan R 2 , l'homothétie de rapport t (t ^ 1 entier) transforme 

D\ en Dht(\) pour une partition ht(X) de nt2. Biane prouve que la limite 

jR f c+i(A)= lim CYik(ht\)/t
k+1 

t—yoo 

existe, et il l'interprète en termes de cumulants libres. En particulier ^ ( A ) est la taille 

|A| de A. 
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Il est remarquable que les quantités Chfc(À) et i?fc(À) sont polynomiales : intro­

duisant les coordonnées multirectangulaires p, q (cf. section 1.1.5) de À, on a des 

expressions polynomiales en p, q. De plus, il existe des formules universelles liant les 

Chfc et les Rk : voici un échantillon 

Chi = R2 

Ch 2 = R3 

CI13 = R4 + R2 

Ch4 = R5 + 5RS 

Ch 5 = R6 + 15 #4 + 5i?l + SR2 

Ch 6 = R7 + 35i2 5 + 35 # 2 #3 + 84^3 . 

Dans [C2], p. 199, Biane donne les valeurs de CI17 à Chu. Il y a une graduation 

naturelle par le degré total en les variables Pi,P2> • • • ; #1» #2? • • • Alors Rk est homogène 

de degré fc, et le terme de plus haut degré de Ch^ est Rk+i, de degré k H-1 (cf. sec­

tion 2.3.3). L'estimation asymptotique de Biane [Cl], p. 127, résulte facilement des 

relations entre les Rk et les Ch^. 

D'une manière générale, Kerov écrit Ch^ sous la forme d'un polynôme (de Kerov) 

Kk(R2, R3, • • • , Rk+l) 5 

et la table ci-dessus suggère la conjecture de Kerov : les coefficients de Kk sont des 

entiers positifs. Cela a été prouvé récemment par V. Féray [B2] par utilisation de 

méthodes combinatoires de la théorie des graphes et des cartes. C'est ce que nous 

allons essayer d'expliquer en suivant ses exposés du cours Peccot 2013 au Collège de 

France. 

1. LE GROUPE SYMÉTRIQUE 

1.1. Notations et préliminaires 

1.1.1. — Le groupe symétrique Sn est le groupe des permutations de l'ensemble [n] 

des entiers 1,2,. . . , n. On fait la convention [0] = 0, d'où So = (1). L'élément unité 

d'un groupe est toujours noté 1. Pour 1 < k ^ n, on identifie Sk à un sous-groupe de 

5 n , en faisant correspondre à la permutation a de [k] la permutation de [n] qui fixe 

tous les éléments de [n]\[fc]. On note 7^ le cycle (12 . . . k), vu comme élément de Sk, 

donc aussi de Sn pour n ^ k. 

1. Ce que nous notons Chfc est désigné par E*. dans Biane, loc. cit. 
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1.1.2. — Une composition c d'un entier n ^ 1 est une suite ( c i , . . . , C f c ) d'entiers 

strictement positifs de somme c\ -f • • • -f Ck égale à n. Une partition À de n est une 

composition à l'ordre près des éléments, et on peut toujours la normaliser de sorte 

que 

A i > A 2 ^ . . . ^ A f c > 0 . 

La longueur de À, notée £(X), est k ; la taille de A, notée | A|, est la somme Ai H l-Afc. 

La relation |A| = n s'écrit aussi souvent A h n. On est parfois amené à compléter 

une partition par une suite infinie de zéros. Une composition d'un ensemble X est 

une suite ( C i , . . . , Ck) de sous-ensembles non vides, deux à deux disjoints, de X , de 

réunion X. Une partition II de X est un ensemble de parties non vides de X , deux à 

deux disjointes, de réunion X. 

1.1.3. — Les partitions de n paramétrisent les classes de conjugaison des éléments TT 
de Sn ; le type cyclique de TT est la partition À de n, soit A = ( A i , . . . , A&), telle que 

7r se compose de cycles de longueurs Ai, . . . ,Afc. Les partitions paramétrisent aussi 

les représentations irréductibles de Sn (cf. section 1.2). Pour une partition A de n, 

on note px la représentation irréductible correspondante de Sn, x X s o n caractère, et 

. _ ^ A / x A ( l ) le caractère normalisé. Le degré d\ = x A ( l ) e s t ^ a dimension de 

l'espace de la représentation px. 

1.1.4- — Décrivons les diagrammes de Young. Si A = ( A i , . . . , A&) est une partition 

de n, on note AA l'ensemble des couples ( i , j ) d'entiers tels que 

1 ^ j ^ k, 1 ^ i ^ A j . 

A tout couple (i,j) on associe le carré Dij = [i — x [j — 1, j] de côté 1 dans R 2 , 

dont le sommet nord-est est (i, j) ; on note aussi D\ la réunion des carrés Dij pour 

(i, j ) dans A A (voir les figures dans le cas de la partition A = (4,4,2,1) de taille 11). 

J k 3 k 

—• • 
—<>—• • • 

—i»—(»—•—• • • • • 

—i»—i»—«i—<» • • • • 

—I—I—I—I • I • 
D\ i AA * 

Le cardinal | A A | de A A et l'aire \D\\ de D\ sont égaux à |A|. Sur le dessin de A A , 

les lignes et les colonnes sont évidentes. Les longueurs des lignes sont Ai, A2 , . . . , A^ ; 

celles des colonnes forment une partition A = ( A i , . . . , A^) de n, dite duale de A. 
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1.1.5. — Si p, q sont des entiers strictement positifs, on note p x q le diagramme 

rectangulaire formé de p lignes de longueur g, et de q colonnes de longueur p. Plus 

généralement, si p et q sont des compositions de même longueur m ^ 1, le diagramme 

p x q se compose de pj lignes de longueur qj -f H h g m pour 1 < j ^ m, et de 

(/j colonnes de longueur pi H f-p? • Il y a en tout h p m lignes et gi H h ç m 

colonnes. Toute partition À de n s'écrit de manière unique sous la forme p x q; le 

diagramme A\ est alors la réunion de rectangles pi x qj pour 1 ^ i ^ j ; ^ m. La 

taille de la partition À (ou du diagramme correspondant) est alors |À| = Yli^j PiQj-

Notre stratégie sera d'exprimer divers invariants associés à un tableau de Young 

comme polynômes en les coordonnées multi-rectangulaires p, q. 

