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THE PROOF OF ORE’S CONJECTURE
[after Ellers-Gordeev and Liebeck-O’Brien-Shalev-Tiep]

by Gunter MALLE

INTRODUCTION

The commutator [g, h] := g~th~!gh of two elements g, h of a group G is introduced
in every first course in group theory, as well as the commutator subgroup

G, Gl :=(l9,h] [ g,h € G),

generated by all commutators in GG, and usually it is stated that not all elements of
[G, G] need to be commutators. The first such example of finite order may have been
given by Fite [Fi02]. The smallest example of a finite group G for which [G, G] contains
non-commutators has order 96; in fact there are two non-isomorphic groups of that
order in which the set of commutators does not equal the commutator subgroup, see
Guralnick [Gu80].

In a 1951 paper, Oystein Ore [Ore| shows that every even element in a symmetric
group of degree at least 3 is a commutator and claims that the proof can be extended
to show that every element in a simple alternating group 2, is a commutator. He
concludes by saying that “It is possible that a similar theorem holds for any simple
group of finite order, but it seems that at present we do not have the necessary methods
to investigate the question.” This has become known as Ore’s conjecture, the recent
solution of which [LOST] is the topic of this lecture:

THEOREM 0.1 (Liebeck-O’Brien-Shalev-Tiep). — Let G be a finite non-abelian simple
group. Then every element of G is a commutator.

In fact, at almost the same time as Ore, Noboru Ito [Ito51] showed the same
statement for the alternating groups 2, but without speculating about other finite
simple groups.

The proof of Ore’s conjecture relies on the classification of the finite simple groups
and, through Lusztig’s parametrization of irreducible characters of finite reductive

SOCIETE MATHEMATIQUE DE FRANCE 2014



326 G. MALLE

groups, on the Weil conjectures; the final step also required a considerable amount of
computer calculation.

Note that obvious generalizations of Theorem 0.1 fail to hold. For example Gural-
nick [Gul0] gives a quite general construction of groups, including non-solvable ones,
with the property that [G, G] does not consist of commutators only: let G = Ul H
be the regular wreath product of two finite groups U, H with U abelian. If |U| > 2
or |[H, H]| > 2 then some element of [H, G] is not a commutator in G (see also Isaacs
[Is77] for a weaker result). Thus, for U of order at least 3 and any non-abelian sim-
ple group H this gives a non-solvable example G with factor group H, and in fact
one may also obtain a perfect one (that is, a group G with G = [G,G]). Computer
calculations show that the smallest example of a perfect group not all of whose el-
ements are commutators is an extension of an elementary abelian group of order 2*
with the alternating group 2s. Even closer to the case of simple groups, H. I. Blau
[B194] proved that there exist (finitely many) quasisimple groups that contain non-
commutator central elements (see Theorem 6.1 below). Recall that a group G is
called quasisimple if it is perfect and the quotient G/Z(G) by its center Z(G) is (non-
abelian) simple. The smallest such example is the exceptional 6-fold covering group
of the alternating group 2 (that is, a non-split central extension of the cyclic group
of order 6 by ), for which the central elements of order 6 can be seen not to be
commutators. So the property required by Ore’s conjecture seems to be closely tied
to simple groups.

We want to mention another open problem closely related to Ore’s conjecture,
which is concerned with the square C? := {zy | z,y € C} of a conjugacy class C, and
which in the introduction to the book [AHS85] is attributed to J. G. Thompson:

CONJECTURE 0.2 (J. G. Thompson). — Let G be a finite non-abelian simple group.
Then there exists a conjugacy class C C G such that C? = G.

Clearly, if C? = G then every element in the product C? is a commutator, so
the Thompson conjecture implies the (now proven) Ore conjecture. Many papers
on the Ore conjecture actually show that the stronger Thompson conjecture holds
for particular families of groups, so in this survey we will consider both conjectures
simultaneously.

In a broader context, the Ore conjecture can be thought of as a particular instance
of the surjectivity of word maps. For any word w in a free group F;. on r generators,
and any group G, one can ask whether the corresponding word map is surjective,
the Ore conjecture being the special case of the commutator word. This gives (non-
commutative) analogues of diophantine equations on groups. For example, the repre-
sentability of a group element by a product of kth powers, or by the kth power of a
given word, can be considered to be analogues of Waring’s problem in number theory.
This point of view has been propagated by Shalev (see e.g., [Sh09, LS09, LST11}).
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One attractive feature of these questions, which we will insist on throughout this
survey, is the fact that they also make sense for simple algebraic groups, where more
powerful methods are available and much more can be shown to hold.

Let us end this introduction with a short historical overview on the proof of Ore’s
conjecture. After Ore and Ito proved the conjecture for the simple alternating groups,
R.C. Thompson [Th61, Th62, Th62a] established it for the finite projective special
linear groups PSL,(q) = SLy(¢q)/Z(SLy(g)). The symplectic groups Sps,,(q) with ¢ =
1 (mod 4) were handled by Gow [Gow88|, and Bonten [Bo93] dealt with exceptional
groups of Lie type of low rank. The case of sporadic groups was settled by Neubiiser,
Pahlings and Cleuvers [NPC84].

In 1998, E.W. Ellers and N.L. Gordeev [EG98] verified Ore’s conjecture (and in fact
Thompson’s conjecture) for all finite simple groups of Lie type over a finite field Fy,
whenever ¢ > 9. This will be explained in Section 1. Building on this result, Shalev
[Sh09] then used asymptotic methods to show that for finite simple groups G, the
proportion of commutators tends to 1 as |G| tends to infinity. In that same paper he
also showed that for any word w # 1, there exists N = N(w) such that for every finite
simple group G of order |G| > N(w) we have w(G)® = G. The exponent 3 was later
improved to 2 by Larsen, Shalev and Tiep [LST11]. We will discuss these methods
and results in Sections 4 and 5. The remaining (infinitely many) simple groups of Lie
type over small fields were then treated in the paper of Liebeck, O’Brien, Shalev and
Tiep [LOST]. We sketch their approach in Section 2.

