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THE BAUM-CONNES CONJECTURE W I T H COEFFICIENTS 
FOR WORD-HYPERBOLIC GROUPS 

[after Vincent Lafforgue] 

by Michael PUSCHNIGG 

INTRODUCTION 

In a recent breakthrough V. Lafforgue verified the Baum-Connes conjecture with 
coefficients for all word-hyperbolic groups [41]. This is spectacular progress since 
it provides the first examples of groups with Kazhdan's property (T) satisfying the 
conjecture with coefficients^1^. Lafforgue's proof is elementary, but of impressive 
complexity. 

In fact, the Baum-Connes conjecture with coefficients is known to be false in 
general. The first counterexamples were obtained by N. Higson, V. Lafforgue, and 
G. Skandalis [24] for certain classes of Gromov's random groups [19]. (Note that 
Gromov's groups are nothing but inductive limits of word-hyperbolic groups!) 

Already in the early eighties, A. Connes emphasized that Kazhdan's property (T), 
which means that the trivial representation of a locally compact group is separated 
from all other unitary representations, might be a serious obstruction to the Baum-
Connes conjecture. The only previously known approach, due to Kasparov [32], de­
mands the construction of a homotopy among unitary representations between the 
regular and the trivial representation, which cannot exist for non-compact groups 
with Property (T). This led to a search for such homotopies among larger classes of 
representations [26, 36, 41]. V. Lafforgue [38] introduces the notion of group repre­
sentations of weak exponential growth. He shows that the trivial representation is not 
isolated among such representations for hyperbolic groups which opens the way to his 
proof of the Baum-Connes conjecture with coefficients. For higher rank groups and 
lattices however, a corresponding version of Property (T) continues to hold [38, 39]. 
This leads to interesting applications in graph theory and rigidity theory [39] and 

1. A proof for the Property (T) groups Sp(n, 1) has been announced earlier by P. Julg in [28]. 
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116 M. PUSCHNIGG 

makes it hard to believe that the Baum-Connes conjecture (at least in the case with 

coefficients) might be proved for higher rank lattices by the established methods [40]. 

In Section 1, we review index theory and formulate the Baum-Connes conjecture 

as a deep and far reaching generalization of the Atiyah-Singer index theorem. The 

tools which are used to approach the conjecture are presented in Section 2: Kasparov's 

bivariant if-theory [30, 32], and his construction of "7-elements". Section 3 collects the 

present knowledge about the Baum-Connes conjecture. In particular, we explain the 

counterexamples of Higson, Lafforgue, and Skandalis. Section 4 deals with Lafforgue's 

work on generalizations of Kazhdan's property (T). We discuss his results on his 

Strengthened Property (T) for higher rank groups and lattices and give an account 

of their proofs. The applications of his work in graph theory and rigidity theory 

are mentioned as well. In Section 5 we finally outline V. Lafforgue's proof of the 

Baum-Connes conjecture with coefficients for word-hyperbolic groups. 

Acknowledgements. — I thank Vincent Lafforgue very heartily for his help and 
advices during the preparation of this manuscript. It is a pleasure to thank Nigel 
Higson, Georges Skandalis, and Guoliang Yu for their explanations and constructive 
remarks. 

1. THE BAUM-CONNES CONJECTURE 

1.1. Index theory 

Consider a linear elliptic differential operator D o n a smooth compact manifold 

M. Its analytical index is defined as 

(1.1) Inda(£>) = dim(Ker£») - dim(CoKerD) e Z. 

The analytical index is invariant under perturbations of the elliptic operator and turns 

out to be calculable by topological means. In fact, it only depends on the class 

(1.2) [<Tpr(D)] € K°(T*M) 

of the principal symbol of D. Here T*M is the total space of the cotangent bundle 

of M and if* denotes (compactly supported) topological if-theory [3]. (The latter 

if-group can actually be identified with the set of homotopy classes of pseudo-elliptic 

symbols.) The topological if-theory of Atiyah-Hirzebruch is a generalized oriented 

cohomology theory in the sense of algebraic topology, if-oriented manifolds, for exam­

ple the total space of the cotangent bundle T*M of a compact manifold M, therefore 

satisfy a if-theoretic version of Poincaré duality. The image of the symbol class under 

(1.3) K°(T*M) ^ K0(M) K0{pt) = Z, 

p : M pt the constant map, is called the topological index Indt(D) of D. 
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Suppose now that a compact Lie group H acts smoothly on M, leaving D invariant. 

Then kernel and cokernel of D become finite-dimensional ii-modules and one may 

define the equivariant analytical index of D 

( 1 . 4 ) Inda(£>) = [KerD] - [CoKer£>] G R(H), 

as element of the representation ring R(H). The equivariant topological index can be 

defined in a similar way as before as an element of the equivariant if-homology group 

KQ-(pt) of a point. There is a tautological isomorphism 

( 1 . 5 ) M : K?(pt) ^ R(H) 

which allows to view both equivariant indices as virtual finite dimensional represen­

tations of H. The Atiyah-Singer Index Theorem reads then as follows: 

THEOREM 1.1 ( [3 , ( 6 . 7 ) ] ) . — The analytical index and the topological index coincide 

as homomorphisms KH{T*M) - > R(H). 

1.2. Higher index theory 

Kasparov [32] and Baum-Connes [7, 8] claim that a similar index theorem holds in 

the following much more general setting: 

- G is an arbitrary locally compact group, 

- M is a smooth manifold equipped with a proper and cocompact G-action, 

- D is a G-invariant linear elliptic differential operator on M . 

Note that the condition on the action of G implies that M is non-compact if G is. 

In particular, D cannot be Predholm in any naive sense for non-compact G. Thus 

completely new ideas are needed to give a meaning to an "analytical index". 

Assume that the locally compact group G acts smoothly and properly on the man­

ifold M . Then there exists a G-invariant smooth positive measure dvol on M . The 

corresponding Sobolev spaces become G-Hilbert spaces, which appear as subrepresen-

tations of a (countable) multiple of the (left)-regular representation on L2(G). 

DEFINITION 1.2. — The reduced group G*-algebra of a locally compact group G is 

the closure in operator norm of the image of the group Banach algebra L1 (G) under 

the (left)-regular representation: 

( 1 . 6 ) C*r(G) = 7 r r e g (L i (G ) ) C £(L2(G)). 

Let D be a G-invariant linear elliptic differential operator on M . If the G-action 

on M is proper and in addition cocompact one may define an equivariant analytical 

index 

( 1 . 7 ) Ind^f(L>) = "[KeiD] - [CoKerL>]" e if 0 (C r *(G)) 

of D. If the kernel and the cokernel of D happen to be finitely generated and projective 

as modules over G*(G), then the equivariant analytical index of D coincides with their 
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118 M. PUSCHNIGG 

formal difference. As in the classical case the equivariant analytical G*-index is of 

topological nature and depends only on the symbol class [o~PR(D)] E KQ(T*M). The 

G-equivariant topological if-theory for proper G-spaces [47] is very similar to the 

equivariant if-theory with respect to a compact Lie group [3]. In particular, one may 

define the equivariant topological index Indf (D) of D as the image of the symbol class 

under 

(1.8) i f£(T*M) ^ i f ^ ( M ) Kg(EG), 

where PD denotes K-theoretic Poincaré duality and ip : M —» EG is the equivariant 

classifying map to a universal proper G-space EG [8] (such a space always exists and 

is unique up to equivariant homotopy equivalence). There is a canonical assembly 

map [7, 8] 

(1.9) p: K?(EG) — • #*(G r*(G)), 

which generalizes (1.5). The corresponding index theorem is 

THEOREM 1.3 ([8], [31]). — Let G be a locally compact group and let D be a 

G-invariant linear elliptic differential operator on the proper, cocompact G-manifold 

M. Then 

(1.10) M(Indf(Z?)) = Ind?(D). 

Every class in i f § (EG) can be represented by an equivariant topological index, so 

that the index theorem characterizes the assembly homomorphism ¡1 as the unique 

map sending topological to analytical indices. 

Baum and Connes conjecture that the assembly map provides the link, which allows 

a purely geometric description of the if-theory of reduced group G*-algebras. 

CONJECTURE 1.4 (Baum-Connes Conjecture (BC) [8, (3.15)]) 

Let G be a second countable, locally compact group. Then the assembly map 

(1.11) n:K?(EG)^HC.{C;(G)) 

is an isomorphism of abelian groups. 

1.3. The conjecture with coefficients 

Baum, Connes, and Higson formulate also a much more general twisted version of 

conjecture 1.4 [8]. If D : £o —>• £\ is a G-invariant elliptic operator over the proper 

and cocompact G-manifold M, as considered before, then the topological vector spaces 

So, £\ are simultaneously modules over G and the G*-algebra CQ(M) of continuous 

functions on M vanishing at infinity. One assumes now in addition that 

- So and Si are (right)-modules over an auxiliary G — G*-algebra A, 

- The A-action on So, Si commutes with D and the action of Go(M), 

- The module multiplications CQ(M)<8>£ —> S and £®A-> £ are G-equivariant. 
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These conditions imply that the kernel and the cokernel of D are simultaneously 

G-modules and A-modules, i.e., they are modules over the following C*-algebra. 

