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Mars 2013 

THE PROOF OF ORE'S CONJECTURE 

[after Ellers-Gordeev and Liebeck-O'Brien-Shalev-Tiep] 

by Gunter MALLE 

INTRODUCTION 

The commutator [g, h] := g~xh~xgh of two elements g, h of a group G is introduced 

in every first course in group theory, as well as the commutator subgroup 

[G,G] :={[g,h}\g,h£G), 

generated by all commutators in G, and usually it is stated that not all elements of 

[G, G] need to be commutators. The first such example of finite order may have been 

given by Fite [Fi02]. The smallest example of a finite group G for which [G, G] contains 

non-commutators has order 96; in fact there are two non-isomorphic groups of that 

order in which the set of commutators does not equal the commutator subgroup, see 

Guralnick [Gu80]. 

In a 1951 paper, Oystein Ore [Ore] shows that every even element in a symmetric 

group of degree at least 3 is a commutator and claims that the proof can be extended 

to show that every element in a simple alternating group 2l n is a commutator. He 

concludes by saying that "It is possible that a similar theorem holds for any simple 

group of finite order, but it seems that at present we do not have the necessary methods 

to investigate the question." This has become known as Ore's conjecture, the recent 

solution of which [LOST] is the topic of this lecture: 

T H E O R E M 0.1 (Liebeck-O'Brien-Shalev-Tiep). — Let G be a finite non-abelian simple 

group. Then every element of G is a commutator. 

In fact, at almost the same time as Ore, Noboru Ito [Ito51] showed the same 

statement for the alternating groups 2l n , but without speculating about other finite 

simple groups. 

The proof of Ore's conjecture relies on the classification of the finite simple groups 

and, through Lusztig's parametrization of irreducible characters of finite reductive 
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groups, on the Weil conjectures; the final step also required a considerable amount of 

computer calculation. 

Note that obvious generalizations of Theorem 0.1 fail to hold. For example Gural-

nick [GulO] gives a quite general construction of groups, including non-solvable ones, 

with the property that [G, G] does not consist of commutators only: let G = U I H 

be the regular wreath product of two finite groups £/, H with U abelian. If \U\ > 2 

or | [H, H] | > 2 then some element of [H, G] is not a commutator in G (see also Isaacs 

[Is77] for a weaker result). Thus, for U of order at least 3 and any non-abelian sim­

ple group H this gives a non-solvable example G with factor group i7, and in fact 

one may also obtain a perfect one (that is, a group G with G = [G, G]). Computer 

calculations show that the smallest example of a perfect group not all of whose el­

ements are commutators is an extension of an elementary abelian group of order 2 4 

with the alternating group 2I5. Even closer to the case of simple groups, H. I. Blau 

[B194] proved that there exist (finitely many) quasisimple groups that contain non-

commutator central elements (see Theorem 6.1 below). Recall that a group G is 

called quasisimple if it is perfect and the quotient G/Z{G) by its center Z(G) is (non-

abelian) simple. The smallest such example is the exceptional 6-fold covering group 

of the alternating group 216 (that is, a non-split central extension of the cyclic group 

of order 6 by 2l 6 ), for which the central elements of order 6 can be seen not to be 

commutators. So the property required by Ore's conjecture seems to be closely tied 

to simple groups. 

We want to mention another open problem closely related to Ore's conjecture, 

which is concerned with the square C2 := {xy \ x, y G C} of a conjugacy class G, and 

which in the introduction to the book [AH85] is attributed to J. G. Thompson: 

C O N J E C T U R E 0.2 (J. G. Thompson). — Let G be a finite non-abelian simple group. 
Then there exists a conjugacy class C C G such that C2 = G. 

Clearly, if G 2 = G then every element in the product G 2 is a commutator, so 

the Thompson conjecture implies the (now proven) Ore conjecture. Many papers 

on the Ore conjecture actually show that the stronger Thompson conjecture holds 

for particular families of groups, so in this survey we will consider both conjectures 

simultaneously. 

In a broader context, the Ore conjecture can be thought of as a particular instance 

of the surjectivity of word maps. For any word w in a free group Fr on r generators, 

and any group G, one can ask whether the corresponding word map is surjective, 

the Ore conjecture being the special case of the commutator word. This gives (non-

commutative) analogues of diophantine equations on groups. For example, the repre­

sent ability of a group element by a product of kth powers, or by the kth power of a 

given word, can be considered to be analogues of Waring's problem in number theory. 

This point of view has been propagated by Shalev (see e.g., [Sh09, LS09, LST11]). 

ASTÉRISQUE 361 



(1069) THE PROOF OF ORE'S CONJECTURE 327 

One attractive feature of these questions, which we will insist on throughout this 

survey, is the fact that they also make sense for simple algebraic groups, where more 

powerful methods are available and much more can be shown to hold. 

Let us end this introduction with a short historical overview on the proof of Ore's 

conjecture. After Ore and Ito proved the conjecture for the simple alternating groups, 

R.C. Thompson [Th61, Th62, Th62a] established it for the finite projective special 

linear groups PSL n (g) = SLn(q)/Z(SLn(q)). The symplectic groups Sp 2 n (#) with q = 

1 (mod 4) were handled by Gow [Gow88], and Bonten [Bo93] dealt with exceptional 

groups of Lie type of low rank. The case of sporadic groups was settled by Neubiiser, 

Pahlings and Cleuvers [NPC84]. 

In 1998, E.W. Ellers and N.L. Gordeev [EG98] verified Ore's conjecture (and in fact 

Thompson's conjecture) for all finite simple groups of Lie type over a finite field ¥q, 

whenever q ^ 9. This will be explained in Section 1. Building on this result, Shalev 

[Sh09] then used asymptotic methods to show that for finite simple groups G, the 

proportion of commutators tends to 1 as \G\ tends to infinity. In that same paper he 

also showed that for any word w ^ 1, there exists N = N(w) such that for every finite 

simple group G of order \G\ > N(w) we have w(G)3 = G. The exponent 3 was later 

improved to 2 by Larsen, Shalev and Tiep [LST11]. We will discuss these methods 

and results in Sections 4 and 5. The remaining (infinitely many) simple groups of Lie 

type over small fields were then treated in the paper of Liebeck, O'Brien, Shalev and 

Tiep [LOST]. We sketch their approach in Section 2. 