1. THE APPROACH BY ELLERS AND GORDEEV

Ellers and Gordeev [EG98] succeeded in proving Ore’s conjecture for the finite sim-
ple groups of Lie type defined over fields of order at least 9. Since there are infinitely
many distinct classical groups over any given finite field, this still leaves infinitely
many open cases. The approach of Ellers-Gordeev is by direct computation. To get
some idea on the method, one should consider the following model case for algebraic
groups. This was proved by Pasiencier-Wang [PW62] over the complex numbers (with
a precursor result by Goto [Go49] for compact semisimple Lie groups), and then Ree

[Ree64] noticed that their argument can be extended to arbitrary algebraically closed
fields:

THEOREM 1.1 (Pasiencier-Wang, Ree). — Let G be a semisimple linear algebraic
group over an algebraically closed field. Then each element of G is a commutator.

Proof (Sketch). — We want to show that g € G is a commutator. First note that
a conjugate of a commutator is again a commutator, so we may replace g by any of
its conjugates. By a result of Borel, any element of G lies in some Borel subgroup B
of G, so we may assume that g € B. Let U = R, (B) be the unipotent radical of B,
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328 G. MALLE

and T' € B a maximal torus. One now needs the following auxiliary claim, whose
proof relies on a result of Kostant on the action of the Weyl group on the character
group of T', see [Ree64, (3.1)]:

() For any s € T there exists a regular element ¢ € T (that is, with Cg(t) = T)
and x € Ng(T) such that =tz = ts.

Now let g = su be the Jordan decomposition of g, where we may assume that s € T,
since all maximal tori of B are conjugate. By (*) there exists a regular element ¢t € T
and x € Ng(T) with 27!tz = ts. By Lemma 1.2 below applied to the regular element
ts € T there is b € B with b~1tsb = tsu, so that finally

g=su=t"1b"ltsb=t"1b"tx " xb = [t, 2}

is a commutator. O

LEMMA 1.2. — Let B = U - T be a semidirect product of a nilpotent normal sub-
group U with an abelian group T. Then for t € T with Cg(t) = T the coset tU is a
single B-conjugacy class.

Proof. — By induction over a central series of U one easily shows that the map
U — U, uws [t,u], is bijective, so any tv € tU has the form t* for some u € U. |

An attempt to adapt this approach to finite groups of Lie type faces several
problems. First, it is no longer true that all elements lie in a Borel subgroup. So
one has to consider a larger collection of subgroups. Secondly, regular semisimple
elements exist in the Borel subgroup only if the underlying field is sufficiently large
compared to the rank. This is the principal reason why the Ellers-Gordeev method
cannot handle all simple groups of Lie type.

In a series of three papers Ellers-Gordeev show a particular form of Gauss decom-
position for elements of finite reductive groups. Recall that any finite simple group
of Lie type G can be obtained by the following construction. (This does not apply to
the Tits simple group 2Fy(2)’, which for most purposes should rather be considered
as a 27th sporadic simple group.) There exist a simple linear algebraic group H of
simply connected type over the algebraic closure of a finite field, and a Steinberg
endomorphism F : H — H, that is, a bijective morphism with finite fixed point set
H := HFY such that G = H/Z(H). Elements of G will be called regular if their
preimages in the algebraic group H are. If T < B < H is an F-stable maximal torus
inside an F-stable Borel subgroup of H, then the image in G of TF, respectively of
BF, is called a maximally split torus, respectively a Borel subgroup of G. The group
of F-fixed points of the unipotent radical R,(B) is then called the unipotent radical
of B¥. Ellers-Gordeev [EG94, EG95, EG96] obtain the following statement on Gauss
decompositions of elements.
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(1069) THE PROOF OF ORE’S CONJECTURE 329

THEOREM 1.3 (Ellers-Gordeev). — Let G be a finite simple group of Lie type,
T < B <G a mazimally split torus inside a Borel subgroup of G, U the unipotent
radical of B and U~ the unipotent radical of the opposite Borel subgroup. Fix t € T.
Then for any 1 # g € G there ezists ¢ € G such that

rgx~' = ujtuy  for suitable u; € U™, ug € U.

For the special linear groups this was first shown by Sourour [So86]. In fact, Ellers-
Gordeev prove the statement for Chevalley groups over any field K. Their proof takes
roughly 50 pages of explicit calculation in the various families of groups of Lie type.

COROLLARY 1.4. — In the situation of Theorem 1.3, suppose that t1,to € T are
regular elements, and write C1, Cy for their conjugacy classes. Then C1C2U{1} =G.

Proof. — Let 1 # g € G, then by Theorem 1.3 some conjugate zgz~' of g has the
form wititous with u; € U™, ug € U. Now by Lemma 1.2 applied to the semidirect
products B = UT and U~T we can write ui1t; = U1t1’01_1, and tous = ’Uth'Uz_l for
suitable v; € U™, vy € U, whence

g™l = uititoug = vltl'ul“l v2t2v2_1 € C1Cs,

as claimed. O

COROLLARY 1.5. — In the situation of Theorem 1.3, assume that T contains a
reqular element. Then the Ore conjecture holds for G.

Proof. — Let t € T be regular and let C'y,Cy in the previous corollary be the class
of t, t~! respectively. Then any element of G \ {1} is a commutator, and 1 € G
trivially is. O

Now note that, given H, F': H — H, and a maximally split maximal torus T < H
as above, any regular semisimple element s € T is F™-stable for m sufficiently large.
Thus there exist regular semisimple elements in 7" over fields of sufficiently large order.
But this field size might vary with the characteristic and with the type of G. So more
elaborate arguments are needed to establish a uniform, explicit bound:

THEOREM 1.6 (Ellers-Gordeev [EG98]). — Let G be a finite simple group of Lie type
over a field of order at least 9. Then Thompson’s and Ore’s conjectures hold for G.

In fact, for most families of groups they obtain an even smaller bound on the field
size; for example, they show that Ore’s conjecture holds for symplectic groups over
fields of order at least 4. Note that this still leaves infinitely many open cases, namely
the classical groups of unbounded rank.