P 2 ! IP2<?i S, 
Pi ! ! Pi 

Q3 Q2 Qi 

1.1.6. — Venons-en à la notation russe (2\ Le domaine polygonal E\ est déduit de 

D\ par la transformation linéaire y) i—>> (x — y,x + y) dans M2. Il existe une unique 

application continue uo\ de M dans E qui a les propriétés suivantes : 

• on a uo\(x) = \x\ pour |x| assez grand; 

• la fonction l o \ est linéaire par morceaux, et sa pente est égale à +1 ou —1 ; 

• le domaine E\ est défini par les inégalités 

\x\ < y < u\(x). 

ù0 vi ùi v2 ̂2 v3 ù3 0 1 2 3 4 

2. Ce que nous venons de décrire est la notation « française ». La notation « anglo-saxonne » utilise 

le symétrique de D\ par rapport à l'axe horizontal. 
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1.1.7. — Si A correspond aux compositions p x q de même longueur m, il existe une 

suite de nombres entiers de la forme 

< Vi < Ui < • • • < U m - i <vm <um 

qui sont les abscisses des points anguleux de la fonction uo\. La suite U Q , U \ , . .. ,um 

décrit les minima locaux de la fonction u\, et v\,..., vm les maxima locaux. Ce sont 

les coordonnées entrelacées de À, et l'on a les lois de transformation 

U0 = ~(pi-\ h Pm) , Uj = Vj + Pm-j+i , Vj = Uj-i + qm-j+l i 1 < j < ™) 

d'où l'on déduit UQ + - — + um = v\ H + v m . 

— Au lieu de la fonction l u \ , on peut introduire la fonction w\(x) = 

| (u\(x) — \x\), et le domaine F\ défini par les inégalités 

O^y ^ w\(x) 

dans R 2 . L'aire de F\ est définie par l'intégrale 

/

+oo ç 

w\(x)dx = dxdy; 
-oo J F\ 

elle est égale à |À|. Il nous sera utile d'introduire des « moments » 

/
+oo 

xk~2 wx(x)dx 
-oo 

= k(k-l) / xk~2dxdy 
Jfx 

= k(k-V f x k - 2 D X D Y ^ 

1 JEX 

d'où ¿2(A) = 2 |À|. Dans les coordonnées entrelacées, on a 

tfc(A)=ug + --- + î 4 - v î B  

1.1.9. — On a déjà introduit les homothéties ht de rapport t > 0 entier. On a aussitôt 

les relations 

DhtX = ht(Dx) 

Wht\(x) = tu\(x/t) 

Whtx(x) =twx(x/t), 

et la relation d'homogénéité pour les moments 

tk(htX) = tktk(X). 

Enfin, l'homothétie ht transforme p x q en tp x tq, donc les coordonnées entrelacées 

de htX sont tuo < tv\ < tu\ < ... 
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1.2. Représentations irréductibles du groupe symétrique 

1.2.1. Symétriseur de Young. — Soient n ) 1 un entier et À une partition de n. 

L'ensemble A A de sommets est de taille n ; nous noterons S(X) le groupe des permu­

tations de A A - Un tableau de Young est une bijection T de [n] sur A A ; autrement 

dit, une numérotation des éléments de A A , OU des carrés correspondants de D\ (voir 

la figure) : 

9 

5 10 

3 7 8 I11 
1 2 4 6 

Le tableau est standard lorsque les nombres dans les carrés vont en croissant de gauche 

à droite dans chaque ligne et de bas en haut dans chaque colonne, ce qui est le cas 

dans la figure ci-dessus. Le choix d'un tableau T définit un isomorphisme <px de Sn 

sur 5(A). 

On introduit deux sous-groupes C(À) et L(À) de 5(A), formés des permutations de 

A A qui transforment chaque colonne (ligne) en elle-même. Notons e(a) la signature 

d'une permutation a G S'(A), et ea l'élément de base correspondant dans l'algèbre du 

groupe C(5(A)). On définit deux éléments a\ et 6A de C(5(A)) par les formules 

a\= ^ e a , b\ = ]P e{&) e a , 

CTGL(X) aeC(X) 

et le symétriseur de Young est C\ = a\b\. 
1.2.2. — On note I\ l'idéal à gauche de C(5(A)) engendré par C\, et px(cr) la restric­

tion à I\ de la multiplication à gauche par ea dans C(S(X)). On a remarqué qu'un 

tableau T de forme A définit un isomorphisme ^>T de Sn sur 5(A), qui permet de 

transporter C(A) , L(X), a\, 6A, CA, I\, px sur des objets C ( T ) , L(T), ar, 6T, C T , / T , 

pT associés h Sn. La représentation (pT,IT) de Sn ne dépend à isomorphisme près 

que de A. 

THÉORÈME 1.1 (Probenius-Schur) 

a) Pour tout tableau de Young T de taille n, la représentation (pT\IT) de Sn est 

irréductible. 

b) Toute représentation irréductible de Sn est isomorphe à l'une des représentations 

(PT,IT). 

c) Deux représentations (pt,IT) et (pT sont isomorphes si et seulement si 

les tableaux T et T' correspondent à la même partition X de n. 

Pour chaque partition A, on choisira une fois pour toutes un tableau standard de 

forme A, par exemple celui où la première ligne comporte les nombres 1 à Ai, la 
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seconde les nombres Ài + 1 à Ài + À2, etc.. . et l'on paramétrisera les représentations 

de Sn par les partitions À de n. 

1.2.3. — Soit P l'ensemble des couples d'entiers strictement positifs, muni de 

la relation d'ordre produit 

(ij) ^ (k,t)^i^ k et j ^e. 

Une partie H de P est dite héréditaire si avec tout élément elle contient tous 

les éléments (ky£) tels que ^ (k,£). L'application À H * A\ est une bijection de 

Vensemble des partitions de n sur Vensemble des parties héréditaires à n éléments 

de P. 

Si À et ¡1 sont deux partitions, on écrit À ̂  /x si A\ est contenu dans A M . Si l'on 

prolonge toute partition par une suite infinie de 0, la relation À ̂  ¡1 signifie que l'on 

a Àfc ^ fik pour tout entier k > 1. 