1. THE APPROACH B Y ELLERS A N D GORDEEV 

Ellers and Gordeev [EG98] succeeded in proving Ore's conjecture for the finite sim­

ple groups of Lie type defined over fields of order at least 9. Since there are infinitely 

many distinct classical groups over any given finite field, this still leaves infinitely 

many open cases. The approach of Ellers-Gordeev is by direct computation. To get 

some idea on the method, one should consider the following model case for algebraic 

groups. This was proved by Pasiencier-Wang [PW62] over the complex numbers (with 

a precursor result by Goto [Go49] for compact semisimple Lie groups), and then Ree 

[Ree64] noticed that their argument can be extended to arbitrary algebraically closed 

fields: 

T H E O R E M 1.1 (Pasiencier-Wang, Ree). — Let G be a semisimple linear algebraic 
group over an algebraically closed field. Then each element of G is a commutator. 

Proof (Sketch). — We want to show that g G G is a commutator. First note that 

a conjugate of a commutator is again a commutator, so we may replace g by any of 

its conjugates. By a result of Borel, any element of G lies in some Borel subgroup B 

of G, so we may assume that g G B. Let U = RU(B) be the unipotent radical of £?, 
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and T ^ B a maximal torus. One now needs the following auxiliary claim, whose 

proof relies on a result of Kostant on the action of the Weyl group on the character 

group of T, see [Ree64, (3.1)]: 

(*) For any s e T there exists a regular element t G T (that is, with Cc(t) = T) 

and x G NQ(T) such that x~Hx = ts. 

Now let g = su be the Jordan decomposition of where we may assume that s G T, 

since all maximal tori of B are conjugate. By (*) there exists a regular element t G T 

and x G NQ(T) with x~xtx = ts. By Lemma 1.2 below applied to the regular element 

ts G T there is b E B with b~1tsb = tsu, so that finally 

g = su = t~lb"Hsb = t^b^x'Hxb = [t, zfc] 

is a commutator. • 

L E M M A 1.2. — Let B — U • T be a semidirect product of a nilpotent normal sub­

group U with an abelian group T. Then for t G T with C#(£) = T the coset tU is a 

single B-conjugacy class. 

Proof — By induction over a central series of U one easily shows that the map 

U -± U, u \-> [t,u], is bijective, so any tv G tU has the form tu for some u G (7. • 

An attempt to adapt this approach to finite groups of Lie type faces several 

problems. First, it is no longer true that all elements lie in a Borel subgroup. So 

one has to consider a larger collection of subgroups. Secondly, regular semisimple 

elements exist in the Borel subgroup only if the underlying field is sufficiently large 

compared to the rank. This is the principal reason why the Ellers-Gordeev method 

cannot handle all simple groups of Lie type. 

In a series of three papers Ellers-Gordeev show a particular form of Gauss decom­

position for elements of finite reductive groups. Recall that any finite simple group 

of Lie type G can be obtained by the following construction. (This does not apply to 

the Tits simple group 2 i 7 4 (2 ) / , which for most purposes should rather be considered 

as a 27th sporadic simple group.) There exist a simple linear algebraic group H of 

simply connected type over the algebraic closure of a finite field, and a Steinberg 

endomorphism F : H —> H, that is, a bijective morphism with finite fixed point set 

H := H F , such that G = H/Z(H). Elements of G will be called regular if their 

preimages in the algebraic group H are. If T ^ B < H is an F-stable maximal torus 

inside an F-stable Borel subgroup of H, then the image in G of T F , respectively of 

B F , is called a maximally split torus, respectively a Borel subgroup of G. The group 

of F-fixed points of the unipotent radical itu(B) is then called the unipotent radical 

of B F . Ellers-Gordeev [EG94, EG95, EG96] obtain the following statement on Gauss 

decompositions of elements. 
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T H E O R E M 1.3 (Ellers-Gordeev). — Let G be a finite simple group of Lie type, 

T < B ^ G a maximally split torus inside a Borel subgroup of G, U the unipotent 

radical of B and U~ the unipotent radical of the opposite Borel subgroup. Fix t G T. 

Then for any 1 ^ g G G there exists x G G such that 

xgx~x — U\tu2 for suitable u\ G U~, U2 G U. 

For the special linear groups this was first shown by Sourour [S086]. In fact, Ellers-

Gordeev prove the statement for Chevalley groups over any field K. Their proof takes 

roughly 50 pages of explicit calculation in the various families of groups of Lie type. 

C O R O L L A R Y 1.4. — In the situation of Theorem 1.3, suppose that ¿1,^2 £ T are 

regular elements, and write C i , C2 for their conjugacy classes. Then C 1 C 2 U { 1 } = G. 

Proof. — Let 1 7^ g G G, then by Theorem 1.3 some conjugate xgx~x of g has the 

form u\t\t2U2 with u\ G U~, U2 G U. Now by Lemma 1.2 applied to the semidirect 

products B = UT and U~T we can write u\t\ = vitiv^1, and t2U2 = V2t2V^1 for 

suitable v± G U~,V2 G (7, whence 

XgX~X — U\t\t2U2 — VltiV^1 V2t2V^1 G C1C2, 

as claimed. • 

C O R O L L A R Y 1.5. — In the situation of Theorem 1.3, assume that T contains a 

regular element. Then the Ore conjecture holds for G. 

Proof — Let t G T be regular and let G\, C2 in the previous corollary be the class 
of £, t~x respectively. Then any element of G \ { 1 } is a commutator, and 1 G G 

trivially is. • 

Now note that, given H, F : H —>• H, and a maximally split maximal torus T < H 
as above, any regular semisimple element s G T is Fm-stable for m sufficiently large. 

Thus there exist regular semisimple elements in T over fields of sufficiently large order. 

But this field size might vary with the characteristic and with the type of G. So more 

elaborate arguments are needed to establish a uniform, explicit bound: 

T H E O R E M 1.6 (Ellers-Gordeev [EG98]). — Let G be a finite simple group of Lie type 

over a field of order at least 9. Then Thompson's and Ore's conjectures hold for G. 

In fact, for most families of groups they obtain an even smaller bound on the field 

size; for example, they show that Ore's conjecture holds for symplectic groups over 

fields of order at least 4. Note that this still leaves infinitely many open cases, namely 

the classical groups of unbounded rank. 