DEFINITION 1.5. — The reduced crossed product of a locally compact group G acting 

on a C* -algebra A is the closure (in operator norm) of the image of the twisted group 

Banach algebra LX(G,A) under the (left)-regular representation: 

( 1 . 1 2 ) C*r{G,A) = iries(Li(G,A)) c £(L2(G,H)), 

( 1 . 1 3 ) (f*0(g)= [ <9-x • f{g')WW, 

Vf€L\G,A), V £ e L 2 ( G , f t ) , 

where TT : A —> C(H) is any faithful representation. (The algebra C*(G,A) is inde­

pendent of the choice ofir.) 

As before, one may define a twisted analytical index 

( 1 . 1 4 ) lnd°>A(D)€K0(C*r(G,A)), 

and a twisted topological index 

( 1 . 1 5 ) Indf >A(D) e i f ? ( £ G , A). 

Here the groups if^(—, A) denote a twisted form of topological if-homology for proper 
G-spaces. Again, there is a corresponding twisted assembly map, which leads to an 
index theorem with coefficients. 

Example 1.6. — If G = 1 and A = G ( X ) , X a compact Hausdorff space, then 
if*(G*(G, A)) ~ K^(EG,A) ~ K*(X) and the previous index theorem equals 
the index theorem of Atiyah-Singer [4] for families of elliptic operators parametrized 
byX. 

Baum, Connes, and Higson conjecture that the twisted assembly map allows a 
geometric description of the if-theory of reduced crossed product G*-algebras. 

CONJECTURE 1.7 (Baum-Connes Conjecture with Coefficients (BCcoeff) [8, (6.9)]) 
Let G be a second countable locally compact group and let A be a separable 

G-C*-algebra. Then the assembly map 

( 1 . 1 6 ) H G t A ) : Kf{EG;A) —> K,(C;(G,A)) 

from the topological i f -homology with coefficients in A of a universal proper G-space 

EG to the i f -theory of the reduced crossed product G*-algebra of (G, A) is an isomor­

phism of abelian groups. 

Remark 1.8. — For A = C this is just the Baum-Connes conjecture for G. 

Remark 1.9. — If B C c o e f f holds for a given group G, then it holds for all its closed 

subgroups H. More specifically, B C c o e f f for G and A = CQ(G/H) implies BC for H. 
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2. H O W TO PROVE THE CONJECTURE 

Classical index theory was not only the point of departure for the developments 
that led to the Baum-Connes conjecture. Up to now, all attempts to prove it were 
inspired by Ativan's index theoretic proof of the Bott periodicity theorem [2], and 
rely essentially on Kasparov's bi variant if-theory. 

2.1. Kasparov's bivariant K-theory 

Kasparov's bivariant if-theory [30, 32, 15] provides the correct framework and the 
most advanced technology for the study of (higher) index theory and the if-theory of 
operator algebras. It associates to a pair (A, B) of C*-algebras a Z/2Z-graded abelian 
group i f i f * (A, B), which is contravariant in A and covariant in B. There is a natural 
isomorphism 

(2.1) if*(A) ^ i f i f * ' ( C , A ) . 

The bivariant if-functor is in both variables 
- stable, i.e., it turns the inclusion 

(2.2) A <-> YimMN(A)~A®C*K>(U) 

into an isomorphism, and 
- split exact, i.e., it maps splitting extensions of C*-algebras into split exact 
sequences of abelian groups. 

The key property of Kasparov theory is the existence of a natural associative product 

(2.3) KK*(A,B)®KK*{B,C) —*KK*{A,C), 

making the groups KK*(A,A) into unital and associative graded algebras. 
Contrary to ordinary operator if-theory, bivariant if-theory can be characterized 

by a simple axiom. The Kasparov product allows to define an additive category /C/C 
with (separable) C*-algebras as objects and the even bivariant if-groups as mor-
phisms: 

(2.4) Obicjc = C* - Alg, MOTJCK(A9B) = KK°(A, B). 

THEOREM 2.1 (Cuntz [14], Higson [21]). — Every stable and split exact functor from 
the category of C*-algebras to an additive category factors uniquely through /C/C. 

In particular, there is a natural transformation 

(2.5) KK*{A,B) —» Hom*(if*,4, K*B). 

For a given locally compact group G, there exists an equivariant bivariant if-theory 
ifif<3 on the category of separable G-C*-algebras [32], which is characterized by a 
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similar universal property [45, 51]. The universal property implies the existence of 

natural "Descent" transformations 

(2.6) KK%(A,B) —*Hom*(if*(Gr*(G,,4®G)), if*(G r*(G, £ (g) G))), 

which are compatible with the Kasparov product. (Here C is an auxiliary coefficient 

G*-algebra and the symbol 0 denotes either the maximal or the minimal G*-tensor 

product. For commutative C, the only case we need, both tensor products coincide.) 

To apply the theory, one needs an explicit description of bivariant if-groups as 

homotopy classes of if-cycles and means to calculate their Kasparov products. We 

give such a description in the case A = B — C. 

DEFINITION 2.2 (Kasparov [32]). — Let G be a (second countable) locally compact 

group. Then the ring KKQ(C, C) of Fredholm-representations of G is given by the set 

of homotopy classes of triples 

(2.7) £ = {U±,p±,F), 

where H± is a Z/2Z-graded (separable) Hilbert space, equipped with an even unitary 

representation p± of G, and F : H± -> HT is an odd, bounded linear operator such 

that 

(2.8) F2 — Id £ KCH*) andg^[F,p±(g)\ e G ( G , / C ^ * ) ) . 

Here K(Ji^) denotes the algebra of compact operators on 7i±. 

If one writes F = (2 o)> t n e n t n e conditions (2.8) state that u and v are almost 
equivariant Fredholm operators, which are inverse to each other modulo compact 
operators. 

If G is compact, then the Fredholm representation ring coincides with the ordi­

nary representation ring. For G abelian, i f i f^ (C, C) is canonically isomorphic to the 

topological (Steenrod)-if-homology of the dual group G, viewed as locally compact 

topological space. 

2.2. The 7-element 

All attempts to prove the Baum-Connes conjecture rely up to now on Kasparov's 

"Dirac-Dual Dirac" method [32], which can be viewed as nonlinear version of Atiyah's 

proof of equivariant Bott-periodicity [2]. Suppose for simplicity that there exists a 

G-manifold M , which serves as a model for the universal proper G-space EG. Then 

there exists a canonical class 

(2.9) a e i f i f G ( G 0 ( r * M ) , C ) , 
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which induces the Baum-Connes map under descent (modulo Poincaré-duality). So 
the assembly map with coefficients factorizes as 
(2.10) 

HG.A • K?(EG,A) = K?(M,A) ™ K*(C;(G,C0(T*M,A))) K*(C*(G,A)) 

for any G-C*-algebra A. The key idea is to show that the class a is invertible with 
respect to the Kasparov product. The Baum-Connes conjecture with coefficients 
follows then simply by descent. In full generality Kasparov's approach to the Baum-
Connes conjecture can be summarized as follows: 

THEOREM 2.3 ("Dirac-Dual Dirac" Method [32, 23]). — Let G be a locally compact 
group. Suppose that there exist a locally compact proper G-space X and elements 
a e i f i f g ( G 0 ( X ) , C ) arid p e i f i f n ( C , G 0 ( X )) , n = dim(X), such that 

(2.11) 7 = 0 ® а € 1 П Г & ( С , С ) 

satisfies res^f^y) = 1 G i f i f # (C ,C) for every compact subgroup H of G. Then the 
Baum-Connes assembly map (with coefficients) for G is split infective. If moreover 

(2.12) 7 = l e i f i f G ( C , C ) , 

or if at least the image of 7 under descent (2.6) equals the identity, then the Baum-
Connes conjecture (with coefficients) holds for G. 

The 7-element of the previous theorem is unique if it exists [52]. 

3. STATUS OF THE CONJECTURE 

The Baum-Connes map provides a link between a rather well understood geometric 
object, the equivariant if-homology of a certain classifying space of a group, and a 
quite mysterious analytic object, the if-theory of its reduced group G*-algebra. The 
Baum-Connes conjecture appears therefore as quite deep and surprising. It has two 
aspects: the injectivity of the assembly map (1.11), which has important implications 
in geometry and topology, and its surjectivity, which proved to be a much more elusive 
problem. 

