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THE BAUM-CONNES CONJECTURE WITH COEFFICIENTS
FOR WORD-HYPERBOLIC GROUPS
[after Vincent Lafforgue]

by Michael PUSCHNIGG

INTRODUCTION

In a recent breakthrough V. Lafforgue verified the Baum-Connes conjecture with
coefficients for all word-hyperbolic groups [41]. This is spectacular progress since
it provides the first examples of groups with Kazhdan’s property (T) satisfying the
conjecture with coefficients (). Lafforgue’s proof is elementary, but of impressive
complexity.

In fact, the Baum-Connes conjecture with coeflicients is known to be false in
general. The first counterexamples were obtained by N. Higson, V. Lafforgue, and
G. Skandalis [24] for certain classes of Gromov’s random groups [19]. (Note that
Gromov’s groups are nothing but inductive limits of word-hyperbolic groups!)

Already in the early eighties, A. Connes emphasized that Kazhdan’s property (T),
which means that the trivial representation of a locally compact group is separated
from all other unitary representations, might be a serious obstruction to the Baum-
Connes conjecture. The only previously known approach, due to Kasparov [32], de-
mands the construction of a homotopy among unitary representations between the
regular and the trivial representation, which cannot exist for non-compact groups
with Property (T). This led to a search for such homotopies among larger classes of
representations [26, 36, 41]. V. Lafforgue [38] introduces the notion of group repre-
sentations of weak exponential growth. He shows that the trivial representation is not
isolated among such representations for hyperbolic groups which opens the way to his
proof of the Baum-Connes conjecture with coefficients. For higher rank groups and
lattices however, a corresponding version of Property (T) continues to hold [38, 39].
This leads to interesting applications in graph theory and rigidity theory [39] and

1. A proof for the Property (T) groups Sp(n,1) has been announced earlier by P. Julg in [28].
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116 M. PUSCHNIGG

makes it hard to believe that the Baum-Connes conjecture (at least in the case with
coefficients) might be proved for higher rank lattices by the established methods [40].

In Section 1, we review index theory and formulate the Baum-Connes conjecture
as a deep and far reaching generalization of the Atiyah-Singer index theorem. The
tools which are used to approach the conjecture are presented in Section 2: Kasparov’s
bivariant K-theory [30, 32], and his construction of “y-elements”. Section 3 collects the
present knowledge about the Baum-Connes conjecture. In particular, we explain the
counterexamples of Higson, Lafforgue, and Skandalis. Section 4 deals with Lafforgue’s
work on generalizations of Kazhdan’s property (T). We discuss his results on his
Strengthened Property (T) for higher rank groups and lattices and give an account
of their proofs. The applications of his work in graph theory and rigidity theory
are mentioned as well. In Section 5 we finally outline V. Lafforgue’s proof of the
Baum-Connes conjecture with coefficients for word-hyperbolic groups.

Acknowledgements. — 1 thank Vincent Lafforgue very heartily for his help and
advices during the preparation of this manuscript. It is a pleasure to thank Nigel
Higson, Georges Skandalis, and Guoliang Yu for their explanations and constructive
remarks.

1. THE BAUM-CONNES CONJECTURE

1.1. Index theory

Consider a linear elliptic differential operator D on a smooth compact manifold
M. Its analytical index is defined as

(1.1) Ind,(D) = dim (Ker D) — dim(CoKer D) € Z.

The analytical index is invariant under perturbations of the elliptic operator and turns
out to be calculable by topological means. In fact, it only depends on the class

(1.2) [op:(D)] € KO(T*M)

of the principal symbol of D. Here T*M is the total space of the cotangent bundle
of M and K* denotes (compactly supported) topological K-theory [3]. (The latter
K-group can actually be identified with the set of homotopy classes of pseudo-elliptic
symbols.) The topological K-theory of Atiyah-Hirzebruch is a generalized oriented
cohomology theory in the sense of algebraic topology. K-oriented manifolds, for exam-
ple the total space of the cotangent bundle T*M of a compact manifold M, therefore
satisfy a K-theoretic version of Poincaré duality. The image of the symbol class under

(1.3) Ko(T*M) 3 Ko(M) 25 Ko(pt) = Z,
p: M — pt the constant map, is called the topological index Ind;(D) of D.
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(1062) THE BAUM-CONNES CONJECTURE WITH COEFFICIENTS 117

Suppose now that a compact Lie group H acts smoothly on M, leaving D invariant.
Then kernel and cokernel of D become finite-dimensional H-modules and one may
define the equivariant analytical index of D

(1.4) Ind,(D) = [Ker D] — [CoKer D] € R(H),

as element of the representation ring R(H). The equivariant topological index can be
defined in a similar way as before as an element of the equivariant K-homology group
KX (pt) of a point. There is a tautological isomorphism

(1.5) p: K¢l (pt) = R(H)

which allows to view both equivariant indices as virtual finite dimensional represen-
tations of H. The Atiyah-Singer Index Theorem reads then as follows:

THEOREM 1.1 ([3, (6.7)]). — The analytical index and the topological index coincide
as homomorphisms Kg(T*M) — R(H).

1.2. Higher index theory

Kasparov [32] and Baum-Connes [7, 8] claim that a similar index theorem holds in

the following much more general setting;:

— G is an arbitrary locally compact group,

— M is a smooth manifold equipped with a proper and cocompact G-action,

— D is a G-invariant linear elliptic differential operator on M.
Note that the condition on the action of G implies that M is non-compact if G is.
In particular, D cannot be Fredholm in any naive sense for non-compact G. Thus
completely new ideas are needed to give a meaning to an “analytical index”.

Assume that the locally compact group G acts smoothly and properly on the man-
ifold M. Then there exists a G-invariant smooth positive measure dvol on M. The
corresponding Sobolev spaces become G-Hilbert spaces, which appear as subrepresen-
tations of a (countable) multiple of the (left)-regular representation on L?(G).

DEFINITION 1.2. — The reduced group C*-algebra of a locally compact group G is
the closure in operator norm of the image of the group Banach algebra L*(G) under
the (left)-regular representation:

(1.6) CH(G) = meg(L1(G)) C L(L*(G)).

Let D be a G-invariant linear elliptic differential operator on M. If the G-action
on M is proper and in addition cocompact one may define an equivariant analytical
index

(1.7) Ind$ (D) = “[Ker D] — [CoKer D]” € Ky(C*(G))

of D. If the kernel and the cokernel of D happen to be finitely generated and projective
as modules over C(G), then the equivariant analytical index of D coincides with their

SOCIETE MATHEMATIQUE DE FRANCE 2014



118 M. PUSCHNIGG

formal difference. As in the classical case the equivariant analytical C*-index is of
topological nature and depends only on the symbol class [o,-(D)] € K&(T*M). The
G-equivariant topological K-theory for proper G-spaces [47] is very similar to the
equivariant K-theory with respect to a compact Lie group [3]. In particular, one may
define the equivariant topological index IndtG (D) of D as the image of the symbol class
under

(1.8) K%(T*M) BB KS (M) £ KE(EG),
G 0 0

where PD denotes K-theoretic Poincaré duality and ¢ : M — EG is the equivariant
classifying map to a universal proper G-space EG [8] (such a space always exists and
is unique up to equivariant homotopy equivalence). There is a canonical assembly
map [7, 8]

(1.9) p: KZ(EG) — K.(Cr(G)),
which generalizes (1.5). The corresponding index theorem is
THEOREM 1.3 ([8], [31]). — Let G be a locally compact group and let D be a

G-invariant linear elliptic differential operator on the proper, cocompact G-manifold
M. Then

(1.10) u(Ind¥ (D)) = Ind¢ (D).

Every class in K, g" (EG) can be represented by an equivariant topological index, so
that the index theorem characterizes the assembly homomorphism p as the unique
map sending topological to analytical indices.

Baum and Connes conjecture that the assembly map provides the link, which allows
a purely geometric description of the K-theory of reduced group C*-algebras.

CONJECTURE 1.4 (Baum-Connes Conjecture (BC) [8, (3.15)])
Let G be a second countable, locally compact group. Then the assembly map
(1.11) p: KZ(EG) — K. (Cr(Q))

is an isomorphism of abelian groups.