In their proof, Ellers-Gordeev use the following factorization result by Lev [Lev94], 
which is shown by direct computation (a similar, but weaker decomposition statement 
had been shown by Sourour [S086] in his proof of Thompson's conjecture for S L n ( K ) ) . 
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T H E O R E M 1.7 (Lev). — Let K be a field, \K\ ^ 4, and a i ,a 2 G GLn(K) with n ^ 3 
such that all eigenvalues of a i , a 2 lie in K. Then any non-scalar matrix g £ GLn{K) 
with detai • deta 2 = detg can 6e factorized as g = 6i&2 wztft 6̂  conjugate to ai, 
fori = 1,2. 

Taking ai = a 2 a regular unipotent element, this implies that all non-central el­
ements of SLn(K) with I i f I ^ 4 lie in G 2 , where C is a class of regular unipotent 
elements, showing Thompson's and thus Ore's conjecture for SLn(q), q ^ 4, whence 
for the simple factor groups PSL n (g). To treat the other simple groups of Lie type 
G, Ellers-Gordeev consider the following situation: Assume that G has root system 
with respect to a maximal torus T, Gi is a reductive subgroup of G with root system 
$ 1 C 3>, and U is the unipotent subgroup of G generated by the root subgroups 
for roots a G 3>+ \ $ 1 . Then one has the following inductive statement (see [EG98, 
Prop. 5.1]): 

P R O P O S I T I O N 1.8. — Let C C G be a real conjugacy class. Let g G TG\ n C and 
denote by C\ the union of the TG\-conjugacy classes of g and g~x. Suppose that 

(1) T n G ! ^ Z ( G i ) , 

(2) C ? U Z ( G i ) = Gi, and 

(3) g acts fixed point freely on all quotients Ui/Ui+i of the central series {Uiji ofU. 

Then C2 U Z(G) = G. If G is simple, then C2 = G. 

Here, an element (and its conjugacy class) is called real if it is conjugate to its 
inverse. For the proof of Theorem 1.6 it then remains to verify these technical condi­
tions for the various families of simple groups of Lie type, where G\ is usually taken 
to be a subgroup of type A, and g is the product of a regular unipotent element of 
G\ with a suitable semisimple element of G. 

2. THE C H A R A C T E R THEORETIC M E T H O D 

In this section we sketch the approach of Liebeck-O'Brien-Shalev-Tiep [LOST] 
which completes the proof of Theorem 0.1. Its main ingredient is character-theoretic, 
relying on the following lemma of Probenius: 

L E M M A 2.1. — Let G be a finite group. Then g G G is a commutator if and only if 

X€lrr(G) Х У > 

Here, Irr(G) denotes the set of complex irreducible characters of G. 
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Proof. — We want to count pairs (x,y) € GxG with g = [x,y] = x~1y~1xy = x~1xy, 
that is, representations of g as a product of x~x times a conjugate of x. It is a well-
known result of Probenius that for a fixed conjugacy class C of G the number of pairs 
( # i , X 2 ) G C x C with x^xX2 = g is given by 

„ . ici2 ^ IxWI'xto) 

Conjugating X2 by y G G G ( # 2 ) fixes the pair, so we get | G G ( X 2 ) | ^ C pairs (x,y) e CxG 
with [#,2/] = Summing over all conjugacy classes C of G (with representative # G G ) 
yields 

E Irwine = E §f E = id E Ш 
CCG YGITT(G) A V J CCG YGIVT(G) A V J 

for the desired number of pairs, where for the last equality we have used the orthog­
onality relations for characters. The claim follows. • 

This allows us to deal with the 26 sporadic simple groups, since their character 
tables are known, see [NPC84], and more generally with any group whose character 
table is explicitly available. 

Liebeck-O'Brien-Shalev-Tiep's idea for applying the Probenius formula to the re­
maining groups of Lie type is as follows. By the orthogonality relations for characters 
we have |x(#)| 2 ^ \GG{Q)\ for any g G G. Splitting off the contribution by the trivial 
character 1 G of G we may thus estimate 

E ^ ^ н е д Г Е д а 
vel r r (G) X K ' ХФ1О Х { ' 

Thus one may hope that for elements g with small enough centralizer order | G G ( # ) | , 

the second term has absolute value less than 1 so that one gets the desired result for 
such elements. The crucial observation which makes this approach work follows easily 
from the orthogonality relations and an application of the Cauchy-Schwarz inequality 
(see [LOST, Lem. 2 .6 ] ) : 

LEMMA 2 . 2 . — Let G be a finite group with ko conjugacy classes. Then for all N > 0 

and all g G G 

V | * ( g ) l < VkG\CG(9)\ 
^ X ( l ) " N 

In order to apply this formula, one needs information on the number kc of con­
jugacy classes in a simple group of Lie type, and on lower bounds for degrees of its 
non-trivial complex irreducible characters. Let us write G = Gr(q) if G is a simple 
group of Lie type of rank r over the finite field ¥q. Asymptotically, the number of 

conjugacy classes in Gr(q), for q —> oo, is bounded above by a polynomial in q of 
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degree r; more precise upper bounds for kc were obtained by Fulman and Guralnick 

[FG12], for example 

kG ^ + q n / 2 + 1 for G = SLn{q) with n > 4. 

In practice, the argument sketched above needs to be refined slightly since there 

often exist a few non-trivial characters of very low degree which have to be treated 

separately. 

The question on lower bounds for the minimal dimensions of non-trivial irreducible 

representations of finite simple groups is a very active area of research; first general 

results for groups of Lie type appeared in work of Landazuri and Seitz. For the 

present application, only complex irreducible representations matter, and for those, 

sharp lower bounds have been derived by Tiep and Zalesski [TZ96] from Lusztig's 

classification [Lu84] of all complex irreducible characters. Often, there exist few irre­

ducible characters of degree very close to the lower bound, and all others have degree 

at least roughly the square of that bound. Such gap results are crucial in many other 

problems in the study of finite simple groups. As one example, we cite the result for 

symplectic groups (see [TZ96, 5.2]): 

L E M M A 2.3. — Let G = Sp 2 n (g) with n ^ 2 and q odd. Then G has four complex 
irreducible characters of degrees ^(qn ± 1), the so-called Weil characters, and 

*W > 
for all other 1Q ̂  X £ Irr(G). 

It is easy to see that any non-trivial irreducible representation of Sp 2 n (g) has 

dimension at least (qn — l ) / 2 : considering ¥ q n as an n-dimensional vector space 

over Fq we may embed SL2(<?n) = Sp 2 (# n ) into Sp 2 n (g) , and the smallest non-trivial 

irreducible representation of SL 2 (# n ) over any field of characteristic not dividing q 

has dimension (qn — l ) / 2 . Indeed, the Borel subgroup of SL 2(g) is an extension of the 

elementary abelian group U of order q with a cyclic group of order q — 1 which acts 

with two non-trivial orbits of length (g - l ) / 2 on the set of linear characters of 17, 

whence any non-trivial representation of SL 2(g) has at least that dimension. 