In their proof, Ellers-Gordeev use the following factorization result by Lev [Lev94],
which is shown by direct computation (a similar, but weaker decomposition statement
had been shown by Sourour [So86] in his proof of Thompson’s conjecture for SL, (K)).
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THEOREM 1.7 (Lev). — Let K be a field, |K| > 4, and a1,a2 € GL,(K) withn > 3
such that all eigenvalues of a1, a2 lie in K. Then any non-scalar matriz g € GL,(K)
with detay - detas = detg can be factorized as g = biby with b; conjugate to a;,
fori=1,2.

Taking a; = ag a regular unipotent element, this implies that all non-central el-
ements of SL,(K) with |K| > 4 lie in C?, where C is a class of regular unipotent
elements, showing Thompson’s and thus Ore’s conjecture for SL,(q), ¢ > 4, whence
for the simple factor groups PSL,(g). To treat the other simple groups of Lie type
G, Ellers-Gordeev consider the following situation: Assume that G has root system ®
with respect to a maximal torus T, G; is a reductive subgroup of G with root system
®; C @, and U is the unipotent subgroup of G generated by the root subgroups
for roots a € ®* \ ®;. Then one has the following inductive statement (see [EGI8,
Prop. 5.1]):

PROPOSITION 1.8. — Let C C G be a real conjugacy class. Let g € TG1 N C and
denote by Cy the union of the TG1-conjugacy classes of g and g~. Suppose that

1) TNG # Z(G4),

(2) C% U Z(Gl) =G4, and

(3) g acts fized point freely on all quotients U; /U1 of the central series (U;); of U.
Then C?2U Z(G) = G. If G is simple, then C? = G.

Here, an element (and its conjugacy class) is called real if it is conjugate to its
inverse. For the proof of Theorem 1.6 it then remains to verify these technical condi-
tions for the various families of simple groups of Lie type, where G is usually taken

to be a subgroup of type A, and g is the product of a regular unipotent element of
G with a suitable semisimple element of G.

2. THE CHARACTER THEORETIC METHOD

In this section we sketch the approach of Liebeck-O’Brien-Shalev-Tiep [LOST]
which completes the proof of Theorem 0.1. Its main ingredient is character-theoretic,
relying on the following lemma of Frobenius:

LEMMA 2.1. — Let G be a finite group. Then g € G is a commutator if and only if
x(9) £0.

x€Irr(G) X(l)

Here, Irr(G) denotes the set of complex irreducible characters of G.
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Proof. — We want to count pairs (z,y) € GxG with g = [z,y] = 27y lzy = z712Y,
that is, representations of g as a product of 7! times a conjugate of z. It is a well-
known result of Frobenius that for a fixed conjugacy class C of G the number of pairs

(z1,22) € C x C with z'zy = g is given by

_lep > x(@1)*x(g)

el x()

Conjugating z2 by y € Cg(z2) fixes the pair, so we get |Ca(z2)|nc pairs (z,y) € CxG
with [z, y] = g. Summing over all conjugacy classes C of G (with representative z € C)
yields

x€Irr(G)

x(9) x(9)
> ICa(@)ne = ) 0) S ICHx@P =Gl > Ol
CCG x€Irr(G) CCG x€lrr(G) X
for the desired number of pairs, where for the last equality we have used the orthog-
onality relations for characters. The claim follows. O

This allows us to deal with the 26 sporadic simple groups, since their character
tables are known, see [NPC84|, and more generally with any group whose character
table is explicitly available.

Liebeck-O’Brien-Shalev-Tiep’s idea for applying the Frobenius formula to the re-
maining groups of Lie type is as follows. By the orthogonality relations for characters
we have |x(g)]? < |Cg(g)| for any g € G. Splitting off the contribution by the trivial
character 1¢ of G we may thus estimate

x(0)
2 1)

XEIrr(GQ)

1
>1-|Cq(g)|"/? X;G XA

Thus one may hope that for elements g with small enough centralizer order |Cg(g)|,
the second term has absolute value less than 1 so that one gets the desired result for

such elements. The crucial observation which makes this approach work follows easily

from the orthogonality relations and an application of the Cauchy-Schwarz inequality
(see [LOST, Lem. 2.6]):

LEMMA 2.2. — Let G be a finite group with kg conjugacy classes. Then for all N > 0

and all g € G
Z Ix(9)I <V ka |CG(9)|'
x€Irr(G) X(l) N
x()>N

In order to apply this formula, one needs information on the number kg of con-
jugacy classes in a simple group of Lie type, and on lower bounds for degrees of its
non-trivial complex irreducible characters. Let us write G = G.(q) if G is a simple
group of Lie type of rank r over the finite field F;. Asymptotically, the number of
conjugacy classes in G,(q), for ¢ — o0, is bounded above by a polynomial in ¢ of
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degree 7; more precise upper bounds for kg were obtained by Fulman and Guralnick
[FG12], for example
n
kg < qq—l +¢*/?*Y  for G = SLy(q) with n > 4.

In practice, the argument sketched above needs to be refined slightly since there
often exist a few non-trivial characters of very low degree which have to be treated
separately.

The question on lower bounds for the minimal dimensions of non-trivial irreducible
representations of finite simple groups is a very active area of research; first general
results for groups of Lie type appeared in work of Landazuri and Seitz. For the
present application, only complex irreducible representations matter, and for those,
sharp lower bounds have been derived by Tiep and Zalesski [TZ96] from Lusztig’s
classification [Lu84] of all complex irreducible characters. Often, there exist few irre-
ducible characters of degree very close to the lower bound, and all others have degree
at least roughly the square of that bound. Such gap results are crucial in many other
problems in the study of finite simple groups. As one example, we cite the result for
symplectic groups (see [TZ96, 5.2]):

LEMMA 2.3. — Let G = Sp,,,(q) with n > 2 and q¢ odd. Then G has four complex
irreducible characters of degrees 1(q™ £ 1), the so-called Weil characters, and

X(l) > (qn — 1)(qn — q)

2(g+1)
for all other 1g # x € Irr(G).