The injectivity of the Baum-Connes map with coefficients is known for all con­
nected groups and all groups acting properly and isometrically on a GAT(0)-space. 
Kasparov and Yu [34] recently showed its injectivity for the very huge class of dis­
crete groups, which (viewed as metric spaces with respect to a word metric) admit 
a uniform coarse imbedding (see (3.10)) into a Banach space В with the following 
property: there exist an increasing sequence of finite dimensional subspaces of В with 
dense union, a similar sequence of subspaces of a Hilbert space, and a uniformly con­
tinuous family of degree one maps between the corresponding unit spheres of the two 
families of subspaces. 
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A possible source for counterexamples is the seemingly quite different functorial be­

havior of source and target of the Baum-Connes map. Whereas the left hand side 

of (1.11) is functorial under continuous group homomorphisms, this is not at all ob­

vious for the right hand side. The reduced group C*-algebra G*(G) is functorial 

under proper, but not under arbitrary group homomorphisms. For example, the re­

duced G*-algebra of a non-abelian free group is simple [48], i.e., has no nontrivial 

quotients! It is also easy to see, that the trivial homomorphism G —> 1 gives rise to a 

homomorphism of reduced group G*-algebras iff G is amenable. The Baum-Connes 

conjecture claims that the if-groups if*(G*(G)) should nevertheless be functorial 

under arbitrary group homomorphisms, which is quite surprising. 

At this point one might be tempted to replace the reduced group C*-algebra G*(G) 

by the maximal group G*-algebra G ^ a x ( G ) . The representations of the latter corre­

spond to arbitrary unitary representations of G and G ^ a x ( G ) is therefore fully functo­

rial in G. Examples (see Section 4.5) show however that the corresponding assembly 

map 

(3-1) / W : K?(EG) —> K,(C*max{G)) 

is far from being an isomorphism in general. 

For the conjecture with coefficients, one may study in addition the functoriality with 
respect to the coefficients of source and target of the Baum-Connes map. This time, 
the different behavior of both sides leads to the counterexamples to BCCOeff found by 
Higson, Lafforgue and Skandalis [24]. We will present them at the end of this section. 
On the other hand Bost has defined an assembly map 

(3.2) fiLi : K^(EG, A) —» K*(L\G,A)) 

and conjectures that it is always an isomorphism. This is true for a quite large class 

of groups [36]. In addition, the counterexamples of [24] do not apply to (3.2). 

3.1. Lie groups and algebraic groups over local fields 

Let G be a connected Lie group and let H c G be a maximal compact subgroup. 

The homogeneous space G/H may serve as a model of the universal proper G-space 

EG. If G/H carries a G-invariant 5pmc-structure, the Baum-Connes conjecture 

equals 

CONJECTURE 3.1 (Connes-Kasparov Conjecture [8]). — Let i = dim (G/H) mod 2. 
Then the map 

(3.3) £ : R(H) —• Ki(C;(G)), 

which associates to a virtual representation [V] G R(H) the G-index of the twisted 

Dirac-operator dy on G/H, is an isomorphism of abelian groups. Moreover 

Ki+1(C;{G)) = 0. 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2014 



124 M. PUSCHNIGG 

Conjecture 3.1 was proved for linear real reductive groups by A. Wassermann [53] 
in 1982. He used many deep results in the representation theory of semisimple Lie 
groups. In his thesis [36], V. Lafforgue used geometric methods and employed the 
existence of a 7-element to establish (BC) for real reductive groups as well as for 
reductive algebraic groups over local fields. This work was presented at Séminaire 
Bourbaki by G. Skandalis [50]. 

3.2. Amenable and connected groups 

Following Gromov [18], a locally compact group is called a-T-menable if it admits 
a proper, affine, isometric action on a Hilbert space. This is in some sense com­
plementary to Kazhdan's property (T), discussed in the next section. The class of 
a-T-menable groups contains all amenable groups and all closed subgroups of real and 
complex Lorentz groups. A proper action of such a group G on a Hilbert space is uni­
versal in the sense that the affine Hilbert space may serve as a model for EG. Higson 
and Kasparov [23] view an affine Hilbert space as the limit of its finite-dimensional 
affine subspaces, and use the "Dirac" and "Dual Dirac" elements 2.3 on these sub-
spaces to construct a 7-element 7G for every a-T-menable group G. They show that 
7 = 1 G KKG(C, C), and deduce that BCcoeff holds for all a-T-menable groups. See 
the talk of P. Julg at Séminaire Bourbaki [27] for a detailed account to their work. 
Combining the results of Lafforgue and Higson-Kasparov, Chabert, Echterhoff and 
Nest [12] succeeded finally in verifying BC for all locally compact, connected groups. 

3.3. Discrete groups 

Let G = T be a countable discrete group. We suppose for simplicity that V is 
torsion free. Any contractible, proper and free T-space ET may serve as a model for 
ET and the Baum-Connes conjecture equals 

CONJECTURE 3.2 ([7]). — Let T be a torsion free, countable discrete group and let 
BT be a classifying space for principle-T-bundles. Then the assembly map 

(3.4) / х : К*Г(ВТ) — » . к*{с;{т)) 
is an isomorphism of abelian groups. 

The most important progress up to now was achieved by V. Lafforgue [36, 35], who 
established BC for word-hyperbolic groups in the sense of Gromov and for uniform 
lattices in the higher rank groups SLs(K), K a local field. He and P. Julg [28] were 
the first who overcame the barrier of Kazhdan's Property (T) (which holds for generic 
hyperbolic groups and all higher rank lattices). For both classes of groups there exists 
a 7-element, but it cannot be equal to 1 in the presence of property (T). Nevertheless 
7 acts as the identity on K^(C*(T)) which already implies BC. See also Skandalis' 
report at Séminaire Bourbaki [50]. 
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3.4. The conjecture with coefficients 

The Baum-Connes conjecture with coefficients was previously known only for 
a-T-menable groups by [23], and for hyperbolic groups and commutative (!) coeffi­
cients by the work of Lafforgue [37]. The first proof of BCcoeff for a class of groups 
with Property (T), the Lie groups Sp(n, 1 ) , is due to Julg and sketched in [28]. The 
spectacular recent breakthrough, which is the main topic of this exposé, is again due 
to Vincent Lafforgue: 

THEOREM 3 . 3 (Lafforgue [41]) . — The Baum-Connes conjecture with coefficients 
holds for all locally compact groups acting properly and isometrically on a weakly 
geodesic and locally uniformly finite hyperbolic metric space. In particular, it holds 
for all word-hyperbolic groups. 

Contrary to the Baum-Connes conjecture, which is open at the moment, the Baum-
Connes conjecture with coefficients is known to be false in general. 

3.5. A counterexample 

In recent years Gromov's spectacular theory of "Random Groups" [19, 16] has 
been used to produce various counterexamples to open questions in geometric group 
theory and operator algebras. One instance is the following counterexample to the 
Baum-Connes conjecture with coefficients, which is due to Higson, Lafforgue, and 
Skandalis [24] . It is based on the possibility of embedding some expander graphs 
coarsely and uniformly into the Cay ley graphs of random groups. 
As indicated before, it is the different functorial behavior of source and target of the 
Baum-Connes assembly map //(G,A)? which leads to the desired counterexamples. The 
main idea is the following. Let Y be a discrete group. Suppose that there exists an 
extension 

( 3 . 5 ) 0 - > J - > i 4 - > B - X ) 

of r-C*-algebras ( / C A an ideal and B ~ A/I), such that the upper line in the 
commutative diagram 

# . ( c ; ( r , j ) ) • K.(C;(T,A)) • K*(c*r(r,B)) 
( 3 . 6 ) } I I 

Kl(ET,I) • Kl{ET,A) > Kl(ET,B) 

is not exact in the middle. As the lower line is always exact in the middle, one deduces 
that the vertical arrows, given by the corresponding Baum-Connes assembly maps, 
cannot all be isomorphisms, as the Baum-Connes conjecture with coefficients predicts. 
The key point is therefore to find a projector p 6 C*(T, A), whose class in iif-theory 
is not in the image of J f*(C*(r , / ) ) , and which maps to 0 in C*(r, B). 
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Recall that the Laplace operator A : £2(Q) —> £2(Q) on a graph Q of bounded 

valency is the positive bounded linear operator given by 

(3-7) A / ( x ) = ( / ( * ) " / ( » ) ) . 
d(x,y)=l 

where the sum runs over the set of all vertices y adjacent to x. If Q is finite, then the 

kernel of A coincides with the space of locally constant functions. 

A sequence (Qn),n € N, of finite connected graphs of uniformly bounded valency is 

an expander [20, 9], if their cardinality tends to infinity 

(3.8) lim j ( ( £ n ) = oo, 
71—>-00 

and if their Laplace operators have a uniform spectral gap. i.e., 3e > 0 : 

(3.9) Sp(A(Gn)) n ]0, e[ = 0 , Vn G N. 

The Cayley graph Q(T, S) of a finitely generated group (T, S) has the group V itself 

as set of vertices, and two vertices g,h G T are adjacent iff g~xh G S. 