It is much harder to prove the stated gap result. For symplectic groups an ele­

mentary proof is available (see [GMST02]), but for other types, the full strength of 

Lusztig's classification of irreducible characters [Lu84] is needed. 

Returning to Ore's conjecture, for G = Sp 2 n (g) we can thus show that elements 

with small centralizer are commutators by applying Lemma 2.2 with the bound 

N = (qn — l)(qn — q)/(2(q + 1)) together with the known bound on ko, once we 

control the values of the four Weil characters. This is indeed possible by the very 

explicit construction of those characters. Let P be the derived subgroup of an end 

node maximal parabolic subgroup of S p 2 n + 2 ( g ) . Then P = J7.Sp2n(<7) where U is 
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a special group of order ql+2n (that is, the center, the derived subgroup and the 

Prattini subgroup of U all agree and are elementary abelian). Then U has q — 1 

faithful irreducible complex representations, of dimension g n , and these can be shown 

to extend to P. They take absolute value qN^/2 on elements g G Sp 2 n (g ) , where 

N(g) = dimker((7 — 1). Upon restriction to Sp 2 n (#) these representations split into 

two irreducible constituents each, of dimensions (qn ± l ) /2 , the above mentioned Weil 

representations (see [Ger77]). 

Similar bounds as in Lemma 2.3 exist for the other families of groups of Lie type 

[TZ96]. In the case of orthogonal groups, Liebeck-O'Brien-Shalev-Tiep need to prove 

estimates on character values for the q + 4 smallest irreducible characters (see [LOST, 

Prop. 5.12]). 

It still remains to show that elements with large centralizer are commutators. For 

this, the authors introduce the notion of breakable element. Let V be a vector space 

equipped with a non-degenerate symmetric bilinear or hermitean form, and denote its 

group of isometries of determinant 1 by Cl(V). Thus, depending on the type of the 

form, Cl( V) could be a symplectic, a special orthogonal or a special unitary group. An 

element g £ C1(V) is called breakable if there exists a proper non-degenerate subspace 

W < V such that g lies in the corresponding product C1(W) x C ^ W - 1 ) of classical 

groups with respect to the induced forms, and either both factors Cl(VF) and C^W- 1 ) 

are perfect groups, or at least C1(W) is perfect and the component of g in C l ^ - 1 ) 

is a commutator. Since Ore's conjecture can already be assumed for C1(W) (and for 

C^W- 1 ) if it is perfect) by induction, such breakable elements are also commutators. 

This approach is complementary to the previous one; for example the authors show 

that for G = Sp 2 n (2 ) , g unbreakable implies that \Co(g)\ < 2 2 n + 1 5 is indeed small. 

This dichotomy approach fails if the factors in the decomposition are rather small, 

and thus not perfect or even solvable, like C\(W) = Sp 2(2), Sp 2(3), Sp 4(2) or SO | (2 ) . 

This leads to various 'small' cases which have to be treated by ad hoc calculations with 

the computer algebra systems GAP and Magma, either using or constructing their 

character tables and applying Lemma 2.2, or by trying to construct commutators in 

all conjugacy classes by random methods. Some of the challenging big cases of this 

type are the groups Sp 1 6 (2) , SU 6(7), SOn (3), of sizes roughly 6 • 10 4 0 , 4 • 10 2 9 , 2 • 10 2 6 

respectively. In total the authors estimate that their computations used about 3 years 

of CPU time. 

An additional complication occurs for the projective special unitary groups 

PSU n (g) (which by [EG98] have to be treated for q ^ 7 when n is even, and for q ^ 3 

when n is odd). Here the bounds for centralizers of unbreakable elements are much 

weaker than for the other classical types. Thus, the character-theoretic approach 

sketched above fails. Instead the authors imitate Thompson's direct approach [Th61] 

for the special linear groups by representing elements directly as commutators. This 

again leaves open several cases with small n and q which have to be treated separately. 
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For the groups of exceptional types, the small rank cases had already been handled 
completely by Bonten [Bo93], and for the remaining finitely many groups of type En, 
n = 6,7,8, the bounds on character degrees are much more favorable than in classical 
types, so that similar but easier arguments allow to conclude. 

3. T O W A R D S THOMPSON'S CONJECTURE 

Let us now turn to Thompson's conjecture, stated in the introduction, that any 
finite non-abelian simple group contains a conjugacy class C C G such that C 2 = G. 

The example of 6.216 mentioned in the introduction shows that there are counter­
examples to an extension of Thompson's conjecture to quasisimple groups. Moreover, 
the quasisimple groups SL 2(g), q = 3 (mod 4), are covered by commutators by The­
orem 6.1, but they can be seen not to be covered by the square of a single conjugacy 
class, so not all groups satisfying Ore's condition satisfy Thompson's condition. 

Note that a class satisfying Thompson's conjecture must be real. Again, the ortho­
gonality relations for group characters yield an easy character theoretic criterion: 

L E M M A 3.1. — Let G be a finite group, C c G a real conjugacy class. Then G = C2 

if and only if 
\x(x)\2x(g) , n 

x(i) ^ 
for all g G G (where x EC is arbitrary). 

Thompson's conjecture has been checked for the sporadic groups [NPC84] (using 
the above criterion), for alternating groups by C.-H. Hsu [Hs65] (see also Bertram 
[Ber72]), for special linear groups by Brenner [Br83] and Lev [Lev94], and for the 
groups of Lie type over fields of cardinality at least 9 by Ellers-Gordeev (see The­
orem 1.6). Using Lemma 3.1, Guralnick and Malle showed that for groups of Lie 
type of rank 1, almost any class C has the desired covering property, and furthermore 
Thompson's conjecture holds for all exceptional groups of Lie type of rank less than 4 
[GM12, Thm. 7.1 and 7.3]. 

In these investigations one is naturally led to study pairs of conjugacy classes whose 
product covers all of G, except possibly for the identity element. In order to verify the 
latter, one again uses Probenius' character theoretic formula for structure constants, 
saying that for conjugacy classes G i ,G 2 of G, an element g G G is a product of 
elements x G C\, y G C 2 if and only if 

y > X(x)X{y)X{9 ) j ft 
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This sum is very hard to evaluate in general, but as was first recognized by Malle [M88] 
in the construction of Galois realizations with given group and then used extensively 
in Malle-Saxl-Weigel [MSW94], for groups of Lie type, Deligne-Lusztig theory allows 
to identify classes C\, G 2 such that very few irreducible characters do in fact contribute 
to this sum. 