It is easy to see that any non-trivial irreducible representation of Sp,,(q) has
dimension at least (¢"™ — 1)/2: considering Fy» as an n-dimensional vector space
over Fy, we may embed SL2(¢™) = Sp,(¢™) into Sp,,(q), and the smallest non-trivial
irreducible representation of SL2(¢™) over any field of characteristic not dividing ¢
has dimension (g™ —1)/2. Indeed, the Borel subgroup of SL2(g) is an extension of the
elementary abelian group U of order ¢ with a cyclic group of order ¢ — 1 which acts
with two non-trivial orbits of length (¢ — 1)/2 on the set of linear characters of U,
whence any non-trivial representation of SL2(g) has at least that dimension.

It is much harder to prove the stated gap result. For symplectic groups an ele-
mentary proof is available (see [GMST02]), but for other types, the full strength of
Lusztig’s classification of irreducible characters [Lu84] is needed.

Returning to Ore’s conjecture, for G = Sp,,(¢) we can thus show that elements
with small centralizer are commutators by applying Lemma 2.2 with the bound
N =(q" —1)(¢" — q)/(2(¢ + 1)) together with the known bound on kg, once we
control the values of the four Weil characters. This is indeed possible by the very
explicit construction of those characters. Let P be the derived subgroup of an end
node maximal parabolic subgroup of Spy,,,(q). Then P = U.Sp,,(q) where U is
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a special group of order ¢**2?" (that is, the center, the derived subgroup and the
Frattini subgroup of U all agree and are elementary abelian). Then U has ¢ — 1
faithful irreducible complex representations, of dimension ¢”, and these can be shown
to extend to P. They take absolute value ¢V(9/2 on elements g € Sp,,,(q), where
N(g) = dimker(g — 1). Upon restriction to Sp,,(q) these representations split into
two irreducible constituents each, of dimensions (¢™ +1)/2, the above mentioned Weil
representations (see [Ger77]).

Similar bounds as in Lemma 2.3 exist for the other families of groups of Lie type
[TZ96]. In the case of orthogonal groups, Liebeck-O’Brien-Shalev-Tiep need to prove
estimates on character values for the g+ 4 smallest irreducible characters (see [LOST,
Prop. 5.12]).

It still remains to show that elements with large centralizer are commutators. For
this, the authors introduce the notion of breakable element. Let V' be a vector space
equipped with a non-degenerate symmetric bilinear or hermitean form, and denote its
group of isometries of determinant 1 by Cl(V'). Thus, depending on the type of the
form, C1(V') could be a symplectic, a special orthogonal or a special unitary group. An
element g € CI(V) is called breakable if there exists a proper non-degenerate subspace
W < V such that g lies in the corresponding product CI(W) x CI(W+) of classical
groups with respect to the induced forms, and either both factors C1(W) and CI(W)
are perfect groups, or at least Cl(W) is perfect and the component of g in CI(W+)
is a commutator. Since Ore’s conjecture can already be assumed for CI(W) (and for
CI(W+) if it is perfect) by induction, such breakable elements are also commutators.
This approach is complementary to the previous one; for example the authors show
that for G = Sp,,(2), g unbreakable implies that |C(g)| < 227*!° is indeed small.

This dichotomy approach fails if the factors in the decomposition are rather small,
and thus not perfect or even solvable, like CI(W) = Sp,(2), Sp,(3), Sp4(2) or SO (2).
This leads to various ‘small’ cases which have to be treated by ad hoc calculations with
the computer algebra systems GAP and Magma, either using or constructing their
character tables and applying Lemma 2.2, or by trying to construct commutators in
all conjugacy classes by random methods. Some of the challenging big cases of this
type are the groups Spy4(2), SUs(7), SO11(3), of sizes roughly 6 - 104, 4-10%°, 21026
respectively. In total the authors estimate that their computations used about 3 years
of CPU time.

An additional complication occurs for the projective special unitary groups
PSU,(g) (which by [EG98] have to be treated for ¢ < 7 when n is even, and for ¢ < 3
when n is odd). Here the bounds for centralizers of unbreakable elements are much
weaker than for the other classical types. Thus, the character-theoretic approach
sketched above fails. Instead the authors imitate Thompson’s direct approach [Th61]
for the special linear groups by representing elements directly as commutators. This
again leaves open several cases with small n and ¢ which have to be treated separately.
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For the groups of exceptional types, the small rank cases had already been handled
completely by Bonten [Bo93], and for the remaining finitely many groups of type E,,
n = 6,7, 8, the bounds on character degrees are much more favorable than in classical
types, so that similar but easier arguments allow to conclude.

3. TOWARDS THOMPSON’S CONJECTURE

Let us now turn to Thompson’s conjecture, stated in the introduction, that any
finite non-abelian simple group contains a conjugacy class C C G such that C? = G.

The example of 6.2¢ mentioned in the introduction shows that there are counter-
examples to an extension of Thompson’s conjecture to quasisimple groups. Moreover,
the quasisimple groups SL2(q), ¢ = 3 (mod 4), are covered by commutators by The-
orem 6.1, but they can be seen not to be covered by the square of a single conjugacy
class, so not all groups satisfying Ore’s condition satisfy Thompson’s condition.

Note that a class satisfying Thompson’s conjecture must be real. Again, the ortho-
gonality relations for group characters yield an easy character theoretic criterion:

LEMMA 3.1. — Let G be a finite group, C C G a real conjugacy class. Then G = C?
if and only if

2
) Ix(w)(llic(g) £0
x€Irr(G) X
for all g € G (where x € C is arbitrary).

Thompson’s conjecture has been checked for the sporadic groups [NPC84] (using
the above criterion), for alternating groups by C.-H. Hsii [Hs65] (see also Bertram
[Ber72]), for special linear groups by Brenner [Br83] and Lev [Lev94], and for the
groups of Lie type over fields of cardinality at least 9 by Ellers-Gordeev (see The-
orem 1.6). Using Lemma 3.1, Guralnick and Malle showed that for groups of Lie
type of rank 1, almost any class C has the desired covering property, and furthermore
Thompson’s conjecture holds for all exceptional groups of Lie type of rank less than 4
[GM12, Thm. 7.1 and 7.3].