1.3. The conjecture with coefficients

Baum, Connes, and Higson formulate also a much more general twisted version of
conjecture 1.4 [8]. If D : & — &; is a G-invariant elliptic operator over the proper
and cocompact G-manifold M, as considered before, then the topological vector spaces
&o, & are simultaneously modules over G and the C*-algebra Co(M) of continuous
functions on M vanishing at infinity. One assumes now in addition that

— &y and &; are (right)-modules over an auxiliary G — C*-algebra A,
— The A-action on &y, &5 commutes with D and the action of Co(M),
— The module multiplications Co(M)®E — £ and EQ A — £ are G-equivariant.
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These conditions imply that the kernel and the cokernel of D are simultaneously
G-modules and A-modules, i.e., they are modules over the following C*-algebra.

DEFINITION 1.5. — The reduced crossed product of a locally compact group G acting
on a C*-algebra A is the closure (in operator norm) of the image of the twisted group
Banach algebra L*(G, A) under the (left)-regular representation:

(1.12) C2 (G, A) = meg(L1(G, A)) C L(L*(G,H)),
(113) (F+0@ = [ alg™ S&NE"Ydn,

Vf € L'(G,4), V¢ € L*(G,H),
where m: A — L(H) is any faithful representation. (The algebra C} (G, A) is inde-
pendent of the choice of 7.)

As before, one may define a twisted analytical index

(1.14) nd$ (D) € Ko(C:(G, A)),
and a twisted topological index
(1.15) Ind®*(D) e KS(EG, A).

Here the groups K& (—, A) denote a twisted form of topological K-homology for proper
G-spaces. Again, there is a corresponding twisted assembly map, which leads to an
index theorem with coeflicients.

Ezample 1.6. — If G = 1 and A = C(X), X a compact Hausdorff space, then
K.(C!(G,A)) ~ KE(EG,A) ~ K*(X) and the previous index theorem equals
the index theorem of Atiyah-Singer [4] for families of elliptic operators parametrized
by X.

Baum, Connes, and Higson conjecture that the twisted assembly map allows a
geometric description of the K-theory of reduced crossed product C*-algebras.

CONJECTURE 1.7 (Baum-Connes Conjecture with Coefficients (BCcoefr) [8, (6.9)])
Let G be a second countable locally compact group and let A be a separable
G-C*-algebra. Then the assembly map

(1.16) wa,a) : KZ(EG; A) — K. (C(G, A))

from the topological K -homology with coefficients in A of a universal proper G-space
EG to the K-theory of the reduced crossed product C*-algebra of (G, A) is an isomor-
phism of abelian groups.

Remark 1.8. — For A = C this is just the Baum-Connes conjecture for G.

Remark 1.9. — If BCeoesr holds for a given group G, then it holds for all its closed
subgroups H. More specifically, BCcoesr for G and A = Cy(G/H) implies BC for H.
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2. HOW TO PROVE THE CONJECTURE

Classical index theory was not only the point of departure for the developments
that led to the Baum-Connes conjecture. Up to now, all attempts to prove it were
inspired by Atiyah’s index theoretic proof of the Bott periodicity theorem [2], and
rely essentially on Kasparov’s bivariant K-theory.

2.1. Kasparov’s bivariant K-theory

Kasparov’s bivariant K-theory [30, 32, 15] provides the correct framework and the
most advanced technology for the study of (higher) index theory and the K-theory of
operator algebras. It associates to a pair (A, B) of C*-algebras a Z/2Z-graded abelian
group K K*(A, B), which is contravariant in A and covariant in B. There is a natural
isomorphism

(2.1) K.(A) = KK*(C, A).
The bivariant K-functor is in both variables
— stable, i.e., it turns the inclusion
(2.2) A<= lim M,(A) ~ AQc+ K(H)
n—00
into an isomorphism, and
— split exact, i.e., it maps splitting extensions of C*-algebras into split exact

sequences of abelian groups.
The key property of Kasparov theory is the existence of a natural associative product

(2.3) KK*(A,B)® KK*(B,C) — KK*(A,QC),
making the groups KK*(A, A) into unital and associative graded algebras.

Contrary to ordinary operator K-theory, bivariant K-theory can be characterized
by a simple axiom. The Kasparov product allows to define an additive category KK
with (separable) C*-algebras as objects and the even bivariant K-groups as mor-
phisms:

(2.4) Obxx = C* — Alg, Morxx (4, B) = KK°(A, B).

THEOREM 2.1 (Cuntz [14], Higson [21]). — FEvery stable and split exact functor from
the category of C*-algebras to an additive category factors uniquely through KK.

In particular, there is a natural transformation
(2.5) KK*(A,B) — Hom"(K.A, K.B).

For a given locally compact group G, there exists an equivariant bivariant K-theory
K K¢ on the category of separable G-C*-algebras [32], which is characterized by a
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similar universal property [45, 51]. The universal property implies the existence of
natural “Descent” transformations

(2.6)  KK&5(A,B) — Hom*(K.(C*(G,A® C)), K.(C*(G, B ® C))),

which are compatible with the Kasparov product. (Here C is an auxiliary coefficient
C*-algebra and the symbol ® denotes either the maximal or the minimal C*-tensor
product. For commutative C, the only case we need, both tensor products coincide.)

To apply the theory, one needs an explicit description of bivariant K-groups as
homotopy classes of K-cycles and means to calculate their Kasparov products. We
give such a description in the case A = B =C.

DEFINITION 2.2 (Kasparov [32]). — Let G be a (second countable) locally compact
group. Then the ring KK2(C,C) of Fredholm-representations of G is given by the set
of homotopy classes of triples

(2.7) E = (HE, p%, F),

where H* is a 7/2Z-graded (separable) Hilbert space, equipped with an even unitary
representation p* of G, and F : H* — HF is an odd, bounded linear operator such
that

(2.8) F? — Id € K(HF) and g — [F,p=(g)] € C(G,K(HT)).

Here KC(H*) denotes the algebra of compact operators on H*.

If one writes F' = (9 %), then the conditions (2.8) state that u and v are almost
equivariant Fredholm operators, which are inverse to each other modulo compact
operators.

If G is compact, then the Fredholm representation ring coincides with the ordi-
nary representation ring. For G abelian, K K&(C, C) is canonically isomorphic to the
topological (Steenrod)-K-homology of the dual group @, viewed as locally compact
topological space.

2.2. The v-element

All attempts to prove the Baum-Connes conjecture rely up to now on Kasparov’s
“Dirac-Dual Dirac” method [32], which can be viewed as nonlinear version of Atiyah’s
proof of equivariant Bott-periodicity [2]. Suppose for simplicity that there exists a
G-manifold M, which serves as a model for the universal proper G-space EG. Then
there exists a canonical class

(2.9) a € KK%(Co(T*M),C),

SOCIETE MATHEMATIQUE DE FRANCE 2014



122 M. PUSCHNIGG

which induces the Baum-Connes map under descent (modulo Poincaré-duality). So
the assembly map with coefficients factorizes as
(2.10)

pe,a: KS(EG, A) = KS(M, A) "2 K.(C}G,Co(T*M, A))) 2= K.(C:(G, A))

for any G-C*-algebra A. The key idea is to show that the class a is invertible with
respect to the Kasparov product. The Baum-Connes conjecture with coefficients
follows then simply by descent. In full generality Kasparov’s approach to the Baum-
Connes conjecture can be summarized as follows:

THEOREM 2.3 (“Dirac-Dual Dirac” Method [32, 23]). — Let G be a locally compact
group. Suppose that there exist a locally compact proper G-space X and elements
a€ KKE(Co(X),C) and B € KK™(C,Co(X)), n=dim(X), such that

(2.11) y=B®ac KKX(C,C)

satisfies resG(v) = 1 € KK%(C,C) for every compact subgroup H of G. Then the
Baum-Connes assembly map (with coefficients) for G is split injective. If moreover

(2.12) v=1¢€ KKg(C,C),

or if at least the image of v under descent (2.6) equals the identity, then the Baum-
Connes conjecture (with coefficients) holds for G.

The ~-element of the previous theorem is unique if it exists [52].

3. STATUS OF THE CONJECTURE

The Baum-Connes map provides a link between a rather well understood geometric
object, the equivariant K-homology of a certain classifying space of a group, and a
quite mysterious analytic object, the K-theory of its reduced group C*-algebra. The
Baum-Connes conjecture appears therefore as quite deep and surprising. It has two
aspects: the injectivity of the assembly map (1.11), which has important implications
in geometry and topology, and its surjectivity, which proved to be a much more elusive
problem.