Let G be an almost simple or quasisimple group of Lie type. Following Ltibeck-
Malle [LM99] we say that a pair Xi ,T 2 of maximal tori of G is strongly orthogo­
nal, if only one non-trivial irreducible character x € Irr(G) has the property that 
x(si)x(s2) 7^ 0 for any regular elements Si G T .̂ This irreducible character is then 
necessarily the so-called Steinberg character St of G. 

C O R O L L A R Y 3.2. — Let X i ,T 2 be a pair of strongly orthogonal tori of a finite quasi-
simple group of Lie type G, and Ci C G classes of regular semisimple elements ofTi, 
z = 1,2. Then GiG 2 U Z(G) = G. 

Proof — By assumption, the only non-trivial irreducible character not vanishing on 
either Si G Ti is the Steinberg character St. This is known to take values ±1 on 
regular semisimple elements, see [Ca85, Thm. 6.5.9]. Thus the above formula for the 
structure constant evaluates to 1 ± St(#)/St(l), which is non-zero whenever g G G is 
non-central since then |St(<j)| < St(l). • 

Such pairs of maximal tori were first considered in [MSW94] in the proof that all 
finite non-abelian simple groups except for PSUs(3) can be generated by three involu­
tions. Perhaps rather unexpectedly it turned out in [MSW94] and [LM99, Thm. 10.1] 
that: 

P R O P O S I T I O N 3.3. — All families of finite simple groups of Lie type, with the pos­
sible exception of orthogonal groups of type -D 2 n , possess strongly orthogonal pairs of 
maximal tori. Moreover, one of the tori in such a pair can be chosen to contain real 
elements. 

The proof requires Lusztig's classification of unipotent characters as well as his re­
sults on character values on semisimple elements, see [Lu84]. As a direct consequence 
one obtains the following approximation to Thompson's conjecture: 

C O R O L L A R Y 3.4. — Let G be a finite simple group of Lie type, not of type D 2 n - Then 
G has a conjugacy class C such that C2 U G 3 = G. 

Proof. — By Corollary 3.2 the product GiG 2 covers G\ { 1 } , for Ci classes of regular 
elements in the two strongly orthogonal tori, where moreover we may assume that 
G 2 contains real elements. In particular, any element of C\ can be written as a product 
of two elements in G 2 . As elements in G 2 are real, the identity lies in G 2 as well, so 
the claim follows with C — G 2 . • 
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This has recently been improved as follows (see [GT13, Cor. 1.3]): 

T H E O R E M 3.5 (Guralnick-Tiep). — Let G be a finite simple group. Then G has a 

conjugacy class C such that C3 = G. 

In order to deal with groups of type D^n, but also in other types, it is sometimes 

useful to consider the following weaker concept, formalized in [LST11]: Two maximal 

tori Ti, T 2 of G are called weakly orthogonal if the intersection of T\ with any conjugate 

of T2 only contains the identity. Examples are any pairs of maximal tori T i ,T 2 

of mutually coprime orders. The relevance of such pairs of tori comes again from 

Lusztig's classification of irreducible characters of finite reductive groups in terms of 

semisimple elements in the dual group (see [MSW94], [LM99] or [LST11, Prop. 2.2]): 

P R O P O S I T I O N 3.6. — Let G be a finite simple group of Lie type, T i ,T 2 ^ G maximal 

tori such that the corresponding tori in the Langlands dual group are weakly orthogo­

nal. Let x £ Irr(G) and Si E Ti be regular elements. Then x(si)x(s2) = 0 unless x is 

a so-called unipotent character of G. 

Using this, the following second approximation to Thompson's conjecture can be 

shown (see [GM12, Thm. 1.4], and also [LST11, Thm. 1.1.4] for an asymptotic ver­

sion) : 

T H E O R E M 3.7. — Let G be a finite non-abelian simple group. Then there exist con­

jugacy classes C\, C 2 C G with G = C1C2 U { 1 } . 

Proof. — For alternating groups, this is the main result of [Hs65]. For groups of Lie 

type different from the assertion is an immediate consequence of Proposition 3.3 

in conjunction with Corollary 3.2. For type one has to establish bounds on the 

values of unipotent characters on elements of a pair of weakly orthogonal tori from 

[MSW94, 2.5], see [GM12, Thm. 7.6] or [LST11, Prop. 7.1.1]. • 

In fact, for all but the two simple groups PSL 2(7) and PSL 2(17) we can arrange 

so that both classes contain elements of order prime to 6, see [GM12, Thm. 1.4]. 

Using this one gets (see [GM12, Cor. 1.5], and [LOST3, Thm. 2] for a slightly weaker 

statement): 

T H E O R E M 3.8 (Guralnick-Malle). — Let k be a prime power or a power of 6. Then 

every element of any finite non-abelian simple group is a product of two kth powers. 

We will come back to the question on representing elements as products of powers 

in Section 5. 

For alternating groups, much better results can be obtained at least asymptotically. 

For example, the following is shown in [LS09, Thm. 1.1]: 
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T H E O R E M 3.9 (Larsen-Shalev). — There exists a constant no such that for all 

n ^ no and all permutations g G &n with at Tnost n 1 / 1 2 8 orbits on { 1 , . . . , n } , the 

&n-conjugacy class C of g satisfies C2 = 2l n . 

Choosing g G 2l n with not all cycle lengths distinct, this gives a solution of Thomp­

son's conjecture for 2l n . The proof again relies on Probenius' formula and a careful 

estimate of character values on permutations with few cycles using the Murnaghan-

Nakayama rule. 

Thus, at the time of writing, the Thompson conjecture remains open for simple 

groups of Lie type defined over fields of size at most 8, and of rank at least 4. One 

might hope that taking for C a class of regular unipotent elements should give the 

result. Indeed, for G of adjoint Lie type in good characteristic and x G G regular 

unipotent, it is known that x(x) £ {0? 1? ~~1} f ° r all irreducible characters x of G, but 

even with this choice the known estimates on character values are too weak to allow 

for an application of Lemma 3.1. 