Un tableau de Young standard T de taille n peut être vu comme une application 

injective (p : [n] —> P. Les applications en question sont caractérisées par le fait 

que l'ensemble <p([k]) = {< /? ( l ) ,< / ? (&)} est héréditaire pour 1 ^ k < n. D'après 

la remarque précédente, un tableau standard T de forme À correspond à une suite 

croissante de partitions 

A « < A ( 2 > < - - - < À ( n ) = A 

avec n = \\\ et k = \X^\. 

1.2.4- — Venons-en à la règle de branchement. Soit À une partition den. La restric­

tion à Sn-i de la représentation px de Sn est canoniquement isomorphe à la somme 

directe des représentations de Sn-i, où fi parcourt Vensemble des partitions de 

n — 1 telles que fi < À. 

Par une itération facile, on voit que l'espace I\ a une base indexée par les suites 

croissantes A^1) ^ À^2^ ^ • • • ^ = À de partitions, c'est-à-dire par les tableaux de 

Young standard de forme À (cf. section 1.2.3). 

Pour décrire les partitions fi de n — 1 telles que // < À, le plus commode est d'uti­

liser les coordonnées multi-rectangulaires p i , . . . ,pm> <Zi> • • • » Cm- Il y a m possibilités, 

obtenues en supprimant de A\ l'un des m points s i , . . . , s m définis par 

sj = (Qm-j+l + <7m-j+2 H h QrmPl + P2 H hPm-j+l) 

pour 1 ^ j < m (ou le carré correspondant de D\). Dans la représentation russe, ceci 

correspond aux m maxima locaux d'abscisses t>i,..., vm. 
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y 

S i fi-2 

S3 S4 

1.2.5. — Nous allons donner une autre description des représentations de S n , à l'aide 

des éléments Jk introduits par Jucys et Murphy en 1974. Rappelons qu'on plonge les 

groupes symétriques les uns dans les autres 

Si C S2 C • • • • C Sn C S n + i C . . . ; 

on nomme Sœ la réunion (ou limite inductive) de ces groupes, d'où une situation 

analogue pour les algèbres de groupes 

Q(Si) c Q(S 2) c • • • c Q(5 n ) c Q ( S n + 1 ) c • • • c Q(Soo). 

Voici la définition des Jk 

fe-i 
Ji := 0, J 2 := (12) , J 3 := (13) + (23) , . . . , Jk := ^ ( î f c ) , . . . 

1=1 

où (ij) est la transposition de i et j . On voit que Jk appartient à Q(Sk) et commute 

aux éléments de Q(Sk-i) ; par suite, les Jk commutent deux à deux. 

Il est immédiat que, dans toute représentation unitaire (p, V) de S n , les opérateurs 

p(J\),..., p(Jn) sont hermitiens et commutent deux à deux, donc se diagonalisent 

simultanément. De plus, l'algèbre engendrée par J i , . . . , Jn dans Q(S n ) est assez grosse 

pour qu'on ait le résultat suivant : si p est irréductible, le sous-espace de V défini par 

les relations p(Jk)v — CkV pour l ^ k ^ n est de dimension ^ 1. On peut donc indexer 

une base de V par des systèmes de valeurs propres c i , . . . , cn : c'est la stratégie bien 

connue des « nombres quantiques » en physique quantique. 

Explicitement, pour la représentation px de Sn associée à la partition À de n, on a 

la base (er) de l'espace I\ indexée par les tableaux standard T de forme À, et l'on a 

pX{Jk) eT = c(T(k)) eT pour 1 < k ^ n . 

Rappelons que le tableau T est une suite T ( l ) , . . . ,T(n) d'éléments de P et c est 

l'application (i, j ) i — j de P dans Z : c ( i , j ) est le contenu de la boîte On 
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peut donc paramétrer la base de I\, sous la forme e ( c i , . . . , c n ) , au moyen des suites 

ci = c ( T ( l ) ) , . . . , c n = c(T(n)) vérifiant la condition suivante : 

(TS) Soit k G [n]. SW te nombre de fois que i apparaît dans la suite c\,..., ck. 

On a a/ors 

a 0 ^ a_i ^ a_ 2 ^ a_ 3 ^ . . . , a 0 ^ ai ^ a 2 > <̂ 3 ^ . . . . 

Rappelons que le groupe 5 n est engendré par les transpositions sk = (k, fc + 1) pour 

1 ^ k < n. L'action de ces générateurs dans la représentation px se décrit ainsi ( 3) : 

• si Cfc+i = C f c ± l , o n a p A ( 5 f c ) e ( c i , . . . , c n ) = ± e ( c i , . . . , cn) ; 

• si |cfc+i — ck\ ^ 2, px(sk) laisse fixe le plan ayant pour base le vecteur 

e = e ( c i , . . . , c n ) et le vecteur e' déduit de e par échange de ck et c^+i ; il y agit par 

la matrice ( avec u = (ck+i - c ^ ) " 1 . 

Utilisant la présentation bien connue du groupe Sn par les relations 

f*fc = l 

< = si \k-£\ > 2 

on peut vérifier que les opérateurs px(sk), définis comme ci-dessus sur un espace ayant 

pour base^4) les vecteurs e ( c i , . . . , c n ) , correspondant à la relation (TS), définissent 

bien une représentation du groupe Sn (pour tout corps de coefficients de caractéris­

tique 0). L'avantage de cette construction est qu'elle s'applique presque telle quelle 

aux représentations de l'algèbre de Hecke Hq(Sn). 

1.2.6. — Les éléments de Jucys-Murphy permettent de donner une description par­

ticulièrement attrayante de la règle de branchement. Soient À une partition de n, 

px la représentation de Sn correspondante, et uo < v\ < u\ < • • • < vm < um les 

coordonnées entrelacées de À. L'opérateur px(Jn) Q> pour valeurs propres vi,...,vm; 

notons Vi,...,Vm les sous-espaces propres correspondants. Alors, pour 1 < j < m, 

l'espace Vj est stable pour Sn-i, et correspond à la représentation irréductible p ^ 

de Sn-i, où n(j) est la partition de n — 1 obtenue en supprimant le point Sj de A\ 

(cf. section 1.2.4). Noter aussi que Vj est le contenu du point Sj. 