The injectivity of the Baum-Connes map with coefficients is known for all con-
nected groups and all groups acting properly and isometrically on a C AT'(0)-space.
Kasparov and Yu [34] recently showed its injectivity for the very huge class of dis-
crete groups, which (viewed as metric spaces with respect to a word metric) admit
a uniform coarse imbedding (see (3.10)) into a Banach space B with the following
property: there exist an increasing sequence of finite dimensional subspaces of B with
dense union, a similar sequence of subspaces of a Hilbert space, and a uniformly con-
tinuous family of degree one maps between the corresponding unit spheres of the two
families of subspaces.
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A possible source for counterexamples is the seemingly quite different functorial be-
havior of source and target of the Baum-Connes map. Whereas the left hand side
of (1.11) is functorial under continuous group homomorphisms, this is not at all ob-
vious for the right hand side. The reduced group C*-algebra C;(G) is functorial
under proper, but not under arbitrary group homomorphisms. For example, the re-
duced C*-algebra of a non-abelian free group is simple [48], i.e., has no nontrivial
quotients! It is also easy to see, that the trivial homomorphism G — 1 gives rise to a
homomorphism of reduced group C*-algebras iff G is amenable. The Baum-Connes
conjecture claims that the K-groups K.(C*(G)) should nevertheless be functorial
under arbitrary group homomorphisms, which is quite surprising.

At this point one might be tempted to replace the reduced group C*-algebra C*(G)
by the maximal group C*-algebra C} .. (G). The representations of the latter corre-
spond to arbitrary unitary representations of G and C} . (G) is therefore fully functo-
rial in G. Examples (see Section 4.5) show however that the corresponding assembly
map

(3.1) pmax : KZ(EG) — K.(Chax(G))

is far from being an isomorphism in general.

For the conjecture with coefficients, one may study in addition the functoriality with
respect to the coeflicients of source and target of the Baum-Connes map. This time,
the different behavior of both sides leads to the counterexamples to BCcoer found by
Higson, Lafforgue and Skandalis [24]. We will present them at the end of this section.
On the other hand Bost has defined an assembly map

(32) np : KS(EG, 4) — K.(L\(G, A))

and conjectures that it is always an isomorphism. This is true for a quite large class
of groups [36]. In addition, the counterexamples of [24] do not apply to (3.2).

3.1. Lie groups and algebraic groups over local fields

Let G be a connected Lie group and let H C G be a maximal compact subgroup.
The homogeneous space G/H may serve as a model of the universal proper G-space
EG. If G/H carries a G-invariant Spin°-structure, the Baum-Connes conjecture
equals

CONJECTURE 3.1 (Connes-Kasparov Conjecture [8]). — Let i = dim (G/H) mod 2.
Then the map

(3.3) b R(H) — Ki(Cr(G)),

which associates to a virtual representation [V] € R(H) the G-index of the twisted

Dirac-operator Oy on G/H, is an isomorphism of abelian groups. Moreover
Kiy1(Cr(G)) =0.
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Conjecture 3.1 was proved for linear real reductive groups by A. Wassermann [53]
in 1982. He used many deep results in the representation theory of semisimple Lie
groups. In his thesis [36], V. Lafforgue used geometric methods and employed the
existence of a ~y-element to establish (BC) for real reductive groups as well as for
reductive algebraic groups over local fields. This work was presented at Séminaire
Bourbaki by G. Skandalis [50].

3.2. Amenable and connected groups

Following Gromov [18], a locally compact group is called a-T-menable if it admits
a proper, affine, isometric action on a Hilbert space. This is in some sense com-
plementary to Kazhdan’s property (T'), discussed in the next section. The class of
a-T-menable groups contains all amenable groups and all closed subgroups of real and
complex Lorentz groups. A proper action of such a group G on a Hilbert space is uni-
versal in the sense that the affine Hilbert space may serve as a model for EG. Higson
and Kasparov [23] view an affine Hilbert space as the limit of its finite-dimensional
affine subspaces, and use the “Dirac” and “Dual Dirac” elements 2.3 on these sub-
spaces to construct a y-element vy for every a-T-menable group G. They show that
v=1¢€ KK%(C,C), and deduce that BCgoeg holds for all a-T-menable groups. See
the talk of P. Julg at Séminaire Bourbaki [27] for a detailed account to their work.
Combining the results of Lafforgue and Higson-Kasparov, Chabert, Echterhoff and
Nest [12] succeeded finally in verifying BC for all locally compact, connected groups.

3.3. Discrete groups

Let G = T" be a countable discrete group. We suppose for simplicity that I is
torsion free. Any contractible, proper and free I'-space ET' may serve as a model for
ET and the Baum-Connes conjecture equals

CONJECTURE 3.2 ([7]). — Let T’ be a torsion free, countable discrete group and let
BT be a classifying space for principle-I'-bundles. Then the assembly map

(34) p: KP(BT) — K.(Cx(I))
is an isomorphism of abelian groups.

The most important progress up to now was achieved by V. Lafforgue [36, 35}, who
established BC for word-hyperbolic groups in the sense of Gromov and for uniform
lattices in the higher rank groups SL3(K), K a local field. He and P. Julg [28] were
the first who overcame the barrier of Kazhdan’s Property (T') (which holds for generic
hyperbolic groups and all higher rank lattices). For both classes of groups there exists
a y-element, but it cannot be equal to 1 in the presence of property (T'). Nevertheless
v acts as the identity on K,.(C}(T')) which already implies BC. See also Skandalis’
report at Séminaire Bourbaki [50].
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3.4. The conjecture with coefficients

The Baum-Connes conjecture with coefficients was previously known only for
a-T-menable groups by [23], and for hyperbolic groups and commutative (!) coeffi-
cients by the work of Lafforgue [37]. The first proof of BCcoesr for a class of groups
with Property (T), the Lie groups Sp(n, 1), is due to Julg and sketched in [28]. The
spectacular recent breakthrough, which is the main topic of this exposé, is again due
to Vincent Lafforgue:

THEOREM 3.3 (Lafforgue [41]). — The Baum-Connes conjecture with coefficients
holds for all locally compact groups acting properly and isometrically on a weakly
geodesic and locally uniformly finite hyperbolic metric space. In particular, it holds
for all word-hyperbolic groups.

Contrary to the Baum-Connes conjecture, which is open at the moment, the Baum-
Connes conjecture with coefficients is known to be false in general.

3.5. A counterexample

In recent years Gromov’s spectacular theory of “Random Groups” [19, 16] has

been used to produce various counterexamples to open questions in geometric group
theory and operator algebras. One instance is the following counterexample to the
Baum-Connes conjecture with coefficients, which is due to Higson, Lafforgue, and
Skandalis [24]. It is based on the possibility of embedding some expander graphs
coarsely and uniformly into the Cayley graphs of random groups.
As indicated before, it is the different functorial behavior of source and target of the
Baum-Connes assembly map p (g, a), which leads to the desired counterexamples. The
main idea is the following. Let I' be a discrete group. Suppose that there exists an
extension

(3.5) 0->I—->A—-B—>0

of I-C*-algebras (I C A an ideal and B ~ A/I), such that the upper line in the
commutative diagram

K.(C} (T, 1)) —— K.(C}(T,A)) —— K.(CX(T',B))

oo ] I 1

K,(ET,]) —— KJ(ET\A) —— K(ET,B)

is not exact in the middle. As the lower line is always exact in the middle, one deduces
that the vertical arrows, given by the corresponding Baum-Connes assembly maps,
cannot all be isomorphisms, as the Baum-Connes conjecture with coefficients predicts.
The key point is therefore to find a projector p € C*(T', A), whose class in K-theory
is not in the image of K,(C*(T',I)), and which maps to 0 in C}*(T, B).
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Recall that the Laplace operator A : £2(G) — £2(G) on a graph G of bounded
valency is the positive bounded linear operator given by
(3.7) Af@)= Y (@) -fWw),

d(z,y)=1

where the sum runs over the set of all vertices y adjacent to x. If G is finite, then the
kernel of A coincides with the space of locally constant functions.
A sequence (Gn),n € N, of finite connected graphs of uniformly bounded valency is
an ezpander [20, 9], if their cardinality tends to infinity

(3.8) ' lim §(G,) = oo,

n—00
and if their Laplace operators have a uniform spectral gap. i.e., 3¢ > 0:
(3.9) Sp(A(Gr)) N]0,e[=@, VneN.