Now, according to Gromov [19, 16, 1], it is possible to imbed a suitable expander 

coarsely and uniformly into the Cayley graph of some finitely generated group (T, S). 

This means that there exists a sequence i n : —»• G°(T, S), n G N, of maps of vertex 

sets, such that 

(3.10) Po(dGn(x,y)) < dg(T,S)(in(x),in(y)) ^ p\{dgn(x,y)), Vx,y G £ n Vn G N, 

for some monotone increasing, unbounded functions po? Pi : ^ + ~* The coarse 

imbeddings i n (which we suppose to be injective to simplify notations) may be used 

to "transport" the Laplace operators of the expander graphs to an operator on £2(T). 

To be precise set 

(3.11) e n : e2(gn) -> t2(Y), ex ^ ein(x) 

and put 

(3.12) A' n = e n A ( £ n ) e ; + ( i - e n e ; ) G c(£2(r)). 

Consider the operator A' = 0 n A'n on the Hilbert sum H = ®n £2(T) = £2(N x T). 

The reduced crossed product C*(T, Cb(N, CQ(T))) acts faithfully on H. The operator 

1 —A' may be written as a finite (!) sum J2gfg
ugi fg ^ C&(N, Co(r)) because of (3.10) 

and the fact that the propagation speed of the Laplace operator on a graph is equal to 

one. In particular 1 - A ; G C C ( I \ Cb(N, C0(T))) C C*{T, C 6(N, C0(T))). It is a positive 

operator which, according to (3.9), has a spectral gap, i.e., Sp(A') fl ]0, e[ = 0 . The 

spectral projection p' = 0 n p'n onto 

(3.13) Ker(A') = 0 Ker(A;) = 0C 

n n 

may thus be obtained from A' by continuous functional calculus, so that 

(3.14) p'eC;(r,Cb(N,C0(T))). 
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This is the projection we are looking for. As an element of the reduced crossed 

product, it can be uniquely written as infinite sum p' = ^2g fg ug, fg E Cb(N, Co(T)), 

g e T It follows from (3.12) and (3.8) that 

(3.15) / s e C 0 ( N , C o ( r ) ) , V s e r . 

Consider now the extension 

(3.16) 0 -> C 0 ( N , C 0 ( r ) ) -+ C 6 ( N , C 0 ( r ) ) Q -+ 0 

of r-C*-algebras. On the one hand, the image of the projection pf e C*(T, C&(N, Co(T))) 

in C*(T, Q) is zero by (3.15). On the other hand, its if-theory class 

(3.17) b'l e K0(c:(T,cb(N,cQ(T)))) 

does not lie in the image of K0(C*(T, C 0(N, C0(T)))) = lh^K0(C;(T, C0(T))) because 
n 

(3.18) 7r„([p']) = K] ^ 0 e 2fo(C;(r,Co(T))) = K0(IC(£2(T))) ~ Z, Vn G N. 

In this way Higson, Lafforgue and Skandalis obtain the desired counterexample. 

4. K A Z H D A N ' S PROPERTY (T) A N D ITS GENERALIZATIONS 

The most important classes of groups, for which the Baum-Connes conjecture is 
unsettled, are simple linear groups of split rank ^ 2 over local fields, where BCcoeff 
is open, and lattices in such groups where already BC is unknown in most cases. 
These classes are distinguished by their astonishing rigidity properties [42]. They also 
provide the most prominent examples of groups with Kazhdan's property (T), which 
plays a key role in rigidity theory, and has important applications in operator algebras, 
representation theory, and graph theory [20, 9, 42]. In this section we report what is 
known about V. Lafforgue's strengthened versions of Property (T) [38], and outline 
its applications to graph theory and rigidity theory [39]. Strengthened Property (T) 
appears also to be very serious obstruction against a possible "Dirac-Dual Dirac" 
approach to the Baum-Connes conjecture [40]. 

4.1. Property (T) 

Recall that a locally compact group G has Kazhdan's Property (T) if the following 

equivalent conditions hold: 

- The trivial representation is an isolated point in the unitary dual of G. 

- Every unitary representation 7r of G with almost invariant vectors, i.e., 

Ve > 0, \/K C G compact, 3£ e H - { 0 } : \\<K(g)£ - f || < e||£||, V# <E K, 

contains nonzero fixed vectors. 

- Every continuous isometric affine action of G on a Hilbert space has a fixed 
point. 
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- There exists a projection p G C*(G), such that for any unitary representation 
(7r,H) of G the operator 7r(p) G equals the orthogonal projection onto 

Here C*(G) denotes the "full" group C*-algebra, i.e., the enveloping C*-algebra of 
the involutive Banach algebra Ll(G). 

Examples of Kazhdan groups: 

- Compact groups, 
- Simple algebraic groups of split rank at least two over local fields and their 
lattices. 
- Many hyperbolic groups, for example lattices in the simple Lie groups Sp(n, 1 ) , 
n > 1, or ^ 4 , - 2 0 of real rank one. 
- Generic, randomly produced hyperbolic groups [19]. 

Basic examples of groups without Property (T) are free groups and non-compact 
amenable or a-T-menable groups. 

4.2. Lafforgue's Strengthened Property (T) 

In recent years various generalizations of Property (T) have been proposed. These 
deal with larger classes of representations than the unitary ones. A first example is 

DEFINITION 4 . 1 (Bader, Furman, Gelander, Monod, [6]) 

a) A locally compact group G has Property ( T ) U C ; if every isometric representation 
of G on a uniformly convex Banach space with almost invariant vectors has non zero 
fixed vectors. 

b) A locally compact group G has Property(F) u c, if every affine isometric action 
of G on a uniformly convex Banach space has a fixed point. 

Lafforgue goes one step further and allows not only isometric representations, but 
representations of weak exponential growth. 

DEFINITION 4 . 2 (Lafforgue). — Let G be a locally compact group with a proper, con­
tinuous and symmetric length function £ : G —> R+, and let A > 1. A continuous 
representation IT of G on a Banach space B is of exponent A (with respect to £) if 

( 4 . 1 ) H 7г НА = sup II тг(д) | | д в ) < о о . 
geG 

The representations of G of exponent A on a self-dual class of Banach spaces B give 
rise to representations of the corresponding involutive Préchet algebra [35] 

( 4 . 2 ) Cx(G,£,B) 
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obtained by completion of the convolution algebra of compactly supported continuous 

functions on G with respect to the seminorms 

(4.3) l l / I U = sup | | 7 r ( / ) | | £ ( B ) > N G N. 
(* ,B) , 

The supremum is taken over all representations (7r, B) of exponent A > 1 and A-norm 

I M U < i V o n a space B e B. 

DEFINITION 4.3 (Lafforgue [38, 39]) 

a) Let B be a class of Banach spaces which is closed under taking duals. A locally 

compact group G has Lafforgue's Property ( T | t r o n g ) , if for every proper symmetric 

length function £ on G, there exists A > 1 and a self adjoint idempotent p\ G C\(G, £, B) 

such that 

(4.4) IT(PX)(B) = B*W 

for every representation {TT,B) of exponent X on a Banach space B G B. Such an 

idempotent is unique and central in C\(G,£,B). 

b) It satisfies Property ( T ) ^ n g if ( T § t r o n g ) holds for B = {Hilbert spaces}. 

c) It possesses Property (T)^"* 1 1* if ( T g t r o n g ) holds for every class B which is 

(uniformly) of type > 1. This means that there exist n G N and e > 0 such that no 

n-dimensional subspace of any B G B is (1 -f e)-isometric to £\. 

Note that every uniformly convex space is of type > 1. The relations between these 

properties are displayed below. 

(4.5) 

(T )Ban S t r o n s ( F ) u c = > (T)„ 

( T C b n g > (T) 

4.3. Results 

Concerning the strengthened property (T) one observes a strict dichotomy between 

groups of "split rank one" and "higher rank" groups. Despite the fact that they 

generically satisfy the ordinary Kazhdan property, word-hyperbolic groups are very 

far from sharing the strengthened versions of property (T). 

THEOREM 4.4 (Lafforgue [38]). — Word-hyperbolic groups do not satisfy ( T ) ^ n g . 

Lafforgue's proof is closely linked to his work on the Baum-Connes conjecture and 

will be explained in Section 5. The following remarkable result of Yu asserts that 

hyperbolic groups do not have property ( F ) u c either. 
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THEOREM 4.5 (Yu [54]). — Every hyperbolic group admits a proper, isometric, affine 

action on an £p-space for p G ]1, oo[ sufficiently large. 

Yu's construction of the desired affine action is related to an explicit description of 

the 7-element of a hyperbolic group. 

For higher rank groups and their lattices however, many (and conjecturally all) 

strengthened versions of the Kazhdan property hold. 

THEOREM 4.6 (Lafforgue, [38]). — A simple real Lie group, whose Lie algebra con­

tains a copy of SI3, satisfies ( T ) ^ j £ n g . The same holds for its uniform lattices. 