2. MÉTHODES COMBINATOIRES 

2.1. Graphes et cartes bipartis 

2.1.1. — Un graphe biparti G se compose d'un ensemble V de sommets, muni d'une 

composition (V0,V9) (les éléments de VQ sont de couleur blanche, et ceux de V. de 

3. Vu les conditions imposées, on a toujours ck ^ ck-\-\. 

4. Chaque suite (c i , . . . , c n ) décrit un tableau de Young standard, et l'on doit se restreindre à 

ceux de forme À. 
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couleur noire), d'un ensemble E d'arêtes, et de deux applications s : E —>> V0l b : 

E —ï Vm. On dit que l'arête e joint le sommet blanc s(e) au sommet noir b(e). Il est 

commode d'introduire pour chaque arête e une arête opposée ë, obtenue en échangeant 

les deux extrémités de e. On note Ë l'ensemble de ces arêtes ë. Par exemple, si À est 

une partition de n, on définit un graphe biparti G\ dont A a est l'ensemble des arêtes, 

les sommets blancs (noirs) correspondant aux lignes (colonnes), et l'arête G A a 

joignant la ligne j à la colonne i. Tous les graphes considérés seront finis, c'est-à-dire 

que les ensembles V et E sont finis. 

2.1.2. — Une carte bipartie M est un graphe biparti G sans sommet isolé ( 5) et muni, 

pour chaque sommet v, d'un ordre cyclique sur l'ensemble Ev des arêtes adjacentes à v ; 

un tel ordre cyclique définit sur Ev une permutation circulaire j v (et réciproquement). 

La donnée de la partition (Ev)veyo et des permutations circulaires ^ v équivaut, via 

la décomposition en cycles, à la donnée d'une permutation a de E. De même, au 

moyen des sommets noirs, on décrit une autre permutation T de E. Autrement dit, 

une carte bipartie est la représentatif m combinatoire d'une paire de permutations cr, r 

d'un ensemble fini E ; on la notera M f f ) T . 

Il est bon d'introduire une représentation géométrique. A chaque sommet v, nous 

associons un disque orienté Dv dont le bord dDv est disséqué en une famille d'arcs de 

mêmes longueurs, indexée par Ev, de sorte que j v corresponde à une rotation d'angle 

2tt/\Ev \ dans le sens positif. A chaque arête e, on associe un rectangle orienté Re dont 

le bord est composé des arêtes e (orientée du blanc vers le noir), ë (orientée en sens 

inverse) et les deux arcs orientés correspondent aux disques D s ( e ) et Db^ associés 

à ses extrémités. On recolle ensuite les disques Dv et les rectangles Rei de manière 

compatible avec les orientations, et l'on obtient une surface S (M) (voir figure). 

5. Autrement dit, les applications s : E —> V0 et 6 : E —» Vm sont surjectives. 
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Le bord dS(M) de cette surface se compose d'arcs orientés indexés par E U Ë, de 

sorte que deux arcs adjacents ne soient pas tous deux dans E, ou tous deux dans Ë. 

La décomposition de ce bord en composantes connexes Ta correspond à la décom­

position en cycles de ar : dans T a , un arc sur deux est dans E et la permutation 

circulaire associée à ar fait passer d'un arc dans E au suivant dans E dans le sens de 

l'orientation. 

Ej* _ 

Me 

En échangeant les rôles de E et Ë, on a la décomposition en cycles de ra. 

Il revient au même de supposer que le graphe G (M) sous-jacent à M et la surface 

S (M) soient connexes. Le bord dS(M) n'est pas toujours connexe, mais on le suppo­

sera désormais connexe. Ceci revient à supposer que ar et ra ont un seul cycle. On 

dit dans ce cas que la carte est unicellulaire. Si l'on choisit de plus une arête t\ (la 

racine), et qu'il y ait k arêtes, il existe une numérotation e i , . . . , ek des arêtes et une 

seule, telle que ra soit égal au cycle jk — ( 12 . . . A;). 

En résumé, les factorisations 7& = ra dans Sk correspondent bijectivement aux 

cartes biparties unicellulaires enracinées à k arêtes. 

2.1.3. — Il est bien connu que, dans un graphe connexe à k arêtes, le nombre des 

sommets est au plus égal à k -f 1, et les arbres sont les graphes connexes à k arêtes 

et k -h 1 sommets. Si l'on note C(a) l'ensemble des cycles d'une permutation a, dans 

la carte associée à une factorisation 7/- = ra il y a |C(cr)| sommets blancs et |C(r) | 

sommets noirs, d'où l'inégalité 

\C(a)\ + \C(r)\^k+l, 

sur laquelle nous reviendrons à la section 2.3.3. Nous dirons que la factorisation 7& = 

ra est minimale si l'on a égalité dans la relation précédente. Noter aussi que dans 

un arbre à racine noire, les sommets noirs sont ceux qui sont à distance paire de la 

racine ; de la sorte, le coloriage des sommets est automatique. 

On a donc un corollaire du résultat ci-dessus : les factorisations minimales 7^ = ra 

correspondent aux arbres plans enracinés à k arêtes et k -f 1 sommets ^ . La surface 

associée à un tel arbre est homéomorphe à un disque. 

6. On a choisi plus haut pour racine d'une carte une des arêtes. Ceci est conforme aux conventions 

pour les arbres plans, si l'on prend pour arête privilégiée ei la plus à gauche pointant vers le sommet 

racine supposé noir. 
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2.2. Calcul des caractères 

2.2.1. — Précisons d'abord ce qu'on entend par série formelle à une infinité de va­

riables Xi (i e I). Un monôme xa = YlieI x**1 correspond à une application a : I —>• N 

telle que l'ensemble des i avec ai ^ 0 soit fini. Une série formelle est une combinaison 

linéaire de la forme ^ ] a Ç M c a x a , où les ca appartiennent à l'anneau de base K, et où 

M est l'ensemble des monômes (« une infinité de monômes dont chacun ne dépend 

que d'un nombre fini de variables » ) . 