The Cayley graph G(T', S) of a finitely generated group (I',.S) has the group I' itself
as set of vertices, and two vertices g, h € I" are adjacent iff g7'h € S.

Now, according to Gromov [19, 16, 1], it is possible to imbed a suitable expander
coarsely and uniformly into the Cayley graph of some finitely generated group (T, S).
This means that there exists a sequence i, : G2 — G(T', S), n € N, of maps of vertex
sets, such that

(3.10)  po(dg, (z,y)) < dg(r,s)(in(x),in(y)) < p1(dg, (z,v)), VZ,y €GrnVnEN,

for some monotone increasing, unbounded functions pg, p; : Ry — R4. The coarse
imbeddings i,, (which we suppose to be injective to simplify notations) may be used
to “transport” the Laplace operators of the expander graphs to an operator on £2(T).
To be precise set

(3.11) On : £2(Gn) = A1), ez — €, (x)
and put
(3.12) Al = 0,A(G,)0% + (1 —-6,05) € L(E3(D)).

Consider the operator A’ = @, A, on the Hilbert sum % = ,, ¢*(T) = ¢#(NxT).
The reduced crossed product C;(I', Cy(N, Co(T"))) acts faithfully on H. The operator
1— A’ may be written as a finite (!) sum }°_ foug, fg € Co(N, Co(T")) because of (3.10)
and the fact that the propagation speed of the Laplace operator on a graph is equal to
one. In particular 1- A’ € C.(T, Co(N, Co(T))) € Cx*(T, Cb(N, Cop(T))). It is a positive
operator which, according to (3.9), has a spectral gap, i.e., Sp(A’) N]0,¢[ = @. The
spectral projection p’ = @, p,, onto

(3.13) Ker(A') = P Ker(a;,) = @PC

may thus be obtained from A’ by continuous functional calculus, so that

(3.14) p' € CX(T, Cy(N, Co(I')))-
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This is the projection we are looking for. As an element of the reduced crossed
product, it can be uniquely written as infinite sum p’ = }°_ fyug, fg € Cp(N, Co(I)),
g €T It follows from (3.12) and (3.8) that

(3.15) fs € Co(N, Co(T)), Vg € T.
Consider now the extension
(3.16) 0 = Co(N,Co(T)) = Co(N,Co(T)) - Q — 0

of I-C*-algebras. On the one hand, the image of the projectionp’ € C*(T", Cp(N, Cp(T)))
in C*(T', Q) is zero by (3.15). On the other hand, its K-theory class

(3.17) [p'] € Ko(C (T, Co(N, Co(I))))
does not lie in the image of Ko(Cy (', Co(N, Co(I"))) = limKo(C; (I, Co(I'))) because

(3.18)  ma([p]) = [pj] # 0 € Ko(CH(T,Co(I) = Ko(K(£*(T)) =~ Z, ¥n € N.

In this way Higson, Lafforgue and Skandalis obtain the desired counterexample.

4. KAZHDAN’S PROPERTY (T) AND ITS GENERALIZATIONS

The most important classes of groups, for which the Baum-Connes conjecture is
unsettled, are simple linear groups of split rank > 2 over local fields, where BCcoeft
is open, and lattices in such groups where already BC is unknown in most cases.
These classes are distinguished by their astonishing rigidity properties [42]. They also
provide the most prominent examples of groups with Kazhdan’s property (T), which
plays a key role in rigidity theory, and has important applications in operator algebras,
representation theory, and graph theory [20, 9, 42]. In this section we report what is
known about V. Lafforgue’s strengthened versions of Property (T) [38], and outline
its applications to graph theory and rigidity theory [39]. Strengthened Property (T)
appears also to be very serious obstruction against a possible “Dirac-Dual Dirac”
approach to the Baum-Connes conjecture [40].

4.1. Property (T)
Recall that a locally compact group G has Kazhdan’s Property (T) if the following
equivalent conditions hold:

— The trivial representation is an isolated point in the unitary dual of G.
— Every unitary representation 7 of G with almost invariant vectors, i.e.,

Ve > 0, VK C G compact, 3§ € H — {0} : ||7(9)¢ — &l < €|iéll, Vg € K,

contains nonzero fixed vectors.
— Every continuous isometric affine action of G on a Hilbert space has a fixed
point.
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— There exists a projection p € C*(G), such that for any unitary representation
(m,H) of G the operator m(p) € L(H) equals the orthogonal projection onto
HA ),
Here C*(G) denotes the “full” group C*-algebra, i.e., the enveloping C*-algebra of
the involutive Banach algebra L!(G).

Examples of Kazhdan groups:
— Compact groups,
— Simple algebraic groups of split rank at least two over local fields and their
lattices.
— Many hyperbolic groups, for example lattices in the simple Lie groups Sp(n, 1),
n > 1, or Fy o9 of real rank one.
— Generic, randomly produced hyperbolic groups [19].
Basic examples of groups without Property (T) are free groups and non-compact
amenable or a-T-menable groups.

4.2. Lafforgue’s Strengthened Property (T)

In recent years various generalizations of Property (T) have been proposed. These
deal with larger classes of representations than the unitary ones. A first example is

DEFINITION 4.1 (Bader, Furman, Gelander, Monod, [6])

a) A locally compact group G has Property(T)yc, if every isometric representation
of G on a uniformly convex Banach space with almost invariant vectors has non zero
fized vectors.

b) A locally compact group G has Property (F)uc, if every affine isometric action
of G on a uniformly convexr Banach space has a fized point.

Lafforgue goes one step further and allows not only isometric representations, but
representations of weak exponential growth.

DEFINITION 4.2 (Lafforgue). — Let G be a locally compact group with a proper, con-
tinuous and symmetric length function £ : G — R4, and let A > 1. A continuous
representation m of G on a Banach space B is of exponent A (with respect to £) if

(4.1) 7 llx= sup A9 || m(g) llc(m) < oo
geaG

The representations of G of exponent ) on a self-dual class of Banach spaces B give
rise to representations of the corresponding involutive Fréchet algebra [35]

(42) C/\(Ga e» 8)7
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obtained by completion of the convolution algebra of compactly supported continuous
functions on G with respect to the seminorms
(4.3) Iflly = sup |I7(f)lle), N € N.

(W’B)’

Iml A <N
The supremum is taken over all representations (m, B) of exponent A > 1 and A-norm
Iwllx < N on a space B € B.

DEFINITION 4.3 (Lafforgue [38, 39])

a) Let B be a class of Banach spaces which is closed under taking duals. A locally
compact group G has Lafforgue’s Property (Tls;m“g), if for every proper symmetric
length function £ on G, there exists A > 1 and a selfadjoint idempotent py € Cx(G, £, B)
such that

(4.4) (pA)(B) = B"?
for every representation (w, B) of exponent A on a Banach space B € B. Such an
idempotent is unique and central in Cx(G, ¢, B).
b) It satisfies Property (T)pno® if (T3 °"8) holds for B = {Hilbert spaces}.
¢) It possesses Property (T)3&rors ¢ (Tgtm“g) holds for every class B which is

Ban

(uniformly) of type > 1. This means that there exist n € N and € > 0 such that no
n-dimensional subspace of any B € B is (1 + €)-isometric to £}.

Note that every uniformly convex space is of type > 1. The relations between these
properties are displayed below.

(T)BanStrong (Fuc (T)uc
9 | |
(T)ean e (T)

4.3. Results

Concerning the strengthened property (T) one observes a strict dichotomy between
groups of “split rank one” and “higher rank” groups. Despite the fact that they
generically satisfy the ordinary Kazhdan property, word-hyperbolic groups are very
far from sharing the strengthened versions of property (T).

THEOREM 4.4 (Lafforgue [38]). — Word-hyperbolic groups do not satisfy (T)i‘;g“g.

Lafforgue’s proof is closely linked to his work on the Baum-Connes conjecture and
will be explained in Section 5. The following remarkable result of Yu asserts that
hyperbolic groups do not have property (F)yc either.

SOCIETE MATHEMATIQUE DE FRANCE 2014



130 M. PUSCHNIGG

THEOREM 4.5 (Yu [54]). — Ewvery hyperbolic group admits a proper, isometric, affine
action on an £P-space for p € |1, 00( sufficiently large.

Yu’s construction of the desired affine action is related to an explicit description of
the y-element of a hyperbolic group.

For higher rank groups and their lattices however, many (and conjecturally all)
strengthened versions of the Kazhdan property hold.