THEOREM 4.7 (Lafforgue [39]). — A simple linear algebraic group over a non-

archimedian local field, whose Lie algebra contains a copy of SI3, satisfies ( T ) j ^ ° n g . 

The same holds for its uniform lattices. 

This result has applications in graph theory. It is well known that an expanding 

sequence of graphs (3.8), (3.9) cannot be imbedded uniformly (3.10) into Hilbert 

space. 

THEOREM 4.8 (Lafforgue [39]). — Let (T, S) be a uniform lattice in a simple alge­

braic group over a non-archimedian local field, whose Lie algebra contains a copy of 

${3. Let ( T n ) , n G N, be a sequence of finite index normal subgroups ofT, whose inter­

section is 1. Then the sequence of (finite) Cayley graphs (Q(T/Tn), 7r(S)) cannot be 

imbedded uniformly in any Banach space of type > 1. 

Recently, Mendel and Naor [43],[44] used completely different methods to 
construct huge families of expanders which do not admit a uniform embedding 
into any uniformly convex Banach space. 

4.4. Proofs 

Let G = SLs(F), F a local field. Let K be a maximal compact subgroup of G. 

Lafforgue's key observation (which generalizes the Howe-Moore property of unitary 

representations [25]) is that the matrix coefficients of if-invariant vectors in represen­

tations of sufficiently small exponent tend very quickly (exponentially fast) to a limit 

at infinity: 

(4.6) \{Z,n(9)v) ~ <*,„! = 0{e-»WeW), 

where (n, B) is a representation of G of exponent A, £ G B*, n G B are If-invariant 
vectors, and /x(A) > 0 if A is close to 1. (Here B is a Hilbert space in the archimedian 
case and a Banach space in a class B of type > 1 in the non-archimedian case.) 
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It is then easy to see that for a fixed, compactly supported positive function of 

mass one \ € CC{G) the family 

(4.7) fg : x K > / x{hgxk2)dk1dk2, g G G, 
JKxK 

of if-biinvariant, compactly supported functions on G tends to a limit 

(4.8) lim f9 = P x e Cx(G,i,B) 
g->oo 

as g G G tends to infinity. It follows from a non-spherical version of (4.6) that p\ 

is the desired "Kazhdan"-projection. It is selfadjoint as limit of selfadjoint functions. 

This establishes 4.6 and 4.7. 

We outline Lafforgue's strategy for proving the decay estimates (4.6) in the 

non-archimedian case. 

Let F be a non-archimedian local field with ring of integers O and residue field 

Fq. Let G = SL(3,F) and put K = SL(3,(9). There is a Cartan decomposition 

G = KA+K with 

(4.9) A+ - { d i a g ( 7 T - i l , 7 r - i 2 , 7 r - i 3 ) , i i - f i 2 + i 3 = 0, i i > i 2 > i 3 } , 

where TT denotes a fixed uniformizing element of F. A canonical if-biinvariant proper 
length function on G is given by 

(4.10) £(kak') = ii(a)-i3(a). 

Let B be a class of type > 1 of Banach spaces, which is closed under taking duals. 

Let (7r, B), B G B, be a representation of G of exponent A and denote by (7r, B*) its 

contragredient representation. Let rj G B, £ G J5* be if-invariant unit vectors. The 

corresponding matrix coefficient g H - » ( £ , 7r(g)r}) is then determined by its values 

(4.11) c(i1-i2,i2-h) = (^7r(diag(7r~n,7r~12,n~l3))r]), h+i2+h = 0, h ^ i 2 ^ i 3 . 

Fix integers m > n > 0, m + n G 3N. Lafforgue finds two finite families ( a ^ e / , (pj)jeJ 
of elements of G / i f (considered as points of the affine building), and a matrix 
T G M/ j (C) satisfying 

a) -£(a;) = m, ^(fy) = n, Vz G / , V? G J. 

b) | / | = q2™, \J\ = 

c) The Schur product f G M/ j (C) , T -̂ = Ty (7r(aj)f, n(bj)ri), satisfies 

(4.12) |J |"i J ^ T l j = c ( r a - n + 2 , n - 1) - c(m-n,ri). 
i,3 
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d) The norm of the operator T <g>idB : L2( J, B) —• L 2 (7 , J3) is bounded by the 

norm of the (normalized) Fourier transform 

(4.13) TB

A : L2(A, B) L 2 ( i , B), / H- ( X p £ X(o)/(o)) 

on a finite abelian group A = of order | J\i. 

This allows Lafforgue to bring Fourier analysis on finite abelian groups and the 

geometry of Banach spaces into play. According to Bourgain [11], the (normalized) 

Fourier transform satisfies a uniform bound of the type 

(4.14) || = OMAra), " = > 0, 

for every finite abelian group A and every Banach space B in a class B of type > 1. 

Lafforgue derives thus from (4.12) the estimate 

(4.15) \c(m — n + 2, n — 1) — c(m — n, n)| 

^ Hill ^ I I ^ J ^ m a x l l T r ^ ||)(ngx||7r(6 i)'/ll) 

< h\\l(q-a)n*m+n-

This, together with the analogous estimate obtained by exchanging the roles of m 
and n, implies for A > 1 sufficiently close to 1 the exponential decay of differences of 
matrix coefficients. Claim (4.6) follows then by a simple Cauchy sequence argument. 

4.5. Relation to the Baum-Connes conjecture 

It was realized very early by A. Connes, that Kazhdan's Property (T) might be a 

serious obstruction against the validity of the Baum-Connes conjecture for a noncom-

pact group. At least Kasparov's original "Dirac-Dual Dirac" method cannot possibly 

work in the presence of Property (T). 

To see this, recall that the unitary representations of a locally compact group G 
correspond bijectively to the representations of its full group C*-algebra C*(G). In 

particular, there are epimorphisms 7 r r e g : C*(G) —> C*(G) and 7rtriv ' C*(G) —> C 
corresponding to the regular and the trivial representation of G, respectively. 

Now Connes argues as follows. 

For every locally compact group G one may construct an assembly map with values 

in the if-theory of the full group C*-algebra. It fits into the commutative diagram 

Mmax : Ktop(EG) • K*(C*(G)) 

(4.16) *reg. 

H : Ktop(EG) • tf.(C;(G)). 
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Suppose that there exists a 7-element for G, which equals one: 7 = 1 G i f i f G ( C , C). 

Then both assembly maps have to be isomorphisms and one deduces that 7 r r e g * is a 

bijection. If G has Kazhdan's Property (T) while not being compact, then the class 

[p] G Ko(C*(G)) of the Kazhdan projection is nontrivial because 7Ttriv([p]) = 1 € 

KQ(C) = Z, but maps to zero in KQ(C*(G)) because the regular representation of a 

non compact group has no fixed vectors. Thus 7 ^ 1 for a non compact group with 

Property (T). 

A beautiful argument of Skandalis [49] shows that for hyperbolic groups with Prop­

erty (T) even the image of 7 under descent to bivariant if-theory [32] differs from 1: 

(4.17) jr(rr) ± jr(l) = 1 e KK{C*R{Y), c:(T)). 

Nevertheless, it is sometimes possible to show that 7 maps to the identity under 

descent (2.6) even for property (T) groups. The idea, originally due to Julg [26], is 

to find enlarged versions i f i f of bivariant if-theory, which will not have particularly 

nice properties, but allow to factorize the descent map as 

(4.18) i f i f r ( C , C ) i f i f r ( C , C ) -> Hom(if*(G r *(r ,A)) , i f*(G r *(r ,A))) , 

and satisfy 

(4.19) [7] = [1] € KKR(C,C)-

In [36], Lafforgue developed a bivariant if-theory for Banach algebras to deal at 
least with (BC). In the case with coefficients, the absence of (T)J^j£ n g for word-
hyperbolic groups (4.4) enables Lafforgue to construct the desired homotopy between 
7 and 1 using bivariant if-cycles, whose underlying representations are of small ex­
ponential growth [41]. For general higher rank lattices property (T)^*i£n s is a very 
serious obstruction against an implementation of the "Dirac-Dual Dirac" approach. 
Lafforgue explains in [35, 40] that the only known way to establish (4.18) and (4.19) 
consists in finding a homotopy between 7 and 1 among representations which define 
bounded Schur multipliers on some isospectral subalgebra of C*(T). For lattices in 
SLs(F), F a local field, the existence of such an algebra would contradict (4.12). In 
fact, it was this circle of ideas which led Lafforgue to the invention of Strengthened 
Property (T). 