2.2.2. — Soit G un graphe biparti, avec l'ensemble des sommets V = V0L\VP. A toute 

application ( 7) <p : V —> N* on associe le monôme 

m * = Et P(pM II Q<P(*>) 
vevQ wev. 

en les variables pi, P2,..., qi, qi, • • • On désigne par Nq la série formelle dans 

Z[[pi,P2 . . . ; #2j • • • 1 somme des monômes pour toutes les applications (p crois­

santes au sens suivant : s'il existe une arête allant du sommet blanc v au sommet noir 

w, on a (p(v) < <p(w)- Cette série Nq ne dépend que du graphe réduit G r e d obtenu en 

identifiant deux arêtes ayant les mêmes extrémités. 

2.2.3. — Soient G un graphe biparti, et À une partition de taille |A| = n. On a défini 

le graphe biparti G\ à la section 2.1.1. La notion de morphisme de graphes bipartis est 

évidente : un morphisme $ du graphe biparti G — (VQ, V9, E) dans le graphe biparti 

G1 = (Vq, Vf, E') se compose de trois applications 

$ o : V0 - » K ' , = V. -+ VI, $ e : E -+ Ef 

rendant commutatif le diagramme suivant : 

Va E — b - + V. 

$0 3>e 

vi e* — ^ v : . 

On note alors Nq{X) le nombre de morphismes de G dans G\. Ce nombre ne dépend 

que du graphe réduit G r e d associé à G. 

2.2.4- — Voici le lien entre ces deux définitions : si le diagramme de Young A A est 

de la forme px q, avec deux compositions p = (p i , . . . , p m ) et q — (qi,..., qm), on a 

NG(X) = J V G ( p i , P 2 , . . . , P m , 0 , 0 , . . . ; g i , g 2 , . . . , 9 m , 0 , 0 . . . ) . 

7. Rappelons que N désigne l'ensemble des entiers N ̂  0, et N* celui des entiers N ^ 1. 
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Exemples : 

• on a Nc(p X q) = p\v° \ q\v*\ pour tout graphe biparti G ; 

• si À = p x qr, on a 

N. W : ^PiQj = |A|; 

• on a N = J 2 P i Pj Qk Qii la somme étant étendue aux systèmes tels que i < fc, 

j < fc, j < L 

2.2.5. — Fixons un entier k > 1. Si À est une partition d'un entier n ^ A;, on considère 

Sk comme un sous-groupe de Sn, et donc la valeur du caractère irréductible xX 

de Sn en l'élément TT de Sk est bien définie. On utilise la normalisation suivante, due 

à Kerov et Olshanski [B5] 

Civ (A) 
R T ï ) ï * > M / x \ i ) . 

Comme la valeur des caractères en un élément ix ne dépend que de la partition \i 

décrivant la décomposition en cycles de TT, on écrira ChM(À) pour Ch 7 r(À) ; on a pour 

paramètres la partition ¡1 de k, fixée, et la partition À de n, variable. La normalisation 

ci-dessus a pour effet que Ch M (p x q) va être représenté comme un polynôme en 

p i , . . . , p m ; </i,..., qm. Le point de départ est la formule de Stanley [B7] 

CK(p x q) £ ( r ) p | c w i g | c ( r ) i 5 

qu'il s'agit de généraliser. 

2.2.6. — Soient cr et r dans Sk- D'après la construction de la section 2 .1 .2 , on associe 

à a, r une carte bipartie Ma,T décrite ainsi : 

• l'ensemble V0 des sommets blancs est l'ensemble C(cr) des cycles de a ; 

• de même, on a V% = C(r) ; 

• l'ensemble des arêtes est donné par E = [k] ; 

• la source s(i) d'une arête i £ [k] est le cycle de a contenant i, et de même b(i) 

est le cycle de r contenant i. 

On note Ga,T le graphe biparti réduit associé à Ma,T. Les sommets blancs (resp. 

noirs) sont les cycles de a (resp. r ) , et il y a une arête joignant c\ G C(o~) à C2 € C(r) 

si et seulement si c\ fl est non-vide. On écrit NGiT pour Nca>T ; c'est une série 

formelle à coefficients entiers en les variables pi,P2» • • • ; <Zi> Q2, • • • 

# .£ .7 . — Voici maintenant le résultat central de V. Féray [B3] , conjecturé préalable­

ment par R. Stanley [B7] . La version que nous en donnons, aussi bien pour l'énoncé 

que pour la démonstration, suit l'article [C3] publié par Féray en collaboration avec 

Sniady. 
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THÉORÈME 2.1. — Soient 7r un élément de Sk et X une partition d'un entier n > k. 

On a 

C M A ) = E <T)N*,TW 
ra—'K 

(sommation sur o~,t dans Sk)-

La démonstration comporte plusieurs étapes. 

1) Rappelons la définition du symétriseur de Young 

C\ = ]Pe(T) ear; 

on a choisi un tableau T de forme À, a parcourt le groupe L(T) et r le groupe C(T). Si 

l'on pose a\ := n\/d\ (où d\ est le degré de la représentation px de Sn associée à À), on 

a C\ = ol\C\, donc p\ := a^C\ est un idempotent, et l'espace de la représentation 

px est C(Sn) • p\. Il en résulte que la valeur x A ( 7 r ) du caractère \ X de px est la trace 

de l'opérateur x ^ e^xpx dans C ( 5 n ) . Un calcul facile donne 

n\x\°)/dx= e(r)NaiT(X) 
ra=7r 

pour tout 7T dans Sn. La sommation est étendue aux factorisations de n dans Sn, et 
NAR(X) est le nombre de tableaux T de forme À tels que a G L(T) et r G C(T) . Autre­
ment dit, on compte les bijections de [n] sur A\ qui se déduisent d'un isomorphisme 

du graphe biparti Ga^T sur le graphe biparti G\ associé à X. 

2) Il y a deux restrictions dans la formule précédente : tout d'abord k = n, et 

NCT,T{X) est remplacé par TV^^À). Pour traiter le cas k < n, on note que j^z^y est 

le nombre d'applications injectives 6 : [A;] —» [n], que toute application de ce type 

transforme un élément a de Sk en une permutation de 9([k]) que l'on prolonge en un 

élément GQ de Sn qui fixe les éléments de [n]\#([fc]). La somme J2e e°e appartient au 

centre de l'algèbre de groupe C ( 5 n ) , et donne un scalaire dans toute représentation 

irréductible de Sn (« lemme de Schur ») 

3) On obtient alors la relation 

(4) C M A ) = E <T)^rW 
7T=T<J 

où NAIT(X) compte les applications injectives f de [k] dans A A qui définissent un 

morphisme de graphes bipartis de Ga,r dans GA- Il faut se débarrasser de l'hypothèse 

8. Voir à la section 2.3.2 un raisonnement analogue. 
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que / est injective. Or la somme qui nous intéresse £ ( T ) ^ r , r ( A ) peut aussi 
5 ' • 7T=T(J 

s écrire e(r) 
2 w 

avec les conditions 

• a e Sk, r G Sk, ra = 7r; 

• / est une application de [k] dans A\ ; 

• f(i) et f(a(i)) sont dans la même ligne pour tout i ; 

• f(i) et f(r(i)) sont dans la même colonne pour tout i. 