4. W O R D M A P S FOR ALGEBRAIC GROUPS A N D FINITE 

GROUPS OF LIE T Y P E 

The formulation of Ore's conjecture fits into the more general framework of word 

maps on groups. Here, surprisingly strong results for groups of sufficiently large order 

can be obtained by asymptotic arguments. Again, the approach relies on the theory 

of algebraic groups. In order to phrase the results, we need the concept of word map: 

Let Fr be the free group on r generators # i , . . . , xr and w = Xix • • • Xim G Fr a word. 

Then for any group G, w defines a map fWio Gr —> G by sending (gi,...,gr) to 

9h ' "9im- Slightly abusing notation we will write w(G) :— im(fw^G) for the image of 

G under this word map. 

Again, let's first consider the case of algebraic groups: 

T H E O R E M 4.1 (Borel [Bor83]). — Let G be a semisimple linear algebraic group over 

an algebraically closed field K and 1 ^ w G Fr a word. Then fWic is a dominant 

morphism, that is, w(G) contains a Zariski open dense subset of G. 

Proof (Sketch). — First note that if TT : H -> G is an isogeny, then the diagram 

Gr G 

commutes, so if the claim holds for if, it also holds for G. In particular we may take 

for 7r the simply connected covering, so it suffices to consider semisimple groups of 
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simply connected type. Since these are direct products of simple algebraic groups, we 
may even assume that G is simple. 

Secondly, we may reduce to the case of SL n . Indeed, let H ^ G be a subgroup 
of maximal rank. Then any maximal torus of H is a maximal torus of G. If the 
claim holds for H, then the image of fw,H intersects the dense open subset of regular 
semisimple elements of H in a dense open subset and so its image is dense in a 
maximal torus of H. Hence the image of fw,c is dense in a maximal torus of G, and 
so in G, whence the claim also holds for G. Now any simple algebraic group contains 
a semisimple maximal rank subgroup all of whose simple components are of type A. 
For example, we have SL2 < S p 2 n , A?, ^ F4 and A2 < E%. Thus, we are done when 
the result holds for groups SL n . 

For SL n consider the morphism Xn • SL n -> Kn~x sending an element to the vector 
of coefficients of its characteristic polynomial (except for the first and last one). By 
induction, the claim holds for SL n _i , so Xn 0 fw,G contains a dense open subset of 
the hyperplane { ( a i , . . . , a n _ i ) | 1 + (—l) n + = 0} of ^ n ~ 1 corresponding to 
elements with an eigenvalue 1. By going to the closure one sees that it suffices to 
exhibit an element in w(G) without eigenvalue 1. This is achieved by working inside 
an anisotropic subgroup of SL n (i.e., a division algebra of degree n over some global 
subfieldof K). • 

Theorem 1.1 shows that the commutator word map is surjective, but in general, 
word maps on simple algebraic groups need not be surjective: already on SL2 in 
characteristic 0, the word x2 is not surjective. See Mycielski [My77] for this and 
further examples. Similarly, in positive characteristic p, the image of the p-power 
word map does not contain regular unipotent elements. It is intriguing to speculate 
under which conditions surjectivity might hold for non-power words. 

Returning to finite groups, Theorem 4.1 allows us to deduce the following: 

T H E O R E M 4.2 (Larsen [La04]). — Let 1 ^ w G Fr, and Gi,C?2,... be an infinite 
sequence of pairwise non-isomorphic finite non-abelian simple groups. Then 

lim l Q g l G " | = x 

n^oo log\w(G n)\ 

Proof (Rough sketch). — Since w(Gn) is closed under conjugation, it suffices to ex­
hibit an element in the image with small enough centralizer, so with large class size. 

One distinguishes three cases: for a sequence of simple groups of Lie type with 
a fixed root system, Larsen shows that |w(G n ) | > c\Gn\ for some c > 0, basically 
using Theorem 4.1, but the details are quite involved. In fact, it turns out that it is 
sufficient to prove this for groups of type A\. 

As a second step, one shows the same statement for a sequence of alternating 
groups. For this, one decomposes n = $^f=i(P» + 1) with suitable primes pi, embeds 
the product PSL2(pi) x • • • x PSL2(p/c) into 2l n via the natural permutation action of 
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PSL2(p) on the projective line over F p , and uses the first part for the factors PSL2(p;) 

to find an element in w(2l n) with small centralizer. 

Finally, for the classical groups of arbitrary rank, one uses natural embeddings like 

2l n ^ SLn(q) < SOtniv) ^ S02n+i(tf) ^ SL 2 n +i(^) to exhibit elements with small 

centralizer, starting with those for 2l n . • 

A different proof of Theorem 4.2 is given in [LS09] using the following important 

irreducibility property enjoyed by word maps, the proof of which would lead too far 

away from the topic of this lecture (see [LS09, Thm. 3.3]): 

T H E O R E M 4.3 (Larsen-Shalev). — Let W{ £ Fru i = 1,2, be non-trivial words in 

two disjoint sets of letters, and w £ jP r i_j_ r 2 their concatenation. Let G be a simple 

algebraic group of simply connected type over an algebraically closed field. Then for 

all non-central elements g £ G, the fiber f~XQ{g) is irreducible. 

5. A S Y M P T O T I C W A R I N G T Y P E RESULTS 

The results stated in the previous section form a key ingredient for the study of 

various asymptotic Waring type questions on the image of word maps. Recall that 

in number theory the Waring problem, solved by Hilbert, asks whether there exists a 

function / such that any positive integer can be represented by f(k) fcth powers. In 

analogy, in the setting of group theory, given any non-trivial word w £ Fr one may 

ask whether some power w(G) • • • w(G) covers G for all sufficiently large non-abelian 

finite simple groups G. (Recall that we write w(G) for the image of the word map 

on Gr associated to w.) Here the best and most general results are consequences of 

the following (see [LST11, Thm. 1.1.1]): 

T H E O R E M 5.1 (Larsen-Shalev-Tiep). — Let w\,W2 £ Fr be non-trivial words. Then 

there exists a constant N = N(wi,W2) such that for all finite non-abelian simple 

groups G of order \G\ ^ N we have w\(G) W2(G) = G. 

The case of alternating groups and of groups of Lie type of bounded rank had 

already been established earlier by Larsen and Shalev [LS09]. Using Theorem 4.3 and 

suitable embeddings as in the proof of Theorem 4.2 they show, for example, that each 

word map on 2l n with n large enough contains elements with few cycles in their image 

and then conclude by Theorem 3.9. 