5. LAFFORGUE'S APPROACH 

In this last section we discuss Lafforgue's proof of the Baum-Connes conjecture 
with coefficients for word-hyperbolic groups [41]. Recall that a geodesic metric space 
(X, d) is hyperbolic [17], if there exists S > 0, such that for any points a, 6, c G X 

(5.1) x G geod(a, c) d(x, geod(a, b) U geod(6,c) ) < 8, 
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where for any (nonempty) subsets A,BcX 

(5.2) geod(^, B) = {x £ X , 3a e A, 3b £ B, d(a, x) + d(x, 6) = d(a, 6)} 

denotes the union of all geodesic segments joining a point of A and a point of B. 
A finitely generated group T is word-hyperbolic [17], if for one (and therefore every) 
finite symmetric set of generators S the Cay ley-graph Q(F,S) is a hyperbolic metric 
space. An important class of word-hyperbolic groups is provided by fundamental 
groups of compact Riemannian manifolds of strictly negative sectional curvature. 

There is a distinguished class of models for the universal proper T-space ET of a hyper­
bolic group: the Rips complexes [17]. For fixed R > 0, the Rips complex A f ( r , d s ) 
is the simplicial set of finite, oriented subsets of T of diameter at most R: 

(5.3) S' £ A*(T,ds) ^ S ' c T , \S'\ =p+ 1, diam(S') ^ R. 

(Here and in the sequel we will use the same notation for a Rips-simplex and its 
underlying set.) The natural action of T on A ^ ( r , d s ) induced by left translation is 
simplicial and proper. For hyperbolic groups the Rips complex is in addition con­
tract ible, provided that R is sufficiently large. It may therefore serve as model for 
ET. The associated chain complex 

n 

(5.4) ( C ( A ? ( r , d s ) ) , 0 ) , d(g0,...,gn) = ^ ( - 1 ) ' too, • • • • • • ,9n) 
i=0 

is a T-finite and T-free resolution of the constant T-module C. 

Various authors [33, 36, 41] have constructed 7-elements (2.11) for hyperbolic 
groups. 

THEOREM 5.1 (Kasparov, Skandalis [33]). — For a suitable choice of a hyperbolic 
distance d' on T, a square zero contracting chain homotopy h (see 5.2) of (C (A^) , d), 
and R,t^>0 sufficiently large 

(5.5) 0? 2 (Af), e t d*o (d + h) e-td'*o) 

defines a bounded K-cycle representing 7 G KKT'(C, C) . 

The if-cycle (5.5) is in fact a slightly modified version of the original 7-element of 
Kasparov and Skandalis. It is better adapted to Lafforgue's needs [36]. 

Suppose for a moment, that the if-cycles (5.5) were well defined for all t ^ 0. 
Then for t = 0 the if-cycle ( ^ 2 ( A f ) , d + h) would represent 1 G KKr(C, C) (because 
d is strictly equivariant), and the continuous family (5.5) would provide the desired 
homotopy between 7 and the unit if-cycle. 
As we know, this is too much to hope for, because many hyperbolic groups have 
Kazhdan's property (T), which rules out the existence of such a homotopy. However, 
according to Lafforgue, hyperbolic groups do not satisfy his strengthened property (T). 
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So one may still hope to find a homotopy as above among Hilbert spaces with T-action 
of small exponential growth. Lafforgue's main theorem states that this is indeed the 
case: 

THEOREM 5.2 (Lafforgue [41]). — Let (T, S) be a word-hyperbolic group, let R > 0 
be large enough so that the Rips complex A f (T, ds) is contractible, and let xo G Ao 
be a base point. Fix A > 1. Then there exist 

- a Hilbert space W,Xo,\ = C(A^(T, ds)), given by a completion of the Rips 
chain complex, 

- a hyperbolic distance d! on V such that d! — d is bounded, 

- a contracting square zero chain homotopy of the Rips complex, i.e., a linear 
map 

hX0 : C(A?(T,d s)) -+ C ( A ? + 1 ( I \ d s ) ) 

satisfying 

(5.6) h2

XQ = 0, d o hX0 + hXo o d = Id - p X o , Im{pXo) = Cx 0 , 

such that the following hold: 

a) The maps Ft = etd'xo(d + hXo)e'td'xo, where d'XQ : A f (T,ds) -> M+ denotes the 
distance from the base point, extend to a continuous family of bounded linear operators 
on UXo,\. 

b) The natural action ofT on C ( A f (T, ds)) extends to a continuous representa­
tion 7r of exponent A on WXo,\. 

c) The operators [Ft, n(g)] are compact for all g G T and all t G R+. 

In particular, the generalized K-cycles 

(5.7) St = (WxcA, etd*o(d + hXo)e~td*o) 

define an exponent-X-homotopy between 1 G KKr(C,C) and 7 G KKr(C,C). 

The key point is the existence of the desired homotopy for all X > 1! Now one has 
left the framework of Kasparov's bivariant if-theory, but an argument of Higson ([40, 
(2.12)]) shows that the previous theorem still implies BCCOeff- Thus 

COROLLARY 5.3 (Lafforgue [41]). — The Baum-Connes conjecture with coefficients 
is true for all word-hyperbolic groups. 

The demonstration of Lafforgue's theorem requires almost 200 pages and is ex­
tremely complicated. We therefore can only outline the strategy of the proof and 
have to refer to the original paper [41] for details. 

S O C I É T É M A T H É M A T I Q U E D E F R A N C E 2 0 1 4 



136 M. PUSCHNIGG 

5.1. The case of free groups 

We will study free groups first because the proof of Lafforgue's theorem for free 
groups is easy and suggests the right strategy for the general case. The fact that 
7 = 1 for free groups is due to P. Julg and A. Valette [29]. Their work inspired the 
line of thought followed here. 
Let r = F2 be the nonabelian free group on two generators s, t, and let S = {s^,^1}. 
The geometric realization of the Rips complex X* = A f , R = 1, is a tree. Once a 
base point has been chosen, for example XQ = xe G Xo = F2, there is a canonical 
contracting simplicial homotopy hXo of the tree X*: every vertex is sent to the unique 
simplicial geodesic joining it to the origin. The operators [Ft, n(g)] for this homotopy 
and for the original metric d — d! are of finite rank and will be compact, once they 
are bounded. The whole problem therefore boils down to find the right Hilbert space. 
Rewrite the contracting homotopy as hXo — ̂ 2r hXQ,r, where hXQ,r : C(Xo) — C ( X i ) 
sends a vertex to the edge at distance r on its geodesic journey to the origin x$. 
By definition hXQ,r(xg) = 0 if £(g) < r. The first step is to replace the ^2-norm on 
C(XQ) by the graph norms of the operators hXo,r : £2(X0) -> £2(Xi). For A > 1 and 
/ G C(Xo) one puts 

o o 

(5-8) H / l & . A . p r e l = l l / I I ^ X o ) + E A 2 r H ^ o , r ( / ) | | | 2 № ) 
r=l 

(note that the sum is finite) and gains the boundedness of h : Wx^prei —* ^ 2 ( ^ i ) -
Lafforgue gives a geometric description of a closely related Hilbert space, which applies 
immediately to general hyperbolic groups. Let ex, x E X*, be the canonical basis 
of C(X*) and let lx, x G X*, be the dual basis. The operator hx,\ provides an 
identification e : Xo - {#o} ^ X\. The norm (5.8) can then be rewritten as 

(5-9) || - ||LA>prel = £ l ^ l 2 + E x2r\hioAky))\2> 
xeX0 y€X0-{x0} 

where hXQr denotes the transpose of hXQ,r. One has 

(5.10) /£0,r(Jc(y)) = E l-
veF\XQ(y,r) 

where FlXQ(y,r) is the flower based at y of height r, i.e., the set of vertices in Xo, 

which lie at distance r from y and pass through y on their journey to the origin. 

An alternative way to describe flowers is the following. Let B(xo,k) be the ball 

around xo of radius k = d(xo,y). Then every geodesic path from elements v,vf G 

Fl X o (y, r) to a vertex w in B(xo1 k) will pass through z. Consequently 

(5.11) d(v, w) = d(v, y) + d(y, w) = d(vf, y) + d(y, w) = d(v', w). 
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The flowers over B(xo, k), i.e., the flowers of arbitrary height and based at points of 

the fc-sphere around XQ appear thus as the equivalence classes of points of Xo —B(xo, k) 

with respect to the equivalence relation 

(5.12) TZk : x ~ x' d(x,z) = d{x',z), VzeB(x0,k) 
k 

0 k 
on Xo. Denote by YXQ the set of equivalence classes of 1Zk> These are the flowers 

over B(xo,k) and the points of B(xo,k). The height r of a flower Z G YXQ equals 

r = d(xo, Z) — k. Now Lafforgue defines the Hilbert space HXo,\,o as the completion 

of C ( X 0 ) with respect to the norm 

(5.13) ii - i i 2 0 f A | 0 = E E * 2 { M - k ) E • 
k=o zeY0* v ^ z 

In this formula the sum over the terms satisfying d(xo, Z) — k > 0 gives exactly the 

second term on the right hand side of (5.9) by (5.10), whereas the sum over the other 

terms equals a constant multiple of the first term of the right hand side of (5.9). In 

particular, the norms (5.9) and (5.13) are equivalent. 