Montrons que la contribution pour une fonction / non injective fixée est nulle : en 

effet, si l'on a a ^ b et f(a) = /(&), à toute factorisation TT = ra comme ci-dessus, 

on en fait correspondre une autre TT = r'a' avec a' = (ab) • a, r' = r • (ab) et comme 

(ab) est une transposition, on a e(r') = —s(r), et les termes de la somme sur cr, r 

s'annulent par paires. 

2.3. L'algèbre A et les polynômes de Kerov 

2.3.1. — Nous définissons le degré d'un polynôme ou d'une série formelle en les pi et 

les qi en donnant le degré 1 à et à g,. Ayant choisi un anneau commutatif K de 

coefficients, nous noterons $ s (ou <&S(K)) le module des séries formelles en les pi et 

les qi homogènes de degré s. La somme directe des $ s (pour s entier ^ 0) sera notée 

$ ou Q(K). 

Pour tout graphe biparti G k s sommets, la série NG est somme de monômes de 

degré s, donc appartient à $ S ( Z ) . Le théorème de Féray, décrit à la section 2.2.7, 
s'écrit Ch^ = ^2T(T=:7re(r) iNfc (fJ> partition de fc, correspondant à la décomposition 

en cycles de TT G Sfc, avec cr, r parcourant £&) ; il montre que les ChM appartiennent à 

Nous noterons A(K) (ou A) le sous-K-module de $(K) engendré par les « caractères » 

ChM pour toutes les partitions fi. 

2.3.2. — Il est immédiat que si un graphe biparti G est réunion disjointe de deux 

sous-graphes bipartis G' et G" on aura NQ = N& • N Q " • On peut aussi montrer que 

le produit de deux ChM appartient encore à A ( X ) , donc que A(JK') est une if-algèbre 

commutative. Féray le démontre dans l'exemple Ch 2 • Ch 2 ; vu sa définition, on a 

Ch 2(À) = n ( n - l ) ^ A ( ( 1 2 ) ) 

\ m - Ем 
la somme portant sur les couples i,j avec i j dans [n]. L'élément Yli^ji^J) 

appartient au centre de l'algèbre K(SN). De plus I/JX est multiplicatif sur ce centre. 

Par un calcul dans ce centre, on trouve l'identité 

Ch 2 • Ch 2 - Ch 2 2 + 4 Ch 3 + 2 C h n . 
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Noter que ChM n'est pas un élément homogène de $ car le terme NajT correspondant 

à une factorisation 7r = rcr est homogène de degré |C(a) | + |C(r) | . 

2.3.3. — Examinons ce point de plus près. Pour toute permutation a de Sk, posons 

\cr\ = k — \C(a)\ où |C(cr)| représente le nombre de cycles de a. On sait que l'on a 

\a\ — 1 pour une transposition (ij), qu'on a |1| = 0 et plus généralement que |cr| est 

le nombre minimal de facteurs dans une décomposition a = t\.. .ti en produit de 

transpositions. On en déduit aussitôt |7r| ̂  \a\ + |r| si n = ra dans Sk, d'où 

\C(a)\ + \C(r)\^\C(n)\ + k. 

Si ¡1 est le type cyclique de 7r, on a k = \fi\ et |C(7r)| est le nombre de parts (ou 

longueur) £(fi) de \i. Conclusion : Ch^ est somme de termes homogènes de degrés 

^ De plus, les relations e(a) = ( - l ) k l , s(r) = ( - l ) | r | , e{ar) = e(a)e(r) 

montrent que tous les termes du développement de ChM sont homogènes de degré \fji\ + 

£(/jl) — 2£ avec £ ^ 0 entier. Lorsque \i — k a une seule part, cela correspond au cas où 

7r est conjugué à la permutation circulaire 7*., et l'on a Chfc(À) = X A (7fc) /x A ( l ) 

pour toute partition À de taille n ^ k. D'après ce qui précède, Ch^ est somme de 

termes homogènes de degrés ^ k +1. On notera Rk+i le terme homogène de plus haut 

degré k + 1 de Chk. 

2.3.4- — D'après ce qu'on a vu en 2.3.2, Rk+i est la somme des termes e(r) Na^T 

correspondant aux factorisations ra = jk pour lesquelles |C(cr)| + |C(r) | = k + 1 ; 
autrement dit, le graphe connexe GaiT sous-jacent à la carte MajT possède k arêtes 
et k -f- 1 sommets ; il est donc réduit (sans arête multiple) et c'est un arbre, enraciné, 
plan, comme on l'a vu à la section 2.1.3. En conclusion, on a (avec une détermination 
facile du signe) 

Rt = ] T ( _ l ) » o ( T ) + l N t } 

T 

où la somme est étendue à tous les arbres plans enracinés T à £ sommets, £ — 1 arêtes 

et no(T) sommets blancs (voir [C3]). 

Exemples : 

i? 2 = iVj 

R * = N V ~ N A 

R * = N A + N T ~ N A T 

Notons aussi qu'on a 

Chi - R2 , Ch 2 = R3 , Ch 3 = R± + R2. 

De manière générale, pour obtenir les termes de plus haut degré de ChM, pour une 

partition ( / ¿ 1 , . . . , ^ ) de fc, on doit s'intéresser aux décompositions 7r = ra mini­

males, c'est-à-dire pour lesquelles |C(<r)| -h \C(r)\ = | C ( 7 r ) | + On les obtient comme 
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suit : si 7r est décomposé en cycles 7 1 , . . . , 7^ de longueurs respectives k\,..., ht (avec 

+ + = on choisit des décompositions minimales 7̂  = 0̂  dans Ski, et 

l'on pose r = r\... T£, G = o\... G£. Ceci prouve que le terme de plus haut degré 

de ChM est n£=î Mi+i ( e t c e degré est + -£(//)). En plus, ces deux polynômes ont 

même parité (comme on l'a vu à la section 2.3.3), donc leur différence est de degré 

^ | M | + * ( M ) - 2 . 