THEOREM 4.6 (Lafforgue, [38]). — A simple real Lie group, whose Lie algebra con-

tains a copy of sz, satisfies (T)Is;i‘;g“g. The same holds for its uniform lattices.

THEOREM 4.7 (Lafforgue [39]). — A simple linear algebraic group over a mnon-
archimedian local field, whose Lie algebra contains a copy of sls, satisfies (T)gf: ne
The same holds for its uniform lattices.

This result has applications in graph theory. It is well known that an expanding
sequence of graphs (3.8), (3.9) cannot be imbedded uniformly (3.10) into Hilbert
space.

THEOREM 4.8 (Lafforgue [39]). — Let (T',S) be a uniform lattice in a simple alge-
braic group over a non-archimedian local field, whose Lie algebra contains a copy of
sl3. Let (T'y,),n € N, be a sequence of finite index normal subgroups of I, whose inter-
section is 1. Then the sequence of (finite) Cayley graphs (G(T'/Ty,), n(S)) cannot be
imbedded uniformly in any Banach space of type > 1.

Recently, Mendel and Naor [43],[44] used completely different methods to
construct huge families of expanders which do not admit a uniform embedding
into any uniformly convex Banach space.

4.4. Proofs

Let G = SL3(F), F a local field. Let K be a maximal compact subgroup of G.
Lafforgue’s key observation (which generalizes the Howe-Moore property of unitary
representations [25]) is that the matrix coefficients of K-invariant vectors in represen-
tations of sufficiently small exponent tend very quickly (exponentially fast) to a limit
at infinity:

(4.6) (€, w(g)m) ~ ce| = O(e™HNVD),

where (7, B) is a representation of G of exponent A\, { € B*, n € B are K-invariant
vectors, and () > 0 if X is close to 1. (Here B is a Hilbert space in the archimedian
case and a Banach space in a class B of type > 1 in the non-archimedian case.)
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It is then easy to see that for a fixed, compactly supported positive function of
mass one x € C¢(G) the family

(4.7 forxz— / x(k1gzks) dk1dks, g € G,
KxK

of K-biinvariant, compactly supported functions on G tends to a limit
(48) lim fg =Dpx € CA(G7£7B)
g—o0

as g € G tends to infinity. It follows from a non-spherical version of (4.6) that py
is the desired “Kazhdan”-projection. It is selfadjoint as limit of selfadjoint functions.
This establishes 4.6 and 4.7.

We outline Lafforgue’s strategy for proving the decay estimates (4.6) in the
non-archimedian case.

Let F' be a non-archimedian local field with ring of integers O and residue field
F,. Let G = SL(3,F) and put K = SL(3,0). There is a Cartan decomposition
G = KA, K with

(4.9) A, = {diag(n™%, 772, 17%) iy 4+ ig 4+ i3 = 0, 4y > dp > i3},

where 7 denotes a fixed uniformizing element of F'. A canonical K-biinvariant proper
length function on G is given by

(4.10) ¢(kak’) = iy (a) — i3(a).

Let B be a class of type > 1 of Banach spaces, which is closed under taking duals.
Let (m, B), B € B, be a representation of G of exponent A and denote by (#, B*) its
contragredient representation. Let n € B, £ € B* be K-invariant unit vectors. The
corresponding matrix coeflicient g — (£, m(g)n) is then determined by its values

(4.11) c(iy—iz,ia—i3) = (&, m(diag(m ™™, m~%, 77%))n), i1+iz+iz = 0, 41 > iz > i3.

Fix integers m > n > 0,m+n € 3N. Lafforgue finds two finite families (@;)icr, (b;)jes
of elements of G/K (considered as points of the affine building), and a matrix
T € M;;(C) satisfying

a) L(@) = m, £(b;) =n, YieI,VjeJ

b) I = ¢*™, |J] = ¢*™.

¢) The Schur product T € M. 17(C), ﬁ-j = Ty; (7t(a@;)€, m(b;)n), satisfies

(4.12) |I|_% lJl_%Zﬁj =cm—-n+2,n-1) — ¢(m —n,n).

2
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d) The norm of the operator T ® idg : L?(J, B) — L?(I, B) is bounded by the
norm of the (normalized) Fourier transform

(4.13) FB . L*(A B)—> L*(4,B), frr (x > 'uLA 2 x(a) f(a))

on a finite abelian group A = A; of order |J 2.

This allows Lafforgue to bring Fourier analysis on finite abelian groups and the
geometry of Banach spaces into play. According to Bourgain [11], the (normalized)
Fourier transform satisfies a uniform bound of the type

(4.14) IFZ] = O((#4)~*), & = a(B) > 0,

for every finite abelian group A and every Banach space B in a class B of type > 1.
Lafforgue derives thus from (4.12) the estimate

(4.15) |e(m —n+2,n—1) —c¢(m —n,n)|
T B (. B
<7 < 1741 (max | #(@)¢ 1| ) (maxln(B)n))
< % (g=)™ A,
This, together with the analogous estimate obtained by exchanging the roles of m

and n, implies for A > 1 sufficiently close to 1 the exponential decay of differences of
matrix coefficients. Claim (4.6) follows then by a simple Cauchy sequence argument.

4.5. Relation to the Baum-Connes conjecture

It was realized very early by A. Connes, that Kazhdan’s Property (T) might be a
serious obstruction against the validity of the Baum-Connes conjecture for a noncom-
pact group. At least Kasparov’s original “Dirac-Dual Dirac” method cannot possibly
work in the presence of Property (T).

To see this, recall that the unitary representations of a locally compact group G
correspond bijectively to the representations of its full group C*-algebra C*(G). In
particular, there are epimorphisms e : C*(G) — C}(G) and 7rip : C*(G) = C
corresponding to the regular and the trivial representation of G, respectively.

Now Connes argues as follows.

For every locally compact group G one may construct an assembly map with values
in the K-theory of the full group C*-algebra. It fits into the commutative diagram

pmax 1 KOP(EG) —— K.(C*(G))

(4.16) H lmeg*
p: KIP(EG) —— K.(Cr(Q)).
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Suppose that there exists a y-element for G, which equals one: v = 1 € KK%(C,C).
Then both assembly maps have to be isomorphisms and one deduces that 7 eg« is a
bijection. If G has Kazhdan’s Property (T) while not being compact, then the class
[p] € Ko(C*(GQ)) of the Kazhdan projection is nontrivial because myiv([p]) = 1 €
Ko(C) = Z, but maps to zero in Ko(C}(G)) because the regular representation of a
non compact group has no fixed vectors. Thus v # 1 for a non compact group with
Property (7).

A beautiful argument of Skandalis [49] shows that for hyperbolic groups with Prop-
erty (T) even the image of v under descent to bivariant K-theory [32] differs from 1:

(4.17) Jr() # 3r(1) = 1 € KK(CX(T), C7(T)).

Nevertheless, it is sometimes possible to show that v maps to the identity under
descent (2.6) even for property (T) groups. The idea, originally due to Julg [26], is
to find enlarged versions KK of bivariant K -theory, which will not have particularly
nice properties, but allow to factorize the descent map as

(4.18) KKr(C,C) — I?f(p(C,(C) — Hom(K.(C:(T, A)), K.(Cx (T, A))),
and satisfy
(4.19) ] = [1] € KKr(C,C).

In [36], Lafforgue developed a bivariant K-theory for Banach algebras to deal at
least with (BC). In the case with coefficients, the absence of (T)gip® for word-
hyperbolic groups (4.4) enables Lafforgue to construct the desired homotopy between
~ and 1 using bivariant K-cycles, whose underlying representations are of small ex-
ponential growth [41]. For general higher rank lattices property (T)Isqtﬁg“g is a very
serious obstruction against an implementation of the “Dirac-Dual Dirac” approach.
Lafforgue explains in [35, 40] that the only known way to establish (4.18) and (4.19)
consists in finding a homotopy between v and 1 among representations which define
bounded Schur multipliers on some isospectral subalgebra of C}(I'). For lattices in
SL3(F), F alocal field, the existence of such an algebra would contradict (4.12). In
fact, it was this circle of ideas which led Lafforgue to the invention of Strengthened
Property (T).