Let us have a closer look at the group action on W X O ,A,O- The norm on this Hilbert 

space is defined purely in terms of the geometry of the Cayley graph (tree) of (F2,S), 

but depends heavily on the choice of the base point XQ. Calculating the norm of the 

operator 7r(g) amounts therefore to bound the norm || — H^ ' ^o with respect to the 

new base point x'Q = g~xxo in terms of the original norm || — | |X 0 ,A ,O- TO this end 

one has to express each flower Zf G Yx) over a ball around XQ as a disjoint union of 

flowers Zi G YXQ

 1 over balls around #o- Such a decomposition is not unique, and one 

is interested in decompositions with as few flowers as possible. Let Z' = Fl x/ (y, r) be 

a flower based at y. If y does not lie on the geodesic segment geod(#o, #o) joining XQ 
and x'0, then Z' = Fl x/ (y, r) = Fl X o (y, r) is simultaneously a flower over balls around 

XQ and x'0. If y G geod(#o, x'0), then 

( 5 . 1 4 ) Z' = l[Zj 

3 

is the disjoint union of at most C(T, S)(d(xo,xf

Q) + 1) flowers Zj = FlXo(yj,rj) over 

balls around #o whose base point lies at distance 1 from geod(#o, #o) a n o ^ which satisfy 

(5.15) d(x0,Zj) > d(x0,Z') - d(x0,x
f

0). 

Therefore 

( 5 . 1 6 ) Mg)t\\l0,x,o < C(T,S)i(l + e(9))ix
e^U\\l0,x,o, V £ e C ( X ) , 

i.e., the representation of F2 on H is of exponent A' for every A' > A. 
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5.2. The Hilbert space, an Ansatz 

The formula ( 5 . 1 3 ) for the Hilbert space completion of the Rips complex can easily 

be generalized. Let (T, S) be a word-hyperbolic group. Let R > 0 be large enough so 

that the Rips-complex A* = A f (T,ds) is contractible and fix a base point XQ G AO-

Rips p-simplices correspond then to oriented (p + l)-element subsets of T of diameter 

at most R. 

B(x0,k) 

FIGURE 1. A flower in Yp

x* 

Lafforgue says that two Rips p-simplices S',S" are /c-equivalent, if there exists 

an isometry between 2?(x, k) U Sf and B(x, k) U 5", which sends S' to S" while 

preserving orientations, and fixes B(x, k) pointwise. This is an equivalence relation 

and the set of equivalence classes is denoted by Yv

x . The equivalence classes are 

called flowers over B{xo,k) if d(x,S') > k and equal a single simplex if d(x,Sf) < 

k-R. 

Lafforgue defines now, similar to ( 5 . 1 3 ) , a Hilbert space HXOj\^(Ap) as the completion 

of C ( A P ) with respect to the norm 

(5 -17 ) || - ||LA,O = E E A 2 «-*>-*> E 1* ' 
k=o zeYp

x£ s'ez 

where again (Is), S G A p , is the dual of the canonical basis of C ( A P ) . 

The left translation action of T on the Rips complex gives rise to a represen­

tation 7r on %XO,A,O(Ap), which is of exponent A' for every A; > A by essen­

tially the same argument as in the case of free groups. A direct consequence 

is 

T H E O R E M 5 . 4 (Lafforgue [38]) . — Hyperbolic groups do not have property ( T ) ^ £ n g . 
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This follows easily from the properties of 7-/X O } A,o(Ao). It is clear that the regular 

representation n of T on Hx,\,o(Ao) has no fixed vectors. However, there is a fixed 

vector for its contragredient representation 7r, because the linear functional 

(5.18) I : J2a9x9 ^Yla9 

is bounded: one has 

o o 

(5.19) Z = e E '«= E 
r = 0 d(x0,v)=r ZeY°J° vez 

XQ 

(note that the flowers in Y^'o° are just the spheres around xo), so that 

(5.20) | / ( o i 2 = E (X-M,^XO'Z)(EI^) < (I-A-VIICA,*) 
zeY°X0°

 N W ) I 

by the Cauchy-Schwarz inequality. Suppose that T possesses property (T)^££ n g 

Then, for A sufficiently close to one, there exists a self-adjoint "Kazhdan"-projection 

p G C\(T,£s,1-L). It satisfies 7r(p) = 0, but n(p) ^ 0 cannot be zero, because its image 

contains /. This is impossible because n(p) = 7r(p)* for self-adjoint projections. 

5.3. Metrically controlled operators 

Lafforgue's Hilbert spaces have interesting properties: they are defined in terms 

of the geometry of the Cayley-graph, the regular representation on them may be 

of arbitrary small exponent and it cannot be separated from the trivial representa­

tion. This makes them into excellent candidates for the Hilbert spaces needed in 

Theorem 5.2. 

However, for general hyperbolic groups, it is difficult to establish the boundedness of 

any contracting chain homotopy of the Rips complex. The naive solution of complet­

ing the natural domain C(A*) of such an operator with respect to the graph norm 

will not work: contrary to the case of free groups, it will destroy the purely geometric 

nature of the Hilbert space and one will loose the control over the norm of the repre­

sentation on it. 

In order to solve the problem Lafforgue proceeds in two steps: He identifies a class of 

operators, which are sufficiently controlled by the geometry of (T,ds), so that their 

graph norms are equivalent to norms of the type (5.17) considered before. A weighted 

sum of iterated graph norms can then still be defined in a purely geometric way 

and leads to Hilbert spaces, on which all controlled operators act boundedly. Then 

Lafforgue constructs very carefully controlled contractions of the Rips complex. 
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His notion of control, inspired by the properties of the operators hr in the case of free 

groups, is 

DEFINITION 5.5. — Let M, r i , r 2 > 1, and let r G N. A linear operator 

$ : C ( A * ) -> C ( A * ) 

is ri-geodesic (with respect to XQ) and (M, r 2)-controlled of propagation r, if its matrix 

coefficients ^s0lSnSo,Si G A * , satisfy the following conditions: 

- $ s 0 , S i — 0 unless d(Si,geod(#o, So)) < r i a n c ^ |d(So,Si) — r| < 
- // there exists an isometry between 

J3(x0, M ) U B(S0, M) U B ( S i , M ) ana B(a? 0, M ) U £(S¿ , M ) U B(S[,M), 

which sends So to S¿, Si ¿0 S(, while preserving orientations, and fixes B(xo, M) 

pointwise, then the matrix coefficients $s0,Si and ^sf

0,s[ coincide. 

- The set of all matrix coefficients is bounded. 

This notion suggests the following modification of Lafforgue's Hilbert space. 

DEFINITION 5.6. — Fix M , n > 1 and let k G N. Let YXo' be the set of m-fold 

iterated, M-thickened flowers of p-simplices over B(XQ, k), i.e., the set of equivalence 

classes of (ra +1)-tuples (So, S i , . . . , S m ) , m G N, of Rips-simplices Si G A * , So G A P , 

such that c¿(S¿+i,geod(#o,S¿)) < r± and d(xo,Sm) > k + 2M, with respect to the 

following equivalence relation. Two (ra + 1)-tuples ( S o , . . . , S m ) and ( S ¿ , . . . , S^) are 

equivalent if there exists an isometry between the subsets 

B(x0, k + 2M) U £ ( S 0 , M ) U • • • U B(Sm, M) 

and 

B ( x 0 , k + 2M) U B ( 5 ¿ , M ) U • • • U Af) 

of (T,ds), which maps Si to S¡ for all i (preserving the orientations of So and Sf

0) 

and fixes B(xo, k + 2M) pointwise. 

B(Xo,k) 

FIGURE 2. A flower in F ^ M 
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Lafforgue defines then the Hilbert space Hx0l\(Ap) as the completion of C(AP) 

with respect to the norm 

o o / 0 0 2 \ 

(5.21) 11 - IILA = E B " m E E \ 2 { M ) - k ) E I*. . 

where B = 5(A) ^> 0 is large, but fixed. Its new basic property is described in 

LEMMA 5.7. — Every linear map <£ : C ( A ^ ) - » C ( A ^ ) , w/izcft zs ri-geodesic (with 

respect to xo) and metrically (M, r2)-controlled and of fixed bounded propagation, 

extends to a bounded linear operator 

<& : ?4O,A(A*) - » • HX0,x(K)-

In fact, let Zi e Y%'M. Then, as $ is ri-geodesic and (M, r2)-controlled of fixed 
propagation, its transpose & satisfies 

(5.22) ** ( l*) = E f E '*> ), 

\ ( 5 i , . . . , 5 m ) € Z i / Z \ ( 5 0 , 5 i , . . . , 5 m ) € Z / 

where 

- The (m + l)-fold iterated M-thickened flowers Z "prolongate" the ra-fold 

iterated M-thickened flower Z\. 

- The number of flowers Z , which occur in the sum on the right hand side, is 

bounded by an absolute constant Ci(I \ S, i?, M, n , r 2 ) . 