In these investigations one is naturally led to study pairs of conjugacy classes whose
product covers all of G, except possibly for the identity element. In order to verify the
latter, one again uses Frobenius’ character theoretic formula for structure constants,
saying that for conjugacy classes C1,Cs of G, an element g € G is a product of
elements z € C,y € C; if and only if

3 x(@)x(w)x(g™") 40,

x€Irr(Q) X(l)
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This sum is very hard to evaluate in general, but as was first recognized by Malle [M88]
in the construction of Galois realizations with given group and then used extensively
in Malle-Saxl-Weigel [MSW94], for groups of Lie type, Deligne-Lusztig theory allows
to identify classes C1, Cs such that very few irreducible characters do in fact contribute
to this sum.

Let G be an almost simple or quasisimple group of Lie type. Following Liibeck-
Malle [LM99] we say that a pair T7,T> of maximal tori of G is strongly orthogo-
nal, if only one non-trivial irreducible character x € Irr(G) has the property that
x(s1)x(s2) # 0 for any regular elements s; € T;. This irreducible character is then
necessarily the so-called Steinberg character St of G.

COROLLARY 3.2. — Let T1, Ty be a pair of strongly orthogonal tori of a finite quasi-
simple group of Lie type G, and C; C G classes of regular semisimple elements of 15,
1=1,2. Then C1C3 U Z(G) =d.

Proof. — By assumption, the only non-trivial irreducible character not vanishing on
either s; € T; is the Steinberg character St. This is known to take values +1 on
regular semisimple elements, see [Ca85, Thm. 6.5.9]. Thus the above formula for the
structure constant evaluates to 1 & St(g)/St(1), which is non-zero whenever g € G is
non-central since then |St(g)| < St(1). O

Such pairs of maximal tori were first considered in [MSW94] in the proof that all
finite non-abelian simple groups except for PSU3(3) can be generated by three involu-
tions. Perhaps rather unexpectedly it turned out in [MSW94] and [LM99, Thm. 10.1]
that:

PRrROPOSITION 3.3. — All families of finite simple groups of Lie type, with the pos-
sible exception of orthogonal groups of type Da,, possess strongly orthogonal pairs of
mazximal tori. Moreover, one of the tori in such a pair can be chosen to contain real
elements.

The proof requires Lusztig’s classification of unipotent characters as well as his re-
sults on character values on semisimple elements, see [Lu84]. As a direct consequence
one obtains the following approximation to Thompson’s conjecture:

COROLLARY 3.4. — Let G be a finite simple group of Lie type, not of type Day,. Then
G has a conjugacy class C such that C2 U C® = G.

Proof. — By Corollary 3.2 the product C;C; covers G\ {1}, for C; classes of regular
elements in the two strongly orthogonal tori, where moreover we may assume that
C> contains real elements. In particular, any element of Cy can be written as a product
of two elements in Cy. As elements in Cy are real, the identity lies in C3 as well, so
the claim follows with C = Cs. O
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This has recently been improved as follows (see [GT13, Cor. 1.3]):

THEOREM 3.5 (Guralnick-Tiep). — Let G be a finite simple group. Then G has a
conjugacy class C such that C3 = G.

In order to deal with groups of type Da,, but also in other types, it is sometimes
useful to consider the following weaker concept, formalized in [LST11]: Two maximal
tori T1, T5 of G are called weakly orthogonal if the intersection of 77 with any conjugate
of T only contains the identity. Examples are any pairs of maximal tori 77,75
of mutually coprime orders. The relevance of such pairs of tori comes again from
Lusztig’s classification of irreducible characters of finite reductive groups in terms of
semisimple elements in the dual group (see [MSW94], [LM99] or [LST11, Prop. 2.2)):

PROPOSITION 3.6. — Let G be a finite simple group of Lie type, T1,To < G mazimal
tori such that the corresponding tori in the Langlands dual group are weakly orthogo-
nal. Let x € Irt(G) and s; € T; be regular elements. Then x(s1)x(s2) = 0 unless x is
a so-called unipotent character of G.

Using this, the following second approximation to Thompson’s conjecture can be
shown (see [GM12, Thm. 1.4], and also [LST11, Thm. 1.1.4] for an asymptotic ver-
sion):

THEOREM 3.7. — Let G be a finite non-abelian simple group. Then there exist con-
Jjugacy classes Cy,C2 C G with G = C1Cy U {1}.

Proof. — For alternating groups, this is the main result of [Hs65]. For groups of Lie
type different from D,,,, the assertion is an immediate consequence of Proposition 3.3
in conjunction with Corollary 3.2. For type D3y, one has to establish bounds on the
values of unipotent characters on elements of a pair of weakly orthogonal tori from
[MSW94, 2.5], see [GM12, Thm. 7.6] or [LST11, Prop. 7.1.1]. O

In fact, for all but the two simple groups PSL2(7) and PSL2(17) we can arrange
so that both classes contain elements of order prime to 6, see [GM12, Thm. 1.4].
Using this one gets (see [GM12, Cor. 1.5], and [LOST3, Thm. 2] for a slightly weaker
statement):

THEOREM 3.8 (Guralnick-Malle). — Let k be a prime power or a power of 6. Then
every element of any finite non-abelian simple group is a product of two kth powers.

We will come back to the question on representing elements as products of powers
in Section 5.

For alternating groups, much better results can be obtained at least asymptotically.
For example, the following is shown in [LS09, Thm. 1.1]:
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THEOREM 3.9 (Larsen-Shalev). — There exists a constant ng such that for all
n = ng and all permutations g € &, with at most n'/1?® orbits on {1,...,n}, the
&,-conjugacy class C of g satisfies C? = U,,.

Choosing g € U, with not all cycle lengths distinct, this gives a solution of Thomp-
son’s conjecture for 2A,. The proof again relies on Frobenius’ formula and a careful
estimate of character values on permutations with few cycles using the Murnaghan-
Nakayama rule.

Thus, at the time of writing, the Thompson conjecture remains open for simple
groups of Lie type defined over fields of size at most 8, and of rank at least 4. One
might hope that taking for C a class of regular unipotent elements should give the
result. Indeed, for G of adjoint Lie type in good characteristic and x € G regular
unipotent, it is known that x(z) € {0,1, —1} for all irreducible characters x of G, but
even with this choice the known estimates on character values are too weak to allow
for an application of Lemma 3.1.