2.3.5. — Il résulte des travaux de Kerov, Olshanski, Ivanov et Biane (voir [B5], [Cl] 

et [C4]) que À est Valgèbre des polynômes en R2, # 3 , . . . Par suite, on peut écrire 

Chk = Kk(R2,R3,...) 

où l'on a introduit le polynôme de Kerov Kk à coefficients entiers. Le résultat suivant 

a été conjecturé par Kerov en 2000, prouvé par Féray en 2009 dans [B2]. 

THÉORÈME 2.2. — Le polynôme de Kerov a des coefficients entiers positifs. 

Nous allons donner un aperçu de la démonstration. 

2.3.6. — Commençons par énoncer le principe d'inclusion-exclusion cyclique. Soit G 

un graphe biparti réduit (sans arête double), et soit E l'ensemble de ses arêtes. Soit C 

un cycle orienté dans G, et soit Ec l'ensemble des arêtes de C orientées d'un sommet 

blanc vers un sommet noir ; cela constitue la moitié des arêtes. On a alors la relation 

( I E ) £ ( - 1 ) | F | J V g \ f = 0 , 

FCEC 

où G\F désigne le graphe G dont on a supprimé les arêtes appartenant à F. Pour faire 

la démonstration, on peut oublier le reste du graphe, et se ramener au cas où G est 

un cycle biparti (c'est-à-dire de longueur paire avec un coloriage adapté). Illustrons 

l'exemple typique d'un cycle de longueur 4 ; on a la relation 

NGo ~ NGl - NG2 + NGs = 0 

pour les graphes 

Go = H G,=H G2=H <?3=H 
On a à considérer des sommes de monômes pi pj qk qi (où on a numéroté les sommets 

blancs par i,j et les noirs par k,£). Chacun des graphes correspond à un système 

d'inégalités, et l'analyse est facile. Le cas général est analogue. 

En corollaire, on a un algorithme pour réduire toute série de la forme NG, donc 

aussi les Ch^, en polynômes à coefficients entiers en les iVr, où T est un arbre plan, 

enraciné. 

En fait, on peut faire mieux. Considérons un graphe biparti G = (V0,V9, E) muni 

d'une composition ( I4 1 , . . . , V*) de V0, et d'une composition ( V . 1 , . . . , Vf) de V., de 

sorte que l'ensemble des arêtes est la partie E de V0 x V. réunion des x V£ 

ASTÉRISQUE 361 



(1071) VALEURS DES CARACTÈRES DES GROUPES SYMÉTRIQUES 391 

pour 1 ^ i ^ j < £. Si l'on pose cQ(i) = \V£\ et cm(i) = IV^I, le graphe est dé­

fini à isomorphisme près par les deux compositions cD = (c0(l),..., cQ(£)) et c # = 

( c # ( l ) , . . . , c # ( f ) ) . Ce n'est autre que le graphe G\ associé à la partition À = cG x c. 

(cf. section 2.1.1). On notera iV(c 0 ,c # ) la série NQ correspondante. 

On montre alors sur la définition explicite des séries NQ (pi, P2 ? • • • ; Qi » Q2 ? • • • ) que 

les séries iV(c 0 ,c # ) sont linéairement indépendantes. De plus, par utilisation de la 

relation (IE) pour les cycles de longueur 4, on peut exprimer les séries NQ (donc aussi 

ChM, Chfc, Rk) dans la base formée des N(CQ,C9) avec des coordonnées entières. 

2.3.7. — Pour achever la démonstration, nous aurons besoin de la notion de graphe 

expanseur de type v, où v = (vi > U2 ^ • • • ^ vr) est une partition. Soient donc G 

un graphe biparti, et h une fonction définie sur l'ensemble V0 à valeurs entières ^ 2. 

On suppose que le multi-ensemble h(V0) (i.e. la famille de ces entiers avec répétition 

éventuelle) se réarrange en la partition v. 

On dira que le graphe décoré (G, h) est expanseur si la propriété suivante est 

vérifiée : 

Pour toute partie V deV0, non vide, contenue dans une composante connexe de G, 

et distincte d'elle, on a \V\+ n(V) > *!>2v(zvh(v), où n(V) est le nombre de sommets 

noirs connectés à un sommet blanc dans V. 

Dolega, Féray et Sniady montrent dans [Bl] que le coefficient du monôme 

RUl ... Rjyr dans le polynôme de Kerov Kk(R2, ^ 3 , • • • ) est égal au nombre de cartes 

biparties, unicellulaires, enracinées, avec k arêtes, munies d'une décoration h de type 

v sur les sommets blancs, qui en fasse un graphe expanseur. Ce coefficient est donc 

un entier positif. 

La notion de graphe expanseur n'est pas nouvelle (voir [B4] pour une revue). La 

démonstration suppose un bon soin dans le contrôle des signes. 

2.3.8. — En conclusion, on peut formuler le théorème 2.1 de la manière suivante. Pour 

tout entier k ^ 1, notons Mk l'ensemble des cartes biparties, avec k arêtes dont une 

marquée, unicellulaires ( 9 ) . On note Tk le sous-ensemble de Mk constitué des arbres 

planaires, enracinés, avec k arêtes (donc k + 1 sommets). On a alors 

Ch f e = ( - l ) f c ¿2 ( - l ) 1 ^ 1 NG(M) 

MeMk 

Rk+1 = ( - 1 ) * £ ( - i r ° ( T ) l Nom 
Terk 

en notant G (M) le graphe réduit associé à M, et de même pour G(T). 

9. C'est-à-dire avec un bord connexe. 
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Comme Ch^ a Rk+i pour terme de plus haut degré, Valgèbre Л est aussi l'al­
gèbre de polynômes K[Chi, CI12, . . . ] , mais la graduation n'est pas compatible. Comme 

R^+i.. • R^I+i est le terme de plus haut degré de ChM pour ¡1 = (/¿1 > • • ̂  / ^ ) , on 

voit aussi que les séries Ch^ forment une base de l'algèbre A. 