5. LAFFORGUE’S APPROACH

In this last section we discuss Lafforgue’s proof of the Baum-Connes conjecture
with coefficients for word-hyperbolic groups [41]. Recall that a geodesic metric space
(X, d) is hyperbolic [17], if there exists § > 0, such that for any points a,b,c € X

(5.1) z € geod(a,c) = d(z, geod(a,b) Ugeod(b,c)) < 4,
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where for any (nonempty) subsets A, B C X
(5.2) geod(A4,B) = {z € X, Ja € A, b€ B, d(a,z) + d(z,b) = d(a,b)}

denotes the union of all geodesic segments joining a point of A and a point of B.
A finitely generated group I' is word-hyperbolic [17], if for one (and therefore every)
finite symmetric set of generators S the Cayley-graph G(T', S) is a hyperbolic metric
space. An important class of word-hyperbolic groups is provided by fundamental
groups of compact Riemannian manifolds of strictly negative sectional curvature.

There is a distinguished class of models for the universal proper I'-space ET" of a hyper-
bolic group: the Rips complezes [17]. For fixed R > 0, the Rips complex AE(T,ds)
is the simplicial set of finite, oriented subsets of I' of diameter at most R:

(5.3) S e ART,ds) & S'CT, |S'| =p+1, diam(5') < R.

(Here and in the sequel we will use the same notation for a Rips-simplex and its
underlying set.) The natural action of I' on AF(T',ds) induced by left translation is
simplicial and proper. For hyperbolic groups the Rips complex is in addition con-
tractible, provided that R is sufficiently large. It may therefore serve as model for
ET'. The associated chain complex

n

(5.4) (C(AX(T,ds)), 8), B(goy---,9n) = Y (=1)"(go,---,Gis---9n)
=0

is a I-finite and I'-free resolution of the constant I'-module C.

Various authors [33, 36, 41] have constructed 7-elements (2.11) for hyperbolic
groups.

THEOREM 5.1 (Kasparov, Skandalis [33]). — For a suitable choice of a hyperbolic
distance d' on T, a square zero contracting chain homotopy h (see 5.2) of (C(AR),d),
and R,t > 0 sufficiently large

(5.5) (2(AR), "0 (8 + h)e o)
defines a bounded K -cycle representing v € KK (C,C).

The K-cycle (5.5) is in fact a slightly modified version of the original vy-element of
Kasparov and Skandalis. It is better adapted to Lafforgue’s needs [36].

Suppose for a moment, that the K-cycles (5.5) were well defined for all ¢ > 0.
Then for t = 0 the K-cycle (¢2(AR), 8 + h) would represent 1 € K K1(C, C) (because
0 is strictly equivariant), and the continuous family (5.5) would provide the desired
homotopy between v and the unit K-cycle.

As we know, this is too much to hope for, because many hyperbolic groups have
Kazhdan’s property (T), which rules out the existence of such a homotopy. However,
according to Lafforgue, hyperbolic groups do not satisfy his strengthened property (T).

ASTERISQUE 361



(1062) THE BAUM-CONNES CONJECTURE WITH COEFFICIENTS 135

So one may still hope to find a homotopy as above among Hilbert spaces with I'-action
of small exponential growth. Lafforgue’s main theorem states that this is indeed the
case:

THEOREM 5.2 (Lafforgue [41]). — Let (T, S) be a word-hyperbolic group, let R > 0
be large enough so that the Rips complexr AE(T,ds) is contractible, and let xo € Ao
be a base point. Fixz A\ > 1. Then there exist

— a Hilbert space Hzox = C(AE(T,ds)), given by a completion of the Rips
chain complez,

- a hyperbolic distance d’ on T such that d’' — d is bounded,

- a contracting square zero chain homotopy of the Rips complez, i.e., a linear
map

hay : C(AY(T, ds)) = C(A% (T, ds))
satisfying
(5.6) h2, =0, dohgy + hgy0d = Id — pgy, Im(pz,) = Cao,
such that the following hold:

a) The maps F; = etdo (0 + hmo)e'td’%, where dl, : AR(T',ds) — Ry denotes the
distance from the base point, extend to a continuous family of bounded linear operators
on Hwo,)\-

b) The natural action of T' on C(AE(T',ds)) extends to a continuous representa-
tion ™ of exponent A on Hy x.

c) The operators [Fy,m(g)] are compact for all g € T and all t € R,.
In particular, the generalized K -cycles
(5.7) E = (Haons €0(0 + hag)e™"%0)
define an exponent-A-homotopy between 1 € K Kr(C,C) and v € KKr(C,C).
The key point is the existence of the desired homotopy for all A > 1! Now one has

left the framework of Kasparov’s bivariant K-theory, but an argument of Higson ([40,
(2.12)]) shows that the previous theorem still implies BCcoesf. Thus

COROLLARY 5.3 (Lafforgue [41]). — The Baum-Connes conjecture with coefficients
is true for all word-hyperbolic groups.

The demonstration of Lafforgue’s theorem requires almost 200 pages and is ex-

tremely complicated. We therefore can only outline the strategy of the proof and
have to refer to the original paper [41] for details.
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5.1. The case of free groups

We will study free groups first because the proof of Lafforgue’s theorem for free

groups is easy and suggests the right strategy for the general case. The fact that
~ = 1 for free groups is due to P. Julg and A. Valette [29]. Their work inspired the
line of thought followed here.
Let I' = F) be the nonabelian free group on two generators s, t, and let S = {s
The geometric realization of the Rips complex X, = AR R = 1, is a tree. Once a
base point has been chosen, for example zg = z. € Xo = F5, there is a canonical
contracting simplicial homotopy h, of the tree X,: every vertex is sent to the unique
simplicial geodesic joining it to the origin. The operators [Ft, 7(g)] for this homotopy
and for the original metric d = d’ are of finite rank and will be compact, once they
are bounded. The whole problem therefore boils down to find the right Hilbert space.
Rewrite the contracting homotopy as hz, = >, hao,r, Where hg, r : C(Xo) = C(X1)
sends a vertex to the edge at distance r on its geodesic journey to the origin xg.
By definition hg, -(z,) = 0 if £(g) < r. The first step is to replace the ¢*-norm on
C(Xo) by the graph norms of the operators kg, » : £2(Xo) — £2(X1). For A > 1 and
f € C(Xo) one puts

:i:l,til}‘

o0
(5.8) 1£120 apret = IFI220x0) + D A oo, (P2 (xs)

r=1
(note that the sum is finite) and gains the boundedness of h : Hy  pret = £2(X1).
Lafforgue gives a geometric description of a closely related Hilbert space, which applies
immediately to general hyperbolic groups. Let e, z € X., be the canonical basis
of C(X,) and let Iy, z € X,, be the dual basis. The operator h,; provides an
identification e : Xo — {zo} = Xi. The norm (5.8) can then be rewritten as

(59) “ - ”io,)\,prel = Z |l$|2 + Z Azrlhtxom(le(y))lz’
z€Xo yeXo—{zo}
where h% . denotes the transpose of hs, . One has

(5.10) hfco,r(le(y)) = Z by

vEFly, (y,7)

where Fl,(y,r) is the flower based at y of height r, i.e., the set of vertices in Xj,
which lie at distance r from y and pass through y on their journey to the origin.

An alternative way to describe flowers is the following. Let B(zg, k) be the ball
around o of radius k = d(xo,y). Then every geodesic path from elements v,v" €
Fl,,(y,7) to a vertex w in B(zo, k) will pass through z. Consequently

(5‘11) d('l), w) = d(’U, y) + d(va) = d(vl’ y) + d(y’ w) = d(vlv w)'
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The flowers over B(xo, k), i.e., the flowers of arbitrary height and based at points of
the k-sphere around x( appear thus as the equivalence classes of points of Xo—B(zo, k)
with respect to the equivalence relation

(5.12) Rir: x ~ 2 & d(z,2) =d(',2), Yz € B(zo,k)

on Xo. Denote by Y the set of equivalence classes of Ry. These are the flowers
over B(zo,k) and the pomts of B(zo,k). The height r of a flower Z € Y equals
r = d(zo,Z) — k. Now Lafforgue defines the Hilbert space Hz, 0 as the completion
of C(Xp) with respect to the norm

2
>

vEZ

(5.13) = 2pe =3 3 A2e02)=k)

0.k
k=0 ZeYy)

In this formula the sum over the terms satisfying d(zo, Z) — k > 0 gives exactly the
second term on the right hand side of (5.9) by (5.10), whereas the sum over the other
terms equals a constant multiple of the first term of the right hand side of (5.9). In
particular, the norms (5.9) and (5.13) are equivalent.