4. WORD MAPS FOR ALGEBRAIC GROUPS AND FINITE
GROUPS OF LIE TYPE

The formulation of Ore’s conjecture fits into the more general framework of word
maps on groups. Here, surprisingly strong results for groups of sufficiently large order
can be obtained by asymptotic arguments. Again, the approach relies on the theory
of algebraic groups. In order to phrase the results, we need the concept of word map:
Let F, be the free group on r generators z1,...,2, and w = x;, ---x;,, € F, a word.
Then for any group G, w defines a map f,,¢ : G = G by sending (g1,...,9r) to
Giy "+ * Gir, - Slightly abusing notation we will write w(G) := im(f,, ¢) for the image of
G under this word map.

Again, let’s first consider the case of algebraic groups:

THEOREM 4.1 (Borel [Bor83]). — Let G be a semisimple linear algebraic group over
an algebraically closed field K and 1 # w € F,. a word. Then f, ¢ is a dominant
morphism, that is, w(G) contains a Zariski open dense subset of G.

Proof (Sketch). — First note that if 7 : H — G is an isogeny, then the diagram
Hr Lei, g
”rl lw
¢ 22y @

commutes, so if the claim holds for H, it also holds for G. In particular we may take
for 7 the simply connected covering, so it suffices to consider semisimple groups of
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simply connected type. Since these are direct products of simple algebraic groups, we
may even assume that G is simple.

Secondly, we may reduce to the case of SL,. Indeed, let H < G be a subgroup
of maximal rank. Then any maximal torus of H is a maximal torus of G. If the
claim holds for H, then the image of f,, g intersects the dense open subset of regular
semisimple elements of H in a dense open subset and so its image is dense in a
maximal torus of H. Hence the image of f,, ¢ is dense in a maximal torus of G, and
so in G, whence the claim also holds for G. Now any simple algebraic group contains
a semisimple maximal rank subgroup all of whose simple components are of type A.
For example, we have SLY < Sp,,, 4% < Fy and A} < Es. Thus, we are done when
the result holds for groups SL,,.

For SL,, consider the morphism X, : SL, — K"~ ! sending an element to the vector
of coefficients of its characteristic polynomial (except for the first and last one). By
induction, the claim holds for SL,_1, so Xxn o fu,c contains a dense open subset of
the hyperplane {(ay,...,an—1) | 1 + (=1)" + Y a; = 0} of K™~! corresponding to
elements with an eigenvalue 1. By going to the closure one sees that it suffices to
exhibit an element in w(G) without eigenvalue 1. This is achieved by working inside
an anisotropic subgroup of SLy, (i.e., a division algebra of degree n over some global
subfield of K). O

Theorem 1.1 shows that the commutator word map is surjective, but in general,
word maps on simple algebraic groups need not be surjective: already on SLs in
characteristic 0, the word z? is not surjective. See Mycielski [My77] for this and
further examples. Similarly, in positive characteristic p, the image of the p-power
word map does not contain regular unipotent elements. It is intriguing to speculate
under which conditions surjectivity might hold for non-power words.

Returning to finite groups, Theorem 4.1 allows us to deduce the following:

THEOREM 4.2 (Larsen [La04]). — Let 1 # w € Fy, and G1,Ga,... be an infinite
sequence of pairwise non-isomorphic finite non-abelian simple groups. Then
log |G| _
n—oo log [w(Gn)|

Proof (Rough sketch). — Since w(G5,) is closed under conjugation, it suffices to ex-
hibit an element in the image with small enough centralizer, so with large class size.

One distinguishes three cases: for a sequence of simple groups of Lie type with
a fixed root system, Larsen shows that |w(Gr)| > c|Gn| for some ¢ > 0, basically
using Theorem 4.1, but the details are quite involved. In fact, it turns out that it is
sufficient to prove this for groups of type A;.

As a second step, one shows the same statement for a sequence of alternating
groups. For this, one decomposes n = E;;l (p; + 1) with suitable primes p;, embeds
the product PSL2(p;) X - - - X PSLa(pg) into A, via the natural permutation action of
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PSL3(p) on the projective line over F,,, and uses the first part for the factors PSLa(p;)
to find an element in w(2A,) with small centralizer.

Finally, for the classical groups of arbitrary rank, one uses natural embeddings like
A, < SLn(q) < SOF.(¢) < SO2n41(q) < SLan+1(q) to exhibit elements with small
centralizer, starting with those for A,,. O

A different proof of Theorem 4.2 is given in [LS09] using the following important
irreducibility property enjoyed by word maps, the proof of which would lead too far
away from the topic of this lecture (see [LS09, Thm. 3.3]):

THEOREM 4.3 (Larsen-Shalev). — Let w; € F,, i = 1,2, be non-trivial words in
two disjoint sets of letters, and w € Fy 4, their concatenation. Let G be a simple
algebraic group of simply connected type over an algebraically closed field. Then for
all non-central elements g € G, the fiber f;}G(g) is irreducible.

5. ASYMPTOTIC WARING TYPE RESULTS

The results stated in the previous section form a key ingredient for the study of
various asymptotic Waring type questions on the image of word maps. Recall that
in number theory the Waring problem, solved by Hilbert, asks whether there exists a
function f such that any positive integer can be represented by f(k) kth powers. In
analogy, in the setting of group theory, given any non-trivial word w € F, one may
ask whether some power w(G) - - - w(G) covers G for all sufficiently large non-abelian
finite simple groups G. (Recall that we write w(G) for the image of the word map
on G" associated to w.) Here the best and most general results are consequences of
the following (see [LST11, Thm. 1.1.1]):

THEOREM 5.1 (Larsen-Shalev-Tiep). — Let w1, ws € F,. be non-trivial words. Then
there exists a constant N = N(wy,ws2) such that for all finite non-abelian simple
groups G of order |G| > N we have w1 (G) w2(G) = G.

The case of alternating groups and of groups of Lie type of bounded rank had
already been established earlier by Larsen and Shalev [LS09]. Using Theorem 4.3 and
suitable embeddings as in the proof of Theorem 4.2 they show, for example, that each
word map on 2, with n large enough contains elements with few cycles in their image
and then conclude by Theorem 3.9.