2.4. Évaluations asymptotiques 

Les formules exactes données pour les valeurs des caractères redonnent facilement 

les formules asymptotiques sur les diagrammes de Young, telles qu'elles ont été dé­

couvertes en 1977 par Kerov et Vershik dans [C6] et par Logan et Schepp dans [С7]. 

2.4-1- — Notons Уп l'ensemble des partitions de n (ou des diagrammes de Young de 
taille n). Rappelons la formule bien connue en théorie des groupes 

E J Л/ \ î\SN\ = NI Si 7Г = 1 
* X M = ( 0 s i ^ l . 

Faisant n = 1, on a donc = n-? d'où u n e mesure de probabilité Vn sur yn 

attribuant la probabilité Vn(X) := d\/n\ au point Л (« mesure de Plancherel » ) . De 
plus, la moyenne sur Уп de la fonction Л \-> фх(тг) = х л (7г) /^д est égale à 8^,1-

2.4-2. — Introduisons l'espace fonctionnel С formé des applications ou : R - » R qui 
satisfont aux deux conditions : 

• il existe A > 0 tel que UJ(X) = \x\ pour \x\ > A ; 

• ou est 1-lipschitzienne, c'est-à-dire qu'on a l'inégalité \ou(x) — ou(y)\ ^ \x — y\ pour 
x, y réels. 

On le munit de la distance 

d(ou,ou') = sup \ou(x) — w'(x) \. 
хеш 

Cette formule a un sens car la fonction x i-> ou(x) — \x\ est continue et bornée pour 

ou £ С Noter aussi que toute fonction ou £ С & presque partout une dérivée ou' et 

qu'on a — 1 ^ ou'(x) ^ 1 pour presque tout x. 

D'après le théorème d'Ascoli, pour tout A > 0, le sous-espace CA de £, formé des 

fonctions ou telles que ou(x) = \x\ lorsque \x\ > A, est compact ; par suite, l'espace 

métrique С est réunion des sous-espaces métriques compacts Ci С C2 С £3 С . . . 
Autrement dit, l'intégration à la Lebesgue fonctionne parfaitement dans l'espace C. 
2.4-3. — Nous allons d'abord recalibrer les fonctions ou\ introduites à la section 1.1.6. 
Pour toute partition Л de n, posons ( 1 0 ) 

Ûx(x) = n'1'2uxin1'2 x). 

10. Intuitivement, cela revient à dessiner le diagramme de Young (en version russe) avec des pe­

tits carrés de côté d'où n carrés d'aire 2/n. Cela revient à multiplier les coordonnées multi-

rectangulaires pi, qi par ^ = . 
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Alors l'aire de la région de R 2 définie par les inégalités 

\x\ ^ y ^ û\(x) 

est égale à 2, indépendamment de n. Il est clair aussi que la fonction Q\ appartient 

à C. L'image par l'application : À •->> Cô\ de yn dans C de la loi de probabilité Vn 

sur yn est une loi de probabilité II n sur C. 

Par ailleurs, on définit un élément Vt de C par la formule 

s i | x | ^ 2 
- | | [^arcsin ( f ) + (4 - z 2 ) 1 ^ ] s i |^| ^ 2 . 

Soit aussi SQ la masse unité au point Q de £ . 

— Voici maintenant le théorème asymptotique de Kerov, Vershik, Logan et 

Schepp : 

THÉORÈME 2.3. — Dans l'espace métrique C, la suite des mesures de probabilité Un 

tend vers ÔQ. 

Employons un langage plus pittoresque : considérons pour n > 1 une partition 

aléatoire À^n^ de taille n, choisie selon la loi de probabilité Vn sur yn. Faisons subir 

à la courbe aléatoire CN : y = uX(n)(x) dans R 2 une homothétie de rapport n - 1 / 2 

(qui la ramène dans une région finie). Soit CN la courbe aléatoire obtenue. Alors en 

probabilité, la courbe CN tend vers la courbe CQQ définie par y = Q(x) (voir la figure 

donnée dans l'introduction). 

2.4-5. — Voici quelques points saillants de la démonstration. Il faut d'abord s'assurer 

que la suite des mesures I I n est « tendue » (tight en anglais international !). Autrement 

dit, pour tout e > 0, il existe une partie compacte de la forme CA telle que IiN(£A) > 

1 — s pour tout n ^ 1. Il faut ensuite s'assurer que pour tout A > 0 et toute fonction 

continue F sur CA, on a 

lim / FdUn = F(Q). 
n->oo JCA 

Pour cela, on peut utiliser le théorème de Stone-Weierstrass qui exprime toute fonction 

continue F sur l'espace compact CA comme limite uniforme de polynômes en une suite 

séparante de fonctions continues sur CA-
C'est le moment d'introduire les moments tk (pour k > 2) de la section 1.1.8; la 

théorie des moments montre que c'est une suite séparante. On utilise alors les faits 

suivants : 

a) Une relation algébrique 

_ 1 

" к С) Rh Ri-i-- Rir 

qui permet de naviguer de la suite (i?2, R3, • • • ) à la suite (t 2 , t 3 , . . . ) et vice-versa. 
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Dans la théorie des probabilités libres, c'est la formule reliant les moments tk d'une 

variable aléatoire à ses cumulants libres 

b) L'homogénéité des Rk permet de montrer que l'on a (avec l'abus de notation 

hi/y/n P°ur les homothéties) 

lim R2{h1//^\) = 1 (calcul d'aire) 

lim fifc(/ii/AA7 A) = 0 pour k ^ 3 . 

c) Les moments de la fonction étant définis par 

*fc(fi) = (iî(x)-\x\)xh-2dx, 

la fonction FI est caractérisée par les valeurs 

(t2k(Ç}) = (2k-l)\/(k\)2 

l*2fc+i(n) = 0 . 

Ces relations équivalent à iÎ2(f2) = 1, -Rfc(îî) = 0 pour k ^ 3, en utilisant 
la formule de a) pour définir iîfc(îî). Mais le calcul de limite dans b) s'écrit 
limn_^.00 Rk(hxi^i À) = jRfc(^) pour tout A: ̂  2, d'où une formule analogue pour les 
moments. 
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