As an immediate consequence one has: 

C O R O L L A R Y 5.2. — For any 1 ^ w £ Fr there exists a constant N = N(w) such that 

w(G)2 = G for all finite non-abelian simple groups G of order \G\ ^ N. 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2014 



340 G. MALLE 

Taking for w the commutator word shows in particular that any element in a 
sufficiently large finite non-abelian simple group is the product of two commutators. 
Earlier, Liebeck and Shalev [LS01] had proved that for any word w there exists an 
unspecified constant c = c(w) such that if G is a finite non-abelian simple group and 
w(G) ^ 1 then w(G)c = G. This was then improved by Shalev [Sh09, Thm. 1.1] who 
showed the statement of the above corollary with 3 in place of 2. Nikolov and Pyber 
[NP11] reproved this using different methods. A recent result of Jambor, Liebeck and 
O'Brien [JL013, Cor. 3] shows that the exponent 2 in Corollary 5.2 cannot in general 
be replaced by 1, even for non-power words: the word map for w = x\[xi2, X2]2 is not 
surjective on infinitely many groups PSL2(<?). It is not clear whether this also leads 
to a counterexample for simple algebraic groups. 

The constants in all of the above statements are not explicit. Guralnick and Tiep 
[GT13, Thm. 1.4 and Cor. 1.5] have recently obtained the following explicit bounds 
for the power word w = x\\ 

T H E O R E M 5.3 (Guralnick-Tiep). — Let G be a finite non-abelian simple group. 

(a) Let 1 ^ k < m. If \G\ > ra8™2, then every element of G can be written as 
xkyrn for some x,y G G. 

(b) Let ra ^ 1 be not divisible by the exponent of G. Then every element of G is a 
product of at most 8 0 7 7 1 ^ 2 log 2 m + 56 mth powers in G. 

Recall that by Theorem 3.8, the conclusion of Theorem 5.3(a) actually holds for all 
non-abelian simple groups when k = m is restricted to prime powers or powers of 6. 

This particular question has a long history. Martinez and Zelmanov [MZ96] and 
independently Saxl and Wilson [SW97] showed that there exists a function / such 
that any element in a finite non-abelian simple group G is a product of f(k) kth 
powers, provided there are any non-trivial kih powers in G. 

Shalev [Sh09] uses Theorem 4.2 of Larsen (to deal with Lie type groups of large 
rank) and Theorem 1.6 of Ellers-Gordeev (to dispose of groups of bounded rank) to 
show the following asymptotic version of Thompson's conjecture: 

T H E O R E M 5.4 (Shalev). — For any sequence (Gn)n of finite simple groups of in­
creasing order there exist conjugacy classes Cn C Gn such that 

\C2

n\ 
7 7 7 7 —> 1 for n 00. 
\Gn\ 

The idea of proof for Theorem 5.1 is quite simple: by the result of Larsen and 
Shalev [LS09] one only has to consider groups of Lie type G. For these, one shows 
that Wi(G) contains (elements of) a conjugacy class Ci of regular elements in a pair 
of (strongly or weakly) orthogonal maximal tori (as in Section 3), so that the product 
C1C2 covers all of G except possibly for the identity element (which is clearly contained 
in w\(G)w2{G)). The main result guaranteeing this is [LST11, Thm. 5.3.2]: 
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T H E O R E M 5.5 (Larsen-Shalev-Tiep). — Let w be a non-trivial word. Then for any 

sequence of finite simple groups G(q) of fixed Lie type and any maximal torus T(q), 

we have 

d i m G - r k G 

\{(gi,...,gr)eG(qY \w(9l,...,gr)eT(q)}\ , 1  

Q \G(q)\r 

C O R O L L A R Y 5.6. — Let w be a non-trivial word. Then for any sequence of finite 

simple groups G(q) of fixed Lie type of rank at most d there exists qo such that w(G(q)) 

contains regular elements of any maximal torus of G(q) for all q^ qo. 

Proof. — Fix a type of group G. It follows from Theorem 5.5 that there exists S > 0 

such that \T(q)nw(G(q))\ ^ 5\T(q)\ for any maximally split torus T(q) of G(q). But 

the number of regular elements in a maximal torus T(q) is larger than (1 — 6)\T(q)\ 

for q larger than a suitable qo. We conclude by taking the maximum over all such qo 

for all classes of maximal tori and all types of groups of rank at most d. • 

We thus obtain the conclusion of Theorem 5.1 for groups of bounded rank, a case 

which had already been settled (in a slightly different way) in [LS09]: 

C O R O L L A R Y 5.7 (Larsen-Shalev). — Let w\^W2 be non-trivial words and do > 0. 

Then there exists a constant N = N(wi,W2,do) such that for all simple groups of 

Lie type G of rank d < do and order \G\ > N we have u>i(G)u>2(G) = G. 

Proof. — By Corollary 5.6 the image W{(G) meets (and hence contains) a conjugacy 

class Ci of regular elements in a maximally split torus of G. Thus we are in the 

situation of Corollary 1.4, so G \ { 1 } is covered by C i C 2 . Since clearly 1 is also in the 

image, the claim follows. 

For groups G = Gr(q) not of type D2n, instead of appealing to the result of Ellers-

Gordeev, one may use that there exist pairs of strongly orthogonal maximal tori T\, T 2 

in G by Proposition 3.3, and that Wi(G) contains regular semisimple elements of Ti 

whenever d ^ do and q is large enough, again by Theorem 5.5. The claim then follows 

by Corollary 3.2. • 

This leaves the case of (classical) groups of unbounded rank. Again, we want to 

exhibit regular semisimple elements in pairs of strongly or weakly orthogonal tori, but 

this time the argument must work for all fields ¥q. We give the details in the easiest 

case: 

P R O P O S I T I O N 5.8. — The claim of Theorem 5.1 holds for simple symplectic groups. 

Proof. — Let G = Sp 2 n (g ) . By the previous discussion we may assume that n is large. 

Let Ti(q), i = 1,2, be representatives of the two classes of maximal tori of SL 2 (g n ) . 