As an immediate consequence one has:

COROLLARY 5.2. — For any 1 # w € F, there exists a constant N = N(w) such that
w(G)? = G for all finite non-abelian simple groups G of order |G| > N.
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Taking for w the commutator word shows in particular that any element in a
sufficiently large finite non-abelian simple group is the product of two commutators.
Earlier, Liebeck and Shalev [LS01] had proved that for any word w there exists an
unspecified constant ¢ = ¢(w) such that if G is a finite non-abelian simple group and
w(QG) # 1 then w(G)¢ = G. This was then improved by Shalev [Sh09, Thm. 1.1] who
showed the statement of the above corollary with 3 in place of 2. Nikolov and Pyber
[NP11] reproved this using different methods. A recent result of Jambor, Liebeck and
O’Brien [JLO13, Cor. 3] shows that the exponent 2 in Corollary 5.2 cannot in general
be replaced by 1, even for non-power words: the word map for w = z2 [xl_z, x2]? is not
surjective on infinitely many groups PSLy(g). It is not clear whether this also leads
to a counterexample for simple algebraic groups.

The constants in all of the above statements are not explicit. Guralnick and Tiep
[GT13, Thm. 1.4 and Cor. 1.5] have recently obtained the following explicit bounds

for the power word w = z¥:

THEOREM 5.3 (Guralnick-Tiep). — Let G be a finite non-abelian simple group.

(a) Let 1 < k < m. If |G| = m®™, then every element of G can be written as
xzFy™ for some x,y € G.

(b) Let m > 1 be not divisible by the exponent of G. Then every element of G is a
product of at most 80m+/2log, m + 56 mth powers in G.

Recall that by Theorem 3.8, the conclusion of Theorem 5.3(a) actually holds for all
non-abelian simple groups when k = m is restricted to prime powers or powers of 6.

This particular question has a long history. Martinez and Zelmanov [MZ96] and
independently Saxl and Wilson [SW97] showed that there exists a function f such
that any element in a finite non-abelian simple group G is a product of f(k) kth
powers, provided there are any non-trivial kth powers in G.

Shalev [Sh09] uses Theorem 4.2 of Larsen (to deal with Lie type groups of large
rank) and Theorem 1.6 of Ellers-Gordeev (to dispose of groups of bounded rank) to
show the following asymptotic version of Thompson’s conjecture:

THEOREM 5.4 (Shalev). — For any sequence (Gp)n of finite simple groups of in-
creasing order there exist conjugacy classes Cp, C Gy, such that

Cal

— —1 or n — 00.

Gl g

The idea of proof for Theorem 5.1 is quite simple: by the result of Larsen and
Shalev [LS09] one only has to consider groups of Lie type G. For these, one shows
that w;(G) contains (elements of) a conjugacy class C; of regular elements in a pair
of (strongly or weakly) orthogonal maximal tori (as in Section 3), so that the product
C1C; covers all of G except possibly for the identity element (which is clearly contained
in w1 (G)w2(G)). The main result guaranteeing this is [LST11, Thm. 5.3.2]:
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THEOREM 5.5 (Larsen-Shalev-Tiep). — Let w be a non-trivial word. Then for any
sequence of finite simple groups G(q) of fized Lie type and any mazimal torus T(q),
we have
qdimG—rkGl{(gla 5 9r) €GO |wigr, -, 90) ET@Y
IG(g)I"

COROLLARY 5.6. — Let w be a non-trivial word. Then for any sequence of finite
simple groups G(q) of fized Lie type of rank at most d there exists qo such that w(G(q))
contains reqular elements of any mazimal torus of G(q) for all ¢ = qo.

Proof. — Fix a type of group G. It follows from Theorem 5.5 that there exists § > 0
such that |T(¢) Nw(G(q))| = 6|T(q)| for any maximally split torus T'(¢) of G(g). But
the number of regular elements in a maximal torus T'(q) is larger than (1 — 6)|7'(q)|
for ¢ larger than a suitable go. We conclude by taking the maximum over all such gq
for all classes of maximal tori and all types of groups of rank at most d. O

We thus obtain the conclusion of Theorem 5.1 for groups of bounded rank, a case
which had already been settled (in a slightly different way) in [LS09):

COROLLARY 5.7 (Larsen-Shalev). — Let wy,ws be non-trivial words and dy > 0.

Then there exists a constant N = N(wi,ws,dp) such that for all simple groups of
Lie type G of rank d < dy and order |G| > N we have w1 (G)w2(G) = G.

Proof. — By Corollary 5.6 the image w;(G) meets (and hence contains) a conjugacy
class C; of regular elements in a maximally split torus of G. Thus we are in the
situation of Corollary 1.4, so G\ {1} is covered by C;1Cs3. Since clearly 1 is also in the
image, the claim follows.

For groups G = G,(q) not of type Da,, instead of appealing to the result of Ellers-
Gordeev, one may use that there exist pairs of strongly orthogonal maximal tori 77, T5
in G by Proposition 3.3, and that w;(G) contains regular semisimple elements of T;
whenever d < dg and ¢ is large enough, again by Theorem 5.5. The claim then follows
by Corollary 3.2. O

This leaves the case of (classical) groups of unbounded rank. Again, we want to
exhibit regular semisimple elements in pairs of strongly or weakly orthogonal tori, but
this time the argument must work for all fields F,. We give the details in the easiest
case:

PROPOSITION 5.8. — The claim of Theorem 5.1 holds for simple symplectic groups.