Let us have a closer look at the group action on Hz,,x,0. The norm on this Hilbert
space is defined purely in terms of the geometry of the Cayley graph (tree) of (Fz,S),
but depends heavily on the choice of the base point zy. Calculating the norm of the
operator m(g) amounts therefore to bound the norm || — ||z 0 With respect to the
new base point 2y = g~ ' in terms of the original norm || — ||z,,x0. To this end
one has to express each flower Z’ € Y %% over a ball around z{ as a disjoint union of
flowers Z; € Y * over balls around . Such a decomposition is not unique, and one
is interested in decompositions with as few flowers as possible. Let Z’ = Fl ; (y,r) be
a flower based at y. If y does not lie on the geodesic segment geod(zo, z{) joining zo
and z, then Z’ = Fl, (y,7) = Flg, (y,7) is simultaneously a flower over balls around
zo and z. If y € geod(zo, 5), then

(5.14) z' = 1]z

is the disjoint union of at most C(T", S)(d(zo, ) + 1) flowers Z; = Fl,,(y;,7;) over
balls around xo whose base point lies at distance 1 from geod(zo, z() and which satisfy

(5.15) d(zo, Z;j) = d(z0,2") — d(z0,xy).
Therefore
(5.16) Im(9)€l2, 00 < C(T,8)%(1+£(g))END g]|2, 5o, VE € C(X),

i.e., the representation of F5 on H is of exponent )’ for every X > A.
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5.2. The Hilbert space, an Ansatz

The formula (5.13) for the Hilbert space completion of the Rips complex can easily
be generalized. Let (T', S) be a word-hyperbolic group. Let R > 0 be large enough so
that the Rips-complex A, = AF(T',dg) is contractible and fix a base point z¢ € Ao.
Rips p-simplices correspond then to oriented (p + 1)-element subsets of I" of diameter
at most R.

p4

D
s

B(Xo,Kk)

. Pk
FIGURE 1. A flower in Y5,

Lafforgue says that two Rips p-simplices S’, S” are k-equivalent, if there exists
an isometry between B(z,k) U S’ and B(z,k) U S”, which sends S’ to S” while
preserving orientations, and fixes B(z, k) pointwise. This is an equivalence relation
and the set of equivalence classes is denoted by VZ’k. The equivalence classes are
called flowers over B(zo, k) if d(z,S") > k and equal a single simplex if d(z, S") <
k—R.

Lafforgue defines now, similar to (5.13), a Hilbert space Hz,,1,0(Ap) as the completion
of C(A,) with respect to the norm

(5.17) —lZon0 = Z Y A Dh

k
k=0 zeYy,

s

S'eZ

where again (Ig), S € A, is the dual of the canonical basis of C(4,).

The left translation action of I' on the Rips complex gives rise to a represen-
tation m on Hg,x0(Ap), which is of exponent X for every X' > X by essen-
tially the same argument as in the case of free groups. A direct consequence
is

THEOREM 5.4 (Lafforgue [38]). — Hyperbolic groups do not have property (T)Is,lti';ﬁng
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This follows easily from the properties of Hz,,x,0(A0). It is clear that the regular
representation 7 of I' on Hy x 0(Ao) has no fixed vectors. However, there is a fixed
vector for its contragredient representation 7, because the linear functional

(5.18) l: Zaga:g — Zag

is bounded: one has

(5.19) l:i Yoolh= > Y b,

r=0 d(zo,v)=r Ze?g;:)o veZ

0,0 .
note that the flowers in Y~ are just the spheres around zg), so that
Zo

S (xteod), yitzo) (Z l)>

Zevyy veZ

2

(5.20) IO = < (E=A)7HEN n0

by the Cauchy-Schwarz inequality. Suppose that I' possesses property (T)Is_fﬁf;“g

Then, for A sufficiently close to one, there exists a self-adjoint “Kazhdan”-projection
p € Cx(T', £s, H). It satisfies w(p) = 0, but 7(p) # 0 cannot be zero, because its image
contains /. This is impossible because #(p) = w(p)* for self-adjoint projections.

5.3. Metrically controlled operators

Lafforgue’s Hilbert spaces have interesting properties: they are defined in terms
of the geometry of the Cayley-graph, the regular representation on them may be
of arbitrary small exponent and it cannot be separated from the trivial representa-
tion. This makes them into excellent candidates for the Hilbert spaces needed in
Theorem 5.2.

However, for general hyperbolic groups, it is difficult to establish the boundedness of
any contracting chain homotopy of the Rips complex. The naive solution of complet-
ing the natural domain C(A.) of such an operator with respect to the graph norm
will not work: contrary to the case of free groups, it will destroy the purely geometric
nature of the Hilbert space and one will loose the control over the norm of the repre-
sentation on it.

In order to solve the problem Lafforgue proceeds in two steps: He identifies a class of
operators, which are sufficiently controlled by the geometry of (T, ds), so that their
graph norms are equivalent to norms of the type (5.17) considered before. A weighted
sum of iterated graph norms can then still be defined in a purely geometric way
and leads to Hilbert spaces, on which all controlled operators act boundedly. Then
Lafforgue constructs very carefully controlled contractions of the Rips complex.
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His notion of control, inspired by the properties of the operators h, in the case of free
groups, is

DEFINITION 5.5. — Let M,ry,72 > 1, and let r € N. A linear operator
®: C(A,) —» C(A))

is 1 -geodesic (with respect to xo) and (M, re)-controlled of propagation r, if its matriz
coefficients ®g, . s,,50,51 € Ay, satisfy the following conditions:

- ®g,,5, = 0 unless d(S1, geod(xo, So)) < r1 and |d(So, S1) — 7| < ra.

— If there ezists an isometry between

B(zo, M) U B(So, M) U B(S1, M) and B(we, M) U B(S}, M) U B(S,, M),

which sends Sy to S§, S1 to Sy, while preserving orientations, and fizes B(xo, M)
pointwise, then the matriz coefficients ®s, s, and ®g; 51 coincide.
— The set of all matriz coefficients is bounded.

This notion suggests the following modification of Lafforgue’s Hilbert space.

DEFINITION 5.6. — Fiz M,r1 > 1 and let k € N. Let ?2’0’“’"‘ be the set of m-fold
iterated, M -thickened flowers of p-simplices over B(xo, k), i.e., the set of equivalence
classes of (m+1)-tuples (So, S1,...,Sm), m € N, of Rips-simplices S; € A, So € Ap,
such that d(Si+1,geod(zo,S;)) < r1 and d(zo,Sm) > k + 2M, with respect to the
following equivalence relation. Two (m + 1)-tuples (So, ..., Sm) and (Sp,...,S;,) are

equivalent if there exists an isometry between the subsets
B(zo,k+2M)U B(So, M) U ---U B(Sp, M)
and
B(zo,k +2M)U B(S§, M)U---U B(S),, M)
of (T,ds), which maps S; to S, for all i (preserving the orientations of Sy and Sj)
and fizes B(xo, k + 2M) pointwise.

B(X,,k)

ok
FIGURE 2. A flower in Y7,
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Lafforgue defines then the Hilbert space H,,2(Ap) as the completion of C(Ap)
with respect to the norm
2)

(5.21) ”mo, Z B~ (Z Z \2(d(20,S0)—k)
where B = B(A) > 0 is large, but fixed. Its new basic property is described in

2 s

(So0y..-sSm)EZ

k=0 ZeYE ™

LEMMA 5.7. — Euery linear map ® : C(AF) — C(AF), which is ri-geodesic (with
respect to zo) and metrically (M,rq)-controlled and of fized bounded propagation,
ertends to a bounded linear operator

D : Hoon (Af) = Hap A (AR).

In fact, let Z; € Y . Then, as ® is r;-geodesic and (M, r3)-controlled of fixed
propagation, its transpose ‘I)t satisfies

(5.22) @‘( > lsl) =Y azz ( > Is, )
(S1,sSm)EZ1 z (S0,51,...,Sm)EZ
where
— The (m + 1)-fold iterated M-thickened flowers Z “prolongate” the m-fold
iterated M-thickened flower Z;.
— The number of flowers Z, which occur in the sum on the right hand side, is
bounded by an absolute constant C;(I", S, R, M, r1,72).
- oz,z, = ®s,,5, is a matrix coefficient of ®, which depends only on Z.
Thus

(5.23) [2(©)llzor < Ca2 [[€llzo,n

by the Cauchy-Schwarz inequality, where C3 depends on Cj, the £°-norm of the
matrix coefficients of ®, and of the propagation r of ®.