- <^z,Zi = 3>s0,Si * s a matrix coefficient of <£, which depends only on Z. 

Thus 

(5.23) | | * ( O I U o , A < C 2 | | f | | X 0 | A 

by the Cauchy-Schwarz inequality, where C 2 depends on Ci, the £°°-norm of the 

matrix coefficients of and of the propagation r of 3>. 

With this result at hand, the next step is to look whether the homotopy (5.7) 

may be realized by geodesic and metrically controlled operators. The simplicial 

differential of the Rips complex is obviously i?-geodesic, i?-controlled, and of propa­

gation at most R. Concerning the contracting chain homotopy hXQ, the story is more 

complicated. 

There is a standard procedure for contracting the Rips complex of a hyperbolic group 

[17, 33, 41]. For a given Rips p-simplex So, one lets h'x (SQ) be a mean over the 

Rips (p + l)-simplices So U {y} with y e T of minimal word-length (distance to the 

origin). Put ipXo = Id - (hXod + dhXo). Then Y,™=o ^o^x0

 w i l 1 ^ e a contracting 

chain-homotopy of C ( A * ) . The construction shows also that the subcomplexes 

spanned by Rips simplices supported in a given ball B C (T,ds), are contractible as 

well (take the center of the ball as new origin). 
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The operators h'XQ and ij)Xo are clearly geodesic, controlled, and of finite propagation. 
So they extend to bounded operators on 7-^0, A (A*). However, one cannot prevent 
the norms of the powers I/JXq, n G N, to grow exponentially! This is due to the fact, 
that for fixed control parameters the operator ipXo will not anymore be geodesic and 
controlled if n is large: the transition coefficient from a simplex So to Si will depend 
on the whole trajectory from So to Si, and not only on the geometry of the union of 
balls of fixed radius around x, So and Si. 
Lafforgue solves the problem by constructing ad hoc geodesic and metrically controlled 
chain maps 

(5.24) <pXQir : C(A.) -> C(A.) , 

which cover the identity in degree -1 and move each simplex r steps towards the origin. 

For {y} G Ao let (fx0,r({y}) be the mean over the points of geod(xo,y) fl S(y,r), 
and extend by linearity to C ( A 0 ) . If ipXOir has been defined on C(A^) , and if S' is 
a (k -h l)-Rips-simplex, then let <pXo,r(Sf) be a filling of the cycle ipXQ,r(dS') inside 
a fixed ball of diameter R + 26 containing \JyeS, geod(#o, S') fl S(y, r ) , (such fillings 
exist as remarked before), and extend by linearity to C(A^) . Finally use the same 
procedure to construct geodesic and metrically controlled homotopy operators 

(5.25) h'X0, : C(A„) -»• C ( A . + 1 ) 

satisfying 

(5-26) <Ar0,r+i - <A*o,r = K0,rd + dh'XQ^ 

and put 

(5-27) ^0=E f cx„,r-
r 

Lafforgue combines the two constructions to obtain a contracting square zero homo­
topy 

N-l ^ 

(5-28) K0 = h'xoo^o + E ^ o ° ^ x 0 > 
n=0 

which is controlled and moves simplices strictly towards the origin. The linear maps 

(5.29) Ft = etd*o(d + K0)e-tdx° 

extend then to bounded operators on ^ ^ ( A * ) for every A > 1 and every t G R+. 

5.4. The pigeonhole principle and the end of the proof 

What remains to be done? Still one step, and it is by far the hardest: it has to be 
shown that the commutators [Ft,ir(g)] are compact for all g G V and t G M+. The 
work of Kasparov-Skandalis [33] and of Mineyev-Yu [46] suggests how to proceed: 
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- The contracting homotopy hXQ has to be replaced by a contraction hXQ which 

depends "continuously" on XQ\ 

(5.30) lim (ft*,,(So) - hx>0(S0)) = 0, W0 G A 0 . 

- The word-metric d on T has to be changed into an equivalent "continuous 

metric" d! with the crucial property 

(5.31) lim (d'(x0,x) - d'(xLx)) = 0, Vx'0 G A 0 . 
x — > - o o 

The necessary changes are quite subtle. They bring a pigeonhole argument into 

play which allows to deduce (5.30) and (5.31). Unfortunately, the operator hXQ and 

the operator d'x : C ( A f ) —> C ( A f ) of multiplication with the distance from the origin 

cannot be metrically controlled anymore. 

This forces Lafforgue to modify again the underlying Hilbert space. The final 

formula for the norm turns out to be much more complicated than our "baby model" 

(5.21) and depends on nine parameters (instead of the four parameters R, M, B, r\ 

we used). We will only give some indications and refer to Lafforgue's original paper 

for more detailed information. 

In the notations of 5.2 it suffices more or less to verify that the operators [7r(#) , hXQ,r] 

and [x(g),dXo] are compact for every r ^ 0 and g G S (and thus for every g G G). 

(The commutators [?r(</),<?] vanish because the differential d is T-equivariant.) In 
more convenient terms, this means that the operators 

(5.32) hx^r - hXQir, and d'XQ - d'x,Q, % 4 g A O , d(xo,x0) = l, 

are compact. 

Decompose the operator (5.28) into a sum of operators of propagation r: h"o = 

J2rhXQr. The construction of the operator hx r depends on a large number of choices. 

Any of these choices was sufficient to arrive at (5.29), but now, one has good reason 

to keep track of the choices made. So Lafforgue introduces a probability space (f2, /x), 

whose points label the possible choices in the construction of hXQr,r G N. The 

corresponding operators are denoted by h"o r u , u E £1. If a simplex So G A* is very 

far from the origins xo and x'0 in the sense that d(xo, S) r, then one may hope that 

K0,r,uj(so) = K'0,r,u(So) w i t n a n i S h Probability. In fact 

LEMMA 5.8. — There exists a universal constant C > 0 such that 

(5.33) € fi, h'^JSo) * K,otrJS0)}) ^ 1+

C

{d

d

(^s^_r) 

for all So G A*, all r G N, and all XQ, X'0 G AQ = T. 
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The proof uses a counting argument as in [33], which is based on a pigeonhole 

principle. The operator 

( 5 - 3 4 ) h x 0 = y2hx0,r, hXo,r = / rLJdn, 

will be the definitive contracting homotopy required in 5.2. Suppose that the operators 

hxruJ,(jj G f2, were uniformly bounded with norms summable with respect to r. The 

operator hx — hx> would then split as a sum of an operator of arbitrary small norm 

(neglecting simplices close to the origin) and a finite rank operator. In other words, 

it would be compact. 

In the same spirit, Lafforgue introduces a family of modified metrics <fc, 2 G 

labeled by another probability space (Íí,/I). They are obtained by an extremely 

subtle averaging process, and satisfy 

(5.35) £ ({£ ; G ñ, dz(x0,x) ¿ d¿(x'0,x)}) < ° \ f ^ ' ^ • 

Consequently the final new metric 

(5.36) df = [ds dji, 

Jn 

used in 5.2, is "continuous" over large distances, and one could essentially conclude 

5.2 c), provided that the operators dX O j W/ — dx'^> were uniformly bounded. 

However, one cannot prove this: neither the operators h"ruj, nor the operators dXo — 

dXo,uj are metrically controlled! 

Fortunately, they almost are: their matrix coefficients as0,S! vanish unless 

d(Si,geod(#, So)) < r\ and |d(So,Si) — r\ < r2 (resp. So = Si) , and depend 

only on the isometry class of the union of B(x,M) U B(So,M) U B(Si,M) and a 

uniformly finite family of "control sets" of uniformly bounded diameter, located along 

geod(x,S 0 ) . 

This leads Lafforgue to the definitive version of his Hilbert space. He enriches the 

definition of the iterated flowers 5.6 by the introduction of uniformly finite families of 

"control sets" of uniformly bounded diameter, located uniformly close to geod(x, So). 

The corresponding isometry relation has to take control sets into account and the 

number of control sets introduces a weight factor in the sums defining the Hilbert 

norm. Another weight factor, given by a very mildly decaying exponential of the 

cardinality of each flower, has still to be introduced to arrive finally at a Hilbert 

space satisfying (5.7). The proof of Theorem 5.2 is thus complete. 

5.5. Concluding remarks 

Lafforgue's proof of the Baum-Connes conjecture with coefficients for word-

hyperbolic groups shows once more the power and flexibility of Kasparov's "Dirac-

Dual Dirac" approach. It may even work in the presence of Kazhdan's property (T) 
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as he shows. His work on the strengthened property (T) indicates however, that the 

method has its limits. There seems to be no way to apply it in the crucial case of 

lattices in simple algebraic groups of split rank ^ 2 over local fields. At present the 

search for a "truly noncommutative" version of J.-B. Bost's Oka-principle [10] seems 

to be the only hope to settle this case. New ideas will be needed to decide whether 

the fascinating predictions of Baum and Connes hold for further classes of groups. 
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