Under the embedding of SL 2 (g n ) into Sp 2 n (g) discussed in Section 2, Ti(g),T 2 (g) 

are mapped onto a pair of strongly orthogonal tori of Sp 2 n (g ) . By Corollary 5.6, for 

n large enough, t ^ (SL 2 (g n ) ) contains elements of Ti(q) which map to regular elements 
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in Sp 2 n (# ) . Thus G is covered by u>i(G)u>2(G) by Corollary 3.2, and passing to the 
quotient by the center we obtain the desired conclusion. • 

A similar approach works for other families of classical groups, but here one cannot 
guarantee to find elements in strongly orthogonal tori. For example, in type SLn(q), 
one uses embeddings SLk(ql) < SLki(q) with k = 2,3 to find regular elements in 
a pair of weakly orthogonal tori. It can be shown that exactly three non-trivial 
(unipotent) irreducible characters do not vanish on these elements, all of them of 
rather large degree. The non-vanishing of the relevant structure constant then follows 
by bounding the values of these characters. The argument for orthogonal groups is 
even more technically involved. 

6. EXTENSIONS A N D OPEN PROBLEMS 

We now discuss possible extensions of Ore's conjecture and related open problems. 
As mentioned in the introduction, Blau [B194] proved that there is (only) a finite 

number of quasisimple (but not simple) finite groups that contain non-commutator 
central elements, and in a follow-up paper to their proof of Ore's conjecture 
Liebeck-O'Brien-Shalev-Tiep [LOST2] determined all quasisimple groups containing 
non-commutators: 

T H E O R E M 6.1 (Blau, Liebeck-O'Brien-Shalev-Tiep). — If G is a finite quasisimple 
group containing non-commutators, then 

G/Z{G) e {PSL 3 (4 ) ,PSU 4 (3 ) ,PSU 6 (2 ) , 2 E 6 (2 ) ,2 t 6 , 2 l 7 ,M 2 2 ,F i 2 2 } . 

For most quasisimple groups of classical Lie type, this had essentially already been 
contained in their first paper [LOST], so only the spin groups, the exceptional covering 
groups of classical groups and the exceptional groups of type EQ, 2EQ and E? had to 
be considered. 

It turns out, though, that in all cases every element of a finite quasisimple group 
is a product of at most two commutators. Let us mention here that for more general 
groups, Nikolov and Segal [NS07] have shown the following: 

T H E O R E M 6.2 (Nikolov-Segal). — There exists a function f such that for any 
group G generated by at most r elements, every element of its commutator subgroup 
[G, G] is a product of at most / ( r ) commutators. 

This was one of the key steps in their proof establishing that in a finitely generated 
profinite group, every subgroup of finite index is open. (The special case of finitely 
generated pro-p groups had long ago been shown by Serre.) The proof eventually 
relies on a result on twisted commutators in finite quasisimple groups, which in turn 
uses the classification of finite simple groups. 
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Closely related to Thompson's conjecture is the concept of covering number. In a 
finite non-abelian simple group G, for any non-trivial conjugacy class C C G there 
exists some k — k(C) such that Ck = G. The minimal exponent k which works for 
all non-trivial classes C is called the covering number cn(G) of G. 

The following upper bound on covering numbers for groups of Lie type has been 
obtained in [EGH99] (see also Lawther and Liebeck [LL98] for closely related results 
on the covering number with respect to C U C~l)\ 

T H E O R E M 6.3 (Ellers-Gordeev-Herzog). — There exists a constant d such that for 
any finite simple group of Lie type G of rank r we have cn(G) ^ dr. 

The expected best possible value for d is 4, but the estimates obtained in the above 
reference are weaker. The claim is first shown for classical groups, by embedding a 
type A subgroup of maximal possible rank and using that cn(PSL n(g)) = n for 
q,n ^ 4. For the finitely many exceptional types one can clearly assume that q is 
large enough, in which case Theorem 1.3 of Ellers-Gordeev can be used to deduce the 
result. 

The lecture notes of Arad and Herzog [AH85] list several further open questions on 
products of conjugacy classes in finite non-abelian simple groups. Let us mention one 
open problem, the Arad-Herzog conjecture, which claims that products of arbitrary 
conjugacy classes can never be too small: 

C O N J E C T U R E 6.4 (Arad-Herzog). — Let G be a finite non-abelian simple group. 
Then the product of two non-trivial conjugacy classes of G is never a single conjugacy 
class. 

Note that the claim may fail for arbitrary groups: Let G be a Probenius group of 
order pd with d\(p — 1). Then the product of any class of non-trivial elements of order 
dividing d with any class of elements of order p is a single conjugacy class. A more 
interesting example can be obtained in the extension of GL2n((?) by the transpose-
inverse automorphism, see [GMT13, Example 7.2]. So, as for the Ore conjecture, the 
property in question seems to be tied to simple groups. 

The Arad-Herzog conjecture is open in general, but has recently been shown to 
hold for various classes of simple groups (see [FA87, GMT13]): 

T H E O R E M 6.5 (Fisman-Arad, Guralnick-Malle-Tiep). — Let G be an alternating 
group 2l n , n ^ 5, a simple group PSLn(q) or a simple group of Lie type of rank less 
than 4. Then the Arad-Herzog Conjecture holds for G. 

The proofs rely on the following easy character theoretic observation, which again 
follows from the orthogonality relations (see [GMT13, Lem. 2.2]). 
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L E M M A 6.6. — Let G be a finite group, C,D c G two conjugacy classes ofG. If CD 

is a single conjugacy class, then xix)x(y) — x{l)x(xv) for a^ irreducible complex 

characters x °f G and x e C, y £ D. 

For alternating groups and PSL n(g) this criterion can be applied with a single well-

chosen character; for the groups of Lie type of small rank, one uses the knowledge of 

the complete character table (see [GMT13]). 

Again, the question becomes much simpler if we turn to the natural analogue for 

simple algebraic groups, see [GMT13, Thm. 1.1]: 

T H E O R E M 6.7 (Guralnick-Malle-Tiep). — Let G be a simple algebraic group over an 

algebraically closed field and C , D non-central conjugacy classes of G. Then the prod­

uct CD is never a single conjugacy class. 

In fact, the proofs show that except for a small number of well-understood situa­

tions where the product consists of two or three classes, CD is the union of infinitely 

many conjugacy classes. 

The above result has the following immediate consequence ([GMT13, Cor. 1.2]), 

whose analogue in the case of finite groups, formerly known as Szep's conjecture, was 

proved by Fisman-Arad [FA87]: 

C O R O L L A R Y 6.8. — Let G be a simple algebraic group over an algebraically closed 

field. Let x,y £ G be non-central. Then C G ( # ) C G ( 2 / ) 7̂  G. 

This investigation has recently been extended to almost simple algebraic groups 

in [GM13]; here, in disconnected groups there exist various pairs of conjugacy classes 

whose product is again a single class. 
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