Proof. — Let G = Sp,,,(q). By the previous discussion we may assume that n is large.
Let T;(g), ¢ = 1,2, be representatives of the two classes of maximal tori of SLa(¢").
Under the embedding of SLa(g™) into Spy,(¢) discussed in Section 2, Ti(q), T2(q)
are mapped onto a pair of strongly orthogonal tori of Sp,,(g). By Corollary 5.6, for
n large enough, w;(SL2(g™)) contains elements of T;(q) which map to regular elements
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in Sp,,(g). Thus G is covered by w;(G)w2(G) by Corollary 3.2, and passing to the
quotient by the center we obtain the desired conclusion. a

A similar approach works for other families of classical groups, but here one cannot
guarantee to find elements in strongly orthogonal tori. For example, in type SLy(q),
one uses embeddings SLx(q') < SLii(g) with k = 2,3 to find regular elements in
a pair of weakly orthogonal tori. It can be shown that exactly three non-trivial
(unipotent) irreducible characters do not vanish on these elements, all of them of
rather large degree. The non-vanishing of the relevant structure constant then follows
by bounding the values of these characters. The argument for orthogonal groups is
even more technically involved.

6. EXTENSIONS AND OPEN PROBLEMS

We now discuss possible extensions of Ore’s conjecture and related open problems.

As mentioned in the introduction, Blau [B194] proved that there is (only) a finite
number of quasisimple (but not simple) finite groups that contain non-commutator
central elements, and in a follow-up paper to their proof of Ore’s conjecture
Liebeck-O’Brien-Shalev-Tiep [LOST2] determined all quasisimple groups containing
non-commutators:

THEOREM 6.1 (Blau, Liebeck-O’Brien-Shalev-Tiep). — If G is a finite quasisimple
group containing non-commutators, then

G/Z(G) € {PSL3(4), PSU4(3), PSUg(2), %Fs(2), As, A7, Moz, Fina}.

For most quasisimple groups of classical Lie type, this had essentially already been
contained in their first paper [LOST], so only the spin groups, the exceptional covering
groups of classical groups and the exceptional groups of type Eg, 2E¢ and E7 had to
be considered.

It turns out, though, that in all cases every element of a finite quasisimple group
is a product of at most two commutators. Let us mention here that for more general
groups, Nikolov and Segal [NS07] have shown the following:

THEOREM 6.2 (Nikolov-Segal). — There ezists a function f such that for any
group G generated by at most v elements, every element of its commutator subgroup
[G,G] is a product of at most f(r) commutators.

This was one of the key steps in their proof establishing that in a finitely generated
profinite group, every subgroup of finite index is open. (The special case of finitely
generated pro-p groups had long ago been shown by Serre.) The proof eventually
relies on a result on twisted commutators in finite quasisimple groups, which in turn
uses the classification of finite simple groups.
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Closely related to Thompson’s conjecture is the concept of covering number. In a
finite non-abelian simple group G, for any non-trivial conjugacy class C C G there
exists some k = k(C) such that C¥ = G. The minimal exponent k¥ which works for
all non-trivial classes C is called the covering number cn(G) of G.

The following upper bound on covering numbers for groups of Lie type has been
obtained in [EGH99] (see also Lawther and Liebeck [LL98] for closely related results
on the covering number with respect to C UC™1):

THEOREM 6.3 (Ellers-Gordeev-Herzog). — There exists a constant d such that for
any finite simple group of Lie type G of rank r we have cn(G) < dr

The expected best possible value for d is 4, but the estimates obtained in the above
reference are weaker. The claim is first shown for classical groups, by embedding a
type A subgroup of maximal possible rank and using that cn(PSL,(q)) = n for
g,n > 4. For the finitely many exceptional types one can clearly assume that ¢ is
large enough, in which case Theorem 1.3 of Ellers-Gordeev can be used to deduce the
result.

The lecture notes of Arad and Herzog [AHS85] list several further open questions on
products of conjugacy classes in finite non-abelian simple groups. Let us mention one
open problem, the Arad-Herzog conjecture, which claims that products of arbitrary
conjugacy classes can never be too small:

CONJECTURE 6.4 (Arad-Herzog). — Let G be a finite non-abelian simple group.
Then the product of two non-trivial conjugacy classes of G is never a single conjugacy
class.

Note that the claim may fail for arbitrary groups: Let G be a Frobenius group of
order pd with d|(p—1). Then the product of any class of non-trivial elements of order
dividing d with any class of elements of order p is a single conjugacy class. A more
interesting example can be obtained in the extension of GLg,(g) by the transpose-
inverse automorphism, see [GMT13, Example 7.2]. So, as for the Ore conjecture, the
property in question seems to be tied to simple groups.

The Arad-Herzog conjecture is open in general, but has recently been shown to
hold for various classes of simple groups (see [FA87, GMT13)):

THEOREM 6.5 (Fisman-Arad, Guralnick-Malle-Tiep). — Let G be an alternating
group Ap,, n = 5, a simple group PSL,(q) or a simple group of Lie type of rank less
than 4. Then the Arad-Herzog Conjecture holds for G.

The proofs rely on the following easy character theoretic observation, which again

follows from the orthogonality relations (see [GMT13, Lem. 2.2]).
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LEMMA 6.6. — Let G be a finite group, C, D C G two conjugacy classes of G. If CD
is a single conjugacy class, then x(z)x(y) = x(1)x(xzy) for all irreducible complex
characters x of G and x € C, y € D.

For alternating groups and PSL,,(q) this criterion can be applied with a single well-
chosen character; for the groups of Lie type of small rank, one uses the knowledge of
the complete character table (see [GMT13)).

Again, the question becomes much simpler if we turn to the natural analogue for
simple algebraic groups, see [GMT13, Thm. 1.1]:

THEOREM 6.7 (Guralnick-Malle-Tiep). — Let G be a simple algebraic group over an
algebraically closed field and C, D non-central conjugacy classes of G. Then the prod-
uct CD 1is never a single conjugacy class.

In fact, the proofs show that except for a small number of well-understood situa-
tions where the product consists of two or three classes, CD is the union of infinitely
many conjugacy classes.

The above result has the following immediate consequence ([GMT13, Cor. 1.2]),
whose analogue in the case of finite groups, formerly known as Szep’s conjecture, was
proved by Fisman-Arad [FA87]:

COROLLARY 6.8. — Let G be a simple algebraic group over an algebraically closed
field. Let x,y € G be non-central. Then Cg(x)Cq(y) # G.

This investigation has recently been extended to almost simple algebraic groups
in [GM13]; here, in disconnected groups there exist various pairs of conjugacy classes
whose product is again a single class.
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