With this result at hand, the next step is to look whether the homotopy (5.7)
may be realized by geodesic and metrically controlled operators. The simplicial
differential of the Rips complex is obviously R-geodesic, R-controlled, and of propa-
gation at most R. Concerning the contracting chain homotopy h,, the story is more
complicated.

There is a standard procedure for contracting the Rips complex of a hyperbolic group
[17, 33, 41]. For a given Rips p-simplex Sy, one lets l~z' ,(So0) be a mean over the
Rips (p + 1)-simplices Sy U {y} with y € I" of minimal Word-length (distance to the
origin). Put 9y, = Id — (hgyd + Oha,). Then > meo heo¥Z, will be a contracting
chain-homotopy of C(A,). The construction shows also that the subcomplexes
spanned by Rips simplices supported in a given ball B C (T',dg), are contractible as
well (take the center of the ball as new origin).
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The operators h/, and 95, are clearly geodesic, controlled, and of finite propagation.
So they extend to bounded operators on Hgy, x(A«). However, one cannot prevent
the norms of the powers ¢ , n € N, to grow exponentially! This is due to the fact,
that for fixed control parameters the operator v will not anymore be geodesic and
controlled if n is large: the transition coefficient from a simplex Sy to S; will depend
on the whole trajectory from Sp to S, and not only on the geometry of the union of
balls of fixed radius around z, Sy and S;.

Lafforgue solves the problem by constructing ad hoc geodesic and metrically controlled
chain maps

(5.24) ©Yzo,r : C(AL) = C(AL),
which cover the identity in degree -1 and move each simplex r steps towards the origin.

For {y} € A¢ let ¢z, r({y}) be the mean over the points of geod(zo,y) N S(y,),
and extend by linearity to C(Ag). If @y, has been defined on C(Ay), and if S’ is
a (k + 1)-Rips-simplex, then let ¢, ~(S’) be a filling of the cycle ¢z, (0S’) inside
a fixed ball of diameter R + 2§ containing {J,cg geod(zo,S") N S(y, r), (such fillings
exist as remarked before), and extend by linearity to C(Ag). Finally use the same
procedure to construct geodesic and metrically controlled homotopy operators

(5.25) R : C(As) = C(Asy1)
satisfying

(5.26) Prort1 — Pagr = hipy .0+ R .,
and put

(5.27) Koy = By

Lafforgue combines the two constructions to obtain a contracting square zero homo-
topy
N-1

(528) hgo = h;,‘() B "/J:f;\g + Z Ezo ° "/):07

n=0

which is controlled and moves simplices strictly towards the origin. The linear maps
(5.29) F;, = etd0(d + h;’o)e—tdzo

extend then to bounded operators on Hz, A(Ay) for every A > 1 and every ¢t € R,.

5.4. The pigeonhole principle and the end of the proof

What remains to be done? Still one step, and it is by far the hardest: it has to be
shown that the commutators [F, m(g)] are compact for all g € I" and ¢t € R;.. The
work of Kasparov-Skandalis [33] and of Mineyev-Yu [46] suggests how to proceed:
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— The contracting homotopy A’ , has to be replaced by a contraction hg, which
depends “continuously” on zg:
(5.30) lim  (hso(So) — hay (So)) = 0, Vaj € Ag.
So-+oo o
— The word-metric d on I'" has to be changed into an equivalent “continuous
metric” d’ with the crucial property
(5.31) lim (d'(zo,z) — d'(z4,2)) = 0, Vi € Ao.

r—0o0

The necessary changes are quite subtle. They bring a pigeonhole argument into
play which allows to deduce (5.30) and (5.31). Unfortunately, the operator h;, and
the operator d’, : C(AF) — C(AZE) of multiplication with the distance from the origin
cannot be metrically controlled anymore.

This forces Lafforgue to modify again the underlying Hilbert space. The final

formula for the norm turns out to be much more complicated than our “baby model”
(5.21) and depends on nine parameters (instead of the four parameters R, M, B,r;
we used). We will only give some indications and refer to Lafforgue’s original paper
for more detailed information.
In the notations of 5.2 it suffices more or less to verify that the operators [7(g), hzq,r]
and [7(g),d},] are compact for every r > 0 and g € S (and thus for every g € G).
(The commutators [m(g),d] vanish because the differential 8 is I'-equivariant.) In
more convenient terms, this means that the operators

(5.32) hayr = Pao,r, and dy —dyr, To, x5 € Do, d(xo,p) = 1,

/
0

are compact.

Decompose the operator (5.28) into a sum of operators of propagation r: hj =
> Mg, - The construction of the operator hj; . depends on a large number of choices.
Any of these choices was sufficient to arrive at (5.29), but now, one has good reason
to keep track of the choices made. So Lafforgue introduces a probability space (€, ),
whose points label the possible choices in the construction of hj .,r € N. The
corresponding operators are denoted by h;’omw,w € Q. If a simplex Sy € A, is very
far from the origins z¢ and zj in the sense that d(xg, S) > r, then one may hope that
Rl . .(So) =h!, _ (So) with a high probability. In fact

To,T,wW zq,TwW

LEMMA 5.8. — There exists a universal constant C > 0 such that
Cd(fl]o x )
. Q h// //, < » 0
(5 33) #({W €1, zo,r,w(SO) 7& mo,r,w(SO) }) 1+ (d(xo, SO) — 'I')

for all Sy € Ay, allr € N, and all xg,z( € Ag =T.
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The proof uses a counting argument as in [33], which is based on a pigeonhole
principle. The operator

(5_34) hzo = Zhwoﬂ“? h:z:o,r = tho,r,w dﬂ"
r=0

will be the definitive contracting homotopy required in 5.2. Suppose that the operators
by 1w € Q, were uniformly bounded with norms summable with respect to 7. The
operator h, — hy would then split as a sum of an operator of arbitrary small norm
(neglecting simplices close to the origin) and a finite rank operator. In other words,
it would be compact.

In the same spirit, Lafforgue introduces a family of modified metrics dz, @ € ﬁ,
labeled by another probability space (ﬁ,ﬁ). They are obtained by an extremely
subtle averaging process, and satisfy

C(d(zo, 75))

. 1({@ e Q, dz 5 () < .
(5 35) ﬂ({w €1, dw(.’bo,.’b) 7é d (xo’x) }) 1+ d(.’to,.’l))
Consequently the final new metric
(5.36) J:ﬁ%m

a

used in 5.2, is “continuous” over large distances, and one could essentially conclude
5.2 c), provided that the operators dg, .’ — dy ' Were uniformly bounded.
However, one cannot prove this: neither the operators hg,w, nor the operators dg, —
dz,,w are metrically controlled!

Fortunately, they almost are: their matrix coeflicients ag,s, vanish unless
d(S1,geod(x, So)) < r1 and |d(Sp,S1) —r| < 72 (resp. Sp = Si), and depend
only on the isometry class of the union of B(z, M) U B(Sp, M) U B(S1,M) and a
uniformly finite family of “control sets” of uniformly bounded diameter, located along
geod(z, So).

This leads Lafforgue to the definitive version of his Hilbert space. He enriches the
definition of the iterated flowers 5.6 by the introduction of uniformly finite families of
“control sets” of uniformly bounded diameter, located uniformly close to geod(z, Sp).
The corresponding isometry relation has to take control sets into account and the
number of control sets introduces a weight factor in the sums defining the Hilbert
norm. Another weight factor, given by a very mildly decaying exponential of the
cardinality of each flower, has still to be introduced to arrive finally at a Hilbert
space satisfying (5.7). The proof of Theorem 5.2 is thus complete.

5.5. Concluding remarks

Lafforgue’s proof of the Baum-Connes conjecture with coefficients for word-
hyperbolic groups shows once more the power and flexibility of Kasparov’s “Dirac-
Dual Dirac” approach. It may even work in the presence of Kazhdan’s property (T)
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as he shows. His work on the strengthened property (T) indicates however, that the
method has its limits. There seems to be no way to apply it in the crucial case of
lattices in simple algebraic groups of split rank > 2 over local fields. At present the
search for a “truly noncommutative” version of J.-B. Bost’s Oka-principle [10] seems
to be the only hope to settle this case. New ideas will be needed to decide whether
the fascinating predictions of Baum and Connes hold for further classes of groups.
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